WorldWideScience

Sample records for plasma cell identification

  1. Identification and Characterization of Plasma Cells in Normal Human Bone Marrow by High-Resolution Flow Cytometry

    NARCIS (Netherlands)

    Terstappen, Leonardus Wendelinus Mathias Marie; Johnsen, Steen; Segers-Nolten, Gezina M.J.; Loken, Michael R.

    1990-01-01

    The low frequency of plasma cells and the lack of specific cell surface markers has been a major obstacle for a detailed characterization of plasma cells in normal human bone marrow. Multiparameter flow cytometry enabled the identification of plasma cells in normal bone marrow aspirates. The plasma

  2. A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells.

    Science.gov (United States)

    Dormeyer, Wilma; van Hoof, Dennis; Mummery, Christine L; Krijgsveld, Jeroen; Heck, Albert J R

    2008-10-01

    The identification of (plasma) membrane proteins in cells can provide valuable insights into the regulation of their biological processes. Pluripotent cells such as human embryonic stem cells and embryonal carcinoma cells are capable of unlimited self-renewal and share many of the biological mechanisms that regulate proliferation and differentiation. The comparison of their membrane proteomes will help unravel the biological principles of pluripotency, and the identification of biomarker proteins in their plasma membranes is considered a crucial step to fully exploit pluripotent cells for therapeutic purposes. For these tasks, membrane proteomics is the method of choice, but as indicated by the scarce identification of membrane and plasma membrane proteins in global proteomic surveys it is not an easy task. In this minireview, we first describe the general challenges of membrane proteomics. We then review current sample preparation steps and discuss protocols that we found particularly beneficial for the identification of large numbers of (plasma) membrane proteins in human tumour- and embryo-derived stem cells. Our optimized assembled protocol led to the identification of a large number of membrane proteins. However, as the composition of cells and membranes is highly variable we still recommend adapting the sample preparation protocol for each individual system.

  3. A practical guide for the identification of membrane and plasma membrane proteins in human embryonic stem cells and human embryonal carcinoma cells.

    NARCIS (Netherlands)

    Dormeyer, W.; van Hoof, D.; Mummery, C.L.; Krijgsveld, J.; Heck, A.

    2008-01-01

    The identification of (plasma) membrane proteins in cells can provide valuable insights into the regulation of their biological processes. Pluripotent cells such as human embryonic stem cells and embryonal carcinoma cells are capable of unlimited self-renewal and share many of the biological

  4. Variety of RNAs in Peripheral Blood Cells, Plasma, and Plasma Fractions

    Science.gov (United States)

    Kuligina, Elena V.; Bariakin, Dmitry N.; Kozlov, Vadim V.; Richter, Vladimir A.; Semenov, Dmitry V.

    2017-01-01

    Human peripheral blood contains RNA in cells and in extracellular membrane vesicles, microvesicles and exosomes, as well as in cell-free ribonucleoproteins. Circulating mRNAs and noncoding RNAs, being internalized, possess the ability to modulate vital processes in recipient cells. In this study, with SOLiD sequencing technology, we performed identification, classification, and quantification of RNAs from blood fractions: cells, plasma, plasma vesicles pelleted at 16,000g and 160,000g, and vesicle-depleted plasma supernatant of healthy donors and non-small cell lung cancer (NSCLC) patients. It was determined that 16,000g blood plasma vesicles were enriched with cell-free mitochondria and with a set of mitochondrial RNAs. The variable RNA set of blood plasma 160,000g pellets reflected the prominent contribution of U1, U5, and U6 small nuclear RNAs' fragments and at the same time was characterized by a remarkable depletion of small nucleolar RNAs. Besides microRNAs, the variety of fragments of mRNAs and snoRNAs dominated in the set of circulating RNAs differentially expressed in blood fractions of NSCLC patients. Taken together, our data emphasize that not only extracellular microRNAs but also circulating fragments of messenger and small nuclear/nucleolar RNAs represent prominent classes of circulating regulatory ncRNAs as well as promising circulating biomarkers for the development of disease diagnostic approaches. PMID:28127559

  5. Impact of error fields on plasma identification in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Martone, R., E-mail: Raffaele.Martone@unina2.it [Ass. EURATOM/ENEA/CREATE, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Appel, L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Chiariello, A.G.; Formisano, A.; Mattei, M. [Ass. EURATOM/ENEA/CREATE, Seconda Università di Napoli, Via Roma 29, Aversa (CE) (Italy); Pironti, A. [Ass. EURATOM/ENEA/CREATE, Università degli Studi di Napoli “Federico II”, Via Claudio 25, Napoli (Italy)

    2013-10-15

    Highlights: ► The paper deals with the effect on plasma identification of error fields generated by field coils manufacturing and assembly errors. ► EFIT++ is used to identify plasma gaps when poloidal field coils and central solenoid coils are deformed, and the gaps sensitivity with respect to such errors is analyzed. ► Some examples of reconstruction errors in the presence of deformations are reported. -- Abstract: The active control of plasma discharges in present Tokamak devices must be prompt and accurate to guarantee expected performance. As a consequence, the identification step, calculating plasma parameters from diagnostics, should provide in a very short time reliable estimates of the relevant quantities, such as plasma centroid position, plasma-wall distances at given points called gaps, and other geometrical parameters as elongation and triangularity. To achieve the desired response promptness, a number of simplifying assumptions are usually made in the identification algorithms. Among those clearly affecting the quality of the plasma parameters reconstruction, one of the most relevant is the precise knowledge of the magnetic field produced by active coils. Since uncertainties in their manufacturing and assembly process may cause misalignments between the actual and expected geometry and position of magnets, an analysis on the effect of possible wrong information about magnets on the plasma shape identification is documented in this paper.

  6. Identification and optimization problems in plasma physics

    International Nuclear Information System (INIS)

    Gilbert, J.C.

    1986-06-01

    Parameter identification of the current in a tokamak plasma is studied. Plasma equilibrium in a vacuum container with a diaphragm is analyzed. A variable metric method with reduced optimization with nonlinear equality constraints; and a quasi-Newton reduced optimization method with constraints giving priority to restoration are presented [fr

  7. Tokamak plasma shape identification based on the boundary integral equations

    International Nuclear Information System (INIS)

    Kurihara, Kenichi; Kimura, Toyoaki

    1992-05-01

    A necessary condition for tokamak plasma shape identification is discussed and a new identification method is proposed in this article. This method is based on the boundary integral equations governing a vacuum region around a plasma with only the measurement of either magnetic fluxes or magnetic flux intensities. It can identify various plasmas with low to high ellipticities with the precision determined by the number of the magnetic sensors. This method is applicable to real-time control and visualization using a 'table-look-up' procedure. (author)

  8. Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach

    International Nuclear Information System (INIS)

    Zupancic, Klemen; Blejec, Andrej; Herman, Ana; Veber, Matija; Verbovsek, Urska; Korsic, Marjan; Knezevic, Miomir; Rozman, Primoz; Turnsek, Tamara Lah; Gruden, Kristina; Motaln, Helena

    2014-01-01

    Glioblastoma multiforme (GBM) is a brain tumour with a very high patient mortality rate, with a median survival of 47 weeks. This might be improved by the identification of novel diagnostic, prognostic and predictive therapy-response biomarkers, preferentially through the monitoring of the patient blood. The aim of this study was to define the impact of GBM in terms of alterations of the plasma protein levels in these patients. We used a commercially available antibody array that includes 656 antibodies to analyse blood plasma samples from 17 healthy volunteers in comparison with 17 blood plasma samples from patients with GBM. We identified 11 plasma proteins that are statistically most strongly associated with the presence of GBM. These proteins belong to three functional signalling pathways: T-cell signalling and immune responses; cell adhesion and migration; and cell-cycle control and apoptosis. Thus, we can consider this identified set of proteins as potential diagnostic biomarker candidates for GBM. In addition, a set of 16 plasma proteins were significantly associated with the overall survival of these patients with GBM. Guanine nucleotide binding protein alpha (GNAO1) was associated with both GBM presence and survival of patients with GBM. Antibody array analysis represents a useful tool for the screening of plasma samples for potential cancer biomarker candidates in small-scale exploratory experiments; however, clinical validation of these candidates requires their further evaluation in a larger study on an independent cohort of patients

  9. Gingival plasma cell granuloma

    Directory of Open Access Journals (Sweden)

    Amitkumar B Pandav

    2012-01-01

    Full Text Available Plasma cell granuloma, also known as inflammatory pseudotumor is a tumor-like lesion that manifests primarily in the lungs. But it may occur in various other anatomic locations like orbit, head and neck, liver and rarely in the oral cavity. We here report an exceedingly rare case of gingival plasma cell granuloma in a 58 year old woman who presented with upper gingival polypoidal growth. The histopathological examination revealed a mass composed of proliferation of benign spindle mesenchymal cells in a loose myxoid and fibrocollagenous stroma along with dense infiltrate of chronic inflammatory cells predominantly containing plasma cells. Immunohistochemistry for kappa and lambda light chains showed a polyclonal staining pattern confirming a diagnosis of plasma cell granuloma.

  10. Consensus guidelines on plasma cell myeloma minimal residual disease analysis and reporting.

    Science.gov (United States)

    Arroz, Maria; Came, Neil; Lin, Pei; Chen, Weina; Yuan, Constance; Lagoo, Anand; Monreal, Mariela; de Tute, Ruth; Vergilio, Jo-Anne; Rawstron, Andy C; Paiva, Bruno

    2016-01-01

    Major heterogeneity between laboratories in flow cytometry (FC) minimal residual disease (MRD) testing in multiple myeloma (MM) must be overcome. Cytometry societies such as the International Clinical Cytometry Society and the European Society for Clinical Cell Analysis recognize a strong need to establish minimally acceptable requirements and recommendations to perform such complex testing. A group of 11 flow cytometrists currently performing FC testing in MM using different instrumentation, panel designs (≥ 6-color) and analysis software compared the procedures between their respective laboratories and reviewed the literature to propose a consensus guideline on flow-MRD analysis and reporting in MM. Consensus guidelines support i) the use of minimum of five initial gating parameters (CD38, CD138, CD45, forward, and sideward light scatter) within the same aliquot for accurate identification of the total plasma cell compartment; ii) the analysis of potentially aberrant phenotypic markers and to report the antigen expression pattern on neoplastic plasma cells as being reduced, normal or increased, when compared to a normal reference plasma cell immunophenotype (obtained using the same instrument and parameters); and iii) the percentage of total bone marrow plasma cells plus the percentages of both normal and neoplastic plasma cells within the total bone marrow plasma cell compartment, and over total bone marrow cells. Consensus guidelines on minimal current and future MRD analyses should target a lower limit of detection of 0.001%, and ideally a limit of quantification of 0.001%, which requires at least 3 × 10(6) and 5 × 10(6) bone marrow cells to be measured, respectively. © 2015 International Clinical Cytometry Society.

  11. Plasma cell leukemia

    DEFF Research Database (Denmark)

    Fernández de Larrea, C; Kyle, R A; Durie, B G M

    2013-01-01

    Plasma cell leukemia (PCL) is a rare and aggressive variant of myeloma characterized by the presence of circulating plasma cells. It is classified as either primary PCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. Primary PCL is a distinct clinic......-pathological entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. The diagnosis is based upon the percentage (≥ 20%) and absolute number (≥ 2 × 10(9)/l) of plasma cells in the peripheral blood. It is proposed that the thresholds...... regimens and bortezomib-based regimens are recommended followed by high-dose therapy with autologous stem cell transplantation if feasible. Allogeneic transplantation can be considered in younger patients. Prospective multicenter studies are required to provide revised definitions and better understanding...

  12. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukemia definition.

    Science.gov (United States)

    Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara Mª; Teixidó, Montserrat; Gimenez, Mª Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Bladé, Joan; de Larrea, Carlos Fernández

    2017-06-01

    The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the study herein, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analyzed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukemia were reviewed and patients were classified into 4 categories according to the percentage of circulating plasma cells: 0%, 1-4%, 5-20%, and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%), respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, the presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95% CI 2.6-9.3) independently of age, creatinine, the Durie-Salmon system stage and the International Staging System (ISS) stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86×10 9 /L vs 214×10 9 /L, P <0.0001) and higher bone marrow plasma cells (median 53% vs 36%, P =0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has a similar adverse prognostic impact as plasma cell leukemia. Copyright© Ferrata Storti Foundation.

  13. Tracking plasma cell differentiation and survival.

    Science.gov (United States)

    Roth, Katrin; Oehme, Laura; Zehentmeier, Sandra; Zhang, Yang; Niesner, Raluca; Hauser, Anja E

    2014-01-01

    Plasma cells play a crucial role for the humoral immune response as they represent the body's factories for antibody production. The differentiation from a B cell into a plasma cell is controlled by a complex transcriptional network and happens within secondary lymphoid organs. Based on their lifetime, two types of antibody secreting cells can be distinguished: Short-lived plasma cells are located in extrafollicular sites of secondary lymphoid organs such as lymph node medullary cords and the splenic red pulp. A fraction of plasmablasts migrate from secondary lymphoid organs to the bone marrow where they can become long-lived plasma cells. Bone marrow plasma cells reside in special microanatomical environments termed survival niches, which provide factors promoting their longevity. Reticular stromal cells producing the chemokine CXCL12, which is known to attract plasmablasts to the bone marrow but also to promote plasma cell survival, play a crucial role in the maintenance of these niches. In addition, hematopoietic cells are contributing to the niches by providing other soluble survival factors. Here, we review the current knowledge on the factors involved in plasma cell differentiation, their localization and migration. We also give an overview on what is known regarding the maintenance of long lived plasma cells in survival niches of the bone marrow. © 2013 International Society for Advancement of Cytometry.

  14. Plasma cell granuloma of lip

    Directory of Open Access Journals (Sweden)

    B Sabarinath

    2012-01-01

    Full Text Available Plasma cells are medium-sized round-to-oval cells with eccentrically placed nuclei, usually found in the red pulp of the spleen, tonsils, medulla of the lymph nodes, nasal mucosa, upper airway, lamina propria of the gastrointestinal tract, and sites of inflammation. Plasma cell granuloma is a rare reactive tumor-like proliferation composed chiefly of plasmacytic infiltrate. Here, we present a case of plasma cell granuloma of lip in a female patient.

  15. Plasmoacanthoma of oral cavity and plasma cell cheilitis: two sides of same disorder “oral plasma cell mucositis” ?

    Directory of Open Access Journals (Sweden)

    Gayatri Khatri

    2014-04-01

    Full Text Available Plasmoacanthoma and plasma cell cheilitis are rare disorders of obscure etiology characterized by a plasma cell infiltrate an 80-year-old woman presented with a verrucous, fleshy, skin colored plaque over lips, gingiva, and the palate and painful swallowing for over a period of 6 months. Histopathology of the lesion showed dense infiltrate of plasma cells. The lesions resolved completely after intralesional triamcinolone acetonide. Another 52-year-old male had progressively enlarging, erosive lesion over vermilion border of lower lip for 6months resembling actinic cheilitis. Histology was diagnostic of plasma cell cheilitis. Treatment with topical clobetasol propionate was effective. Plasma cell cheilitis and plasmoacanthoma perhaps represent a spectrum of oral ”plasma cell mucositis” with plasmoacanthoma being an advanced version of the former.

  16. Nonthermal-plasma-mediated animal cell death

    Science.gov (United States)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Gyoo-Cheon; Kim, Kyong-Tai

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood.

  17. Nonthermal-plasma-mediated animal cell death

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Kyong-Tai [Department of Life Science, Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyoja Dong, Pohang 790-784 (Korea, Republic of); Kim, Gyoo-Cheon, E-mail: ktk@postech.ac.kr [Department of Oral Anatomy and Cell Biology, School of Dentistry, Pusan National University, Yangsan 626-810 (Korea, Republic of)

    2011-01-12

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood. (topical review)

  18. Nonthermal-plasma-mediated animal cell death

    International Nuclear Information System (INIS)

    Kim, Wanil; Woo, Kyung-Chul; Kim, Kyong-Tai; Kim, Gyoo-Cheon

    2011-01-01

    Animal cell death comprising necrosis and apoptosis occurred in a well-regulated manner upon specific stimuli. The physiological meanings and detailed molecular mechanisms of cell death have been continuously investigated over several decades. Necrotic cell death has typical morphological changes, such as cell swelling and cell lysis followed by DNA degradation, whereas apoptosis shows blebbing formation and regular DNA fragmentation. Cell death is usually adopted to terminate cancer cells in vivo. The current strategies against tumour are based on the induction of cell death by adopting various methods, including radiotherapy and chemotherapeutics. Among these, radiotherapy is the most frequently used treatment method, but it still has obvious limitations. Recent studies have suggested that the use of nonthermal air plasma can be a prominent method for inducing cancer cell death. Plasma-irradiated cells showed the loss of genomic integrity, mitochondrial dysfunction, plasma membrane damage, etc. Tumour elimination with plasma irradiation is an emerging concept in cancer therapy and can be accelerated by targeting certain tumour-specific proteins with gold nanoparticles. Here, some recent developments are described so that the mechanisms related to plasma-mediated cell death and its perspectives in cancer treatment can be understood. (topical review)

  19. Red Blood Cell Antibody Identification

    Science.gov (United States)

    ... antibodies may or may not be associated with adverse reactions, and identification of the specific type of RBC ... the only things that can cause a transfusion reaction. The recipient's immune ... or to drugs that the donor may have taken. Rarely, antibodies in the plasma ...

  20. Spectroscopy for identification of plasma sources for lithography and water window imaging

    International Nuclear Information System (INIS)

    O'Sullivan, Gerry; Dunne, Padraig; Liu, Luning; Lokasani, Ragava; Long, Elaine; O'Reilly, Fergal; Sheridan, Paul; Sokell, Emma; Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Ohashi, Hayato; Suzuki, Chihiro

    2015-01-01

    The identification of sources for applications that include nanolithography, surface patterning and high resolution imaging is the focus of a considerable activity in the extreme ultraviolet (EUV) or soft x-ray (SXR) spectral regions. We report on the result of a study of the spectra from laser produced plasmas of a number of medium and high Z metals undertaken in order to identify potential sources for use with available multilayer mirrors. The main focus was the study of unresolved transition arrays emitted from ions with 3d, 4d and 4f valence subshells that emit strongly in the water window (2.34-4.38 nm).and that could be used for biological imaging or cell tomography. (paper)

  1. Efficient Isolation and Quantitative Proteomic Analysis of Cancer Cell Plasma Membrane Proteins for Identification of Metastasis-Associated Cell Surface Markers

    DEFF Research Database (Denmark)

    Lund, Rikke; Leth-Larsen, Rikke; Jensen, Ole N

    2009-01-01

    Cell surface membrane proteins are involved in central processes such as cell signaling, cell-cell interactions, ion and solute transport, and they seem to play a pivotal role in several steps of the metastatic process of cancer cells. The low abundance and hydrophobic nature of cell surface...... membrane proteins complicate their purification and identification by MS. We used two isogenic cell lines with opposite metastatic capabilities in nude mice to optimize cell surface membrane protein purification and to identify potential novel markers of metastatic cancer. The cell surface membrane...... proteins were isolated by centrifugation/ultracentrifugation steps, followed by membrane separation using a Percoll/sucrose density gradient. The gradient fractions containing the cell surface membrane proteins were identified by enzymatic assays. Stable isotope labeling of the proteome of the metastatic...

  2. Protein diffusion in plant cell plasma membranes: the cell-wall corral.

    Science.gov (United States)

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  3. Evaluation of IgG4+ Plasma Cell Infiltration in Patients with Systemic Plasmacytosis and Other Plasma Cell-infiltrating Skin Diseases

    Directory of Open Access Journals (Sweden)

    Shintaro Takeoka

    2018-02-01

    Full Text Available Systemic plasmacytosis is a rare skin disorder characterized by marked infiltration of plasma cells in the dermis. IgG4-related disease is pathologically characterized by lymphoplasmacytic infiltration rich in IgG4+ plasma cells, storiform fibrosis, and obliterative phlebitis, accompanied by elevated levels of serum IgG4. Reports of cases of systemic plasmacytosis with abundant infiltration of IgG4+ plasma cells has led to discussion about the relationship between systemic plasmacytosis and IgG4-related disease. This study examined IgG4+/IgG+ plasma cell ratios in 4 patients with systemic plasmacytosis and 12 patients with other skin diseases that show marked infiltration of plasma cells. Furthermore, we examined whether these cases met one of the pathological diagnostic criteria for IgG4-related disease (i.e. IgG4+/IgG plasma cells ratio of over 40%. Only one out of 4 patients with systemic plasmacytosis met the criterion. These results suggest that systemic plasmacytosis and IgG4-related disease are distinct diseases.

  4. The Antigen Presenting Cells Instruct Plasma Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Wei eXu

    2014-01-01

    Full Text Available The professional antigen presenting cells (APCs, including many subsets of dendritic cells and macrophages, not only mediate prompt but nonspecific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells, which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only signal 1 (the antigen, but also signal 2 to directly instruct the differentiation process of plasma cells in a T cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  5. The genetic network controlling plasma cell differentiation.

    Science.gov (United States)

    Nutt, Stephen L; Taubenheim, Nadine; Hasbold, Jhagvaral; Corcoran, Lynn M; Hodgkin, Philip D

    2011-10-01

    Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. 2011 Elsevier Ltd. All rights reserved.

  6. Modeling plasma behavior in a plasma electrode Pockels cell

    International Nuclear Information System (INIS)

    Boley, C.D.; Rhodes, M.A.

    1999-01-01

    The authors present three interrelated models of plasma behavior in a plasma electrode Pockels cell (PEPC). In a PEPC, plasma discharges are formed on both sides of a thin, large-aperture electro-optic crystal (typically KDP). The plasmas act as optically transparent, highly conductive electrodes, allowing uniform application of a longitudinal field to induce birefringence in the crystal. First, they model the plasma in the thin direction, perpendicular to the crystal, via a one-dimensional fluid model. This yields the electron temperature and the density and velocity profiles in this direction as functions of the neutral pressure, the plasma channel width, and the discharge current density. Next, they model the temporal response of the crystal to the charging process, combining a circuit model with a model of the sheath which forms near the crystal boundary. This model gives the time-dependent voltage drop across the sheath as a function of electron density at the sheath entrance. Finally, they develop a two-dimensional MHD model of the planar plasma, in order to calculate the response of the plasma to magnetic fields. They show how the plasma uniformity is affected by the design of the current return, by the longitudinal field from the cathode magnetron, and by fields from other sources. This model also gives the plasma sensitivity to the boundary potential at which the top and bottom of the discharge are held. They validate these models by showing how they explain observations in three large Pockels cells built at Lawrence Livermore National Laboratory

  7. Protein diffusion in plant cell plasma membranes: The cell-wall corral

    Directory of Open Access Journals (Sweden)

    Alexandre eMartinière

    2013-12-01

    Full Text Available Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment.

  8. Identification of a nucleoside analog active against adenosine kinase–expressing plasma cell malignancies

    Science.gov (United States)

    Sadek, Jouliana; Hernandez-Hopkins, Denise; Akar, Gunkut; Barelli, Peter J.; Sahai, Michelle A.; Zhou, Hufeng; Totonchy, Jennifer; Jayabalan, David; Niesvizky, Ruben; Guasparri, Ilaria; Liu, Yifang; Sei, Shizuko; Shoemaker, Robert H.; Elemento, Olivier; Kaye, Kenneth M.

    2017-01-01

    Primary effusion lymphoma (PEL) is a largely incurable malignancy of B cell origin with plasmacytic differentiation. Here, we report the identification of a highly effective inhibitor of PEL. This compound, 6-ethylthioinosine (6-ETI), is a nucleoside analog with toxicity to PEL in vitro and in vivo, but not to other lymphoma cell lines tested. We developed and performed resistome analysis, an unbiased approach based on RNA sequencing of resistant subclones, to discover the molecular mechanisms of sensitivity. We found different adenosine kinase–inactivating (ADK-inactivating) alterations in all resistant clones and determined that ADK is required to phosphorylate and activate 6-ETI. Further, we observed that 6-ETI induces ATP depletion and cell death accompanied by S phase arrest and DNA damage only in ADK-expressing cells. Immunohistochemistry for ADK served as a biomarker approach to identify 6-ETI–sensitive tumors, which we documented for other lymphoid malignancies with plasmacytic features. Notably, multiple myeloma (MM) expresses high levels of ADK, and 6-ETI was toxic to MM cell lines and primary specimens and had a robust antitumor effect in a disseminated MM mouse model. Several nucleoside analogs are effective in treating leukemias and T cell lymphomas, and 6-ETI may fill this niche for the treatment of PEL, plasmablastic lymphoma, MM, and other ADK-expressing cancers. PMID:28504647

  9. Identification of a nucleoside analog active against adenosine kinase-expressing plasma cell malignancies.

    Science.gov (United States)

    Nayar, Utthara; Sadek, Jouliana; Reichel, Jonathan; Hernandez-Hopkins, Denise; Akar, Gunkut; Barelli, Peter J; Sahai, Michelle A; Zhou, Hufeng; Totonchy, Jennifer; Jayabalan, David; Niesvizky, Ruben; Guasparri, Ilaria; Hassane, Duane; Liu, Yifang; Sei, Shizuko; Shoemaker, Robert H; Warren, J David; Elemento, Olivier; Kaye, Kenneth M; Cesarman, Ethel

    2017-06-01

    Primary effusion lymphoma (PEL) is a largely incurable malignancy of B cell origin with plasmacytic differentiation. Here, we report the identification of a highly effective inhibitor of PEL. This compound, 6-ethylthioinosine (6-ETI), is a nucleoside analog with toxicity to PEL in vitro and in vivo, but not to other lymphoma cell lines tested. We developed and performed resistome analysis, an unbiased approach based on RNA sequencing of resistant subclones, to discover the molecular mechanisms of sensitivity. We found different adenosine kinase-inactivating (ADK-inactivating) alterations in all resistant clones and determined that ADK is required to phosphorylate and activate 6-ETI. Further, we observed that 6-ETI induces ATP depletion and cell death accompanied by S phase arrest and DNA damage only in ADK-expressing cells. Immunohistochemistry for ADK served as a biomarker approach to identify 6-ETI-sensitive tumors, which we documented for other lymphoid malignancies with plasmacytic features. Notably, multiple myeloma (MM) expresses high levels of ADK, and 6-ETI was toxic to MM cell lines and primary specimens and had a robust antitumor effect in a disseminated MM mouse model. Several nucleoside analogs are effective in treating leukemias and T cell lymphomas, and 6-ETI may fill this niche for the treatment of PEL, plasmablastic lymphoma, MM, and other ADK-expressing cancers.

  10. AWAKE’s plasma cell arrives at its destination

    CERN Multimedia

    Antonella Del Rosso

    2016-01-01

    By harnessing the power of wakefields generated by a proton beam in a plasma cell, the AWAKE project aims to produce accelerator gradients hundreds of times higher than those achieved in current machines. Far from being just a dream, the AWAKE tunnel is progressively being filled with its vital components. This week, the plasma cell has been moved to its final position.   AWAKE's 10-metre-long plasma cell in the experiment tunnel. The proof-of-principle AWAKE experiment is being installed in the tunnel previously used by the CNGS facility. In AWAKE, a beam of protons from the SPS will be travelling through a plasma cell and will generate a wakefield that, in turn, will accelerate an electron beam. A laser will ionise the gas in the plasma cell and seed the self-modulation instability that will trigger the wakefield in the plasma. The project aims to prove that the plasma wakefield can be driven with protons and that its acceleration will be extremely powerful, hundreds of times more powe...

  11. Theoretical and experimental identification of a plasma in a gaseous discharge between two parallel plates electrodes

    International Nuclear Information System (INIS)

    Delgado Aparicio Villaran, Luis Felipe; Chaname D, Julio

    1996-01-01

    This work allows a basic approach to the identification of a gaseous discharge plasma (of air, hydrogen, argon or any other gas) between two metallic electrodes separated by a variable distance 'd' in the range of 1 to 17 cm. The discharge zone identification (anodic and cathodic regions), the tabulation of the characteristic curves V (volts), versus vs I (m A), and V (Volts) versus pd (Torr x cm), as well the implementation of some electric probes, will characterize this plasma. (author)

  12. Plasma Cell Neoplasms (Including Multiple Myeloma)—Patient Version

    Science.gov (United States)

    Plasma cell neoplasms occur when abnormal plasma cells form cancerous tumors. When there is only one tumor, the disease is called a plasmacytoma. When there are multiple tumors, it is called multiple myeloma. Start here to find information on plasma cell neoplasms treatment, research, and statistics.

  13. Evolution of Excited Convective Cells in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans; Juul Rasmussen, Jens; Sugai, H.

    1984-01-01

    Convective cells are excited externally in a fully ionized magnetized plasma and their space-time evolution is investigated by two-dimensional potential measurements. A positive cell is excited externally by control of the end losses in the 'scrape off' layer of a plasma column produced by surface...

  14. At the border: the plasma membrane-cell wall continuum.

    Science.gov (United States)

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Identification of ERdj3 and OBF-1/BOB-1/OCA-B as direct targets of XBP-1 during plasma cell differentiation.

    Science.gov (United States)

    Shen, Ying; Hendershot, Linda M

    2007-09-01

    Plasma cell differentiation is accompanied by a modified unfolded protein response (UPR), which involves activation of the Ire1 and activating transcription factor 6 branches, but not the PKR-like endoplasmic reticulum kinase branch. Ire1-mediated splicing of XBP-1 (XBP-1(S)) is required for terminal differentiation, although the direct targets of XBP-1(S) in this process have not been identified. We demonstrate that XBP-1(S) binds to the promoter of ERdj3 in plasmacytoma cells and in LPS-stimulated primary splenic B cells, which corresponds to increased expression of ERdj3 transcripts in both cases. When small hairpin RNA was used to decrease XBP-1 expression in plasmacytoma lines, ERdj3 transcripts were concomitantly reduced. The accumulation of Ig gamma H chain protein was also diminished, but unexpectedly this occurred at the transcriptional level as opposed to effects on H chain stability. The decrease in H chain transcripts correlated with a reduction in mRNA encoding the H chain transcription factor, OBF-1/BOB-1/OCA-B. Chromatin immunoprecipitation experiments revealed that XBP-1(S) binds to the OBF-1/BOB-1/OCA-B promoter in the plasmacytoma line and in primary B cells not only during plasma cell differentiation, but also in response to classical UPR activation. Gel shift assays suggest that XBP-1(S) binding occurs through a UPR element conserved in both murine and human OBF-1/BOB-1/OCA-B promoters as opposed to endoplasmic reticulum stress response elements. Our studies are the first to identify direct downstream targets of XBP-1(S) during either plasma cell differentiation or the UPR. In addition, our data further define the XBP-1(S)-binding sequence and provide yet another role for this protein as a master regulator of plasma cell differentiation.

  16. Study on the effects of physical plasma on in-vitro cultivates cells

    International Nuclear Information System (INIS)

    Strassenburg, Susanne

    2014-03-01

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  17. Epithelial cell-cell junctions and plasma membrane domains

    NARCIS (Netherlands)

    Giepmans, Ben N. G.; van Ijzendoorn, Sven C. D.

    Epithelial cells form a barrier against the environment, but are also required for the regulated exchange of molecules between an organism and its surroundings. Epithelial cells are characterised by a remarkable polarization of their plasma membrane, evidenced by the appearance of structurally,

  18. Enzyme-labeled Antigen Method: Development and Application of the Novel Approach for Identifying Plasma Cells Locally Producing Disease-specific Antibodies in Inflammatory Lesions

    International Nuclear Information System (INIS)

    Mizutani, Yasuyoshi; Shiogama, Kazuya; Onouchi, Takanori; Sakurai, Kouhei; Inada, Ken-ichi; Tsutsumi, Yutaka

    2016-01-01

    In chronic inflammatory lesions of autoimmune and infectious diseases, plasma cells are frequently observed. Antigens recognized by antibodies produced by the plasma cells mostly remain unclear. A new technique identifying these corresponding antigens may give us a breakthrough for understanding the disease from a pathophysiological viewpoint, simply because the immunocytes are seen within the lesion. We have developed an enzyme-labeled antigen method for microscopic identification of the antigen recognized by specific antibodies locally produced in plasma cells in inflammatory lesions. Firstly, target biotinylated antigens were constructed by the wheat germ cell-free protein synthesis system or through chemical biotinylation. Next, proteins reactive to antibodies in tissue extracts were screened and antibody titers were evaluated by the AlphaScreen method. Finally, with the enzyme-labeled antigen method using the biotinylated antigens as probes, plasma cells producing specific antibodies were microscopically localized in fixed frozen sections. Our novel approach visualized tissue plasma cells that produced 1) autoantibodies in rheumatoid arthritis, 2) antibodies against major antigens of Porphyromonas gingivalis in periodontitis or radicular cyst, and 3) antibodies against a carbohydrate antigen, Strep A, of Streptococcus pyogenes in recurrent tonsillitis. Evaluation of local specific antibody responses expectedly contributes to clarifying previously unknown processes in inflammatory disorders

  19. High levels of circulating triiodothyronine induce plasma cell differentiation.

    Science.gov (United States)

    Bloise, Flavia Fonseca; Oliveira, Felipe Leite de; Nobrega, Alberto Félix; Vasconcellos, Rita; Cordeiro, Aline; Paiva, Luciana Souza de; Taub, Dennis D; Borojevic, Radovan; Pazos-Moura, Carmen Cabanelas; Mello-Coelho, Valéria de

    2014-03-01

    The effects of hyperthyroidism on B-cell physiology are still poorly known. In this study, we evaluated the influence of high-circulating levels of 3,5,3'-triiodothyronine (T3) on bone marrow, blood, and spleen B-cell subsets, more specifically on B-cell differentiation into plasma cells, in C57BL/6 mice receiving daily injections of T3 for 14 days. As analyzed by flow cytometry, T3-treated mice exhibited increased frequencies of pre-B and immature B-cells and decreased percentages of mature B-cells in the bone marrow, accompanied by an increased frequency of blood B-cells, splenic newly formed B-cells, and total CD19(+)B-cells. T3 administration also promoted an increase in the size and cellularity of the spleen as well as in the white pulp areas of the organ, as evidenced by histological analyses. In addition, a decreased frequency of splenic B220(+) cells correlating with an increased percentage of CD138(+) plasma cells was observed in the spleen and bone marrow of T3-treated mice. Using enzyme-linked immunospot assay, an increased number of splenic immunoglobulin-secreting B-cells from T3-treated mice was detected ex vivo. Similar results were observed in mice immunized with hen egg lysozyme and aluminum adjuvant alone or together with treatment with T3. In conclusion, we provide evidence that high-circulating levels of T3 stimulate plasma cytogenesis favoring an increase in plasma cells in the bone marrow, a long-lived plasma cell survival niche. These findings indicate that a stimulatory effect on plasma cell differentiation could occur in untreated patients with Graves' disease.

  20. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration.

    Science.gov (United States)

    Karki, Surya B; Yildirim-Ayan, Eda; Eisenmann, Kathryn M; Ayan, Halim

    2017-01-01

    Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.

  1. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration

    Directory of Open Access Journals (Sweden)

    Surya B. Karki

    2017-01-01

    Full Text Available Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.

  2. Low Temperature Plasma for the Treatment of Epithelial Cancer Cells

    Science.gov (United States)

    Mohades, Soheila

    Biomedical applications of low temperature plasmas (LTP) may lead to a paradigm shift in treating various diseases by conducting fundamental research on the effects of LTP on cells, tissues, organisms (plants, insects, and microorganisms). This is a rapidly growing interdisciplinary research field that involves engineering, physics, life sciences, and chemistry to find novel solutions for urgent medical needs. Effects of different LTP sources have shown the anti-tumor properties of plasma exposure; however, there are still many unknowns about the interaction of plasma with eukaryotic cells which must be elucidated in order to evaluate the practical potential of plasma in cancer treatment. Plasma, the fourth state of matter, is composed of electrons, ions, reactive molecules (radicals and non-radicals), excited species, radiation, and heat. A sufficient dose (time) of plasma exposure can induce death in cancer cells. The plasma pencil is employed to study the anti-tumor properties of this treatment on epithelial cells. The plasma pencil has been previously used for the inactivation of bacteria, destroying amyloid fibrils, and the killing of various cancer cells. Bladder cancer is the 9th leading cause of cancer. In this dissertation, human urinary bladder tissue with the squamous cell carcinoma disease (SCaBER cells) is treated with LTP utilizing two different approaches: direct plasma exposure and Plasma Activated Media (PAM) as an advancement to the treatment. PAM is produced by exposing a liquid cell culture medium to the plasma pencil. Direct LTP treatment of cancer cells indicates a dose-dependent killing effect at post-treatment times. Similarly, PAM treatment shows an anti-cancer effect by inducing substantial cell death. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) have an important role in the biomedical effects of LTP treatment. This study demonstrates the capability of the plasma pencil to transport ROS/RNS into cell culture media

  3. Identification of Cell Surface Targets through Meta-analysis of Microarray Data

    Directory of Open Access Journals (Sweden)

    Henry Haeberle

    2012-07-01

    Full Text Available High-resolution image guidance for resection of residual tumor cells would enable more precise and complete excision for more effective treatment of cancers, such as medulloblastoma, the most common pediatric brain cancer. Numerous studies have shown that brain tumor patient outcomes correlate with the precision of resection. To enable guided resection with molecular specificity and cellular resolution, molecular probes that effectively delineate brain tumor boundaries are essential. Therefore, we developed a bioinformatics approach to analyze micro-array datasets for the identification of transcripts that encode candidate cell surface biomarkers that are highly enriched in medulloblastoma. The results identified 380 genes with greater than a two-fold increase in the expression in the medulloblastoma compared with that in the normal cerebellum. To enrich for targets with accessibility for extracellular molecular probes, we further refined this list by filtering it with gene ontology to identify genes with protein localization on, or within, the plasma membrane. To validate this meta-analysis, the top 10 candidates were evaluated with immunohistochemistry. We identified two targets, fibrillin 2 and EphA3, which specifically stain medulloblastoma. These results demonstrate a novel bioinformatics approach that successfully identified cell surface and extracellular candidate markers enriched in medulloblastoma versus adjacent cerebellum. These two proteins are high-value targets for the development of tumor-specific probes in medulloblastoma. This bioinformatics method has broad utility for the identification of accessible molecular targets in a variety of cancers and will enable probe development for guided resection.

  4. Cold atmospheric plasma treatment inhibits growth in colorectal cancer cells.

    Science.gov (United States)

    Schneider, Christin; Arndt, Stephanie; Zimmermann, Julia L; Li, Yangfang; Karrer, Sigrid; Bosserhoff, Anja-Katrin

    2018-06-01

    Plasma oncology is a relatively new field of research. Recent developments have indicated that cold atmospheric plasma (CAP) technology is an interesting new therapeutic approach to cancer treatment. In this study, p53 wildtype (LoVo) and human p53 mutated (HT29 and SW480) colorectal cancer cells were treated with the miniFlatPlaSter - a device particularly developed for the treatment of tumor cells - that uses the Surface Micro Discharge (SMD) technology for plasma production in air. The present study analyzed the effects of plasma on colorectal cancer cells in vitro and on normal colon tissue ex vivo. Plasma treatment had strong effects on colon cancer cells, such as inhibition of cell proliferation, induction of cell death, and modulation of p21 expression. In contrast, CAP treatment of murine colon tissue ex vivo for up to 2 min did not show any toxic effect on normal colon cells compared to H2O2 positive control. In summary, these results suggest that the miniFlatPlaSter plasma device is able to kill colorectal cancer cells independent of their p53 mutation status. Thus, this device presents a promising new approach in colon cancer therapy.

  5. Plasma treatment of mammalian vascular cells : A quantitative description

    NARCIS (Netherlands)

    Kieft, IE; Darios, D; Roks, AJM; Stoffels, E

    For the first time, quantitative data was obtained on plasma treatment of living mammalian cells. The nonthermal atmospheric discharge produced by the plasma needle was used for treatment of mammalian endothelial and smooth muscle cells. The influence of several experimental parameters on cell

  6. Plasma treatment of mammalian vascular cells: a quantitative description

    NARCIS (Netherlands)

    Kieft, I.E.; Darios, D.; Roks, A.J.M.; Stoffels - Adamowicz, E.

    2005-01-01

    For the first time, quantitative data was obtained on plasma treatment of living mammalian cells. The nonthermal atmospheric discharge produced by the plasma needle was used for treatment of mammalian endothelial and smooth muscle cells. The influence of several experimental parameters on cell

  7. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    Science.gov (United States)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  8. CT features of abdominal plasma cell neoplasms

    International Nuclear Information System (INIS)

    Monill, J.; Pernas, J.; Montserrat, E.; Perez, C.; Clavero, J.; Martinez-Noguera, A.; Guerrero, R.; Torrubia, S.

    2005-01-01

    The aim of this study was to describe the CT features of abdominal plasma cell neoplasms. We reviewed CT imaging findings in 11 patients (seven men, four women; mean age 62 years) with plasma cell neoplasms and abdominal involvement. Helical CT of the entire abdomen and pelvis was performed following intravenous administration of contrast material. Images were analyzed in consensus by two radiologists. Diagnoses were made from biopsy, surgery and/or clinical follow-up findings. Multiple myeloma was found in seven patients and extramedullary plasmacytoma in four patients. All patients with multiple myeloma had multifocal disease with involvement of perirenal space (4/7), retroperitoneal and pelvic lymph nodes (3/7), peritoneum (3/7), liver (2/7), subcutaneous tissues (2/7) and kidney (1/7). In three of the four patients with extramedullary plasmacytoma, a single site was involved, namely stomach, vagina and retroperitoneum. In the fourth patient, a double site of abdominal involvement was observed with rectal and jejunal masses. Plasma cell neoplasm should be considered in the differential diagnosis of single or multiple enhancing masses in the abdomen or pelvis. Abdominal plasma cell neoplasms were most frequently seen as well-defined enhancing masses (10/11). (orig.)

  9. Glutamine-derived 2-hydroxyglutarate is associated with disease progression in plasma cell malignancies

    Science.gov (United States)

    Gonsalves, Wilson I.; Hitosugi, Taro; Ghosh, Toshi; Jevremovic, Dragan; Petterson, Xuan-Mai; Wellik, Linda; Kumar, Shaji K.; Nair, K. Sreekumaran

    2018-01-01

    The production of the oncometabolite 2-hydroxyglutarate (2-HG) has been associated with c-MYC overexpression. c-MYC also regulates glutamine metabolism and drives progression of asymptomatic precursor plasma cell (PC) malignancies to symptomatic multiple myeloma (MM). However, the presence of 2-HG and its clinical significance in PC malignancies is unknown. By performing 13C stable isotope resolved metabolomics (SIRM) using U[13C6]Glucose and U[13C5]Glutamine in human myeloma cell lines (HMCLs), we show that 2-HG is produced in clonal PCs and is derived predominantly from glutamine anaplerosis into the TCA cycle. Furthermore, the 13C SIRM studies in HMCLs also demonstrate that glutamine is preferentially utilized by the TCA cycle compared with glucose. Finally, measuring the levels of 2-HG in the BM supernatant and peripheral blood plasma from patients with precursor PC malignancies such as smoldering MM (SMM) demonstrates that relatively elevated levels of 2-HG are associated with higher levels of c-MYC expression in the BM clonal PCs and with a subsequent shorter time to progression (TTP) to MM. Thus, measuring 2-HG levels in BM supernatant or peripheral blood plasma of SMM patients offers potential early identification of those patients at high risk of progression to MM, who could benefit from early therapeutic intervention. PMID:29321378

  10. Identification of drug metabolites in human plasma or serum integrating metabolite prediction, LC-HRMS and untargeted data processing

    NARCIS (Netherlands)

    Jacobs, P.L.; Ridder, L.; Ruijken, M.; Rosing, H.; Jager, N.G.L.; Beijnen, J.H.; Bas, R.R.; Dongen, W.D. van

    2013-01-01

    Background: Comprehensive identification of human drug metabolites in first-in-man studies is crucial to avoid delays in later stages of drug development. We developed an efficient workflow for systematic identification of human metabolites in plasma or serum that combines metabolite prediction,

  11. Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Plasma cell neoplasms occur when abnormal plasma cells or myeloma cells form tumors in the bones or soft tissues of the body. Multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are different types of plasma cell neoplasms. Find out about risk factors, symptoms, diagnostic tests, prognosis, and treatment for these diseases.

  12. Bystander apoptosis in human cells mediated by irradiated blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vinnikov, Volodymyr, E-mail: vlad.vinnikov@mail.ru [Grigoriev Institute for Medical Radiology of the National Academy of Medical Science of Ukraine (Ukraine); Lloyd, David; Finnon, Paul [Centre for Radiation, Chemical and Environmental Hazards of the Health Protection Agency of the United Kingdom (United Kingdom)

    2012-03-01

    Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G{sub 0}-stage lymphocytes. Plasma was collected from healthy donors' blood irradiated in vitro to 0-40 Gy acute {gamma}-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24 h at 37 Degree-Sign C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4 Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2 {+-} 1.8% in plasma-free cultures, 21.6 {+-} 1.1% in cultures treated with plasma from unirradiated blood, 20.2 {+-} 1.4% in cultures with plasma from blood given 2-4 Gy and 16.7 {+-} 3.2% in cultures with plasma from blood given 6-10 Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.

  13. Bystander apoptosis in human cells mediated by irradiated blood plasma

    International Nuclear Information System (INIS)

    Vinnikov, Volodymyr; Lloyd, David; Finnon, Paul

    2012-01-01

    Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G 0 -stage lymphocytes. Plasma was collected from healthy donors’ blood irradiated in vitro to 0–40 Gy acute γ-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24 h at 37 °C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4 Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2 ± 1.8% in plasma-free cultures, 21.6 ± 1.1% in cultures treated with plasma from unirradiated blood, 20.2 ± 1.4% in cultures with plasma from blood given 2–4 Gy and 16.7 ± 3.2% in cultures with plasma from blood given 6–10 Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.

  14. Characterization of plasma-induced cell membrane permeabilization: focus on OH radical distribution

    International Nuclear Information System (INIS)

    Sasaki, Shota; Honda, Ryosuke; Hokari, Yutaro; Takashima, Keisuke; Kaneko, Toshiro; Kanzaki, Makoto

    2016-01-01

    Non-equilibrium atmospheric-pressure plasma (APP) is used medically for plasma-induced cell permeabilization. However, how plasma irradiation specifically triggers permeabilization remains unclear. In an attempt to identify the dominant factor( s ), the distribution of plasma-produced reactive species was investigated, primarily focusing on OH radicals. A stronger plasma discharge, which produced more OH radicals in the gas phase, also produced more OH radicals in the liquid phase (OH aq ), enhancing the cell membrane permeability. In addition, plasma irradiation-induced enhancement of cell membrane permeability decreased markedly with increased solution thickness (<1 mm), and the plasma-produced OH aq decayed in solution (diffusion length on the order of several hundred micrometers). Furthermore, the horizontally center-localized distribution of OH aq corresponded with the distribution of the permeabilized cells by plasma irradiation, while the overall plasma-produced oxidizing species in solution (detected by iodine-starch reaction) exhibited a doughnut-shaped horizontal distribution. These results suggest that OH aq, among the plasma-produced oxidizing species, represents the dominant factor in plasma-induced cell permeabilization. These results enhance the current understanding of the mechanism of APP as a cell-permeabilization tool. (paper)

  15. Syntaxin-4 is essential for IgE secretion by plasma cells

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Arman; DeCourcey, Joseph; Larbi, Nadia Ben [Immunomodulation Group, School of Biotechnology, Dublin City University (Ireland); Loughran, Sinéad T.; Walls, Dermot [School of Biotechnology and National Centre for Sensor Research, Dublin City University (Ireland); Loscher, Christine E., E-mail: christine.loscher@dcu.ie [Immunomodulation Group, School of Biotechnology, Dublin City University (Ireland)

    2013-10-11

    Highlights: •Knock-down of syntaxin-4 in U266 plasma cells resulted in reduction of IgE secretion. •Knock-down of syntaxin-4 also leads to the accumulation of IgE in the cell. •Immuno-fluorescence staining shows co-localisation of IgE and syntaxin-4 in U266 cells. •Findings suggest a critical requirement for syntaxin-4 in IgE secretion from plasma cells. -- Abstract: The humoral immune system provides a crucial first defense against the invasion of microbial pathogens via the secretion of antigen specific immunoglobulins (Ig). The secretion of Ig is carried out by terminally differentiated B-lymphocytes called plasma cells. Despite the key role of plasma cells in the immune response, the mechanisms by which they constitutively traffic large volumes of Ig out of the cell is poorly understood. The involvement of Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in the regulation of protein trafficking from cells has been well documented. Syntaxin-4, a member of the Qa SNARE syntaxin family has been implicated in fusion events at the plasma membrane in a number of cells in the immune system. In this work we show that knock-down of syntaxin-4 in the multiple myeloma U266 human plasma cell line results in a loss of IgE secretion and accumulation of IgE within the cells. Furthermore, we show that IgE co-localises with syntaxin-4 in U266 plasma cells suggesting direct involvement in secretion at the plasma membrane. This study demonstrates that syntaxin-4 plays a critical role in the secretion of IgE from plasma cells and sheds some light on the mechanisms by which these cells constitutively traffic vesicles to the surface for secretion. An understanding of this machinery may be beneficial in identifying potential therapeutic targets in multiple myeloma and autoimmune disease where over-production of Ig leads to severe pathology in patients.

  16. Syntaxin-4 is essential for IgE secretion by plasma cells

    International Nuclear Information System (INIS)

    Rahman, Arman; DeCourcey, Joseph; Larbi, Nadia Ben; Loughran, Sinéad T.; Walls, Dermot; Loscher, Christine E.

    2013-01-01

    Highlights: •Knock-down of syntaxin-4 in U266 plasma cells resulted in reduction of IgE secretion. •Knock-down of syntaxin-4 also leads to the accumulation of IgE in the cell. •Immuno-fluorescence staining shows co-localisation of IgE and syntaxin-4 in U266 cells. •Findings suggest a critical requirement for syntaxin-4 in IgE secretion from plasma cells. -- Abstract: The humoral immune system provides a crucial first defense against the invasion of microbial pathogens via the secretion of antigen specific immunoglobulins (Ig). The secretion of Ig is carried out by terminally differentiated B-lymphocytes called plasma cells. Despite the key role of plasma cells in the immune response, the mechanisms by which they constitutively traffic large volumes of Ig out of the cell is poorly understood. The involvement of Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins in the regulation of protein trafficking from cells has been well documented. Syntaxin-4, a member of the Qa SNARE syntaxin family has been implicated in fusion events at the plasma membrane in a number of cells in the immune system. In this work we show that knock-down of syntaxin-4 in the multiple myeloma U266 human plasma cell line results in a loss of IgE secretion and accumulation of IgE within the cells. Furthermore, we show that IgE co-localises with syntaxin-4 in U266 plasma cells suggesting direct involvement in secretion at the plasma membrane. This study demonstrates that syntaxin-4 plays a critical role in the secretion of IgE from plasma cells and sheds some light on the mechanisms by which these cells constitutively traffic vesicles to the surface for secretion. An understanding of this machinery may be beneficial in identifying potential therapeutic targets in multiple myeloma and autoimmune disease where over-production of Ig leads to severe pathology in patients

  17. Study on the effects of physical plasma on in-vitro cultivates cells; Untersuchungen zum Einfluss von physikalischem Plasma auf in vitro kultivierte Zellen

    Energy Technology Data Exchange (ETDEWEB)

    Strassenburg, Susanne

    2014-03-15

    This study focused on the interactions of non thermal atmospheric pressure plasma on in vitro cultured keratinocytes (HaCaT keratinocytes) and melanoma cells (MV3). Three different plasma sources were used: a plasma jet (kINPen 09), a surface DBD (dielectric barrier discharge) and a volume DBD. For analyzing basic effects of plasma on cells, influence of physical plasma on viability, on DNA and on induction of ROS were investigated. Following assays were used: -- Viability: - neutral red uptake assay, cell counting (number of viable cells, cell integrity) - BrdU assay (proliferation) - Annexin V and propidium iodide staining, flow cytometry (induction of apoptosis), -- DNA: - alkaline comet assay (detection of DNA damage) - staining of DNA with propidium iodide, flow cytometry (cell cycle analysis), -- ROS: - H2DCFDA assay, flow cytometry (detection of ROS-positive cells). In addition to the effects which where induced by the plasma sources, the influence of the plasma treatment regime (direct, indirect and direct with medium exchange), the working gas (argon, air) and the surrounding liquids (cell culture medium: RPMI, IMDM; buffer solutions: HBSS, PBS) on the extent of the plasma cell effects were investigated. All plasma sources induced treatment time-dependent effects in HaCaT keratinocytes and melanoma cells (MV3): - loss of viable cells and reduced proliferation - induction of apoptosis after the longest treatment times - DNA damage 1 h after plasma treatment, 24 h after plasma treatment DNA damage was present only after the longest treatment times, evidence for DNA damage repair - due to accumulation of cells in G2/M phase, cell count in G1 phase (24 h) is lower - increase of ROS-positive cells 1 h and 24 h after plasma treatment. It was shown that cells which were cultured in RPMI showed stronger effects (stronger loss of viability and more DNA damage) than cells which were cultured in IMDM. Also plasma-treated buffer solutions (HBSS, PBS) induced DNA

  18. Stem cell responses to plasma surface modified electrospun polyurethane scaffolds.

    Science.gov (United States)

    Zandén, Carl; Hellström Erkenstam, Nina; Padel, Thomas; Wittgenstein, Julia; Liu, Johan; Kuhn, H Georg

    2014-07-01

    The topographical effects from functional materials on stem cell behavior are currently of interest in tissue engineering and regenerative medicine. Here we investigate the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell (hESC) and rat postnatal neural stem cell (NSC) responses. The plasma gases were found to induce three combinations of fiber surface functionalities and roughness textures. On randomly oriented fibers, plasma treatments lead to substantially increased hESC attachment and proliferation as compared to native fibers. Argon plasma was found to induce the most optimal combination of surface functionality and roughness for cell expansion. Contact guided migration of cells and alignment of cell processes were observed on aligned fibers. Neuronal differentiation around 5% was found for all samples and was not significantly affected by the induced variations of surface functional group distribution or individual fiber topography. In this study the influence of argon, oxygen, and hydrogen plasma surface modification of electrospun polyurethane fibers on human embryonic stem cell and rat postnatal neural stem cell (NSC) responses is studied with the goal of clarifying the potential effects of functional materials on stem cell behavior, a topic of substantial interest in tissue engineering and regenerative medicine. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Antibacterial plasma at safe levels for skin cells

    NARCIS (Netherlands)

    Boekema, B.K.H.L.; Hofmann, S.; van Ham, B.T.J.; Bruggeman, P.J.; Middelkoop, E.

    2013-01-01

    Plasmas produce various reactive species, which are known to be very effective in killing bacteria. Plasma conditions, at which efficient bacterial inactivation is observed, are often not compatible with leaving human cells unharmed. The purpose of this study was to determine plasma settings for

  20. Induction of Immunogenic Cell Death with Non-Thermal Plasma for Cancer Immunotherapy

    Science.gov (United States)

    Lin, Abraham G.

    Even with the recent advancements in cancer immunotherapy, treatments are still associated with debilitating side effects and unacceptable fail rates. Induction of immunogenic cell death (ICD) in tumors is a promising approach to cancer treatment that may overcome these deficiencies. Cells undergoing ICD pathways enhance the interactions between cancerous cells and immune cells of the patient, resulting in the generation of anti-cancer immunity. The goal of this therapy relies on the engagement and reestablishment of the patient's natural immune processes to target and eliminate cancerous cells systemically. The main objective of this research was to determine if non-thermal plasma could be used to elicit immunogenic cancer cell death for cancer immunotherapy. My hypothesis was that plasma induces immunogenic cancer cell death through oxidative stress pathways, followed by development of a specific anti-tumor immune response. This was tested by investigating the interactions between plasma and multiple cancerous cells in vitro and validating anti-tumor immune responses in vivo. Following plasma treatment, two surrogate ICD markers, secreted adenosine triphosphate (ATP) and surface exposed calreticulin (ecto-CRT), were emitted from all three cancerous cell lines tested: A549 lung carcinoma cell line, CNE-1 radiation-resistant nasopharyngeal cell line and CT26 colorectal cancer cell line. When these cells were co-cultured with macrophages, cells of the innate immune system, the tumoricidal activity of macrophages was enhanced, thus demonstrating the immunostimulatory activity of cells undergoing ICD. The underlying mechanisms of plasma-induced ICD were also evaluated. When plasma is generated, four major components are produced: electromagnetic fields, ultraviolet radiation, and charged and neutral reactive species. Of these, we determined that plasma-generated charged and short-lived reactive oxygen species (ROS) were the major effectors of ICD. Following plasma

  1. Culture of normal human blood cells in a diffusion chamber system II. Lymphocyte and plasma cell kinetics

    International Nuclear Information System (INIS)

    Chikkappa, G.; Carsten, A.L.; Chanana, A.D.; Cronkite, E.P.

    1979-01-01

    Normal human blood leukocytes were cultured in Millipore diffusion chambers implanted into the peritoneal cavities of irradiated mice. The evaluation of survival and proliferation kinetics of cells in lymphyocytic series suggested that the lymphoid cells are formed from transition of small and/or large lymphocytes, and the lymphoblasts from the lymphoid cells. There was also evidence indicating that some of the cells in these two compartments are formed by proliferation. The evaluation of plasmacytic series suggested that the plasma cells are formed from plasmacytoid-lymphocytes by transition, and the latter from the transition of lymphocytes. In addition, relatively a small fraction of cells in these two compartments are formed by proliferation. mature plasma cells do not and immature plasma cells do proliferate. Estimation of magnitude of plasma cells formed in the cultures at day 18 indicated that at least one plasma cell is formed for every 6 normal human blood lymphocytes introduced into the culture

  2. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Gan, L.; Yang, X., E-mail: luxinpei@hotmail.com, E-mail: yangxl@mail.hust.edu.cn [College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, R. [School Hospital of Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xian, Y.; Lu, X., E-mail: luxinpei@hotmail.com, E-mail: yangxl@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-12-15

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-kB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  3. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    Science.gov (United States)

    Yang, H.; Lu, R.; Xian, Y.; Gan, L.; Lu, X.; Yang, X.

    2015-12-01

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-кB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  4. Imaging findings of abdominal extraosseous plasma cell neoplasm

    International Nuclear Information System (INIS)

    Park, Yang Sin; Byun, Jae Ho; Won, Hyung Jin; Kim, Ah Young; Shin, Yong Moon; Kim, Pyo Nyun; Ha, Hyun Kwon; Lee, Moon Gyu; Bae, Kyung Soo

    2006-01-01

    To evaluate the imaging findings of abdominal extraosseous plasma cell neoplasm. From April 2000 to January 2005, eight patients (four men, four women; mean age, 50.6 years) with pathologically proved, extraosseous plasma cell neoplasm involving the abdominal organs were included in this study. The diagnoses were based on consensus agreement between two radiologists who retrospectively reviewed CT, ultrasonography, and enteroclysis findings. We evaluated the findings by focusing on the location, size, margin, and enhancement pattern of the lesion, and lymphadenopathy on each image. There were multiple myeloma in four patients and extramedullary plasmacytoma in the remaining four. Involved abdominal organs were the liver (n = 4), spleen (n 4), lymph node (n = 3), stomach (n = 1), small bowel (n = 1), and colon (n 1). The hepatic involvement of plasma cell neoplasm presented as a homogeneous, well-defined, solitary mass (n = 1), multiple nodules (n = 1), and hepatomegaly (n = 2). Its involvement of the spleen and lymph node appeared as splenomegaly and lymphadenopathy, respectively. Its involvement of the gastrointestinal tract including the stomach, small bowel, and colon, presented as a homogeneous, diffuse wall thickening or mass in the gastrointestinal tract. Abdominal extraosseous plasma cell neoplasm involves occasionally the liver, spleen, and lymph node, and rarely the gastrointestinal tract. When we encounter a well-defined, homogeneous lesion of the abdominal organs in patients diagnosed or suspected as having plasma cell neoplasm, we should consider its involvement of the abdominal organs

  5. Intracellular effects of atmospheric-pressure plasmas on melanoma cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishaq, M., E-mail: ishaqmusarat@gmail.com [Peter MacCallum Cancer Centre, East Melbourne, VIC 3002 (Australia); Comonwealth Scientific and Industrial Research Organization, Sydney, New South Wales (Australia); Bazaka, K. [Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Ostrikov, K. [Comonwealth Scientific and Industrial Research Organization, Sydney, New South Wales (Australia); Institute for Health and Biomedical Innovation, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia)

    2015-12-15

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown as a promising tool for cancer treatment. The mechanism of the plasma action is attributed to generation of reactive oxygen and nitrogen species, electric fields, charges, and photons. The relative importance of different modes of action of atmospheric-pressure plasmas depends on the process parameters and specific treatment objects. Hence, an in-depth understanding of biological mechanisms that underpin plasma-induced death in cancer cells is required to optimise plasma processing conditions. Here, the intracellular factors involved in the observed anti-cancer activity in melanoma Mel007 cells are studied, focusing on the effect of the plasma treatment dose on the expression of tumour suppressor protein TP73. Over-expression of TP73 causes cell growth arrest and/or apoptosis, and hence can potentially be targeted to enhance killing efficacy and selectivity of the plasma treatment. It is shown that the plasma treatment induces dose-dependent up-regulation of TP73 gene expression, resulting in significantly elevated levels of TP73 RNA and protein in plasma-treated melanoma cells. Silencing of TP73 expression by means of RNA interference inhibited the anticancer effects of the plasma, similar to the effect of caspase inhibitor z-VAD or ROS scavenger N-acetyl cysteine. These results confirm the role of TP73 protein in dose-dependent regulation of anticancer activity of atmospheric-pressure plasmas.

  6. Cell cycle dependent changes in the plasma membrane organization of mammalian cells.

    Science.gov (United States)

    Denz, Manuela; Chiantia, Salvatore; Herrmann, Andreas; Mueller, Peter; Korte, Thomas; Schwarzer, Roland

    2017-03-01

    Lipid membranes are major structural elements of all eukaryotic and prokaryotic organisms. Although many aspects of their biology have been studied extensively, their dynamics and lateral heterogeneity are still not fully understood. Recently, we observed a cell-to-cell variability in the plasma membrane organization of CHO-K1 cells (Schwarzer et al., 2014). We surmised that cell cycle dependent changes of the individual cells from our unsynchronized cell population account for this phenomenon. In the present study, this hypothesis was tested. To this aim, CHO-K1 cells were arrested in different cell cycle phases by chemical treatments, and the order of their plasma membranes was determined by various fluorescent lipid analogues using fluorescence lifetime imaging microscopy. Our experiments exhibit significant differences in the membrane order of cells arrested in the G2/M or S phase compared to control cells. Our single-cell analysis also enabled the specific selection of mitotic cells, which displayed a significant increase of the membrane order compared to the control. In addition, the lipid raft marker GPImYFP was used to study the lateral organization of cell cycle arrested cells as well as mitotic cells and freely cycling samples. Again, significant differences were found between control and arrested cells and even more pronounced between control and mitotic cells. Our data demonstrate a direct correlation between cell cycle progression and plasma membrane organization, underlining that cell-to-cell heterogeneities of membrane properties have to be taken into account in cellular studies especially at the single-cell level. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Identification of clam plasma proteins that bind its pathogen Quahog Parasite Unknown.

    Science.gov (United States)

    Hartman, Rachel; Pales Espinosa, Emmanuelle; Allam, Bassem

    2018-06-01

    The hard clam (Mercenaria mercenaria) is among the most economically-important marine species along the east coast of the United States, representing the first marine resource in several Northeastern states. The species is rather resilient to infections and the only important disease of hard clams results from an infection caused by Quahog Parasite Unknown (QPX), a protistan parasite that can lead to significant mortality events in wild and aquacultured clam stocks. Though the presence of QPX disease has been documented since the 1960s, little information is available on cellular and molecular interactions between the parasite and the host. This study examined the interactions between the clam immune system and QPX cells. First, the effect of clam plasma on the binding of hemocytes to parasite cells was evaluated. Second, clam plasma proteins that bind QPX cells were identified through proteomic (LC-MS/MS) analyses. Finally, the effect of prior clam exposure to QPX on the abundance of QPX-reactive proteins in the plasma was evaluated. Results showed that plasma factors enhance the attachment of hemocytes to QPX. Among the proteins that specifically bind to QPX cells, several lectins were identified, as well as complement component proteins and proteolytic enzymes. Furthermore, results showed that some of these lectins and complement-related proteins are inducible as their abundance significantly increased following QPX challenge. These results shed light on plasma proteins involved in the recognition and binding of parasite cells and provide molecular targets for future investigations of factors involved in clam resistance to the disease, and ultimately for the selection of resistant clam stocks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Towards plasma surgery: interactions of cold plasmas with living cells paper (invited talk), Proceedings vol. 2. 1049-1052

    NARCIS (Netherlands)

    Stoffels, E.; Kieft, I.E.; Sladek, R.E.J.; Laan, van der E.P.

    2004-01-01

    High-precision treatment of living tissues with a cold atmospheric plasma promises to become the "surgery of the future". Initial studies on plasma-cell interactions have revealed numerous therapeutically useful cell responses. In contrast to the conventional or laser surgery, plasma treatment does

  9. Plasma cell leukemia: update on biology and therapy.

    Science.gov (United States)

    Mina, Roberto; D'Agostino, Mattia; Cerrato, Chiara; Gay, Francesca; Palumbo, Antonio

    2017-07-01

    Plasma cell leukemia (PCL) is a rare, but very aggressive, plasma cell dyscrasia, representing a distinct clinicopathological entity as compared to multiple myeloma (MM), with peculiar biological and clinical features. A hundred times rarer than MM, the disease course is characterized by short remissions and poor survival. PCL is defined by an increased percentage (>20%) and absolute number (>2 × 10 9 /l) of plasma cells in the peripheral blood. PCL is defined as 'primary' when peripheral plasmacytosis is detected at diagnosis, 'secondary' when leukemization occurs in a patient with preexisting MM. Novel agents have revolutionized the outcomes of MM patients and have been introduced also for the treatment of PCL. Here, we provide an update on biology and treatment options for PCL.

  10. Delayed effects of cold atmospheric plasma on vascular cells

    NARCIS (Netherlands)

    Stoffels, Eva; Roks, Anton J. M.; Deelmm, Leo E.

    2008-01-01

    We investigated the long-term behaviour of vascular cells (endothelial and smooth muscle) after exposure to a cold atmospheric plasma source. The cells were treated through a gas-permeable membrane, in order to simulate intravenous treatment with a gas plasma-filled catheter. Such indirect treatment

  11. File list: His.Bld.20.AllAg.Plasma_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Plasma_Cells hg19 Histone Blood Plasma Cells SRX203393,SRX203392 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.20.AllAg.Plasma_Cells.bed ...

  12. File list: His.Bld.50.AllAg.Plasma_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Plasma_Cells hg19 Histone Blood Plasma Cells SRX203393,SRX203392 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.50.AllAg.Plasma_Cells.bed ...

  13. File list: His.Bld.05.AllAg.Plasma_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Plasma_Cells hg19 Histone Blood Plasma Cells SRX203392,SRX203393 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.AllAg.Plasma_Cells.bed ...

  14. File list: His.Bld.10.AllAg.Plasma_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Plasma_Cells hg19 Histone Blood Plasma Cells SRX203392,SRX203393 h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.10.AllAg.Plasma_Cells.bed ...

  15. Treatment of oral cancer cells with nonthermal atmospheric pressure plasma jet

    Science.gov (United States)

    Yurkovich, James; Han, Xu; Coffey, Benjamin; Klas, Matej; Ptasinska, Sylwia

    2012-10-01

    Non-thermal atmospheric pressure plasmas are specialized types of plasma that are proposed as a new agent to induce death in cancer cells. The experimental phase of this study will test the application of such plasma to SCC-25 oral cancer cells to determine if it is possible to induce apoptosis or necrosis. Different sources are used on the cells to find a configuration which kills cancer cells but has no effect on normal cells. The sources have been developed based on the dielectric barrier discharge between two external electrodes surrounding a dielectric tube; such a configuration has been shown to induce breaks in DNA strands. Each configuration is characterized using an optical emission spectrophotometer and iCCD camera to determine the optimal conditions for inducing cell death. The cells are incubated after irradiation with plasma, and cell death is determined using microscopy imaging to identify antibody interaction within the cells. These studies are important for better understanding of plasma species interactions with cancer cells and mechanisms of DNA damage and at latter stage they will be useful for the development of advanced cancer therapy.

  16. The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells

    Science.gov (United States)

    Szili, Endre J.; Harding, Frances J.; Hong, Sung-Ha; Herrmann, Franziska; Voelcker, Nicolas H.; Short, Robert D.

    2015-12-01

    We have examined the link between ionized-gas plasma delivery of reactive oxygen species (ROS) to immortalized keratinocyte (HaCaT) cells and cell fate, defined in terms of cell viability versus death. Phospholipid vesicles were used as cell mimics to measure the possible intracellular ROS concentration, [ROSi], delivered by various plasma treatments. Cells were exposed to a helium cold atmospheric plasma (CAP) jet for different plasma exposure times (5-60 s) and gas flow rates (50-1000 ml min-1). Based upon the [ROSi] data we argue that plasma-generated ROS in the cell culture medium can readily diffuse into real cells. Plasma exposure that equated to an [ROSi] in the range of 3.81  ×  10-10-9.47  ×  10-8 M, measured at 1 h after the plasma exposure, resulted in increased cell viability at 72 h; whereas a higher [ROSi] at 1 h decreased cell viability after 72 h of culture. This may be because of the manner in which the ROS are delivered by the plasma: HaCaT cells better tolerate a low ROS flux over an extended plasma exposure period of 1 min, compared to a high flux delivered in a few seconds, although the final [ROSi] may be the same. Our results suggest that plasma stimulation of HaCaT cells follows the principle of hormesis.

  17. Primary plasma cell leukemia: A report of two cases of a rare and aggressive variant of plasma cell myeloma with the review of literature

    Directory of Open Access Journals (Sweden)

    Prithal Gangadhar

    2016-01-01

    Full Text Available Plasma cell leukemia (PCL is a rare and aggressive variant of myeloma accounting for 2-3% of all plasma cell dyscrasias characterized by the presence of circulating plasma cells. The diagnosis is based on the % (≥20% and absolute number (≥2x10 9 /L of plasma cells in the peripheral blood. The incidence of primary PCL (pPCL is very rare and reported to occur in <1 in a million. It is classified as either pPCL occurring at diagnosis or as secondary PCL in patients with relapsed/refractory myeloma. pPCL is a distinct clinicopathological entity with different cytogenetic and molecular findings. The clinical course is aggressive with short remissions and survival duration. We report two cases of pPCL, both having acute onset of illness, varied clinical presentation with one of them showing "hairy cell morphology," with rapidly progressing renal failure, and was not suspected to be plasma cell dyscrasia clinically. A detailed hematopathological evaluation clinched the diagnosis in this case. It is recommended that techniques such as immunophenotyping by flow cytometry and protein electrophoresis must be performed for confirmatory diagnosis. A detailed report of two cases and a review of PCL are presented here.

  18. Waste cell phone recycling by thermal plasma techniques

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, T.; Kunimoto, N.; Abe, S. [Chuo Univ., Bunkyo-Ku, Tokyo (Japan). Dept. of Electrical, Electronics, and Communication Engineering; Li, O.L.; Chang, J.S.; Ruj, B. [McMaster Univ., Hamilton, ON (Canada). Faculty of Engineering

    2010-07-01

    Due to the cost-effective nature of wireless networks, the number of cell phones used around the world has increased significantly. However, a major problem of this technology is the generation of a great deal of complex electronics wastes, such as cell phones. The typical average life of a cell phone is around 2 years. Therefore, inexpensive recycling techniques must be developed for valuable resources such as real metals and plastics used in cell phones. Thermal plasma has been used for many different waste treatments since it has the capability to detoxify waste by-products. This paper presented a preliminary investigation for cell phone recycling by a thermal plasma technology. Recyclable resource material was identified by neutron activation analyses. Then, the cell phone waste was first crashed and treated by Ar twin torch plasmas to remove the majority of organic materials. The paper described the experimental apparatus and results. It was concluded that styrene (C{sub 8}H{sub 8}) and benzene (C{sub 6}H{sub 6}O) may be two major by-products in on-line by-products gas. The molecule becomes a much heavier by-product gas after cooling down. 6 refs., 6 figs.

  19. Plasma Cell Dyscrasia; LCDD vs Immunotactoid glomerulopathy

    Directory of Open Access Journals (Sweden)

    Jabur Wael

    2008-01-01

    Full Text Available Light chain deposit disease is a plasma cell disorder characterized by production of a large amount of monoclonal immunoglobulin light chain or part of it, which is usually deposited as an amorphous substance in the kidneys. Immunotactoid glomerulopathy is an uncommon disease, which might be related to plasma cell dyscrasia, and characteristically manifest as organized glomerular ultra structural fibrils or microtubules. In this article, we report a case of a combined presentation of light chain disease and immunotactoid glomerulopathy in a patient with multiple myeloma and reversible advanced renal failure.

  20. Plasma Cell Neoplasms (Including Multiple Myeloma)—Health Professional Version

    Science.gov (United States)

    There are several types of plasma cell neoplasms, including monoclonal gammopathy of undetermined significance (MGUS), isolated plasmacytoma of the bone, extramedullary plasmacytoma, and multiple myeloma. Find evidence-based information on plasma cell neoplasms treatment, research, and statistics.

  1. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    International Nuclear Information System (INIS)

    Block, E.R.; Edwards, D.

    1987-01-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of [ 14 C]-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells

  2. A special cell morphology of saccharomyces cerevisiae induced by low-temperature plasma

    International Nuclear Information System (INIS)

    Ling Dajun; Cao Jinxiang

    2003-01-01

    A special cell morphology, cavity-like cells, was found in posterities of Saccharomyces cerevisiae treated by low-temperature air plasma with different powers. The feature of the special morphology indicates that the cavity-like cells may be formed by cellular mutation effect induced by the plasma, instead of direct cellular damage by the plasma. The results suggest that the cellular mutation effect of the low-temperature plasma is a complex process

  3. Duodenal L cell density correlates with features of metabolic syndrome and plasma metabolites

    Directory of Open Access Journals (Sweden)

    Annieke C G van Baar

    2018-05-01

    Full Text Available Background: Enteroendocrine cells are essential for the regulation of glucose metabolism, but it is unknown whether they are associated with clinical features of metabolic syndrome (MetS and fasting plasma metabolites. Objective: We aimed to identify fasting plasma metabolites that associate with duodenal L cell, K cell and delta cell densities in subjects with MetS with ranging levels of insulin resistance. Research design and methods: In this cross-sectional study, we evaluated L, K and delta cell density in duodenal biopsies from treatment-naïve males with MetS using machine-learning methodology. Results: We identified specific clinical biomarkers and plasma metabolites associated with L cell and delta cell density. L cell density was associated with increased plasma metabolite levels including symmetrical dimethylarginine, 3-aminoisobutyric acid, kynurenine and glycine. In turn, these L cell-linked fasting plasma metabolites correlated with clinical features of MetS. Conclusions: Our results indicate a link between duodenal L cells, plasma metabolites and clinical characteristics of MetS. We conclude that duodenal L cells associate with plasma metabolites that have been implicated in human glucose metabolism homeostasis. Disentangling the causal relation between L cells and these metabolites might help to improve the (small intestinal-driven pathophysiology behind insulin resistance in human obesity.

  4. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    Science.gov (United States)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  5. File list: Oth.Bld.50.AllAg.Plasma_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Plasma_Cells hg19 TFs and others Blood Plasma Cells SRX203389,SRX2...03388,SRX203391,SRX203395,SRX203387,SRX203394,SRX203390 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.50.AllAg.Plasma_Cells.bed ...

  6. File list: Oth.Bld.10.AllAg.Plasma_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Plasma_Cells hg19 TFs and others Blood Plasma Cells SRX203389,SRX2...03388,SRX203391,SRX203387,SRX203395,SRX203390,SRX203394 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.10.AllAg.Plasma_Cells.bed ...

  7. File list: Oth.Bld.20.AllAg.Plasma_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Plasma_Cells hg19 TFs and others Blood Plasma Cells SRX203389,SRX2...03388,SRX203391,SRX203395,SRX203387,SRX203390,SRX203394 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.20.AllAg.Plasma_Cells.bed ...

  8. File list: Oth.Bld.05.AllAg.Plasma_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Plasma_Cells hg19 TFs and others Blood Plasma Cells SRX203389,SRX2...03387,SRX203388,SRX203391,SRX203395,SRX203390,SRX203394 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.05.AllAg.Plasma_Cells.bed ...

  9. Plasma cell gingivitis - A rare case related to Colocasia (arbi) leaves.

    Science.gov (United States)

    Bali, Deepika; Gill, Sanjeet; Bali, Amit

    2012-09-01

    Plasma cell gingivitis is an uncommon inflammatory condition of uncertain etiology often flavoured chewing gum, spices, foods, candies, or dentifrices. The diagnosis of plasma cell gingivitis is based on comprehensive history taking, clinical examination, and appropriate diagnostic tests. Here we are presenting a rare case of plasma cell gingivitis caused by consumption of colocasia (arbi) leaves. Colocasia is a kind of vegetable, very commonly consumed in the regions of North India.

  10. Plasma cell gingivitis associated with cheilitis: A diagnostic dilemma!

    Directory of Open Access Journals (Sweden)

    Presanthila Janam

    2012-01-01

    Full Text Available Plasma cell gingivitis is a rare condition characterized by diffuse and massive infiltration of plasma cells into the sub-epithelial connective tissue. Clinically, it appears as a diffuse reddening and edematous swelling of the gingiva with a sharp demarcation along the mucogingival border. Though considered as a hypersensitive reaction to an allergen, the etiology of this bizarre condition is still not properly understood. Here, we present an interesting case of plasma cell gingivitis associated with an enlarged and fissured upper lip, which is quite a rarity. The condition was diagnosed based on clinical and histopathologic findings and treated by gingivectomy. The associated cheilitis has dramatically reduced after treatment of the gingival lesion.

  11. Inhibition of DEPDC1A, a bad prognostic marker in multiple myeloma, delays growth and induces mature plasma cell markers in malignant plasma cells.

    Directory of Open Access Journals (Sweden)

    Alboukadel Kassambara

    Full Text Available High throughput DNA microarray has made it possible to outline genes whose expression in malignant plasma cells is associated with short overall survival of patients with Multiple Myeloma (MM. A further step is to elucidate the mechanisms encoded by these genes yielding to drug resistance and/or patients' short survival. We focus here on the biological role of the DEP (for Disheveled, EGL-10, Pleckstrin domain contained protein 1A (DEPDC1A, a poorly known protein encoded by DEPDC1A gene, whose high expression in malignant plasma cells is associated with short survival of patients. Using conditional lentiviral vector delivery of DEPDC1A shRNA, we report that DEPDC1A knockdown delayed the growth of human myeloma cell lines (HMCLs, with a block in G2 phase of the cell cycle, p53 phosphorylation and stabilization, and p21(Cip1 accumulation. DEPDC1A knockdown also resulted in increased expression of mature plasma cell markers, including CXCR4, IL6-R and CD38. Thus DEPDC1A could contribute to the plasmablast features of MMCs found in some patients with adverse prognosis, blocking the differentiation of malignant plasma cells and promoting cell cycle.

  12. Plasma cell gingivitis - A rare case related to Colocasia (arbi leaves

    Directory of Open Access Journals (Sweden)

    Deepika Bali

    2012-01-01

    Full Text Available Plasma cell gingivitis is an uncommon inflammatory condition of uncertain etiology often flavoured chewing gum, spices, foods, candies, or dentifrices. The diagnosis of plasma cell gingivitis is based on comprehensive history taking, clinical examination, and appropriate diagnostic tests. Here we are presenting a rare case of plasma cell gingivitis caused by consumption of colocasia (arbi leaves. Colocasia is a kind of vegetable, very commonly consumed in the regions of North India.

  13. An enigmatic clinical presentation of plasma cell granuloma of the oral cavity

    Directory of Open Access Journals (Sweden)

    Pravesh Kumar Jhingta

    2018-01-01

    Full Text Available Plasma cell granuloma is a rare benign lesion characterized by the infiltration of plasma cells; primarily occurring in the lungs. It is also seen to occur in the brain, kidney stomach, heart, and so on but its intraoral occurrence is a rarity. This case report represents one of the uncommon locations in the oral cavity affected by plasma cell granuloma, its clinical and histological features, and establishes the differential diagnosis with other malignant or benign disease entities and planning the treatment accordingly. This report discusses the diagnostic enigma and the associated terminology of plasma cell granulomas and reinforces the need for performing biopsy and a histopathological or immune histochemical study, irrespective of the clinical features and clinical diagnosis of the lesion. In this case a 52-year-old female, presented with gingival enlargement in the mandibular anterior region, treated by excisional biopsy. Histological evaluation revealed plasma cell infiltrates in the connective tissue. The immune-histochemistry revealed kappa and lambda light chains with a polyclonal staining pattern, which confirmed the diagnosis of plasma cell granuloma.

  14. File list: InP.Bld.50.AllAg.Plasma_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Plasma_Cells hg19 Input control Blood Plasma Cells SRX203397,SRX20...3398 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.50.AllAg.Plasma_Cells.bed ...

  15. File list: InP.Bld.10.AllAg.Plasma_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Plasma_Cells hg19 Input control Blood Plasma Cells SRX203397,SRX20...3398 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.Plasma_Cells.bed ...

  16. File list: InP.Bld.05.AllAg.Plasma_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Plasma_Cells hg19 Input control Blood Plasma Cells SRX203398,SRX20...3397 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.05.AllAg.Plasma_Cells.bed ...

  17. File list: InP.Bld.20.AllAg.Plasma_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Plasma_Cells hg19 Input control Blood Plasma Cells SRX203397,SRX20...3398 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.20.AllAg.Plasma_Cells.bed ...

  18. The antigen presenting cells instruct plasma cell differentiation.

    Science.gov (United States)

    Xu, Wei; Banchereau, Jacques

    2014-01-06

    The professional antigen presenting cells (APCs), including many subsets of dendritic cells and macrophages, not only mediate prompt but non-specific response against microbes, but also bridge the antigen-specific adaptive immune response through antigen presentation. In the latter, typically activated B cells acquire cognate signals from T helper cells in the germinal center of lymphoid follicles to differentiate into plasma cells (PCs), which generate protective antibodies. Recent advances have revealed that many APC subsets provide not only "signal 1" (the antigen), but also "signal 2" to directly instruct the differentiation process of PCs in a T-cell-independent manner. Herein, the different signals provided by these APC subsets to direct B cell proliferation, survival, class switching, and terminal differentiation are discussed. We furthermore propose that the next generation of vaccines for boosting antibody response could be designed by targeting APCs.

  19. Cell Adhesion to Plasma-Coated PVC

    Directory of Open Access Journals (Sweden)

    Elidiane C. Rangel

    2014-01-01

    Full Text Available To produce environments suitable for cell culture, thin polymer films were deposited onto commercial PVC plates from radiofrequency acetylene-argon plasmas. The proportion of argon in the plasmas, PAr, was varied from 5.3 to 65.8%. The adhesion and growth of Vero cells on the coated surfaces were examined for different incubation times. Cytotoxicity tests were performed using spectroscopic methods. Carbon, O, and N were detected in all the samples using XPS. Roughness remained almost unchanged in the samples prepared with 5.3 and 28.9% but tended to increase for the films deposited with PAr between 28.9 and 55.3%. Surface free energy increased with increasing PAr, except for the sample prepared at 28.9% of Ar, which presented the least reactive surface. Cells proliferated on all the samples, including the bare PVC. Independently of the deposition condition there was no evidence of cytotoxicity, indicating the viability of such coatings for designing biocompatible devices.

  20. Circulating plasmablasts/plasma cells: a potential biomarker for IgG4-related disease.

    Science.gov (United States)

    Lin, Wei; Zhang, Panpan; Chen, Hua; Chen, Yu; Yang, Hongxian; Zheng, Wenjie; Zhang, Xuan; Zhang, Fengxiao; Zhang, Wen; Lipsky, Peter E

    2017-02-10

    Immunoglobulin G4 (IgG4)-related disease (IgG4-RD) is a multisystem fibroinflammatory disease. We previously reported that a circulating cell population expressing CD19 + CD24 - CD38 hi was increased in patients with IgG4-RD. In this study, we aimed to document that this cell population represented circulating plasmablasts/plasma cells, to identify the detailed phenotype and gene expression profile of these IgG4-secreting plasmablasts/plasma cells, and to determine whether this B-cell lineage subset could be a biomarker in IgG4-related disease (IgG4-RD). A total of 42 untreated patients with IgG4-RD were evaluated. Peripheral B-cell subsets, including CD19 + CD24 - CD38 hi plasmablasts/plasma cells, CD19 + CD24 + CD38 - memory B cells, CD19 + CD24 int CD38 int naïve B cells, and CD19 + CD24 hi CD38 hi regulatory B cells, were assessed and sorted by flow cytometry. Microarray analysis was used to measure gene expression of circulating B-cell lineage subsets. Further characterization of CD19 + CD24 - CD38 hi plasmablasts/plasma cells was carried out by evaluating additional surface markers, including CD27, CD95, and human leukocyte antigen (HLA)-DR, by flow cytometric assay. In addition, various B-cell lineage subsets were cultured in vitro and IgG4 concentrations were measured by cytometric bead array. In untreated patients with IgG4-RD, the peripheral CD19 + CD24 - CD38 hi plasmablast/plasma cell subset was increased and positively correlated with serum IgG4 levels, the number of involved organs, and the IgG4-related Disease Responder Index. It decreased after treatment with glucocorticoids. Characterization of the plasmablast/plasma cell population by gene expression profiling documented a typical plasmablast/plasma cell signature with higher expression of X-box binding protein 1 and IFN regulatory factor 4, but lower expression of paired box gene 5 and B-cell lymphoma 6 protein. In addition, CD27, CD95, and HLA-DR were highly expressed on CD19 + CD24 - CD38 hi

  1. Annexins are instrumental for efficient plasma membrane repair in cancer cells.

    Science.gov (United States)

    Lauritzen, Stine Prehn; Boye, Theresa Louise; Nylandsted, Jesper

    2015-09-01

    Plasma membrane stress can cause damage to the plasma membrane, both when imposed by the extracellular environment and by enhanced oxidative stress. Cells cope with these injuries by rapidly activating their plasma membrane repair system, which is triggered by Ca(2+) influx at the wound site. The repair system is highly dynamic, depends on both lipid and protein components, and include cytoskeletal reorganization, membrane replacements, and membrane fusion events. Cancer cells experience enhanced membrane stress when navigating through dense extracellular matrix, which increases the frequency of membrane injuries. In addition, increased motility and oxidative stress further increase the risk of plasma membrane lesions. Cancer cells compensate by overexpressing Annexin proteins including Annexin A2 (ANXA2). Annexin family members can facilitate membrane fusion events and wound healing by binding to negatively charged phospholipids in the plasma membrane. Plasma membrane repair in cancer cells depends on ANXA2 protein, which is recruited to the wound site and forms a complex with the Ca(2+)-binding EF-hand protein S100A11. Here they regulate actin accumulation around the wound perimeter, which is required for wound closure. In this review, we will discuss the requirement for Annexins, S100 proteins and actin cytoskeleton in the plasma membrane repair response of cancer cells, which reveals a novel avenue for targeting metastatic cancers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The clinical and mammographic features of plasma cell mastitis

    International Nuclear Information System (INIS)

    Wu Xiurong; Luo Xiaohua; Yu Xuming; Zhong Shan; Huang Yufan; Wu Xinyi; Lin Yubin

    2007-01-01

    Objective: To investigate the clinical and mammographic features of plasma cell mastitis. Methods: Twenty-five patients (28 lesions) with histologically confirmed plasma cell mastitis, aged from 26 to 70 years (mean age 41 years), were examined with X-ray mammography. The clinical manifestations and imaging features were retrospectively reviewed. Results: No case was in lactation. The painful irregular masses, ranged from 1.3 to 8cm in size, were found in 22 patients, while 3 patients with acute episode. Recurrent episodes of breast masses were noted in 4 patients. Based on the mammographic appearances, the plasma cell mastitis were classified as the following four types: inflammation-like type (2/28), ductal ectasia type (3/28), focal infiltration type (10/28) and nodular type (13/28). The valuable radiographic signs: (1) An asymmetrically increased density along the lactiferous duct with a flame-like appearance, inhomogeneous low density tubular structures and scattered stick-shape calcifications. (2) Architectural distortion and oil cysts formation in adjacent area, (3) Subareolar ductal ectasia. Conclusions: The clinical and mammographic characteristics of plasma cell mastitis are critical to avoiding unnecessary surgery. Histopathological result is needed for the diagnosis in patients highly suspected of malignancy. (authors)

  3. Evaluation of the effects of a plasma activated medium on cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohades, S.; Laroussi, M., E-mail: mlarouss@odu.edu; Sears, J.; Barekzi, N.; Razavi, H. [Plasma Engineering and Medicine Institute, Old Dominion University, Norfolk, Virginia 23529 (United States)

    2015-12-15

    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma to a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs.

  4. Amlodipine induced plasma cell granuloma of the gingiva: A novel case report.

    Science.gov (United States)

    Vishnudas, Bhandari; Sameer, Zope; Shriram, Bansode; Rekha, Kardile

    2014-07-01

    Drug-induced gingival overgrowth (DIGO) can be a serious concern for both patients and clinicians. DIGO is a well-documented side-effect of some pharmacologic agents, including, but not limited to, calcium channel blockers, phenytoin, and cyclosporine. Plasma cell granulomas (pseudotumors) are exceedingly rare, non-neoplastic, reactive tumor-like proliferation, primarily composed of plasma cells that manifest primarily in the lungs, but may occur in various anatomic locations. Intraoral plasma cell granulomas involving the lip, oral mucosa, tongue, and gingiva have been reported in the past. This is the first case report of amlodipine induced plasma cell granuloma of the gingiva in the medical literature presenting a 54 year-old female patient with hypertension, who received amlodipine (10 mg/day, single dose orally) for 2 years, sought medical attention because of developing maxillary anterior massive gingival overgrowth causing functional and esthetic problem, which was treated by excisional biopsy. Histologically, these lesions were composed of mature plasma cells, showing polyclonality for both lambda and kappa light chains and fibrovascular connective tissue stroma confirming a diagnosis of plasma cell granuloma. This case also highlights the need to biopsy for unusual lesions to rule out potential neoplasms.

  5. Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate

    Science.gov (United States)

    von Erlach, Thomas C.; Bertazzo, Sergio; Wozniak, Michele A.; Horejs, Christine-Maria; Maynard, Stephanie A.; Attwood, Simon; Robinson, Benjamin K.; Autefage, Hélène; Kallepitis, Charalambos; del Río Hernández, Armando; Chen, Christopher S.; Goldoni, Silvia; Stevens, Molly M.

    2018-03-01

    Cell size and shape affect cellular processes such as cell survival, growth and differentiation1-4, thus establishing cell geometry as a fundamental regulator of cell physiology. The contributions of the cytoskeleton, specifically actomyosin tension, to these effects have been described, but the exact biophysical mechanisms that translate changes in cell geometry to changes in cell behaviour remain mostly unresolved. Using a variety of innovative materials techniques, we demonstrate that the nanostructure and lipid assembly within the cell plasma membrane are regulated by cell geometry in a ligand-independent manner. These biophysical changes trigger signalling events involving the serine/threonine kinase Akt/protein kinase B (PKB) that direct cell-geometry-dependent mesenchymal stem cell differentiation. Our study defines a central regulatory role by plasma membrane ordered lipid raft microdomains in modulating stem cell differentiation with potential translational applications.

  6. The Glycome of Normal and Malignant Plasma Cells

    Science.gov (United States)

    Hose, Dirk; Andrulis, Mindaugas; Moreaux, Jèrôme; Hielscher, Thomas; Willhauck-Fleckenstein, Martina; Merling, Anette; Bertsch, Uta; Jauch, Anna; Goldschmidt, Hartmut; Klein, Bernard; Schwartz-Albiez, Reinhard

    2013-01-01

    The glycome, i.e. the cellular repertoire of glycan structures, contributes to important functions such as adhesion and intercellular communication. Enzymes regulating cellular glycosylation processes are related to the pathogenesis of cancer including multiple myeloma. Here we analyze the transcriptional differences in the glycome of normal (n = 10) and two cohorts of 332 and 345 malignant plasma-cell samples, association with known multiple myeloma subentities as defined by presence of chromosomal aberrations, potential therapeutic targets, and its prognostic impact. We found i) malignant vs. normal plasma cells to show a characteristic glycome-signature. They can ii) be delineated by a lasso-based predictor from normal plasma cells based on this signature. iii) Cytogenetic aberrations lead to distinct glycan-gene expression patterns for t(11;14), t(4;14), hyperdiploidy, 1q21-gain and deletion of 13q14. iv) A 38-gene glycome-signature significantly delineates patients with adverse survival in two independent cohorts of 545 patients treated with high-dose melphalan and autologous stem cell transplantation. v) As single gene, expression of the phosphatidyl-inositol-glycan protein M as part of the targetable glycosyl-phosphatidyl-inositol-anchor-biosynthesis pathway is associated with adverse survival. The prognostically relevant glycome deviation in malignant cells invites novel strategies of therapy for multiple myeloma. PMID:24386263

  7. The glycome of normal and malignant plasma cells.

    Directory of Open Access Journals (Sweden)

    Thomas M Moehler

    Full Text Available The glycome, i.e. the cellular repertoire of glycan structures, contributes to important functions such as adhesion and intercellular communication. Enzymes regulating cellular glycosylation processes are related to the pathogenesis of cancer including multiple myeloma. Here we analyze the transcriptional differences in the glycome of normal (n = 10 and two cohorts of 332 and 345 malignant plasma-cell samples, association with known multiple myeloma subentities as defined by presence of chromosomal aberrations, potential therapeutic targets, and its prognostic impact. We found i malignant vs. normal plasma cells to show a characteristic glycome-signature. They can ii be delineated by a lasso-based predictor from normal plasma cells based on this signature. iii Cytogenetic aberrations lead to distinct glycan-gene expression patterns for t(11;14, t(4;14, hyperdiploidy, 1q21-gain and deletion of 13q14. iv A 38-gene glycome-signature significantly delineates patients with adverse survival in two independent cohorts of 545 patients treated with high-dose melphalan and autologous stem cell transplantation. v As single gene, expression of the phosphatidyl-inositol-glycan protein M as part of the targetable glycosyl-phosphatidyl-inositol-anchor-biosynthesis pathway is associated with adverse survival. The prognostically relevant glycome deviation in malignant cells invites novel strategies of therapy for multiple myeloma.

  8. [Research on the identification method of LTE condition in the laser-induced plasma].

    Science.gov (United States)

    Fan, Juan-juan; Huang, Dan; Wang, Xin; Zhang, Lei; Ma, Wei-guang; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang

    2014-12-01

    Because of the poor accuracy of the commonly used Boltzmann plot method and double-line method, the Boltzmann-Maxwell distribution combined with the Saha-Eggert formula is proposed to improve the measurement accuracy of the plasma temperature; the simple algorithm for determining the linewidth of the emission line was established according to the relationship between the area and the peak value of the Gaussian formula, and the plasma electron density was calculated through the Stark broadening of the spectral lines; the method for identifying the plasma local thermal equilibrium (LTE) condition was established based on the McWhirter criterion. The experimental results show that with the increase in laser energy, the plasma temperature and electron density increase linearly; when the laser energy changes within 127~510 mJ, the plasma electron density changes in the range of 1.30532X10(17)~1.87322X10(17) cm(-3), the plasma temperature changes in the range of 12586~12957 K, and all the plasma generated in this experiment meets the LTE condition threshold according to the McWhirter criterion. For element Al, there exist relatively few observable lines at the same ionization state in the spectral region of the spectrometer, thus it is unable to use the Boltzmann plane method to calculate temperature. One hundred sets of Al plasma spectra were used for temperature measurement by employing the Saha-Boltzmann method and the relative standard deviation (RSD) value is 0.4%, and compared with 1.3% of the double line method, the accuracy has been substantially increased. The methods proposed can be used for rapid plasma temperature and electron density calculation, the LTE condition identification, and are valuable in studies such as free calibration, spectral effectiveness analysis, spectral temperature correction, the best collection location determination, LTE condition distribution in plasma, and so on.

  9. Theoretical and experimental identification of a plasma in a gaseous discharge between two parallel plates electrodes; Identificacion teorica y experimental de un plasma en una descarga gaseosa entre dos electrodos de placas paralelas

    Energy Technology Data Exchange (ETDEWEB)

    Delgado Aparicio Villaran, Luis Felipe; Chaname D, Julio [Ponitificia Univ. Catolica del Peru, Lima (Peru). Dept. de Ciencias. Seccion Fisica

    1997-12-31

    This work allows a basic approach to the identification of a gaseous discharge plasma (of air, hydrogen, argon or any other gas) between two metallic electrodes separated by a variable distance `d` in the range of 1 to 17 cm. The discharge zone identification (anodic and cathodic regions), the tabulation of the characteristic curves V (volts), versus vs I (m A), and V (Volts) versus pd (Torr x cm), as well the implementation of some electric probes, will characterize this plasma. (author). 11 refs., 8 figs.

  10. Identification and control of plasma vertical position using neural network in Damavand tokamak

    International Nuclear Information System (INIS)

    Rasouli, H.; Rasouli, C.; Koohi, A.

    2013-01-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg–Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  11. Identification and control of plasma vertical position using neural network in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, H. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Advanced Process Automation and Control (APAC) Research Group, Faculty of Electrical Engineering, K.N. Toosi University of Technology, P.O. Box 16315-1355, Tehran (Iran, Islamic Republic of); Rasouli, C.; Koohi, A. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2013-02-15

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  12. Detection of melanoma cells suspended in mononuclear cells and blood plasma using photoacoustic generation

    Science.gov (United States)

    Spradling, Emily M.; Viator, John A.

    2009-02-01

    Melanoma is the deadliest form of skin cancer. Although the initial malignant cells are removed, it is impossible to determine whether or not the cancer has metastasized until a secondary tumor forms that is large enough to detect with conventional imaging. Photoacoustic detection of circulating melanoma cells in the bloodstream has shown promise for early detection of metastasis that may aid in treatment of this aggressive cancer. When blood is irradiated with energy from an Nd:YAG laser at 532 nm, photoacoustic signals are created and melanoma cells can be differentiated from the surrounding cells based on waveforms produced by an oscilloscope. Before this can be used as a diagnostic technique, however, we needed to investigate several parameters. Specifically, the current technique involves the in vitro separation of blood through centrifugation to isolate and test only the white blood cell layer. Using this method, we have detected a single cultured melanoma cell among a suspension of white blood cells. However, the process could be made simpler if the plasma layer were used for detection instead of the white blood cell layer. This layer is easier to obtain after blood separation, the optical difference between plasma and melanoma cells is more pronounced in this layer than in the white blood cell layer, and the possibility that any stray red blood cells could distort the results is eliminated. Using the photoacoustic apparatus, we detected no melanoma cells within the plasma of whole blood samples spiked with cultured melanoma cells.

  13. Identification of the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma

    DEFF Research Database (Denmark)

    Møller, Holger Jon; Peterslund, Niels Anker; Graversen, Jonas Heilskov

    2002-01-01

    enabled identification of a soluble plasma form of HbSR (sHbSR) having an electrophoretic mobility equal to that of recombinant HbSR consisting of the extracellular domain (scavenger receptor cysteine-rich 1-9). A sandwich enzyme-linked immunosorbent assay was established and used to measure the s...... a level of sHbSR above the range of healthy persons. Patients with myelomonocytic leukemias and pneumonia/sepsis exhibited the highest levels (up to 67.3 mg/L). In conclusion, sHbSR is an abundant plasma protein potentially valuable in monitoring patients with infections and myelomonocytic leukemia....

  14. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    International Nuclear Information System (INIS)

    Hong, Sung-Ha; Jenkins, A Toby A; Szili, Endre J; Short, Robert D

    2014-01-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine. (fast track communication)

  15. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    Science.gov (United States)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  16. Plasmablasts and plasma cells: reconsidering teleost immune system organization.

    Science.gov (United States)

    Ye, Jianmin; Kaattari, Ilsa; Kaattari, Stephen

    2011-12-01

    Comparative immunologists have expended extensive efforts in the characterization of early fish B cell development; however, analysis of the post-antigen induction stages of antibody secreting cell (ASC) differentiation has been limited. In contrast, work with murine ASCs has resolved the physically and functionally distinct cells known as plasmablasts, the short-lived plasma cells and long-lived plasma cells. Teleost ASCs are now known to also possess comparable subpopulations, which can greatly differ in such basic functions as lifespan, antigen sensitivity, antibody secretion rate, differentiative potential, and distribution within the body. Understanding the mechanisms by which these subpopulations are produced and distributed is essential for both basic understanding in comparative immunology and practical vaccine engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Comparison of EBV DNA viral load in whole blood, plasma, B-cells and B-cell culture supernatant.

    Science.gov (United States)

    Ouedraogo, David Eric; Bollore, Karine; Viljoen, Johannes; Foulongne, Vincent; Reynes, Jacques; Cartron, Guillaume; Vendrell, Jean-Pierre; Van de Perre, Philippe; Tuaillon, Edouard

    2014-05-01

    Epstein-Barr virus (EBV) genome quantitation in whole blood is used widely for therapeutic monitoring of EBV-associated disorders in immunosuppressed individuals and in patients with EBV-associated lymphoma. However, the most appropriate biological material to be used for EBV DNA quantitation remains a subject of debate. This study compare the detection rate and levels of EBV DNA from whole blood, plasma, enriched B-cells, and B-cell short-term culture supernatant using quantitative real-time PCR. Samples were collected from 33 subjects with either HIV infection or B-cell lymphoma. Overall, EBV DNA was detected in 100% of enriched B-cell samples, in 82% of B-cell culture supernatants, in 57% of plasma, and 42% of whole blood samples. A significant correlation for EBV viral load was found between enriched B-cell and B-cell culture supernatant material (ρ = 0.92; P cells (ρ = -0.02; P = 0.89), whole blood and plasma (ρ = 0.24; P = 0.24), or enriched B-cells and plasma (ρ = 0.08; P = 0.77). Testing of enriched B-cells appeared to be the most sensitive method for detection of EBV DNA as well as for exploration of the cellular reservoir. Quantitation of EBV DNA in plasma and B-cell culture supernatant may be of interest to assess EBV reactivation dynamics and response to treatment as well as to decipher EBV host-pathogen interactions in various clinical scenarios. © 2013 Wiley Periodicals, Inc.

  18. c-Myb is required for plasma cell migration to bone marrow after immunization or infection

    Science.gov (United States)

    O’Donnell, Kristy; Belz, Gabrielle T.; Nutt, Stephen L.

    2015-01-01

    Plasma cell migration is crucial to immunity, but little is known about the molecular regulators of their migratory programs. Here, we detail the critical role of the transcription factor c-Myb in determining plasma cell location. In the absence of c-Myb, no IgG+ antigen-specific plasma cells were detected in the bone marrow after immunization or virus infection. This was correlated with a dramatic reduction of plasma cells in peripheral blood, mislocalization in spleen, and an inability of c-Myb–deficient plasma cells to migrate along a CXCL12 gradient. Therefore, c-Myb plays an essential, novel role in establishing the long-lived plasma cell population in the BM via responsiveness to chemokine migration cues. PMID:26077717

  19. Identification of Plasma Metabolomic Profiling for Diagnosis of Esophageal Squamous-Cell Carcinoma Using an UPLC/TOF/MS Platform

    Directory of Open Access Journals (Sweden)

    Lihong Yin

    2013-04-01

    Full Text Available Epidemiological studies indicated that esophageal squamous-cell carcinoma (ESCC is still one of the most common causes of cancer incidence in the world. Searching for valuable markers including circulating endogenous metabolites associated with the risk of esophageal cancer, is extremely important A comparative metabolomics study was performed by using ultraperformance liquid chromatography-electrospray ionization-accurate mass time-of-flight mass spectrometry to analyze 53 pairs of plasma samples from ESCC patients and healthy controls recruited in Huaian, China. The result identified a metabolomic profiling of plasma including 25 upregulated metabolites and five downregulated metabolites, for early diagnosis of ESCC. With a database-based verification protocol, 11 molecules were identified, and six upregulated molecules of interest in ESCC were found to belong to phospholipids as follows: phosphatidylserine, phosphatidic acid, phosphatidyl choline, phosphatidylinositol, phosphatidyl ethanolamine, and sphinganine 1-phosphate. Clinical estimation of metabolic biomarkers through hierarchical cluster analysis in plasma samples from 17 ESCC patients and 29 healthy volunteers indicated that the present metabolite profile could distinguish ESCC patients from healthy individuals. The cluster of aberrant expression of these metabolites in ESCC indicates the critical role of phospholipid metabolism in the oncogenesis of ESCC and suggests its potential ability to assess the risk of ESCC development in addition to currently used risk factors.

  20. Vindesine in plasma cell tumors.

    Science.gov (United States)

    Salvagno, L; Paccagnella, A; Chiarion Sileni, V; De Besi, P; Frizzarin, M; Casara, D; Fiorentino, M V

    1985-12-31

    Twenty-one patients with plasma cell tumors received vindesine (VDS) at the dose of 3 mg/m2 i.v. on day 1 plus prednisone at the dose of 100 mg p.o. from day 1 to 5, recycling every 8 days 3 times and then every 10-12 days. In 3 patients with gastric or duodenal ulcer prednisone was not administered. All but one patient were heavily pretreated and resistant to M-2 regimen. Overall there were 4 objective responses (19%): 2 among 15 patients (13%) with multiple myeloma and 2 among 6 patients (33%) with extramedullary plasmacytoma (EMP). The responses lasted for 2, 12, 15 and 48+ months. One previously untreated EMP patient received VDS without prednisone and obtained a complete long-lasting remission. The association of VDS with high-dose prednisone seems to have some activity in plasma cell tumors; probably in multiple myeloma the objective responses are due to the high dose of cortisone rather than to VDS. On the contrary, in EMP patients, VDS may be an active agent, even if administered without cortisone.

  1. Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells

    International Nuclear Information System (INIS)

    Mohades, Soheila; Laroussi, Mounir; Maruthamuthu, Venkat

    2017-01-01

    Low-temperature plasma has been shown to have diverse biomedical uses, including its applications in cancer and wound healing. One recent approach in treating mammalian cells with plasma is through the use of plasma activated media (PAM), which is produced by exposing cell culture media to plasma. While the adverse effects of PAM treatment on cancerous epithelial cell lines have been recently studied, much less is known about the interaction of PAM with normal epithelial cells. In this paper, non-cancerous canine kidney MDCK (Madin-Darby Canine Kidney) epithelial cells were treated by PAM and time-lapse microscopy was used to directly monitor their proliferation and random migration upon treatment. While longer durations of PAM treatment led to cell death, we found that moderate levels of PAM treatment inhibited proliferation in these epithelial cells. We also found that PAM treatment reduced random cell migration within epithelial islands. Immunofluorescence staining showed that while there were no major changes in the actin/adhesion apparatus, there was a significant change in the nuclear localization of proliferation marker Ki-67, consistent with our time-lapse results. (paper)

  2. Plasma ignition and tuning in different cells of a 1.3 GHz nine-cell superconducting radio frequency cavity: Proof of principle

    Science.gov (United States)

    Tyagi, P. V.; Moss, Andrew; Goudket, Philippe; Pattalwar, Shrikant; Herbert, Joe; Valizadeh, Reza; McIntosh, Peter

    2018-06-01

    Field emission is one of the critical issues in the superconducting radio frequency (SRF) cavities and can degrade their accelerating gradient during operation. The contamination present at top surface of the SRF cavity is one of the foremost reasons for field emission. Plasma based surface processing can be a viable option to eliminate such surface contaminants and enhance performance of the SRF cavity especially for in-situ applications. These days, 1.3 GHz nine-cell SRF cavity has become baseline standard for many particle accelerators, it is of interest to develop plasma cleaning technique for such SRF cavities. In the development of the plasma processing technique for SRF cavities, the most challenging task is to ignite and tune the plasma in different cells of the SRF cavity. At Daresbury laboratory, UK, we have successfully achieved plasma ignition in different cells of a 1.3 GHz nine-cell SRF cavity. The plasma ignition in different cells of the cavity was accomplished at room temperature towards room temperature plasma cleaning of the SRF cavity surface. Here, we report the successful demonstration of the plasma ignition in different cells of a 1.3 GHz nine-cell SRF cavity.

  3. Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter

    Science.gov (United States)

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Kojima, Masaru; Fukuda, Toshio

    2011-11-01

    Fast and sensitive cell viability identification is a key point for single cell analysis. To address this issue, this paper reports a novel single cell viability identification method based on the measurement of single cell shear adhesion force using an atomic force microscopy (AFM) cantilever-based micro putter. Viable and nonviable yeast cells are prepared and put onto three kinds of substrate surfaces, i.e. tungsten probe, gold and ITO substrate surfaces. A micro putter is fabricated from the AFM cantilever by focused ion beam etching technique. The spring constant of the micro putter is calibrated using the nanomanipulation approach. The shear adhesion force between the single viable or nonviable cell and each substrate is measured using the micro putter based on the nanorobotic manipulation system inside an environmental scanning electron microscope. The adhesion force is calculated based on the deflection of the micro putter beam. The results show that the adhesion force of the viable cell to the substrate is much larger than that of the nonviable cell. This identification method is label free, fast, sensitive and can give quantitative results at the single cell level.

  4. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells.

    Directory of Open Access Journals (Sweden)

    Paola Brun

    Full Text Available Non-thermal atmospheric pressure plasmas are being developed for a wide range of health care applications, including wound healing. However in order to exploit the potential of plasma for clinical applications, the understanding of the mechanisms involved in plasma-induced activation of fibroblasts, the cells active in the healing process, is mandatory. In this study, the role of helium generated plasma in the tissue repairing process was investigated in cultured human fibroblast-like primary cells, and specifically in hepatic stellate cells and intestinal subepithelial myofibroblasts. Five minutes after treatment, plasma induced formation of reactive oxygen species (ROS in cultured cells, as assessed by flow cytometric analysis of fluorescence-activated 2',7'-dichlorofluorescein diacetate probe. Plasma-induced intracellular ROS were characterized by lower concentrations and shorter half-lives with respect to hydrogen peroxide-induced ROS. Moreover ROS generated by plasma treatment increased the expression of peroxisome proliferator activated receptor (PPAR-γ, nuclear receptor that modulates the inflammatory responses. Plasma exposure promoted wound healing in an in vitro model and induced fibroblast migration and proliferation, as demonstrated, respectively, by trans-well assay and partitioning between daughter cells of carboxyfluorescein diacetate succinimidyl ester fluorescent dye. Plasma-induced fibroblast migration and proliferation were found to be ROS-dependent as cellular incubation with antioxidant agents (e.g. N-acetyl L-cysteine cancelled the biological effects. This study provides evidence that helium generated plasma promotes proliferation and migration in liver and intestinal fibroblast-like primary cells mainly by increasing intracellular ROS levels. Since plasma-evoked ROS are time-restricted and elicit the PPAR-γ anti-inflammatory molecular pathway, this strategy ensures precise regulation of human fibroblast activation and

  5. Long and short term effects of plasma treatment on meristematic plant cells

    Science.gov (United States)

    Puač, N.; Živković, S.; Selaković, N.; Milutinović, M.; Boljević, J.; Malović, G.; Petrović, Z. Lj.

    2014-05-01

    In this paper, we will present results of plasma treatments of meristematic cells of Daucus carota. Plasma needle was used as an atmospheric pressure/gas composition source of non-equilibrium plasma in all treatments. Activity of antioxidant enzymes superoxide dismutase and catalase was measured immediately after plasma treatment and after two weeks following the treatment. Superoxide dismutase activity was increased in samples immediately after the plasma treatment. On the other hand, catalase activity was much higher in treated samples when measured two weeks after plasma treatment. These results show that there is a direct proof of the triggering of signal transduction in the cells by two reactive oxygen species H2O2 and O2-, causing enzyme activity and short and long term effects even during the growth of calli, where the information is passed to newborn cells over the period of two weeks.

  6. Blimp-1 controls plasma cell function through regulation of immunoglobulin secretion and the unfolded protein response

    Science.gov (United States)

    Tellier, Julie; Shi, Wei; Minnich, Martina; Liao, Yang; Crawford, Simon; Smyth, Gordon K; Kallies, Axel; Busslinger, Meinrad; Nutt, Stephen L

    2015-01-01

    Plasma cell differentiation requires silencing of B cell transcription, while establishing antibody-secretory function and long-term survival. The transcription factors Blimp-1 and IRF4 are essential for plasma cell generation, however their function in mature plasma cells has remained elusive. We have found that while IRF4 was essential for plasma cell survival, Blimp-1 was dispensable. Blimp-1-deficient plasma cells retained their transcriptional identity, but lost the ability to secrete antibody. Blimp-1 regulated many components of the unfolded protein response (UPR), including XBP-1 and ATF6. The overlap of Blimp-1 and XBP-1 function was restricted to the UPR, with Blimp-1 uniquely regulating mTOR activity and plasma cell size. Thus, Blimp-1 is required for the unique physiological capacity of plasma cells that enables the secretion of protective antibody. PMID:26779600

  7. New Treatment Options for Osteosarcoma - Inactivation of Osteosarcoma Cells by Cold Atmospheric Plasma.

    Science.gov (United States)

    Gümbel, Denis; Gelbrich, Nadine; Weiss, Martin; Napp, Matthias; Daeschlein, Georg; Sckell, Axel; Ender, Stephan A; Kramer, Axel; Burchardt, Martin; Ekkernkamp, Axel; Stope, Matthias B

    2016-11-01

    Cold atmospheric plasma has been shown to inhibit tumor cell growth and induce tumor cell death. The aim of the study was to investigate the effects of cold atmospheric plasma treatment on proliferation of human osteosarcoma cells and to characterize the underlying cellular mechanisms. Human osteosarcoma cells (U2-OS and MNNG/HOS) were treated with cold atmospheric plasma and seeded in culture plates. Cell proliferation, p53 and phospho-p53 protein expression and nuclear morphology were assessed. The treated human osteosarcoma cell lines exhibited attenuated proliferation rates by up to 66%. The cells revealed an induction of p53, as well as phospho-p53 expression, by 2.3-fold and 4.5-fold, respectively, compared to controls. 4',6-diamidino-2-phenylindole staining demonstrated apoptotic nuclear condensation following cold atmospheric plasma treatment. Cold atmospheric plasma treatment significantly attenuated cell proliferation in a preclinical in vitro osteosarcoma model. The resulting increase in p53 expression and phospho-activation in combination with characteristic nuclear changes indicate this was through induction of apoptosis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Flow Cytometry Assessment of In Vitro Generated CD138+ Human Plasma Cells

    Directory of Open Access Journals (Sweden)

    Rayelle Itoua Maïga

    2014-01-01

    Full Text Available The in vitro CD40-CD154 interaction promotes human B lymphocytes differentiation into plasma cells. Currently, CD138 is the hallmark marker enabling the detection of human plasma cells, both in vitro and in vivo; its presence can be monitored by flow cytometry using a specific antibody. We have developed a culture system allowing for the differentiation of memory B lymphocytes. In order to detect the newly formed plasma cells, we have compared their staining using five anti-CD138 monoclonal antibodies (mAbs. As a reference, we also tested human cell lines, peripheral blood mononuclear cells, and bone marrow samples. The five anti-CD138 mAbs stained RPMI-8226 cells (>98% with variable stain index (SI. The highest SI was obtained with B-A38 mAb while the lowest SI was obtained with DL-101 and 1D4 mAbs. However, the anti-CD138 mAbs were not showing equivalent CD138+ cells frequencies within the generated plasma cells. B-A38, B-B4, and MI-15 were similar (15–25% while DL-101 mAb stained a higher proportion of CD138-positive cells (38–42%. DL-101 and B-A38 mAbs stained similar populations in bone marrow samples but differed in their capacity to bind to CD138high and CD138lo cell lines. In conclusion, such cellular fluctuations suggest heterogeneity in human plasma cell populations and/or in CD138 molecules.

  9. Identification and observations of the plasma mantle at low altitude

    International Nuclear Information System (INIS)

    Newell, P.T.; Meng, Ching-I.; Sanchez, E.R.; Burke, W.J.; Greenspan, M.E.

    1991-01-01

    The direct injection of magnetosheath plasma into the cusp produces at low altitude a precipitation regime with an energy-latitude dispersion-the more poleward portion of which the authors herein term the cusp plume. An extensive survey of the Defense Meteorological Satellite Program (DMSP) F7 and F9 32 eV to 30 keV precipitating particle data shows that similar dispersive signatures exist over much of the dayside, just poleward of the auroral oval. Away from noon (or more precisely, anywhere not immediately poleward of the cusp) the fluxes are reduced by a factor of about 10 as compared to the cusp plume, but other characteristics are quite similar. For example, the inferred temperatures and flow velocities, and the characteristic decline of energy and number flux with increasing latitude is essentially the same in a longitudinally broad ring of precipitation a few degrees thick in latitude over much of the dayside. They conclude that the field lines on which such precipitation occurs thread the magnetospheric plasma mantle over the entire longitudinally extended ring. Besides the location of occurence (i.e., immediately poleward of the dayside oval), the identification is based especially on the associated very soft ion spectra, which have densities from a few times 10 -2 to a few times 10 -1 /cm 3 ; on the temperature range, which is form from a few tens of eV up to about 200 eV; amd on the characteristic gradients with latitude. Further corroborating evidence that the precipitation is associated with field lines which thread the plasma mantle includes drift meter observations which show that regions so identified based on the particle data consistently lie on antisunward convecting field lines. The observations indicate that some dayside high-latitude auroral features just poleward of the auroral oval are embedded in the plasma mantle

  10. Effect of therapeutic concentration of lithium on live HEK293 cells; increase of Na+/K+-ATPase, change of overall protein composition and alteration of surface layer of plasma membrane.

    Science.gov (United States)

    Vosahlikova, Miroslava; Ujcikova, Hana; Chernyavskiy, Oleksandr; Brejchova, Jana; Roubalova, Lenka; Alda, Martin; Svoboda, Petr

    2017-05-01

    The effect of long-term exposure of live cells to lithium cations (Li) was studied in HEK293 cells cultivated in the presence of 1mM LiCl for 7 or 21days. The alteration of Na + /K + -ATPase level, protein composition and biophysical state of plasma membrane was determined with the aim to characterize the physiological state of Li-treated cells. Na + /K + -ATPase level was determined by [ 3 H]ouabain binding and immunoblot assays. Overall protein composition was determined by 2D electrophoresis followed by proteomic analysis by MALDI-TOF MS/MS and LFQ. Li interaction with plasma membrane was characterized by fluorescent probes DPH, TMA-DPH and Laurdan. Na + /K + -ATPase was increased in plasma membranes isolated from cells exposed to Li. Identification of Li-altered proteins by 2D electrophoresis, MALDI-TOF MS/MS and LFQ suggests a change of energy metabolism in mitochondria and cytosol and alteration of cell homeostasis of calcium. Measurement of Laurdan generalized polarization indicated a significant alteration of surface layer of isolated plasma membranes prepared from both types of Li-treated cells. Prolonged exposure of HEK293 cells to 1mM LiCl results in up-regulation of Na + /K + -ATPase expression, reorganization of overall cellular metabolism and alteration of the surface layer/polar head-group region of isolated plasma membranes. Our findings demonstrate adaptation of live HEK293 cell metabolism to prolonged exposure to therapeutic concentration of Li manifested as up-regulation of Na + /K + -ATPase expression, alteration of protein composition and change of the surface layer of plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Endogenous Plasma Peptide Detection and Identification in the Rat by a Combination of Fractionation Methods and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Fabrice Bertile

    2007-01-01

    Full Text Available Mass spectrometry-based analyses are essential tools in the field of biomarker research. However, detection and characterization of plasma low abundance and/or low molecular weight peptides is challenged by the presence of highly abundant proteins, salts and lipids. Numerous strategies have already been tested to reduce the complexity of plasma samples. The aim of this study was to enrich the low molecular weight fraction of rat plasma. To this end, we developed and compared simple protocols based on membrane filtration, solid phase extraction, and a combination of both. As assessed by UV absorbance, an albumin depletion 99% was obtained. The multistep fractionation strategy (including reverse phase HPLC allowed detection, in a reproducible manner (CV [1] 30%–35%, of more than 450 peaks below 3000 Da by MALDI-TOF/MS. A MALDI-TOF/MS-determined LOD as low as 1 fmol/μL was obtained, thus allowing nanoLC-Chip/ MS/MS identification of spiked peptides representing ∼10–6% of total proteins, by weight. Signal peptide recovery ranged between 5%–100% according to the spiked peptide considered. Tens of peptide sequence tags from endogenous plasma peptides were also obtained and high confidence identifications of low abundance fibrinopeptide A and B are reported here to show the efficiency of the protocol. It is concluded that the fractionation protocol presented would be of particular interest for future differential (high throughput analyses of the plasma low molecular weight fraction.

  12. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  13. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    Science.gov (United States)

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  14. Plasma Cell-Free DNA in Paediatric Lymphomas

    Science.gov (United States)

    Mussolin, Lara; Burnelli, Roberta; Pillon, Marta; Carraro, Elisa; Farruggia, Piero; Todesco, Alessandra; Mascarin, Maurizio; Rosolen, Angelo

    2013-01-01

    Background: Extracellular circulating DNA (cfDNA) can be found in small amounts in plasma of healthy individuals. Increased levels of cfDNA have been reported in patients with cancer of breast, cervix, colon, liver and it was shown that cfDNA can originate from both tumour and non-tumour cells. Objectives: Levels of cfDNA of a large series of children with lymphoma were evaluated and analyzed in relation with clinical characteristics. Methods: plasma cfDNA levels obtained at diagnosis in 201 paediatric lymphoma patients [43 Hodgkin lymphomas (HL), 45 anaplastic large cell lymphomas (ALCL), 88 Burkitt lymphomas (BL), 17 lymphoblastic (LBL), 8 diffuse large B cell lymphoma (DLBCL)] and 15 healthy individuals were determined using a quantitative PCR assay for POLR2 gene and, in addition, for NPM-ALK fusion gene in ALCL patients. Wilcoxon rank sum test was used to compare plasma levels among different patient subgroups and controls and to analyze relationship between levels of cfDNA and clinical characteristics. Results: Levels of cfDNA in lymphoma patients were significantly higher compared with controls (p<0.0001). CfDNA was associated with median age (p=0.01) in HL, and with stage in ALCL (p=0.01). In HL patients high cfDNA levels were correlated with poor prognosis (p=0.03). In ALCL we found that most of the cfDNA (77%) was non-tumor DNA. Conclusion: level of plasma cfDNA might constitute an important non-invasive tool at diagnosis in lymphoma patients' management; in particular in patients with HL, cfDNA seems to be a promising prognostic biomarker. PMID:23678368

  15. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    Science.gov (United States)

    Han, Xu; Klas, Matej; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2013-09-01

    The nitrogen atmospheric pressure plasma jet (APPJ) has been shown to effectively induce DNA double strand breaks in SCC-25 oral cancer cells. The APPJ source constructed in our laboratory consists of two external electrodes wrapping around a quartz tube and nitrogen as a feed gas and operates based on dielectric barrier gas discharge. Generally, it is more challenging to ignite plasma in N2 atmosphere than in noble gases. However, this design provides additional advantages such as lower costs compared to the noble gases for future clinical operation. Different parameters of the APPJ configuration were tested in order to determine radiation dosage. To explore the effects of delayed damage and cell self-repairing, various incubation times of cells after plasma treatment were also performed. Reactive species generated in plasma jet and in liquid environment are essential to be identified and quantified, with the aim of unfolding the mystery of detailed mechanisms for plasma-induced cell apoptosis. Moreover, from the comparison of plasma treatment effect on normal oral cells OKF6T, an insight to the selectivity for cancer treatment by APPJ can be explored. All of these studies are critical to better understand the damage responses of normal and abnormal cellular systems to plasma radiation, which are useful for the development of advanced plasma therapy for cancer treatment at a later stage.

  16. [Plasma cell dyscrasias and renal damage].

    Science.gov (United States)

    Pasquali, Sonia; Iannuzzella, Francesco; Somenzi, Danio; Mattei, Silvia; Bovino, Achiropita; Corradini, Mattia

    2012-01-01

    Kidney damage caused by immunoglobulin free light chains in the setting of plasma cell dyscrasias is common and may involve all renal compartments, from the glomerulus to the tubulointerstitium, in a wide variety of histomorphological and clinical patterns. The knowledge of how free light chains can promote kidney injury is growing: they can cause functional changes, be processed and deposited, mediate inflammation, apoptosis and fibrosis, and obstruct nephrons. Each clone of the free light chain is unique and its primary structure and post-translation modification can determine the type of renal disease. Measurement of serum free light chain concentrations and calculation of the serum kappa/lambda ratio, together with renal biopsy, represent essential diagnostic tools. An early and correct diagnosis of renal lesions due to plasma cell dyscrasias will allow early initiation of disease-specific treatment strategies. The treatment of free light chain nephropathies is evolving and knowledge of the pathways that promote renal damage should lead to further therapeutic developments.

  17. Quantitative identification of senescent cells in aging and disease.

    Science.gov (United States)

    Biran, Anat; Zada, Lior; Abou Karam, Paula; Vadai, Ezra; Roitman, Lior; Ovadya, Yossi; Porat, Ziv; Krizhanovsky, Valery

    2017-08-01

    Senescent cells are present in premalignant lesions and sites of tissue damage and accumulate in tissues with age. In vivo identification, quantification and characterization of senescent cells are challenging tasks that limit our understanding of the role of senescent cells in diseases and aging. Here, we present a new way to precisely quantify and identify senescent cells in tissues on a single-cell basis. The method combines a senescence-associated beta-galactosidase assay with staining of molecular markers for cellular senescence and of cellular identity. By utilizing technology that combines flow cytometry with high-content image analysis, we were able to quantify senescent cells in tumors, fibrotic tissues, and tissues of aged mice. Our approach also yielded the finding that senescent cells in tissues of aged mice are larger than nonsenescent cells. Thus, this method provides a basis for quantitative assessment of senescent cells and it offers proof of principle for combination of different markers of senescence. It paves the way for screening of senescent cells for identification of new senescence biomarkers, genes that bypass senescence or senolytic compounds that eliminate senescent cells, thus enabling a deeper understanding of the senescent state in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma.

    Directory of Open Access Journals (Sweden)

    Arnaud Duval

    Full Text Available Non-thermal plasmas are gaseous mixtures of molecules, radicals, and excited species with a small proportion of ions and energetic electrons. Non-thermal plasmas can be generated with any high electro-magnetic field. We studied here the pathological effects, and in particular cell death, induced by nanosecond-pulsed high voltage generated plasmas homogeneously applied on cell cultures and nude mouse skin. In vitro, Jurkat cells and HMEC exhibited apoptosis and necrosis, in dose-dependent manner. In vivo, on nude mouse skin, cell death occurred for doses above 113 J/cm(2 for the epidermis, 281 J/cm(2 for the dermis, and 394 J/cm(2 for the hypodermis. Using electron microscopy, we characterized apoptosis for low doses and necrosis for high doses. We demonstrated that these effects were not related to thermal, photonic or pH variations, and were due to the production of free radicals. The ability of cold plasmas to generate apoptosis on cells in suspension and, without any sensitizer, on precise skin areas, opens new fields of application in dermatology for extracorporeal blood cell treatment and the eradication of superficial skin lesions.

  19. Cancer Stem Cells: From Identification To Eradication

    International Nuclear Information System (INIS)

    KASSEM, N.M.

    2008-01-01

    A fundamental problem in cancer research is identification of the cells within a tumor that sustain the growth of the neoplastic clone. The concept that only a subpopulation of rare cancer stem cells (CSCs) is responsible for maintenance of the neoplasm emerged nearly 50 years ago: however, conclusive proof for the existence of a CSC was obtained only relatively recently. As definition, cancer stem cells (CSCs) are a sub-population of cancer cells (found within solid tumors or hematological malignancies) that possess characteristics normally associated with stem cells as high self-renewal potential. These cells are believed to be tumorige forming) in contrast to the bulk of cancer cells, which are thought to be non-tumorigenic. The first conclusive evidence for CSCs was published in 1997 in Nature Medicine by Bonnet and Dick who isolated a subpopulation of leukemic cells in AML that express a specific surface marker CD34 but lacks the CD38 marker. The authors established that the CD34+/CD38– subpopulation is capable of initiating leukemia in NOD/SCID mice that is histologically similar to the donor [1]. This subpopulation of cells is termed SCID Leukemia-initiating cells (SLIC). A theory suggests that such cells act as a reservoir for disease recurrence, are the origin of metastasis and exert resistance towards classical antitumor regimens. This resistance was attributed to a combination of several factors [2], suggesting that conventional antitumor regimens are targeting the bulk of the tumor not the dormant stubborn CSCs. Purpose Better understanding of the leukemogenic process and the biology of CSCS to define the most applicable procedures for their identification and isolation in order to design specific targeted therapies aiming at reducing disease burden to very low levels .. up to eradication of the tumor

  20. Light-induced modification of plant plasma membrane ion transport.

    Science.gov (United States)

    Marten, I; Deeken, R; Hedrich, R; Roelfsema, M R G

    2010-09-01

    Light is not only the driving force for electron and ion transport in the thylakoid membrane, but also regulates ion transport in various other membranes of plant cells. Light-dependent changes in ion transport at the plasma membrane and associated membrane potential changes have been studied intensively over the last century. These studies, with various species and cell types, revealed that apart from regulation by chloroplasts, plasma membrane transport can be controlled by phytochromes, phototropins or channel rhodopsins. In this review, we compare light-dependent plasma membrane responses of unicellular algae (Eremosphaera and Chlamydomonas), with those of a multicellular alga (Chara), liverworts (Conocephalum), mosses (Physcomitrella) and several angiosperm cell types. Light-dependent plasma membrane responses of Eremosphaera and Chara are characterised by the dominant role of K(+) channels during membrane potential changes. In most other species, the Ca(2+)-dependent activation of plasma membrane anion channels represents a general light-triggered event. Cell type-specific responses are likely to have evolved by modification of this general response or through the development of additional light-dependent signalling pathways. Future research to elucidate these light-activated signalling chains is likely to benefit from the recent identification of S-type anion channel genes and proteins capable of regulating these channels.

  1. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    Science.gov (United States)

    Karki, Surya B.; Thapa Gupta, Tripti; Yildirim-Ayan, Eda; Eisenmann, Kathryn M.; Ayan, Halim

    2017-08-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  2. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    International Nuclear Information System (INIS)

    Karki, Surya B; Gupta, Tripti Thapa; Yildirim-Ayan, Eda; Ayan, Halim; Eisenmann, Kathryn M

    2017-01-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  3. Dendritic cells and skin sensitization: Biological roles and uses in hazard identification

    International Nuclear Information System (INIS)

    Ryan, Cindy A.; Kimber, Ian; Basketter, David A.; Pallardy, Marc; Gildea, Lucy A.; Gerberick, G. Frank

    2007-01-01

    Recent advances have been made in our understanding of the roles played by cutaneous dendritic cells (DCs) in the induction of contact allergy. A number of associated changes in epidermal Langerhans cell phenotype and function required for effective skin sensitization are providing the foundations for the development of cellular assays (using DC and DC-like cells) for skin sensitization hazard identification. These alternative approaches to the identification and characterization of skin sensitizing chemicals were the focus of a Workshop entitled 'Dendritic Cells and Skin Sensitization: Biological Roles and Uses in Hazard Identification' that was given at the annual Society of Toxicology meeting held March 6-9, 2006 in San Diego, California. This paper reports information that was presented during the Workshop

  4. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Directory of Open Access Journals (Sweden)

    Xiaozhen Liang

    2009-11-01

    Full Text Available Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68 gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners that do not directly participate in virus replication, but rather facilitate virus

  5. Gammaherpesvirus-driven plasma cell differentiation regulates virus reactivation from latently infected B lymphocytes.

    Science.gov (United States)

    Liang, Xiaozhen; Collins, Christopher M; Mendel, Justin B; Iwakoshi, Neal N; Speck, Samuel H

    2009-11-01

    Gammaherpesviruses chronically infect their host and are tightly associated with the development of lymphoproliferative diseases and lymphomas, as well as several other types of cancer. Mechanisms involved in maintaining chronic gammaherpesvirus infections are poorly understood and, in particular, little is known about the mechanisms involved in controlling gammaherpesvirus reactivation from latently infected B cells in vivo. Recent evidence has linked plasma cell differentiation with reactivation of the human gammaherpesviruses EBV and KSHV through induction of the immediate-early viral transcriptional activators by the plasma cell-specific transcription factor XBP-1s. We now extend those findings to document a role for a gammaherpesvirus gene product in regulating plasma cell differentiation and thus virus reactivation. We have previously shown that the murine gammaherpesvirus 68 (MHV68) gene product M2 is dispensable for virus replication in permissive cells, but plays a critical role in virus reactivation from latently infected B cells. Here we show that in mice infected with wild type MHV68, virus infected plasma cells (ca. 8% of virus infected splenocytes at the peak of viral latency) account for the majority of reactivation observed upon explant of splenocytes. In contrast, there is an absence of virus infected plasma cells at the peak of latency in mice infected with a M2 null MHV68. Furthermore, we show that the M2 protein can drive plasma cell differentiation in a B lymphoma cell line in the absence of any other MHV68 gene products. Thus, the role of M2 in MHV68 reactivation can be attributed to its ability to manipulate plasma cell differentiation, providing a novel viral strategy to regulate gammaherpesvirus reactivation from latently infected B cells. We postulate that M2 represents a new class of herpesvirus gene products (reactivation conditioners) that do not directly participate in virus replication, but rather facilitate virus reactivation by

  6. Ontogeny of human IgE?expressing B cells and plasma cells

    OpenAIRE

    Ramadani, F.; Bowen, H.; Upton, N.; Hobson, P. S.; Chan, Y.?C.; Chen, J.?B.; Chang, T. W.; McDonnell, J. M.; Sutton, B. J.; Fear, D. J.; Gould, H. J.

    2016-01-01

    BACKGROUND: IgE-expressing (IgE+) plasma cells (PCs) provide a continuous source of allergen specific IgE that is central to allergic responses. The extreme sparsity of IgE+ cells in vivo has confined their study almost entirely to mouse models.OBJECTIVE: To characterise the development pathway of human IgE+ PCs and to determine the ontogeny of human IgE+ PCs.METHODS: To generate human IgE+ cells we cultured tonsil B cells with IL-4 and anti-CD40. Using FACS and RT-PCR we examined the phenoty...

  7. Plasma and BIAS Modeling: Self-Consistent Electrostatic Particle-in-Cell with Low-Density Argon Plasma for TiC

    Directory of Open Access Journals (Sweden)

    Jürgen Geiser

    2011-01-01

    processes. In this paper we present a new model taken into account a self-consistent electrostatic-particle in cell model with low density Argon plasma. The collision model are based of Monte Carlo simulations is discussed for DC sputtering in lower pressure regimes. In order to simulate transport phenomena within sputtering processes realistically, a spatial and temporal knowledge of the plasma density and electrostatic field configuration is needed. Due to relatively low plasma densities, continuum fluid equations are not applicable. We propose instead a Particle-in-cell (PIC method, which allows the study of plasma behavior by computing the trajectories of finite-size particles under the action of an external and self-consistent electric field defined in a grid of points.

  8. Polyphosphoinositides are present in plasma membranes isolated from fusogenic carrot cells

    International Nuclear Information System (INIS)

    Wheeler, J.J.; Boss, W.F.

    1987-01-01

    Fusogenic carrot cells grown in suspension culture were labeled 12 hours with myo-[2- 3 H]inositol. Plasma membranes were isolated from the prelabeled fusogenic carrot cells by both aqueous polymer two-phase partitioning and Renografin density gradients. With both methods, the plasma membrane-enriched fractions, as identified by marker enzymes, were enriched in [ 3 H]inositol-labeled phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP 2 ). An additional [ 3 H]inositol-labeled lipid, lysophosphatidylinositol monophosphate, which migrated between PIP and PIP 2 on thin layer plates, was found primarily in the plasma membrane-rich fraction of the fusogenic cells. This was in contrast to lysophosphatidylinositol which is found primarily in the lower phase, microsomal/mitchrondrial-rich fraction

  9. Assessment of bone marrow plasma cell infiltrates in multiple myeloma: the added value of CD138 immunohistochemistry

    Science.gov (United States)

    Al-Quran, Samer Z.; Yang, Lijun; Magill, James M.; Braylan, Raul C.; Douglas-Nikitin, Vonda K.

    2012-01-01

    Summary Assessment of bone marrow involvement by malignant plasma cells is an important element in the diagnosis and follow-up of patients with multiple myeloma and other plasma cell dyscrasias. Microscope-based differential counts of bone marrow aspirates are used as the primary method to evaluate bone marrow plasma cell percentages. However, multiple myeloma is often a focal process, a fact that impacts the accuracy and reliability of the results of bone marrow plasma cell percentages obtained by differential counts of bone marrow aspirate smears. Moreover, the interobserver and intraobserver reproducibility of counting bone marrow plasma cells microscopically has not been adequately tested. CD138 allows excellent assessment of plasma cell numbers and distribution in bone marrow biopsies. We compared estimates of plasma cell percentages in bone marrow aspirates and in hematoxylin-eosin– and CD138-stained bone marrow biopsy sections (CD138 sections) in 79 bone marrows from patients with multiple myeloma. There was a notable discrepancy in bone marrow plasma cell percentages using the different methods of observation. In particular, there was a relatively poor concordance of plasma cell percentage estimation between aspirate smears and CD138 sections. Estimates of plasma cell percentage using CD138 sections demonstrated the highest interobserver concordance. This observation was supported by computer-assisted image analysis. In addition, CD138 expression highlighted patterns of plasma cell infiltration indicative of neoplasia even in the absence of plasmacytosis. We conclude that examination of CD138 sections should be considered for routine use in the estimation of plasma cell load in the bone marrow. PMID:17714757

  10. Quantitative Microscopic Analysis of Plasma Membrane Receptor Dynamics in Living Plant Cells.

    Science.gov (United States)

    Luo, Yu; Russinova, Eugenia

    2017-01-01

    Plasma membrane-localized receptors are essential for cellular communication and signal transduction. In Arabidopsis thaliana, BRASSINOSTEROID INSENSITIVE1 (BRI1) is one of the receptors that is activated by binding to its ligand, the brassinosteroid (BR) hormone, at the cell surface to regulate diverse plant developmental processes. The availability of BRI1 in the plasma membrane is related to its signaling output and is known to be controlled by the dynamic endomembrane trafficking. Advances in fluorescence labeling and confocal microscopy techniques enabled us to gain a better understanding of plasma membrane receptor dynamics in living cells. Here we describe different quantitative microscopy methods to monitor the relative steady-state levels of the BRI1 protein in the plasma membrane of root epidermal cells and its relative exocytosis and recycling rates. The methods can be applied also to analyze similar dynamics of other plasma membrane-localized receptors.

  11. Plasma Cell Cerebrospinal Fluid Pleocytosis Does Not Predict West Nile Virus Infection

    Directory of Open Access Journals (Sweden)

    Michael Jordan

    2012-01-01

    Full Text Available Purpose. Diagnosis of WNV (WNV relies upon serologic testing which may take several days after the onset of clinical symptoms to turn positive. Anecdotal reports suggest the presence of plasma cells or plasmacytoid lymphocytes in the cerebrospinal fluid (CSF may be an early indicator of WNV infection. Methods. The CSFs of 89 patients (12 with WNV, 12 with other viral illness {OVI}, and 65 with nonviral illness{NVI} were compared for the presence of either plasma cells or plasmacytoid lymphocytes. Results. Plasma cells were rarely seen in any of the patients. Plasmacytoid lymphocytes were more commonly seen in WNV (58% and OVI (50% than NVI (11%. The differences were significant for WNV versus NVI, but not WNV versus OVI (P<0.001 and P=0.58, resp.. Conclusions. A CSF pleocytosis with plasma cells or plasmacytoid lymphocytes was neither sensitive nor specific for the diagnosis of WNV infection.

  12. Identification of krypton Kr XVIII to Kr XXIX spectra excited in TFR Tokamak plasmas

    International Nuclear Information System (INIS)

    Wyart, J.F.

    1985-02-01

    The emission spectrum of krypton (injected into TFR tokamak plasmas) has been recorded photographically in the 15-300 A spectral range by means of a 2m grazing incidence spectrograph. Preliminary identification work, based on isoelectronic regularities from known spectra of other ions and ionization equilibrium calculations, has allowed 48 lines (belonging to the O I, F I, Na I, Mg I, Al I, Ar I and K I sequences) to be identified

  13. Intrinsic Plasma Cell Differentiation Defects in B Cell Expansion with NF-κB and T Cell Anergy Patient B Cells

    Directory of Open Access Journals (Sweden)

    Swadhinya Arjunaraja

    2017-08-01

    Full Text Available B cell Expansion with NF-κB and T cell Anergy (BENTA disease is a novel B cell lymphoproliferative disorder caused by germline, gain-of-function mutations in the lymphocyte scaffolding protein CARD11, which drives constitutive NF-κB signaling. Despite dramatic polyclonal expansion of naive and immature B cells, BENTA patients also present with signs of primary immunodeficiency, including markedly reduced percentages of class-switched/memory B cells and poor humoral responses to certain vaccines. Using purified naive B cells from our BENTA patient cohort, here we show that BENTA B cells exhibit intrinsic defects in B cell differentiation. Despite a profound in vitro survival advantage relative to normal donor B cells, BENTA patient B cells were severely impaired in their ability to differentiate into short-lived IgDloCD38hi plasmablasts or CD138+ long-lived plasma cells in response to various stimuli. These defects corresponded with diminished IgG antibody production and correlated with poor induction of specific genes required for plasma cell commitment. These findings provide important mechanistic clues that help explain both B cell lymphocytosis and humoral immunodeficiency in BENTA disease.

  14. Follicular B Cells Promote Atherosclerosis via T Cell-Mediated Differentiation Into Plasma Cells and Secreting Pathogenic Immunoglobulin G.

    Science.gov (United States)

    Tay, Christopher; Liu, Yu-Han; Kanellakis, Peter; Kallies, Axel; Li, Yi; Cao, Anh; Hosseini, Hamid; Tipping, Peter; Toh, Ban-Hock; Bobik, Alex; Kyaw, Tin

    2018-05-01

    B cells promote or protect development of atherosclerosis. In this study, we examined the role of MHCII (major histocompatibility II), CD40 (cluster of differentiation 40), and Blimp-1 (B-lymphocyte-induced maturation protein) expression by follicular B (FO B) cells in development of atherosclerosis together with the effects of IgG purified from atherosclerotic mice. Using mixed chimeric Ldlr -/- mice whose B cells are deficient in MHCII or CD40, we demonstrate that these molecules are critical for the proatherogenic actions of FO B cells. During development of atherosclerosis, these deficiencies affected T-B cell interactions, germinal center B cells, plasma cells, and IgG. As FO B cells differentiating into plasma cells require Blimp-1, we also assessed its role in the development of atherosclerosis. Blimp-1-deficient B cells greatly attenuated atherosclerosis and immunoglobulin-including IgG production, preventing IgG accumulation in atherosclerotic lesions; Blimp-1 deletion also attenuated lesion proinflammatory cytokines, apoptotic cell numbers, and necrotic core. To determine the importance of IgG for atherosclerosis, we purified IgG from atherosclerotic mice. Their transfer but not IgG from nonatherosclerotic mice into Ldlr -/- mice whose B cells are Blimp-1-deficient increased atherosclerosis; transfer was associated with IgG accumulating in atherosclerotic lesions, increased lesion inflammatory cytokines, apoptotic cell numbers, and necrotic core size. The mechanism by which FO B cells promote atherosclerosis is highly dependent on their expression of MHCII, CD40, and Blimp-1. FO B cell differentiation into IgG-producing plasma cells also is critical for their proatherogenic actions. Targeting B-T cell interactions and pathogenic IgG may provide novel therapeutic strategies to prevent atherosclerosis and its adverse cardiovascular complications. © 2018 American Heart Association, Inc.

  15. Increased number of IgG4-positive plasma cells in chronic rhinosinusitis.

    Science.gov (United States)

    Ohno, Keiko; Kimura, Yurika; Matsuda, Yoko; Takahashi, Masatoki; Honjyou, Motomu; Arai, Tomio; Tsutsumi, Takeshi

    2017-02-01

    High levels of IgG4-positive plasma cells were observed in tissue samples from ∼30% of patients with chronic rhinosinusitis who satisfied the comprehensive diagnostic criteria for IgG4-related disease. Detection of increased numbers of IgG4-positive plasma cells in the nasal cavity or paranasal sinuses might not be sufficient to make a diagnosis of IgG4-related rhinosinusitis, and a comprehensive evaluation is required. This study aimed to clarify the clinicopathological characteristics of IgG4-positive plasma cells in patients with chronic rhinosinusitis. This study examined nasal mucosal specimens from 35 patients and assigned them to high-IgG4 and low-IgG4 groups based on infiltration of IgG4-positive plasma cells. It compared the pathological characteristics of the two groups, including the presence of fibrosis, phlebitis, hyperplasia of the nasal glands and infiltration of inflammatory cells. No cases of chronic rhinosinusitis showed storiform fibrosis or obliterative phlebitis. The mean number of IgG4-positive plasma cells in samples from all patients was 29.8 ± 40.3/high-power field. Eleven of the 35 cases (31.4%) were classified as high-IgG4. Hyperplasia of the nasal glands was observed significantly more frequently in the high-IgG4 group than in the low-IgG4 group (p = .03).

  16. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus.

    Science.gov (United States)

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A; Fraser, Mark E; Scott, Jordan L; Soni, Smita P; Jones, Keaton R; Digman, Michelle A; Gratton, Enrico; Tessier, Charles R; Stahelin, Robert V

    2015-09-01

    Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. Copyright © 2015, American

  17. Exogenous nitric oxide (NO) generated by NO-plasma treatment modulates osteoprogenitor cells early differentiation

    International Nuclear Information System (INIS)

    Elsaadany, Mostafa; Subramanian, Gayathri; Ayan, Halim; Yildirim-Ayan, Eda

    2015-01-01

    In this study, we investigated whether nitric oxide (NO) generated using a non-thermal plasma system can mediate osteoblastic differentiation of osteoprogenitor cells without creating toxicity. Our objective was to create an NO delivery mechanism using NO-dielectric barrier discharge (DBD) plasma that can generate and transport NO with controlled concentration to the area of interest to regulate osteoprogenitor cell activity. We built a non-thermal atmospheric pressure DBD plasma nozzle system based on our previously published design and similar designs in the literature. The electrical and spectral analyses demonstrated that N 2 dissociated into NO under typical DBD voltage–current characteristics. We treated osteoprogenitor cells (MC3T3-E1) using NO-plasma treatment system. Our results demonstrated that we could control NO concentration within cell culture media and could introduce NO into the intracellular space using NO-plasma treatment with various treatment times. We confirmed that NO-plasma treatment maintained cell viability and did not create any toxicity even with prolonged treatment durations. Finally, we demonstrated that NO-plasma treatment induced early osteogenic differentiation in the absence of pro-osteogenic growth factors/proteins. These findings suggest that through the NO-plasma treatment system we are able to generate and transport tissue-specific amounts of NO to an area of interest to mediate osteoprogenitor cell activity without subsequent toxicity. This opens up the possibility to develop DBD plasma-assisted tissue-specific NO delivery strategies for therapeutic intervention in the prevention and treatment of bone diseases. (paper)

  18. Bone Marrow Mesenchymal Stem Cells Enhance the Differentiation of Human Switched Memory B Lymphocytes into Plasma Cells in Serum-Free Medium

    Directory of Open Access Journals (Sweden)

    Guillaume Bonnaure

    2016-01-01

    Full Text Available The differentiation of human B lymphocytes into plasma cells is one of the most stirring questions with regard to adaptive immunity. However, the terminal differentiation and survival of plasma cells are still topics with much to be discovered, especially when targeting switched memory B lymphocytes. Plasma cells can migrate to the bone marrow in response to a CXCL12 gradient and survive for several years while secreting antibodies. In this study, we aimed to get closer to niches favoring plasma cell survival. We tested low oxygen concentrations and coculture with mesenchymal stem cells (MSC from human bone marrow. Besides, all cultures were performed using an animal protein-free medium. Overall, our model enables the generation of high proportions of CD38+CD138+CD31+ plasma cells (≥50% when CD40-activated switched memory B lymphocytes were cultured in direct contact with mesenchymal stem cells. In these cultures, the secretion of CXCL12 and TGF-β, usually found in the bone marrow, was linked to the presence of MSC. The level of oxygen appeared less impactful than the contact with MSC. This study shows for the first time that expanded switched memory B lymphocytes can be differentiated into plasma cells using exclusively a serum-free medium.

  19. High Densities of Tumor-Associated Plasma Cells Predict Improved Prognosis in Triple Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    Joe Yeong

    2018-05-01

    Full Text Available Breast cancer is the most common malignancy affecting women, but the heterogeneity of the condition is a significant obstacle to effective treatment. Triple negative breast cancers (TNBCs do not express HER2 or the receptors for estrogen or progesterone, and so often have a poor prognosis. Tumor-infiltrating T cells have been well-characterized in TNBC, and increased numbers are associated with better outcomes; however, the potential roles of B cells and plasma cells have been large. Here, we conducted a retrospective correlative study on the expression of B cell/plasma cell-related genes, and the abundance and localization of B cells and plasma cells within TNBCs, and clinical outcome. We analyzed 269 TNBC samples and used immunohistochemistry to quantify tumor-infiltrating B cells and plasma cells, coupled with NanoString measurement of expression of immunoglobulin metagenes. Multivariate analysis revealed that patients bearing TNBCs with above-median densities of CD38+ plasma cells had significantly better disease-free survival (DFS (HR = 0.44; 95% CI 0.26–0.77; p = 0.004 but not overall survival (OS, after adjusting for the effects of known prognostic factors. In contrast, TNBCs with higher immunoglobulin gene expression exhibited improved prognosis (OS p = 0.029 and DFS p = 0.005. The presence of B cells and plasma cells was positively correlated (p < 0.0001, R = 0.558, while immunoglobulin gene IGKC, IGHM, and IGHG1 mRNA expression correlated specifically with the density of CD38+ plasma cells (IGKC p < 0.0001, R = 0.647; IGHM p < 0.0001, R = 0.580; IGHG1 p < 0.0001, R = 0.655. Interestingly, after adjusting the multivariate analysis for the effect of intratumoral CD38+ plasma cell density, the expression levels of all three genes lost significant prognostic value, suggesting a biologically important role of plasma cells. Last but not least, the addition of intratumoral CD38+ plasma cell

  20. Reactional Plasmacytosis In Plasma Cell Orificial mucositis In A Patient Of Pulmonary Tuberculosis

    Directory of Open Access Journals (Sweden)

    Bose Sumit Kumar

    1997-01-01

    Full Text Available Skin biopsy of a 50 year old Moroccan male patient with labial and oro-pharyngeal plasmocytosis showed hyperplastic, with papillomatous eroded epithelium. Dense infiltrates of plasma cells were seen in the dermis, with perivascular prominence. Hypopharynx, epiglottis, adenoids, and tonsils showed the same type of infiltration. Immunofluorescence (IF and peroxidase antiperoxidase (PAP techniques demonstrated the presence of mostly and infiltrate of plasma cells showing IgA (30 â€" 40%, IgM (20-30%, IgG(10-20% after staining with polyclonal antibodies along with T4 & T8 Iymphocytes with monoclonal staining. Electron microscopy showed absence of atypical plasma cells with abundant endoplasmic reticulum. Patient’s symptoms of stomtitis, dysphonia and pharyngitis were temporarily relieved by systemic corticosteroids of plasma cells suggesting a reactive type of benign plasmocytosis.

  1. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Reznickova, Alena, E-mail: alena.reznickova@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Novotna, Zdenka, E-mail: zdenka1.novotna@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Kolska, Zdenka [Faculty of Science, J.E. Purkyně University, 400 96 Usti nad Labem (Czech Republic); Kasalkova, Nikola Slepickova [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Rimpelova, Silvie [Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic); Svorcik, Vaclav [Department of Solid State Engineering, Institute of Chemical Technology Prague, 166 28 Prague 6 (Czech Republic)

    2015-07-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. - Highlights: • Plasma activation of LDPE, HDPE and UHMWPE • Study of surface properties by several techniques: ARXPS, AFM, zeta-potential, and goniometry • Investigation of adhesion and spreading of vascular smooth muscle cells (VSMCs) and mouse fibroblasts (L929)

  2. Distinct kinetics of memory B-cell and plasma-cell responses in peripheral blood following a blood-stage Plasmodium chabaudi infection in mice.

    Directory of Open Access Journals (Sweden)

    Eunice W Nduati

    2010-11-01

    Full Text Available B cell and plasma cell responses take place in lymphoid organs, but because of the inaccessibility of these organs, analyses of human responses are largely performed using peripheral blood mononuclear cells (PBMC. To determine whether PBMC are a useful source of memory B cells and plasma cells in malaria, and whether they reflect Plasmodium-specific B cell responses in spleen or bone marrow, we have investigated these components of the humoral response in PBMC using a model of Plasmodium chabaudi blood-stage infections in C57BL/6 mice. We detected memory B cells, defined as isotype-switched IgD(- IgM(- CD19(+ B cells, and low numbers of Plasmodium chabaudi Merozoite Surface Protein-1 (MSP1-specific memory B cells, in PBMC at all time points sampled for up to 90 days following primary or secondary infection. By contrast, we only detected CD138(+ plasma cells and MSP1-specific antibody-secreting cells within a narrow time frame following primary (days 10 to 25 or secondary (day 10 infection. CD138(+ plasma cells in PBMC at these times expressed CD19, B220 and MHC class II, suggesting that they were not dislodged bone-marrow long-lived plasma cells, but newly differentiated migratory plasmablasts migrating to the bone marrow; thus reflective of an ongoing or developing immune response. Our data indicates that PBMC can be a useful source for malaria-specific memory B cells and plasma cells, but extrapolation of the results to human malaria infections suggests that timing of sampling, particularly for plasma cells, may be critical. Studies should therefore include multiple sampling points, and at times of infection/immunisation when the B-cell phenotypes of interest are likely to be found in peripheral blood.

  3. Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts.

    Science.gov (United States)

    Kakudo, Natsuko; Minakata, Tatsuya; Mitsui, Toshihito; Kushida, Satoshi; Notodihardjo, Frederik Zefanya; Kusumoto, Kenji

    2008-11-01

    This study evaluated changes in platelet-derived growth factor (PDGF)-AB and transforming growth factor (TGF)-beta1 release from platelets by platelet-rich plasma activation, and the proliferation potential of activated platelet-rich plasma and platelet-poor plasma on human adipose-derived stem cells and human dermal fibroblasts. Platelet-rich plasma was prepared using a double-spin method, with the number of platelets counted in each preparation stage. Platelet-rich and platelet-poor plasma were activated with autologous thrombin and calcium chloride, and levels of platelet-released PDGF-AB and TGF-beta1 were determined by enzyme-linked immunosorbent assay. Cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 5% whole blood plasma, nonactivated platelet-rich plasma, nonactivated platelet-poor plasma, activated platelet-rich plasma, or activated platelet-poor plasma. In parallel, these cells were cultured for 1, 4, or 7 days in serum-free Dulbecco's Modified Eagle Medium supplemented with 1%, 5%, 10%, or 20% activated platelet-rich plasma. The cultured human adipose-derived stem cells and human dermal fibroblasts were assayed for proliferation. Platelet-rich plasma contained approximately 7.9 times as many platelets as whole blood, and its activation was associated with the release of large amounts of PDGF-AB and TGF-beta1. Adding activated platelet-rich or platelet-poor plasma significantly promoted the proliferation of human adipose-derived stem cells and human dermal fibroblasts. Adding 5% activated platelet-rich plasma to the medium maximally promoted cell proliferation, but activated platelet-rich plasma at 20% did not promote it. Platelet-rich plasma can enhance the proliferation of human adipose-derived stem cells and human dermal fibroblasts. These results support clinical platelet-rich plasma application for cell-based, soft-tissue engineering and wound healing.

  4. Isolation of plasma membranes from the nervous system by countercurrent distribution in aqueous polymer two-phase systems.

    Science.gov (United States)

    Schindler, Jens; Nothwang, Hans Gerd

    2009-01-01

    The plasma membrane separates the cell-interior from the cell's environment. To maintain homeostatic conditions and to enable transfer of information, the plasma membrane is equipped with a variety of different proteins such as transporters, channels, and receptors. The kind and number of plasma membrane proteins are a characteristic of each cell type. Owing to their location, plasma membrane proteins also represent a plethora of drug targets. Their importance has entailed many studies aiming at their proteomic identification and characterization. Therefore, protocols are required that enable their purification in high purity and quantity. Here, we report a protocol, based on aqueous polymer two-phase systems, which fulfils these demands. Furthermore, the protocol is time-saving and protects protein structure and function.

  5. The use of HPLC-MS in T-cell epitope identification.

    Science.gov (United States)

    Lemmel, Claudia; Stevanović, Stefan

    2003-03-01

    The hunt for T-cell epitopes is going on because hopes are set on such peptide sequences for diagnosis and vaccine development in the fight against infectious and tumor diseases. In addition to a variety of other techniques used in T-cell epitope identification, mass spectrometers coupled to microcapillary liquid chromatography have now become an important and sensitive tool in separation, detection, and sequence analysis of highly complex natural major histocompatibility complex (MHC) ligand mixtures. In this article, we review the basics of mass spectrometric techniques and their on-line coupling to microcapillary liquid chromatography (microcap-LC). Furthermore, we introduce current strategies for the identification of new T-cell epitopes using microcapillary liquid chromatography-mass spectrometry (microcap-LC-MS).

  6. Plasma-Sprayed Titanium Patterns for Enhancing Early Cell Responses

    Science.gov (United States)

    Shi, Yunqi; Xie, Youtao; Pan, Houhua; Zheng, Xuebin; Huang, Liping; Ji, Fang; Li, Kai

    2016-06-01

    Titanium coating has been widely used as a biocompatible metal in biomedical applications. However, the early cell responses and long-term fixation of titanium implants are not satisfied. To obviate these defects, in this paper, micro-post arrays with various widths (150-1000 μm) and intervals (100-300 μm) were fabricated on the titanium substrate by template-assisted plasma spraying technology. In vitro cell culture experiments showed that MC3T3-E1 cells exhibited significantly higher osteogenic differentiation as well as slightly improved adhesion and proliferation on the micro-patterned coatings compared with the traditional one. The cell number on the pattern with 1000 µm width reached 130% after 6 days of incubation, and the expressions of osteopontin (OPN) as well as osteocalcin (OC) were doubled. No obvious difference was found in cell adhesion on various size patterns. The present micro-patterned coatings proposed a new modification method for the traditional plasma spraying technology to enhance the early cell responses and convenience for the bone in-growth.

  7. Aberrant methylation of cell-free circulating DNA in plasma predicts poor outcome in diffuse large B cell lymphoma

    DEFF Research Database (Denmark)

    Sommer Kristensen, Lasse; Hansen, Jakob Werner; Kristensen, Søren Sommer

    2016-01-01

    BACKGROUND: The prognostic value of aberrant DNA methylation of cell-free circulating DNA in plasma has not previously been evaluated in diffuse large B cell lymphoma (DLBCL). The aim of this study was to investigate if aberrant promoter DNA methylation can be detected in plasma from DLBCL patients...

  8. Mature IgM-expressing plasma cells sense antigen and develop competence for cytokine production upon antigenic challenge

    Science.gov (United States)

    Blanc, Pascal; Moro-Sibilot, Ludovic; Barthly, Lucas; Jagot, Ferdinand; This, Sébastien; de Bernard, Simon; Buffat, Laurent; Dussurgey, Sébastien; Colisson, Renaud; Hobeika, Elias; Fest, Thierry; Taillardet, Morgan; Thaunat, Olivier; Sicard, Antoine; Mondière, Paul; Genestier, Laurent; Nutt, Stephen L.; Defrance, Thierry

    2016-01-01

    Dogma holds that plasma cells, as opposed to B cells, cannot bind antigen because they have switched from expression of membrane-bound immunoglobulins (Ig) that constitute the B-cell receptor (BCR) to production of the secreted form of immunoglobulins. Here we compare the phenotypical and functional attributes of plasma cells generated by the T-cell-dependent and T-cell-independent forms of the hapten NP. We show that the nature of the secreted Ig isotype, rather than the chemical structure of the immunizing antigen, defines two functionally distinct populations of plasma cells. Fully mature IgM-expressing plasma cells resident in the bone marrow retain expression of a functional BCR, whereas their IgG+ counterparts do not. Antigen boost modifies the gene expression profile of IgM+ plasma cells and initiates a cytokine production program, characterized by upregulation of CCL5 and IL-10. Our results demonstrate that IgM-expressing plasma cells can sense antigen and acquire competence for cytokine production upon antigenic challenge. PMID:27924814

  9. Viable bacteria associated with red blood cells and plasma in freshly drawn blood donations.

    Science.gov (United States)

    Damgaard, Christian; Magnussen, Karin; Enevold, Christian; Nilsson, Martin; Tolker-Nielsen, Tim; Holmstrup, Palle; Nielsen, Claus Henrik

    2015-01-01

    Infection remains a leading cause of post-transfusion mortality and morbidity. Bacterial contamination is, however, detected in less than 0.1% of blood units tested. The aim of the study was to identify viable bacteria in standard blood-pack units, with particular focus on bacteria from the oral cavity, and to determine the distribution of bacteria revealed in plasma and in the red blood cell (RBC)-fraction. Cross-sectional study. Blood were separated into plasma and RBC-suspensions, which were incubated anaerobically or aerobically for 7 days on trypticase soy blood agar (TSA) or blue lactose plates. For identification colony PCR was performed using primers targeting 16S rDNA. Blood donors attending Capital Region Blood Bank, Copenhagen University Hospital, Rigshospitalet, Hvidovre, Denmark, October 29th to December 10th 2013. 60 donors (≥50 years old), self-reported medically healthy. Bacterial growth was observed on plates inoculated with plasma or RBCs from 62% of the blood donations. Growth was evident in 21 (35%) of 60 RBC-fractions and in 32 (53%) of 60 plasma-fractions versus 8 of 60 negative controls (p = 0.005 and p = 2.6x10-6, respectively). Propionibacterium acnes was found in 23% of the donations, and Staphylococcus epidermidis in 38%. The majority of bacteria identified in the present study were either facultative anaerobic (59.5%) or anaerobic (27.8%) species, which are not likely to be detected during current routine screening. Viable bacteria are present in blood from donors self-reported as medically healthy, indicating that conventional test systems employed by blood banks insufficiently detect bacteria in plasma. Further investigation is needed to determine whether routine testing for anaerobic bacteria and testing of RBC-fractions for adherent bacteria should be recommended.

  10. MYC protein expression is detected in plasma cell myeloma but not in monoclonal gammopathy of undetermined significance (MGUS).

    Science.gov (United States)

    Xiao, Ruobing; Cerny, Jan; Devitt, Katherine; Dresser, Karen; Nath, Rajneesh; Ramanathan, Muthalagu; Rodig, Scott J; Chen, Benjamin J; Woda, Bruce A; Yu, Hongbo

    2014-06-01

    It has been recognized that monoclonal gammopathy of undetermined significance (MGUS) precedes a diagnosis of plasma cell myeloma in most patients. Recent gene expression array analysis has revealed that an MYC activation signature is detected in plasma cell myeloma but not in MGUS. In this study, we performed immunohistochemical studies using membrane CD138 and nuclear MYC double staining on bone marrow biopsies from patients who met the diagnostic criteria of plasma cell myeloma or MGUS. Our study demonstrated nuclear MYC expression in CD138-positive plasma cells in 22 of 26 (84%) plasma cell myeloma samples and in none of the 29 bone marrow samples from patients with MGUS. In addition, our data on the follow-up biopsies from plasma cell myeloma patients with high MYC expression demonstrated that evaluation of MYC expression in plasma cells can be useful in detecting residual disease. We also demonstrated that plasma cells gained MYC expression in 5 of 8 patients (62.5%) when progressing from MGUS to plasma cell myeloma. Analysis of additional lymphomas with plasmacytic differentiation, including lymphoplasmacytic lymphoma, marginal zone lymphoma, and plasmablastic lymphoma, reveals that MYC detection can be a useful tool in the diagnosis of plasma cell myeloma.

  11. Evaluation of immunoglobulin G synthesizing plasma cells in periapical granuloma and cyst.

    OpenAIRE

    Grover N; Rao N; Kotian M

    2001-01-01

    Immunoglobulin synthesizing plasma cells for IgG were quantitated in 20 periapical granulomas and 20 periapical cysts, using unlabelled antibody peroxidase-antiperoxidase complex method. Result showed that immunoglobulin G producing plasma cells were predominant in periapical cyst as compared with periapical granuloma. A statistical significant relation was observed between these two lesions.

  12. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells.

    Science.gov (United States)

    Mellado-López, Maravillas; Griffeth, Richard J; Meseguer-Ripolles, Jose; Cugat, Ramón; García, Montserrat; Moreno-Manzano, Victoria

    2017-01-01

    Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100  μ M of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  13. Efficient adhesion-based plasma membrane isolation for cell surface N-glycan analysis.

    Science.gov (United States)

    Mun, Ji-Young; Lee, Kyung Jin; Seo, Hoon; Sung, Min-Sun; Cho, Yee Sook; Lee, Seung-Goo; Kwon, Ohsuk; Oh, Doo-Byoung

    2013-08-06

    Glycans, which decorate cell surfaces, play crucial roles in various physiological events involving cell surface recognition. Despite the importance of surface glycans, most analyses have been performed using total cells or whole membranes rather than plasma membranes due to difficulties related to isolation. In the present study, we employed an adhesion-based method for plasma membrane isolation to analyze N-glycans on cell surfaces. Cells were attached to polylysine-coated glass plates and then ruptured by hypotonic pressure. After washing to remove intracellular organelles, only a plasma membrane fraction remained attached to the plates, as confirmed by fluorescence imaging using organelle-specific probes. The plate was directly treated with trypsin to digest and detach the glycoproteins from the plasma membrane. From the resulting glycopeptides, N-glycans were released and analyzed using MALDI-TOF mass spectrometry and HPLC. When N-glycan profiles obtained by this method were compared to those by other methods, the amount of high-mannose type glycans mainly contaminated from the endoplasmic reticulum was dramatically reduced, which enabled the efficient detection of complex type glycans present on the cell surface. Moreover, this method was successfully used to analyze the increase of high-mannose glycans on the surface as induced by a mannosidase inhibitor treatment.

  14. (poly)Phosphoinositide phosphorylation is a marker for plasma membrane in Friend erythroleukaemic cells

    NARCIS (Netherlands)

    Rawyler, A.J.; Roelofsen, B.; Wirtz, K.W.A.; Kamp, J.A.F. op den

    1982-01-01

    Upon subcellular fractionation of (murine) Friend erythroleukaemic cells (FELCs), purified plasma membranes were identified by their high enrichment in specific marker enzymes and typical plasma membrane lipids. When FELCs were incubated for short periods with 32Pi before cell fractionation, the

  15. Identification of cell wall proteins in the flax (Linum usitatissimum) stem.

    Science.gov (United States)

    Day, Arnaud; Fénart, Stéphane; Neutelings, Godfrey; Hawkins, Simon; Rolando, Christian; Tokarski, Caroline

    2013-03-01

    Sequential salt (CaCl2 , LiCl) extractions were used to obtain fractions enriched in cell wall proteins (CWPs) from the stem of 60-day-old flax (Linum usitatissimum) plants. High-resolution FT-ICR MS analysis and the use of recently published genomic data allowed the identification of 11 912 peptides corresponding to a total of 1418 different proteins. Subcellular localization using TargetP, Predotar, and WoLF PSORT led to the identification of 152 putative flax CWPs that were classified into nine different functional classes previously established for Arabidopsis thaliana. Examination of different functional classes revealed the presence of a number of proteins known to be involved in, or potentially involved in cell-wall metabolism in plants. The flax stem cell wall proteome was also compared with transcriptomic data previously obtained on comparable samples. This study represents a major contribution to the identification of CWPs in flax and will lead to a better understanding of cell wall biology in this species. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Identification of Rotavirus VP6-Specific CD4+ T Cell Epitopes in a G1P[8] Human Rotavirus-Infected Rhesus Macaque

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2008-01-01

    Full Text Available A non-human primate model was used to evaluate its potential for identification of rotavirus viral protein 6 (VP6 CD4+ T cell epitopes. Four juvenile rhesus macaques were inoculated with a mixed inoculum (G1P[8] and G9P[8] of human rotaviruses. Infection accompanied by G1P[8] shedding was achieved in the two macaques that had no rotavirus immunoglobulin A (IgA in plasma. To measure the interferon gamma (IFN-γ and tumor necrosis factor (TNF anti-viral cytokines produced by peripheral CD4+ cells that recognize VP6 epitopes, whole blood cells from one infected macaque were stimulated in vitro with VP6 peptides. Stimulation with peptide pools derived from the simian rotavirus VP6 161–395 region revealed reactivity of CD4+ T cells with the VP6 281–331 domain. A VP6 301–315 region was identified as the epitope responsible for IFN-γ production while a broader VP6 293–327 domain was linked to TNF production. These results suggest that human rotavirus-infected macaques can be used for identification of additional epitopes and domains to address specific questions related to the development of pediatric vaccines.

  17. Radiographic features of plasma cell leukemia in the maxilla: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Phillip; Kashtwari, Deeba; Nair, Madhu K. [Dept. of Oral and Maxillofacial Radiology, Oral and Maxillofacial Diagnostic Sciences/Radiology, Colleges of Dentistry/Medicine, University of Florida, Gainesville (United States)

    2016-12-15

    Plasma cell leukemia (PCL) is an aggressive form of multiple myeloma where there is hematogenous spread of abnormal plasma cells into the periphery. This is opposed to multiple myeloma, where the abnormal plasma cells stay in the bone marrow. PCL is more common in males than females, and is also more common in African-Americans than Caucasians. Signs and symptoms of PCL include, but are not limited to, renal insufficiency, hypercalcemia, anemia, lytic bone lesions, thrombocytopenia, hepatomegaly, and splenomegaly. Here, we discussed a case of a 71-year-old Caucasian female recently diagnosed with primary PCL with radiographic features of this disease throughout the body, with an emphasis on the maxillofacial skeleton and relevance from a dental standpoint.

  18. Functional implications of plasma membrane condensation for T cell activation.

    Directory of Open Access Journals (Sweden)

    Carles Rentero

    2008-05-01

    Full Text Available The T lymphocyte plasma membrane condenses at the site of activation but the functional significance of this receptor-mediated membrane reorganization is not yet known. Here we demonstrate that membrane condensation at the T cell activation sites can be inhibited by incorporation of the oxysterol 7-ketocholesterol (7KC, which is known to prevent the formation of raft-like liquid-ordered domains in model membranes. We enriched T cells with 7KC, or cholesterol as control, to assess the importance of membrane condensation for T cell activation. Upon 7KC treatment, T cell antigen receptor (TCR triggered calcium fluxes and early tyrosine phosphorylation events appear unaltered. However, signaling complexes form less efficiently on the cell surface, fewer phosphorylated signaling proteins are retained in the plasma membrane and actin restructuring at activation sites is impaired in 7KC-enriched cells resulting in compromised downstream activation responses. Our data emphasizes lipids as an important medium for the organization at T cell activation sites and strongly indicates that membrane condensation is an important element of the T cell activation process.

  19. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-08-09

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated.

  20. Comparative Effects of Platelet-Rich Plasma, Platelet Lysate, and Fetal Calf Serum on Mesenchymal Stem Cells.

    Science.gov (United States)

    Lykov, A P; Bondarenko, N A; Surovtseva, M A; Kim, I I; Poveshchenko, O V; Pokushalov, E A; Konenkov, V I

    2017-10-01

    We studied the effects of human platelet-rich plasma and platelet lysate on proliferation, migration, and colony-forming properties of rat mesenchymal stem cells. Platelet-rich plasma and platelet lysate stimulated the proliferation, migration, and colony formation of mesenchymal stem cells. A real-time study showed that platelet-rich plasma produces the most potent stimulatory effect, while both platelet-rich plasma and platelet lysate stimulated migration of cells.

  1. Convective cells and transport in toroidal plasmas

    International Nuclear Information System (INIS)

    Hassam, A.B.; Kulsrud, R.M.

    1978-12-01

    The properties of convective cells and the diffusion resulting from such cells are significantly influenced by an inhomogeneity in the extermal confining magnetic field, such as that in toroidal plasmas. The convective diffusion in the presence of a field inhomogeneity is estimated. For a thermal background, this diffusion is shown to be substantially smaller than classical collisional diffusion. For a model nonthermal background, the diffusion is estimated, for typical parameters, to be at most of the order of collisional diffusion. The model background employed is based on spectra observed in numerical simulations of drift-wave-driven convective cells

  2. Use of dc Ar microdischarge with nonlocal plasma for identification of metal samples

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, A. A., E-mail: akud@ak2138.spb.edu [St. Petersburg State University, 7-9 Universitetskaya nab., 199034 St. Petersburg (Russian Federation); Stefanova, M. S.; Pramatarov, P. M. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria)

    2015-04-07

    The possibility of using the collisional electron spectroscopy (CES) method for the detection of atoms from metal samples is experimentally verified. The detection and identification of metal atoms from a Pt sample in the nonlocal plasma of short (without positive column) dc Ar microdischarge at intermediate pressures (5–30 Torr) is realized in this work. Cathode sputtering is used for atomization of the metal under analysis. The identification of the analyzed metal is made from the energy spectra of groups of fast nonlocal electrons—characteristic electrons released in the Penning ionization of the Pt atoms by Ar metastable atoms and molecules. The acquisition of the electron energy spectra is performed using an additional electrode—a sensor located at the boundary of the discharge volume. The Pt characteristic Penning electrons form the maxima in the electron energy spectra at the energies of their appearance, which are 2.6 eV and 1.4 eV. From the measured energy of the maxima, identification of the metal atoms is accomplished. The characteristic Ar maxima due to pair collisions between Ar metastable atoms and molecules and super-elastic collisions are also recorded. This study demonstrates the possibility of creating a novel microplasma analyzer for atoms from metal samples.

  3. Plasma-activated medium (PAM) kills human cancer-initiating cells.

    Science.gov (United States)

    Ikeda, Jun-Ichiro; Tanaka, Hiromasa; Ishikawa, Kenji; Sakakita, Hajime; Ikehara, Yuzuru; Hori, Masaru

    2018-01-01

    Medical non-thermal plasma (NTP) treatments for various types of cancers have been reported. Cells with tumorigenic potential (cancer-initiating cells; CICs) are few in number in many types of tumors. CICs efficiently eliminate anti-cancer chemicals and exhibit high-level aldehyde dehydrogenase (ALDH) activity. We previously examined the effects of direct irradiation via NTP on cancer cells; even though we targeted CICs expressing high levels of ALDH, such treatment affected both non-CICs and CICs. Recent studies have shown that plasma-activated medium (PAM) (culture medium irradiated by NTP) selectively induces apoptotic death of cancer but not normal cells. Therefore, we explored the anti-cancer effects of PAM on CICs among endometrioid carcinoma and gastric cancer cells. PAM reduced the viability of cells expressing both low and high levels of ALDH. Combined PAM/cisplatin appeared to kill cancer cells more efficiently than did PAM or cisplatin alone. In a mouse tumor xenograft model, PAM exerted an anti-cancer effect on CICs. Thus, our results suggest that PAM effectively kills both non-CICs and CICs, as does NTP. Therefore, PAM may be a useful new anti-cancer therapy, targeting various cancer cells including CICs. © 2017 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  4. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xu; Ptasinska, Sylwia [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Klas, Matej [Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Liu, Yueying [Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Sharon Stack, M. [Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2013-06-10

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  5. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    International Nuclear Information System (INIS)

    Han, Xu; Ptasinska, Sylwia; Klas, Matej; Liu, Yueying; Sharon Stack, M.

    2013-01-01

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  6. Acrylic acid grafted PDMS preliminary activated by Ar{sup +}beam plasma and cell observation

    Energy Technology Data Exchange (ETDEWEB)

    Kostadinova, A.; Zaekov, N. [Institute of Biophysics, BAS, Sofia (Bulgaria); Keranov, I. [Department of Polymer Engineering, University of Chemical Technology and Metallurgy (UCTM), Sofia (Bulgaria)

    2007-07-01

    Plasma based Ar{sup +} beam performed in RF (13.56 MHz) low-pressure (200 mTorr) glow discharge (at 100 W, 1200 W and 2500 W) with a serial capacitance was employed for surface modification of poly(dimethylsiloxane) (PDMS) aimed at improvement of its interactions with living cells. The presence of a serial capacitance ensures arise of an ion-flow inside the plasma volume directed toward the treated sample and the vary of the discharge power ensures varied density of the ion-flow The initial adhesion of human fibroblast cells was studied on the described above plasma based Ar{sup +}beam modified and acrylic acid (AA) grafted or not fibronectin (FN) pre-coated or ba resurfaces. The cell response seem sto be related with the peculiar structure and wettability of the modified PDMS surface layer after plasma based Ar{sup +} beam treatment followed or not by AA grafting. Key words: Biomaterials; Surface treatment of PDMS; Plasma based Ar{sup +} beam; Acrylic acid grafting; Fibroblast cells.

  7. Long-Time Plasma Membrane Imaging Based on a Two-Step Synergistic Cell Surface Modification Strategy.

    Science.gov (United States)

    Jia, Hao-Ran; Wang, Hong-Yin; Yu, Zhi-Wu; Chen, Zhan; Wu, Fu-Gen

    2016-03-16

    Long-time stable plasma membrane imaging is difficult due to the fast cellular internalization of fluorescent dyes and the quick detachment of the dyes from the membrane. In this study, we developed a two-step synergistic cell surface modification and labeling strategy to realize long-time plasma membrane imaging. Initially, a multisite plasma membrane anchoring reagent, glycol chitosan-10% PEG2000 cholesterol-10% biotin (abbreviated as "GC-Chol-Biotin"), was incubated with cells to modify the plasma membranes with biotin groups with the assistance of the membrane anchoring ability of cholesterol moieties. Fluorescein isothiocyanate (FITC)-conjugated avidin was then introduced to achieve the fluorescence-labeled plasma membranes based on the supramolecular recognition between biotin and avidin. This strategy achieved stable plasma membrane imaging for up to 8 h without substantial internalization of the dyes, and avoided the quick fluorescence loss caused by the detachment of dyes from plasma membranes. We have also demonstrated that the imaging performance of our staining strategy far surpassed that of current commercial plasma membrane imaging reagents such as DiD and CellMask. Furthermore, the photodynamic damage of plasma membranes caused by a photosensitizer, Chlorin e6 (Ce6), was tracked in real time for 5 h during continuous laser irradiation. Plasma membrane behaviors including cell shrinkage, membrane blebbing, and plasma membrane vesiculation could be dynamically recorded. Therefore, the imaging strategy developed in this work may provide a novel platform to investigate plasma membrane behaviors over a relatively long time period.

  8. Plasma generated in culture medium induces damages of HeLa cells due to flow phenomena

    Science.gov (United States)

    Sato, Yusuke; Sato, Takehiko; Yoshino, Daisuke

    2018-03-01

    Plasma in a liquid has been anticipated as an effective tool for medical applications, however, few reports have described cellular responses to plasma generated in a liquid similar to biological fluids. Herein we report the effects of plasma generated in a culture medium on HeLa cells. The plasma in the culture medium produced not only heat, shock waves, and reactive chemical species but also a jet flow with sub millimeter-sized bubbles. Cells exposed to the plasma exhibited detachment, morphological changes, and changes in the actin cytoskeletal structure. The experimental results suggest that wall shear stress over 160 Pa was generated on the surface of the cells by the plasma. It is one of the main factors that cause those cellular responses. We believe that our findings would provide valuable insight into advancements in medical applications of plasma in a liquid.

  9. Effects of atmospheric pressure plasma jet with floating electrode on murine melanoma and fibroblast cells

    Science.gov (United States)

    Xu, G.; Liu, J.; Yao, C.; Chen, S.; Lin, F.; Li, P.; Shi, X.; Zhang, Guan-Jun

    2017-08-01

    Atmospheric pressure cold plasma jets have been recently shown as a highly promising tool in certain cancer therapies. In this paper, an atmospheric pressure plasma jet (APPJ) with a one inner floating and two outer electrode configuration using helium gas for medical applications is developed. Subjected to a range of applied voltages with a frequency of 19.8 kHz at a fixed rate of gas flow (i.e., 3 l/min), electrical and optical characteristics of the APPJ are investigated. Compared with the device only with two outer electrodes, higher discharge current, longer jet, and more active species in the plasma plume at the same applied voltage together with the lower gas breakdown voltage can be achieved through embedding a floating inner electrode. Employing the APPJ with a floating electrode, the effects of identical plasma treatment time durations on murine melanoma cancer and normal fibroblast cells cultured in vitro are evaluated. The results of cell viability, cell apoptosis, and DNA damage detection show that the plasma can inactivate melanoma cells in a time-dependent manner from 10 s to 60 s compared with the control group (p cells compared with their control group, the plasma with treatment time from 30 s to 60 s can induce significant changes (p cells at the same treatment time. The different basal reactive oxygen species level and antioxidant superoxide dismutase level of two kinds of cells may account for their different responses towards the identical plasma exposure.

  10. Identification of Abnormal Stem Cells Using Raman Spectroscopy

    DEFF Research Database (Denmark)

    Harkness, Linda; Novikov, Sergey M; Beermann, Jonas

    2012-01-01

    The clinical use of stem cells in cell-based therapeutics for degenerative diseases requires development of criteria for defining normal stem cells to ensure safe transplantation. Currently, identification of abnormal from normal stem cells is based on extensive ex vivo and in vivo testing. Raman...... microscopy is a label-free method for rapid and sensitive detection of changes in cells' bio-molecular composition. Here, we report that by using Raman spectroscopy, we were able to map the distribution of different biomolecules within 2 types of stem cells: adult human bone marrow-derived stromal stem cells...... and human embryonic stem cells and to identify reproducible differences in Raman's spectral characteristics that distinguished genetically abnormal and transformed stem cells from their normal counterparts. Raman microscopy can be prospectively employed as a method for identifying abnormal stem cells in ex...

  11. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Maravillas Mellado-López

    2017-01-01

    Full Text Available Adipose-derived stem cells (ASCs are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  12. An adhesion-based method for plasma membrane isolation: evaluating cholesterol extraction from cells and their membranes.

    Science.gov (United States)

    Bezrukov, Ludmila; Blank, Paul S; Polozov, Ivan V; Zimmerberg, Joshua

    2009-11-15

    A method to isolate large quantities of directly accessible plasma membrane from attached cells is presented. The method is based on the adhesion of cells to an adsorbed layer of polylysine on glass plates, followed by hypotonic lysis with ice-cold distilled water and subsequent washing steps. Optimal conditions for coating glass plates and time for cell attachment were established. No additional chemical or mechanical treatments were used. Contamination of the isolated plasma membrane by cell organelles was less than 5%. The method uses inexpensive, commercially available polylysine and reusable glass plates. Plasma membrane preparations can be made in 15 min. Using this method, we determined that methyl-beta-cyclodextrin differentially extracts cholesterol from fibroblast cells and their plasma membranes and that these differences are temperature dependent. Determination of the cholesterol/phospholipid ratio from intact cells does not reflect methyl-beta-cyclodextrin plasma membrane extraction properties.

  13. Oral plasma cell granuloma: A case report of an ambiguous lesion

    Directory of Open Access Journals (Sweden)

    Manveen Kaur Jawanda

    2014-01-01

    Full Text Available Plasma cell granuloma (PCG is a rare reactive tumor such as proliferation composed chiefly of plasmacytic infiltrate. Both clinically and histopathologically, it may be misinterpreted as various pathological entities thus necessitating the complete evaluation of patient and proper histopathological and immunohistochemical analysis of the tissue to rule out other lesions with poor prognosis. Here, we present a case of PCG of gingiva in a female patient masquerading as pyogenic granuloma clinically and plasma cell neoplasms histopathologically.

  14. Gas-discharge plasma processes for surface modification and conversion of chemical substances. Application for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, K.; Meyer, D.; Rohland, B.; Heintze, M.; Zahn, R.J.; Hannemann, M.; Meusinger, J.; Ohl, A. [Institute of Non-Thermal Plasma Physics, Greifswald (Germany)]|[Gesellschaft fuer Angewandte Technik mbH Greifswald (Germany)]|[GAPC, Adam Opel AG, IPC, Ruesselsheim (Germany)

    2001-07-01

    The potential of plasma processes towards hydrogen and fuel cell technology will be demonstrated by two examples with preliminary results: 1. plasma modification of polymer electrolyte membranes for direct methanol fuel cells, and 2. plasma supported steam reforming.

  15. Study on activity measurement of Nostoc flagelliforme cells based on color identification

    Science.gov (United States)

    Wang, Yizhong; Su, Jianyu; Liu, Tiegen; Kong, Fanzhi; Jia, Shiru

    2008-12-01

    In order to measure the activities of Nostoc flagelliforme cells, a new method based on color identification was proposed in this paper. N. flagelliforme cells were colored with fluoreseein diaeetate. Then, an image of colored N. flagelliforme cells was taken, and changed from RGB model to HIS model. Its histogram of hue H was calculated, which was used as the input of a designed BP network. The output of the BP network was the description of measured activity of N. flagelliforme cells. After training, the activity of N. flagelliforme cells was identified by the BP network according to the histogram of H of their colored image. Experiments were conducted with satisfied results to show the feasibility and usefulness of activity measurement of N. flagelliforme cells based on color identification.

  16. Quantifying changes in the cellular thiol-disulfide status during differentiation of B cells into antibody-secreting plasma cells

    DEFF Research Database (Denmark)

    Hansen, Rosa Rebecca Erritzøe; Otsu, Mieko; Braakman, Ineke

    2013-01-01

    by the differentiation, steady-state levels of glutathionylated protein thiols are less than 0.3% of the total protein cysteines, even in fully differentiated cells, and the overall protein redox state is not affected until late in differentiation, when large-scale IgM production is ongoing. A general expansion......Plasma cells produce and secrete massive amounts of disulfide-containing antibodies. To accommodate this load on the secretory machinery, the differentiation of resting B cells into antibody-secreting plasma cells is accompanied by a preferential expansion of the secretory compartments of the cells...... of the ER does not affect global protein redox status until an extensive production of cargo proteins has started....

  17. Identification of IFN-gamma-producing CD4+ T cells following PMA stimulation

    DEFF Research Database (Denmark)

    Kemp, K; Bruunsgaard, H

    2001-01-01

    Treatment of T cells with phorbol esters, such as phorbol myristate acetate (PMA), induces downregulation of CD4, making unambiguous identification of this subset difficult. In this study, the kinetics of intracellular expression of interferon-gamma (IFN-gamma) and downmodulation of surface CD4...... were measured in peripheral blood mononuclear cells (PBMC) after PMA stimulation. The number of IFN-gamma-producing cells increased within a 4-h period while the fluorescence intensity of the CD4(+) cell population decreased, and the two phenomena were correlated (n = 9; p = 0.01). Our data suggest...... that intracellular staining of CD4 together with cytokine staining will make identification of CD4(+) cells possible and facilitate the procedure of intracellular staining of cytokines....

  18. A key inactivation factor of HeLa cell viability by a plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Takehiko; Yokoyama, Mayo [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Johkura, Kohei, E-mail: sato@ifs.tohoku.ac.jp [Department of Histology and Embryology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621 (Japan)

    2011-09-21

    Recently, a plasma flow has been applied to medical treatment using effects of various kinds of stimuli such as chemical species, charged particles, heat, light, shock wave and electric fields. Among them, the chemical species are known to cause an inactivation of cell viability. However, the mechanisms and key factors of this event are not yet clear. In this study, we focused on the effect of H{sub 2}O{sub 2} in plasma-treated culture medium because it is generated in the culture medium and it is also chemically stable compared with free radicals generated by the plasma flow. To elucidate the significance of H{sub 2}O{sub 2}, we assessed the differences in the effects of plasma-treated medium and H{sub 2}O{sub 2}-added medium against inactivation of HeLa cell viability. These two media showed comparable effects on HeLa cells in terms of the survival ratios, morphological features of damage processes, permeations of H{sub 2}O{sub 2} into the cells, response to H{sub 2}O{sub 2} decomposition by catalase and comprehensive gene expression. The results supported that among chemical species generated in a plasma-treated culture medium, H{sub 2}O{sub 2} is one of the main factors responsible for inactivation of HeLa cell viability. (fast track communication)

  19. Plasma membrane organization and dynamics is probe and cell line dependent.

    Science.gov (United States)

    Huang, Shuangru; Lim, Shi Ying; Gupta, Anjali; Bag, Nirmalya; Wohland, Thorsten

    2017-09-01

    The action and interaction of membrane receptor proteins take place within the plasma membrane. The plasma membrane, however, is not a passive matrix. It rather takes an active role and regulates receptor distribution and function by its composition and the interaction of its lipid components with embedded and surrounding proteins. Furthermore, it is not a homogenous fluid but contains lipid and protein domains of various sizes and characteristic lifetimes which are important in regulating receptor function and signaling. The precise lateral organization of the plasma membrane, the differences between the inner and outer leaflet, and the influence of the cytoskeleton are still debated. Furthermore, there is a lack of comparisons of the organization and dynamics of the plasma membrane of different cell types. Therefore, we used four different specific membrane markers to test the lateral organization, the differences between the inner and outer membrane leaflet, and the influence of the cytoskeleton of up to five different cell lines, including Chinese hamster ovary (CHO-K1), Human cervical carcinoma (HeLa), neuroblastoma (SH-SY5Y), fibroblast (WI-38) and rat basophilic leukemia (RBL-2H3) cells by Imaging Total Internal Reflection (ITIR)-Fluorescence Correlation Spectroscopy (FCS). We measure diffusion in the temperature range of 298-310K to measure the Arrhenius activation energy (E Arr ) of diffusion and apply the FCS diffusion law to obtain information on the spatial organization of the probe molecules on the various cell membranes. Our results show clear differences of the FCS diffusion law and E Arr for the different probes in dependence of their localization. These differences are similar in the outer and inner leaflet of the membrane. However, these values can differ significantly between different cell lines raising the question how molecular plasma membrane events measured in different cell lines can be compared. This article is part of a Special Issue

  20. IgG4-related tubulointerstitial nephritis with plasma cell-rich renal arteritis.

    Science.gov (United States)

    Sharma, Shree G; Vlase, Horia L; D'Agati, Vivette D

    2013-04-01

    Immunoglobulin G4 (IgG4)-related tubulointerstitial nephritis is a newly recognized clinicopathologic entity that may occur as an isolated renal lesion or as part of a multisystem disorder. It is characterized by plasma cell-rich interstitial nephritis with abundant IgG4-positive plasma cells and IgG-dominant tubulointerstitial immune deposits. We report the first case of IgG4-related tubulointerstitial nephritis with multifocal plasma cell-rich renal arteritis presenting as acute kidney injury in a 72-year-old man. Seven weeks of prednisone therapy led to nearly complete recovery of kidney function. This case enlarges the morphologic spectrum of this disorder and emphasizes the need to distinguish it from other causes of renal vasculitis. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  1. Acute Plasma Cell Leukemia Associated with Bence-Jones Proteinuria: A case Report

    Directory of Open Access Journals (Sweden)

    M. Morshed

    1972-07-01

    Full Text Available Acute plasma cell leukemia with Bence-Jones proteinuria is reported in a 60 year old lranien male with a 25 day history of acute onset of fever. weakness, weight loss, diarrhea and bloody stools. The patient was noted to be cachectic and anemic. He had purpuric and petechial skin lesions, generalized lymphadenopathy and splenomegaly. Up to 80% immature plasma cells were present in the peripheral blood and the platelet count was 10,000. Bone marrow was hypercellular and that most of it was composed of immature plasma cells. Serum electrophoresis showed increased beta globulins and Bence-Jones protein was strongly positive in the urine. The patient died after nine days in uremic coma with haemorrhagic diathesis. Auto psy showed wide spread infi ltra tion of plasmocytes and plasmocytoblasts in all organs.

  2. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting.

    Science.gov (United States)

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-09-01

    Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics.

  3. Culture Medium Supplements Derived from Human Platelet and Plasma: Cell Commitment and Proliferation Support

    Directory of Open Access Journals (Sweden)

    Anita Muraglia

    2017-11-01

    Full Text Available Present cell culture medium supplements, in most cases based on animal sera, are not fully satisfactory especially for the in vitro expansion of cells intended for human cell therapy. This paper refers to (i an heparin-free human platelet lysate (PL devoid of serum or plasma components (v-PL and (ii an heparin-free human serum derived from plasma devoid of PL components (Pl-s and to their use as single components or in combination in primary or cell line cultures. Human mesenchymal stem cells (MSC primary cultures were obtained from adipose tissue, bone marrow, and umbilical cord. Human chondrocytes were obtained from articular cartilage biopsies. In general, MSC expanded in the presence of Pl-s alone showed a low or no proliferation in comparison to cells grown with the combination of Pl-s and v-PL. Confluent, growth-arrested cells, either human MSC or human articular chondrocytes, treated with v-PL resumed proliferation, whereas control cultures, not supplemented with v-PL, remained quiescent and did not proliferate. Interestingly, signal transduction pathways distinctive of proliferation were activated also in cells treated with v-PL in the absence of serum, when cell proliferation did not occur, indicating that v-PL could induce the cell re-entry in the cell cycle (cell commitment, but the presence of serum proteins was an absolute requirement for cell proliferation to happen. Indeed, Pl-s alone supported cell growth in constitutively activated cell lines (U-937, HeLa, HaCaT, and V-79 regardless of the co-presence of v-PL. Plasma- and plasma-derived serum were equally able to sustain cell proliferation although, for cells cultured in adhesion, the Pl-s was more efficient than the plasma from which it was derived. In conclusion, the cells expanded in the presence of the new additives maintained their differentiation potential and did not show alterations in their karyotype.

  4. Role of red cells and plasma composition on blood sessile droplet evaporation

    Science.gov (United States)

    Lanotte, Luca; Laux, Didier; Charlot, Benoît; Abkarian, Manouk

    2017-11-01

    The morphology of dried blood droplets derives from the deposition of red cells, the main components of their solute phase. Up to now, evaporation-induced convective flows were supposed to be at the base of red cell distribution in blood samples. Here, we present a direct visualization by videomicroscopy of the internal dynamics in desiccating blood droplets, focusing on the role of cell concentration and plasma composition. We show that in diluted suspensions, the convection is promoted by the rich molecular composition of plasma, whereas it is replaced by an outward red blood cell displacement front at higher hematocrits. We also evaluate by ultrasounds the effect of red cell deposition on the temporal evolution of sample rigidity and adhesiveness.

  5. Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kuang-Yao; Chang, Chia-Hsing; Yang, Yi-Wei; Liao, Guo-Chun; Liu, Chih-Tung; Wu, Jong-Shinn, E-mail: chongsin@faculty.nctu.edu.tw

    2017-02-01

    Graphical abstract: Atmospheric-pressure plasma enhances cell growth on two different pore sizes of honeycomb pattern on polylactide surface. - Highlights: • Different pore sizes of honeycomb pattern on PLA film are created. • The two-step plasma treatment provided the oxygen- and nitrogen-containing functional groups that had a major impact on cell cultivation. • The plasma treatment had a significant effect for cell proliferation. • The surface structures are the main influence on cell cultivation, while plasma treatment can indeed improve the growth environment. - Abstract: In this paper, we compare the cell growth results of NIH-3T3 and Neuro-2A cells over 72 h on flat and honeycomb structured PLA films without and with a two-step atmospheric-pressure nitrogen-based plasma jet treatment. We developed a fabrication system used for forming of a uniform honeycomb structure on PLA surface, which can produce two different pore sizes, 3–4 μm and 7–8 μm, of honeycomb pattern. We applied a previously developed nitrogen-based atmospheric-pressure dielectric barrier discharge (DBD) jet system to treat the PLA film without and with honeycomb structure. NIH-3T3 and a much smaller Neuro-2A cells were cultivated on the films under various surface conditions. The results show that the two-step plasma treatment in combination with a honeycomb structure can enhance cell growth on PLA film, should the cell size be not too smaller than the pore size of honeycomb structure, e.g., NIH-3T3. Otherwise, cell growth would be better on flat PLA film, e.g., Neuro-2A.

  6. Inductively coupled hydrogen plasma processing of AZO thin films for heterojunction solar cell applications

    International Nuclear Information System (INIS)

    Zhou, H.P.; Xu, S.; Zhao, Z.; Xiang, Y.

    2014-01-01

    Highlights: • A high-density plasma reactor of inductively coupled plasma source is used in this work. • The conductivity and transmittance can be enhanced simultaneously in the hydrogen process. • The formation of additional donors and passivation due to the hydrogen plasma processing. • The photovoltaic improvement due to the improved AZO layer and hetero-interface quality in the solar cells. - Abstract: Al-doped ZnO (AZO) thin films deposited by means of RF magnetron sputtering were processed in a low frequency inductively coupled plasma of H 2 , aiming at heterojunction (HJ) solar cell applications. A variety of characterization results show that the hydrogen plasma processing exerts a significant influence on the microstructures, electrical and optical properties of the AZO films. The incorporation of hydrogen under the optimum treatment simultaneously promoted the transmittance and conductivity due to the hydrogen associated passivation effect on the native defects and the formation of shallow donors in the films, respectively. A p-type c-Si based HJ solar cell with a front AZO contact was also treated in as-generated non-equilibrium hydrogen plasma and the photovoltaic performance of the solar cell was prominently improved. The underlying mechanism was discussed in terms of the beneficial impacts of high-density hydrogen plasma on the properties of AZO itself and the hetero-interfaces involved in the HJ structure (interface defect and energy band configuration)

  7. The potential role of curcumin (diferuloylmethane in plasma cell dyscrasias/paraproteinemia

    Directory of Open Access Journals (Sweden)

    Terry Golombick

    2008-03-01

    Full Text Available Terry Golombick, Terry DiamondDepartment of Endocrinology, St George Hospital, Kogarah, AustraliaAbstract: Plasma cell dyscrasias, most commonly associated with paraproteinemia, are a diverse group of diseases. Monoclonal gammopathy of undefined significance (MGUS can precede multiple myeloma, a progressive neoplastic disease. MGUS occurs in association with a variety of other diseases and currently no treatment is recommended but rather “watchful waiting”. Given that the size of the M-protein is a risk factor for disease progression, early intervention with the aim of reducing the paraprotein load would provide an innovative therapeutic tool. Preliminary results from our pilot study show a drop of between 5% and 30% serum paraprotein in patients taking curcumin compared with patients on placebo. Curcumin is a diferuloylmethane present in extracts of the rhizome of the Curcuma longa plant. As a natural product, this has exciting potential in the treatment of plasma cell dyscrasias.Keywords: plasma cell dyscrasias, MGUS, myeloma, curcumin, paraproteinemia

  8. PLASMA ELECTRODE POCKELS CELL SUBSYSTEM PERFORMANCE IN THE NATIONAL IGNITION FACILITY

    International Nuclear Information System (INIS)

    Barbosa, F; Arnold, P; Hinz, A; Zacharias, R; Ollis, C; Fulkerson, E; Mchale, B; Runtal, A; Bishop, C

    2007-01-01

    The Plasma Electrode Pockels Cell (PEPC) subsystem is a key component of the National Ignition Facility, enabling the laser to employ an efficient four-pass main amplifier architecture. PEPC relies on a pulsed power technology to initiate and maintain plasma within the cells and to provide the necessary high voltage bias to the cells nonlinear crystals. Ultimately, nearly 300 high-voltage, high-current pulse generators will be deployed in the NIF in support of PEPC. Production of solid-state plasma pulse generators and thyratron-switched pulse generators is now complete, with the majority of the hardware deployed in the facility. An entire cluster (one-fourth of a complete NIF) has been commissioned and is operating on a routine basis, supporting laser shot operations. Another cluster has been deployed, awaiting final commissioning. Activation and commissioning of new hardware continues to progress in parallel, driving toward a goal of completing the PEPC subsystem in late 2007

  9. Design and construction the identification of nitriding plasma process parameters using personal computer based on serial communication

    International Nuclear Information System (INIS)

    Frida Iswinning Diah; Slamet Santosa

    2012-01-01

    Design and construction the identification of process parameters using personal computer based on serial communication PLC M-series has been done. The function of this device is to identify the process parameters of a system (plan), to which then be analyzed and conducted a follow-up given to the plan by the user. The main component of this device is the M-Series T100MD1616 PLC and personal computer (PC). In this device the data plan parameters obtained from the corresponding sensor outputs in the form of voltage or current. While the analog parameter data is adjusted to the ADC analog input of the PLC using a signal conditioning system. Then, as the parameter is processed by the PLC then sent to a PC via RS232 to be displayed in the form of graphs or tables and stored in the database. Software to program the database is created using Visual Basic Programming V-6. The device operation test is performed for the measurement of temperature parameter and vacuum level on the plasma nitriding machine. The results indicate that the device has functioning as an identification device parameters process of plasma nitriding machine. (author)

  10. Prognostic significance of IgG4+ plasma cell infiltrates following neoadjuvant chemoradiation therapy for esophageal adenocarcinoma.

    Science.gov (United States)

    Yakirevich, Evgeny; Lu, Shaolei; Allen, Danisha; Mangray, Shamlal; Fanion, Jacqueline R; Lombardo, Kara A; Safran, Howard; Resnick, Murray B

    2017-08-01

    Lymphoplasmacytic infiltrates in esophageal adenocarcinoma (EAC) tissue following chemoradiotherapy (CRT) reflect alterations in the tumor immunoenvironment. The presence and role of plasma cells in this process are poorly understood. Our aim was to characterize the IgG4+ plasma cell population in EAC following CRT. Seventy-one esophagectomy specimens post-CRT were compared with a surgery-only group of 31 EACs. The distribution, density, and ratio of IgG4+ and IgG+ plasma cells were evaluated by immunohistochemistry and correlated with clinicopathologic features, treatment response, and survival. In the CRT group, the presence of higher numbers of IgG4+ (≥ median of 94/high-power field) and IgG+ (≥ median of 225/high-power field) plasma cells and increased IgG4+/IgG+ ratio (≥ median of 41%) within ulcers was associated with complete or near-complete treatment response (P = .0077, P = .0503, and P = .0063, respectively). Lower tumor grade, smaller tumor size, and higher levels of IgG4+ plasma cells in posttherapy ulcers significantly correlated with better overall survival, whereas pretherapy clinical stage, posttherapy pathologic stage, smaller tumor size, and lower tumor grade were associated with longer recurrence-free survival. Multivariate analysis revealed that both posttherapy pathologic stage and high IgG4+ plasma cells in ulcers were independent predictors of overall survival (P = .05 and P = .01), whereas only posttherapy pathologic stage was associated with recurrence-free survival (P IgG4+ plasma cell infiltrate in EAC following CRT. The presence of increased IgG4+ plasma cells may be a novel reliable factor to predict prognosis of EAC patients following CRT. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package

    International Nuclear Information System (INIS)

    Blandón, J S; Grisales, J P; Riascos, H

    2017-01-01

    Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed. (paper)

  12. The cell-based L-glutathione protection assays to study endocytosis and recycling of plasma membrane proteins.

    Science.gov (United States)

    Cihil, Kristine M; Swiatecka-Urban, Agnieszka

    2013-12-13

    Membrane trafficking involves transport of proteins from the plasma membrane to the cell interior (i.e. endocytosis) followed by trafficking to lysosomes for degradation or to the plasma membrane for recycling. The cell based L-glutathione protection assays can be used to study endocytosis and recycling of protein receptors, channels, transporters, and adhesion molecules localized at the cell surface. The endocytic assay requires labeling of cell surface proteins with a cell membrane impermeable biotin containing a disulfide bond and the N-hydroxysuccinimide (NHS) ester at 4 ºC - a temperature at which membrane trafficking does not occur. Endocytosis of biotinylated plasma membrane proteins is induced by incubation at 37 ºC. Next, the temperature is decreased again to 4 ºC to stop endocytic trafficking and the disulfide bond in biotin covalently attached to proteins that have remained at the plasma membrane is reduced with L-glutathione. At this point, only proteins that were endocytosed remain protected from L-glutathione and thus remain biotinylated. After cell lysis, biotinylated proteins are isolated with streptavidin agarose, eluted from agarose, and the biotinylated protein of interest is detected by western blotting. During the recycling assay, after biotinylation cells are incubated at 37 °C to load endocytic vesicles with biotinylated proteins and the disulfide bond in biotin covalently attached to proteins remaining at the plasma membrane is reduced with L-glutathione at 4 ºC as in the endocytic assay. Next, cells are incubated again at 37 °C to allow biotinylated proteins from endocytic vesicles to recycle to the plasma membrane. Cells are then incubated at 4 ºC, and the disulfide bond in biotin attached to proteins that recycled to the plasma membranes is reduced with L-glutathione. The biotinylated proteins protected from L-glutathione are those that did not recycle to the plasma membrane.

  13. The dynamic interplay of plasma membrane domains and cortical microtubules in secondary cell wall patterning

    Directory of Open Access Journals (Sweden)

    Yoshihisa eOda

    2013-12-01

    Full Text Available Patterning of the cellulosic cell wall underlies the shape and function of plant cells. The cortical microtubule array plays a central role in the regulation of cell wall patterns. However, the regulatory mechanisms by which secondary cell wall patterns are established through cortical microtubules remain to be fully determined. Our recent study in xylem vessel cells revealed that a mutual inhibitory interaction between cortical microtubules and distinct plasma membrane domains leads to distinctive patterning in secondary cell walls. Our research revealed that the recycling of active and inactive ROP proteins by a specific GAP and GEF pair establishes distinct de novo plasma membrane domains. Active ROP recruits a plant-specific microtubule-associated protein, MIDD1, which mediates the mutual interaction between cortical microtubules and plasma membrane domains. In this mini review, we summarize recent research regarding secondary wall patterning, with a focus on the emerging interplay between plasma membrane domains and cortical microtubules through MIDD1 and ROP.

  14. Plasma Cell Ontogeny Defined by Quantitative Changes in Blimp-1 Expression

    Science.gov (United States)

    Kallies, Axel; Hasbold, Jhagvaral; Tarlinton, David M.; Dietrich, Wendy; Corcoran, Lynn M.; Hodgkin, Philip D.; Nutt, Stephen L.

    2004-01-01

    Plasma cells comprise a population of terminally differentiated B cells that are dependent on the transcriptional regulator B lymphocyte–induced maturation protein 1 (Blimp-1) for their development. We have introduced a gfp reporter into the Blimp-1 locus and shown that heterozygous mice express the green fluorescent protein in all antibody-secreting cells (ASCs) in vivo and in vitro. In vitro, these cells display considerable heterogeneity in surface phenotype, immunoglobulin secretion rate, and Blimp-1 expression levels. Importantly, analysis of in vivo ASCs induced by immunization reveals a developmental pathway in which increasing levels of Blimp-1 expression define developmental stages of plasma cell differentiation that have many phenotypic and molecular correlates. Thus, maturation from transient plasmablast to long-lived ASCs in bone marrow is predicated on quantitative increases in Blimp-1 expression. PMID:15492122

  15. Changes in the biomechanical properties of a single cell induced by nonthermal atmospheric pressure micro-dielectric barrier discharge plasma.

    Science.gov (United States)

    Choi, Hyeongwon; Choi, Eun Ha; Kim, Kyung Sook

    2017-10-01

    Mechanical properties of a single cell are closely related to the fate and functions of the cell. Changes in mechanical properties may cause diseases or cell apoptosis. Selective cytotoxic effects of nonthermal atmospheric pressure micro-dielectric barrier discharge (DBD) plasma have been demonstrated on cancer cells. In this work, changes in the mechanical properties of a single cell induced by nonthermal atmospheric pressure micro-DBD plasma were investigated using atomic force microscopy (AFM). Two cervical cancer cell lines (HeLa and SiHa) and normal human fibroblast cells (HFBs) were exposed to micro-DBD plasma for various exposure times. The elasticity of a single cell was determined by force-distance curve measurement using AFM. Young's modulus was decreased by plasma treatment for all cells. The Young's modulus of plasma-treated HeLa cells was decreased by 75% compared to nontreated HeLa cells. In SiHa cells and HFBs, elasticity was decreased slightly. Chemical changes induced by the plasma treatment, which were observed by Raman spectroscopy, were also significant in HeLa cells compared to SiHa cells and HFBs. These results suggested that the molecular changes induced by micro-DBD plasma were related to cell mechanical changes. © 2017 Wiley Periodicals, Inc.

  16. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Czarski, T., E-mail: tomasz.czarski@ifpilm.pl; Chernyshova, M.; Malinowski, K. [Institute of Plasma Physics and Laser Microfusion, Hery 23, 01-497 Warsaw (Poland); Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W. [Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw (Poland)

    2016-11-15

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  17. 14C leucine chloromethylketone interaction with sarcoma 37 cell plasma membrane components

    International Nuclear Information System (INIS)

    Matthews, R.H.; Milo, G.E.; McMichael, T.L.; Lewis, N.J.

    1982-01-01

    Leucine chloromethylketone labelling of viable S37 cells was preferential for the plasma membrane fraction. The pattern of radiolabelling of the plasma membrane proteins was time-dependent. After 5 min the radiolabel was localized with glutamyl transpeptidase, and subsequently, with other physiologically active proteins as a function of time after incubation. Labelling of proteins was temperature-dependent and incubation of viable S37 cells with the radiolabelled substrate at 0 0 C yielded little or no radioactivity localized in the plasma membrane. The molecular weight of one radiolabelled substratemembrane protein complex was estimated on sodium dodecyl sulfate polyacrylamide gel electrophoresis to be between 100,000-200,000. (author)

  18. Polymorphous silicon thin films produced in dusty plasmas: application to solar cells

    International Nuclear Information System (INIS)

    Roca i Cabarrocas, Pere; Chaabane, N; Kharchenko, A V; Tchakarov, S

    2004-01-01

    We summarize our current understanding of the optimization of PIN solar cells produced by plasma enhanced chemical vapour deposition from silane-hydrogen mixtures. To increase the deposition rate, the discharge is operated under plasma conditions close to powder formation, where silicon nanocrystals contribute to the deposition of so-called polymorphous silicon thin films. We show that the increase in deposition rate can be achieved via an accurate control of the plasma parameters. However, this also results in a highly defective interface in the solar cells due to the bombardment of the P-layer by positively charged nanocrystals during the deposition of the I-layer. We show that decreasing the ion energy by increasing the total pressure or by using silane-helium mixtures allows us to increase both the deposition rate and the solar cells efficiency, as required for cost effective thin film photovoltaics

  19. Multifunctional role of the transcription factor Blimp1 in coordinating plasma cell differentiation

    Science.gov (United States)

    Minnich, Martina; Tagoh, Hiromi; Bönelt, Peter; Axelsson, Elin; Fischer, Maria; Cebolla, Beatriz; Tarakhovsky, Alexander; Nutt, Stephen L.; Jaritz, Markus; Busslinger, Meinrad

    2018-01-01

    Blimp1 is an essential regulator of plasma cells. Here we studied its functions in plasmablast differentiation by identifying regulated Blimp1 target genes. Blimp1 promoted plasmablast migration and adhesion. It repressed several transcription factor genes and Aicda, thus silencing B-cell-specific gene expression, antigen presentation and class switch recombination in plasmablasts. It directly activated genes, leading to increased expression of the plasma cell regulator IRF4 and proteins involved in immunoglobulin secretion. Blimp1 induced immunoglobulin gene transcription by controlling Igh and Igk 3’ enhancers and regulated the posttranscriptional expression switch from the membrane-bound to secreted immunoglobulin heavy-chain by activating Ell2. Notably, Blimp1 recruited chromatin-remodeling and histone-modifying complexes to regulate its target genes. Hence, many essential functions of plasma cells are under Blimp1 control. PMID:26779602

  20. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology.

    Science.gov (United States)

    Ayuyan, Artem G; Cohen, Fredric S

    2018-02-27

    Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways. Copyright © 2018. Published by

  1. Particle-in-Cell Codes for plasma-based particle acceleration

    CERN Document Server

    Pukhov, Alexander

    2016-01-01

    Basic principles of particle-in-cell (PIC ) codes with the main application for plasma-based acceleration are discussed. The ab initio full electromagnetic relativistic PIC codes provide the most reliable description of plasmas. Their properties are considered in detail. Representing the most fundamental model, the full PIC codes are computationally expensive. The plasma-based acceler- ation is a multi-scale problem with very disparate scales. The smallest scale is the laser or plasma wavelength (from one to hundred microns) and the largest scale is the acceleration distance (from a few centimeters to meters or even kilometers). The Lorentz-boost technique allows to reduce the scale disparity at the costs of complicating the simulations and causing unphysical numerical instabilities in the code. Another possibility is to use the quasi-static approxi- mation where the disparate scales are separated analytically.

  2. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.

    Science.gov (United States)

    Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling

    2017-11-09

    Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.

  3. Expression of a constitutively activated plasma membrane H+-ATPase in Nicotiana tabacum BY-2 cells results in cell expansion.

    Science.gov (United States)

    Niczyj, Marta; Champagne, Antoine; Alam, Iftekhar; Nader, Joseph; Boutry, Marc

    2016-11-01

    Increased acidification of the external medium by an activated H + -ATPase results in cell expansion, in the absence of upstream activating signaling. The plasma membrane H + -ATPase couples ATP hydrolysis with proton transport outside the cell, and thus creates an electrochemical gradient, which energizes secondary transporters. According to the acid growth theory, this enzyme is also proposed to play a major role in cell expansion, by acidifying the external medium and so activating enzymes that are involved in cell wall-loosening. However, this theory is still debated. To challenge it, we made use of a plasma membrane H + -ATPase isoform from Nicotiana plumbaginifolia truncated from its C-terminal auto-inhibitory domain (ΔCPMA4), and thus constitutively activated. This protein was expressed in Nicotiana tabacum BY-2 suspension cells using a heat shock inducible promoter. The characterization of several independent transgenic lines showed that the expression of activated ΔCPMA4 resulted in a reduced external pH by 0.3-1.2 units, as well as in an increased H + -ATPase activity by 77-155 % (ATP hydrolysis), or 70-306 % (proton pumping) of isolated plasma membranes. In addition, ΔCPMA4-expressing cells were 17-57 % larger than the wild-type cells and displayed abnormal shapes. A proteomic comparison of plasma membranes isolated from ΔCPMA4-expressing and wild-type cells revealed the altered abundance of several proteins involved in cell wall synthesis, transport, and signal transduction. In conclusion, the data obtained in this work showed that H + -ATPase activation is sufficient to induce cell expansion and identified possible actors which intervene in this process.

  4. Atmospheric plasma surface modifications of electrospun PCL/chitosan/PCL hybrid scaffolds by nozzle type plasma jets for usage of cell cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Surucu, Seda [Department of Metallurgical and Materials Engineering, Atilim University, Incek, Golbasi, 06836, Ankara (Turkey); Masur, Kai [Leibniz Institute for Plasma Science and Technology (Germany); Turkoglu Sasmazel, Hilal, E-mail: hilal.sasmazel@atilim.edu.tr [Department of Metallurgical and Materials Engineering, Atilim University, Incek, Golbasi, 06836, Ankara (Turkey); Von Woedtke, Thomas; Weltmann, Klaus Dieter [Leibniz Institute for Plasma Science and Technology (Germany)

    2016-11-01

    Highlights: • Electrospun PCL/chitosan/PCL scaffolds introduced to the literature by us were modified with atmospheric pressure plasma jets. • Plasma was fed into the system with different gas flow rates, time and distances. • Topographical and functional changes were examined by various characterization methods. • Optimum plasma treatment parameters for enhanced topography and functionality were determined. • Electrospun hybrid plasma surface modified samples showed the increased biocompatibility performance of L929 fibroblast cells. - Abstract: This paper reports Ar gas, Ar + O{sub 2}, Ar + O{sub 2} + N{sub 2} gas mixtures and dry air plasma modifications by atmospheric pressure argon driven kINPen and air driven Diener (PlasmaBeam) plasma jets to alter surface properties of three dimensional (3D), electrospun PCL/Chitosan/PCL layer by layer hybrid scaffolds to improve human fibroblast (MRC5) cell attachment and growth. The characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), X-Ray Photoelectron spectroscopy (XPS) analysis. The results showed that the plasma modification carried out under dry air and Ar + O{sub 2} + N{sub 2} gas mixtures were altered effectively the nanotopography and the functionality of the material surfaces. It was found that the samples treated with Ar + O{sub 2} + N{sub 2} gas mixtures for 1 min and dry air for 9 min have better hydrophilicity 78.9° ± 1.0 and 75.6° ± 0.1, respectively compared to the untreated samples (126.5°). Biocompatibility performance of the scaffolds was determined with alamarBlue (aB) assay and MTT assay methods, Giemsa staining, fluorescence microscope, confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) analyses. The results showed that plasma treated samples increased the hydrophilicity and oxygen functionality and topography of the surfaces significantly, thus affecting the cell viability and proliferation on

  5. Atmospheric plasma surface modifications of electrospun PCL/chitosan/PCL hybrid scaffolds by nozzle type plasma jets for usage of cell cultivation

    International Nuclear Information System (INIS)

    Surucu, Seda; Masur, Kai; Turkoglu Sasmazel, Hilal; Von Woedtke, Thomas; Weltmann, Klaus Dieter

    2016-01-01

    Highlights: • Electrospun PCL/chitosan/PCL scaffolds introduced to the literature by us were modified with atmospheric pressure plasma jets. • Plasma was fed into the system with different gas flow rates, time and distances. • Topographical and functional changes were examined by various characterization methods. • Optimum plasma treatment parameters for enhanced topography and functionality were determined. • Electrospun hybrid plasma surface modified samples showed the increased biocompatibility performance of L929 fibroblast cells. - Abstract: This paper reports Ar gas, Ar + O_2, Ar + O_2 + N_2 gas mixtures and dry air plasma modifications by atmospheric pressure argon driven kINPen and air driven Diener (PlasmaBeam) plasma jets to alter surface properties of three dimensional (3D), electrospun PCL/Chitosan/PCL layer by layer hybrid scaffolds to improve human fibroblast (MRC5) cell attachment and growth. The characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), X-Ray Photoelectron spectroscopy (XPS) analysis. The results showed that the plasma modification carried out under dry air and Ar + O_2 + N_2 gas mixtures were altered effectively the nanotopography and the functionality of the material surfaces. It was found that the samples treated with Ar + O_2 + N_2 gas mixtures for 1 min and dry air for 9 min have better hydrophilicity 78.9° ± 1.0 and 75.6° ± 0.1, respectively compared to the untreated samples (126.5°). Biocompatibility performance of the scaffolds was determined with alamarBlue (aB) assay and MTT assay methods, Giemsa staining, fluorescence microscope, confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) analyses. The results showed that plasma treated samples increased the hydrophilicity and oxygen functionality and topography of the surfaces significantly, thus affecting the cell viability and proliferation on/within scaffolds.

  6. Benefits of oxygen and nitrogen plasma treatment in Vero cell affinity to poly(lactide-co-glycolide acid

    Directory of Open Access Journals (Sweden)

    Andrea Rodrigues Esposito

    2013-01-01

    Full Text Available Cell adhesion on materials surface is critical because this phenomenon occurs before other events, as cell spreading, cell migration and cell differentiation. it is commonly accepted that the adhesion of cells on solid substrate is influenced by several substratum surface properties, such as wettability, surface charge, roughness and topography. plasma technique is a convenient method for modifying surface properties of materials without affecting physical properties. in this study, poly(lactide-co-glycolide, plga, membranes were modified by oxygen and nitrogen plasma to improve polymer hydrophilicity and verify their effect on vero cells culture. the plga membranes, which were characterized by sem and contact angle, showed increased surface rugosity and narrower contact angles. cell adhesion, cytotoxicity assay, sem and cytochemistry analysis showed that plasma treatment was beneficial to cell growth by improving cell-polymer interaction. Cell adhesion on materials surface is critical because this phenomenon occurs before other events, as cell spreading, cell migration and cell differentiation. It is commonly accepted that the adhesion of cells on solid substrate is influenced by several substratum surface properties, such as wettability, surface charge, roughness and topography. Plasma technique is a convenient method for modifying surface properties of materials without affecting physical properties. In this study, poly(lactide-co-glycolide, PLGA, membranes were modified by oxygen and nitrogen plasma to improve polymer hydrophilicity and verify their effect on Vero cells culture. The PLGA membranes, which were characterized by SEM and contact angle, showed increased surface rugosity and narrower contact angles. Cell adhesion, cytotoxicity assay, SEM and cytochemistry analysis showed that plasma treatment was beneficial to cell growth by improving cell-polymer interaction.

  7. Relationship between plasma cholesterol levels and cholesterol esterification in isolated human mononuclear cells

    International Nuclear Information System (INIS)

    Dallongeville, J.; Davignon, J.; Lussier-Cacan, S.

    1990-01-01

    The authors studied the relationship between plasma lipoprotein concentrations and cholesterol esterification in freshly isolated human mononuclear cells from 27 normolipidemic and 32 hyperlipidemic individuals. Cells were either incubated for 5 hours with radiolabeled oleate immediately after isolation or were preincubated for 18 hours in the presence of exogenous cholesterol, and then incubated with [ 14 C]sodium-oleate-albumin complex. In the absence of exogenous cholesterol, control and hypercholesterolemic subjects had similarly low values of intracellular cholesterol esterification. In the presence of exogenous cholesterol, both hypertriglyceridemic and hypercholesterolemic subjects had higher cholesterol esterification than controls. There was a significant correlation between the rate of cholesterol esterification and plasma total cholesterol. These results suggest that plasma cholesterol levels may regulate mononuclear cell intra-cellular cholesterol esterification in humans

  8. Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response

    Science.gov (United States)

    Dekker, Nick; van Dussen, Laura; Hollak, Carla E. M.; Overkleeft, Herman; Scheij, Saskia; Ghauharali, Karen; van Breemen, Mariëlle J.; Ferraz, Maria J.; Groener, Johanna E. M.; Maas, Mario; Wijburg, Frits A.; Speijer, Dave; Tylki-Szymanska, Anna; Mistry, Pramod K.; Boot, Rolf G.

    2011-01-01

    Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, leads to prominent glucosylceramide accumulation in lysosomes of tissue macrophages (Gaucher cells). Here we show glucosylsphingosine, the deacylated form of glucosylceramide, to be markedly increased in plasma of symptomatic nonneuronopathic (type 1) Gaucher patients (n = 64, median = 230.7nM, range 15.6-1035.2nM; normal (n = 28): median 1.3nM, range 0.8-2.7nM). The method developed for mass spectrometric quantification of plasma glucosylsphingosine is sensitive and robust. Plasma glucosylsphingosine levels correlate with established plasma markers of Gaucher cells, chitotriosidase (ρ = 0.66) and CCL18 (ρ = 0.40). Treatment of Gaucher disease patients by supplementing macrophages with mannose-receptor targeted recombinant glucocerebrosidase results in glucosylsphingosine reduction, similar to protein markers of Gaucher cells. Since macrophages prominently accumulate the lysoglycosphingolipid on glucocerebrosidase inactivation, Gaucher cells seem a major source of the elevated plasma glucosylsphingosine. Our findings show that plasma glucosylsphingosine can qualify as a biomarker for type 1 Gaucher disease, but that further investigations are warranted regarding its relationship with clinical manifestations of Gaucher disease. PMID:21868580

  9. Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations.

    Science.gov (United States)

    Scaffaro, Roberto; Lopresti, Francesco; Sutera, Alberto; Botta, Luigi; Fontana, Rosa Maria; Gallo, Giuseppe

    2017-09-01

    Most of industrially relevant bioproducts are produced by submerged cultivations of actinomycetes. The immobilization of these Gram-positive filamentous bacteria on suitable porous supports may prevent mycelial cell-cell aggregation and pellet formation which usually negatively affect actinomycete submerged cultivations, thus, resulting in an improved biosynthetic capability. In this work, electrospun polylactic acid (PLA) membranes, subjected or not to O 2 -plasma treatment (PLA-plasma), were used as support for immobilized-cell submerged cultivations of Streptomyces coelicolor M145. This strain produces different bioactive compounds, including the blue-pigmented actinorhodin (ACT) and red-pigmented undecylprodigiosin (RED), and constitutes a model for the study of antibiotic-producing actinomycetes. Wet contact angles and X-ray photoelectron spectroscopy analysis confirmed the increased wettability of PLA-plasma due to the formation of polar functional groups such as carboxyl and hydroxyl moieties. Scanning electron microscope observations, carried out at different incubation times, revealed that S. coelicolor immobilized-cells created a dense "biofilm-like" mycelial network on both kinds of PLA membranes. Cultures of S. coelicolor immobilized-cells on PLA or PLA-plasma membranes produced higher biomass (between 1.5 and 2 fold) as well as higher levels of RED and ACT than planktonic cultures. In particular, cultures of immobilized-cells on PLA and PLA-plasma produced comparable levels of RED that were approximatively 4 and 5 fold higher than those produced by planktonic cultures, respectively. In contrast, levels of ACT produced by immobilized-cell cultures on PLA and PLA-plasma were different, being 5 and 10 fold higher than those of planktonic cultures, respectively. Therefore, this is study demonstrated the positive influence of PLA membrane on growth and secondary metabolite production in S. coelicolor and also revealed that O 2 -plasma treated PLA membranes

  10. Application of atmospheric plasma sources in growth and differentiation of plant and mammalian stem cells

    Science.gov (United States)

    Puac, Nevena

    2014-10-01

    The expansion of the plasma medicine and its demand for in-vivo treatments resulted in fast development of various plasma devices that operate at atmospheric pressure. These sources have to fulfill all demands for application on biological samples. One of the sources that meet all the requirements needed for treatment of biological material is plasma needle. Previously, we have used this device for sterilization of planctonic samples of bacteria, MRSA biofilm, for improved differentiation of human periodontal stem cells into osteogenic line and for treatment of plant meristematic cells. It is well known that plasma generates reactive oxygen species (ROS) and reactive nitrogen species (RNS) that strongly affect metabolism of living cells. One of the open issues is to correlate external plasma products (electrons, ions, RNS, ROS, photons, strong fields etc.) with the immediate internal response which triggers or induces effects in the living cell. For that purpose we have studied the kinetics of enzymes which are typical indicators of the identity of reactive species from the plasma created environment that can trigger signal transduction in the cell and ensue cell activity. In collaboration with Suzana Zivkovicm, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; Nenad Selakovic, Institute of Physics, University of Belgrade; Milica Milutinovic, Jelena Boljevic, Institute for Biological Research ``Sinisa Stankovic,'' University of Belgrade; and Gordana Malovic, Zoran Lj. Petrovic, Institute of Physics, University of Belgrade. Grants III41011, ON171037 and ON173024, MESTD, Serbia.

  11. Thermal plasma treatment of cell-phone waste : preliminary result

    Energy Technology Data Exchange (ETDEWEB)

    Ruj, B. [Central Mechanical Engineering Research Inst., Durgapur (India). Thermal Engineering Group; Chang, J.S.; Li, O.L. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics; Pietsch, G. [RWTH Aachen Univ., Aachen (Germany)

    2010-07-01

    The cell phone is an indispensable service facilitator, however, the disposal and recycling of cell phones is a major problem. While the potential life span of a mobile phone, excluding batteries, is over 10 years, most of the users upgrade their phones approximately four times during this period. Cell phone waste is significantly more hazardous than many other municipal wastes as it contains thousands of components made of toxic chemicals and metals like lead, cadmium, chromium, mercury, polyvinyl chlorides (PVC), brominated flame retardants, beryllium, antimony and phthalates. Cell phones also use many expensive rare metals. Since cell phones are made up of plastics, metals, ceramics, and trace other substances, primitive recycling or disposal of cell phone waste to landfills and incinerators creates irreversible environmental damage by polluting water and soil, and contaminating air. In order to minimize releases into the environment and threat to human health, the disposal of cell phones needs to be managed in an environmentally friendly way. This paper discussed a safer method of reducing the generation of syngas and hydrocarbons and metal recovery through the treatment of cell phone wastes by a thermal plasma. The presentation discussed the experiment, with particular reference to sample preparation; experimental set-up; and results four samples with different experimental conditions. It was concluded that the plasma treatment of cell phone waste in reduced condition generates gaseous components such as hydrogen, carbon monoxide, and hydrocarbons which are combustible. Therefore, this system is an energy recovery system that contributes to resource conservation and reduction of climate change gases. 5 refs., 2 tabs., 2 figs.

  12. Review of low pressure plasma processing of proton exchange membrane fuel cell electrocatalysts

    OpenAIRE

    Brault , Pascal

    2016-01-01

    Review article; International audience; The present review is describing recent advances in plasma deposition and treatment of low temperature proton exchange membrane fuel cells electrocatalysts. Interest of plasma processing for growth of platinum based, non-precious and metal free electrocatalysts is highlighted. Electrocatalysts properties are tentatively correlated to plasma parameters.

  13. Cell treatment and surface functionalization using a miniature atmospheric pressure glow discharge plasma torch

    International Nuclear Information System (INIS)

    Yonson, S; Coulombe, S; Leveille, V; Leask, R L

    2006-01-01

    A miniature atmospheric pressure glow discharge plasma torch was used to detach cells from a polystyrene Petri dish. The detached cells were successfully transplanted to a second dish and a proliferation assay showed the transplanted cells continued to grow. Propidium iodide diffused into the cells, suggesting that the cell membrane had been permeabilized, yet the cells remained viable 24 h after treatment. In separate experiments, hydrophobic, bacteriological grade polystyrene Petri dishes were functionalized. The plasma treatment reduced the contact angle from 93 0 to 35 0 , and promoted cell adhesion. Two different torch nozzles, 500 μm and 150 μm in internal diameter, were used in the surface functionalization experiments. The width of the tracks functionalized by the torch, as visualized by cell adhesion, was approximately twice the inside diameter of the nozzle. These results indicate that the miniature plasma torch could be used in biological micropatterning, as it does not use chemicals like the present photolithographic techniques. Due to its small size and manouvrability, the torch also has the ability to pattern complex 3D surfaces

  14. B7h-expressing dendritic cells and plasma B cells mediate distinct outcomes of ICOS costimulation in T cell-dependent antibody responses

    Directory of Open Access Journals (Sweden)

    Larimore Kevin

    2012-06-01

    Full Text Available Abstract Background The ICOS-B7h costimulatory receptor-ligand pair is required for germinal center formation, the production of isotype-switched antibodies, and antibody affinity maturation in response to T cell-dependent antigens. However, the potentially distinct roles of regulated B7h expression on B cells and dendritic cells in T cell-dependent antibody responses have not been defined. Results We generated transgenic mice with lineage-restricted B7h expression to assess the cell-type specific roles of B7h expression on B cells and dendritic cells in regulating T cell-dependent antibody responses. Our results show that endogenous B7h expression is reduced on B cells after activation in vitro and is also reduced in vivo on antibody-secreting plasma B cells in comparison to both naïve and germinal center B cells from which they are derived. Increasing the level of B7h expression on activated and plasma B cells in B-B7hTg mice led to an increase in the number of antibody-secreting plasma cells generated after immunization and a corresponding increase in the concentration of antigen-specific high affinity serum IgG antibodies of all isotypes, without affecting the number of responding germinal center B cells. In contrast, ICOS costimulation mediated by dendritic cells in DC-B7hTg mice contributed to germinal center formation and selectively increased IgG2a production without affecting the overall magnitude of antibody responses. Conclusions Using transgenic mice with lineage-restricted B7h expression, we have revealed distinct roles of ICOS costimulation mediated by dendritic cells and B cells in the regulation of T cell-dependent antibody responses.

  15. Identification of a novel rhabdovirus in Spodoptera frugiperda cell lines.

    Science.gov (United States)

    Ma, Hailun; Galvin, Teresa A; Glasner, Dustin R; Shaheduzzaman, Syed; Khan, Arifa S

    2014-06-01

    The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes. BLAST searches indicated that the S. frugiperda rhabdovirus (Sf-rhabdovirus) was related in a limited region of the L-protein gene to Taastrup virus, a newly discovered member of the Mononegavirales from a leafhopper (Hemiptera), and also to plant rhabdoviruses, particularly in the genus Cytorhabdovirus. Phylogenetic analysis of sequences in the L-protein gene indicated that Sf-rhabdovirus is a novel virus that branched with Taastrup virus. Rhabdovirus morphology was confirmed by transmission electron microscopy of filtered supernatant samples from Sf9 cells. Infectivity studies indicated potential transient infection by Sf-rhabdovirus in other insect cell lines, but there was no evidence of entry or virus replication in human cell lines. Sf-rhabdovirus sequences were also found in the Sf21 parental cell line of Sf9 cells but not in other insect cell lines, such as BT1-TN-5B1-4 (Tn5; High Five) cells and Schneider's Drosophila line 2 [D.Mel.(2); SL2] cells, indicating a species-specific infection. The results indicate that conventional methods may be complemented by state-of-the-art technologies with extensive bioinformatics analysis for identification of novel viruses. The Spodoptera frugiperda Sf9 cell line is used as a cell substrate for the development and manufacture of biological products. Extensive testing has not previously identified any viruses in this cell

  16. Identification of Contaminated Cells with Viruses, Bacteria, or Fungi by Fourier Transform Infrared Microspectroscopy

    Directory of Open Access Journals (Sweden)

    V. Erukhimovitch

    2013-01-01

    Full Text Available Fourier transform infrared microspectroscopy (FTIR-M can detect small molecular changes in cells and therefore was previously applied for the identification of different biological samples. In the present study, FTIR spectroscopy was used for the identification and discrimination of Vero cells infected with herpes viruses or contaminated with bacteria or fungi in cell culture. Vero cells in culture were infected herpes simplex virus type 1 (HSV-1 or contaminated with E. coli bacteria or Candida albicans fungi and analyzed by FTIR microscopy at 24 h postinfection/contamination. Specific different spectral changes were observed according to the infecting or contaminating agent. For instance, both pure fungi and cell culture contaminated with this fungi showed specific peaks at 1030 cm−1 and at 1373 cm−1 regions, while pure E. coli and cell culture contaminated with this bacteria showed a specific and unique peak at 1657 cm−1. These results support the potential of developing FTIR microspectroscopy as a simple, reagent free method for identification and discrimination between different tissue infection or contamination with various pathogens.

  17. Interchange stability criteria for anisotropic central-cell plasmas in the tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Hojo, Hitoshi; Inutake, Masaaki; Ichimura, Makoto; Katsumata, Ryota; Watanabe, Tsuguhiro.

    1993-05-01

    Flute interchange stability of anisotropic central-cell plasmas in the tandem mirror GAMMA 10 is studied numerically. The stability criteria on the beta value is obtained as a function of axial localization length of the pressure in both central and anchor cells. The temperature anisotropy of the plasma is also discussed. (author)

  18. Investigation of edge plasmas in the anchor cell region of GAMMA 10

    International Nuclear Information System (INIS)

    Islam, Khairul; Nakashima, Yousuke; Yatsu, Kiyoshi

    2000-01-01

    The first results of Langmuir probe measurements at the outer transition region of the anchor cell of GAMMA 10 are given. A probe current asymmetry in vertical direction is found in this region. It is also found that the asymmetry of probe current increases in outward direction and the direction of the asymmetry is independent on movable limiter position. A relation of the plasma asymmetry with the main magnetic field configuration is investigated. Plasma flow through the non-asymmetric magnetic field configuration region is thought to be the source of plasma asymmetry in this region, i.e., ∇B and curvature drifts are responsible for the asymmetry. Possibility of cold plasma formation in the anchor cell region is obtained during plug electron cyclotron resonance heating (ECRH) and can be explained with the desorption of particles due to the collision of the drifted out particles with the wall. (author)

  19. Study on Characteristics of Constricted DC Plasma Using Particle-In-Cell Simulator

    International Nuclear Information System (INIS)

    Jo, Jong Gap; Park, Yeong Shin; Hwang, Yong Seok

    2010-01-01

    In dc glow discharge, when anode size is smaller than cathode, very small and bright plasma ball occurs in front of anode. This plasma is called constricted dc plasma and characterized by a high plasma density in positive glow, so called plasma ball, compared to the conventional dc plasma. For the reason, this plasma is utilized to ion or electron beam sources since the beam currents are enhanced by the dense anode glow. However, correlations between characteristics of the plasma (plasma density, electron temperature and space potential) and discharge conditions (anode size, discharge voltage, discharge current, pressure) have been a little investigated definitely clear in previous study because of the trouble of a diagnosis. The plasma ball which is the most essential part of the constricted plasma is too small to diagnose precisely without disturbing plasma. Therefore, we tried to analyze the constricted plasma through computer simulation with Particle-In-Cell (PIC) code. In this study, simulation result of constricted dc plasma as well as conventional dc glow discharge will be addressed and compared with each others

  20. Cell adhesion and proliferation on poly(tetrafluoroethylene) with plasma-metal and plasma-metal-carbon interfaces

    Science.gov (United States)

    Reznickova, Alena; Kvitek, Ondrej; Kolarova, Katerina; Smejkalova, Zuzana; Svorcik, Vaclav

    2017-06-01

    The aim of this article is to investigate the effect of the interface between plasma activated, gold and carbon coated poly(tetrafluoroethylene) (PTFE) on in vitro adhesion and spreading of mouse fibroblasts (L929). Surface properties of pristine and modified PTFE were studied by several experimental techniques. The thickness of a deposited gold film is an increasing function of the sputtering time, conversely thickness of carbon layer decreases with increasing distance between carbon source and the substrate. Because all the used surface modification techniques take place in inert Ar plasma, oxidized degradation products are formed on the PTFE surface, which affects wettability of the polymer surface. Cytocompatibility tests indicate that on samples with Au/C interface, the cells accumulate on the part of sample with evaporated carbon. Number of L929 cells proliferated on the studied samples is comparable to tissue culture polystyrene standard.

  1. Platinum catalyst formed on carbon nanotube by the in-liquid plasma method for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Show, Yoshiyuki; Hirai, Akira; Almowarai, Anas; Ueno, Yutaro

    2015-12-01

    In-liquid plasma was generated in the carbon nanotube (CNT) dispersion fluid using platinum electrodes. The generated plasma spattered the surface of the platinum electrodes and dispersed platinum particles into the CNT dispersion. Therefore, the platinum nanoparticles were successfully formed on the CNT surface in the dispersion. The platinum nanoparticles were applied to the proton exchange membrane fuel cell (PEMFC) as a catalyst. The electrical power of 108 mW/cm{sup 2} was observed from the fuel cell which was assembled with the platinum catalyst formed on the CNT by the in-liquid plasma method. - Highlights: • The platinum catalyst was successfully formed on the CNT surface in the dispersion by the in-liquid plasma method. • The electrical power of 108 mW/cm{sup 2} was observed from the fuel cell which was assembled with the platinum catalyst formed on the CNT by the in-liquid plasma method.

  2. Functional memory B cells and long-lived plasma cells are generated after a single Plasmodium chabaudi infection in mice.

    Directory of Open Access Journals (Sweden)

    Francis Maina Ndungu

    2009-12-01

    Full Text Available Antibodies have long been shown to play a critical role in naturally acquired immunity to malaria, but it has been suggested that Plasmodium-specific antibodies in humans may not be long lived. The cellular mechanisms underlying B cell and antibody responses are difficult to study in human infections; therefore, we have investigated the kinetics, duration and characteristics of the Plasmodium-specific memory B cell response in an infection of P. chabaudi in mice. Memory B cells and plasma cells specific for the C-terminal region of Merozoite Surface Protein 1 were detectable for more than eight months following primary infection. Furthermore, a classical memory response comprised predominantly of the T-cell dependent isotypes IgG2c, IgG2b and IgG1 was elicited upon rechallenge with the homologous parasite, confirming the generation of functional memory B cells. Using cyclophosphamide treatment to discriminate between long-lived and short-lived plasma cells, we demonstrated long-lived cells secreting Plasmodium-specific IgG in both bone marrow and in spleens of infected mice. The presence of these long-lived cells was independent of the presence of chronic infection, as removal of parasites with anti-malarial drugs had no impact on their numbers. Thus, in this model of malaria, both functional Plasmodium-specific memory B cells and long-lived plasma cells can be generated, suggesting that defects in generating these cell populations may not be the reason for generating short-lived antibody responses.

  3. High-resolution screening combined with HPLC–HRMS–SPE–NMR for identification of fungal plasma membrane H+-ATPase inhibitors from plants

    DEFF Research Database (Denmark)

    Kongstad, Kenneth; Wubshet, Sileshi Gizachew; Johannesen, Ane

    2014-01-01

    Crude extracts of 33 plant species were assessed for fungal plasma membrane (PM) H+-ATPase inhibition. This led to identification of 18 extracts showing more than 95% inhibition at a concentration of 7.5 mg/mL and/or a concentration-dependent activity profile. These extracts were selected for semi...

  4. Detecting subtle plasma membrane perturbation in living cells using second harmonic generation imaging.

    Science.gov (United States)

    Moen, Erick K; Ibey, Bennett L; Beier, Hope T

    2014-05-20

    The requirement of center asymmetry for the creation of second harmonic generation (SHG) signals makes it an attractive technique for visualizing changes in interfacial layers such as the plasma membrane of biological cells. In this article, we explore the use of lipophilic SHG probes to detect minute perturbations in the plasma membrane. Three candidate probes, Di-4-ANEPPDHQ (Di-4), FM4-64, and all-trans-retinol, were evaluated for SHG effectiveness in Jurkat cells. Di-4 proved superior with both strong SHG signal and limited bleaching artifacts. To test whether rapid changes in membrane symmetry could be detected using SHG, we exposed cells to nanosecond-pulsed electric fields, which are believed to cause formation of nanopores in the plasma membrane. Upon nanosecond-pulsed electric fields exposure, we observed an instantaneous drop of ~50% in SHG signal from the anodic pole of the cell. When compared to the simultaneously acquired fluorescence signals, it appears that the signal change was not due to the probe diffusing out of the membrane or changes in membrane potential or fluidity. We hypothesize that this loss in SHG signal is due to disruption in the interfacial nature of the membrane. The results show that SHG imaging has great potential as a tool for measuring rapid and subtle plasma membrane disturbance in living cells. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Targeting the plasma membrane of neoplastic cells through alkylation: a novel approach to cancer chemotherapy.

    Science.gov (United States)

    Trendowski, Matthew; Fondy, Thomas P

    2015-08-01

    Although DNA-directed alkylating agents and related compounds have been a mainstay in chemotherapeutic protocols due to their ability to readily interfere with the rapid mitotic progression of malignant cells, their clinical utility is limited by DNA repair mechanisms and immunosuppression. However, the same destructive nature of alkylation can be reciprocated at the cell surface using novel plasma membrane alkylating agents. Plasma membrane alkylating agents have elicited long term survival in mammalian models challenged with carcinomas, sarcomas, and leukemias. Further, a specialized group of plasma membrane alkylating agents known as tetra-O-acetate haloacetamido carbohydrate analogs (Tet-OAHCs) potentiates a substantial leukocyte influx at the administration and primary tumor site, indicative of a potent immune response. The effects of plasma membrane alkylating agents may be further potentiated through the use of another novel class of chemotherapeutic agents, known as dihydroxyacetone phosphate (DHAP) inhibitors, since many cancer types are known to rely on the DHAP pathway for lipid synthesis. Despite these compelling data, preliminary clinical trials for plasma membrane-directed agents have yet to be considered. Therefore, this review is intended for academics and clinicians to postulate a novel approach of chemotherapy; altering critical malignant cell signaling at the plasma membrane surface through alkylation, thereby inducing irreversible changes to functions needed for cell survival.

  6. Confinement of activating receptors at the plasma membrane controls natural killer cell tolerance.

    Science.gov (United States)

    Guia, Sophie; Jaeger, Baptiste N; Piatek, Stefan; Mailfert, Sébastien; Trombik, Tomasz; Fenis, Aurore; Chevrier, Nicolas; Walzer, Thierry; Kerdiles, Yann M; Marguet, Didier; Vivier, Eric; Ugolini, Sophie

    2011-04-05

    Natural killer (NK) cell tolerance to self is partly ensured by major histocompatibility complex (MHC) class I-specific inhibitory receptors on NK cells, which dampen their reactivity when engaged. However, NK cells that do not detect self MHC class I are not autoreactive. We used dynamic fluorescence correlation spectroscopy to show that MHC class I-independent NK cell tolerance in mice was associated with the presence of hyporesponsive NK cells in which both activating and inhibitory receptors were confined in an actin meshwork at the plasma membrane. In contrast, the recognition of self MHC class I by inhibitory receptors "educated" NK cells to become fully reactive, and activating NK cell receptors became dynamically compartmentalized in membrane nanodomains. We propose that the confinement of activating receptors at the plasma membrane is pivotal to ensuring the self-tolerance of NK cells.

  7. Upregulation of glycolytic enzymes, mitochondrial dysfunction and increased cytotoxicity in glial cells treated with Alzheimer's disease plasma.

    Directory of Open Access Journals (Sweden)

    Tharusha Jayasena

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder associated with increased oxidative stress and neuroinflammation. Markers of increased protein, lipid and nucleic acid oxidation and reduced activities of antioxidant enzymes have been reported in AD plasma. Amyloid plaques in the AD brain elicit a range of reactive inflammatory responses including complement activation and acute phase reactions, which may also be reflected in plasma. Previous studies have shown that human AD plasma may be cytotoxic to cultured cells. We investigated the effect of pooled plasma (n = 20 each from healthy controls, individuals with amnestic mild cognitive impairment (aMCI and Alzheimer's disease (AD on cultured microglial cells. AD plasma and was found to significantly decrease cell viability and increase glycolytic flux in microglia compared to plasma from healthy controls. This effect was prevented by the heat inactivation of complement. Proteomic methods and isobaric tags (iTRAQ found the expression level of complement and other acute phase proteins to be altered in MCI and AD plasma and an upregulation of key enzymes involved in the glycolysis pathway in cells exposed to AD plasma. Altered expression levels of acute phase reactants in AD plasma may alter the energy metabolism of glia.

  8. Theobroma cacao increases cells viability and reduces IL-6 and sVCAM-1 level in endothelial cells induced by plasma from preeclamptic patients.

    Science.gov (United States)

    Rahayu, Budi; Baktiyani, Siti Candra Windu; Nurdiana, Nurdiana

    2016-01-01

    This study aims to investigate whether an ethanolic extract of Theobroma cacao bean is able to increase cell viability and decrease IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluency, endothelial cells were divided into six groups, which included control (untreated), endothelial cells exposed to plasma from normal pregnancy, endothelial cells exposed to 2% plasma from preeclamptic patients (PP), endothelial cells exposed to PP in the presence of ethanolic extract of T. cacao (PP+TC) at the following three doses: 25, 50, and 100 ppm. The analysis was performed in silico using the Hex 8.0, LigPlus and LigandScout 3.1 software. Analysis on IL-6 and sVCAM-1 levels were done by enzyme linked immunosorbent assay (ELISA). We found that seven of them could bind to the protein NFκB (catechin, leucoanthocyanidin, niacin, phenylethylamine, theobromine, theophylline, and thiamin). This increase in IL-6 was significantly (Pcacao extract. Plasma from PP significantly increased sVCAM-1 levels compared to untreated cells. This increase in sVCAM-1 was significantly attenuated by all doses of the extract. In conclusion, T. cacao extract prohibits the increase in IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Therefore this may provide a herbal therapy for attenuating the endothelial dysfunction found in preeclampsia. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  9. Platelet-rich plasma derived growth factors contribute to stem cell differentiation in musculoskeletal regeneration

    Science.gov (United States)

    Qian, Yun; Han, Qixin; Chen, Wei; Song, Jialin; Zhao, Xiaotian; Ouyang, Yuanming; Yuan, Weien; Fan, Cunyi

    2017-10-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of different stem cells in injury models. Therefore, combination of both agents receives wide expectations in regenerative medicine, especially in bone, cartilage and tendon repair. In this review, we thoroughly discussed the interaction and underlying mechanisms of platelet-rich plasma derived growth factors with stem cells, and assessed their functions in cell differentiation for musculoskeletal regeneration.

  10. Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion

    International Nuclear Information System (INIS)

    Melnichuk, Iurii; Choukourov, Andrei; Bilek, Marcela; Weiss, Anthony; Vandrovcová, Marta; Bačáková, Lucie; Hanuš, Jan; Kousal, Jaroslav; Shelemin, Artem; Solař, Pavel

    2015-01-01

    Highlights: • Flat and nanostructured interfaces were overcoated by hydrocarbon plasma polymer. • Linker-free covalent attachment of proteins to resultant surfaces was validated. • Ultra-thin hydrocarbon overcoat (<2 nm) secured prolonged effective binding. • Pre-adsorbed tropoelastin promoted proliferation of osteoblast-like MG-63 cells. • Nanostructured films were multi-affine and impeded cell adhesion. - Abstract: Flat and nanostructured thin films were fabricated by deposition of ultra-thin (<2 nm) layer of hydrocarbon plasma polymer over polished silicon and over a pattern of 8 nm-thick poly(ethylene) islands on silicon. Linker-free radical-based covalent binding of bovine serum albumin and tropoelastin was confirmed for both types of films. The binding capability of albumin was found to be stable over many days of ambient air storage time. Tropoelastin-mediated flat plasma polymers favored adhesion and proliferation of osteoblast-like MG-63 cells. Nanostructured plasma polymers were multi-affine and their hierarchical surface represented an additional barrier for cell attachment

  11. Fat, Stem Cells, and Platelet-Rich Plasma.

    Science.gov (United States)

    James, Isaac B; Coleman, Sydney R; Rubin, J Peter

    2016-07-01

    The ideal filler for aesthetic surgery is inexpensive and easy to obtain, natural in appearance and texture, immunologically compatible, and long lasting without risk of infection. By most metrics, autologous fat grafts meet these criteria perfectly. Although facial fat grafting is now a commonly accepted surgical procedure, there has been a wave of activity applying stem cells and platelet-rich plasma (PRP) therapies to aesthetic practice. This article addresses technical considerations in the use of autologous fat transfer for facial rejuvenation, and also explores the current evidence for these stem cell and PRP therapies in aesthetic practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A study of the effect on human mesenchymal stem cells of an atmospheric pressure plasma source driven by different voltage waveforms

    Science.gov (United States)

    Laurita, R.; Alviano, F.; Marchionni, C.; Abruzzo, P. M.; Bolotta, A.; Bonsi, L.; Colombo, V.; Gherardi, M.; Liguori, A.; Ricci, F.; Rossi, M.; Stancampiano, A.; Tazzari, P. L.; Marini, M.

    2016-09-01

    The effect of an atmospheric pressure non-equilibrium plasma on human mesenchymal stem cells was investigated. A dielectric barrier discharge non-equilibrium plasma source driven by two different high-voltage pulsed generators was used and cell survival, senescence, proliferation, and differentiation were evaluated. Cells deprived of the culture medium and treated with nanosecond pulsed plasma showed a higher mortality rate, while higher survival and retention of proliferation were observed in cells treated with microsecond pulsed plasma in the presence of the culture medium. While a few treated cells showed the hallmarks of senescence, unexpected delayed apoptosis ensued in cells exposed to plasma-treated medium. The plasma treatment did not change the expression of OCT4, a marker of mesenchymal stem cell differentiation.

  13. Plant glycosylphosphatidylinositol (GPI) anchored proteins at the plasma membrane-cell wall nexus.

    Science.gov (United States)

    Yeats, Trevor H; Bacic, Antony; Johnson, Kim L

    2018-04-18

    Approximately 1% of plant proteins are predicted to be post-translationally modified with a glycosylphosphatidylinositol (GPI) anchor that tethers the polypeptide to the outer leaflet of the plasma membrane. While the synthesis and structure of GPI anchors is largely conserved across eukaryotes, the repertoire of functional domains present in the GPI-anchored proteome has diverged substantially. In plants, this includes a large fraction of the GPI-anchored proteome being further modified with plant-specific arabinogalactan (AG) O-glycans. The importance of the GPI-anchored proteome to plant development is underscored by the fact that GPI biosynthetic null mutants exhibit embryo lethality. Mutations in genes encoding specific GPI-anchored proteins (GAPs) further supports their contribution to diverse biological processes occurring at the interface of the plasma membrane and cell wall, including signaling, cell wall metabolism, cell wall polymer cross-linking, and plasmodesmatal transport. Here, we review the literature concerning plant GPI-anchored proteins in the context of their potential to act as molecular hubs that mediate interactions between the plasma membrane and the cell wall and their potential to transduce the signal into the protoplast and thereby activate signal transduction pathways. This article is protected by copyright. All rights reserved.

  14. Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro

    International Nuclear Information System (INIS)

    Hoentsch, Maxi; Barbara Nebe, J; Von Woedtke, Thomas; Weltmann, Klaus-Dieter

    2012-01-01

    The application of physical plasma to living tissues is expected to promote wound healing by plasma disinfection and stimulation of tissue regeneration. However, the effects of plasma on healthy cells must be studied and understood. In our experiments we used an argon plasma jet (kINPen®09) to gain insights into time-dependent plasma effects on cell attachment, viability and tight junction formation in vitro. Murine epithelial cells mHepR1 were suspended in complete cell culture medium and were irradiated with argon plasma (direct approach) for 30, 60 and 120 s. Suspecting that physical plasma may exert its effect via the medium, cell culture medium alone was first treated with argon plasma (indirect approach) and immediately afterwards, cells were added and also cultured for 24 h. Cell morphology and vitality were verified using light microscopy and an enzyme-linked immunosorbent assay. Already after 30 s of treatment the mHepR1 cells lost their capability to adhere and the cell vitality decreased with increasing treatment time. Interestingly, the same inhibitory effect was observed in the indirect approach. Furthermore, the argon plasma-treated culture medium-induced large openings of the cell's tight junctions, were verified by the zonula occludens protein ZO-1, which we observed for the first time in confluently grown epithelial cells. (paper)

  15. Particle-in-cell simulations of Hall plasma thrusters

    Science.gov (United States)

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  16. photon-plasma: A modern high-order particle-in-cell code

    International Nuclear Information System (INIS)

    Haugbølle, Troels; Frederiksen, Jacob Trier; Nordlund, Åke

    2013-01-01

    We present the photon-plasma code, a modern high order charge conserving particle-in-cell code for simulating relativistic plasmas. The code is using a high order implicit field solver and a novel high order charge conserving interpolation scheme for particle-to-cell interpolation and charge deposition. It includes powerful diagnostics tools with on-the-fly particle tracking, synthetic spectra integration, 2D volume slicing, and a new method to correctly account for radiative cooling in the simulations. A robust technique for imposing (time-dependent) particle and field fluxes on the boundaries is also presented. Using a hybrid OpenMP and MPI approach, the code scales efficiently from 8 to more than 250.000 cores with almost linear weak scaling on a range of architectures. The code is tested with the classical benchmarks particle heating, cold beam instability, and two-stream instability. We also present particle-in-cell simulations of the Kelvin-Helmholtz instability, and new results on radiative collisionless shocks

  17. Plasma Cell Gingivitis Associated With Inflammatory Chelitis: A ...

    African Journals Online (AJOL)

    Background: Plasma cell gingivitis (PGC) is a rare disease of gingival tissues which is difficult to treat. It has a higher rate of reoccurrence and needs a detailed and careful analysis of etiology. Further, its association with chelitis is rare, only few cases have been reported and the condition with this presentation poses a ...

  18. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    Science.gov (United States)

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  19. Dynamic changes in Id3 and E-protein activity orchestrate germinal center and plasma cell development

    Science.gov (United States)

    Gloury, Renee; Zotos, Dimitra; Zuidscherwoude, Malou; Masson, Frederick; Liao, Yang; Hasbold, Jhaguaral; Corcoran, Lynn M.; Hodgkin, Phil D.; Belz, Gabrielle T.; Shi, Wei; Nutt, Stephen L.; Tarlinton, David M.

    2016-01-01

    The generation of high-affinity antibodies requires germinal center (GC) development and differentiation of long-lived plasma cells in a multilayered process that is tightly controlled by the activity of multiple transcription factors. Here, we reveal a new layer of complexity by demonstrating that dynamic changes in Id3 and E-protein activity govern both GC and plasma cell differentiation. We show that down-regulation of Id3 in B cells is essential for releasing E2A and E2-2, which in a redundant manner are required for antigen-induced B cell differentiation. We demonstrate that this pathway controls the expression of multiple key factors, including Blimp1, Xbp1, and CXCR4, and is therefore critical for establishing the transcriptional network that controls GC B cell and plasma cell differentiation. PMID:27217539

  20. NF-κB2 mutation targets survival, proliferation and differentiation pathways in the pathogenesis of plasma cell tumors

    Directory of Open Access Journals (Sweden)

    McCarthy Brian A

    2012-05-01

    Full Text Available Abstract Background Abnormal NF-κB2 activation has been implicated in the pathogenesis of multiple myeloma, a cancer of plasma cells. However, a causal role for aberrant NF-κB2 signaling in the development of plasma cell tumors has not been established. Also unclear is the molecular mechanism that drives the tumorigenic process. We investigated these questions by using a transgenic mouse model with lymphocyte-targeted expression of p80HT, a lymphoma-associated NF-κB2 mutant, and human multiple myeloma cell lines. Methods We conducted a detailed histopathological characterization of lymphomas developed in p80HT transgenic mice and microarray gene expression profiling of p80HT B cells with the goal of identifying genes that drive plasma cell tumor development. We further verified the significance of our findings in human multiple myeloma cell lines. Results Approximately 40% of p80HT mice showed elevated levels of monoclonal immunoglobulin (M-protein in the serum and developed plasma cell tumors. Some of these mice displayed key features of human multiple myeloma with accumulation of plasma cells in the bone marrow, osteolytic bone lesions and/or diffuse osteoporosis. Gene expression profiling of B cells from M-protein-positive p80HT mice revealed aberrant expression of genes known to be important in the pathogenesis of multiple myeloma, including cyclin D1, cyclin D2, Blimp1, survivin, IL-10 and IL-15. In vitro assays demonstrated a critical role of Stat3, a key downstream component of IL-10 signaling, in the survival of human multiple myeloma cells. Conclusions These findings provide a mouse model for human multiple myeloma with aberrant NF-κB2 activation and suggest a molecular mechanism for NF-κB2 signaling in the pathogenesis of plasma cell tumors by coordinated regulation of plasma cell generation, proliferation and survival.

  1. Comparison of the behavior of fibroblast and bone marrow-derived mesenchymal stem cell on nitrogen plasma-treated gelatin films

    International Nuclear Information System (INIS)

    Prasertsung, I.; Kanokpanont, S.; Mongkolnavin, R.; Wong, C.S.; Panpranot, J.; Damrongsakkul, S.

    2013-01-01

    The attachment and growth behavior of mouse fibroblast (L929) and rat bone marrow-derived mesenchymal stem cell (MSC) on nitrogen plasma-treated and untreated gelatin films was investigated and compared. The gelatin films were prepared by solution casting (0.05% w/v) and crosslinked using dehydrothermal treatment. The crosslinked gelatin films were treated with nitrogen alternating current (AC) 50 Hz plasma systems at various treatment time. The results on the attachment and growth of two cells; L929 and MSC, on plasma-treated gelatin film showed that the number of attached and proliferated cells on plasma-treated gelatin films was significantly increased compared to untreated samples. However, no significant difference between the number of attached L929 and MSC on plasma-treated gelatin was observed. The shorter population doubling time and higher growth rate of cells cultured on plasma-treated film indicated the greater growth of cells, compared to ones on untreated films. The greatest enhancement of cell attachment and growth were noticed when the film was treated with nitrogen plasma for 9 to 15 s. This suggested that the greater attachment and growth of both cells on gelatin films resulted from the change of surface properties, i.e. hydrophilicity, surface energy, and chemistry. The suitable water contact angle and oxygen/nitrogen ratio (O/N) of gelatin film for best L929 and MSC attachment were observed at 27–32° and 1.4, respectively. These conditions also provided the best proliferation of cells on plasma-treated gelatin films. - Highlights: • We compared the attachment and growth behavior of L929 and MSC. • The attachment of two cells on plasma-treated gelatin was significantly increased. • The shorter population doubling time and higher growth rate of cells were observed. • L929 fibroblast exhibited the greater proliferation, compared to MSC

  2. Plasma deposition of microcrystalline silicon solar cells. Looking beyond the glass

    Energy Technology Data Exchange (ETDEWEB)

    Donker, M.N. van den

    2006-07-01

    Microcrystalline silicon emerged in the past decade as highly interesting material for application in efficient and stable thin film silicon solar cells. It consists of nanometer-sized crystallites embedded in a micrometer-sized columnar structure, which gradually evolves during the SiH{sub 4} based deposition process starting from an amorphous incubation layer. Understanding of and control over this transient and multi-scale growth process is essential in the route towards low-cost microcrystalline silicon solar cells. This thesis presents an experimental study on the technologically relevant high rate (5-10 Aa s{sup -1}) parallel plate plasma deposition process of state-of-the-art microcrystalline silicon solar cells. The objective of the work was to explore and understand the physical limits of the plasma deposition process as well as to develop diagnostics suitable for process control in eventual solar cell production. Among the developed non-invasive process diagnostics were a pyrometer, an optical spectrometer, a mass spectrometer and a voltage probe. Complete thin film silicon solar cells and modules were deposited and characterized. (orig.)

  3. Seminal plasma enhances cervical adenocarcinoma cell proliferation and tumour growth in vivo.

    Directory of Open Access Journals (Sweden)

    Jason R Sutherland

    Full Text Available Cervical cancer is one of the leading causes of cancer-related death in women in sub-Saharan Africa. Extensive evidence has shown that cervical cancer and its precursor lesions are caused by Human papillomavirus (HPV infection. Although the vast majority of HPV infections are naturally resolved, failure to eradicate infected cells has been shown to promote viral persistence and tumorigenesis. Furthermore, following neoplastic transformation, exposure of cervical epithelial cells to inflammatory mediators either directly or via the systemic circulation may enhance progression of the disease. It is well recognised that seminal plasma contains an abundance of inflammatory mediators, which are identified as regulators of tumour growth. Here we investigated the role of seminal plasma in regulating neoplastic cervical epithelial cell growth and tumorigenesis. Using HeLa cervical adenocarcinoma cells, we found that seminal plasma (SP induced the expression of the inflammatory enzymes, prostaglandin endoperoxide synthase (PTGS1 and PTGS2, cytokines interleukin (IL -6, and -11 and vascular endothelial growth factor-A (VEGF-A. To investigate the role of SP on tumour cell growth in vivo, we xenografted HeLa cells subcutaneously into the dorsal flank of nude mice. Intra-peritoneal administration of SP rapidly and significantly enhanced the tumour growth rate and size of HeLa cell xenografts in nude mice. As observed in vitro, we found that SP induced expression of inflammatory PTGS enzymes, cytokines and VEGF-A in vivo. Furthermore we found that SP enhances blood vessel size in HeLa cell xenografts. Finally we show that SP-induced cytokine production, VEGF-A expression and cell proliferation are mediated via the induction of the inflammatory PTGS pathway.

  4. Surface-enhanced Raman scattering reveals adsorption of mitoxantrone on plasma membrane of living cells

    International Nuclear Information System (INIS)

    Breuzard, G.; Angiboust, J.-F.; Jeannesson, P.; Manfait, M.; Millot, J.-M.

    2004-01-01

    Surface-enhanced Raman scattering (SERS) spectroscopy was applied to analyze mitoxantrone (MTX) adsorption on the plasma membrane microenvironment of sensitive (HCT-116 S) or BCRP/MXR-type resistant (HCT-116 R) cells. The addition of silver colloid to MTX-treated cells revealed an enhanced Raman scattering of MTX. Addition of extracellular DNA induced a total extinction of MTX Raman intensity for both cell lines, which revealed an adsorption of MTX on plasma membrane. A threefold higher MTX Raman intensity was observed for HCT-116 R, suggesting a tight MTX adsorption in the plasma membrane microenvironment. Fluorescence confocal microscopy confirmed a relative MTX emission around plasma membrane for HCT-116 R. After 30 min at 4 deg. C, a threefold decrease of the MTX Raman scattering was observed for HCT-116 R, contrary to HCT-116 S. Permeation with benzyl alcohol revealed a threefold decrease of membrane MTX adsorption on HCT-116 R, exclusively. This additional MTX adsorption should correspond to the drug bound to an unstable site on the HCT-116 R membrane. This study showed that SERS spectroscopy could be a direct method to reveal drug adsorption to the membrane environment of living cells

  5. Identification of S VIII through S XIV emission lines between 17.5 and 50 nm in a magnetically confined plasma

    Science.gov (United States)

    McCarthy, K. J.; Tamura, N.; Combs, S. K.; García, R.; Hernández Sánchez, J.; Navarro, M.; Panadero, N.; Pastor, I.; Soleto, A.; the TJ-II Team

    2018-03-01

    43 spectral emission lines from F-like to Li-like sulphur ions have been identified in the wavelength range from 17.5 to 50 nm in spectra obtained following tracer injection into plasmas created in a magnetically confined plasma device, the stellarator TJ-II. Plasmas created and maintained in this heliac device with electron cyclotron resonance heating achieve central electron temperatures and densities up to 1.5 keV and 8 × 1018 m-3, respectively. Tracer injections were performed with ≤6 × 1016 atoms of sulphur contained within ˜300 μm diameter polystyrene capsules, termed tracer encapsulated solid pellets, using a gas propulsion system to achieve velocities between 250 and 450 m s-1. Once ablation of the exterior polystyrene shell by plasma particles is completed, the sulphur is deposited in the plasma core where it is ionized up to S+13 and transported about the plasma. In order to aid line identification, which is made using a number of atomic line emission databases, spectra are collected before and after injection using a 1 m focal length normal incidence spectrometer equipped with a CCD camera. This work is motivated by the need to clearly identify sulphur emission lines in the vacuum ultraviolet range of magnetically confined plasmas, as sulphur x-ray emission lines are regularly observed in both tokamak and stellarator plasmas.

  6. Measurements of the vacuum-plasma response in EXTRAP T2R using generic closed-loop subspace system identification

    Energy Technology Data Exchange (ETDEWEB)

    Olofsson, K. Erik J., E-mail: erik.olofsson@ee.kth.se [School of Electrical Engineering (EES), Royal Institute of Technology (KTH), Stockholm (Sweden); Brunsell, Per R.; Drake, James R. [School of Electrical Engineering (EES), Royal Institute of Technology (KTH), Stockholm (Sweden)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Unstable plasma response safely measured using special signal processing techniques. Black-Right-Pointing-Pointer Prediction-capable MIMO models obtained. Black-Right-Pointing-Pointer Computational statistics employed to show physical content of these models. Black-Right-Pointing-Pointer Multifold cross-validation applied for the supervised learning problem. - Abstract: A multibatch formulation of a multi-input multi-output closed-loop subspace system identification method is employed for the purpose of obtaining control-relevant models of the vacuum-plasma response in the magnetic confinement fusion experiment EXTRAP T2R. The accuracy of the estimate of the plant dynamics is estimated by computing bootstrap replication statistics of the dataset. It is seen that the thus identified models exhibit both predictive capabilities and physical spectral properties.

  7. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement

    OpenAIRE

    Yongliang Yang; Nima Jamilpour; Baoyin Yao; Zachary S. Dean; Reza Riahi; Pak Kin Wong

    2016-01-01

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via pe...

  8. Paraneoplastic scleroderma-like tissue reactions in the setting of an underlying plasma cell dyscrasia: a report of 10 cases.

    Science.gov (United States)

    Magro, Cynthia M; Iwenofu, Hans; Nuovo, Gerard J

    2013-07-01

    Systemic plasma cell dyscrasias have diverse manifestations in the skin and include an inflammatory paraneoplastic process. We encountered cases of scleroderma and eosinophilic fasciitis in the setting of an underlying plasma cell dyscrasia. Ten cases of scleroderma-like tissue reactions in the setting of an underlying plasma cell dyscrasia were encountered. The biopsies were stained for Transforming growth factor (Transforming growth factor) beta, IgG4, kappa, and lambda. Patients presented with a sclerodermoid reaction represented by eosinophilic fasciitis (5 cases), morphea (3 cases), and systemic scleroderma (2 cases). The mean age of presentation was 70 years with a striking female predominance (4:1). Acral accentuation was noted in 8 cases. In 6 of the cases, the cutaneous sclerosis antedated (4 cases) by weeks to 2 years or occurred concurrently (2 cases) with the initial diagnosis of the plasma cell. The biopsies showed changes typical of eosinophilic fasciitis and/or scleroderma. In 5 cases, light chain-restricted plasma cells were present on the biopsy. There was staining of the plasma cells for Transforming growth factor beta in 3 out of 5 cases tested. In any older patient presenting with a sudden onset of eosinophilic fasciitis or scleroderma especially with acral accentuation, investigations should be conducted in regards to an underlying plasma cell dyscrasia.

  9. Effect of washing on the plasma membrane and on stress reactions of cultured rose cells

    International Nuclear Information System (INIS)

    Qian, Y.C.; Nguyen, T.; Murphy, T.M.

    1993-01-01

    Cultured cells of Rosa damascena have been used as a model for studies of responses of plant cells to various stresses, including UV radiation, protein-synthesis inhibitors, and elicitors from pathogens. Many of the responses involve reactions at the plasma membrane: efflux of K + , changes in the acid balance between cytoplasm and external medium, synthesis of H 2 O 2 , and inhibition of ferricyanide reduction. In previous studies, the cells have typically been washed with a solution of low ionic strength. We now show that this washing procedure results in changes in the protein composition of the plasma membrane, in the labeling of the proteins in the plasma membrane, and in the specific activity of ATPase in purified plasma membrane vesicles. Also, compared to the unwashed cells, the washed cells show less net K + efflux after UV-C and Phytophthora elicitor treatments; more synthesis of H 2 O 2 after UV-C and a pattern of accumulation of H 2 O 2 after elicitor treatment that shows a delayed but higher peak; and more inhibition of ferricyanide reduction after UV-C, but not after elicitor treatment. The results suggest that washing has differential effects on the mechanisms by which cultured plant cells perceive or respond to two stresses, UV-C and elicitor

  10. Exosome-associated hepatitis C virus in cell cultures and patient plasma

    International Nuclear Information System (INIS)

    Liu, Ziqing; Zhang, Xiugen; Yu, Qigui; He, Johnny J.

    2014-01-01

    Highlights: • HCV occurs in both exosome-free and exosome-associated forms. • Exosome-associated HCV is infectious and resistant to neutralizing antibodies. • More exosome-associated HCV than exosome-free HCV is present in patient plasma. - Abstract: Hepatitis C virus (HCV) infects its target cells in the form of cell-free viruses and through cell–cell contact. Here we report that HCV is associated with exosomes. Using highly purified exosomes and transmission electron microscopic imaging, we demonstrated that HCV occurred in both exosome-free and exosome-associated forms. Exosome-associated HCV was infectious and resistant to neutralization by an anti-HCV neutralizing antibody. There were more exosome-associated HCV than exosome-free HCV detected in the plasma of HCV-infected patients. These results suggest exosome-associated HCV as an alternative form for HCV infection and transmission

  11. Exosome-associated hepatitis C virus in cell cultures and patient plasma

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ziqing [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Zhang, Xiugen [Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States); Yu, Qigui [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); He, Johnny J., E-mail: johnny.he@unthsc.edu [Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202 (United States); Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2014-12-12

    Highlights: • HCV occurs in both exosome-free and exosome-associated forms. • Exosome-associated HCV is infectious and resistant to neutralizing antibodies. • More exosome-associated HCV than exosome-free HCV is present in patient plasma. - Abstract: Hepatitis C virus (HCV) infects its target cells in the form of cell-free viruses and through cell–cell contact. Here we report that HCV is associated with exosomes. Using highly purified exosomes and transmission electron microscopic imaging, we demonstrated that HCV occurred in both exosome-free and exosome-associated forms. Exosome-associated HCV was infectious and resistant to neutralization by an anti-HCV neutralizing antibody. There were more exosome-associated HCV than exosome-free HCV detected in the plasma of HCV-infected patients. These results suggest exosome-associated HCV as an alternative form for HCV infection and transmission.

  12. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    Science.gov (United States)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha

    2016-03-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.

  13. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    International Nuclear Information System (INIS)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Choi, Eun Ha; Miller, Vandana; Fridman, Alexander

    2016-01-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future. (paper)

  14. Identification and regulation of a molecular module for bleb-based cell motility

    NARCIS (Netherlands)

    Goudarzi, M.; Banisch, T.U.; Mobin, M.B.; Maghelli, N.; Tarbashevich, K.; Strate, I.; ter Berg, J.; Blaser, H.; Bandemer, S.; Paluch, E.; Bakkers, J.; Tolic-Norrelykke, I.M.; Raz, E.

    2012-01-01

    Single-cell migration is a key process in development, homeostasis, and disease. Nevertheless, the control over basic cellular mechanisms directing cells into motile behavior in vivo is largely unknown. Here, we report on the identification of a minimal set of parameters the regulation of which

  15. Effects of topographical and mechanical property alterations induced by oxygen plasma modification on stem cell behavior.

    Science.gov (United States)

    Yang, Yong; Kulangara, Karina; Lam, Ruby T S; Dharmawan, Rena; Leong, Kam W

    2012-10-23

    Polymeric substrates intended for cell culture and tissue engineering are often surface-modified to facilitate cell attachment of most anchorage-dependent cell types. The modification alters the surface chemistry and possibly topography. However, scant attention has been paid to other surface property alterations. In studying oxygen plasma treatment of polydimethylsiloxane (PDMS), we show that oxygen plasma treatment alters the surface chemistry and, consequently, the topography and elasticity of PDMS at the nanoscale level. The elasticity factor has the predominant effect, compared with the chemical and topographical factors, on cell adhesions of human mesenchymal stem cells (hMSCs). The enhanced focal adhesions favor cell spreading and osteogenesis of hMSCs. Given the prevalent use of PDMS in biomedical device construction and cell culture experiments, this study highlights the importance of understanding how oxygen plasma treatment would impact subsequent cell-substrate interactions. It helps explain inconsistency in the literature and guides preparation of PDMS-based biomedical devices in the future.

  16. Stability of cell-free DNA from maternal plasma isolated following a single centrifugation step.

    Science.gov (United States)

    Barrett, Angela N; Thadani, Henna A; Laureano-Asibal, Cecille; Ponnusamy, Sukumar; Choolani, Mahesh

    2014-12-01

    Cell-free fetal DNA can be used for prenatal testing with no procedure-related risk to the fetus. However, yield of fetal DNA is low compared with maternal cell-free DNA fragments, resulting in technical challenges for some downstream applications. To maximize the fetal fraction, careful blood processing procedures are essential. We demonstrate that fetal fraction can be preserved using a single centrifugation step followed by postage of plasma to the laboratory for further processing. Digital PCR was used to quantify copies of total, maternal, and fetal DNA present in single-spun plasma at time points over a two-week period, compared with immediately processed double-spun plasma, with storage at room temperature, 4°C, and -80°C representing different postage scenarios. There was no significant change in total, maternal, or fetal DNA copy numbers when single-spun plasma samples were stored for up to 1 week at room temperature and 2 weeks at -80°C compared with plasma processed within 4 h. Following storage at 4°C no change in composition of cell-free DNA was observed. Single-spun plasma can be transported at room temperature if the journey is expected to take one week or less; shipping on dry ice is preferable for longer journeys. © 2014 John Wiley & Sons, Ltd.

  17. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    Science.gov (United States)

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  18. Identification of Suitable Endogenous Normalizers for qRT- PCR Analysis of Plasma microRNA Expression in Essential Hypertension

    Science.gov (United States)

    Solayman, Mohamed Hassan M.; Langaee, Taimour; Patel, Archanakumari; El-Wakeel, Lamia; El-Hamamsy, Manal; Badary, Osama; Johnson, Julie A.

    2016-01-01

    Circulating microRNAs (miRNAs) are promising biomarkers for many diseases. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a gold standard for miRNA expression profiling that requires proper data normalization. Since there is no universal normalizer, it is recommended to evaluate normalizers under every experimental condition. This study describes the identification of suitable endogenous normalizer(s) (ENs) for plasma miRNA expression in essential hypertension. Expression levels of 5 candidate ENs and 2 plasma quality markers were determined by qRT-PCR in plasma samples from 18 hypertensive patients and 10 healthy controls. NormFinder, GeNorm, and DataAssist software programs were used to select the best EN(s). Expression levels of the 5 candidate ENs were also analyzed in urine samples from hypertensive patients and compared to the plasma samples of the hypertensive patients. Among the analyzed candidates, hsa-miR-92a-3p was identified as the best EN, and hsa-miR-21-5p and hsa-miR-16-5p as next best. Moreover, hsa-miR-92a-3p showed the most consistent expression between plasma and urine In conclusion, this study showed that hsa-miR-92a-3p, hsa-miR-21-5p, and hsa-miR-16-5p may be used as normalizers for plasma miRNA expression data in essential hypertension studies. PMID:26798072

  19. Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution

    International Nuclear Information System (INIS)

    Gong, Wenyin; Cai, Zhihua

    2013-01-01

    Parameter identification of PEM (proton exchange membrane) fuel cell model is a very active area of research. Generally, it can be treated as a numerical optimization problem with complex nonlinear and multi-variable features. DE (differential evolution), which has been successfully used in various fields, is a simple yet efficient evolutionary algorithm for global numerical optimization. In this paper, with the objective of accelerating the process of parameter identification of PEM fuel cell models and reducing the necessary computational efforts, we firstly present a generic and simple ranking-based mutation operator for the DE algorithm. Then, the ranking-based mutation operator is incorporated into five highly-competitive DE variants to solve the PEM fuel cell model parameter identification problems. The main contributions of this work are the proposed ranking-based DE variants and their application to the parameter identification problems of PEM fuel cell models. Experiments have been conducted by using both the simulated voltage–current data and the data obtained from the literature to validate the performance of our approach. The results indicate that the ranking-based DE methods provide better results with respect to the solution quality, the convergence rate, and the success rate compared with their corresponding original DE methods. In addition, the voltage–current characteristics obtained by our approach are in good agreement with the original voltage–current curves in all cases. - Highlights: • A simple and generic ranking-based mutation operator is presented in this paper. • Several DE (differential evolution) variants are used to solve the parameter identification of PEMFC (proton exchange membrane fuel cells) model. • Results show that our method accelerates the process of parameter identification. • The V–I characteristics are in very good agreement with experimental data

  20. Characterization of a light-controlled anion channel in the plasma membrane of mesophyll cells of pea

    NARCIS (Netherlands)

    Elzenga, J.T.M.; Volkenburgh Van, E

    In leaf mesophyll cells of pea (Pisum sativum) light induces a transient depolarization that is at least partly due to an increased plasma membrane conductance for anions. Several channel types were identified in the plasma membrane of protoplasts from mesophyll cells using the patch-clamp

  1. Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane

    Science.gov (United States)

    Golan, Yonatan; Sherman, Eilon

    2017-06-01

    The plasma membrane is a complex medium where transmembrane proteins diffuse and interact to facilitate cell function. Membrane protein mobility is affected by multiple mechanisms, including crowding, trapping, medium elasticity and structure, thus limiting our ability to distinguish them in intact cells. Here we characterize the mobility and organization of a short transmembrane protein at the plasma membrane of live T cells, using single particle tracking and photoactivated-localization microscopy. Protein mobility is highly heterogeneous, subdiffusive and ergodic-like. Using mobility characteristics, we segment individual trajectories into subpopulations with distinct Gaussian step-size distributions. Particles of low-to-medium mobility consist of clusters, diffusing in a viscoelastic and fractal-like medium and are enriched at the centre of the cell footprint. Particles of high mobility undergo weak confinement and are more evenly distributed. This study presents a methodological approach to resolve simultaneous mixed subdiffusion mechanisms acting on polydispersed samples and complex media such as cell membranes.

  2. The assessment of cold atmospheric plasma treatment of DNA in synthetic models of tissue fluid, tissue and cells

    Science.gov (United States)

    Szili, Endre J.; Gaur, Nishtha; Hong, Sung-Ha; Kurita, Hirofumi; Oh, Jun-Seok; Ito, Masafumi; Mizuno, Akira; Hatta, Akimitsu; Cowin, Allison J.; Graves, David B.; Short, Robert D.

    2017-07-01

    There is a growing literature database that demonstrates the therapeutic potential of cold atmospheric plasma (herein referred to as plasma). Given the breadth of proposed applications (e.g. from teeth whitening to cancer therapy) and vast gamut of plasma devices being researched, it is timely to consider plasma interactions with specific components of the cell in more detail. Plasma can produce highly reactive oxygen and nitrogen species (RONS) such as the hydroxyl radical (OH•), peroxynitrite (ONOO-) and superoxide (\\text{O}2- ) that would readily modify essential biomolecules such as DNA. These modifications could in principle drive a wide range of biological processes. Against this possibility, the reported therapeutic action of plasmas are not underpinned by a particularly deep knowledge of the potential plasma-tissue, -cell or -biomolecule interactions. In this study, we aim to partly address this issue by developing simple models to study plasma interactions with DNA, in the form of DNA-strand breaks. This is carried out using synthetic models of tissue fluid, tissue and cells. We argue that this approach makes experimentation simpler, more cost-effective and faster than compared to working with real biological materials and cells. Herein, a helium plasma jet source was utilised for these experiments. We show that the plasma jet readily induced DNA-strand breaks in the tissue fluid model and in the cell model, surprisingly without any significant poration or rupture of the phospholipid membrane. In the plasma jet treatment of the tissue model, DNA-strand breaks were detected in the tissue mass after pro-longed treatment (on the time-scale of minutes) with no DNA-strand breaks being detected in the tissue fluid model underneath the tissue model. These data are discussed in the context of the therapeutic potential of plasma.

  3. Cytotoxicity of cancer HeLa cells sensitivity to normal MCF10A cells in cultivations with cell culture medium treated by microwave-excited atmospheric pressure plasmas

    Science.gov (United States)

    Takahashi, Yohei; Taki, Yusuke; Takeda, Keigo; Hashizume, Hiroshi; Tanaka, Hiromasa; Ishikawa, Kenji; Hori, Masaru

    2018-03-01

    Cytotoxic effects of human epithelial carcinoma HeLa cells sensitivity to human mammary epithelial MCF10A cells appeared in incubation with the plasma-activated medium (PAM), where the cell culture media were irradiated with the hollow-shaped contact of a continuously discharged plasma that was sustained by application of a microwave power under Ar gas flow at atmospheric pressure. The discharged plasma had an electron density of 7  ×  1014 cm-3. As the nozzle exit to the plasma source was a distance of 5 mm to the medium, concentrations of 180 µM for H2O2 and 77 µM for NO2- were generated in the PAM for 30 s irradiation, resulting in the control of irradiation periods for aqueous H2O2 with a generation rate of 6.0 µM s-1, and nitrite ion (NO2- ) with a rate of 2.2 µM s-1. Effective concentrations of H2O2 and NO2- for the antitumor effects were revealed in the microwave-excited PAM, with consideration of the complicated reactions at the plasma-liquid interfaces.

  4. Particle-in-Cell Laser-Plasma Simulation on Xeon Phi Coprocessors

    OpenAIRE

    Surmin, I. A.; Bastrakov, S. I.; Efimenko, E. S.; Gonoskov, A. A.; Korzhimanov, A. V.; Meyerov, I. B.

    2015-01-01

    This paper concerns development of a high-performance implementation of the Particle-in-Cell method for plasma simulation on Intel Xeon Phi coprocessors. We discuss suitability of the method for Xeon Phi architecture and present our experience of porting and optimization of the existing parallel Particle-in-Cell code PICADOR. Direct porting with no code modification gives performance on Xeon Phi close to 8-core CPU on a benchmark problem with 50 particles per cell. We demonstrate step-by-step...

  5. Proliferation assay of mouse embryonic stem (ES) cells exposed to atmospheric-pressure plasmas at room temperature

    International Nuclear Information System (INIS)

    Miura, Taichi; Hirano, Kazumi; Ogura, Chika; Ikeguchi, Masamichi; Seki, Atsushi; Nishihara, Shoko; Ando, Ayumi; Kanazawa, Tatsuya; Hamaguchi, Satoshi

    2014-01-01

    Proliferation assays of mouse embryonic stem (ES) cells have been performed with cell culture media exposed to atmospheric-pressure plasmas (APPs), which generate reactive species in the media at room temperature. It is found that serum in cell culture media functions as a scavenger of highly reactive species and tends to protect cells in the media against cellular damage. On the other hand, if serum is not present in a cell culture medium when it is exposed to APP, the medium becomes cytotoxic and cannot be detoxified by serum added afterwards. Plasma-induced cytotoxic media hinder proliferation of mouse ES cells and may even cause cell death. It is also shown by nuclear magnetic resonance spectroscopy that organic compounds in cell culture media are in general not significantly modified by plasma exposure. These results indicate that if there is no serum in media when they are exposed to APPs, highly reactive species (such as OH radicals) generated in the media by the APP exposure are immediately converted to less reactive species (such as H 2 O 2 ), which can no longer readily react with serum that is added to the medium after plasma exposure. This study has clearly shown that it is these less reactive species, rather than highly reactive species, that make the medium cytotoxic to mouse ES cells. (paper)

  6. Implementing particle-in-cell plasma simulation code on the BBN TC2000

    International Nuclear Information System (INIS)

    Sturtevant, J.E.; Maccabe, A.B.

    1990-01-01

    The BBN TC2000 is a multiple instruction, multiple data (MIMD) machine that combines a physically distributed memory with a logically shared memory programming environment using the unique Butterfly switch. Particle-In-Cell (PIC) plasma simulations model the interaction of charged particles with electric and magnetic fields. This paper describes the implementation of both a 1-D electrostatic and a 2 1/2-D electromagnetic PIC (particle-in-cell) plasma simulation code on a BBN TC2000. Performance is compared to implementations of the same code on the shared memory Sequent Balance and distributed memory Intel iPSC hypercube

  7. Pattern recognition in probability spaces for visualization and identification of plasma confinement regimes and confinement time scaling

    International Nuclear Information System (INIS)

    Verdoolaege, G; Karagounis, G; Oost, G Van; Tendler, M

    2012-01-01

    Pattern recognition is becoming an increasingly important tool for making inferences from the massive amounts of data produced in fusion experiments. The purpose is to contribute to physics studies and plasma control. In this work, we address the visualization of plasma confinement data, the (real-time) identification of confinement regimes and the establishment of a scaling law for the energy confinement time. We take an intrinsically probabilistic approach, modeling data from the International Global H-mode Confinement Database with Gaussian distributions. We show that pattern recognition operations working in the associated probability space are considerably more powerful than their counterparts in a Euclidean data space. This opens up new possibilities for analyzing confinement data and for fusion data processing in general. We hence advocate the essential role played by measurement uncertainty for data interpretation in fusion experiments. (paper)

  8. An EDDY/particle-in-cell simulation of erosion of plasma facing walls bombarded by a collisional plasma

    International Nuclear Information System (INIS)

    Inai, Kensuke; Ohya, Kaoru

    2011-01-01

    To investigate the erosion of a plasma-facing wall intersecting an oblique magnetic field, we performed a kinetic particle-in-cell (PIC) simulation of magnetized plasma, in which collision processes between charged and neutral particles were taken into account. Sheath formation and local physical quantities, such as the incident angle and energy distributions of plasma ions at the wall, were examined at a plasma density of 10 18 m -3 , a temperature of 10 eV, and a magnetic field strength of 5 T. The erosion rate of a carbon wall was calculated using the ion-solid interaction code EDDY. At a high neutral density (>10 20 m -3 ), the impact energy of the ions dropped below the threshold for physical sputtering, so that the sputtering yield was drastically decreased and wall erosion was strongly suppressed. Sputter erosion was also suppressed when the angle of the magnetic field with respect to the surface normal was sufficiently large. (author)

  9. HK2 Proximal Tubule Epithelial Cells Synthesize and Secrete Plasma Proteins Predominantly Through the Apical Surface.

    Science.gov (United States)

    Zhao, Ke-Wei; Murray, Elsa J Brochmann; Murray, Samuel S

    2017-04-01

    Renal proximal tubule epithelial cells (PTECs) are known to reabsorb salts and small plasma proteins filtered through Bowman's capsule. Following acute kidney injury, PTECs assume some characteristics of hepatocytes in producing various plasma proteins. We now demonstrate that even at a resting state, a PTEC cell line, HK2 expresses mRNAs for and synthesizes and secretes plasma proteins in a complex with complement C3, an α 2 -macroglobulin family chaperone, including albumin, transferrin, α 1 -antitrypsin, α 1 -antichymotrypsin, α 2 -HS-glycoprotein, ceruloplasmin, haptoglobin, C1-inhibitor, secreted phosphoprotein-24, and insulin-like growth factor-1. When grown on transwell inserts, HK2 cells predominantly secrete (∼90%) plasma proteins into the apical side and a smaller fraction into the basolateral side as determined by ELISA assays. When cultured in the presence of exogenous cytokines such as IL1β, IL6, TNFα, BMP2, or TGFβ1, HK2 cell mRNA expressions for plasma proteins were variably affected whereas basolateral secretions were elevated to or in excess of those of the apical level. In addition, HK2 cells produce proTGFβ1 with its intact N-terminal latency associated peptide and latent-TGF-β-binding proteins. The complex cannot be dissociated under conditions of SDS, heating, and electrophoresis. Moreover, HK2 cells maintain their ability to quickly uptake exogenously added serum proteins from the culture medium, as if they are recognized differently by the endocytic receptors. These results provide new insight into the hepatization of PTECs. In addition to their unique uptake of plasma proteins and salts from the filtrate, they are a source of urinary proteins under normal conditions as wells as in chronic and acute kidney diseases. J. Cell. Biochem. 118: 924-933, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Plasma Electrode Pockels Cells for the Beamlet and NIF lasers

    International Nuclear Information System (INIS)

    Rhodes, M.A.; Woods, B.; DeYoreo, J.; Atherton, J.

    1994-05-01

    We describe Plasma Electrode Pockels Cells (PEPC) for the Beamlet laser and the proposed National Ignition Facility (NIF) laser. These PEPCs, together with passive polarizers, function as large aperture (> 35 x 35 cm 2 ) optical switches enabling the design of high-energy (> 5 kJ), multipass laser amplifiers. In a PEPC, plasma discharges form on both sides of a thin (1 cm) electro-optic crystal (KDP). These plasma discharges produce highly conductive and transparent electrodes that facilitate rapid (< 100 ns) and uniform charging of the KDP up to the half-wave voltage (17 kV) and back to zero volts. We discuss the operating principles, design, and optical performance of the Beamlet PEPC and briefly discuss our plans to extend PEPC technology for the NIF

  11. Identification of a subset of perpheral T-cell lymphoma, not otherwise specified, characterized by FOXP3-positive regulatory T-cell phenotype, HTLV-1 negativity and poor outcome

    DEFF Research Database (Denmark)

    Pedersen, Martin Bjerregård; Hamilton-Dutoit, Stephen Jacques; Bendix, Knud

    2014-01-01

    Identification of a subset of perpheral T-cell lymphoma, not otherwise specified, characterized by FOXP3-positive regulatory T-cell phenotype, HTLV-1 negativity and poor outcome.......Identification of a subset of perpheral T-cell lymphoma, not otherwise specified, characterized by FOXP3-positive regulatory T-cell phenotype, HTLV-1 negativity and poor outcome....

  12. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration.

    Directory of Open Access Journals (Sweden)

    Carlos Salomon

    Full Text Available Studies completed to date provide persuasive evidence that placental cell-derived exosomes play a significant role in intercellular communication pathways that potentially contribute to placentation and development of materno-fetal vascular circulation. The aim of this study was to establish the gestational-age release profile and bioactivity of placental cell-derived exosome in maternal plasma. Plasma samples (n = 20 per pregnant group were obtained from non-pregnant and pregnant women in the first (FT, 6-12 weeks, second (ST, 22-24 weeks and third (TT, 32-38 weeks trimester. The number of exosomes and placental exosome contribution were determined by quantifying immunoreactive exosomal CD63 and placenta-specific marker (PLAP, respectively. The effect of exosomes isolated from FT, ST and TT on endothelial cell migration were established using a real-time, live-cell imaging system (Incucyte. Exosome plasma concentration was more than 50-fold greater in pregnant women than in non-pregnant women (p<0.001. During normal healthy pregnancy, the number of exosomes present in maternal plasma increased significantly with gestational age by more that two-fold (p<0.001. Exosomes isolated from FT, ST and TT increased endothelial cell migration by 1.9±0.1, 1.6±0.2 and 1.3±0.1-fold, respectively compared to the control. Pregnancy is associated with a dramatic increase in the number of exosomes present in plasma and maternal plasma exosomes are bioactive. While the role of placental cell-derived exosome in regulating maternal and/or fetal vascular responses remains to be elucidated, changes in exosome profile may be of clinical utility in the diagnosis of placental dysfunction.

  13. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Sakamoto, N.; Kawamura, H.; Akiba, M.

    1995-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop of plasma facing components which can resist these. Then, we have established electron beam heat facility (open-quotes OHBISclose quotes, Oarai Hot-cell electron Beam Irradiating System) at a hot cell in JMTR (Japan Materials Testing Reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30kV (constant) and 1.7A, respectively. The loading time of electron beam is more than 0.1ms. The shape of vacuum vessel is cylindrical, and the mainly dimensions are 500mm in inner diameter, 1000mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for thermal shock test has been established in a hot cell. And performance estimation on the electron beam is being conducted. Presently, the devices for heat loading tests under steady state will be added to this facility

  14. New electron beam facility for irradiated plasma facing materials testing in hot cell

    International Nuclear Information System (INIS)

    Shimakawa, S.; Akiba, M.; Kawamura, H.

    1996-01-01

    Since plasma facing components such as the first wall and the divertor for the next step fusion reactors are exposed to high heat loads and high energy neutron flux generated by the plasma, it is urgent to develop plasma facing components which can resist these. We have established electron beam heat facility ('OHBIS', Oarai hot-cell electron beam irradiating system) at a hot cell in JMTR (Japan materials testing reactor) hot laboratory in order to estimate thermal shock resistivity of plasma facing materials and heat removal capabilities of divertor elements under steady state heating. In this facility, irradiated plasma facing materials (beryllium, carbon based materials and so on) and divertor elements can be treated. This facility consists of an electron beam unit with the maximum beam power of 50 kW and the vacuum vessel. The acceleration voltage and the maximum beam current are 30 kV (constant) and 1.7 A, respectively. The loading time of the electron beam is more than 0.1 ms. The shape of vacuum vessel is cylindrical, and the main dimensions are 500 mm in inside diameter, 1000 mm in height. The ultimate vacuum of this vessel is 1 x 10 -4 Pa. At present, the facility for the thermal shock test has been established in a hot cell. The performance of the electron beam is being evaluated at this time. In the future, the equipment for conducting static heat loadings will be incorporated into the facility. (orig.)

  15. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells.

    Science.gov (United States)

    Park, Sungjin; Szumlanski, Amy L; Gu, Fangwei; Guo, Feng; Nielsen, Erik

    2011-07-17

    In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.

  16. Population-specific plasma proteomes of marine and freshwater three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Kültz, Dietmar; Li, Johnathon; Zhang, Xuezhen; Villarreal, Fernando; Pham, Tuan; Paguio, Darlene

    2015-12-01

    Molecular phenotypes that distinguish resident marine (Bodega Harbor) from landlocked freshwater (FW, Lake Solano) three-spined sticklebacks were revealed by label-free quantitative proteomics. Secreted plasma proteins involved in lipid transport, blood coagulation, proteolysis, plasminogen-activating cascades, extracellular stimulus responses, and immunity are most abundant in this species. Globulins and albumins are much less abundant than in mammalian plasma. Unbiased quantitative proteome profiling identified 45 highly population-specific plasma proteins. Population-specific abundance differences were validated by targeted proteomics based on data-independent acquisition. Gene ontology enrichment analyses and known functions of population-specific plasma proteins indicate enrichment of processes controlling cell adhesion, tissue remodeling, proteolytic processing, and defense signaling in marine sticklebacks. Moreover, fetuin B and leukocyte cell derived chemotaxin 2 are much more abundant in marine fish. These proteins promote bone morphogenesis and likely contribute to population-specific body armor differences. Plasma proteins enriched in FW fish promote translation, heme biosynthesis, and lipid transport, suggesting a greater presence of plasma microparticles. Many prominent population-specific plasma proteins (e.g. apoptosis-associated speck-like protein containing a CARD) lack any homolog of known function or adequate functional characterization. Their functional characterization and the identification of population-specific environmental contexts and selective pressures that cause plasma proteome diversification are future directions emerging from this study. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Normal chemotaxis in Dictyostelium discoideum cells with a depolarized plasma membrane potential

    NARCIS (Netherlands)

    Duijn, Bert van; Vogelzang, Sake A.; Ypey, Dirk L.; Molen, Loek G. van der; Haastert, Peter J.M. van

    1990-01-01

    We examined a possible role for the plasma membrane potential in signal transduction during cyclic AMP-induced chemotaxis in the cellular slime mold Dictyostelium discoideum. Chemotaxis, cyclic GMP and cyclic AMP responses in cells with a depolarized membrane potential were measured. Cells can be

  18. Convective cell excitation by inertial Alfven waves in a low density plasma

    International Nuclear Information System (INIS)

    Pokhotelov, O.A.; Onishchenko, O.G.; Sagdeev, R.Z.; Srenflo, L.; Balikhin, M.A.

    2005-01-01

    The parametric interaction of inertial Alfven waves with large-scale convective cells in a low-density plasma is investigated. It is shown that, in plasmas where the Alfven velocity is comparable to or exceeds the speed of light, the parametric interaction is substantially suppressed. A compact expression for the optimal scale and instability growth rate of the fastest growing mode is obtained [ru

  19. Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynin, D; Friedman, G [Electrical and Computer Engineering Department, College of Engineering, Drexel University, Philadelphia, PA (United States); Arjunan, K; Clyne, A Morss [School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA (United States); Fridman, A, E-mail: alisam@coe.drexel.edu [Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, PA (United States)

    2011-02-23

    Nitric oxide has great potential for improving wound healing through both inflammatory and vascularization processes. Nitric oxide can be produced in high concentrations by atmospheric pressure thermal plasmas. We measured the physical characteristics and nitric oxide production of a pin-to-hole spark discharge (PHD) plasma, as well as plasma-produced nitric oxide delivery into liquid and endothelial cells. The plasma temperature was calculated as 9030 {+-} 320 K by the Boltzmann method, which was adequate to produce nitric oxide, although the average gas temperature was near room temperature. The plasma produced significant UV radiation and hydrogen peroxide, but these were prevented from reaching the cells by adding a straight or curved tube extension to the plasma device. Plasma-produced nitric oxide in gas reached 2000 ppm and rapidly diffused into liquid and cells. Cells remained viable following plasma treatment and showed a linear increase in cGMP concentration with plasma treatment, indicating an intracellular functional response to PHD plasma NO. These data suggest that this plasma may provide a novel method for delivering NO locally and directly for enhanced wound healing.

  20. Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma

    International Nuclear Information System (INIS)

    Dobrynin, D; Friedman, G; Arjunan, K; Clyne, A Morss; Fridman, A

    2011-01-01

    Nitric oxide has great potential for improving wound healing through both inflammatory and vascularization processes. Nitric oxide can be produced in high concentrations by atmospheric pressure thermal plasmas. We measured the physical characteristics and nitric oxide production of a pin-to-hole spark discharge (PHD) plasma, as well as plasma-produced nitric oxide delivery into liquid and endothelial cells. The plasma temperature was calculated as 9030 ± 320 K by the Boltzmann method, which was adequate to produce nitric oxide, although the average gas temperature was near room temperature. The plasma produced significant UV radiation and hydrogen peroxide, but these were prevented from reaching the cells by adding a straight or curved tube extension to the plasma device. Plasma-produced nitric oxide in gas reached 2000 ppm and rapidly diffused into liquid and cells. Cells remained viable following plasma treatment and showed a linear increase in cGMP concentration with plasma treatment, indicating an intracellular functional response to PHD plasma NO. These data suggest that this plasma may provide a novel method for delivering NO locally and directly for enhanced wound healing.

  1. DNA damage in oral cancer and normal cells induced by nitrogen atmospheric pressure plasma jets

    Science.gov (United States)

    Han, Xu; Kapaldo, James; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2015-09-01

    Nitrogen atmospheric pressure plasma jets (APPJs) have been shown to effectively induce DNA double strand breaks in SCC25 oral cancer cells. The APPJ source constructed in our laboratory operates based on dielectric barrier discharge. It consists of two copper electrodes alternatively wrapping around a fused silica tube with nitrogen as a feed gas. It is generally more challenging to ignite plasma in N2 atmosphere than in noble gases. However, N2 provides additional advantages such as lower costs compared to noble gases, thus this design can be beneficial for the future long-term clinical use. To compare the effects of plasma on cancer cells (SCC25) and normal cells (OKF), the cells from both types were treated at the same experimental condition for various treatment times. The effective area with different damage levels after the treatment was visualized as 3D maps. The delayed damage effects were also explored by varying the incubation times after the treatment. All of these studies are critical for a better understanding of the damage responses of cellular systems exposed to the plasma radiation, thus are useful for the development of the advanced plasma cancer therapy. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through Grant No. DE-FC02-04ER15533.

  2. The effects of UV irradiation and gas plasma treatment on living mammalian cells and bacteria: a comparative approach

    NARCIS (Netherlands)

    Sosnin, E.A.; Stoffels - Adamowicz, E.; Erofeev, M.V.; Kieft, I.E.; Kunts, S.E.

    2004-01-01

    Living mammalian cells and bacteria were exposed to irradiation from narrow-band UV lamps and treated with a nonthermal gas plasma (plasma needle). The model systems were: Chinese Hamster Ovary (CHO-K1) cells (fibroblasts) and Escherichia Coli bacteria. UV irradiation can lead to cell death

  3. Gonadal cell surface receptor for plasma retinol-binding protein

    International Nuclear Information System (INIS)

    Krishna Bhat, M.; Cama, H.R.

    1979-01-01

    A specific membrane receptor for plasma retinol-binding protein has been demonstrated in testicular cells. Prealbumin-2 did not show any specific binding to the membrane. The affinity of retinol-binding protein for receptor drastically decreases upon delivery of retinol and the retinol-binding protein does not enter the cell. The mechanism of delivery of retinol to the target cell by plasma retinol-binding protein has been investigated. The process involves two steps; direct binding of retinol-binding protein to the receptor and uptake of retinol by the target cell with a concomitant drastic reduction in the affinity of the retinol-binding protein to the receptor. Probably the second step of the process needs a cytosolic factor, possibly the cellular retinol-binding protein or an enzyme. The binding of retinol-binding protein to the receptor is saturable and reversible. The interaction shows a Ksub(d) value of 2.1x10 -10 . The specific binding of a retinol-binding protein with great affinity has been employed in the development of a method for radioassay of the receptor. The receptor level of the gonadal cell has been found to vary with the stage of differentiation. The receptor concentrations in 11-week-old birds and adult birds are comparable. Testosterone treatment of 11-week-old birds produced a substantial increase in the receptor concentration over control, while the protein content increased marginally, indicating that, probably, synthesis of the receptor is specifcally induced by testosterone during spermatogenesis, and the concentration of receptor is relatively higher before the formation of the acrosome. (Auth.)

  4. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    International Nuclear Information System (INIS)

    Yokoyama, Mayo; Johkura, Kohei; Sato, Takehiko

    2014-01-01

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H 2 O 2 -added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogen peroxide (H 2 O 2 ) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H 2 O 2 . As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H 2 O 2 -medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H 2 O 2 -medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H 2 O 2 -medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN and FOS, were detected and notably elevated in

  5. Gene expression responses of HeLa cells to chemical species generated by an atmospheric plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Mayo, E-mail: yokoyama@plasma.ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Johkura, Kohei, E-mail: kohei@shinshu-u.ac.jp [Department of Histology and Embryology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621 (Japan); Sato, Takehiko, E-mail: sato@ifs.tohoku.ac.jp [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-08

    Highlights: • Response of HeLa cells to a plasma-irradiated medium was revealed by DNA microarray. • Gene expression pattern was basically different from that in a H{sub 2}O{sub 2}-added medium. • Prominently up-/down-regulated genes were partly shared by the two media. • Gene ontology analysis showed both similar and different responses in the two media. • Candidate genes involved in response to ROS were detected in each medium. - Abstract: Plasma irradiation generates many factors able to affect the cellular condition, and this feature has been studied for its application in the field of medicine. We previously reported that hydrogen peroxide (H{sub 2}O{sub 2}) was the major cause of HeLa cell death among the chemical species generated by high level irradiation of a culture medium by atmospheric plasma. To assess the effect of plasma-induced factors on the response of live cells, HeLa cells were exposed to a medium irradiated by a non-lethal plasma flow level, and their gene expression was broadly analyzed by DNA microarray in comparison with that in a corresponding concentration of 51 μM H{sub 2}O{sub 2}. As a result, though the cell viability was sufficiently maintained at more than 90% in both cases, the plasma-medium had a greater impact on it than the H{sub 2}O{sub 2}-medium. Hierarchical clustering analysis revealed fundamentally different cellular responses between these two media. A larger population of genes was upregulated in the plasma-medium, whereas genes were downregulated in the H{sub 2}O{sub 2}-medium. However, a part of the genes that showed prominent differential expression was shared by them, including an immediate early gene ID2. In gene ontology analysis of upregulated genes, the plasma-medium showed more diverse ontologies than the H{sub 2}O{sub 2}-medium, whereas ontologies such as “response to stimulus” were common, and several genes corresponded to “response to reactive oxygen species.” Genes of AP-1 proteins, e.g., JUN

  6. Dynamic identification of plasma magnetic contour in fusion machines

    International Nuclear Information System (INIS)

    Bettini, P.; Trevisan, F.; Cavinato, M.

    2005-01-01

    The paper presents a method to identify the plasma magnetic contour in fusion machines, when eddy currents are present in the conducting structures surrounding the plasma. The approach presented is based on the integration of an electromagnetic model of the plasma with a lumped parameters model of the conducting structures around the plasma. This approach has been validated against experimental data from RFX, a reversed field pinch machine. (author)

  7. Identification of beta cell dysfunction at the pre-symptomatic stage of diabetes mellitus by novel analytical system: liquid biopsy measurements in femtograms.

    Science.gov (United States)

    Krapfenbauer, Kurt

    2017-12-01

    Diabetes mellitus is produced and progresses as a consequence of complex and gradual processes, in which a variety of alterations of the endocrine pancreas, are involved and which mainly result in beta cell failure. Those molecular alterations can be found in the bloodstream, which suggests that we could quantify specific biomarkers in plasma or serum by very sensitive methods before the onset diabetes mellitus is diagnosed. However, classical methods of protein analysis such as electrophoresis, Western blot, ELISA, and liquid chromatography are generally time-consuming, lab-intensive, and not sensitive enough to detect such alteration in a pre-symptomatic state of the disease. A very sensitive and novel analytical detection conjugate system by using the combination of polyfluorophor technology with protein microchip method was developed. This innovative system facilitates the use of a very sensitive microchip assays that measure selected biomarkers in a small sample volume (10 μL) with a much higher sensitivity (92%) compare to common immune assay systems. Further advances of the application of this technology combine the power of miniaturization and faster quantification (around 10 min). The power of this technology offers great promise for point-of-care clinical testing and monitoring of specific biomarkers for diabetes in femtogram level in serum or plasma. In conclusion, the results indicate that the technical performance of this new technology is valid and that the assay is able to quantified PPY-specific antigens in plasma at femtogram levels which can be used for identification of beta cell dysfunction at the pre-symptomatic stage of diabetes mellitus.

  8. Investigation of cell-free DNA in canine plasma and its relation to disease.

    Science.gov (United States)

    Burnett, Deborah L; Cave, Nicholas J; Gedye, Kristene R; Bridges, Janis P

    2016-09-01

    DNA is released from dying cells during apoptosis and necrosis. This cell-free DNA (cfDNA) diffuses into the plasma where it can be measured. In humans, an increase in cfDNA correlates with disease severity and prognosis. It was hypothesized that when DNA in canine plasma was measured by emission fluorometry without prior DNA extraction, the concentration of cfDNA would increase with disease severity. The diseased population consisted of 97 client-owned dogs. The clinically normal population consisted of nine client-owned dogs presenting for 'wellness screens', and 15 colony-owned Harrier Hounds. Plasma cfDNA was measured by fluorometry without prior DNA extraction. The effects of ex vivo storage conditions were evaluated in plasma from two clinically normal dogs. In all other dogs, plasma was separated within two hours of collection. The association between the cfDNA concentration in hospitalized dogs and a variety of clinical, clinicopathological and outcome variables was tested. The concentration of cfDNA was reliably measured when plasma was separated within two hours of blood collection. The diseased dogs had significantly higher cfDNA than clinically normal dogs (P Dogs that did not survive to discharge had significantly higher cfDNA concentrations than survivors (P = 0.02). Conclusions/Clinical Importance: The concentration of cfDNA in the plasma of diseased dogs is associated with disease severity and prognosis. Measurement of canine cfDNA could be a useful non-specific disease indicator and prognostic tool.

  9. A survey of elementary plasma instabilities and ECH wave noise properties relevant to plasma sounding by means of particle in cell simulations

    International Nuclear Information System (INIS)

    Dieckmann, M.E.

    1999-01-01

    In this work the emission of high amplitude wave packets into a plasma is examined. The plasma is modelled by an 1 1/2D electromagnetic and relativistic particle in cell code. The antenna is modelled by applying forced electrostatic field oscillations to a subset of the simulation grid cells. The emitted wave packets are followed in space and time. It is investigated how the wave packets are affected by instabilities. The detected instabilities affecting ECH waves have been identified as wave decay, nonlinear damping due to trapping and modulational instabilities. These instabilities have been discussed with hindsight to the plasma sounding experiment. A plasma sounder is an experiment emitting short wave packets into the ambient plasma and then it listens to the response. The assumption that the emitted waves are linear waves then allows to determine the plasma magnetic field strength, the electron density and possibly the electron thermal velocity from the response spectrum. The impact of the non-linear instabilities on the plasma wave response spectrum provided by a sounder have been predicted in this work and the predictions have been shown to match a wide range of experimental observations. A dependence of the instabilities on the simulation noise levels, for example the dependence of the wave interaction time in a wave decay on the noise electric field amplitudes, required it to investigate the simulation noise properties (spectral distribution) and to compare it to real plasma thermal noise. It has also been examined how a finite length antenna would filter the simulation noise. (author)

  10. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    DEFF Research Database (Denmark)

    Zech, Tobias; Ejsing, Christer S.; Gaus, Katharina

    2009-01-01

    Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T-cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin...... and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation...... domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate...

  11. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    Science.gov (United States)

    2015-12-01

    monocytic leukemia cancer cells ( THP -1) were also tested and the results 19 demonstrate that a preference for apoptosis in plasma treated THP -1...unanswered questions. We have tested the effects of indirect exposure of non-thermal air plasma on monocytic leukemia cancer cells ( THP -1) and deciphering... tested and the results are shown in Fig. above. The results demonstrate that a preference for apoptosis in plasma treated THP -1 cells under

  12. Effects of anti-lipid peroxidation of Punica granatum fruit extract in endothelial cells induced by plasma of severe pre-eclamptic patients

    Directory of Open Access Journals (Sweden)

    Isri Nasifah

    2017-10-01

    Full Text Available Preeclampsia is a pregnancy disorder characterized by hypertension and proteinuria. This disorder involves oxidative stress and changes in endothelial homeostasis. This study was aimed to seek whether an ethanolic extract of Punica granatum fruit inhibits 8-iso-PGFα formation and modulates nitric oxide (NO in endothelial cells induced by plasma from pre-eclamptic patients. Endothelial cells were cultured from human umbilical vein endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP, endothelial cells exposed to 2% plasma from pre-eclamptic patients (PP, endothelial cells exposed to PP in the presence of ethanolic extract of P. granatum (PP+PG at the following three doses: 14; 28; and 56 ppm. Analysis of 8-iso-PGFα was done by immunoassay technique. Analysis of NO level was done by colorimetric technique. Plasma from PP significantly increased 8-iso-PGFα level compared to cells treated by normal pregnancy plasma. This increase in 8-iso-PGFα was significantly (p0.05 between groups. P. granatum fruit extract protects endothelial cells from oxidative stress induced by plasma from pre-eclamptic patients.

  13. State of IgG4-positive plasma cells in the colon mucosa of chronic inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Yu.А. Gaidar

    2017-04-01

    Full Text Available Background. The diagnosis of IgG4-associated sclerosing disease, IgG4-associatied condition, is based on a comprehensive evaluation of characteristic clinical, radiographic, serologic, histological and immunohistochemical features. The histopathological is the main examination in the diagnosis of IgG4-associatied diseases. The purpose of the study was to evaluate the state of IgG4-positive plasma cells in the mucosa of the colon in patients with established morphological and endoscopic diagnosis of ulcerative colitis (UC and Crohn’s disease (CD. Materials and methods. The study used biopsies material from 14 patients treated at the Institute of Gastroenterology, in the department intestine diseases, with established morphological and endoscope diagnosis of UC (8 and CD (6 in the acute stage. All patients had no evidence of autoimmune pancreatitis type I and II. Biopsy were fixed in 10.0% neutral formalin, dehydrated in alcohols of increasing concentration and embedded in paraffin for histological studies. Histological sections of 3–5 µm were colored with hematoxylin and eosin. There were used monoclonal IgG4 antibodies for immunohistochemical studies (Abcam, USA. Results. Our results show that with ulcerative colitis in 37.5 % of cases IgG4-positive plasma cells in the colon mucosa have not been identified. In 25 % of cases, sporadic IgG4-positive plasma cells were identified. In 37.5 % of cases, the groups of IgG4-positive plasma cells not exceeding 5 cells in one group were found. In Crohn’s disease, groups of IgG4-positive plasma cells were observed in all cases, in addition it should be noted that the group included 10 or more cells. Conclusions. It is shown that in UC, IgG4-positive plasma cells may be absent, solitary or gathered in small groups to 5 cells, and in CD, the groups consisting of 10 or more cells are observed.

  14. Immunoglobulin G4 (IgG4)-positive plasma cell infiltration is associated with the clinicopathologic traits and prognosis of pancreatic cancer after curative resection.

    Science.gov (United States)

    Liu, Qiaofei; Niu, Zheyu; Li, Yuan; Wang, Mengyi; Pan, Boju; Lu, Zhaohui; Liao, Quan; Zhao, Yupei

    2016-08-01

    Interactions between pancreatic cancer cells and inflammatory cells play crucial roles in the biological behavior of pancreatic cancer. Abundant infiltration of immunoglobulin G4 (IgG4)-positive plasma cells in the pancreas is the most significant feature of autoimmune pancreatitis; however, the clinical significance of IgG4-positive plasma cell infiltration in pancreatic cancer has not previously been reported. Herein, we analyzed intratumoral and peritumoral infiltrations of IgG4-positive plasma cells in 95 pancreatic cancer cases after curative resection. The correlations between IgG4-positive plasma cell infiltration and the clinicopathologic traits and overall survival of pancreatic cancer were investigated. IgG4-positive plasma cells were found in 86 % of tumor tissue samples compared with 69 % of peritumoral tissue samples (P = 0.0063). The high-level infiltration of intratumoral IgG4-positive plasma cells was positively correlated with poor histological grade (P = 0.017). The high-level infiltration of intratumoral IgG4-positive plasma cells was significantly correlated with worse prognosis (P = 0.01) in multivariate analysis. We further found that intratumoral M2-polarized tumor-associated macrophages (TAMs) were positively, linearly correlated with IgG4-positive plasma cells. In conclusion, IgG4-positive plasma cell infiltration is correlated with the clinicopathologic traits and overall survival of pancreatic cancer. High-level intratumoral infiltration of IgG4-positive plasma cells is an independent predictor for poor overall survival in pancreatic cancer patients after curative resection. Intratumoral M2-polarized TAMs probably induce IgG4-positive plasma cells.

  15. Assessment of changes in plasma hemoglobin and potassium levels in red cell units during processing and storage.

    Science.gov (United States)

    Saini, Nishant; Basu, Sabita; Kaur, Ravneet; Kaur, Jasbinder

    2015-06-01

    Red cell units undergo changes during storage and processing. The study was planned to assess plasma potassium, plasma hemoglobin, percentage hemolysis during storage and to determine the effects of outdoor blood collection and processing on those parameters. Blood collection in three types of blood storage bags was done - single CPDA bag (40 outdoor and 40 in-house collection), triple CPD + SAGM bag (40 in-house collection) and quadruple CPD + SAGM bag with integral leukoreduction filter (40 in-house collection). All bags were sampled on day 0 (day of collection), day 1 (after processing), day 7, day 14 and day 28 for measurement of percentage hemolysis and potassium levels in the plasma of bag contents. There was significant increase in percentage hemolysis, plasma hemoglobin and plasma potassium level in all the groups during storage (p levels during the storage of red blood cells. Blood collection can be safely undertaken in outdoor blood donation camps even in hot summer months in monitored blood transport boxes. SAGM additive solution decreases the red cell hemolysis and allows extended storage of red cells. Prestorage leukoreduction decreases the red cell hemolysis and improves the quality of blood. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Infiltration patterns in monoclonal plasma cell disorders: correlation of magnetic resonance imaging with matched bone marrow histology

    Energy Technology Data Exchange (ETDEWEB)

    Andrulis, Mindaugas [Institute of Pathology, University of Heidelberg, Heidelberg (Germany); Bäuerle, Tobias [Department of Diagnostic and Interventional Radiology, University of Hamburg, Hamburg (Germany); Goldschmidt, Hartmut [Department of Hematology and Oncology, University of Heidelberg, Heidelberg (Germany); Delorme, Stefan [Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg (Germany); Landgren, Ola [Multiple Myeloma Section, Metabolism Branch, National Cancer Institute, Bethesda (United States); Schirmacher, Peter [Institute of Pathology, University of Heidelberg, Heidelberg (Germany); Hillengass, Jens, E-mail: jens.hillengass@med.uni-heidelberg.de [Department of Hematology and Oncology, University of Heidelberg, Heidelberg (Germany); Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg (Germany)

    2014-06-15

    Objectives: To investigate how plasma cell infiltration patterns detected by MRI match the plasma cell distribution in bone marrow biopsy. Methods: We assessed 50 patients with monoclonal plasma cell disorders of all clinical stages. MRI infiltration pattern was compared with matched BM histology from the same anatomic region. Results: MRI revealed a minimal (n = 11, 22%), focal (n = 5, 10%), diffuse (n = 14, 28%) and mixed (n = 20, 40%) infiltration pattern. Diffuse MRI pattern was predominant in smoldering myeloma patients whereas the MRI patterns with “focal component” (i.e. focal and mixed) were most common in symptomatic myeloma (p < 0.01). In histology an interstitial (n = 13, 26%), nodular (n = 23, 46%) and packed marrow (n = 14, 28%) was found respectively. All three histological types of infiltration were observed in patients with diffuse and mixed MRI patterns. Minimal MRI pattern was found in all MGUS patients and was associated with an interstitial BM infiltration. In two patients with minimal MRI pattern an extensive micro-nodular BM infiltration was found in histology. Conclusions: Infiltration patterns in MRI represent different histological growth patterns of plasma cells, but the MRI resolution is not sufficient to visualize micro-nodular aggregates of plasma cells.

  17. Infiltration patterns in monoclonal plasma cell disorders: correlation of magnetic resonance imaging with matched bone marrow histology

    International Nuclear Information System (INIS)

    Andrulis, Mindaugas; Bäuerle, Tobias; Goldschmidt, Hartmut; Delorme, Stefan; Landgren, Ola; Schirmacher, Peter; Hillengass, Jens

    2014-01-01

    Objectives: To investigate how plasma cell infiltration patterns detected by MRI match the plasma cell distribution in bone marrow biopsy. Methods: We assessed 50 patients with monoclonal plasma cell disorders of all clinical stages. MRI infiltration pattern was compared with matched BM histology from the same anatomic region. Results: MRI revealed a minimal (n = 11, 22%), focal (n = 5, 10%), diffuse (n = 14, 28%) and mixed (n = 20, 40%) infiltration pattern. Diffuse MRI pattern was predominant in smoldering myeloma patients whereas the MRI patterns with “focal component” (i.e. focal and mixed) were most common in symptomatic myeloma (p < 0.01). In histology an interstitial (n = 13, 26%), nodular (n = 23, 46%) and packed marrow (n = 14, 28%) was found respectively. All three histological types of infiltration were observed in patients with diffuse and mixed MRI patterns. Minimal MRI pattern was found in all MGUS patients and was associated with an interstitial BM infiltration. In two patients with minimal MRI pattern an extensive micro-nodular BM infiltration was found in histology. Conclusions: Infiltration patterns in MRI represent different histological growth patterns of plasma cells, but the MRI resolution is not sufficient to visualize micro-nodular aggregates of plasma cells

  18. Pooled protein immunization for identification of cell surface antigens in Streptococcus sanguinis.

    Directory of Open Access Journals (Sweden)

    Xiuchun Ge

    2010-07-01

    Full Text Available Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species.We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity.The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases.

  19. Pooled protein immunization for identification of cell surface antigens in Streptococcus sanguinis.

    Science.gov (United States)

    Ge, Xiuchun; Kitten, Todd; Munro, Cindy L; Conrad, Daniel H; Xu, Ping

    2010-07-26

    Available bacterial genomes provide opportunities for screening vaccines by reverse vaccinology. Efficient identification of surface antigens is required to reduce time and animal cost in this technology. We developed an approach to identify surface antigens rapidly in Streptococcus sanguinis, a common infective endocarditis causative species. We applied bioinformatics for antigen prediction and pooled antigens for immunization. Forty-seven surface-exposed proteins including 28 lipoproteins and 19 cell wall-anchored proteins were chosen based on computer algorithms and comparative genomic analyses. Eight proteins among these candidates and 2 other proteins were pooled together to immunize rabbits. The antiserum reacted strongly with each protein and with S. sanguinis whole cells. Affinity chromatography was used to purify the antibodies to 9 of the antigen pool components. Competitive ELISA and FACS results indicated that these 9 proteins were exposed on S. sanguinis cell surfaces. The purified antibodies had demonstrable opsonic activity. The results indicate that immunization with pooled proteins, in combination with affinity purification, and comprehensive immunological assays may facilitate cell surface antigen identification to combat infectious diseases.

  20. Modifying TiO{sub 2} surface architecture by oxygen plasma to increase dye sensitized solar cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Rajmohan, Gayathri Devi [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Dai, Xiujuan J., E-mail: jane.dai@deakin.edu.au [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Tsuzuki, Takuya; Lamb, Peter R. [Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds, Victoria 3216 (Australia); Plessis, Johan du [School of Applied Sciences, RMIT University, GPO Box 2476 V, Melbourne, Victoria 3001 (Australia); Huang, Fuzhi; Cheng, Yi-Bing [Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia)

    2013-10-31

    Oxygen plasma treatment of TiO{sub 2} films has been used to improve the efficiency of dye sensitized solar cells. Both a commercial TiO{sub 2} sample and a TiO{sub 2} thin film synthesized by a sol-gel technique were treated using a custom built inductively coupled plasma apparatus. X-ray photoelectron spectroscopy revealed that oxygen-plasma treatment increased the number of oxygen functional groups (hydroxyl groups) and introduced some Ti{sup 3+} species on the surface of TiO{sub 2}. A sample solar cell with plasma treated TiO{sub 2} showed an overall solar-to-electricity conversion efficiency of 4.3%, about a 13% increase over untreated TiO{sub 2}. The photon conversion efficiency for the plasma treated TiO{sub 2} was 34% higher than untreated TiO{sub 2}. This enhanced cell-performance is partly due to increased dye adsorption from an increase in surface oxygen functional groups and also may be partly due to Ti{sup 3+} states on the surface of TiO{sub 2}. - Highlights: • Oxygen plasma is used to generate hydroxyl groups on the surface of TiO{sub 2} • Parallel study was conducted using a spin coated TiO{sub 2} and a Commercial TiO{sub 2} film. • The plasma functionalization caused increased dye uptake. • Some species in Ti{sup 3+} state are also generated after oxygen plasma. • Dye sensitised solar cell with functionalised electrode showed improved efficiency.

  1. The involvement of proteoglycans in the human plasma prekallikrein interaction with the cell surface.

    Directory of Open Access Journals (Sweden)

    Camila Lopes Veronez

    Full Text Available INTRODUCTION: The aim of this work was to evaluate the role of human plasma prekallikrein assembly and processing in cells and to determine whether proteoglycans, along with high molecular weight kininogen (H-kininogen, influence this interaction. METHODS: We used the endothelial cell line ECV304 and the epithelial cell lines CHO-K1 (wild type and CHO-745 (deficient in proteoglycans. Prekallikrein endocytosis was studied using confocal microscopy, and prekallikrein cleavage/activation was determined by immunoblotting using an antibody directed to the prekallikrein sequence C364TTKTSTR371 and an antibody directed to the entire H-kininogen molecule. RESULTS: At 37°C, prekallikrein endocytosis was assessed in the absence and presence of exogenously applied H-kininogen and found to be 1,418.4±0.010 and 1,070.3±0.001 pixels/cell, respectively, for ECV304 and 1,319.1±0.003 and 631.3±0.001 pixels/cell, respectively, for CHO-K1. No prekallikrein internalization was observed in CHO-745 in either condition. Prekallikrein colocalized with LysoTracker in the absence and presence of exogenous H-kininogen at levels of 76.0% and 88.5%, respectively, for ECV304 and at levels of 40.7% and 57.0%, respectively, for CHO-K1. After assembly on the cell surface, a plasma kallikrein fragment of 53 kDa was predominant in the incubation buffer of all the cell lines studied, indicating specific proteolysis; plasma kallikrein fragments of 48-44 kDa and 34-32 kDa were also detected in the incubation buffer, indicating non-specific cleavage. Bradykinin free H-kininogen internalization was not detected in CHO-K1 or CHO-745 cells at 37°C. CONCLUSION: The prekallikrein interaction with the cell surface is temperature-dependent and independent of exogenously applied H-kininogen, which results in prekallikrein endocytosis promoted by proteoglycans. Prekallikrein proteolysis/activation is influenced by H-kininogen/glycosaminoglycans assembly and controls plasma kallikrein

  2. Identification of new genes in a cell envelope-cell division gene cluster of Escherichia coli: cell envelope gene murG.

    Science.gov (United States)

    Salmond, G P; Lutkenhaus, J F; Donachie, W D

    1980-01-01

    We report the identification, cloning, and mapping of a new cell envelope gene, murG. This lies in a group of five genes of similar phenotype (in the order murE murF murG murC ddl) all concerned with peptidoglycan biosynthesis. This group is in a larger cluster of at least 10 genes, all of which are involved in some way with cell envelope growth. Images PMID:6998962

  3. Modification of plasma membrane electron transport in cultured rose cells by UV-C radiation and fungal elicitor

    International Nuclear Information System (INIS)

    Murphy, T.M.; Auh, C.K.; Schorr, R.; Grobe, C.

    1991-01-01

    Previous experiments have shown that treatments of suspension-cultured cells of Rosa damascena Mill. with UV radiation or with fungal elicitors stimulates the synthesis of H 2 O 2 by the cells. To test the hypothesis that this synthesis involves reduction of O 2 at the plasma membrane and to identify the mechanism of the reduction, we have determined the effects of UV and elicitor on redox reactions associated with the plasma membrane. Elicitor prepared from cell walls of Phytophthora sp. (14 μg solids/ml) inhibited the reduction of ferricyanide by intact cells by 98%; UV-C (primarily 254 nm, up to 19,500 J/m 2 ) inhibited this reduction by 40%. Neither treatment inhibited the reduction of Fe(III)-EDTA by intact cells. Intact cells oxidized NADH in the absence of external oxidizing agent, and the rate of oxidation was increased by UV and elicitor. Cells that were poisoned with arsenite and CCCP catalyzed the reduction of Fe(III)-EDTA in the presence of external NADH, and this ability was slightly stimulated by UV and elicitor. UV irradiation (6,480 J/m 2 ) of cells resulted in a 27% inhibition of the specific activity of NADH-ferricyanide oxidoreductase in plasma membrane isolated from those cells. Elicitor treatment of cells for at least 90 min resulted in a 50% inhibition of the enzyme's specific activity in isolated plasma membrane; this inhibition was reversed by addition of Triton-X100 in the assay mixture. The results suggest that UV and elicitor alter the flow of electrons in the plasma membrane, reversibly inhibiting NADH-cytochrome b reductase, the putative key enzyme in the pathway of ferricyanide reduction, and stimulating (or at least not inhibiting) the pathway of Fe(III)-EDTA reduction

  4. Tax secretion from peripheral blood mononuclear cells and Tax detection in plasma of patients with human T-lymphotropic virus-type 1-associated myelopathy/tropical spastic paraparesis and asymptomatic carriers.

    Science.gov (United States)

    Medina, Fernando; Quintremil, Sebastián; Alberti, Carolina; Godoy, Fabián; Pando, María E; Bustamante, Andrés; Barriga, Andrés; Cartier, Luis; Puente, Javier; Tanaka, Yuetsu; Valenzuela, María A; Ramírez, Eugenio

    2016-03-01

    Human T-lymphotropic virus-type 1 (HTLV-1) is the etiologic agent of the neurologic disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Tax viral protein plays a critical role in viral pathogenesis. Previous studies suggested that extracellular Tax might involve cytokine-like extracellular effects. We evaluated Tax secretion in 18 h-ex vivo peripheral blood mononuclear cells (PBMCs) cultures from 15 HAM/TSP patients and 15 asymptomatic carriers. Futhermore, Tax plasma level was evaluated from other 12 HAM/TSP patients and 10 asymptomatic carriers. Proviral load and mRNA encoding Tax were quantified by PCR and real-time RT-PCR, respectively. Intracellular Tax in CD4(+)CD25(+) cells occurred in 100% and 86.7% of HAM/TSP patients and asymptomatic carriers, respectively. Percentage of CD4(+)CD25(+) Tax+, proviral load and mRNA encoding Tax were significantly higher in HAM/TSP patients. Western blot analyses showed higher secretion levels of ubiquitinated Tax in HAM/TSP patients than in asymptomatic carriers. In HTLV-1-infected subjects, Western blot of plasma Tax showed higher levels in HAM/TSP patients than in asymptomatic carriers, whereas no Tax was found in non-infected subjects. Immunoprecipitated plasma Tax resolved on SDS-PAGE gave two major bands of 57 and 48 kDa allowing identification of Tax and Ubiquitin peptides by mass spectrometry. Relative percentage of either CD4(+)CD25(+) Tax+ cells, or Tax protein released from PBMCs, or plasma Tax, correlates neither with tax mRNA nor with proviral load. This fact could be explained by a complex regulation of Tax expression. Tax secreted from PBMCs or present in plasma could potentially become a biomarker to distinguish between HAM/TSP patients and asymptomatic carriers. © 2015 Wiley Periodicals, Inc.

  5. Plasma levels of stromal cell-derived factor-1 (CXCL12) and circulating endothelial progenitor cells in women with idiopathic heavy menstrual bleeding.

    Science.gov (United States)

    Elsheikh, E; Andersson, E; Sylvén, C; Ericzon, B-G; Palmblad, J; Mints, M

    2014-01-01

    Do plasma levels of stromal cell-derived factor-1 (CXCL12, sometimes termed SDF-1) and the numbers of circulating endothelial progenitor cells (EPCs), EPC colony-forming units (EPC-CFU) and mature endothelial cells (ECs) differ between women with idiopathic heavy menstrual bleeding of endometrial origin (HMB-E) and controls and are they related to plasma levels of other angiogenic growth factors? Angiogenesis is altered in women with HMB-E, characterized by a reduction in mean plasma levels of CXCL12, a low number of EPCs-CFUs and a high level of circulating ECs. Plasma levels of CXCL12 are significantly higher during the proliferative than the secretory phase of the menstrual cycle in healthy women and exhibit a negative correlation with blood EPC-CFUs. A prospective cohort study in a university hospital setting. Between 2008 and 2009 10 HMB-E patients were recruited from Karolinska University Hospital. Ten healthy women were also included in the analysis. Ten healthy control women and 10 HMB-E patients, all with regular menstrual cycles, provided 4 blood samples during a single menstrual cycle: 2 in the proliferative phase, 1 at ovulation and 1 in the secretory phase. We assessed plasma levels of CXCL12, vascular endothelial growth factor A(165) (VEGFA), basic fibroblast growth factor (bFGF) and granulocyte and granulocyte-macrophage colony-stimulating factors by ELISA. We counted circulating EPC-CFUs by culture, and ECs and EPCs by flow cytometry and immunostaining for cell surface markers. Plasma levels of CXCL12 were significantly lower in HMB-E patients compared with control women (P Market Insurance. The authors have no conflict of interest to declare.

  6. Effects of anti-lipid peroxidation of Punica granatum fruit extract in endothelial cells induced by plasma of severe pre-eclamptic patients.

    Science.gov (United States)

    Nasifah, Isri; Soeharto, Setyawati; Nooryanto, Mukhamad

    Preeclampsia is a pregnancy disorder characterized by hypertension and proteinuria. This disorder involves oxidative stress and changes in endothelial homeostasis. This study was aimed to seek whether an ethanolic extract of Punica granatum fruit inhibits 8-iso-PGFα formation and modulates nitric oxide (NO) in endothelial cells induced by plasma from pre-eclamptic patients. Endothelial cells were cultured from human umbilical vein endothelial cells. At confluence, endothelial cells were divided into five groups, which included endothelial cells exposed to 2% plasma from normal pregnancy (NP), endothelial cells exposed to 2% plasma from pre-eclamptic patients (PP), endothelial cells exposed to PP in the presence of ethanolic extract of P. granatum (PP+PG) at the following three doses: 14; 28; and 56 ppm. Analysis of 8-iso-PGFα was done by immunoassay technique. Analysis of NO level was done by colorimetric technique. Plasma from PP significantly increased 8-iso-PGFα level compared to cells treated by normal pregnancy plasma. This increase in 8-iso-PGFα was significantly (pgranatum extract. The level of NO was insignificant (p>0.05) between groups. P. granatum fruit extract protects endothelial cells from oxidative stress induced by plasma from pre-eclamptic patients. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  7. Atmospheric plasma surface modifications of electrospun PCL/chitosan/PCL hybrid scaffolds by nozzle type plasma jets for usage of cell cultivation

    Science.gov (United States)

    Surucu, Seda; Masur, Kai; Turkoglu Sasmazel, Hilal; Von Woedtke, Thomas; Weltmann, Klaus Dieter

    2016-11-01

    This paper reports Ar gas, Ar + O2, Ar + O2 + N2 gas mixtures and dry air plasma modifications by atmospheric pressure argon driven kINPen and air driven Diener (PlasmaBeam) plasma jets to alter surface properties of three dimensional (3D), electrospun PCL/Chitosan/PCL layer by layer hybrid scaffolds to improve human fibroblast (MRC5) cell attachment and growth. The characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), X-Ray Photoelectron spectroscopy (XPS) analysis. The results showed that the plasma modification carried out under dry air and Ar + O2 + N2 gas mixtures were altered effectively the nanotopography and the functionality of the material surfaces. It was found that the samples treated with Ar + O2 + N2 gas mixtures for 1 min and dry air for 9 min have better hydrophilicity 78.9° ± 1.0 and 75.6° ± 0.1, respectively compared to the untreated samples (126.5°). Biocompatibility performance of the scaffolds was determined with alamarBlue (aB) assay and MTT assay methods, Giemsa staining, fluorescence microscope, confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) analyses. The results showed that plasma treated samples increased the hydrophilicity and oxygen functionality and topography of the surfaces significantly, thus affecting the cell viability and proliferation on/within scaffolds.

  8. Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 °C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization.

  9. Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers

    Energy Technology Data Exchange (ETDEWEB)

    Waldbillig, D. [University of British Columbia, Department of Materials Engineering, 309-6350 Stores Road, Vancouver, BC (Canada); Kesler, O. [University of Toronto, Department of Mechanical and Industrial Engineering, 5 King' s College Road, Toronto, Ontario (Canada)

    2009-06-15

    A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization. (author)

  10. Development of Coagulation Factor Probes for the Identification of Procoagulant Circulating Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Tormoen, Garth W.; Cianchetti, Flor A. [Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR (United States); Bock, Paul E. [Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN (United States); McCarty, Owen J. T., E-mail: tormoeng@ohsu.edu [Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR (United States); Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR (United States); Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health and Science University, Portland, OR (United States)

    2012-09-06

    Metastatic cancer is associated with a hypercoagulable state, and pathological venous thromboembolic disease is a significant source of morbidity and the second leading cause of death in patients with cancer. Here we aimed to develop a novel labeling strategy to detect and quantify procoagulant circulating tumor cells (CTCs) from patients with metastatic cancer. We hypothesize that the enumeration of procoagulant CTCs may be prognostic for the development of venous thrombosis in patients with cancer. Our approach is based on the observation that cancer cells are capable of initiating and facilitating cell-mediated coagulation in vitro, whereby activated coagulation factor complexes assemble upon cancer cell membrane surfaces. Binding of fluorescently labeled, active site-inhibited coagulation factors VIIa, Xa, and IIa to the metastatic breast cancer cell line, MDA-MB-231, non-metastatic colorectal cell line, SW480, or metastatic colorectal cell line, SW620, was characterized in a purified system, in anticoagulated blood and plasma, and in plasma under conditions of coagulation. We conclude that a CTC labeling strategy that utilizes coagulation factor-based fluorescent probes may provide a functional assessment of the procoagulant potential of CTCs, and that this strategy is amenable to current CTC detection platforms.

  11. Mcl-1 is essential for the survival of plasma cells

    NARCIS (Netherlands)

    Peperzak, Victor; Vikström, Ingela; Walker, Jennifer; Glaser, Stefan P.; LePage, Melanie; Coquery, Christine M.; Erickson, Loren D.; Fairfax, Kirsten; Mackay, Fabienne; Strasser, Andreas; Nutt, Stephen L.; Tarlinton, David M.

    2013-01-01

    The long-term survival of plasma cells is entirely dependent on signals derived from their environment. These extrinsic factors presumably induce and sustain the expression of antiapoptotic proteins of the Bcl-2 family. It is uncertain whether there is specificity among Bcl-2 family members in the

  12. Imaging of multiple myeloma and related monoclonal plasma cell diseases. An update

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Delorme, Stefan; Hillengass, Jens

    2014-01-01

    Multiple myeloma is a hematologic disorder characterized by the infiltration and proliferation of monoclonal plasma cells mainly in the bone marrow. The main symptoms are hypercalcemia, renal impairment, cytopenia/anemia and bone disease - summarized as CRAB-criteria. Symptomatic multiple myeloma is consistently preceded by asymptomatic premalignant stages called monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Staging of multiple myeloma is based on the measurement of the monoclonal protein in serum and urine as well as the assessment of impairment of hematopoiesis, renal function and mineralized bone. In the last decade the development of novel therapeutic agents has led to an increase in response rates and survival time of patients with multiple myeloma, which further stresses the value of response assessment by imaging. Cross sectional imaging like MRI and CT is currently replacing conventional radiological surveys in the initial work-up and follow-up of patients with monoclonal plasma cell diseases. The added value of MRI is to improve initial staging by unraveling a diffuse infiltration of bone marrow by plasma cells, a focal pattern or a combination of both. Furthermore, a complete remission of myeloma confirmed by MRI and CT goes along with a better prognosis compared to a complete response based only on serological parameters.

  13. Calcium pumps of plasma membrane and cell interior

    DEFF Research Database (Denmark)

    Strehler, Emanuel E; Treiman, Marek

    2004-01-01

    Calcium entering the cell from the outside or from intracellular organelles eventually must be returned to the extracellular milieu or to intracellular storage organelles. The two major systems capable of pumping Ca2+ against its large concentration gradient out of the cell or into the sarco....../endoplasmatic reticulum are the plasma membrane Ca2+ ATPases (PMCAs) and the sarco/endoplasmic reticulum Ca2+ ATPases (SERCAs), respectively. In mammals, multigene families code for these Ca2+ pumps and additional isoform subtypes are generated via alternative splicing. PMCA and SERCA isoforms show developmental-, tissue......- and cell type-specific patterns of expression. Different PMCA and SERCA isoforms are characterized by different regulatory and kinetic properties that likely are optimized for the distinct functional tasks fulfilled by each pump in setting resting cytosolic or intra-organellar Ca2+ levels, and in shaping...

  14. White blood cells identification system based on convolutional deep neural learning networks.

    Science.gov (United States)

    Shahin, A I; Guo, Yanhui; Amin, K M; Sharawi, Amr A

    2017-11-16

    White blood cells (WBCs) differential counting yields valued information about human health and disease. The current developed automated cell morphology equipments perform differential count which is based on blood smear image analysis. Previous identification systems for WBCs consist of successive dependent stages; pre-processing, segmentation, feature extraction, feature selection, and classification. There is a real need to employ deep learning methodologies so that the performance of previous WBCs identification systems can be increased. Classifying small limited datasets through deep learning systems is a major challenge and should be investigated. In this paper, we propose a novel identification system for WBCs based on deep convolutional neural networks. Two methodologies based on transfer learning are followed: transfer learning based on deep activation features and fine-tuning of existed deep networks. Deep acrivation featues are extracted from several pre-trained networks and employed in a traditional identification system. Moreover, a novel end-to-end convolutional deep architecture called "WBCsNet" is proposed and built from scratch. Finally, a limited balanced WBCs dataset classification is performed through the WBCsNet as a pre-trained network. During our experiments, three different public WBCs datasets (2551 images) have been used which contain 5 healthy WBCs types. The overall system accuracy achieved by the proposed WBCsNet is (96.1%) which is more than different transfer learning approaches or even the previous traditional identification system. We also present features visualization for the WBCsNet activation which reflects higher response than the pre-trained activated one. a novel WBCs identification system based on deep learning theory is proposed and a high performance WBCsNet can be employed as a pre-trained network. Copyright © 2017. Published by Elsevier B.V.

  15. Identification of a novel set of genes reflecting different in vivo invasive patterns of human GBM cells

    International Nuclear Information System (INIS)

    Monticone, Massimiliano; Giaretti, Walter; Pfeffer, Ulrich; Daga, Antonio; Candiani, Simona; Romeo, Francesco; Mirisola, Valentina; Viaggi, Silvia; Melloni, Ilaria; Pedemonte, Simona; Zona, Gianluigi

    2012-01-01

    Most patients affected by Glioblastoma multiforme (GBM, grade IV glioma) experience a recurrence of the disease because of the spreading of tumor cells beyond surgical boundaries. Unveiling mechanisms causing this process is a logic goal to impair the killing capacity of GBM cells by molecular targeting. We noticed that our long-term GBM cultures, established from different patients, may display two categories/types of growth behavior in an orthotopic xenograft model: expansion of the tumor mass and formation of tumor branches/nodules (nodular like, NL-type) or highly diffuse single tumor cell infiltration (HD-type). We determined by DNA microarrays the gene expression profiles of three NL-type and three HD-type long-term GBM cultures. Subsequently, individual genes with different expression levels between the two groups were identified using Significance Analysis of Microarrays (SAM). Real time RT-PCR, immunofluorescence and immunoblot analyses, were performed for a selected subgroup of regulated gene products to confirm the results obtained by the expression analysis. Here, we report the identification of a set of 34 differentially expressed genes in the two types of GBM cultures. Twenty-three of these genes encode for proteins localized to the plasma membrane and 9 of these for proteins are involved in the process of cell adhesion. This study suggests the participation in the diffuse infiltrative/invasive process of GBM cells within the CNS of a novel set of genes coding for membrane-associated proteins, which should be thus susceptible to an inhibition strategy by specific targeting. Massimiliano Monticone and Antonio Daga contributed equally to this work

  16. Identification of a novel set of genes reflecting different in vivo invasive patterns of human GBM cells.

    Science.gov (United States)

    Monticone, Massimiliano; Daga, Antonio; Candiani, Simona; Romeo, Francesco; Mirisola, Valentina; Viaggi, Silvia; Melloni, Ilaria; Pedemonte, Simona; Zona, Gianluigi; Giaretti, Walter; Pfeffer, Ulrich; Castagnola, Patrizio

    2012-08-17

    Most patients affected by Glioblastoma multiforme (GBM, grade IV glioma) experience a recurrence of the disease because of the spreading of tumor cells beyond surgical boundaries. Unveiling mechanisms causing this process is a logic goal to impair the killing capacity of GBM cells by molecular targeting.We noticed that our long-term GBM cultures, established from different patients, may display two categories/types of growth behavior in an orthotopic xenograft model: expansion of the tumor mass and formation of tumor branches/nodules (nodular like, NL-type) or highly diffuse single tumor cell infiltration (HD-type). We determined by DNA microarrays the gene expression profiles of three NL-type and three HD-type long-term GBM cultures. Subsequently, individual genes with different expression levels between the two groups were identified using Significance Analysis of Microarrays (SAM). Real time RT-PCR, immunofluorescence and immunoblot analyses, were performed for a selected subgroup of regulated gene products to confirm the results obtained by the expression analysis. Here, we report the identification of a set of 34 differentially expressed genes in the two types of GBM cultures. Twenty-three of these genes encode for proteins localized to the plasma membrane and 9 of these for proteins are involved in the process of cell adhesion. This study suggests the participation in the diffuse infiltrative/invasive process of GBM cells within the CNS of a novel set of genes coding for membrane-associated proteins, which should be thus susceptible to an inhibition strategy by specific targeting.Massimiliano Monticone and Antonio Daga contributed equally to this work.

  17. Feedback control of plasma configuration in JT-60

    International Nuclear Information System (INIS)

    Ninomiya, Hiromasa; Kikuchi, Mitsuru; Yoshino, Ryuji; Hosogane, Nobuyuki; Kimura, Toyoaki; Kurihara, Kenichi; Takahashi, Minoru; Hayashi, Kazuo.

    1986-08-01

    Plasma current, plasma position (center of the outermost magnetic surface), decay index n index and width of the divertor throat are feedback controlled by using 5 kinds of poloidal field coils in JT-60. 5 control commands are calculated in a feedback control computer in each 1 msec. These feedback control functions are checked in ohmically heated plasma. The control characteristics of the plasma are well understood by the simplified control analysis and are consistent with the precise matrix transfer function analysis in the frequency domain and the simulation analysis which include the effects of eddy currents, delay time elements and mutual interactions between controllers. The usefulness of these analyses is experimentally confirmed. Each controlled variable is well feedback controlled to the command and the experimentally realized equilibrium configuration is checked by the well calibrated magnetic probes. Fast boundary identification code is used for the identification of the equilibrium and results are consistent with the precalculated plasma equilibria. By using this feedback control system of the plasma configuration and the equilibrium identification method, we have obtained the stable limiter and divertor configuration. The maximum parameters obtained during OH(I) experimental period are plasma current I p = 1.8 MA, the effective safety factor q eff e = 5.7 x 10 19 m -3 (Murakami parameter of 4.5) and the pulse length of 5 ∼ 10 sec. (author)

  18. Crystalline silicon thin film growth by ECR plasma CVD for solar cells

    International Nuclear Information System (INIS)

    Licai Wang

    1999-07-01

    This thesis describes the background, motivation and work carried out towards this PhD programme entitled 'Crystalline Silicon Thin Film Growth by ECR Plasma CVD for Solar Cells'. The fundamental principles of silicon solar cells are introduced with a review of silicon thin film and bulk solar cells. The development and prospects for thin film silicon solar cells are described. Some results of a modelling study on thin film single crystalline solar cells are given which has been carried out using a commercially available solar cell simulation package (PC-1D). This is followed by a description of thin film deposition techniques. These include Chemical Vapour Deposition (CVD) and Plasma-Assisted CVD (PACVD). The basic theory and technology of the emerging technique of Electron Cyclotron Resonance (ECR) PACVD, which was used in this research, are introduced and the potential advantages summarised. Some of the basic methods of material and cell characterisation are briefly described, together with the work carried out in this research. The growth by ECR PACVD at temperatures 2 illumination. The best efficiency in the ECR grown structures was 13.76% using an epitaxial emitter. Cell performance was analysed in detail and the factors controlling performance identified by fitting self-consistently the fight and dark current-voltage and spectral response data using PC-1D. Finally, the conclusions for this research and suggestions for further work are outlined. (author)

  19. Alterations in plasma phosphorus, red cell 2,3-diphosphoglycerate and P50 following open heart surgery.

    Science.gov (United States)

    Hasan, R A; Sarnaik, A P; Meert, K L; Dabbagh, S; Simpson, P; Makimi, M

    1994-12-01

    To evaluate changes in and the correlation between plasma phosphorus, red cell 2,3-diphosphoglycerate (DPG) and adenosine triphosphate (ATP), and P50 in children following heart surgery. Prospective, observational study with factorial design. A pediatric intensive care unit in a university hospital. Twenty children undergoing open heart surgery for congenital heart defects. None. Red cell 2,3-DPG and ATP, P50, plasma phosphorus, and arterial lactate were obtained before and at 1, 8, 16, 24, 48, and 72 hours after surgery. The amount of intravenous fluid and glucose administered, and age of blood utilized were documented. Variables were analyzed by repeated measure analysis of variance followed by paired t-tests. To investigate the relationship between variables at each time point, scatterplot matrices and correlation coefficients were obtained. There was a reduction in plasma phosphorus, red cell 2,3-DPG, and P50 and an increase in arterial lactate at 1, 8, 16, 24, 48, and 72 hours after surgery. Red cell 2,3-DPG correlated with P50 at 1, 8 and 16 hours. The decrease in the plasma phosphorus correlated with the amounts of intravenous fluid and glucose administered on the day of surgery and on the first and second postoperative days. The age of the blood utilized correlated with the decrease in red cell 2,3-DPG on the day of surgery. Reduction in red cell 2,3-DPG, P50, and plasma phosphorus occurs after open heart surgery in children. These changes can potentially contribute to impaired oxygen utilization in the postoperative period, when adequacy of tissue oxygenation is critical.

  20. Relationship Between Particle and Plasma Properties and Coating Characteristics of Samaria-Doped Ceria Prepared by Atmospheric Plasma Spraying for Use in Solid Oxide Fuel Cells

    Science.gov (United States)

    Cuglietta, Mark; Kesler, Olivera

    2012-06-01

    Samaria-doped ceria (SDC) has become a promising material for the fabrication of high-performance, intermediate-temperature solid oxide fuel cells (SOFCs). In this study, the in-flight characteristics, such as particle velocity and surface temperature, of spray-dried SDC agglomerates were measured and correlated to the resulting microstructures of SDC coatings fabricated using atmospheric plasma spraying, a manufacturing technique with the capability of producing full cells in minutes. Plasmas containing argon, nitrogen and hydrogen led to particle surface temperatures higher than those in plasmas containing only argon and nitrogen. A threshold temperature for the successful deposition of SDC on porous stainless steel substrates was calculated to be 2570 °C. Coating porosity was found to be linked to average particle temperature, suggesting that plasma conditions leading to lower particle temperatures may be most suitable for fabricating porous SOFC electrode layers.

  1. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    The plasma membrane separates the cellular contents from the surrounding environment. Nutrients must enter through the plasma membrane in order to reach the cell interior, and toxic metabolites and several ions leave the cell by traveling across the same barrier. Biological pumps in the plasma me...

  2. Particle-in-cell plasma simulations of the modified two-stream instability

    Directory of Open Access Journals (Sweden)

    K. Schlegel

    1994-08-01

    Full Text Available We model the modified two-stream plasma instability occurring in the ionospheric E-region using a 2.5-dimensional particle-in-cell code. Compared to previous similar work we concentrate on simulated quantities that can easily be measured in the real ionosphere by coherent radars or rockets, such as the Doppler velocity, the backscattered power, backscattered spectra, aspect angle behaviour and electron temperature enhancement. Despite using a relatively small simulation model, we obtain remarkably good agreement between actual observed and simulated plasma parameters. The advantage of such a small system is that we were able to perform (other than in previous related work many simulation runs with different sets of input parameters, thus studying the unstable plasma under various conditions.

  3. Chemically different non-thermal plasmas target distinct cell death pathways

    Czech Academy of Sciences Publication Activity Database

    Lunov, O.; Zablotskyy, V.; Chrupina, O.; Lunova, M.; Jirsa, M.; Dejneka, A.; Kubinová, Šárka

    2017-01-01

    Roč. 7, apr (2017), s. 600 ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : chemically different * non-thermal plasmas * target distinct cell death pathways Subject RIV: FP - Other Medical Disciplines OBOR OECD: Biophysics Impact factor: 4.259, year: 2016

  4. Delineation of a novel pre-B cell component in plasma cell myeloma: immunochemical, immunophenotypic, genotypic, cytologic, cell culture, and kinetic features.

    Science.gov (United States)

    Grogan, T M; Durie, B G; Lomen, C; Spier, C; Wirt, D P; Nagle, R; Wilson, G S; Richter, L; Vela, E; Maxey, V

    1987-10-01

    A novel pre-B cell component in direct and cultured myeloma bone marrow material has been delineated by using immunochemistry and flow cytometry techniques. Our phenotypic studies suggest a novel hybrid expression of pre-B and plasma cell antigens with coexpression of cytoplasmic mu, common acute lymphoblastic leukemia antigen, terminal deoxynucleotidyl transferase, and plasma cell antigens (PCA-1 and PC-1). This suggests that myeloma pre-B-like cells are aberrant malignant cells and not normal pre-B lymphocytic counterparts. With the advantage of a pure and stable source of these cells from M3 culture to allow molecular characterization, we performed one- and two-dimensional gel electrophoresis and Western blotting. We found that the cytoplasmic mu in myeloma pre-B-like cells has a molecular weight of 74,000 daltons and an isoelectric point of 6.3 and that it is strikingly homogeneous and discrete in size and charge compared with standard secretory mu, which suggests an aberrant, mutant, or monoclonal form of mu. Monoclonality was further evidenced by heavy- and light-chain immunoglobulin gene rearrangements demonstrated with JH and C kappa probes. We also established that this novel myeloma pre-B component is a major proliferative element as determined by double-labeling experiments with phenotype coupled to labeling/proliferative indexes. Our stimulatory studies indicate some capacity of these cells to mature on exposure to phorbol esters. These myeloma pre-B cells may represent the stem cell or self-renewal component in myeloma. Our establishment of these cells in long-term culture offers a considerable asset in studying the immature cells, which may be critical to the immortalization of myeloma.

  5. The Sur7 protein regulates plasma membrane organization and prevents intracellular cell wall growth in Candida albicans.

    Science.gov (United States)

    Alvarez, Francisco J; Douglas, Lois M; Rosebrock, Adam; Konopka, James B

    2008-12-01

    The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Delta mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Delta mutant are similar to the effects of inhibiting beta-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains.

  6. The Sur7 Protein Regulates Plasma Membrane Organization and Prevents Intracellular Cell Wall Growth in Candida albicans

    Science.gov (United States)

    Alvarez, Francisco J.; Douglas, Lois M.; Rosebrock, Adam

    2008-01-01

    The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Δ mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Δ mutant are similar to the effects of inhibiting β-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains. PMID:18799621

  7. Plasma enhanced atomic layer deposited MoOx emitters for silicon heterojunction solar cells

    OpenAIRE

    Ziegler, J.; Mews, M.; Kaufmann, K.; Schneider, T.; Sprafke, A.N.; Korte, L.; Wehrsporn, R.B

    2015-01-01

    A method for the deposition of molybdenum oxide MoOx with high growth rates at temperatures below 200 C based on plasma enhanced atomic layer deposition is presented. The stoichiometry of the overstoichiometric MoOx films can be adjusted by the plasma parameters. First results of these layers acting as hole selective contacts in silicon heterojunction solar cells are presented and discussed

  8. Multi-grid Particle-in-cell Simulations of Plasma Microturbulence

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2003-01-01

    A new scheme to accurately retain kinetic electron effects in particle-in-cell (PIC) simulations for the case of electrostatic drift waves is presented. The splitting scheme, which is based on exact separation between adiabatic and on adiabatic electron responses, is shown to yield more accurate linear growth rates than the standard df scheme. The linear and nonlinear elliptic problems that arise in the splitting scheme are solved using a multi-grid solver. The multi-grid particle-in-cell approach offers an attractive path, both from the physics and numerical points of view, to simulate kinetic electron dynamics in global toroidal plasmas

  9. Identification of antifungal H+-ATPase inhibitors with effect on the plasma membrane potential

    DEFF Research Database (Denmark)

    Kjellerup, Lasse; Gordon, Sandra; Cohrt, Karen O'Hanlon

    2017-01-01

    to depolarize the membrane and inhibit extracellular acidification in intact fungal cells, concomitant with a significant increase in intracellular ATP levels. Collectively, we suggest these effects may be a common feature for Pma1 inhibitors. Additionally, the work uncovered a dual mechanism for the previously......The plasma membrane H(+)-ATPase (Pma1) is an essential fungal protein and a proposed target for new antifungal medications. A small-molecule library containing ∼191,000 commercially available compounds was screened for inhibition of S. cerevisiae plasma membranes containing Pma1. The overall hit...... identified cationic peptide BM2, revealing fungal membrane disruption in addition to Pma1 inhibition. The methods presented here provide a solid platform for the evaluation of Pma1-specific inhibitors in a drug development setting. The present inhibitors could serve as a starting point for the development...

  10. Plasma monitoring and PECVD process control in thin film silicon-based solar cell manufacturing

    Directory of Open Access Journals (Sweden)

    Gabriel Onno

    2014-02-01

    Full Text Available A key process in thin film silicon-based solar cell manufacturing is plasma enhanced chemical vapor deposition (PECVD of the active layers. The deposition process can be monitored in situ by plasma diagnostics. Three types of complementary diagnostics, namely optical emission spectroscopy, mass spectrometry and non-linear extended electron dynamics are applied to an industrial-type PECVD reactor. We investigated the influence of substrate and chamber wall temperature and chamber history on the PECVD process. The impact of chamber wall conditioning on the solar cell performance is demonstrated.

  11. Magnetic capture of polydopamine-encapsulated Hela cells for the analysis of cell surface proteins.

    Science.gov (United States)

    Liu, Yiying; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin

    2018-02-10

    A novel method to characterize cell surface proteins and complexes has been developed. Polydopamine (PDA)-encapsulated Hela cells were prepared for plasma membrane proteome research. Since the PDA protection, the encapsulated cells could be maintained for more than two weeks. Amino groups functionalized magnetic nanoparticles were also used for cell capture by the reaction with the PDA coatings. Plasma membrane fragments were isolated and enriched with assistance of an external magnetic field after disruption of the coated cells by ultrasonic treatment. Plasma membrane proteins (PMPs) and complexes were well preserved on the fragments and identified by shot-gun proteomic analytical strategy. 385 PMPs and 1411 non-PMPs were identified using the method. 85.2% of these PMPs were lipid-raft associated proteins. Ingenuity Pathway Analysis was employed for bio-information extraction from the identified proteins. It was found that 653 non-PMPs had interactions with 140 PMPs. Among them, epidermal growth factor receptor and its complexes, and a series of important pathways including STAT3 pathway were observed. All these results demonstrated that the new approach is of great importance in applying to the research of physiological function and mechanism of the plasma membrane proteins. This work developed a novel strategy for the proteomic analysis of cell surface proteins. According to the results, 73.3% of total identified proteins were lipid-raft associated proteins, which imply that the proposed method is of great potential in the identification of lipid-raft associated proteins. In addition, a series of protein-protein interactions and pathways related to Hela cells were pointed out. All these results demonstrated that our proposed approach is of great importance and could well be applied to the physiological function and mechanism research of plasma membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Plasma surface modification of poly (L-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion

    International Nuclear Information System (INIS)

    Khorasani, M.T.; Mirzadeh, H.; Irani, S.

    2008-01-01

    Radio frequency (RF) plasma treatment in O 2 was applied to modify the surface of poly (L-lactic acid) (PLLA) and poly (D,L-lactic acid-coglycolic acid) (PLGA) as biodegradable polymers. The surface structure, morphology, wettability and surface chemistry of treated films were characterized by water drop contact angle measurement, scanning electron microscope (SEM), optical invert microscope, differential scanning calorimetry (DSC) and ATIR-FTIR spectroscopy. The cell affinity of the oxygen plasma treated film was evaluated by nervous tissue B65 cell culture in stationary conditions. The results showed that the hydrophilicity increased greatly after O 2 plasma treatment. The results showed that improved cell adhesion was attributed to the combination of surface chemistry and surface wettability during plasma treatment. Cell culture results showed that B65 nervous cell attachment and growth on the plasma treated PLLA was much higher than an unmodified sample and PLGA. Surface hydrophilicity and chemical functional groups with high polar component play an important role in enhancing cell attachment and growth

  13. Comprehensive Identification of Glycated Peptides and Their Glycation Motifs in Plasma and Erythrocytes of Control and Diabetic Subjects

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Monroe, Matthew E.; Schepmoes, Athena A.; Clauss, Therese RW; Gritsenko, Marina A.; Meng, Da; Petyuk, Vladislav A.; Smith, Richard D.; Metz, Thomas O.

    2011-07-01

    Non-enzymatic glycation of proteins is implicated in diabetes mellitus and its related complications. In this report, we extend our previous development and refinement of proteomics-based methods for the analysis of non-enzymatically glycated proteins to comprehensively identify glycated proteins in normal and diabetic human plasma and erythrocytes. Using immunodepletion, enrichment, and fractionation strategies, we identified 7749 unique glycated peptides, corresponding to 3742 unique glycated proteins. Semi-quantitative comparisons revealed a number of proteins with glycation levels significantly increased in diabetes relative to control samples and that erythrocyte proteins are more extensively glycated than plasma proteins. A glycation motif analysis revealed amino acids that are favored more than others in the protein primary structures in the vicinity of the glycation sites in both sample types. The glycated peptides and corresponding proteins reported here provide a foundation for the potential identification of novel markers for diabetes, glycemia, or diabetic complications.

  14. Particle-in-cell Simulations of Raman Laser Amplification in Ionizing Plasmas

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Fisch, Nathaniel J.

    2003-01-01

    By using the amplifying laser pulse in a plasma-based backward Raman laser amplifier to generate the plasma by photo-ionization of a gas simultaneous with the amplification process, possible instabilities of the pumping laser pulse can be avoided. Particle-in-cell simulations are used to study this amplification mechanism, and earlier results using more elementary models of the Raman interaction are verified [D.S. Clark and N.J. Fisch, Phys. Plasmas, 9 (6): 2772-2780, 2002]. The effects (unique to amplification in ionizing plasmas and not included in previous simulations) of blue-shifting of the pump and seed laser pulses and the generation of a wake are observed not significantly to impact the amplification process. As expected theoretically, the peak output intensity is found to be limited to I ∼ 10 17 W/cm 2 by forward Raman scattering of the amplifying seed. The integrity of the ionization front of the seed pulse against the development of a possible transverse modulation instability is also demonstrated

  15. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ruth Merkle

    2016-08-01

    Full Text Available Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC, is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO. However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR. The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in

  16. Investigation of selective induction of breast cancer cells to death with treatment of plasma-activated medium

    Science.gov (United States)

    Hashizume, Hiroshi; Tanaka, Hiromasa; Nakamura, Kae; Kano, Hiroyuki; Ishikawa, Kenji; Kikkawa, Fumitaka; Mizuno, Masaaki; Hori, Masaru

    2015-09-01

    The applications of plasma in medicine have much attention. We previously showed that plasma-activated medium (PAM) induced glioblastoma cells to apoptosis. However, it has not been elucidated the selectivity of PAM in detail. In this study, we investigated the selective effect of PAM on the death of human breast normal and cancer cells, MCF10A and MCF7, respectively, and observed the selective death with fluorescent microscopy. For the investigation of cell viability with PAM treatment, we prepared various PAMs according to the strengths, and treated each of cells with PAMs. Week PAM treatment only decreased the viability of MCF7 cells, while strong PAM treatment significantly affected both viabilities of MCF7 and MCF10A cells. For the fluorescent observation, we prepared the mixture of MCF7 and fluorescent-probed MCF10A cells, and seeded them. After the treatment of PAMs, the images showed that only MCF7 cells damaged in the mixture with week PAM treatment. These results suggested that a specific range existed with the selective effect in the strength of PAM. This work was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' Grant No. 24108002 and 24108008 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  17. Clinical symptoms in fibromyalgia are better associated to lipid peroxidation levels in blood mononuclear cells rather than in plasma.

    Science.gov (United States)

    Cordero, Mario D; Alcocer-Gómez, Elísabet; Cano-García, Francisco J; De Miguel, Manuel; Carrión, Angel M; Navas, Plácido; Sánchez Alcázar, José A

    2011-01-01

    We examined lipid peroxidation (LPO) in blood mononuclear cells (BMCs) and plasma, as a marker of oxidative damage, and its association to clinical symptoms in Fibromyalgia (FM) patients. We conducted a case-control and correlational study comparing 65 patients and 45 healthy controls. Clinical parameters were evaluated using the Fibromyalgia Impact Questionnaire (FIQ), visual analogues scales (VAS), and the Beck Depression Inventory (BDI). Oxidative stress was determined by measuring LPO in BMCs and plasma. We found increased LPO levels in BMCs and plasma from FM patients as compared to normal control (PBMI, and sex, showed that both LPO in cells and plasma were independently associated to clinical symptoms. However, LPO in cells, but not LPO in plasma, was independently associated to clinical symptoms when controlling for depression (BDI scores). The results of this study suggest a role for oxidative stress in the pathophysiology of fibromyalgia and that LPO in BMCs rather than LPO in plasma is better associated to clinical symptoms in FM.

  18. Cell Proliferation on Polyethylene Terephthalate Treated in Plasma Created in SO2/O2 Mixtures

    Directory of Open Access Journals (Sweden)

    Nina Recek

    2017-02-01

    Full Text Available Samples of polymer polyethylene terephthalate were exposed to a weakly ionized gaseous plasma to modify the polymer surface properties for better cell cultivation. The gases used for treatment were sulfur dioxide and oxygen of various partial pressures. Plasma was created by an electrodeless radio frequency discharge at a total pressure of 60 Pa. X-ray photoelectron spectroscopy showed weak functionalization of the samples’ surfaces with the sulfur, with a concentration around 2.5 at %, whereas the oxygen concentration remained at the level of untreated samples, except when the gas mixture with oxygen concentration above 90% was used. Atomic force microscopy revealed highly altered morphology of plasma-treated samples; however, at high oxygen partial pressures this morphology vanished. The samples were then incubated with human umbilical vein endothelial cells. Biological tests to determine endothelialization and possible toxicity of the plasma-treated polyethylene terephthalate samples were performed. Cell metabolic activity (MTT and in vitro toxic effects of unknown compounds (TOX were assayed to determine the biocompatibility of the treated substrates. The biocompatibility demonstrated a well-pronounced maximum versus gas composition which correlated well with development of the surface morphology.

  19. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Van Bael, Simon, E-mail: simon.vanbael@mech.kuleuven.be [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300c, bus 2419, 3001 Heverlee (Belgium); Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Desmet, Tim [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000 (Belgium); Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent (Belgium); Chai, Yoke Chin [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Pyka, Gregory [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium); Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, bus 2450, 3001 Leuven (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 Bis, Ghent, 9000 (Belgium); Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Jozef Plateaustraat 22, 9000 Ghent (Belgium); Kruth, Jean-Pierre [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Schrooten, Jan [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, bus 813, 3000 Leuven (Belgium)

    2013-08-01

    In the present study a structural characterization and in vitro cell-biological evaluation was performed on polycaprolactone (PCL) scaffolds that were produced by the additive manufacturing technique selective laser sintering (SLS), followed by a plasma-based surface modification technique, either non-thermal oxygen plasma or double protein coating, to functionalize the PCL scaffold surfaces. In the first part of this study pore morphology by means of 2D optical microscopy, surface chemistry by means of hydrophilicity measurement and X-ray photoelectron spectroscopy, strut surface roughness by means of 3D micro-computed tomography (CT) imaging and scaffold mechanical properties by means of compression testing were evaluated before and after the surface modifications. The results showed that both surface modifications increased the PCL scaffold hydrophilicity without altering the morphological and mechanical properties. In the second part of this study the in vitro cell proliferation and differentiation of human osteoprogenitor cells, over 14 days of culture in osteogenic and growth medium were investigated. The O{sub 2} plasma modification gave rise to a significant lower in vitro cell proliferation compared to the untreated and double protein coated scaffolds. Furthermore the double protein coating increased in vitro cell metabolic activity and cell differentiation compared to the untreated and O{sub 2} plasma PCL scaffolds when OM was used. - Highlights: • Polycaprolactone scaffolds are produced with selective laser sintering. • 2 types of plasma based surface functionalization were applied. • Plasma had no significant effect on strut roughness and pore morphology. • Plasma improved surface hydrophilicity. • In vitro cell differentiation increased with plasma protein coated functionalization.

  20. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Van Bael, Simon; Desmet, Tim; Chai, Yoke Chin; Pyka, Gregory; Dubruel, Peter; Kruth, Jean-Pierre; Schrooten, Jan

    2013-01-01

    In the present study a structural characterization and in vitro cell-biological evaluation was performed on polycaprolactone (PCL) scaffolds that were produced by the additive manufacturing technique selective laser sintering (SLS), followed by a plasma-based surface modification technique, either non-thermal oxygen plasma or double protein coating, to functionalize the PCL scaffold surfaces. In the first part of this study pore morphology by means of 2D optical microscopy, surface chemistry by means of hydrophilicity measurement and X-ray photoelectron spectroscopy, strut surface roughness by means of 3D micro-computed tomography (CT) imaging and scaffold mechanical properties by means of compression testing were evaluated before and after the surface modifications. The results showed that both surface modifications increased the PCL scaffold hydrophilicity without altering the morphological and mechanical properties. In the second part of this study the in vitro cell proliferation and differentiation of human osteoprogenitor cells, over 14 days of culture in osteogenic and growth medium were investigated. The O 2 plasma modification gave rise to a significant lower in vitro cell proliferation compared to the untreated and double protein coated scaffolds. Furthermore the double protein coating increased in vitro cell metabolic activity and cell differentiation compared to the untreated and O 2 plasma PCL scaffolds when OM was used. - Highlights: • Polycaprolactone scaffolds are produced with selective laser sintering. • 2 types of plasma based surface functionalization were applied. • Plasma had no significant effect on strut roughness and pore morphology. • Plasma improved surface hydrophilicity. • In vitro cell differentiation increased with plasma protein coated functionalization

  1. Identification of murine T-cell epitopes in Ebola virus nucleoprotein

    International Nuclear Information System (INIS)

    Simmons, Graham; Lee, Anee; Rennekamp, Andrew J.; Fan Xin; Bates, Paul; Shen Hao

    2004-01-01

    CD8 T cells play an important role in controlling Ebola infection and in mediating vaccine-induced protective immunity, yet little is known about antigenic targets in Ebola that are recognized by CD8 T cells. Overlapping peptides were used to identify major histocompatibility complex class I-restricted epitopes in mice immunized with vectors encoding Ebola nucleoprotein (NP). CD8 T-cell responses were mapped to a H-2 d -restricted epitope (NP279-288) and two H-2 b -restricted epitopes (NP44-52 and NP288-296). The identification of these epitopes will facilitate studies of immune correlates of protection and the evaluation of vaccine strategies in murine models of Ebola infection

  2. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde.

    Science.gov (United States)

    Ridpath, John R; Nakamura, Ayumi; Tano, Keizo; Luke, April M; Sonoda, Eiichiro; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Gillespie, David A F; Sale, Julian E; Yamazoe, Mitsuyoshi; Bishop, Douglas K; Takata, Minoru; Takeda, Shunichi; Watanabe, Masami; Swenberg, James A; Nakamura, Jun

    2007-12-01

    Formaldehyde is an aliphatic monoaldehyde and is a highly reactive environmental human carcinogen. Whereas humans are continuously exposed to exogenous formaldehyde, this reactive aldehyde is a naturally occurring biological compound that is present in human plasma at concentrations ranging from 13 to 97 micromol/L. It has been well documented that DNA-protein crosslinks (DPC) likely play an important role with regard to the genotoxicity and carcinogenicity of formaldehyde. However, little is known about which DNA damage response pathways are essential for cells to counteract formaldehyde. In the present study, we first assessed the DNA damage response to plasma levels of formaldehyde using chicken DT40 cells with targeted mutations in various DNA repair genes. Here, we show that the hypersensitivity to formaldehyde is detected in DT40 mutants deficient in the BRCA/FANC pathway, homologous recombination, or translesion DNA synthesis. In addition, FANCD2-deficient DT40 cells are hypersensitive to acetaldehyde, but not to acrolein, crotonaldehyde, glyoxal, and methylglyoxal. Human cells deficient in FANCC and FANCG are also hypersensitive to plasma levels of formaldehyde. These results indicate that the BRCA/FANC pathway is essential to counteract DPCs caused by aliphatic monoaldehydes. Based on the results obtained in the present study, we are currently proposing that endogenous formaldehyde might have an effect on highly proliferating cells, such as bone marrow cells, as well as an etiology of cancer in Fanconi anemia patients.

  3. Analysis of human blood plasma cell-free DNA fragment size distribution using EvaGreen chemistry based droplet digital PCR assays.

    Science.gov (United States)

    Fernando, M Rohan; Jiang, Chao; Krzyzanowski, Gary D; Ryan, Wayne L

    2018-04-12

    Plasma cell-free DNA (cfDNA) fragment size distribution provides important information required for diagnostic assay development. We have developed and optimized droplet digital PCR (ddPCR) assays that quantify short and long DNA fragments. These assays were used to analyze plasma cfDNA fragment size distribution in human blood. Assays were designed to amplify 76,135, 490 and 905 base pair fragments of human β-actin gene. These assays were used for fragment size analysis of plasma cell-free, exosome and apoptotic body DNA obtained from normal and pregnant donors. The relative percentages for 76, 135, 490 and 905 bp fragments from non-pregnant plasma and exosome DNA were 100%, 39%, 18%, 5.6% and 100%, 40%, 18%,3.3%, respectively. The relative percentages for pregnant plasma and exosome DNA were 100%, 34%, 14%, 23%, and 100%, 30%, 12%, 18%, respectively. The relative percentages for non-pregnant plasma pellet (obtained after 2nd centrifugation step) were 100%, 100%, 87% and 83%, respectively. Non-pregnant Plasma cell-free and exosome DNA share a unique fragment distribution pattern which is different from pregnant donor plasma and exosome DNA fragment distribution indicating the effect of physiological status on cfDNA fragment size distribution. Fragment distribution pattern for plasma pellet that includes apoptotic bodies and nuclear DNA was greatly different from plasma cell-free and exosome DNA. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Development of solid oxide fuel cells by applying DC and RF plasma deposition technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, G.; Henne, R.; Lang, M.; Mueller, M. [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Institut fuer Technische Thermodynamik, Postfach 800370, 70503 Stuttgart (Germany)

    2004-04-01

    Based on advanced plasma deposition technology with both DC and RF plasmas DLR Stuttgart has developed a concept of a planar SOFC with consecutive deposition of all layers of a thin-film cell onto a porous metallic substrate support. This concept is an alternative approach to conventionally used sintering techniques for SOFC fabrication without needing any sintering steps or other thermal post-treatment. Furthermore, is has the potential to be developed into an automated continous production process. For both stationary and mobile applications, adequate stack designs and stack technologies have been developed. Future development work will focus on light-weight stacks to be applied as an Auxillary Power Unit (APU) for on-board electricity supply in passenger cars and airplanes. This paper describes the plasma deposition technologies used for cell fabrication and the DLR spray concept including the resulting stack designs. The current status of development and recent progress with respect to materials development and electrochemical characterization of single cells and short-stacks is presented. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  5. Improving the cell affinity of a poly(D,L-lactide) film modified by grafting collagen via a plasma technique

    International Nuclear Information System (INIS)

    Zhao Jianhao; Wang Jue; Tu Mei; Luo Binghong; Zhou Changren

    2006-01-01

    Poly(D,L-lactide) films were surface-modified by grafting collagen via NH 3 plasma to improve cell affinity. The modified films were characterized by IR analysis, contact angle measurement, SEM analysis and collagen quantity determination. It was demonstrated that -NH 2 and collagen were incorporated into the surface of PDLLA films. The hydrophilicity of the PDLLA film increased after NH 3 plasma treatment, but decreased with further collagen modification. More collagen was incorporated into the PDLLA films by a grating method as compared to that with an anchorage treatment. L929 fibroblast cells were used to evaluate the cell affinity of the modified films and control. It was shown that PDLLA films surface-modified by grafting collagen via NH 3 plasma more efficiently enhanced the cells attachment and proliferation than those films modified by collagen anchorage or only NH 3 plasma treatment

  6. Towards real-time detection and tracking of spatio-temporal features: Blob-filaments in fusion plasma

    International Nuclear Information System (INIS)

    Wu, Lingfei; Wu, Kesheng; Sim, Alex; Churchill, Michael; Choi, Jong Youl

    2016-01-01

    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. Here, on a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.

  7. Proteomic identification of S-nitrosylated Golgi proteins: new insights into endothelial cell regulation by eNOS-derived NO.

    Directory of Open Access Journals (Sweden)

    Panjamaporn Sangwung

    Full Text Available Endothelial nitric oxide synthase (eNOS is primarily localized on the Golgi apparatus and plasma membrane caveolae in endothelial cells. Previously, we demonstrated that protein S-nitrosylation occurs preferentially where eNOS is localized. Thus, in endothelial cells, Golgi proteins are likely to be targets for S-nitrosylation. The aim of this study was to identify S-nitrosylated Golgi proteins and attribute their S-nitrosylation to eNOS-derived nitric oxide in endothelial cells.Golgi membranes were isolated from rat livers. S-nitrosylated Golgi proteins were determined by a modified biotin-switch assay coupled with mass spectrometry that allows the identification of the S-nitrosylated cysteine residue. The biotin switch assay followed by Western blot or immunoprecipitation using an S-nitrosocysteine antibody was also employed to validate S-nitrosylated proteins in endothelial cell lysates.Seventy-eight potential S-nitrosylated proteins and their target cysteine residues for S-nitrosylation were identified; 9 of them were Golgi-resident or Golgi/endoplasmic reticulum (ER-associated proteins. Among these 9 proteins, S-nitrosylation of EMMPRIN and Golgi phosphoprotein 3 (GOLPH3 was verified in endothelial cells. Furthermore, S-nitrosylation of these proteins was found at the basal levels and increased in response to eNOS stimulation by the calcium ionophore A23187. Immunofluorescence microscopy and immunoprecipitation showed that EMMPRIN and GOLPH3 are co-localized with eNOS at the Golgi apparatus in endothelial cells. S-nitrosylation of EMMPRIN was notably increased in the aorta of cirrhotic rats.Our data suggest that the selective S-nitrosylation of EMMPRIN and GOLPH3 at the Golgi apparatus in endothelial cells results from the physical proximity to eNOS-derived nitric oxide.

  8. Aging effects of plasma polymerized ethylenediamine (PPEDA) thin films on cell-adhesive implant coatings

    International Nuclear Information System (INIS)

    Testrich, H.; Rebl, H.; Finke, B.; Hempel, F.; Nebe, B.; Meichsner, J.

    2013-01-01

    Thin plasma polymer films from ethylenediamine were deposited on planar substrates placed on the powered electrode of a low pressure capacitively coupled 13.56 MHz discharge. The chemical composition of the plasma polymer films was analyzed by Fourier Transform Infrared Reflection Absorption Spectroscopy (FT-IRRAS) as well as by X-ray photoelectron spectroscopy (XPS) after derivatization of the primary amino groups. The PPEDA films undergo an alteration during the storage in ambient air, particularly, due to reactions with oxygen. The molecular changes in PPEDA films were studied over a long-time period of 360 days. Simultaneously, the adhesion of human osteoblast-like cells MG-63 (ATCC) was investigated on PPEDA coated corundum blasted titanium alloy (Ti-6Al-4V), which is applied as implant material in orthopedic surgery. The cell adhesion was determined by flow cytometry and the cell shape was analyzed by scanning electron microscopy. Compared to uncoated reference samples a significantly enhanced cell adhesion and proliferation were measured for PPEDA coated samples, which have been maintained after long-time storage in ambient air and additional sterilization by γ−irradiation. - Highlights: • Development of cell-adhesive nitrogen-rich coatings for biomedical applications. • Plasma polymer films from low pressure 13.56 MHz discharge in argon-ethylenediamine. • Enhanced osteoblast adhesion/proliferation on coated implant material (Ti-6Al-4V). • Despite film aging over 360 days the enhanced cell adhesion of the coating remains. • No influence of additional y-sterilization on the enhanced cell adhesion

  9. System Identification of a Non-Uniformly Sampled Multi-Rate System in Aluminium Electrolysis Cells

    Directory of Open Access Journals (Sweden)

    Håkon Viumdal

    2014-07-01

    Full Text Available Standard system identification algorithms are usually designed to generate mathematical models with equidistant sampling instants, that are equal for both input variables and output variables. Unfortunately, real industrial data sets are often disrupted by missing samples, variations of sampling rates in the different variables (also known as multi-rate systems, and intermittent measurements. In industries with varying events based maintenance or manual operational measures, intermittent measurements are performed leading to uneven sampling rates. Such is the case with aluminium smelters, where in addition the materials fed into the cell create even more irregularity in sampling. Both measurements and feeding are mostly manually controlled. A simplified simulation of the metal level in an aluminium electrolysis cell is performed based on mass balance considerations. System identification methods based on Prediction Error Methods (PEM such as Ordinary Least Squares (OLS, and the sub-space method combined Deterministic and Stochastic system identification and Realization (DSR, and its variants are applied to the model of a single electrolysis cell as found in the aluminium smelters. Aliasing phenomena due to large sampling intervals can be crucial in avoiding unsuitable models, but with knowledge about the system dynamics, it is easier to optimize the sampling performance, and hence achieve successful models. The results based on the simulation studies of molten aluminium height in the cells using the various algorithms give results which tally well with the synthetic data sets used. System identification on a smaller data set from a real plant is also implemented in this work. Finally, some concrete suggestions are made for using these models in the smelters.

  10. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    International Nuclear Information System (INIS)

    Ahmed, Shahid; Mammosser, John D.

    2015-01-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O 2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM 010 -mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper

  11. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Shahid, E-mail: shahid.ahmed@ieee.org [BML Munjal University, Gurgaon, Haryana 123413 (India); Mammosser, John D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-07-15

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O{sub 2} (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM{sub 010}-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  12. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    Science.gov (United States)

    Ahmed, Shahid; Mammosser, John D.

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  13. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.

    Science.gov (United States)

    Ahmed, Shahid; Mammosser, John D

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  14. Isolation of plasma membranes from cultured glioma cells and application to evaluation of membrane sphingomyelin turnover

    International Nuclear Information System (INIS)

    Cook, H.W.; Palmer, F.B.; Byers, D.M.; Spence, M.W.

    1988-01-01

    A rapid and reliable method for the isolation of plasma membranes and microsomes of high purity and yield from cultured glioma cells is described. The procedure involves disruption by N2 cavitation, preliminary separation by centrifugation in Tricine buffer, and final separation on a gradient formed from 40% Percoll at pH 9.3. Enzyme and chemical markers indicated greater than 60% yield with six- to eightfold enrichment for plasma membranes and greater than 25% yield with three- to fourfold enrichment for a microsomal fraction consisting mainly of endoplasmic reticulum. The final fractions were obtained with high reproducibility in less than 1 h from the time of cell harvesting. Application of this procedure to human fibroblasts in culture is assessed. The isolation procedure was applied to investigations of synthesis and turnover of sphingomyelin and phosphatidylcholine in plasma membranes of glioma cells following incubation for 4-24 h with [methyl- 3 H]choline. These studies indicated that radioactivity from phosphatidylcholine synthesized in microsomes from exogenous choline may serve as a precursor of the head-group of sphingomyelin accumulating in the plasma membrane

  15. Electron plasma waves in CO/sub 2/ laser plasma interactions

    International Nuclear Information System (INIS)

    Baldis, H.A.; Villeneuve, D.M.; Walsh, C.J.

    1984-01-01

    During the past few years, the use of Thomson scattering in CO/sub 2/ laser produced plasmas has permitted the identification and study of electron plasma waves and ion waves, driven by various instabilities in the plasma corona, such as Stimulated Raman Scattering (SRS), two plasmon decay, and Stimulated Brillouin Scattering (SBS). Since these instabilities may coexist in the plasma, the density fluctuations associated with one wave may influence the behaviour of one or more of the other instabilities. The authors discuss the experimental evidence of such effects and, in particular, the consequences of a recent experiment in which the ion waves driven by SBS were observed to adversely affect the production of the electron plasma waves driven by SRS. In that experiment, a strong correlation was observed between the onset of SBS and the disappearance of the electron plasma waves driven by SRS at low densities (n/sub e/ n/sub e/ > 0.05 n/sub c/)

  16. Immobilization of Platelet-Rich Plasma onto COOH Plasma-Coated PCL Nanofibers Boost Viability and Proliferation of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Anastasiya Solovieva

    2017-12-01

    Full Text Available The scaffolds made of polycaprolactone (PCL are actively employed in different areas of biology and medicine, especially in tissue engineering. However, the usage of unmodified PCL is significantly restricted by the hydrophobicity of its surface, due to the fact that its inert surface hinders the adhesion of cells and the cell interactions on PCL surface. In this work, the surface of PCL nanofibers is modified by Ar/CO2/C2H4 plasma depositing active COOH groups in the amount of 0.57 at % that were later used for the immobilization of platelet-rich plasma (PRP. The modification of PCL nanofibers significantly enhances the viability and proliferation (by hundred times of human mesenchymal stem cells, and decreases apoptotic cell death to a normal level. According to X-ray photoelectron spectroscopy (XPS, after immobilization of PRP, up to 10.7 at % of nitrogen was incorporated into the nanofibers surface confirming the grafting of proteins. Active proliferation and sustaining the cell viability on nanofibers with immobilized PRP led to an average number of cells of 258 ± 12.9 and 364 ± 34.5 for nanofibers with ionic and covalent bonding of PRP, respectively. Hence, our new method for the modification of PCL nanofibers with PRP opens new possibilities for its application in tissue engineering.

  17. Characteristics of primary Sjögren's syndrome patients with IgG4 positive plasma cells infiltration in the labial salivary glands.

    Science.gov (United States)

    Liu, Chang; Zhang, Huayong; Yao, Genhong; Hu, Yunxia; Qi, Jingjing; Wang, Yan; Chen, Weiwei; Tang, Xiaojun; Li, Wenchao; Lu, Liwei; Gu, Luo; Sun, Lingyun

    2017-01-01

    The purpose of this study was to investigate the characteristics of primary Sjögren's syndrome (pSS) patients with IgG4 positive (IgG4 + ) plasma cell infiltration in labial salivary glands (LSGs). Paraffin sections of LSGs from 336 pSS patients were stained with IgG4 and IgG monoclonal antibodies. According to the infiltration of IgG4 + plasma cells, patients were divided and clinical and serological characteristics were analyzed and compared. Based on the infiltration of IgG4 + plasma cells in the LSGs, patients were divided into three subgroups, low IgG4, moderate IgG4, and high IgG4 groups. A negative association between the number of infiltrated IgG4 + plasma cells and the disease characteristics was observed. We found that the higher the IgG4 + expression in plasma cells, the lower the positive rates of serum anti-SSA antibodies, anti-SSB antibodies, antinuclear antibodies (ANA), and rheumatoid factor (RF). Besides, patients from the high IgG4 group had the highest frequency of interstitial lung disease (ILD, 30.6%) and tubulointerstitial nephritis (TIN, 13.9%), but the lowest frequency of leucopenia (13.9%), thrombocytopenia (11.1%), and abnormal thyroidal function (0%). PSS patients with different IgG4 + plasma cells infiltration in the LSGs had distinctive clinical and laboratory characteristics. It may help us to further understand the role of IgG4 + plasma cells in pSS.

  18. Abnormalities in plasma and red blood cell fatty acid profiles of patients with colorectal cancer.

    OpenAIRE

    Bar??, L.; Hermoso, J. C.; N????ez, M. C.; Jim??nez-Rios, J. A.; Gil, A.

    1998-01-01

    We evaluated total plasma fatty acid concentrations and percentages, and the fatty acid profiles for the different plasma lipid fractions and red blood cell lipids, in 17 patients with untreated colorectal cancer and 12 age-matched controls with no malignant diseases, from the same geographical area. Cancer patients had significantly lower total plasma concentrations of saturated, monounsaturated and essential fatty acids and their polyunsaturated derivatives than healthy controls; when the v...

  19. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    Directory of Open Access Journals (Sweden)

    David L. Bruhwiler

    2001-10-01

    Full Text Available We present 2D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low \\(∼10^{16} W/cm^{2}\\ and high \\(∼10^{18} W/cm^{2}\\ peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  20. Hypermethylation Is A Key Feature of the Transition of Multiple Myeloma to Plasma Cell Leukemia

    DEFF Research Database (Denmark)

    Walker, Brian A.; Wardell, Christopher P.; Boyd, Kevin D.

    2010-01-01

    in the transition of MM to PCL can be classified as either tumor suppressor genes, genes involved in cell-cell signaling, or as cell adhesion molecules. The further analysis of these genes will allow us to identify genes which are down-regulated through methylation and mediate the progression of MM to PCL allowing...... to malignant plasma cells and little is known about the genetic mechanisms mediating the final stages of this pathway. The methylation status of genes in myeloma can change as the malignancy progresses and as such identifying genes deregulated by methylation that mediate the progression of MM to PCL may offer...... the various cytogenetic subgroups of MM and in mediating the transition to PCL. Hypermethylation affects genes and pathways important in retaining plasma cells in the bone marrow as well as in their growth factor independent growth in the absence of stromal cell support. DisclosuresNo relevant conflicts...

  1. Methodology for monitoring gold nanoparticles and dissolved gold species in culture medium and cells used for nanotoxicity tests by liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    López-Sanz, Sara; Fariñas, Nuria Rodríguez; Vargas, Rosario Serrano; Martín-Doimeadios, Rosa Del Carmen Rodríguez; Ríos, Ángel

    2017-03-01

    An analytical methodology based on coupling reversed-phase liquid chromatography (HPLC) to an inductively coupled plasma mass spectrometry (ICP-MS) has been developed for the characterization and identification of gold nanoparticles (AuNPs) and gold dissolved species (Au 3+ ) in culture medium (Dulbecco's Modified Eagle Medium, DMEM) and HeLa cells (a human cervical adenocarcinoma cell line) used in nanotoxicity tests. The influence of the culture medium was also studied and the method applied for nanotoxicity tests. It was also observed that AuNPs can undergo an oxidation process in the supernatants and only a small amount of AuNPs and dissolved Au 3+ was associated with cells. To evaluate the biological impact of AuNPs, a classical viability assay onto HeLa cells was performed using cellular media DMEM in the presence of increasing dosage of 10nm AuNPs. The results showed that 10nm AuNPs exhibit a slight toxic effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effects of radiation from a radiofrequency identification (RFID) microchip on human cancer cells.

    Science.gov (United States)

    Lai, Henry C; Chan, Ho Wing; Singh, Narendra P

    2016-01-01

    Radiofrequency identification (RFID) microchips are used to remotely identify objects, e.g. an animal in which a chip is implanted. A passive RFID microchip absorbs energy from an external source and emits a radiofrequency identification signal which is then decoded by a detector. In the present study, we investigated the effect of the radiofrequency energy emitted by a RFID microchip on human cancer cells. Molt-4 leukemia, BT474 breast cancer, and HepG2 hepatic cancer cells were exposed in vitro to RFID microchip-emitted radiofrequency field for 1 h. Cells were counted before and after exposure. Effects of pretreatment with the spin-trap compound N-tert-butyl-alpha-phenylnitrone or the iron-chelator deferoxamine were also investigated. Results We found that the energy effectively killed/retarded the growth of the three different types of cancer cells, and the effect was blocked by the spin-trap compound or the iron-chelator, whereas an inactive microchip and energy from the external source had no significant effect on the cells. Conclusions Data of the present study suggest that radiofrequency field from the microchip affects cancer cells via the Fenton Reaction. Implantation of RFID microchips in tumors may provide a new method for cancer treatment.

  3. Distribution of macrophages and plasma cells in apical periodontitis and their relationship with clinical and image data

    Science.gov (United States)

    Azeredo, Stéphane V.; Brasil, Sabrina C.; Antunes, Henrique; Marques, Fábio V.; Pires, Fábio R.

    2017-01-01

    Background Macrophages and plasma cells play a key role in the regulation of innate and adaptive immunity. The aim of this study was to assess the presence of these cells in apical periodontitis and their distribution comparing with clinical and image data. Material and Methods Thirty-three lesions were selected and divided in two groups (17 periapical cysts and 16 periapical granulomas). Immunoreactions using anti-CD68 and anti-CD138 antibodies were carried out; image analysis was performed with an optical microscope and 5 high-power fields from each slide were evaluated leading to an average score of immunoexpression. This mean score was compared between the two groups and correlated with the clinical and image data. Results There was no statistically significant difference (p >0.05) for the mean average score of CD68+ macrophages and CD138+ plasma cells when comparing the two groups (cysts x granulomas) and the specimens included in each specific group. No statistically significant differences (p >0.05) were also observed when comparing the average scores with clinical and image data. Conclusions The presence of CD68+ macrophages and CD138+ plasma cells was similar in periapical cysts and granulomas and the presence of these cells did not correlate with clinical and image data from both groups. Key words:Macrophages, plasma cells, apical periodontitis, periapical granuloma, periapical cyst. PMID:29075406

  4. A cell-free assay to determine the stoichiometry of plasma membrane proteins.

    Science.gov (United States)

    Trigo, Cesar; Vivar, Juan P; Gonzalez, Carlos B; Brauchi, Sebastian

    2013-04-01

    Plasma membrane receptors, transporters, and ion channel molecules are often found as oligomeric structures that participate in signaling cascades essential for cell survival. Different states of protein oligomerization may play a role in functional control and allosteric regulation. Stochastic GFP-photobleaching (SGP) has emerged as an affordable and simple method to determine the stoichiometry of proteins at the plasma membrane. This non-invasive optical approach can be useful for total internal reflection of fluorescence microscopy (TIRFM), where signal-to-noise ratio is very high at the plasma membrane. Here, we report an alternative methodology implemented on a standard laser scanning confocal microscope (LSCM). The simplicity of our method will allow for its implementation in any epifluorescence microscope of choice.

  5. Ghrelin plasma levels, gastric ghrelin cell density and bone mineral density in women with rheumatoid arthritis.

    Science.gov (United States)

    Maksud, F A N; Kakehasi, A M; Guimarães, M F B R; Machado, C J; Barbosa, A J A

    2017-05-18

    Generalized bone loss can be considered an extra-articular manifestation of rheumatoid arthritis (RA) that may lead to the occurrence of fractures, resulting in decreased quality of life and increased healthcare costs. The peptide ghrelin has demonstrated to positively affect osteoblasts in vitro and has anti-inflammatory actions, but the studies that correlate ghrelin plasma levels and RA have contradictory results. We aimed to evaluate the correlation between total ghrelin plasma levels, density of ghrelin-immunoreactive cells in the gastric mucosa, and bone mineral density (BMD) in twenty adult women with established RA with 6 months or more of symptoms (mean age of 52.70±11.40 years). Patients with RA presented higher ghrelin-immunoreactive cells density in gastric mucosa (P=0.008) compared with healthy females. There was a positive relationship between femoral neck BMD and gastric ghrelin cell density (P=0.007). However, these same patients presented a negative correlation between plasma ghrelin levels and total femoral BMD (P=0.03). The present results indicate that ghrelin may be involved in bone metabolism of patients with RA. However, the higher density of ghrelin-producing cells in the gastric mucosa of these patients does not seem to induce a corresponding elevation in the plasma levels of this peptide.

  6. Ghrelin plasma levels, gastric ghrelin cell density and bone mineral density in women with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    F.A.N. Maksud

    Full Text Available Generalized bone loss can be considered an extra-articular manifestation of rheumatoid arthritis (RA that may lead to the occurrence of fractures, resulting in decreased quality of life and increased healthcare costs. The peptide ghrelin has demonstrated to positively affect osteoblasts in vitro and has anti-inflammatory actions, but the studies that correlate ghrelin plasma levels and RA have contradictory results. We aimed to evaluate the correlation between total ghrelin plasma levels, density of ghrelin-immunoreactive cells in the gastric mucosa, and bone mineral density (BMD in twenty adult women with established RA with 6 months or more of symptoms (mean age of 52.70±11.40 years. Patients with RA presented higher ghrelin-immunoreactive cells density in gastric mucosa (P=0.008 compared with healthy females. There was a positive relationship between femoral neck BMD and gastric ghrelin cell density (P=0.007. However, these same patients presented a negative correlation between plasma ghrelin levels and total femoral BMD (P=0.03. The present results indicate that ghrelin may be involved in bone metabolism of patients with RA. However, the higher density of ghrelin-producing cells in the gastric mucosa of these patients does not seem to induce a corresponding elevation in the plasma levels of this peptide.

  7. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration

    OpenAIRE

    Yun Qian; Yun Qian; Qixin Han; Wei Chen; Wei Chen; Jialin Song; Jialin Song; Xiaotian Zhao; Yuanming Ouyang; Yuanming Ouyang; Weien Yuan; Cunyi Fan

    2017-01-01

    Stem cell treatment and platelet-rich plasma (PRP) therapy are two significant issues in regenerative medicine. Stem cells such as bone marrow mesenchymal stem cells, adipose-derived stem cells and periodontal ligament stem cells can be successfully applied in the field of tissue regeneration. PRP, a natural product isolated from whole blood, can secrete multiple growth factors (GFs) for regulating physiological activities. These GFs can stimulate proliferation and differentiation of differen...

  8. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses

    International Nuclear Information System (INIS)

    Huang Yi; Song Lei; Liu Xiaoguang; Xiao Yanfeng; Wu Yao; Chen Jiyong; Wu Fang; Gu Zhongwei

    2010-01-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 μm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  9. Wood cell-wall structure requires local 2D-microtubule disassembly by a novel plasma membrane-anchored protein.

    Science.gov (United States)

    Oda, Yoshihisa; Iida, Yuki; Kondo, Yuki; Fukuda, Hiroo

    2010-07-13

    Plant cells have evolved cortical microtubules, in a two-dimensional space beneath the plasma membrane, that regulate patterning of cellulose deposition. Although recent studies have revealed that several microtubule-associated proteins facilitate self-organization of transverse cortical microtubules, it is still unknown how diverse patterns of cortical microtubules are organized in different xylem cells, which are the major components of wood. Using our newly established in vitro xylem cell differentiation system, we found that a novel microtubule end-tracking protein, microtubule depletion domain 1 (MIDD1), was anchored to distinct plasma membrane domains and promoted local microtubule disassembly, resulting in pits on xylem cell walls. The introduction of RNA interference for MIDD1 resulted in the failure of local microtubule depletion and the formation of secondary walls without pits. Conversely, the overexpression of MIDD1 reduced microtubule density. MIDD1 has two coiled-coil domains for the binding to microtubules and for the anchorage to plasma membrane domains, respectively. Combination of the two coils caused end tracking of microtubules during shrinkage and suppressed their rescue events. Our results indicate that MIDD1 integrates spatial information in the plasma membrane with cortical microtubule dynamics for determining xylem cell wall pattern. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. [Mg2+, ATP-dependent plasma membrane calcium pump of smooth muscle cells. I. Structural organization and properties].

    Science.gov (United States)

    Veklich, T O; Mazur, Iu Iu; Kosterin, S O

    2015-01-01

    Tight control of cytoplasm Ca2+ concentration is essential in cell functioning. Changing of Ca2+ concentration is thorough in smooth muscle cells, because it determines relaxation/constraint process. One of key proteins which control Ca2+ concentration in cytoplasm is Mg2+, ATP-dependent plasma membrane calcium pump. Thus, it is important to find compoumds which allowed one to change Mg2+, ATP-dependent plasma membrane calcium pump activity, as long as this topic is of current interest in biochemical research which regards energy and pharmacomechanical coupling mechanism of muscle excitation and contraction. In this article we generalized literatute and own data about properties of smooth muscle cell plasma membrane Ca(2+)-pump. Stuctural oganization, kinetical properties and molecular biology are considered.

  11. INHIBITION OF MYCOLIC ACID TRANSPORT ACROSS THE MYCOBACTERIUM TUBERCULOSIS PLASMA MEMBRANE

    Science.gov (United States)

    Grzegorzewicz, Anna E.; Pham, Ha; Gundi, Vijay A. K. B.; Scherman, Michael S.; North, Elton J.; Hess, Tamara; Jones, Victoria; Gruppo, Veronica; Born, Sarah E. M.; Korduláková, Jana; Chavadi, Sivagami Sundaram; Morisseau, Christophe; Lenaerts, Anne J.; Lee, Richard E.; McNeil, Michael R.; Jackson, Mary

    2011-01-01

    New chemotherapeutics active against multidrug-resistant Mycobacterium tuberculosis (M. tb) are urgently needed. We report on the identification of an adamantyl urea compound displaying potent bactericidal activity against M. tb and a unique mode of action, namely the abolition of the translocation of mycolic acids from the cytoplasm where they are synthesized to the periplasmic side of the plasma membrane where they are transferred onto cell wall arabinogalactan or used in the formation of virulence-associated outer membrane trehalose-containing glycolipids. Whole genome sequencing of spontaneous resistant mutants of M. tb selected in vitro followed by genetic validation experiments revealed that our prototype inhibitor targets the inner membrane transporter, MmpL3. Conditional gene expression of mmpL3 in mycobacteria and analysis of inhibitor-treated cells validate MmpL3 as essential for mycobacterial growth and support the involvement of this transporter in the translocation of trehalose monomycolate across the plasma membrane. PMID:22344175

  12. Particle-in-cell Simulations of Raman Laser Amplification in Preformed Plasmas

    International Nuclear Information System (INIS)

    Clark, Daniel S.; Fisch, Nathaniel J.

    2003-01-01

    Two critical issues in the amplification of laser pulses by backward Raman scattering in plasma slabs are the saturation mechanism of the amplification effect (which determines the maximum attainable output intensity of a Raman amplifier) and the optimal plasma density for amplification. Previous investigations [V.M. Malkin, et al., Phys. Rev. Lett., 82 (22):4448-4451, 1999] identified forward Raman scattering and modulational instabilities of the amplifying seed as the likely saturation mechanisms and lead to an estimated unfocused output intensities of 10 17 W/cm 2 . The optimal density for amplification is determined by the competing constraints of minimizing the plasma density so as to minimize the growth rate of the instabilities leading to saturation but also maintaining the plasma sufficiently dense that the driven Langmuir wave responsible for backscattering does not break prematurely. Here, particle-in-cell code are simulations presented which verify that saturation of backward Raman amplification does occur at intensities of ∼10 17 W/cm 2 by forward Raman scattering and modulational instabilities. The optimal density for amplification in a plasma with the representative temperature of T(sub)e = 200 eV is also shown in these simulations to be intermediate between the cold plasma wave-breaking density and the density limit found by assuming a water bag electron distribution function

  13. Identification of a novel set of genes reflecting different in vivo invasive patterns of human GBM cells

    Directory of Open Access Journals (Sweden)

    Monticone Massimiliano

    2012-08-01

    Full Text Available Abstract Background Most patients affected by Glioblastoma multiforme (GBM, grade IV glioma experience a recurrence of the disease because of the spreading of tumor cells beyond surgical boundaries. Unveiling mechanisms causing this process is a logic goal to impair the killing capacity of GBM cells by molecular targeting. We noticed that our long-term GBM cultures, established from different patients, may display two categories/types of growth behavior in an orthotopic xenograft model: expansion of the tumor mass and formation of tumor branches/nodules (nodular like, NL-type or highly diffuse single tumor cell infiltration (HD-type. Methods We determined by DNA microarrays the gene expression profiles of three NL-type and three HD-type long-term GBM cultures. Subsequently, individual genes with different expression levels between the two groups were identified using Significance Analysis of Microarrays (SAM. Real time RT-PCR, immunofluorescence and immunoblot analyses, were performed for a selected subgroup of regulated gene products to confirm the results obtained by the expression analysis. Results Here, we report the identification of a set of 34 differentially expressed genes in the two types of GBM cultures. Twenty-three of these genes encode for proteins localized to the plasma membrane and 9 of these for proteins are involved in the process of cell adhesion. Conclusions This study suggests the participation in the diffuse infiltrative/invasive process of GBM cells within the CNS of a novel set of genes coding for membrane-associated proteins, which should be thus susceptible to an inhibition strategy by specific targeting. Massimiliano Monticone and Antonio Daga contributed equally to this work

  14. Recovery from Bell Palsy after Transplantation of Peripheral Blood Mononuclear Cells and Platelet-Rich Plasma

    OpenAIRE

    Seffer, Istvan; Nemeth, Zoltan

    2017-01-01

    Summary: Peripheral blood mononuclear cells (PBMCs) are multipotent, and plasma contains growth factors involving tissue regeneration. We hypothesized that transplantation of PBMC-plasma will promote the recovery of paralyzed facial muscles in Bell palsy. This case report describes the effects of PBMC-plasma transplantations in a 27-year-old female patient with right side Bell palsy. On the affected side of the face, the treatment resulted in both morphological and functional recovery includi...

  15. Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells.

    Science.gov (United States)

    Frölich, Daniela; Giesecke, Claudia; Mei, Henrik E; Reiter, Karin; Daridon, Capucine; Lipsky, Peter E; Dörner, Thomas

    2010-09-01

    Rechallenge with T cell-dependent Ags induces memory B cells to re-enter germinal centers (GCs) and undergo further expansion and differentiation into plasma cells (PCs) and secondary memory B cells. It is currently not known whether the expanded population of memory B cells and PCs generated in secondary GCs are clonally related, nor has the extent of proliferation and somatic hypermutation of their precursors been delineated. In this study, after secondary tetanus toxoid (TT) immunization, TT-specific PCs increased 17- to 80-fold on days 6-7, whereas TT-specific memory B cells peaked (delayed) on day 14 with a 2- to 22-fold increase. Molecular analyses of V(H)DJ(H) rearrangements of individual cells revealed no major differences of gene usage and CDR3 length between TT-specific PCs and memory B cells, and both contained extensive evidence of somatic hypermutation with a pattern consistent with GC reactions. This analysis identified clonally related TT-specific memory B cells and PCs. Within clusters of clonally related cells, sequences shared a number of mutations but also could contain additional base pair changes. The data indicate that although following secondary immunization PCs can derive from memory B cells without further somatic hypermutation, in some circumstances, likely within GC reactions, asymmetric mutation can occur. These results suggest that after the fate decision to differentiate into secondary memory B cells or PCs, some committed precursors continue to proliferate and mutate their V(H) genes.

  16. Chemically different non-thermal plasmas target distinct cell death pathways

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Lunova, M.; Jirsa, M.; Dejneka, Alexandr; Kubinová, Šárka

    2017-01-01

    Roč. 7, č. 1 (2017), s. 1-17, č. článku 600. ISSN 2045-2322 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : chemically different * non-thermal plasmas * target distinct cell death pathways Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 4.259, year: 2016

  17. Rutherford scattering of neutral atoms: a technique for measuring plasma ion temperatures. An analysis of the applicability to the central cell plasma of TMX

    International Nuclear Information System (INIS)

    Granneman, E.H.A.

    1980-01-01

    Rutherford scattering of neutral particles by plasma ions is examined as a method for determining plasma ion in the central cell fo the Tandem Mirror Experiment (TMX). When a scattering configuration, consisting of a 20-keV-, 10-A-deuterium neutral beam and an energy analyzer with a 1% resolution, is arranged such that only neutral particles scattered by plasma ions over an angle of 10 0 are accepted, central-cell ion temperatures in the 30- to 1000-eV range can be measured. The count rate registered by the detector(s) is estimated to be 2000 counts/ms. Consequently, good statistical accuracy and time resolution are attainable simultaneously. The results of the calculation are presented such that the scaling of the count rates and the energy broadening with scattering angle, neutral-beam energy, ion temperature, and plasma density can easily be deduced. Neutral helium beams are also considered; they have some advantages over deuterium beams. The background signal, caused by neutral particles entering the detector after two successive charge-exchange collisions, is examined and ways to completely eliminate this background are indicated

  18. Laser-plasma interactions with a Fourier-Bessel particle-in-cell method

    Energy Technology Data Exchange (ETDEWEB)

    Andriyash, Igor A., E-mail: igor.andriyash@gmail.com [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); LOA, ENSTA ParisTech, CNRS, Ecole polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau cedex (France); Lehe, Remi [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lifschitz, Agustin [LOA, ENSTA ParisTech, CNRS, Ecole polytechnique, Université Paris-Saclay, 828 bd des Maréchaux, 91762 Palaiseau cedex (France)

    2016-03-15

    A new spectral particle-in-cell (PIC) method for plasma modeling is presented and discussed. In the proposed scheme, the Fourier-Bessel transform is used to translate the Maxwell equations to the quasi-cylindrical spectral domain. In this domain, the equations are solved analytically in time, and the spatial derivatives are approximated with high accuracy. In contrast to the finite-difference time domain (FDTD) methods, that are used commonly in PIC, the developed method does not produce numerical dispersion and does not involve grid staggering for the electric and magnetic fields. These features are especially valuable in modeling the wakefield acceleration of particles in plasmas. The proposed algorithm is implemented in the code PLARES-PIC, and the test simulations of laser plasma interactions are compared to the ones done with the quasi-cylindrical FDTD PIC code CALDER-CIRC.

  19. The Effect of Plasma Treated PLGA/MWCNTs-COOH Composite Nanofibers on Nerve Cell Behavior

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2017-12-01

    Full Text Available Electrospun nanofibrous scaffolds which can mimic the architecture of the natural extracellular matrix (ECM are potential candidates for peripheral nerve repair application. Multi-walled carbon nanotubes (MWCNTs are used in peripheral nerve repair due to their ability to promote neurite extension and support neural network formation. In this study, surface-modified nanofibrous scaffolds composed of poly(lactic-co-glycolic acid (PLGA and various ratios of carboxyl-modified MWCNTs (MWCNTs-COOH (PC0, PC2, PC4 and PC8 were fabricated by electrospinning. The effects of MWCNTs-COOH on the fibers’ morphology, diameter distribution, mechanical properties and surface hydrophilicity were characterized by Scanning Electron Microscopy (SEM, ImageJ software, tensile testing and water contact angle. Furthermore, air plasma treatment was applied to improve the surface hydrophilicity of the scaffolds, and the optimal treatment condition was determined in terms of surface morphology, water contact angle and PC12 cell adhesion. Plasma treated nanofibers (p-PC0, p-PC2, p-PC4 and p-PC8 under optimal treatment conditions were used for further study. PC12 cell proliferation and differentiation were both improved by the addition of MWCNTs-COOH in scaffolds. Additionally, the proliferation and maturation of Schwann cells were enhanced on scaffolds containing MWCNTs-COOH. The neurite outgrowth of rat dorsal root ganglia (DRG neurons was promoted on MWCNTs-COOH-containing scaffolds, and those cultured on p-PC8 scaffolds showed elongated neurites with a length up to 78.27 μm after 3 days culture. Our results suggested that plasma treated nanofibers under appropriate conditions were able to improve cell attachment. They also demonstrated that plasma treated scaffolds containing MWCNTs-COOH, especially the p-PC8 nanofibrous scaffold could support the proliferation, differentiation, maturation and neurite extension of PC12 cells, Schwann cells and DRG neurons. Therefore

  20. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing.

    Science.gov (United States)

    Lendeckel, Derik; Eymann, Christine; Emicke, Philipp; Daeschlein, Georg; Darm, Katrin; O'Neil, Serena; Beule, Achim G; von Woedtke, Thomas; Völker, Uwe; Weltmann, Klaus-Dieter; Jünger, Michael; Hosemann, Werner; Scharf, Christian

    2015-01-01

    The worldwide increasing number of patients suffering from nonhealing wounds requires the development of new safe strategies for wound repair. Recent studies suggest the possibility of nonthermal (cold) plasma application for the acceleration of wound closure. An in vitro wound healing model with upper airway S9 epithelial cells was established to determine the macroscopically optimal dosage of tissue-tolerable plasma (TTP) for wound regeneration, while a 2D-difference gel electrophoresis (2D-DIGE) approach was used to quantify the proteomic changes in a hypothesis-free manner and to evaluate the balance of beneficial and adverse effects due to TTP application. Plasma doses from 30 s up to 360 s were tested in relation to wound closure after 24 h, 48 h, 72 h, 96 h, and 120 h, in which lower doses (30, 60, and 120 s) resulted in dose-dependent improved wound healing rate compared to untreated cells. Thereby, the 120 s dose caused significantly the best wound healing properties after 96 and 120 h. The proteome analysis combined with IPA revealed that a lot of affected stress adaptation responses are linked to oxidative stress response emphasizing oxidative stress as a possible key event in the regeneration process of epithelial cells as well as in the adaptation to plasma exposure. Further cellular and molecular functions like proliferation and apoptosis were significantly up- or downregulated by all TTP treatments but mostly by the 120 s dose. For the first time, we were able to show plasma effects on cellular adaptation of upper airway epithelial S9 cells improving wound healing. This is of particular interest for plasma application, for example, in the surgery field of otorhinolaryngology or internal medicine.

  1. Particle-in-cell simulations of electron transport from plasma turbulence: recent progress in gyrokinetic particle simulations of turbulent plasmas

    International Nuclear Information System (INIS)

    Lin, Z; Rewoldt, G; Ethier, S; Hahm, T S; Lee, W W; Lewandowski, J L V; Nishimura, Y; Wang, W X

    2005-01-01

    Recent progress in gyrokinetic particle-in-cell simulations of turbulent plasmas using the gyrokinetic toroidal code (GTC) is surveyed. In particular, recent results for electron temperature gradient (ETG) modes and their resulting transport are presented. Also, turbulence spreading, and the effects of the parallel nonlinearity, are described. The GTC code has also been generalized for non-circular plasma cross-section, and initial results are presented. In addition, two distinct methods of generalizing the GTC code to be electromagnetic are described, along with preliminary results. Finally, a related code, GTC-Neo, for calculating neoclassical fluxes, electric fields, and velocities, are described

  2. Pulse power requirements for large aperture optical switches based on plasma electrode Pockels cells

    International Nuclear Information System (INIS)

    Rhodes, M.A.; Taylor, J.

    1992-06-01

    We discuss very large-aperture optical switches (greater than 30 x 30 cm) as an enabling technology for inertial confinement fusion drivers based on multipass laser amplifiers. Large-scale laser fusion drivers such as the Nova laser have been based on single-pass amplifier designs in part because of the unavailability of a suitable large-aperture switch. We are developing an optical switch based on a Pockels cell employing plasma-electrodes. A plasma-electrode Pockels cell (PEPC) is a longitudinal-mode Pockels cell in which a plasma discharge is formed on each side of an electro-optic crystal (typically KDP or deuterated KDP, often designated KD*P). The plasmas formed on either side of the crystal act as transparent electrodes for a switching-pulse and are intended to allow uniform charging of the entire crystal. The switching-pulse is a nominally rectangular high-voltage pulse equal to the half-wave voltage V x ( 8 kV for KD*P or 17 kV for KDP) and is applied across the crystal via the plasma-electrodes. When the crystal is charged to V x , the polarization of an incoming, linearly polarized, laser beam is rotated by 90 degree. When used in conjunction with an appropriate, passive polarizer, an optical switch is thus realized. A switch with a clear aperture of 37 x 37 cm is now in construction for the Beamlet laser which will serve as a test bed for this switch as well as other technologies required for an advanced NOVA laser design. In this paper, we discuss the unique power electronics requirements of PEPC optical switches

  3. Profiling of kidney vascular endothelial cell plasma membrane proteins by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Liu, Zan; Xu, Bo; Nameta, Masaaki; Zhang, Ying; Magdeldin, Sameh; Yoshida, Yutaka; Yamamoto, Keiko; Fujinaka, Hidehiko; Yaoita, Eishin; Tasaki, Masayuki; Nakagawa, Yuki; Saito, Kazuhide; Takahashi, Kota; Yamamoto, Tadashi

    2013-06-01

    Vascular endothelial cells (VECs) play crucial roles in physiological and pathologic conditions in tissues and organs. Most of these roles are related to VEC plasma membrane proteins. In the kidney, VECs are closely associated with structures and functions; however, plasma membrane proteins in kidney VECs remain to be fully elucidated. Rat kidneys were perfused with cationic colloidal silica nanoparticles (CCSN) to label the VEC plasma membrane. The CCSN-labeled plasma membrane fraction was collected by gradient ultracentrifugation. The VEC plasma membrane or whole-kidney lysate proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and digested with trypsin in gels for liquid chromatography-tandem mass spectrometry. Enrichment analysis was then performed. The VEC plasma membrane proteins were purified by the CCSN method with high yield (approximately 20 μg from 1 g of rat kidney). By Mascot search, 582 proteins were identified in the VEC plasma membrane fraction, and 1,205 proteins were identified in the kidney lysate. In addition to 16 VEC marker proteins such as integrin beta-1 and intercellular adhesion molecule-2 (ICAM-2), 8 novel proteins such as Deltex 3-like protein and phosphatidylinositol binding clathrin assembly protein (PICALM) were identified. As expected, many key functions of plasma membranes in general and of endothelial cells in particular (i.e., leukocyte adhesion) were significantly overrepresented in the proteome of CCSN-labeled kidney VEC fraction. The CCSN method is a reliable technique for isolation of VEC plasma membrane from the kidney, and proteomic analysis followed by bioinformatics revealed the characteristics of in vivo VECs in the kidney.

  4. LONG-LIVED BONE MARROW PLASMA CELLS DURING IMMUNE RESPONSE TO ALPHA (1→3 DEXTRAN

    Directory of Open Access Journals (Sweden)

    I. N. Chernyshova

    2015-01-01

    Full Text Available Production kinetics and some functional properties of long-lived marrow plasma cells were studied in mice immunized with T-independent type 2 antigens. Alpha (1→3 dextran was used as an antigen for immunization. The mice were immunized by dextran, and the numbers of IgM antibody producing cells were determined by ELISPOT method. The cell phenotype was determined by cytofluorimetric technique. In the area of normal bone marrow lymphocytes ~4% of T and ~85% of B cells were detected. About 35% of the cells expressed a plasmocyte marker (CD138; 3% were CD138+IgM+, and about 6% of the lymphocytes were double-positive for CD138+IgA+. Among spleen lymphocytes, 50% of T and 47% of B cells were detected. About 1.5% lymphocytes were CD138+, and 0.5% were positive for CD138 and IgM. Time kinetics of antibody-producing cells in bone marrow and spleen was different. In spleen populations, the peak amounts of antibody-secreting cells have been shown on the day 4; the process abated by the day 28. Vice versa, the numbers of the antibody-producing cells in bone marrow started to increase on the day 4. The process reached its maximum on day 14, and after 28th day became stationary. The in vitro experiments have shown that supplementation of bone marrow cells from immune mice with dextran did not influence their functional activity. It was previously shown for cells responding to T-dependent antigens only. A specific marker for the long-lived plasma cells is still unknown. However, these cells possess a common CD138 marker specific for all plasma cells. A method for isolation of bone marrow CD138+ cells was developed. The CD138+ cells were of 87-97% purity, being enriched in long-lived bone marrow cells, and produced monospecific antibodies.

  5. Regime identification in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Giannone, L; Sips, A C C; Kardaun, O; Spreitler, F; Suttrop, W

    2004-01-01

    The ability to recognize the transition from the L-mode to the H-mode or from the H-mode to the improved H-mode reliably from a conveniently small number of measurements in real time is of increasing importance for machine control. Discriminant analysis has been applied to regime identification of plasma discharges in the ASDEX Upgrade tokamak. An observation consists of a set of plasma parameters averaged over a time slice in a discharge. The data set consists of all observations over different discharges and time slices. Discriminant analysis yields coefficients allowing the classification of a new observation. The results of a frequentist and a formal Bayesian approach to discriminant analysis are compared. With five plasma variables, a failure rate of 1.3% for predicting the L-mode and the H-mode confinement regime was achieved. With five plasma variables, a failure rate of 5.3% for predicting the H-mode and the improved H-mode confinement regime was achieved. The coefficients derived by discriminant analysis have been applied subsequently to discharges to illustrate the operation of regime identification in a real time control system

  6. Comprehensive Study of SF_6/O_2 Plasma Etching for Mc-Silicon Solar Cells

    International Nuclear Information System (INIS)

    Li Tao; Zhou Chun-Lan; Wang Wen-Jing

    2016-01-01

    The mask-free SF_6/O_2 plasma etching technique is used to produce surface texturization of mc-silicon solar cells for efficient light trapping in this work. The SEM images and mc-silicon etching rate show the influence of plasma power, SF_6/O_2 flow ratios and etching time on textured surface. With the acidic-texturing samples as a reference, the reflection and IQE spectra are obtained under different experimental conditions. The IQE spectrum measurement shows an evident increase in the visible and infrared responses. By using the optimized plasma power, SF_6/O_2 flow ratios and etching time, the optimal efficiency of 15.7% on 50 × 50 mm"2 reactive ion etching textured mc-silicon silicon solar cells is achieved, mostly due to the improvement in the short-circuit current density. The corresponding open-circuit voltage, short-circuit current density and fill factor are 611 mV, 33.6 mA/cm"2, 76.5%, respectively. It is believed that such a low-cost and high-performance texturization process is promising for large-scale industrial silicon solar cell manufacturing. (paper)

  7. Environmentally Friendly Plasma-Treated PEDOT:PSS as Electrodes for ITO-Free Perovskite Solar Cells.

    Science.gov (United States)

    Vaagensmith, Bjorn; Reza, Khan Mamun; Hasan, Md Nazmul; Elbohy, Hytham; Adhikari, Nirmal; Dubey, Ashish; Kantack, Nick; Gaml, Eman; Qiao, Qiquan

    2017-10-18

    Solution processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) transparent electrodes (TEs) offer great potential as a low cost alternative to expensive indium tin oxide (ITO). However, strong acids are typically used for enhancing the conductivity of PEDOT:PSS TEs, which produce processing complexity and environmental issues. This work presents an environmentally friendly acid free approach to enhance the conductivity of PEDOT:PSS using a light oxygen plasma treatment, in addition to solvent blend additives and post treatments. The plasma treatment was found to significantly reduce the sheet resistance of PEDOT:PSS TEs from 85 to as low as 15 Ω sq -1 , which translates to the highest reported conductivity of 5012 S/cm for PEDOT:PSS TEs. The plasma treated PEDOT:PSS TE resulted in an ITO-free perovskite solar cell efficiency of 10.5%, which is the highest reported efficiency for ITO-free perovskite solar cells with a PEDOT:PSS electrode that excludes the use of acid treatments. This research presents the first demonstration of this technology. Moreover, the PEDOT:PSS TEs enabled better charge extraction from the perovskite solar cells and reduced hysteresis in the current density-voltage (J-V) curves.

  8. Synergistic Effect of H2O2 and NO2 in Cell Death Induced by Cold Atmospheric He Plasma

    Science.gov (United States)

    Girard, Pierre-Marie; Arbabian, Atousa; Fleury, Michel; Bauville, Gérard; Puech, Vincent; Dutreix, Marie; Sousa, João Santos

    2016-01-01

    Cold atmospheric pressure plasmas (CAPPs) have emerged over the last decade as a new promising therapy to fight cancer. CAPPs’ antitumor activity is primarily due to the delivery of reactive oxygen and nitrogen species (RONS), but the precise determination of the constituents linked to this anticancer process remains to be done. In the present study, using a micro-plasma jet produced in helium (He), we demonstrate that the concentration of H2O2, NO2− and NO3− can fully account for the majority of RONS produced in plasma-activated buffer. The role of these species on the viability of normal and tumour cell lines was investigated. Although the degree of sensitivity to H2O2 is cell-type dependent, we show that H2O2 alone cannot account for the toxicity of He plasma. Indeed, NO2−, but not NO3−, acts in synergy with H2O2 to enhance cell death in normal and tumour cell lines to a level similar to that observed after plasma treatment. Our findings suggest that the efficiency of plasma treatment strongly depends on the combination of H2O2 and NO2− in determined concentrations. We also show that the interaction of the He plasma jet with the ambient air is required to generate NO2− and NO3− in solution. PMID:27364563

  9. An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins

    DEFF Research Database (Denmark)

    Hägglund, Per; Matthiesen, R.; Elortza, F.

    2007-01-01

    and N-acetyl-β-glucosaminidase) are also included. The two strategies were here applied to identify 103 N-glycosylation sites in the Cohn IV fraction of human plasma. In addition, Endo D/H digestion uniquely enabled identification of 23 fucosylated N-glycosylation sites. Several O-glycosylated peptides......, thereby reducing the complexity and facilitating glycosylation site determinations. Here, we have used two different enzymatic deglycosylation strategies for N-glycosylation site analysis. (1) Removal of entire N-glycan chains by peptide- N-glycosidase (PNGase) digestion, with concomitant deamidation...... of the released asparagine residue. The reaction is carried out in H218O to facilitate identification of the formerly glycosylated peptide by incorporatation of 18O into the formed aspartic acid residue. (2) Digestion with two endo-β- N-acetylglucosaminidases (Endo D and Endo H) that cleave the glycosidic bond...

  10. Calcium fluxes across the plasma membrane of Commelina communis L. assayed in a cell-free system

    International Nuclear Information System (INIS)

    Siebers, B.; Graef, P.; Weiler, E.W.

    1990-01-01

    The inside-out fraction of plasma membrane-rich vesicles prepared from leaves of Commelina communis L. by aqueous two-phase partitioning was loaded with 45 Ca 2+ through the action of the plasma membrane Ca 2+ -ATPase. Results suggest the presence of a Ca 2+ channel in the plasma membrane of C. communis. The channel is obtained in a Ca 2+ -inactivated state after preparation and Ca 2+ -loading of the vesicles. The inactivation is removed by TFP [trifluoperazine] or W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], presumably due to the Ca 2+ -mobilizing effect of these compounds. The activated Ca 2+ channel is La 3+ sensitive and, in the cell, would allow for passage of Ca 2+ into the cell. The possibility that TFP or W-7 act independent of CM, or through CM tightly associated with the plasma membrane, is discussed

  11. Androgen-Forming Stem Leydig cells: Identification, Function and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Yunhui Zhang

    2008-01-01

    Full Text Available Leydig cells are the primary source of testosterone in the male, and differentiation of Leydig cells in the testes is one of the primary events in the development of the male body and fertility. Stem Leydig cells (SLCs exist in the testis throughout postnatal life, but a lack of cell surface markers previously hindered attempts to obtain purified SLC fractions. Once isolated, the properties of SLCs provide interesting clues for the ontogeny of these cells within the embryo. Moreover, the clinical potential of SLCs might be used to reverse age-related declines in testosterone levels in aging men, and stimulate reproductive function in hypogonadal males. This review focuses on the source, identification and outlook for therapeutic applications of SLCs. Separate pools of SLCs may give rise to fetal and adult generations of Leydig cell, which may account for their observed functional differences. These differences should in turn be taken into account when assessing the consequences of environmental pollutants such as the phthalate ester, diethylhexylphthalate (DEHP.

  12. A fully-implicit Particle-In-Cell Monte Carlo Collision code for the simulation of inductively coupled plasmas

    Science.gov (United States)

    Mattei, S.; Nishida, K.; Onai, M.; Lettry, J.; Tran, M. Q.; Hatayama, A.

    2017-12-01

    We present a fully-implicit electromagnetic Particle-In-Cell Monte Carlo collision code, called NINJA, written for the simulation of inductively coupled plasmas. NINJA employs a kinetic enslaved Jacobian-Free Newton Krylov method to solve self-consistently the interaction between the electromagnetic field generated by the radio-frequency coil and the plasma response. The simulated plasma includes a kinetic description of charged and neutral species as well as the collision processes between them. The algorithm allows simulations with cell sizes much larger than the Debye length and time steps in excess of the Courant-Friedrichs-Lewy condition whilst preserving the conservation of the total energy. The code is applied to the simulation of the plasma discharge of the Linac4 H- ion source at CERN. Simulation results of plasma density, temperature and EEDF are discussed and compared with optical emission spectroscopy measurements. A systematic study of the energy conservation as a function of the numerical parameters is presented.

  13. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case.

    Science.gov (United States)

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  14. Multiplex bio-assay with inductively coupled plasma mass spectrometry: Towards a massively multivariate single-cell technology

    International Nuclear Information System (INIS)

    Tanner, Scott D.; Ornatsky, Olga; Bandura, Dmitry R.; Baranov, Vladimir I.

    2007-01-01

    Recent progress in the development of massively multiplexed bioanalytical assays using element tags with inductively coupled plasma mass spectrometry detection is reviewed. Feasibility results using commercially available secondary immunolabeling reagents for leukemic cell lines are presented. Multiplex analysis of higher order is shown with first generation tag reagents based on functionalized carriers that bind lanthanide ions. DNA quantification using metallointercalation allows for cell enumeration or mitotic state differentiation. In situ hybridization permits the determination of cellular RNA. The results provide a feasibility basis for the development of a multivariate assay tool for individual cell analysis based on inductively coupled plasma mass spectrometry in a cytometer configuration

  15. Multiplex bio-assay with inductively coupled plasma mass spectrometry: Towards a massively multivariate single-cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Scott D. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Room 407, 164 College Street, Toronto, Ontario, M5S 3G9 (Canada)], E-mail: sd.tanner@utoronto.ca; Ornatsky, Olga; Bandura, Dmitry R.; Baranov, Vladimir I. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Room 407, 164 College Street, Toronto, Ontario, M5S 3G9 (Canada)

    2007-03-15

    Recent progress in the development of massively multiplexed bioanalytical assays using element tags with inductively coupled plasma mass spectrometry detection is reviewed. Feasibility results using commercially available secondary immunolabeling reagents for leukemic cell lines are presented. Multiplex analysis of higher order is shown with first generation tag reagents based on functionalized carriers that bind lanthanide ions. DNA quantification using metallointercalation allows for cell enumeration or mitotic state differentiation. In situ hybridization permits the determination of cellular RNA. The results provide a feasibility basis for the development of a multivariate assay tool for individual cell analysis based on inductively coupled plasma mass spectrometry in a cytometer configuration.

  16. Hidden parameters in the plasma deposition of microcrystalline silicon solar cells

    NARCIS (Netherlands)

    van den Donker, M.N.; Rech, B.; Schmitz, R.; Klomfass, J.; Dingemans, G.; Finger, F.; Houben, L.; Kessels, W.M.M.; Sanden, van de M.C.M.

    2007-01-01

    The effect of process parameters on the plasma deposition of µc-Si:H solar cells is reviewed in this article. Several in situ diagnostics are presented, which can be used to study the process stability as an additional parameter in the deposition process. The diagnostics were used to investigate the

  17. Effect of Plasma, RF, and RIE Treatments on Properties of Double-Sided High Voltage Solar Cells with Vertically Aligned p-n Junctions

    Directory of Open Access Journals (Sweden)

    Mykola O. Semenenko

    2016-01-01

    Full Text Available Si-based solar cells with vertically aligned p-n junctions operating at high voltage were designed and fabricated. The plasma treatments and antireflection coating deposition on the working surfaces of both single- and multijunction cells were made using the special holders. It was shown that additional treatment of solar cells in argon plasma prior to hydrogen plasma treatment and deposition of diamond-like carbon antireflection films led to the improvement of the cell efficiency by up to 60%. Radio frequency waves support plasma generation and improve photoelectric conversion mainly due to reduction of internal stresses at the interfaces. Application of reactive ion etching technique removes the broken layer, reduces elastic strain in the wafer, decreases recombination of charge carriers in the bulk, and provides cell efficiency increase by up to ten times.

  18. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    International Nuclear Information System (INIS)

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-01-01

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of 125 I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid

  19. Evidence that a glycolipid tail anchors antigen 117 to the plasma membrane of Dictyostelium discoideum cells

    International Nuclear Information System (INIS)

    Sadeghi, H.; Da Silva, A.M.; Klein, C.

    1988-01-01

    The authors describe the biochemical features of the putative cell cohesion molecule antigen 117, indicating that it is anchored to the plasma membrane by a glycolipid tail. Antigen 117 can be radiolabeled with [ 3 H]myristate, [ 3 H]palmitate, and [ 14 C]ethanolamine. The fatty acid label is removed by periodate oxidation and nitrous acid deamination, indicating that the fatty acid is attached to the protein by a structure containing carbohydrate and an unsubstituted glucosamine. As cells develop aggregation competence, the antigen is released from the cell surface in a soluble form that can still be radiolabeled with [ 14 C]ethanolamine but not with [ 3 H]myristate of [ 3 H]-palmitate. The molecular weight of the released antigen is similar to that found in the plasma membrane, but it preferentially partitions in Triton X-114 as a hydrophilic, as opposed to a hydrophobic, protein. Plasma membranes contain the enzyme activity responsible for the release of the antigen in a soluble form

  20. Plasma α-tocopherol content and its relationship with milk somatic cells count in Italian commercial herds.

    Directory of Open Access Journals (Sweden)

    Adriano Pilotto

    2015-07-01

    We did not observe a correlation between plasmatic vitamin E and somatic cell score, and this can be explained by the low level of somatic cell score (averages 1.64 and 1.26. The lowest value of vitamin E was observed at parturition (1.64 µg/ml and 1.95 µg/ml. A significant (P<0.01 negative (-20% correlation was observed between NEFA serum content and α-tocopherol plasma concentration. Serum selenium content was positively correlated (+42%, P<0.0001 to zinc concentration. Grouping cows on the basis of their plasma α-tocopherol content higher or lower than 3 μg/mL at dry off, SCS at 30 and 60 DIM tended to be higher in lactating animals with lower content of α-tocopherol (1.12 vs. 1.72, P=0.18 at 30d; 0.92 vs. 1.72, P=0.07 at 60d. However, plasma α-tocopherol content at dry off could be usefully correlated with somatic cell count in fresh cows.

  1. Optimized exosome isolation protocol for cell culture supernatant and human plasma

    Directory of Open Access Journals (Sweden)

    Richard J. Lobb

    2015-07-01

    Full Text Available Extracellular vesicles represent a rich source of novel biomarkers in the diagnosis and prognosis of disease. However, there is currently limited information elucidating the most efficient methods for obtaining high yields of pure exosomes, a subset of extracellular vesicles, from cell culture supernatant and complex biological fluids such as plasma. To this end, we comprehensively characterize a variety of exosome isolation protocols for their efficiency, yield and purity of isolated exosomes. Repeated ultracentrifugation steps can reduce the quality of exosome preparations leading to lower exosome yield. We show that concentration of cell culture conditioned media using ultrafiltration devices results in increased vesicle isolation when compared to traditional ultracentrifugation protocols. However, our data on using conditioned media isolated from the Non-Small-Cell Lung Cancer (NSCLC SK-MES-1 cell line demonstrates that the choice of concentrating device can greatly impact the yield of isolated exosomes. We find that centrifuge-based concentrating methods are more appropriate than pressure-driven concentrating devices and allow the rapid isolation of exosomes from both NSCLC cell culture conditioned media and complex biological fluids. In fact to date, no protocol detailing exosome isolation utilizing current commercial methods from both cells and patient samples has been described. Utilizing tunable resistive pulse sensing and protein analysis, we provide a comparative analysis of 4 exosome isolation techniques, indicating their efficacy and preparation purity. Our results demonstrate that current precipitation protocols for the isolation of exosomes from cell culture conditioned media and plasma provide the least pure preparations of exosomes, whereas size exclusion isolation is comparable to density gradient purification of exosomes. We have identified current shortcomings in common extracellular vesicle isolation methods and provide a

  2. Plasma characteristics of the end-cell of the GAMMA 10 tandem mirror for the divertor simulation experiment

    International Nuclear Information System (INIS)

    Nakashima, Y.; Sakamoto, M.; Yoshikawa, M.; Takeda, H.; Ichimura, K.; Hosoi, K.; Hirata, M.; Ichimura, M.; Ikezoe, R.; Imai, T.; Kariya, T.; Katanuma, I.; Kohagura, J.; Minami, R.; Numakura, T.; Oki, K.; Ueda, H.; Asakura, Nobuyuki; Furuta, T.; Hatayama, A.; Toma, M.; Hirooka, Y.; Masuzaki, S.; Sagara, A.; Shoji, M.; Kado, S.; Matsuura, H.; Nagata, S.; Nishino, N.; Ohno, N.; Tonegawa, A.; Ueda, Y.

    2012-11-01

    In this paper, detailed characteristics and controllability of plasmas emitted from the end-cell of the GAMMA 10 tandem mirror are described from the viewpoint of divertor simulation studies. The energy analysis of ion flux by using end-loss ion energy analyzer (ELIEA) proved that the obtained high ion temperature (100 - 400 eV) was comparable to SOL plasma parameters in toroidal devices and was controlled by changing the ICRF power. Parallel ion temperature T i∥ determined from the probe and calorimeter shows a linear relationship with the ICRF power in the central-cell and agrees with the results of ELIEA. Additional ICRF heating revealed a significant enhancement of particle flux, which indicated an effectiveness of additional plasma heating in adjacent cells toward the improvement of the performance. Superimposing the ECH pulse of 380 kW, 5 ms attained the maximum heat-flux more than 10 MW/m 2 on axis. This value comes up to the heat-load of the divertor plate of ITER, which gives a clear prospect of generating the required heat density for divertor studies by building up heating systems to the end-mirror cell. Initial results of plasma irradiation experiment and construction of new divertor module are also described. (author)

  3. Production of nitric oxide using a microwave plasma torch and its application to fungal cell differentiation

    International Nuclear Information System (INIS)

    Na, Young Ho; Kang, Min-Ho; Cho, Guang Sup; Choi, Eun Ha; Park, Gyungsoon; Uhm, Han Sup; Kumar, Naresh

    2015-01-01

    The generation of nitric oxide by a microwave plasma torch is proposed for its application to cell differentiation. A microwave plasma torch was developed based on basic kinetic theory. The analytical theory indicates that nitric oxide density is nearly proportional to oxygen molecular density and that the high-temperature flame is an effective means of generating nitric oxide. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimeters per minute. The apparent length of the torch flame increases as the oxygen input increases. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the mole fraction of oxygen gas, and the microwave power. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to a model microbial cell (Neurospora crassa: non-pathogenic fungus). Germination and hyphal differentiation of fungal cells were not dramatically changed but there was a significant increase in spore formation after treatment with nitric oxide. In addition, the expression level of a sporulation related gene acon-3 was significantly elevated after 24 h upon nitric oxide treatment. Increase in the level of nitric oxide, nitrite and nitrate in water after nitric oxide treatment seems to be responsible for activation of fungal sporulation. Our results suggest that nitric oxide generated by plasma can be used as a possible activator of cell differentiation and development. (paper)

  4. The effect of a plasma needle on bacteria in planktonic samples and on peripheral blood mesenchymal stem cells

    International Nuclear Information System (INIS)

    Lazovic, Sasa; Puac, Nevena; Maletic, Dejan; Malovic, Gordana; Petrovic, Zoran; Miletic, Maja; Pavlica, Dusan; Jovanovic, Milena; Milenkovic, Pavle; Bugarski, Diana; Mojsilovic, Slavko

    2010-01-01

    In this paper, we study the application of a plasma needle to induce necrosis in planktonic samples containing a single breed of bacteria. Two different types of bacteria, Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922), were covered in this study. In all experiments with bacteria, the samples were liquid suspensions of several different concentrations of bacteria prepared according to the McFarland standard. The second system studied in this paper was human peripheral blood mesenchymal stem cells (hPB-MSC). In the case of hPB-MSC, two sets of experiments were performed: when cells were covered with a certain amount of liquid (indirect) and when the cell sample was in direct contact with the plasma. Most importantly, the study is made with the aim to see the effects when the living cells are in a liquid medium, which normally acts as protection against the many agents that may be released by plasmas. It was found that a good effect may be expected for a wide range of initial cell densities and operating conditions causing destruction of several orders of magnitude even under the protection of a liquid. It was established independently that a temperature increase could not affect the cells under the conditions of our experiment, so the effect could originate only from the active species produced by the plasma. In the case of those hPB-MSC that were not protected by a liquid, gas flow proved to produce a considerable effect, presumably due to poor adhesion of the cells, but in a liquid the effect was only due to the plasma. Further optimization of the operation may be attempted, opening up the possibility of localized in vivo sterilization.

  5. The effect of a plasma needle on bacteria in planktonic samples and on peripheral blood mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Lazovic, Sasa; Puac, Nevena; Maletic, Dejan; Malovic, Gordana; Petrovic, Zoran [Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia); Miletic, Maja; Pavlica, Dusan; Jovanovic, Milena; Milenkovic, Pavle [Faculty of Stomatology, Dr Subotica 8, 11000 Belgrade (Serbia); Bugarski, Diana; Mojsilovic, Slavko, E-mail: lazovic@ipb.ac.r [Institute for Medical Research, Dr Subotica-starijeg 4, 11000 Belgrade (Serbia)

    2010-08-15

    In this paper, we study the application of a plasma needle to induce necrosis in planktonic samples containing a single breed of bacteria. Two different types of bacteria, Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922), were covered in this study. In all experiments with bacteria, the samples were liquid suspensions of several different concentrations of bacteria prepared according to the McFarland standard. The second system studied in this paper was human peripheral blood mesenchymal stem cells (hPB-MSC). In the case of hPB-MSC, two sets of experiments were performed: when cells were covered with a certain amount of liquid (indirect) and when the cell sample was in direct contact with the plasma. Most importantly, the study is made with the aim to see the effects when the living cells are in a liquid medium, which normally acts as protection against the many agents that may be released by plasmas. It was found that a good effect may be expected for a wide range of initial cell densities and operating conditions causing destruction of several orders of magnitude even under the protection of a liquid. It was established independently that a temperature increase could not affect the cells under the conditions of our experiment, so the effect could originate only from the active species produced by the plasma. In the case of those hPB-MSC that were not protected by a liquid, gas flow proved to produce a considerable effect, presumably due to poor adhesion of the cells, but in a liquid the effect was only due to the plasma. Further optimization of the operation may be attempted, opening up the possibility of localized in vivo sterilization.

  6. The effect of a plasma needle on bacteria in planktonic samples and on peripheral blood mesenchymal stem cells

    Science.gov (United States)

    Lazović, Saša; Puač, Nevena; Miletić, Maja; Pavlica, Dušan; Jovanović, Milena; Bugarski, Diana; Mojsilović, Slavko; Maletić, Dejan; Malović, Gordana; Milenković, Pavle; Petrović, Zoran

    2010-08-01

    In this paper, we study the application of a plasma needle to induce necrosis in planktonic samples containing a single breed of bacteria. Two different types of bacteria, Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922), were covered in this study. In all experiments with bacteria, the samples were liquid suspensions of several different concentrations of bacteria prepared according to the McFarland standard. The second system studied in this paper was human peripheral blood mesenchymal stem cells (hPB-MSC). In the case of hPB-MSC, two sets of experiments were performed: when cells were covered with a certain amount of liquid (indirect) and when the cell sample was in direct contact with the plasma. Most importantly, the study is made with the aim to see the effects when the living cells are in a liquid medium, which normally acts as protection against the many agents that may be released by plasmas. It was found that a good effect may be expected for a wide range of initial cell densities and operating conditions causing destruction of several orders of magnitude even under the protection of a liquid. It was established independently that a temperature increase could not affect the cells under the conditions of our experiment, so the effect could originate only from the active species produced by the plasma. In the case of those hPB-MSC that were not protected by a liquid, gas flow proved to produce a considerable effect, presumably due to poor adhesion of the cells, but in a liquid the effect was only due to the plasma. Further optimization of the operation may be attempted, opening up the possibility of localized in vivo sterilization.

  7. Identification and validation nucleolin as a target of curcumol in nasopharyngeal carcinoma cells.

    Science.gov (United States)

    Wang, Juan; Wu, Jiacai; Li, Xumei; Liu, Haowei; Qin, Jianli; Bai, Zhun; Chi, Bixia; Chen, Xu

    2018-06-30

    Identification of the specific protein target(s) of a drug is a critical step in unraveling its mechanisms of action (MOA) in many natural products. Curcumol, isolated from well known Chinese medicinal plant Curcuma zedoary, has been shown to possess multiple biological activities. It can inhibit nasopharyngeal carcinoma (NPC) proliferation and induce apoptosis, but its target protein(s) in NPC cells remains unclear. In this study, we employed a mass spectrometry-based chemical proteomics approach reveal the possible protein targets of curcumol in NPC cells. Cellular thermal shift assay (CETSA), molecular docking and cell-based assay was used to validate the binding interactions. Chemical proteomics capturing uncovered that NCL is a target of curcumol in NPC cells, Molecular docking showed that curcumol bound to NCL with an -7.8 kcal/mol binding free energy. Cell function analysis found that curcumol's treatment leads to a degradation of NCL in NPC cells, and it showed slight effects on NP69 cells. In conclusion, our results providing evidences that NCL is a target protein of curcumol. We revealed that the anti-cancer effects of curcumol in NPC cells are mediated, at least in part, by NCL inhibition. Many natural products showed high bioactivity, while their mechanisms of action (MOA) are very poor or completely missed. Understanding the MOA of natural drugs can thoroughly exploit their therapeutic potential and minimize their adverse side effects. Identification of the specific protein target(s) of a drug is a critical step in unraveling its MOA. Compound-centric chemical proteomics is a classic chemical proteomics approach which integrates chemical synthesis with cell biology and mass spectrometry (MS) to identify protein targets of natural products determine the drug mechanism of action, describe its toxicity, and figure out the possible cause of off-target. It is an affinity-based chemical proteomics method to identify small molecule-protein interactions

  8. Application of Artificial Bee Colony in Model Parameter Identification of Solar Cells

    Directory of Open Access Journals (Sweden)

    Rongjie Wang

    2015-07-01

    Full Text Available The identification of values of solar cell parameters is of great interest for evaluating solar cell performances. The algorithm of an artificial bee colony was used to extract model parameters of solar cells from current-voltage characteristics. Firstly, the best-so-for mechanism was introduced to the original artificial bee colony. Then, a method was proposed to identify parameters for a single diode model and double diode model using this improved artificial bee colony. Experimental results clearly demonstrate the effectiveness of the proposed method and its superior performance compared to other competing methods.

  9. Effects of pre- and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions

    International Nuclear Information System (INIS)

    Asadian, M; Grande, S; Morent, R; Nikiforov, A; De Geyter, N; Declercq, H

    2017-01-01

    In this study, liquid plasma treatment was used to improve the morphology of Poly-ε-CaproLactone (PCL) NanoFibers (NFs), followed by performing a Dielectric Barrier Discharge (DBD) plasma surface modification to enhance the hydrophilicity of electrospun mats generated from plasma-modified PCL solutions. Cell interaction studies performed after 1 day and 7 days clearly revealed the highly increased cellular interactions on the double plasma-treated nanofibers compared to the pristine ones due to the combination of (1) a better NF morphology and (2) an increased surface hydrophilicity. (paper)

  10. Plasma lipid pattern and red cell membrane structure in β-thalassemia patients in Jakarta

    Directory of Open Access Journals (Sweden)

    Seruni K.U. Freisleben

    2011-08-01

    Full Text Available Background: Over the last 10 years, we have investigated thalassemia patients in Jakarta to obtain a comprehensive picture of iron overload, oxidative stress, and cell damage.Methods: In blood samples from 15 transfusion-dependent patients (group T, 5 non-transfused patients (group N and 10 controls (group C, plasma lipids and lipoproteins, lipid-soluble vitamin E, malondialdehyde (MDA and thiol status were measured. Isolated eryhtrocyte membranes were investigated with electron paramagnetic resonance (EPR spectroscopy using doxyl-stearic acid and maleimido-proxyl spin lables. Data were analyzed statistically with ANOVA.Results: Plasma triglycerides were higher and cholesterol levels were lower in thalassemic patients compared to controls. Vitamin E, group C: 21.8 vs T: 6.2 μmol/L and reactive thiols (C: 144 vs. T: 61 μmol/L were considerably lower in transfused patients, who exert clear signs of oxidative stress (MDA, C: 1.96 vs T: 9.2 μmol/L and of tissue cell damage, i.e., high transaminases plasma levels. Non-transfused thalassemia patients have slight signs of oxidative stress, but no significant indication of cell damage. Erythrocyte membrane parameters from EPR spectroscopy differ considerably between all groups. In transfusion-dependent patients the structure of the erythrocyte membrane and the gradients of polarity and fluidity are destroyed in lipid domains; binding capacity of protein thiols in the membrane is lower and immobilized.Conclusion: In tranfusion-dependent thalassemic patients, plasma lipid pattern and oxidative stress are associated with structural damage of isolated erythrocyte membranes as measured by EPR spectroscopy with lipid and proteinthiol spin labels. (Med J Indones 2011; 20:178-84Keywords: electron paramagnetic resonance spectroscopy, erythrocyte membrane, lipoproteins, oxidative stress, thalassemia, plasma lipids.

  11. Automatic cell identification and visualization using digital holographic microscopy with head mounted augmented reality devices.

    Science.gov (United States)

    O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram

    2018-03-01

    We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.

  12. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions

    Energy Technology Data Exchange (ETDEWEB)

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany); Ansari, Nariman [Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt (Germany); Esner, Milan; Bickle, Marc [Max Planck Institute of Molecular Cell Biology and Genetics, High-Throughput Technology Development Studio (TDS), Dresden (Germany); Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H. [Physical Biology Group, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt (Germany); Parczyk, Karsten; Prechtl, Stefan [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany); Steigemann, Patrick, E-mail: Patrick.Steigemann@bayer.com [Bayer Pharma AG, Global Drug Discovery, Muellerstrasse 178, 13353 Berlin (Germany)

    2014-04-15

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high

  13. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions

    International Nuclear Information System (INIS)

    Wenzel, Carsten; Riefke, Björn; Gründemann, Stephan; Krebs, Alice; Christian, Sven; Prinz, Florian; Osterland, Marc; Golfier, Sven; Räse, Sebastian; Ansari, Nariman; Esner, Milan; Bickle, Marc; Pampaloni, Francesco; Mattheyer, Christian; Stelzer, Ernst H.; Parczyk, Karsten; Prechtl, Stefan; Steigemann, Patrick

    2014-01-01

    Cancer cells in poorly vascularized tumor regions need to adapt to an unfavorable metabolic microenvironment. As distance from supplying blood vessels increases, oxygen and nutrient concentrations decrease and cancer cells react by stopping cell cycle progression and becoming dormant. As cytostatic drugs mainly target proliferating cells, cancer cell dormancy is considered as a major resistance mechanism to this class of anti-cancer drugs. Therefore, substances that target cancer cells in poorly vascularized tumor regions have the potential to enhance cytostatic-based chemotherapy of solid tumors. With three-dimensional growth conditions, multicellular tumor spheroids (MCTS) reproduce several parameters of the tumor microenvironment, including oxygen and nutrient gradients as well as the development of dormant tumor regions. We here report the setup of a 3D cell culture compatible high-content screening system and the identification of nine substances from two commercially available drug libraries that specifically target cells in inner MCTS core regions, while cells in outer MCTS regions or in 2D cell culture remain unaffected. We elucidated the mode of action of the identified compounds as inhibitors of the respiratory chain and show that induction of cell death in inner MCTS core regions critically depends on extracellular glucose concentrations. Finally, combinational treatment with cytostatics showed increased induction of cell death in MCTS. The data presented here shows for the first time a high-content based screening setup on 3D tumor spheroids for the identification of substances that specifically induce cell death in inner tumor spheroid core regions. This validates the approach to use 3D cell culture screening systems to identify substances that would not be detectable by 2D based screening in otherwise similar culture conditions. - Highlights: • Establishment of a novel method for 3D cell culture based high-content screening. • First reported high

  14. Recovery from Bell Palsy after Transplantation of Peripheral Blood Mononuclear Cells and Platelet-Rich Plasma.

    Science.gov (United States)

    Seffer, Istvan; Nemeth, Zoltan

    2017-06-01

    Peripheral blood mononuclear cells (PBMCs) are multipotent, and plasma contains growth factors involving tissue regeneration. We hypothesized that transplantation of PBMC-plasma will promote the recovery of paralyzed facial muscles in Bell palsy. This case report describes the effects of PBMC-plasma transplantations in a 27-year-old female patient with right side Bell palsy. On the affected side of the face, the treatment resulted in both morphological and functional recovery including voluntary facial movements. These findings suggest that PBMC-plasma has the capacity of facial muscle regeneration and provides a promising treatment strategy for patients suffering from Bell palsy or other neuromuscular disorders.

  15. Air plasma spray processing and electrochemical characterization of Cu-SDC coatings for use in solid oxide fuel cell anodes

    Energy Technology Data Exchange (ETDEWEB)

    Benoved, Nir [Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Sciences Lane, Vancouver, British Columbia (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario (Canada)

    2009-09-05

    Air plasma spraying has been used to produce porous composite anodes based on Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9} (SDC) and Cu for use in solid oxide fuel cells (SOFCs). Preliminarily, a range of plasma conditions has been examined for the production of composite coatings from pre-mixed SDC and CuO powders. Plasma gas compositions were varied to obtain a range of plasma temperatures. After reduction in H{sub 2}, coatings were characterized for composition and microstructure using EDX and SEM. As a result of these tests, symmetrical sintered electrolyte-supported anode-anode cells were fabricated by air plasma spraying of the anodes, followed by in situ reduction of the CuO to Cu. Full cells deposited on SS430 porous substrates were then produced in one integrated process. Fine CuO and SDC powders have been used to produce homogeneously mixed anode coatings with higher surface area microstructures, resulting in area-specific polarization resistances of 4.8 {omega} cm{sup 2} in impedance tests in hydrogen at 712 C. (author)

  16. Air plasma spray processing and electrochemical characterization of Cu-SDC coatings for use in solid oxide fuel cell anodes

    Science.gov (United States)

    Benoved, Nir; Kesler, O.

    Air plasma spraying has been used to produce porous composite anodes based on Ce 0.8Sm 0.2O 1.9 (SDC) and Cu for use in solid oxide fuel cells (SOFCs). Preliminarily, a range of plasma conditions has been examined for the production of composite coatings from pre-mixed SDC and CuO powders. Plasma gas compositions were varied to obtain a range of plasma temperatures. After reduction in H 2, coatings were characterized for composition and microstructure using EDX and SEM. As a result of these tests, symmetrical sintered electrolyte-supported anode-anode cells were fabricated by air plasma spraying of the anodes, followed by in situ reduction of the CuO to Cu. Full cells deposited on SS430 porous substrates were then produced in one integrated process. Fine CuO and SDC powders have been used to produce homogeneously mixed anode coatings with higher surface area microstructures, resulting in area-specific polarization resistances of 4.8 Ω cm 2 in impedance tests in hydrogen at 712 °C.

  17. Particle-in-cell modeling of laser Thomson scattering in low-density plasmas at elevated laser intensities

    Science.gov (United States)

    Powis, Andrew T.; Shneider, Mikhail N.

    2018-05-01

    Incoherent Thomson scattering is a non-intrusive technique commonly used for measuring local plasma density. Within low-density, low-temperature plasmas and for sufficient laser intensity, the laser may perturb the local electron density via the ponderomotive force, causing the diagnostic to become intrusive and leading to erroneous results. A theoretical model for this effect is validated numerically via kinetic simulations of a quasi-neutral plasma using the particle-in-cell technique.

  18. MIXED HYALINE VASCULAR AND PLASMA CELL TYPE CASTLEMAN’S DISEASE: REPORT OF A CASE

    Directory of Open Access Journals (Sweden)

    F. Asgarani

    2006-05-01

    Full Text Available Castleman’s disease (angiofollicular lymphoid hyperplasia includes a heterogeneous group of lymphoproliferative disorders. The cause of this disease remains uncertain. There are two types of localized Castleman’s disease: the more common hyaline vascular and the plasma cell types. Mixed variant is an uncommon localized lesion in general population. The lesions can occur in any part of the body that contains lymphoid tissue, although seventy percent are found in the anterior mediastinum. We report a thirty years old boy with Castleman’s disease who presented with fever, anorexia, weight loss,sweating, anemia and abdominal mass. The histologic examination of the biopsy specimens revealed a mixed hyaline vascular and plasma cell type of Castleman’s disease.

  19. Surface modification of porous nanocrystalline TiO2 films for dye-sensitized solar cell application by various gas plasmas

    International Nuclear Information System (INIS)

    Kim, Youngsoo; Yoon, Chang-Ho; Kim, Kang-Jin; Lee, Yeonhee

    2007-01-01

    Titanium dioxide (TiO 2 ) film for dye-sensitized solar cells (DSSCs) has surface defects such as oxygen vacancies created during the annealing process. The authors used a plasma treatment technique to reduce defects on TiO 2 surfaces. They investigated the influence of different gas plasma treatments of TiO 2 film on the photoelectric performance of DSSC. Short-circuit photocurrent density (J sc ), open-circuit photovoltage (V oc ), and the amount of adsorbed dye for DSSCs were measured. As a result, the solar-to-electricity conversion efficiencies of the O 2 - and N 2 -treated cells increased by 15%-20% compared to untreated cells. On the other hand, solar energy conversion efficiency of CF 4 -plasma treated cells decreased drastically. The increased amount of adsorbed dye on the TiO 2 film was measured by time-of-flight secondary ion mass spectrometry. TiO 2 surfaces modified by plasma treatment were characterized using analytical instruments such as x-ray photoelectron spectroscopy and near-edge x-ray absorption fine structure

  20. Surface plasma resonance enhanced photocurrent generation in NiO photoanode based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong; Cui, Jin [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Li, Junpeng [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China); Cao, Kun; Yuan, Shuai [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Cheng, Yibing [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China); Department of Materials Engineering, Monash University, Melbourne, Victoria 3800 (Australia); Wang, Mingkui, E-mail: mingkui.wang@mail.hust.edu.cn [Michael Grätzel Center for Mesoscopic Solar Cells, Wuhan National Laboratory for Optoelectronics Department, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei (China)

    2015-09-15

    Highlights: • SPR effect from Au-nanostructures was first investigated in NiO-based solar cells. • Enhanced photocurrent generation was observed in p-DSC and perovskite solar cell. • Au-nanorods SPR effect induced charge kinetics were investigated. - Abstract: Surface plasma resonance (SPR) effect has been demonstrated to improve solar cell performance. This work reports on the SPR effect from Au nanorod@SiO{sub 2} on p-type dye-sensitized solar cells. Au nanorod@SiO{sub 2} works as an antenna to transform photons with long wavelength into electric field followed by an enhanced excitation of dye. The devices using the NiO electrode containing Au nanorod@SiO{sub 2} shows overall power conversion efficiencies of about 0.2% in combination with I{sup −}/I{sub 3}{sup −} electrolyte, and 0.29% with T{sup −}/T{sub 2} electrolyte, which are superior to those without adding Au nanorods. Detailed investigation including spectroscopy and transient photovoltage decay measurements reveals that plasma effect of Au nanorod@SiO{sub 2} contribute to charge injection efficiency, and thus on the photocurrent. The effect of Au NRs can be further extended to the inverted planar perovskite solar cells, showing obviously improvement in photocurrent.

  1. Merging Mixture Components for Cell Population Identification in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Greg Finak

    2009-01-01

    Full Text Available We present a framework for the identification of cell subpopulations in flow cytometry data based on merging mixture components using the flowClust methodology. We show that the cluster merging algorithm under our framework improves model fit and provides a better estimate of the number of distinct cell subpopulations than either Gaussian mixture models or flowClust, especially for complicated flow cytometry data distributions. Our framework allows the automated selection of the number of distinct cell subpopulations and we are able to identify cases where the algorithm fails, thus making it suitable for application in a high throughput FCM analysis pipeline. Furthermore, we demonstrate a method for summarizing complex merged cell subpopulations in a simple manner that integrates with the existing flowClust framework and enables downstream data analysis. We demonstrate the performance of our framework on simulated and real FCM data. The software is available in the flowMerge package through the Bioconductor project.

  2. 3D Plasma Nanotextured® Polymeric Surfaces for Protein or Antibody Arrays, and Biomolecule and Cell Patterning.

    Science.gov (United States)

    Tsougeni, Katerina; Ellinas, Kosmas; Koukouvinos, George; Petrou, Panagiota S; Tserepi, Angeliki; Kakabakos, Sotirios E; Gogolides, Evangelos

    2018-01-01

    Plasma micro-nanotexturing is a generic technology for topographical and chemical modification of surfaces and their implementation in microfluidics and microarrays. Nanotextured surfaces with desirable chemical functionality (and wetting behavior) have shown excellent biomolecule immobilization and cell adhesion. Specifically, nanotextured hydrophilic areas show (a) strong binding of biomolecules and (b) strong adhesion of cells, while nanotextured superhydrophobic areas show null adsorption of (a) proteins and (b) cells. Here we describe the protocols for (a) biomolecule adsorption control on nanotextured surfaces for microarray fabrication and (b) cell adhesion on such surfaces. 3D plasma nanotextured® substrates are commercialized through Nanoplasmas private company, a spin-off of the National Centre for Scientific Research Demokritos.

  3. Hunting for low abundant redox proteins in plant plasma membranes.

    Science.gov (United States)

    Lüthje, Sabine; Hopff, David; Schmitt, Anna; Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana

    2009-04-13

    Nowadays electron transport (redox) systems in plasma membranes appear well established. Members of the flavocytochrome b family have been identified by their nucleotide acid sequences and characterized on the transcriptional level. For their gene products functions have been demonstrated in iron uptake and oxidative stress including biotic interactions, abiotic stress factors and plant development. In addition, NAD(P)H-dependent oxidoreductases and b-type cytochromes have been purified and characterized from plasma membranes. Several of these proteins seem to belong to the group of hypothetical or unknown proteins. Low abundance and the lack of amino acid sequence data for these proteins still hamper their functional analysis. Consequently, little is known about the physiological function and regulation of these enzymes. In recent years evidence has been presented for the existence of microdomains (so-called lipid rafts) in plasma membranes and their interaction with specific membrane proteins. The identification of redox systems in detergent insoluble membranes supports the idea that redox systems may have important functions in signal transduction, stress responses, cell wall metabolism, and transport processes. This review summarizes our present knowledge on plasma membrane redox proteins and discusses alternative strategies to investigate the function and regulation of these enzymes.

  4. Plasma parameters of the cathode spot explosive electron emission cell obtained from the model of liquid-metal jet tearing and electrical explosion

    Science.gov (United States)

    Tsventoukh, M. M.

    2018-05-01

    A model has been developed for the explosive electron emission cell pulse of a vacuum discharge cathode spot that describes the ignition and extinction of the explosive pulse. The pulse is initiated due to hydrodynamic tearing of a liquid-metal jet which propagates from the preceding cell crater boundary and draws the ion current from the plasma produced by the preceding explosion. Once the jet neck has been resistively heated to a critical temperature (˜1 eV), the plasma starts expanding and decreasing in density, which corresponds to the extinction phase. Numerical and analytical solutions have been obtained that describe both the time behavior of the pulse plasma parameters and their average values. For the cell plasma, the momentum per transferred charge has been estimated to be some tens of g cm/(s C), which is consistent with the known measurements of ion velocity, ion erosion rate, and specific recoil force. This supports the model of the pressure-gradient-driven plasma acceleration mechanism for the explosive cathode spot cells. The ohmic electric field within the explosive current-carrying plasma has been estimated to be some tens of kV/cm, which is consistent with the known experimental data on cathode potential fall and explosive cell plasma size. This supports the model that assumes the ohmic nature of the cathode potential fall in a vacuum discharge.

  5. Tug of war in the haematopoietic stem cell niche: do myeloma plasma cells compete for the HSC niche?

    Science.gov (United States)

    Noll, J E; Williams, S A; Purton, L E; Zannettino, A C W

    2012-09-14

    In the adult mammal, normal haematopoiesis occurs predominantly in the bone marrow, where primitive haematopoietic stem cells (HSC) and their progeny reside in specialised microenvironments. The bone marrow microenvironment contains specific anatomical areas (termed niches) that are highly specialised for the development of certain blood cell types, for example HSCs. The HSC niche provides important cell-cell interactions and signalling molecules that regulate HSC self-renewal and differentiation processes. These same signals and interactions are also important in the progression of haematological malignancies, such as multiple myeloma (MM). This review provides an overview of the bone marrow microenvironment and its involvement in normal, physiological HSC maintenance and plasma cell growth throughout MM disease progression.

  6. Identification of progenitor cancer stem cell in lentigo maligna melanoma.

    Science.gov (United States)

    Bongiorno, M R; Doukaki, S; Malleo, F; Aricò, M

    2008-07-01

    The potential role of stem cells in neoplasia has aroused considerable interest over the past few years. A number of known biologic characteristics of melanomas support the theory that they may originate in a mutated stem cell. Melanocytic stem cell markers have been described recently. Moreover, the CD133 cells that show surface markers for CD34 are stem cells primitive. These stem cells are capable of differentiating into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. The identification of cancer stem/initiating cells with a crucial role in tumor formation may open up new pharmacologic perspectives. The purpose of this study is to detect the expression of CD133 and CD34, two putative markers of cancer stem cells in the lentigo maligna melanoma. Thirty cases of lentigo maligna melanoma were analyzed using indirect immunohistochemical staining. The vast majority of the samples analyzed showed the presence of rare cells, which were clearly positive for CD133 and CD34. Strong CD133 and CD34 staining was found in the outer root sheath of the mid-lower hair follicles, intermixed with atypical melanocytes extending along layers of the hair follicles. A number of these staminal cells were adjacent and intermixed with melanoma cells. This study supports the stem cell origin of this tumor and suggests that the precursor of the melanoma in question is a stem-like cell rather than the primitive melanoblast committed to be exclusively involved in melanocytic differentiation.

  7. Electrochemical testing of suspension plasma sprayed solid oxide fuel cell electrolytes

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    Electrochemical performance of metal-supported plasma sprayed (PS) solid oxide fuel cells (SOFCs) was tested for three nominal electrolyte thicknesses and three electrolyte fabrication conditions to determine the effects of electrolyte thickness and microstructure on open circuit voltage (OCV) and series resistance (R s). The measured OCV values were approximately 90% of the Nernst voltages, and electrolyte area specific resistances below 0.1 Ω cm 2 were obtained at 750 °C for electrolyte thicknesses below 20 μm. Least-squares fitting was used to estimate the contributions to R s of the YSZ bulk material, its microstructure, and the contact resistance between the current collectors and the cells. It was found that the 96% dense electrolyte layers produced from high plasma gas flow rate conditions had the lowest permeation rates, the highest OCV values, and the smallest electrolyte-related voltage losses. Optimal electrolyte thicknesses were determined for each electrolyte microstructure that would result in the lowest combination of OCV loss and voltage loss due to series resistance for operating voltages of 0.8 V and 0.7 V.

  8. Disruption of Splenic Lymphoid Tissue and Plasmacytosis in Canine Visceral Leishmaniasis: Changes in Homing and Survival of Plasma Cells.

    Directory of Open Access Journals (Sweden)

    Joselli Silva-O'Hare

    Full Text Available Visceral leishmaniasis (VL is a disease caused by Leishmania infantum, which is transmitted by phlebotomine sandflies. Dogs are the main urban reservoir of this parasite and the disease presents similar characteristics in both humans and dogs. In this paper, we investigated the potential pathways involved in plasma cell replacement of normal cell populations in the spleen, with respect to disease severity in dogs from an endemic area for visceral leishmaniasis. To this end, canine spleen samples were grouped into three categories: TYPE1SC- (non-infected dogs or without active infection with organized white pulp, TYPE1SC+ (infected dogs with organized white pulp or TYPE3SC+ (infected animals with disorganized white pulp. We analyzed the distribution of different plasma cell isotypes (IgA, IgG and IgM in the spleen. The expression of cytokines and chemokines involved in plasma cell homing and survival were assessed by real time RT-PCR. Polyclonal B cell activation and hypergammaglobulinemia were also evaluated. The proportion of animals with moderate or intense plasmacytosis was higher in the TYPE3SC+ group than in the other groups (Fisher test, P<0.05. This was mainly due to a higher density of IgG+ plasma cells in the red pulp of this group. The albumin/globulin ratio was lower in the TYPE3SC+ animals than in the TYPE1SC- or TYPE1SC+ animals, which evidences VL-associated dysproteinemia. Interestingly, TYPE3SC+ animals showed increased expression of the BAFF and APRIL cytokines, as well as chemokine CXCL12. Aberrant expression of BAFF, APRIL and CXCL12, together with amplified extrafollicular B cell activation, lead to plasma cell homing and the extended survival of these cells in the splenic red pulp compartment. These changes in the distribution of immunocompetent cells in the spleen may contribute to the progression of VL, and impair the spleen's ability to protect against blood borne pathogens.

  9. Identification and Investigation of Native Chromosomal Fragile Sites in the Avian Cell Line DT40

    DEFF Research Database (Denmark)

    Pentzold, Constanze

    cell systems. With the identification and investigation of CFSs in avian DT40 cells, this study reveals the genome-­‐wide evolutionary conservation of CFSs beyond the mammalian lineage for the first time. It opens the way for speculations on the beneficial existence of CFSs throughout the animal...... kingdom....

  10. Argon plasma treatment of silicon nitride (SiN) for improved antireflection coating on c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Hemanta; Mitra, Suchismita; Saha, Hiranmay; Datta, Swapan Kumar; Banerjee, Chandan, E-mail: chandanbanerjee74@gmail.com

    2017-01-15

    Highlights: • Antireflection properties of argon plasma treated silicon nitride layer and its effect on crystalline silicon solar cell. • The reduction in reflection due to the formation of a silicon oxynitride/silicon nitride double layer. • EQE reveals a relative increase of 2.72% in J{sub sc} and 4.46% in conversion efficiency. - Abstract: Antireflection properties of argon plasma treated silicon nitride layer and its effect on crystalline silicon solar cell is presented here. Hydrogenated silicon nitride (a-SiN:H) layer has been deposited on a silicon substrate by Plasma Enhanced Chemical Vapour Deposition (PECVD) using a mixture of silane (SiH{sub 4}), ammonia (NH{sub 3}) and hydrogen (H{sub 2}) gases followed by a argon plasma treatment. Optical analysis reveals a significant reduction in reflectance after argon plasma treatment of silicon nitride layer. While FESEM shows nanostructures on the surface of the silicon nitride film, FTIR reveals a change in Si−N, Si−O and N−H bonds. On the other hand, ellipsometry shows the variation of refractive index and formation of double layer. Finally, a c-Si solar cell has been fabricated with the said anti-reflection coating. External quantum efficiency reveals a relative increase of 2.72% in the short circuit current density and 4.46% in conversion efficiency over a baseline efficiency of 16.58%.

  11. Plasma immersion ion implantation of boron for ribbon silicon solar cells

    Directory of Open Access Journals (Sweden)

    Derbouz K.

    2013-09-01

    Full Text Available In this work, we report for the first time on the solar cell fabrication on n-type silicon RST (for Ribbon on Sacrificial Template using plasma immersion ion implantation. The experiments were also carried out on FZ silicon as a reference. Boron was implanted at energies from 10 to 15 kV and doses from 1015 to 1016 cm-2, then activated by a thermal annealing in a conventional furnace at 900 and 950 °C for 30 min. The n+ region acting as a back surface field was achieved by phosphorus spin-coating. The frontside boron emitter was passivated either by applying a 10 nm deposited SiOX plasma-enhanced chemical vapor deposition (PECVD or with a 10 nm grown thermal oxide. The anti-reflection coating layer formed a 60 nm thick SiNX layer. We show that energies less than 15 kV and doses around 5 × 1015 cm-2 are appropriate to achieve open circuit voltage higher than 590 mV and efficiency around 16.7% on FZ-Si. The photovoltaic performances on ribbon silicon are so far limited by the bulk quality of the material and by the quality of the junction through the presence of silicon carbide precipitates at the surface. Nevertheless, we demonstrate that plasma immersion ion implantation is very promising for solar cell fabrication on ultrathin silicon wafers such as ribbons.

  12. Consolidation therapy with autologous stem cell transplantation in plasma cell leukemia after VAD, high-dose cyclophosphamide and EDAP courses : a report of three cases and a review of the literature

    NARCIS (Netherlands)

    Hovenga, S; deWolf, JTM; Klip, H; Vellenga, E

    1997-01-01

    Plasma cell leukemia (PCL) is a rare lymphoproliferative disorder characterized by a malignant proliferation of plasma cells in blood and bone marrow, Treatment of primary PCL has been mostly disappointing, Three patients with primary PCL are described who received high-dose melphalan with

  13. First identification of dimethoxycinnamic acids in human plasma after coffee intake by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Nagy, Kornél; Redeuil, Karine; Williamson, Gary; Rezzi, Serge; Dionisi, Fabiola; Longet, Karin; Destaillats, Frédéric; Renouf, Mathieu

    2011-01-21

    There is a substantial amount of published literature on the bioavailability of various coffee components including the most abundant metabolites, caffeic and ferulic acids. Surprisingly, to date, the appearance of dimethoxycinnamic acid derivatives in humans has not been reported despite the fact that methylated form of catechol-type polyphenols could help maintain, modify or even improve their biological activities. This study reports an LC-MS method for the detection of dimethoxycinnamic acid in human plasma after treatment with an esterase. Liquid chromatography, including the combination of methanol and acetonitrile as organic eluent, was optimized to resolve all interferences and enable reliable detection and identification of 3,4-dimethoxycinnamic and 3,4-dimethoxy-dihydrocinnamic acids. In addition to the good mass accuracy achieved (better than 5 ppm), tandem mass spectrometric and co-chromatography experiments further confirmed the identity of the compounds. The optimized method was applied to analyze samples obtained immediately, 1 and 10 h after coffee ingestion. The results show that in particular 3,4-dimethoxycinnamic acid appears in high abundance (∼380 nM at 60 min) in plasma upon coffee intake, indicating that it is important to consider these derivatives in future bioavailability and bioefficacy studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Comparative proteomic analysis of plasma membrane proteins between human osteosarcoma and normal osteoblastic cell lines

    International Nuclear Information System (INIS)

    Zhang, Zhiyu; Ma, Fang; Cai, Zhengdong; Zhang, Lijun; Hua, Yingqi; Jia, Xiaofang; Li, Jian; Hu, Shuo; Peng, Xia; Yang, Pengyuan; Sun, Mengxiong

    2010-01-01

    Osteosarcoma (OS) is the most common primary malignant tumor of bone in children and adolescents. However, the knowledge in diagnostic modalities has progressed less. To identify new biomarkers for the early diagnosis of OS as well as for potential novel therapeutic candidates, we performed a sub-cellular comparative proteomic research. An osteosarcoma cell line (MG-63) and human osteoblastic cells (hFOB1.19) were used as our comparative model. Plasma membrane (PM) was obtained by aqueous two-phase partition. Proteins were analyzed through iTRAQ-based quantitative differential LC/MS/MS. The location and function of differential proteins were analyzed through GO database. Protein-protein interaction was examined through String software. One of differentially expressed proteins was verified by immunohistochemistry. 342 non-redundant proteins were identified, 68 of which were differentially expressed with 1.5-fold difference, with 25 up-regulated and 43 down-regulated. Among those differential proteins, 69% ware plasma membrane, which are related to the biological processes of binding, cell structure, signal transduction, cell adhesion, etc., and interaction with each other. One protein--CD151 located in net nodes was verified to be over-expressed in osteosarcoma tissue by immunohistochemistry. It is the first time to use plasma membrane proteomics for studying the OS membrane proteins according to our knowledge. We generated preliminary but comprehensive data about membrane protein of osteosarcoma. Among these, CD151 was further validated in patient samples, and this small molecule membrane might be a new target for OS research. The plasma membrane proteins identified in this study may provide new insight into osteosarcoma biology and potential diagnostic and therapeutic biomarkers

  15. A Novel Plasma Membrane-Anchored Protein Regulates Xylem Cell-Wall Deposition through Microtubule-Dependent Lateral Inhibition of Rho GTPase Domains.

    Science.gov (United States)

    Sugiyama, Yuki; Wakazaki, Mayumi; Toyooka, Kiminori; Fukuda, Hiroo; Oda, Yoshihisa

    2017-08-21

    Spatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In metaxylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3-5]. However, the regulatory mechanism that determines the planar shape of active Rho of Plants (ROP) domains is still unknown. Here we show that IQD13 associates with cortical microtubules and the plasma membrane to laterally restrict the localization of ROP GTPase domains, thereby directing the formation of oval secondary cell-wall pits. Loss and overexpression of IQD13 led to the formation of abnormally round and narrow secondary cell-wall pits, respectively. Ectopically expressed IQD13 increased the presence of parallel cortical microtubules by promoting microtubule rescue. A reconstructive approach revealed that IQD13 confines the area of active ROP domains within the lattice of the cortical microtubules, causing narrow ROP domains to form. This activity required the interaction of IQD13 with the plasma membrane. These findings suggest that IQD13 positively regulates microtubule dynamics as well as their linkage to the plasma membrane, which synergistically confines the area of active ROP domains, leading to the formation of oval secondary cell-wall pits. This finding sheds light on the role of microtubule-plasma membrane linkage as a lateral fence that determines the planar shape of Rho GTPase domains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Structural changes in plasma membranes prepared from irradiated Chinese hamster V79 cells as revealed by Raman spectroscopy

    International Nuclear Information System (INIS)

    Verma, S.P.; Sonwalkar, N.

    1991-01-01

    The effect of gamma irradiation on the integrity of plasma membranes isolated from Chinese hamster V79 cells was investigated by Raman spectroscopy. Plasma membranes of control V79 cells show transitions between -10 and 5 degree C (low-temperature transition), 10 and 22 degree C (middle-temperature transition), and 32 and 40 degree C (high-temperature transition). Irradiation (5 Gy) alters these transitions markedly. First, the low-temperature transition shifts to higher temperature (onset and completion temperatures 4 and 14 degree C). Second, the middle-temperature transition shifts up to the range of about 20-32 degree C, but the width remains unchanged. Third, the higher temperature transition broadens markedly and shifts to the range of about 15-40 degree C. Protein secondary structure as determined by least-squares analysis of the amide I bands shows 36% total helix, 55% total beta-strand, and 9% turn plus undefined for control plasma membrane proteins. Plasma membrane proteins of irradiated V79 cells show an increase in total helix (40 and 45% at 5 and 10 Gy, respectively) and a decrease in the total beta-strand (48 and 44% at 5 and 10 Gy, respectively) structures. The qualitative analysis of the Raman features of plasma membranes and model compounds in the 1600 cm-1 region, assigned to tyrosine groups, revealed that irradiation alters the microenvironment of these groups. We conclude that the radiation dose used in the survival range of Chinese hamster V79 cells can cause damage to plasma membrane proteins without detectable lipid peroxidation, and that the altered proteins react differently with lipids, yielding a shift in the thermal transition properties

  17. Carbon nanotubes on Jurkat cells: effects on cell viability and plasma membrane potential

    International Nuclear Information System (INIS)

    De Nicola, Milena; Ghibelli, Lina; Bellucci, Stefano; Bellis, Giovanni De; Micciulla, Federico; Traversa, Enrico

    2008-01-01

    Carbon nanotubes (CNT) are one of the most novel attractive materials in nanotechnology for their potential multiple applications, including in the biomedical fields. The biocompatibility and toxicity of these novel nanomaterials are still largely unknown and a systematic study on biological interference is essential. We present a toxicological assessment of different types of CNT on the human tumor lymphocytic Jurkat cells. The carbon nanomaterials examined differ in preparation, size, contaminants and morphology: (1) CNT composed of MWCNT+SWCNT, with no metal contaminants; (2) MWCNT and (3) SWCNT, both with metal contaminants; (4) carbon black as control. The results indicate that CNT exert a dose- and time-dependent cytotoxic effect on Jurkat cells, inducing apoptotic cell death, accelerating the transition to secondary necrosis and increasing the extent of apoptosis induced by damaging agents; interestingly, CNT induce a plasma membrane hyperpolarization. These alterations are produced by all types of CNT, but contaminants and/or the size modulate the extent of such effects. Thus CNT deeply affect cell behavior, suggesting that they might play a role in inflammation, and recommending greater attention in terms of evaluation of exposure risks.

  18. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology.

    Science.gov (United States)

    Manford, Andrew G; Stefan, Christopher J; Yuan, Helen L; Macgurn, Jason A; Emr, Scott D

    2012-12-11

    Endoplasmic reticulum-plasma membrane (ER-PM) junctions are conserved structures defined as regions of the ER that tightly associate with the plasma membrane. However, little is known about the mechanisms that tether these organelles together and why such connections are maintained. Using a quantitative proteomic approach, we identified three families of ER-PM tethering proteins in yeast: Ist2 (related to mammalian TMEM16 ion channels), the tricalbins (Tcb1/2/3, orthologs of the extended synaptotagmins), and Scs2 and Scs22 (vesicle-associated membrane protein-associated proteins). Loss of all six tethering proteins results in the separation of the ER from the PM and the accumulation of cytoplasmic ER. Importantly, we find that phosphoinositide signaling is misregulated at the PM, and the unfolded protein response is constitutively activated in the ER in cells lacking ER-PM tether proteins. These results reveal critical roles for ER-PM contacts in cell signaling, organelle morphology, and ER function. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Plasma medicine: an introductory review

    International Nuclear Information System (INIS)

    Kong, M G; Kroesen, G; Van Dijk, J; Morfill, G; Nosenko, T; Shimizu, T; Zimmermann, J L

    2009-01-01

    This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology-an unavoidable by-product of interdisciplinary research-is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene-helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active 'substances' at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and non-equilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible.

  20. Rapid Preparation of a Plasma Membrane Fraction: Western Blot Detection of Translocated Glucose Transporter 4 from Plasma Membrane of Muscle and Adipose Cells and Tissues.

    Science.gov (United States)

    Yamamoto, Norio; Yamashita, Yoko; Yoshioka, Yasukiyo; Nishiumi, Shin; Ashida, Hitoshi

    2016-08-01

    Membrane proteins account for 70% to 80% of all pharmaceutical targets, indicating their clinical relevance and underscoring the importance of identifying differentially expressed membrane proteins that reflect distinct disease properties. The translocation of proteins from the bulk of the cytosol to the plasma membrane is a critical step in the transfer of information from membrane-embedded receptors or transporters to the cell interior. To understand how membrane proteins work, it is important to separate the membrane fraction of cells. This unit provides a protocol for rapidly obtaining plasma membrane fractions for western blot analysis. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  1. Automated identification of complementarity determining regions (CDRs) reveals peculiar characteristics of CDRs and B cell epitopes.

    Science.gov (United States)

    Ofran, Yanay; Schlessinger, Avner; Rost, Burkhard

    2008-11-01

    Exact identification of complementarity determining regions (CDRs) is crucial for understanding and manipulating antigenic interactions. One way to do this is by marking residues on the antibody that interact with B cell epitopes on the antigen. This, of course, requires identification of B cell epitopes, which could be done by marking residues on the antigen that bind to CDRs, thus requiring identification of CDRs. To circumvent this vicious circle, existing tools for identifying CDRs are based on sequence analysis or general biophysical principles. Often, these tools, which are based on partial data, fail to agree on the boundaries of the CDRs. Herein we present an automated procedure for identifying CDRs and B cell epitopes using consensus structural regions that interact with the antigens in all known antibody-protein complexes. Consequently, we provide the first comprehensive analysis of all CDR-epitope complexes of known three-dimensional structure. The CDRs we identify only partially overlap with the regions suggested by existing methods. We found that the general physicochemical properties of both CDRs and B cell epitopes are rather peculiar. In particular, only four amino acids account for most of the sequence of CDRs, and several types of amino acids almost never appear in them. The secondary structure content and the conservation of B cell epitopes are found to be different than previously thought. These characteristics of CDRs and epitopes may be instrumental in choosing which residues to mutate in experimental search for epitopes. They may also assist in computational design of antibodies and in predicting B cell epitopes.

  2. Plasma cell morphology in multiple myeloma and related disorders.

    Science.gov (United States)

    Ribourtout, B; Zandecki, M

    2015-06-01

    Normal and reactive plasma cells (PC) are easy to ascertain on human bone marrow films, due to their small mature-appearing nucleus and large cytoplasm, the latter usually deep blue after Giemsa staining. Cytoplasm is filled with long strands of rough endoplasmic reticulum and one large Golgi apparatus (paranuclear hof), demonstrating that PC are dedicated mainly to protein synthesis and excretion (immunoglobulin). Deregulation of the genome may induce clonal expansion of one PC that will lead to immunoglobulin overproduction and eventually to one among the so-called PC neoplasms. In multiple myeloma (MM), the number of PC is over 10% in most patients studied. Changes in the morphology of myeloma PC may be inconspicuous as compared to normal PC (30-50% patients). In other instances PC show one or several morphological changes. One is related to low amount of cytoplasm, defining lymphoplasmacytoid myeloma (10-15% patients). In other cases (40-50% patients), named immature myeloma cases, nuclear-cytoplasmic asynchrony is observed: presence of one nucleolus, finely dispersed chromatin and/or irregular nuclear contour contrast with a still large and blue (mature) cytoplasm. A peculiar morphological change, corresponding to the presence of very immature PC named plasmablasts, is observed in 10-15% cases. Several prognostic morphological classifications have been published, as mature myeloma is related to favorable outcome and immature myeloma, peculiarly plasmablastic myeloma, is related to dismal prognosis. However, such classifications are no longer included in current prognostic schemes. Changes related to the nucleus are very rare in monoclonal gammopathy of unknown significance (MGUS). In contrast, anomalies related to the cytoplasm of PC, including color (flaming cells), round inclusions (Mott cells, Russell bodies), Auer rod-like or crystalline inclusions, are reported in myeloma cases as well as in MGUS and at times in reactive disorders. They do not correspond

  3. Jugular Foramen Collision Tumor (Schwannoma and Plasma Cell Pseudotumor), a Probable IgG4-Related Disease.

    Science.gov (United States)

    Bakhit, Mudathir S; Fujii, Masazumi; Jinguji, Shinya; Sato, Taku; Sakuma, Jun; Saito, Kiyoshi

    2017-06-01

    Lower cranial nerve sheath tumors are relatively rare. Cases of schwannoma collision tumors have rarely been reported, with most of the reported cases describing schwannoma and meningioma collision tumors. We report a very rare case of a cerebellopontine angle collision tumor of the ninth cranial nerve schwannoma with an IgG4 plasma cell pseudotumor. IgG4 plasma cell pseudotumors comprise a group of diseases called IgG4-related diseases (IgG4-RDs). These diseases usually affect organs such as the pancreas and salivary gland. Few cases of nervous system IgG4-RDs have been reported. Under intraoperative microscopy, the tumor in our case did not appear different from usual cases of schwannoma, but histopathology showed significant infiltration of IgG4 plasma cells. IgG4-RDs have a distinctive histopathologic pattern; however, their pathophysiology remains unclear. Special attention must be paid to the diagnosis of such diseases because they mimic other diseases and can be missed. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A One-Dimensional Particle-in-Cell Model of Plasma Build-Up in Vacuum Arcs

    CERN Document Server

    Timko, H; Kovermann, J; Taborelli, M; Nordlund, K; Descoeudres, A; Schneider, R; Calatroni, S; Matyash, K; Wuensch, W; Hansen, A; Grudiev, A

    2011-01-01

    Understanding the mechanism of plasma build-up in vacuum arcs is essential in many fields of physics. A one-dimensional particle-in-cell computer simulation model is presented, which models the plasma developing from a field emitter tip under electrical breakdown conditions, taking into account the relevant physical phenomena. As a starting point, only an external electric field and an initial enhancement factor of the tip are assumed. General requirements for plasma formation have been identified and formulated in terms of the initial local field and a critical neutral density. The dependence of plasma build-up on tip melting current, the evaporation rate of neutrals and external circuit time constant has been investigated for copper and simulations imply that arcing involves melting currents around 0.5-1 A/mu m(2),evaporation of neutrals to electron field emission ratios in the regime 0.01 - 0.05, plasma build-up timescales in the order of similar to 1 - 10 ns and two different regimes depending on initial ...

  5. Paper-Based MicroRNA Expression Profiling from Plasma and Circulating Tumor Cells.

    Science.gov (United States)

    Leong, Sai Mun; Tan, Karen Mei-Ling; Chua, Hui Wen; Huang, Mo-Chao; Cheong, Wai Chye; Li, Mo-Huang; Tucker, Steven; Koay, Evelyn Siew-Chuan

    2017-03-01

    Molecular characterization of circulating tumor cells (CTCs) holds great promise for monitoring metastatic progression and characterizing metastatic disease. However, leukocyte and red blood cell contamination of routinely isolated CTCs makes CTC-specific molecular characterization extremely challenging. Here we report the use of a paper-based medium for efficient extraction of microRNAs (miRNAs) from limited amounts of biological samples such as rare CTCs harvested from cancer patient blood. Specifically, we devised a workflow involving the use of Flinders Technology Associates (FTA) ® Elute Card with a digital PCR-inspired "partitioning" method to extract and purify miRNAs from plasma and CTCs. We demonstrated the sensitivity of this method to detect miRNA expression from as few as 3 cancer cells spiked into human blood. Using this method, background miRNA expression was excluded from contaminating blood cells, and CTC-specific miRNA expression profiles were derived from breast and colorectal cancer patients. Plasma separated out during purification of CTCs could likewise be processed using the same paper-based method for miRNA detection, thereby maximizing the amount of patient-specific information that can be derived from a single blood draw. Overall, this paper-based extraction method enables an efficient, cost-effective workflow for maximized recovery of small RNAs from limited biological samples for downstream molecular analyses. © 2016 American Association for Clinical Chemistry.

  6. [Associations of insulin resistance and pancreatic beta-cell function with plasma glucose level in type 2 diabetes].

    Science.gov (United States)

    Nian, Xiaoping; Sun, Gaisheng; Dou, Chunmei; Hou, Hongbo; Fan, Xiuping; Yu, Hongmei; Ma, Ling; He, Bingxian

    2002-06-10

    To investigate the influence of insulin resistance and pancreatic beta-cell function on plasma glucose level in type 2 diabetes so as to provide theoretical basis for reasonable selection of hypoglycemic agents. The plasma non-specific insulin (NSINS), true insulin (TI) and glucose in eight-one type 2 diabetics, 38 males and 43 females, with a mean age of 53 years, were examined 0, 30, 60 and 120 minutes after they had 75 grams of instant noodles. The patients were divided into two groups according to their fasting plasma glucose (FPG): group A (FPG = 8.89 mmol/L). The insulin resistance was evaluated by HOMA-IR, the beta-cell function was evaluated by HOMA-beta formula and the formula deltaI(30)/deltaG(30) = (deltaI(30)-deltaI(0))/(deltaG(30)-deltaG(0)). The insulin area under curve (INSAUC) was evaluated by the formula INSAUC=FINS/2+INS(30)+INS(60)+INS(120)/2. The mean FPG was 6.23 mmol/L in group A and 12.6 mmol/L in group B. PG2H was 11.7 mmol/L in group A and 19.2 mmol/L in group B. The TI levels in group B at 0, 30, 60, 120 min during standard meal test were significantly higher than those in group A: 6.15 +/- 1.06 vs 4.77 +/- 1.06, 9.76 +/- 1.1 vs 5.88 +/- 1.1,14.68 +/- 1.11 vs 6.87 +/- 1.1 and 17.13 +/- 1.12 vs 8.0 +/- 1.1 microU/dl (all P< 0.01). The NSINS showed the same trend. The insulin resistance in group B was 1.5 times that in group A. With the insulin resistance adjusted, the beta cell function in group A was 5 to 6 times that in group B. The INSAUC in group A was 1.66 times larger than that in group B, especially the INSAUC for true insulin (2 times larger). The contribution of insulin resistance and beta cell function to PG2H was half by half in group A and 1:8 in group B. beta cell function calculated by insulin (Homa-beta) explained 41% of the plasma glucose changes in group A and 54% of the plasma glucose changes in group B. The contribution of insulin deficiency to plasma glocose was 3.3.times that of insulin resistance in group A and was 9

  7. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma

    International Nuclear Information System (INIS)

    Ki, S H; Park, J K; Sung, C; Lee, C B; Uhm, H; Choi, E H; Baik, K Y

    2016-01-01

    Artificial cell-like model systems can provide information which is hard to obtain with real biological cells. Giant unilamellar vesicles (GUV) containing intra-membrane DNA or OH radical-binding molecules are used to visualize the cytolytic activity of OH radicals. Changes in the GUV membrane are observed by microscopy or flow cytometry as performed for animal cells after non-thermal plasma treatment. The experimental data shows that OH radicals can be detected inside the membrane, although the biological effects are not as significant as for H 2 O 2 . This artificial model system can provide a systemic means to elucidate the complex interactions between biological materials and non-thermal plasma. (paper)

  8. Gyrokinetic particle-in-cell simulations of plasma microturbulence on advanced computing platforms

    International Nuclear Information System (INIS)

    Ethier, S; Tang, W M; Lin, Z

    2005-01-01

    Since its introduction in the early 1980s, the gyrokinetic particle-in-cell (PIC) method has been very successfully applied to the exploration of many important kinetic stability issues in magnetically confined plasmas. Its self-consistent treatment of charged particles and the associated electromagnetic fluctuations makes this method appropriate for studying enhanced transport driven by plasma turbulence. Advances in algorithms and computer hardware have led to the development of a parallel, global, gyrokinetic code in full toroidal geometry, the gyrokinetic toroidal code (GTC), developed at the Princeton Plasma Physics Laboratory. It has proven to be an invaluable tool to study key effects of low-frequency microturbulence in fusion plasmas. As a high-performance computing applications code, its flexible mixed-model parallel algorithm has allowed GTC to scale to over a thousand processors, which is routinely used for simulations. Improvements are continuously being made. As the US ramps up its support for the International Tokamak Experimental Reactor (ITER), the need for understanding the impact of turbulent transport in burning plasma fusion devices is of utmost importance. Accordingly, the GTC code is at the forefront of the set of numerical tools being used to assess and predict the performance of ITER on critical issues such as the efficiency of energy confinement in reactors

  9. Numerical simulation and optimal control in plasma physics

    International Nuclear Information System (INIS)

    Blum, J.

    1989-01-01

    The topics covered in this book are: A free boundary problem: the axisymmetric equilibrium of the plasma in a Tokamak; Static control of the plasma boundary by external currents; Existence and control of a solution to the equilibrium problem in a simple case; Study of equilibrium solution branches and application to the stability of horizontal displacements; Identification of the plasma boundary and plasma current density from magnetic measurements; Evolution of the equilibrium at the diffusion time scale; Evolution of the equilibrium of a high aspect-ratio circular plasma; Stability and control of the horizontal displacement of the plasma

  10. Characterization of nanostructures in the live cell plasma membrane utilizing advanced single molecule fluorescence techniques

    International Nuclear Information System (INIS)

    Brameshuber, M.

    2009-01-01

    Unrevealing the detailed structure of the cellular plasma membrane at a nanoscopic length scale is the key for understanding the regulation of various signaling pathways or interaction mechanism. Hypotheses postulate the existence of nanoscopic lipid platforms in the cell membrane which are termed lipid- or membrane rafts. Based on biochemical studies, rafts are believed to play a crucial role in many signaling processes. However, there is currently not much information on their size, shape, stability, surface density, composition and heterogeneity. In this thesis I present an ultra-sensitive fluorescence based method which allows for the first time the direct imaging of single mobile rafts in the live cell plasma membrane. The method senses rafts by their property to assemble a characteristic set of fluorescent marker-proteins or lipids on a time-scale of seconds. A special photobleaching protocol was developed and used to reduce the surface density of labeled mobile rafts down to the level of well-isolated diffraction-limited spots, without altering the single spot brightness. The statistical distribution of probe molecules per raft was determined by single molecule brightness analysis. For demonstration, I used the consensus markers Bodipy-GM1, a fluorescent lipid analogue, and glycosylphosphatidyl-inositol-anchored monomeric GFP. For both markers I found cholesterol-dependent association in the plasma membrane of living CHO and Jurkat T cells in the resting state, indicating the presence of mobile, stable rafts hosting these probes. I further characterized these structures by taking cell-to-cell variations under consideration. By comparing Bodipy-GM1 with mGFP-GPI homo-association upon temperature variation, two different states - a non-equilibrated and an equilibrated state - could be identified. I conclude that rafts are loaded non-randomly; the characteristic load is maintained during its lifetime in the plasma membrane of a non-activated cell. Beside these

  11. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts.

    Science.gov (United States)

    Chen, Joseph C; Johnson, Brittni A; Erikson, David W; Piltonen, Terhi T; Barragan, Fatima; Chu, Simon; Kohgadai, Nargis; Irwin, Juan C; Greene, Warner C; Giudice, Linda C; Roan, Nadia R

    2014-06-01

    How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P reproductive success, female reproductive health and susceptibility to sexually transmitted diseases. The gene list provided by the transcriptome analysis reported here should prove a valuable resource for understanding the response of the upper FRT to SP exposure. This project was supported by NIH AI083050-04 (W.C.G./L.C.G.); NIH U54HD 055764 (L.C.G.); NIH 1F32HD074423-02 (J.C.C.); DOD W81XWH-11

  12. In vitro study of the effects of radio frequency generated for plasma in neoplastic cells HT-29

    International Nuclear Information System (INIS)

    Andrighetto, Daniela; Dornelles, Eduardo Bortoluzzi; Cruz, Ivana Beatrice Manica da; Lüdke, Everton

    2014-01-01

    The goal of this study is to develop an in vitro irradiation cell system with controllable irradiation intensities of 27 MHz produced by an argon plasma column with variable amplitude modulation in the 100-700 kHz range. This paper presents and discusses a proposed experiment, with toxicity analysis (DNA Picogreen®) and cell viability (MTT assay) in the radiation-induced HT-29 cell line (colon adenocarcinoma). The data allow us to observe that cellular toxicity effects may occur with exposure to fields produced by argon plasma with intensities on the order of at least 3.2 W / cm2 and exposure times above 3.5 hours continuously. An analysis of cell populations for cell toxicity tests using the Student's t-test did not show significant changes (p 0.34). Cytotoxic effects due to the destruction of cell wall by heating the samples were not detected in any of the tests

  13. Tuning the ITO work function by capacitively coupled plasma and its application in inverted organic solar cells

    International Nuclear Information System (INIS)

    Fang, Ming; Zhang, Chunmei; Chen, Qiang

    2016-01-01

    Highlights: • The work function of ITO was reduced by plasma treatment. • The reduction of the work function was attributed to the variation in chemical component of ITO surface. • The inverted solar cell without electron transport layer was fabricated using plasma-treated ITO. • Optimal power conversion efficiency of 3.22% was achieved. - Abstract: In this paper, we investigated the performance of inverted organic solar cells (OSCs) with plasma-treated indium tin oxide (ITO) as the cathode for omitting an electron transport layer. The Ar plasma was produced by capcitively coupled plasma setup under 20 Pa chamber pressure. For the device with the structure of plasma-treated ITO/P3HT:PCBM/MoO_3/Ag, a power conversion efficiency (PCE) of 3.22% was achieved, whereas PCE of 1.13% was recorded from the device fabricated with the pristine ITO. The photovoltaic performance was found to be dependent on the applied power of plasma. After analyzing by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), we concluded that the chemical component variation of ITOs surface resulted in the decrease of ITO work function, which meant that the ITO Fermi level became shallow relative to the vacuum level. The low work function of ITO should be responsible for the improvement of inverted OSCs because of the better energy level alignment between ITO and the photoactive layer.

  14. Tuning the ITO work function by capacitively coupled plasma and its application in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ming [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing (China); Zhang, Chunmei, E-mail: zhangchunmei@bigc.edu.cn [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing (China); Chen, Qiang [Laboratory of Plasma Physics and Materials, Beijing Institute of Graphic Communication, Beijing (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an (China)

    2016-11-01

    Highlights: • The work function of ITO was reduced by plasma treatment. • The reduction of the work function was attributed to the variation in chemical component of ITO surface. • The inverted solar cell without electron transport layer was fabricated using plasma-treated ITO. • Optimal power conversion efficiency of 3.22% was achieved. - Abstract: In this paper, we investigated the performance of inverted organic solar cells (OSCs) with plasma-treated indium tin oxide (ITO) as the cathode for omitting an electron transport layer. The Ar plasma was produced by capcitively coupled plasma setup under 20 Pa chamber pressure. For the device with the structure of plasma-treated ITO/P3HT:PCBM/MoO{sub 3}/Ag, a power conversion efficiency (PCE) of 3.22% was achieved, whereas PCE of 1.13% was recorded from the device fabricated with the pristine ITO. The photovoltaic performance was found to be dependent on the applied power of plasma. After analyzing by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), we concluded that the chemical component variation of ITOs surface resulted in the decrease of ITO work function, which meant that the ITO Fermi level became shallow relative to the vacuum level. The low work function of ITO should be responsible for the improvement of inverted OSCs because of the better energy level alignment between ITO and the photoactive layer.

  15. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database

    DEFF Research Database (Denmark)

    Nühse, Thomas S; Stensballe, Allan; Jensen, Ole N

    2004-01-01

    Functional genomic technologies are generating vast amounts of data describing the presence of transcripts or proteins in plant cells. Together with classical genetics, these approaches broaden our understanding of the gene products required for specific responses. Looking to the future, the focus...... of research must shift to the dynamic aspects of biology: molecular mechanisms of function and regulation. Phosphorylation is a key regulatory factor in all aspects of plant biology; but it is difficult, if not impossible, for most researchers to identify in vivo phosphorylation sites within their proteins...... of interest. We have developed a large-scale strategy for the isolation of phosphopeptides and identification by mass spectrometry (Nühse et al., 2003b). Here, we describe the identification of more than 300 phosphorylation sites from Arabidopsis thaliana plasma membrane proteins. These data...

  16. A Phospholipidomic Analysis of All Defined Human Plasma Lipoproteins

    NARCIS (Netherlands)

    Dashti, Monireh; Kulik, Willem; Hoek, Frans; Veerman, Enno C.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2011-01-01

    Since plasma lipoproteins contain both protein and phospholipid components, either may be involved in processes such as atherosclerosis. In this study the identification of plasma lipoprotein-associated phospholipids, which is essential for understanding these processes at the molecular level, are

  17. A phospholipidomic analysis of all defined human plasma lipoproteins

    NARCIS (Netherlands)

    Dashti, Monireh; Kulik, Willem; Hoek, Frans; Veerman, Enno C.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2011-01-01

    Since plasma lipoproteins contain both protein and phospholipid components, either may be involved in processes such as atherosclerosis. In this study the identification of plasma lipoprotein-associated phospholipids, which is essential for understanding these processes at the molecular level, are

  18. Endothelial cell behaviour on gas-plasma-treated PLA surfaces: the roles of surface chemistry and roughness.

    Science.gov (United States)

    Shah, Amita; Shah, Sarita; Mani, Gopinath; Wenke, Joseph; Agrawal, Mauli

    2011-04-01

    Glow-discharge gas-plasma (GP) treatment has been shown to induce surface modifications such that cell adhesion and growth are enhanced. However, it is not known which gas used in GP treatment is optimal for endothelial cell function. Polylactic acid (PLA) films treated oxygen, argon, or nitrogen GP were characterized using contact angles, scanning electron microscopy, atomic force microscopy, optical profilometry, and x-ray photoelectron spectroscopy. All three GP treatments decreased the carbon atomic concentration and surface roughness and increased the oxygen atomic concentration. Human umbilical vein endothelial cells were cultured on the PLA films for up to 7 days. Based on proliferation and live/dead assays, surface chemistry was shown to have the greatest effect on the attachment, proliferation, and viability of these cells, while roughness did not have a significant influence. Of the different gases, endothelial cell viability, attachment and proliferation were most significantly increased on PLA surfaces treated with oxygen and argon gas plasma. Copyright © 2010 John Wiley & Sons, Ltd.

  19. Modeling the chemical kinetics of atmospheric plasma for cell treatment in a liquid solution

    International Nuclear Information System (INIS)

    Kim, H. Y.; Kang, S. K.; Lee, H. Wk.; Lee, H. W.; Kim, G. C.; Lee, J. K.

    2012-01-01

    Low temperature atmospheric pressure plasmas have been known to be effective for living cell inactivation in a liquid solution but it is not clear yet which species are key factors for the cell treatment. Using a global model, we elucidate the processes through which pH level in the solution is changed from neutral to acidic after plasma exposure and key components with pH and air variation. First, pH level in a liquid solution is changed by He + and He(2 1 S) radicals. Second, O 3 density decreases as pH level in the solution decreases and air concentration decreases. It can be a method of removing O 3 that causes chest pain and damages lung tissue when the density is very high. H 2 O 2 , HO 2 , and NO radicals are found to be key factors for cell inactivation in the solution with pH and air variation.

  20. Kinetic imaging of NPC1L1 and sterol trafficking between plasma membrane and recycling endosomes in hepatoma cells

    DEFF Research Database (Denmark)

    Hartwig Petersen, Nicole; Færgeman, Nils J; Yu, Liqing

    2008-01-01

    fluorescent protein (NPC1L1-EGFP) and cholesterol analogues in hepatoma cells. At steady state about 42% of NPC1L1 resided in the transferrin (Tf) positive, sterol enriched endocytic recycling compartment (ERC), while time-lapse microscopy demonstrated NPC1L1 traffic between plasma membrane and ERC...... the ERC to the plasma membrane. NPC1L1-EGFP facilitated transport of fluorescent sterols from the plasma membrane to the ERC. Insulin induced translocation of vesicles containing NPC1L1 and fluorescent sterol from the ERC to the cell membrane. Upon polarization of hepatoma cells NPC1L1 resided almost...... exclusively in the canalicular membrane, where the protein is highly mobile. Our study demonstrates dynamic trafficking of NPC1L1 between cell surface and intracellular compartments and suggests that this transport is involved in NPC1L1 mediated cellular sterol uptake....

  1. Standing out from the crowd: How to identify plasma cells.

    Science.gov (United States)

    Tellier, Julie; Nutt, Stephen L

    2017-08-01

    Being the sole source of antibody, plasmablasts and plasma cells are essential for protective immunity. Due to their relative rarity, heterogeneity and the loss of many canonical B-cell markers, antibody-secreting cells (ASCs) have often been problematic to identify and further characterize. In the mouse, the combination of the expression of CD138 and BLIMP-1, has led to many insights into ASC biology, although this approach requires the use of a GFP reporter strain. In the current issue of the European Journal of Immunology, two independent studies by Wilmore et al. and Pracht et al. provide alternative approaches to identify all murine ASCs using antibodies against the cell surface proteins, Sca-1 and TACI, respectively. Here we will discuss the advantages of these new approaches to identify ASCs in the context of our emerging knowledge of the cell surface phenotype and gene expression program of various ASC subsets in the murine and human systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Plasma Membrane Protein Profiling in Beta-Amyloid-Treated Microglia Cell Line.

    Science.gov (United States)

    Correani, Virginia; Di Francesco, Laura; Mignogna, Giuseppina; Fabrizi, Cinzia; Leone, Stefano; Giorgi, Alessandra; Passeri, Alessia; Casata, Roberto; Fumagalli, Lorenzo; Maras, Bruno; Schininà, M Eugenia

    2017-09-01

    In the responsiveness of microglia to toxic stimuli, plasma membrane proteins play a key role. In this study we treated with a synthetic beta amyloid peptide murine microglial cells metabolically differently labelled with stable isotope amino acids (SILAC). The plasma membrane was selectively enriched by a multi-stage aqueous two-phase partition system. We were able to identify by 1D-LC-MS/MS analyses 1577 proteins, most of them are plasma membrane proteins according to the Gene Ontology annotation. An unchanged level of amyloid receptors in this data set suggests that microglia preserve their responsiveness capability to the environment even after 24-h challenge with amyloid peptides. On the other hand, 14 proteins were observed to change their plasma membrane abundance to a statistically significant extent. Among these, we proposed as reliable biomarkers of the inflammatory microglia phenotype in AD damaged tissues MAP/microtubule affinity-regulating kinase 3 (MARK3), Interferon-induced transmembrane protein 3 (IFITM3), Annexins A5 and A7 (ANXA5, ANXA7) and Neuropilin-1 (NRP1), all proteins known to be involved in the inflammation processes and in microtubule network assembly rate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement.

    Science.gov (United States)

    Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S; Riahi, Reza; Wong, Pak Kin

    2016-03-03

    When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.

  4. Plasma membrane proteomics of human breast cancer cell lines identifies potential targets for breast cancer diagnosis and treatment.

    Directory of Open Access Journals (Sweden)

    Yvonne S Ziegler

    Full Text Available The use of broad spectrum chemotherapeutic agents to treat breast cancer results in substantial and debilitating side effects, necessitating the development of targeted therapies to limit tumor proliferation and prevent metastasis. In recent years, the list of approved targeted therapies has expanded, and it includes both monoclonal antibodies and small molecule inhibitors that interfere with key proteins involved in the uncontrolled growth and migration of cancer cells. The targeting of plasma membrane proteins has been most successful to date, and this is reflected in the large representation of these proteins as targets of newer therapies. In view of these facts, experiments were designed to investigate the plasma membrane proteome of a variety of human breast cancer cell lines representing hormone-responsive, ErbB2 over-expressing and triple negative cell types, as well as a benign control. Plasma membranes were isolated by using an aqueous two-phase system, and the resulting proteins were subjected to mass spectrometry analysis. Overall, each of the cell lines expressed some unique proteins, and a number of proteins were expressed in multiple cell lines, but in patterns that did not always follow traditional clinical definitions of breast cancer type. From our data, it can be deduced that most cancer cells possess multiple strategies to promote uncontrolled growth, reflected in aberrant expression of tyrosine kinases, cellular adhesion molecules, and structural proteins. Our data set provides a very rich and complex picture of plasma membrane proteins present on breast cancer cells, and the sorting and categorizing of this data provides interesting insights into the biology, classification, and potential treatment of this prevalent and debilitating disease.

  5. Tetraspanins and Transmembrane Adaptor Proteins as Plasma Membrane Organizers – Mast Cell Case

    Directory of Open Access Journals (Sweden)

    Ivana eHalova

    2016-05-01

    Full Text Available The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs and transmembrane adaptor protein (TRAP-enriched domains. Recent biophysical, microscopic and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD9, CD53, CD63, CD81, CD151] or TRAPs [linker for activation of T cells (LAT, non-T cell activation linker (NTAL, and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  6. Manipulation of radicals and ions in LFICP-aided fabrication of high efficiency solar cells

    International Nuclear Information System (INIS)

    Xu, S.

    2013-01-01

    In this talk, we report on the development and diagnostics of low frequency inductively coupled plasma (LFICP) reactor for fabrication of high efficiency silicon solar cells. Chemically active, thermally non-equilibrium plasma possess unique advantages for manipulation of plasma-generated radicals/ions and overall control of growth and self-organization processes that are crucial for fabrication of photovoltaic materials and solar cells. In low frequency inductively coupled plasmas, generation, selection and control of densities and fluxes of the radicals and ions can easily be controlled by the electron energy distributions and other plasma parameters. The electric field and thermal forces guide selective delivery of the radicals to the surface. Specific substrate activation and temperature determine the ion/heat fluxes from the gas phase to the charged surfaces. Detailed discussion includes the inter-connection between in-situ plasma diagnostics (Optical Emission Spectroscopy, Langmuir Probe diagnostics, and Quadruple Mass Spectrometry) and ex-situ material characterization (XRD, Raman, FTIR EDX, UV/Vis, SEM, Hall-effect and others). Special emphasis is paid to the identification and control strategies of the plasma-generated radicals/ions existed in both the ionized gas phase and on the deposition surfaces. We will show how radicals and ions can be manipulated to meet the structural, optical and electronic requirements for high efficiency photovoltaic cells. Solar cell fabricated by the LFICP plasma exhibits an extraordinarily photovoltaic performance with energy conversion efficiency exceeding 18%. (author)

  7. Expression profiles and clinical value of plasma exosomal Tim-3 and Galectin-9 in non-small cell lung cancer.

    Science.gov (United States)

    Gao, Jianwei; Qiu, Xiangyu; Li, Xinying; Fan, Hang; Zhang, Fang; Lv, Tangfeng; Song, Yong

    2018-04-06

    Exosomes are membrane-bound, virus-sized vesicles present in circulating blood. Tumor cells are avid producers of exosomes, which are thought to mimic molecular features of parent tumor cells. T-cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) is a the next-generation immune checkpoint that can be activated by its ligand Galectin-9 to negatively regulate the anti-tumor immune response. However, the characteristics of plasma exosomal Tim-3 and Galectin-9 (Exo-T/G) in cancer remained unknown. This study was conducted to investigate the expression patterns and clinical value of plasma exosomal total protein (Exo-pro) and Exo-T/G in non-small cell lung cancer (NSCLC). Plasma was collected from 103 NSCLC patients including 60 early stages and 43 advanced stages disease samples as well as 56 healthy subjects. Exosomes were isolated from plasma by commercial exosome precipitation solution and identified by western blotting of CD63 and transmission electron microscopy. Exo-pro concentration was measured by the BCA assay. Enzyme-linked immunosorbent assay was used to quantify Exo-T/G. Additionally, 34 NSCLC samples were applied to directly detect plasma TIM-3 (Plas-T) and Galectin-9 (Plas-G). Our results showed that Exo-pro, Exo-T, and Exo-G were significantly increased in NSCLC plasma compared to that in the healthy samples. High levels of Exo-T and Exo-G were all positively correlated with several malignant parameters, including larger tumor size, advanced stages, and more distant metastasis. High levels of Exo-pro and Exo-T were also correlated with more lymph node metastasis. Additionally, plasma from lung squamous cell carcinoma showed higher Exo-T and Exo-G compared with that from lung adenocarcinoma. ALK-positive patients showed to have decreased Exo-T and Exo-G levels. Pearson's correlation analysis revealed a significant correlation between Exo-pro and Exo-T/G, Exo-T and Exo-G, Exo-T and Plas-T, Exo-G and Plas-G, and Plas-T and Plas-G. Together

  8. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    International Nuclear Information System (INIS)

    Diaz-Gomez, Luis; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Silva, Maite; Dominguez, Fernando; Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L.; Macossay, Javier

    2014-01-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications

  9. Biodegradable electrospun nanofibers coated with platelet-rich plasma for cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Gomez, Luis [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Alvarez-Lorenzo, Carmen, E-mail: carmen.alvarez.lorenzo@usc.es [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Concheiro, Angel [Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Silva, Maite [Instituto de Ortopedia y Banco de Tejidos Musculoesqueléticos, Universidad de Santiago de Compostela, 15872 Santiago de Compostela (Spain); Dominguez, Fernando [Fundación Publica Galega de Medicina Xenómica, Santiago de Compostela (Spain); Sheikh, Faheem A.; Cantu, Travis; Desai, Raj; Garcia, Vanessa L. [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States); Macossay, Javier, E-mail: jmacossay@utpa.edu [Department of Chemistry, University of Texas Pan American, Edinburg, TX 78541 (United States)

    2014-07-01

    Biodegradable electrospun poly(ε-caprolactone) (PCL) scaffolds were coated with platelet-rich plasma (PRP) to improve cell adhesion and proliferation. PRP was obtained from human buffy coat, and tested on human adipose-derived mesenchymal stem cells (MSCs) to confirm cell proliferation and cytocompatibility. Then, PRP was adsorbed on the PCL scaffolds via lyophilization, which resulted in a uniform sponge-like coating of 2.85 (S.D. 0.14) mg/mg. The scaffolds were evaluated regarding mechanical properties (Young's modulus, tensile stress and tensile strain), sustained release of total protein and growth factors (PDGF-BB, TGF-β1 and VEGF), and hemocompatibility. MSC seeded on the PRP–PCL nanofibers showed an increased adhesion and proliferation compared to pristine PCL fibers. Moreover, the adsorbed PRP enabled angiogenesis features observed as neovascularization in a chicken chorioallantoic membrane (CAM) model. Overall, these results suggest that PRP–PCL scaffolds hold promise for tissue regeneration applications. - Highlights: • Platelet-rich plasma (PRP) can be adsorbed on electrospun fibers via lyophilization. • PRP coating enhanced mesenchymal stem cell adhesion and proliferation on scaffolds. • PRP-coated scaffolds showed sustained release of growth factors. • Adsorbed PRP provided angiogenic features. • PRP-poly(ε-caprolactone) scaffolds hold promise for tissue regeneration applications.

  10. Ultra high performance liquid chromatography-quadrupole-time of flight analysis for the identification and the determination of resveratrol and its metabolites in mouse plasma

    International Nuclear Information System (INIS)

    Menet, M.C.; Cottart, C.H.; Taghi, M.; Nivet-Antoine, V.; Dargère, D.

    2013-01-01

    Graphical abstract: Simultaneous identification and determination of new resveratrol metabolites in mice by UHPLC-Q-TOF in full scan mode. Highlights: ► Fast method to quantify resveratrol and its main metabolites in the mouse plasma. ► Isotope-labeled standards to build a linear calibration curve. ► Linear calibration curve on a wide range of concentrations. ► Simultaneous identification and quantification of metabolites by using full scan mode. ► Detection of uncommon metabolites not yet described in mice. - Abstract: Resveratrol is a polyphenol that has numerous interesting biological properties, but, per os, it is quickly metabolized. Some of its metabolites are more concentrated than resveratrol, may have greater biological activities, and may act as a kind of store for resveratrol. Thus, to understand the biological impact of resveratrol on a physiological system, it is crucial to simultaneously analyze resveratrol and its metabolites in plasma. This study presents an analytical method based on UHPLC-Q-TOF mass spectrometry for the quantification of resveratrol and of its most common hydrophilic metabolites. The use of 13 C- and D-labeled standards specific to each molecule led to a linear calibration curve on a larger concentration range than described previously. The use of high resolution mass spectrometry in the full scan mode enabled simultaneous identification and quantification of some hydrophilic metabolites not previously described in mice. In addition, UHPLC separation, allowing run times lower than 10 min, can be used in studies that requiring analysis of many samples.

  11. Ultra high performance liquid chromatography-quadrupole-time of flight analysis for the identification and the determination of resveratrol and its metabolites in mouse plasma

    Energy Technology Data Exchange (ETDEWEB)

    Menet, M.C., E-mail: marie-claude.menet@parisdescartes.fr [Universite Paris Descartes, Sorbonne Paris cite, EA 4463, Faculte des Sciences Pharmaceutiques et Biologiques, 4 avenue de l' Observatoire, Paris 75270 (France); Cottart, C.H. [APHP, Groupe hospitalier Pitie-Salpetriere, Charles Foix, Service de Biochimie, 7 avenue de la Republique, Ivry sur Seine 94205 (France); Universite Paris Descartes, Sorbonne Paris cite, EA 4466, Faculte des Sciences Pharmaceutiques et Biologiques, 4 avenue de l' Observatoire, Paris 75270 (France); Taghi, M. [Universite Paris Descartes, Sorbonne Paris cite, EA 4463, Faculte des Sciences Pharmaceutiques et Biologiques, 4 avenue de l' Observatoire, Paris 75270 (France); Nivet-Antoine, V. [Universite Paris Descartes, Sorbonne Paris cite, EA 4466, Faculte des Sciences Pharmaceutiques et Biologiques, 4 avenue de l' Observatoire, Paris 75270 (France); APHP, Hopital Europeen Georges Pompidou, Service de Biochimie, 20 rue Leblanc, Paris 75015 (France); Dargere, D. [Universite Paris Descartes, Sorbonne Paris cite, EA 4463, Faculte des Sciences Pharmaceutiques et Biologiques, 4 avenue de l' Observatoire, Paris 75270 (France); and others

    2013-01-25

    Graphical abstract: Simultaneous identification and determination of new resveratrol metabolites in mice by UHPLC-Q-TOF in full scan mode. Highlights: Black-Right-Pointing-Pointer Fast method to quantify resveratrol and its main metabolites in the mouse plasma. Black-Right-Pointing-Pointer Isotope-labeled standards to build a linear calibration curve. Black-Right-Pointing-Pointer Linear calibration curve on a wide range of concentrations. Black-Right-Pointing-Pointer Simultaneous identification and quantification of metabolites by using full scan mode. Black-Right-Pointing-Pointer Detection of uncommon metabolites not yet described in mice. - Abstract: Resveratrol is a polyphenol that has numerous interesting biological properties, but, per os, it is quickly metabolized. Some of its metabolites are more concentrated than resveratrol, may have greater biological activities, and may act as a kind of store for resveratrol. Thus, to understand the biological impact of resveratrol on a physiological system, it is crucial to simultaneously analyze resveratrol and its metabolites in plasma. This study presents an analytical method based on UHPLC-Q-TOF mass spectrometry for the quantification of resveratrol and of its most common hydrophilic metabolites. The use of {sup 13}C- and D-labeled standards specific to each molecule led to a linear calibration curve on a larger concentration range than described previously. The use of high resolution mass spectrometry in the full scan mode enabled simultaneous identification and quantification of some hydrophilic metabolites not previously described in mice. In addition, UHPLC separation, allowing run times lower than 10 min, can be used in studies that requiring analysis of many samples.

  12. Plasma-enhanced atomic-layer-deposited MoO{sub x} emitters for silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Johannes; Schneider, Thomas; Sprafke, Alexander N. [Martin-Luther-University Halle-Wittenberg, mu-MD Group, Institute of Physics, Halle (Germany); Mews, Mathias; Korte, Lars [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institute for Silicon-Photovoltaics, Berlin (Germany); Kaufmann, Kai [Fraunhofer Center for Silicon Photovoltaics CSP, Halle (Germany); University of Applied Sciences, Hochschule Anhalt Koethen, Koethen (Germany); Wehrspohn, Ralf B. [Martin-Luther-University Halle-Wittenberg, mu-MD Group, Institute of Physics, Halle (Germany); Fraunhofer Institute for Mechanics of Materials IWM Halle, Halle (Germany)

    2015-09-15

    A method for the deposition of molybdenum oxide (MoO{sub x}) with high growth rates at temperatures below 200 C based on plasma-enhanced atomic layer deposition is presented. The stoichiometry of the over-stoichiometric MoO{sub x} films can be adjusted by the plasma parameters. First results of these layers acting as hole-selective contacts in silicon heterojunction solar cells are presented and discussed. (orig.)

  13. Quantitation of methylglyoxal bis(guanylhydrazone) in blood plasma and leukemia cells of patients receiving the drug.

    Science.gov (United States)

    Seppänen, P; Alhonen-Hongisto, L; Siimes, M; Jänne, J

    1980-11-15

    Methylglyoxal bis(guanylhydrazone), a cytostatic compound which apparently interferes with the metabolism and/or functions of the natural polyamines (spermidine and spermine), was effectively taken up by cultured human lymphocytic leukemia cells, rapidly resulting in the formation of a concentration gradient of up to 1,000-fold across the cell membrane in cells grown in the presence of micromolar concentrations of the drug. For an anti-proliferative effect on the leukemia cells, an intracellular concentration of more than 0.5 mM was required. The uptake of methylglyoxal bis(guanylhydrazone) was critically dependent on the growth rate of the leukemia cells. Low intracellular concentrations of the drug were present in cells growing slowly, whereas in rapidly dividing cells the intracellular concentration of the drug approached 5mM. When given as repeated intravenous infusions to two leukemic children, methylglyoxal bis(guanylhydrazone) exhibited sharp and transient peaks of plasma concentration, the drug having an apparent half-life in plasma of only 1-2 h. However, as in cultured cells, the drug was rapidly concentrated in the leukemia cells, reaching concentrations that were distinctly anti-proliferative. In contrast to the rapid disappearance of methylglyoxal bis(guanylhydrazone) from plasma, the circulation leukemia cells retained the drug for a period of several days with only minimal decrease in the initial concentrations. Methylglyoxal bis(guanylhydrazone) was given to the patients for 1 to 2 months as intravenous infusions, the timing of which was determined by regular assays of the drug concentrations in the leukemia cells. In agreement with the results obtained with the cultured cells, and intracellular concentration of about 0.5 to 1mM was apparently required for growth-inhibitory action to occur. Regular determination of the cellular drug concentrations indicated that methylglyoxal bis(quanylhydrazone) could be given as weekly infusions. This treatment

  14. Effects of chronic exposure to ethanol on the physical and functional properties of the plasma membrane of S49 lymphoma cells

    International Nuclear Information System (INIS)

    Bode, D.C.; Molinoff, P.B.

    1988-01-01

    The effects of chronic exposure to ethanol on the physical and functional properties of the plasma membrane were examined with cultured S49 lymphoma cells. The β-adrenergic receptor-coupled adenylate cyclase system was used as a probe of the functional properties of the plasma membrane. Steady-state fluorescence anisotropy of diphenylhexatriene and the lipid composition of the plasma membrane were used as probes of the physical properties of the membrane. Cells were grown under conditions such that the concentration of ethanol in the growth medium remained stable and oxidation of ethanol to acetaldehyde was not detected. Chronic exposure of S49 cells to 50 mM ethanol or growth of cells at elevated temperature resulted in a decrease in adenylate cyclase activity. There were no changes in the density of receptors or in the affinity of β-adrenergic receptors for agonists or antagonists following chronic exposure to ethanol. The fluorescence anisotropy of diphenylhexatriene was lower in plasma membranes prepared from cells that had been treated with 50 mM ethanol than in membranes prepared from control cells. However, this change was not associated with changes in the fatty acid composition or the cholesterol to phospholipid ratio of the plasma membrane. There was a small but statistically significant decrease in the amount of phosphatidylserine and an increase in the amount of phosphatidylethanolamine. These changes cannot account for the decrease in anisotropy. In contrast to the effect of ethanol, a decrease in adenylate cyclase activity following growth of S49 cells at 40 0 C was not associated with a change in anisotropy

  15. Direct quantification of cell-free, circulating DNA from unpurified plasma.

    Science.gov (United States)

    Breitbach, Sarah; Tug, Suzan; Helmig, Susanne; Zahn, Daniela; Kubiak, Thomas; Michal, Matthias; Gori, Tommaso; Ehlert, Tobias; Beiter, Thomas; Simon, Perikles

    2014-01-01

    Cell-free DNA (cfDNA) in body tissues or fluids is extensively investigated in clinical medicine and other research fields. In this article we provide a direct quantitative real-time PCR (qPCR) as a sensitive tool for the measurement of cfDNA from plasma without previous DNA extraction, which is known to be accompanied by a reduction of DNA yield. The primer sets were designed to amplify a 90 and 222 bp multi-locus L1PA2 sequence. In the first module, cfDNA concentrations in unpurified plasma were compared to cfDNA concentrations in the eluate and the flow-through of the QIAamp DNA Blood Mini Kit and in the eluate of a phenol-chloroform isoamyl (PCI) based DNA extraction, to elucidate the DNA losses during extraction. The analyses revealed 2.79-fold higher cfDNA concentrations in unpurified plasma compared to the eluate of the QIAamp DNA Blood Mini Kit, while 36.7% of the total cfDNA were found in the flow-through. The PCI procedure only performed well on samples with high cfDNA concentrations, showing 87.4% of the concentrations measured in plasma. The DNA integrity strongly depended on the sample treatment. Further qualitative analyses indicated differing fractions of cfDNA fragment lengths in the eluate of both extraction methods. In the second module, cfDNA concentrations in the plasma of 74 coronary heart disease patients were compared to cfDNA concentrations of 74 healthy controls, using the direct L1PA2 qPCR for cfDNA quantification. The patient collective showed significantly higher cfDNA levels (mean (SD) 20.1 (23.8) ng/ml; range 5.1-183.0 ng/ml) compared to the healthy controls (9.7 (4.2) ng/ml; range 1.6-23.7 ng/ml). With our direct qPCR, we recommend a simple, economic and sensitive procedure for the quantification of cfDNA concentrations from plasma that might find broad applicability, if cfDNA became an established marker in the assessment of pathophysiological conditions.

  16. In vitro study of the effects of radio frequency generated for plasma in neoplastic cells HT-29; Estudo in vitro dos efeitos da radiofrequencia gerada por plasmas em celulas neoplasicas HT-29

    Energy Technology Data Exchange (ETDEWEB)

    Andrighetto, Daniela; Dornelles, Eduardo Bortoluzzi; Cruz, Ivana Beatrice Manica da; Lüdke, Everton, E-mail: daniela.andrighetto@hotmail.com, E-mail: dornellesedu@gmail.com, E-mail: ibmcruz@hotmail.com, E-mail: evertonludke@gmail.com [Universidade Federal de Santa Maria (UFSM), RS (BRazil)

    2014-07-01

    The goal of this study is to develop an in vitro irradiation cell system with controllable irradiation intensities of 27 MHz produced by an argon plasma column with variable amplitude modulation in the 100-700 kHz range. This paper presents and discusses a proposed experiment, with toxicity analysis (DNA Picogreen®) and cell viability (MTT assay) in the radiation-induced HT-29 cell line (colon adenocarcinoma). The data allow us to observe that cellular toxicity effects may occur with exposure to fields produced by argon plasma with intensities on the order of at least 3.2 W / cm2 and exposure times above 3.5 hours continuously. An analysis of cell populations for cell toxicity tests using the Student's t-test did not show significant changes (p <0.05) in the amount of DNA released by the action of radiofrequency, although it has been found that cell viability (MTT) is not significantly altered by long exposures to radiation induced plasma RF signals in 27 MHz (p> 0.34). Cytotoxic effects due to the destruction of cell wall by heating the samples were not detected in any of the tests.

  17. Atomic layer deposition precursor step repetition and surface plasma pretreatment influence on semiconductor–insulator–semiconductor heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Talkenberg, Florian, E-mail: florian.talkenberg@ipht-jena.de; Illhardt, Stefan; Schmidl, Gabriele; Schleusener, Alexander; Sivakov, Vladimir [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Radnóczi, György Zoltán; Pécz, Béla [Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege Miklós u. 29-33, H-1121 Budapest (Hungary); Dikhanbayev, Kadyrjan; Mussabek, Gauhar [Department of Physics and Engineering, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty (Kazakhstan); Gudovskikh, Alexander [Nanotechnology Research and Education Centre, St. Petersburg Academic University, Russian Academy of Sciences, Hlopina Str. 8/3, 194021 St. Petersburg (Russian Federation)

    2015-07-15

    Semiconductor–insulator–semiconductor heterojunction solar cells were prepared using atomic layer deposition (ALD) technique. The silicon surface was treated with oxygen and hydrogen plasma in different orders before dielectric layer deposition. A plasma-enhanced ALD process was applied to deposit dielectric Al{sub 2}O{sub 3} on the plasma pretreated n-type Si(100) substrate. Aluminum doped zinc oxide (Al:ZnO or AZO) was deposited by thermal ALD and serves as transparent conductive oxide. Based on transmission electron microscopy studies the presence of thin silicon oxide (SiO{sub x}) layer was detected at the Si/Al{sub 2}O{sub 3} interface. The SiO{sub x} formation depends on the initial growth behavior of Al{sub 2}O{sub 3} and has significant influence on solar cell parameters. The authors demonstrate that a hydrogen plasma pretreatment and a precursor dose step repetition of a single precursor improve the initial growth behavior of Al{sub 2}O{sub 3} and avoid the SiO{sub x} generation. Furthermore, it improves the solar cell performance, which indicates a change of the Si/Al{sub 2}O{sub 3} interface states.

  18. Methodology for Isolation, Identification and Characterization of Microvesicles in Peripheral Blood

    Science.gov (United States)

    Jayachandran, Muthuvel; Miller, Virginia M.; Heit, John A.; Owen, Whyte G.

    2011-01-01

    Rationale Analyses of circulating cell membrane-derived microvesicles (MV) have come under scrutiny as potential diagnostic and prognostic biomarkers of disease. However, methods to isolate, label and quantify MV have been neither systematized nor validated. Objective To determine how pre-analytical, analytical and post-analytical factors affect plasma MV counts, markers for cell of origin and expression of procoagulant surface phosphatidylserine. Methods and Results Peripheral venous blood samples were collected from healthy volunteers and patients with cardiovascular disease and/or diabetes. Effects of blood sample collection, anticoagulant and sample processing to platelet free plasma (PFP), and MV isolation, staining and storage (freeze-thaw) and cytometer design were evaluated with replicate samples from these populations. The key finding is that use of citrate or EDTA anticoagulants decreases or eliminates microvesicles from plasma by inducing adhesion of the microvesicles to platelets or other formed elements. Protease inhibitor anticoagulants, including heparin, preserve MV counts. A centrifugation protocol was developed in which recovery of isolated MV was high with resolution down to the equivalent light scatter of 0.2 micron latex beads. Each procedure was systematically evaluated for its impact on the MV counts and characteristics. Conclusion This study provides a systematic methodology for MV isolation, identification and quantification, essential for development of MV as diagnostic and prognostic biomarkers of disease. PMID:22075275

  19. Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.

    Science.gov (United States)

    Liu, Chenglin; Cui, Peng; Huang, Tao

    2017-01-01

    The cell cycle-regulated genes express periodically with the cell cycle stages, and the identification and study of these genes can provide a deep understanding of the cell cycle process. Large false positives and low overlaps are big problems in cell cycle-regulated gene detection. Here, a computational framework called DLGene was proposed for cell cycle-regulated gene detection. It is based on the convolutional neural network, a deep learning algorithm representing raw form of data pattern without assumption of their distribution. First, the expression data was transformed to categorical state data to denote the changing state of gene expression, and four different expression patterns were revealed for the reported cell cycle-regulated genes. Then, DLGene was applied to discriminate the non-cell cycle gene and the four subtypes of cell cycle genes. Its performances were compared with six traditional machine learning methods. At last, the biological functions of representative cell cycle genes for each subtype are analyzed. Our method showed better and more balanced performance of sensitivity and specificity comparing to other machine learning algorithms. The cell cycle genes had very different expression pattern with non-cell cycle genes and among the cell-cycle genes, there were four subtypes. Our method not only detects the cell cycle genes, but also describes its expression pattern, such as when its highest expression level is reached and how it changes with time. For each type, we analyzed the biological functions of the representative genes and such results provided novel insight to the cell cycle mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Pannexin-1 channels show distinct morphology and no gap junction characteristics in mammalian cells.

    Science.gov (United States)

    Beckmann, Anja; Grissmer, Alexander; Krause, Elmar; Tschernig, Thomas; Meier, Carola

    2016-03-01

    Pannexins (Panx) are proteins with a similar membrane topology to connexins, the integral membrane protein of gap junctions. Panx1 channels are generally of major importance in a large number of system and cellular processes and their function has been thoroughly characterized. In contrast, little is known about channel structure and subcellular distribution. We therefore determine the subcellular localization of Panx1 channels in cultured cells and aim at the identification of channel morphology in vitro. Using freeze-fracture replica immunolabeling on EYFP-Panx1-overexpressing HEK 293 cells, large particles were identified in plasma membranes, which were immunogold-labeled using either GFP or Panx1 antibodies. There was no labeling or particles in the nuclear membranes of these cells, pointing to plasma membrane localization of Panx1-EYFP channels. The assembly of particles was irregular, this being in contrast to the regular pattern of gap junctions. The fact that no counterparts were identified on apposing cells, which would have been indicative of intercellular signaling, supported the idea of Panx1 channels within one membrane. Control cells (transfected with EYFP only, non-transfected) were devoid of both particles and immunogold labeling. Altogether, this study provides the first demonstration of Panx1 channel morphology and assembly in intact cells. The identification of Panx1 channels as large particles within the plasma membrane provides the knowledge required to enable recognition of Panx1 channels in tissues in future studies. Thus, these results open up new avenues for the detailed analysis of the subcellular localization of Panx1 and of its nearest neighbors such as purinergic receptors in vivo.