WorldWideScience

Sample records for plants surface water

  1. Some Aspects of Surface Water Treatment Technology in Tirana Drinking Water Treatment Plant

    OpenAIRE

    , Tania Floqi; , Aleksandër Trajçe; , Daut Vezi

    2009-01-01

    Tirana’s Bovilla treatment plant was the Şrst of its kind for Albania, which treats surface water. The input water comes from the Bovilla artiŞcial lake, around which, the presence of villages induces pollution in the surface water and therefore affects the efŞciency of treatment plant and consequently the quality of drinking water. The treatment plant is a simple conventional system and includes pre-oxidation, coagulation, şocculation & sedimentation, fast Şltration, post-oxidation. ...

  2. Foulant characteristics comparison in recycling cooling water system makeup by municipal reclaimed water and surface water in power plant.

    Science.gov (United States)

    Ping, Xu; Jing, Wang; Yajun, Zhang; Jie, Wang; Shuai, Si

    2015-01-01

    Due to water shortage, municipal reclaimed water rather than surface water was replenished into recycling cooling water system in power plants in some cities in China. In order to understand the effects of the measure on carbon steel corrosion, characteristics of two kinds of foulant produced in different systems were studied in the paper. Differences between municipal reclaimed water and surface water were analyzed firstly. Then, the weight and the morphology of two kinds of foulant were compared. Moreover, other characteristics including the total number of bacteria, sulfate reducing bacteria, iron bacteria, extracellular polymeric substance (EPS), protein (PN), and polysaccharide (PS) in foulant were analyzed. Based on results, it could be concluded that microbial and corrosive risk would be increased when the system replenished by municipal reclaimed water instead of surface water.

  3. Simulation strategy for surface water potabilizing plants. Estrategia de simulacion para plantas potabilizadoras de aguas superficiales

    Energy Technology Data Exchange (ETDEWEB)

    Marin Llanes, L.A.; Alvarez Rosell, S. (Facultad de Ingenieria Quimica ISPJAE, La Habana (Cuba))

    1994-01-01

    A general strategy to make better operation of drinking water treatment plants for surfaced waters is exposed. It includes the mathematical modelling of the principal parts of the process and it uses an Expert System for the determination of coagulant dosage too. This strategy will be a powerfully mean for plant operators. It will allow to rise the technical-economic effectivity of the plant and to predict its performance when changes in water or in operational conditions occur. The strategy can be used for training new technical personnel and operators in the field of drinking water treatment. The first results obtained with the application of this strategy are presented. (Author)

  4. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany.

    Science.gov (United States)

    Ahrens, Lutz; Felizeter, Sebastian; Sturm, Renate; Xie, Zhiyong; Ebinghaus, Ralf

    2009-09-01

    Polyfluorinated compounds (PFCs) were investigated in waste water treatment plant (WWTP) effluents and surface waters of the River Elbe from samples collected in 2007. Concentrations of various PFCs, including C(4)-C(8) perfluorinated sulfonates (PFSAs), C(6) and C(8) perfluorinated sulfinates, 6:2 fluorotelomer sulfonate, C(5)-C(13) perfluorinated carboxylic acids (PFCAs), C(4) and C(8) perfluoroalkyl sulfonamides and 6:2, 8:2 and 10:2 unsaturated fluorotelomercarboxylic acids were quantified. Sum PFC concentrations of the river water ranged from 7.6 to 26.4ngL(-1), whereas sum PFC concentrations of WWTP effluents were approximately 5-10 times higher (30.5-266.3ngL(-1)), indicating that WWTPs are potential sources of PFCs in the marine environment. PFC patterns of different WWTP effluents varied depending on the origin of the waste water, whereas the profile of PFC composition in the river water was relatively constant. In both kinds of water samples, perfluorooctanoic acid (PFOA) was the major PFC, whereas perfluorobutane sulfonate (PFBS) was the predominant PFSA.

  5. Bioremediation of phenolic compounds from water with plant root surface peroxidases

    Energy Technology Data Exchange (ETDEWEB)

    Adler, P.R.; Arora, R.; El Ghaouth, A. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1994-09-01

    Peroxidases have been shown to polymerize phenolic compounds, thereby removing them from solution by precipitation. Others have studied the role of root surface associated peroxidases as a defense against fungal root pathogens; however, their use in detoxification of organic pollutants in vivo at the root surface has not been studied. Two plant species, waterhyacinth [Eichhornia crassipes (C. Mart) Solms-Laub.] and tomato (Lycopersicon esculentum L.), were tested for both in vitro and in vivo peroxidase activity on the root surface. In vitro studies indicated that root surface peroxidase activities were 181 and 78 nmol tetraguaiacol formed min{sup -1} g{sup -1} root fresh wt., for tomato and waterhyacinth, respectively. Light microscope studies revealed that guaiacol was polymerized in vivo at the root surface. Although peroxidase was evenly distributed on tomato roots, it was distributed patchily on waterhyacinth roots. In vitro studies using gas chromatography-mass spectrometry (GC-MS) showed that the efficiency of peroxidase to polymerize phenols vary with phenolic compound. We suggest that plants may be utilized as a source of peroxidases for removal of phenolic compounds that are on the EPA priority pollutant list and that root surface peroxidases may minimize the absorption of phenolic compounds into plants by precipitating them at the root surface. In this study we have identified a new use for root-associated proteins in ecologically engineering plant systems for bioremediation of phenolic compounds in the soil and water environment. 25 refs., 2 figs., 2 tabs.

  6. UV Light Inactivation of Human and Plant Pathogens in Unfiltered Surface Irrigation Water

    Science.gov (United States)

    Jones, Lisa A.; Worobo, Randy W.

    2014-01-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 108 or 109 CFU/liter for bacteria or 104 or 105 zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively. PMID:24242253

  7. UV light inactivation of human and plant pathogens in unfiltered surface irrigation water.

    Science.gov (United States)

    Jones, Lisa A; Worobo, Randy W; Smart, Christine D

    2014-02-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 10(8) or 10(9) CFU/liter for bacteria or 10(4) or 10(5) zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively.

  8. Surface water and wastewater treatment using a new tannin-based coagulant. Pilot plant trials.

    Science.gov (United States)

    Sánchez-Martín, J; Beltrán-Heredia, J; Solera-Hernández, C

    2010-10-01

    A new tannin-based coagulant-flocculant (Tanfloc) was tested for water treatment at a pilot plant level. Four types of water sample were treated: surface water (collected from a river), and municipal, textile industry (simulated by a 100 mg L(-1) aqueous solution of an acid dye), and laundry (simulated by a 50 mg L(-1) aqueous solution of an anionic surfactant) wastewaters. The pilot plant process consisted of coagulation, sedimentation, and filtration. The experiments were carried out with an average coagulant dosage of 92.2 mg L(-1) (except in the case of the surface water for which the dosage was 2 mg L(-1)). The efficacy of the water purification was notable in every case: total turbidity removal in the surface water and municipal wastewater, about 95% dye removal in the case of the textile industry wastewater, and about 80% surfactant removal in the laundry wastewater. Filtration improved the removal of suspended solids, both flocs and turbidity, and slightly improved the process as a whole. The efficiency of Tanfloc in these pilot studies was similar to or even better than that obtained in batch trials.

  9. Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry.

    Science.gov (United States)

    Samecka-Cymerman, A; Kempers, A J

    2004-09-01

    Concentrations of the metals Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn, as well as the macronutrients N, P, K, Ca, Mg, and S were measured in water, sediments, and the aquatic macrophytes Potamogeton pectinatus and Myriophyllum spicatum, growing in surface water receiving sewages and solid wastes from a copper smelter and a copper ore processing factory located in the Legnica-Glogow copper district in Southwest Poland. The deposition of mineral wastes in this area belong to the largest repository in Europe. The plants were able to survive at heavily contaminated sites. The concentrations of Cd (up to 0.6-1.7 microg/L in water and up to 10.1-12.9 mg/kg in sediments), Cu (up to 29-48 microg/L in water and up to 4.6-5.6g/kg in sediments), Pb (up to 1.5-2.2 g/kg in sediments), and Zn (up to 167-200 microg/L in water and up to 1.4-1.8 g/kg in sediments) seriously exceeded background values. P. pectinatus was able to survive tissue concentrations (in mg/kg) of up to 920 Cu, 6240 Mn, 98 Co, and 59 Ni, while M. spicatum survived tissue concentrations up to 1040 Cu, 6660 Mn, and 57 Co for. Enrichment ratios of elements in plant tissue and in water were much higher than those between plant tissue and sediments.

  10. Towards spatially smart abatement of human pharmaceuticals in surface waters : Defining impact of sewage treatment plants on susceptible functions

    NARCIS (Netherlands)

    Coppens, Lieke J C; van Gils, Jos A G; Ter Laak, Thomas L; Raterman, Bernard W; van Wezel, Annemarie P

    2015-01-01

    For human pharmaceuticals, sewage treatment plants (STPs) are a major point of entry to surface waters. The receiving waters provide vital functions. Modeling the impact of STPs on susceptible functions of the surface water system allows for a spatially smart implementation of abatement options at,

  11. Towards spatially smart abatement of human pharmaceuticals in surface waters: defining impact of sewage treatment plants on susceptible functions

    NARCIS (Netherlands)

    Gils, J.A.G.; Coppens, L.J.C.; Laak, ter T.L.; Raterman, B.W.; Wezel, van A.P.

    2015-01-01

    For human pharmaceuticals, sewage treatment plants (STPs) are a major point of entry to surface waters. The receiving waters provide vital functions. Modeling the impact of STPs on susceptible functions of the surface water system allows for a spatially smart implementation of abatement options at,

  12. Towards spatially smart abatement of human pharmaceuticals in surface waters: defining impact of sewage treatment plants on susceptible functions

    NARCIS (Netherlands)

    Gils, J.A.G.; Coppens, L.J.C.; Laak, ter T.L.; Raterman, B.W.; Wezel, van A.P.

    2015-01-01

    For human pharmaceuticals, sewage treatment plants (STPs) are a major point of entry to surface waters. The receiving waters provide vital functions. Modeling the impact of STPs on susceptible functions of the surface water system allows for a spatially smart implementation of abatement options at,

  13. Salmonella in effluent from sewage treatment plants, wastepipe of butcher's shops and surface water in Walcheren.

    Science.gov (United States)

    Kampelmacher, E H; van Noorle Jansen, L M

    1976-07-01

    In the frame of the "Walcheren-project" in which the epidemiology of salmonellosis is studied in a certain area, effluent from sewage treatment plants, wastepipe's of butcher's shops and surface waters, which receive the effluent were studied for the presence of salmonellae. From 160 samples of effluent 150 (94%) contained salmonellae. The most common serotype was S. typhi murium (35%) followed by S. panama and S. infantis. 14 butcher's shops' wastepipes were sampled 54 times. 14 (26%) times salmonellae were found, but only twice was the type isolated from the butcher's shop the same as found in the effluent on the same day. With regard to the presence of salmonellae in surface waters receiving effluent it was shown that from the immediate vicinity of the plant to 250 m downstream from the site of drainage of effluent the number of salmonellae per 100 ml remains almost constant. After 1.5-4 kilometers Salmonella could not be isolated from any of the samples examined. The results underline the hypothesis that salmonellae multiply in the sewage system and/or plant. The spread of samonellae by effluent seems to be limited to the plant itself and of the nearest vicinity. Proposals are brought forward to interupt contamination cycles by decontamination measures.

  14. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests

    Directory of Open Access Journals (Sweden)

    Donatella Feretti

    2012-02-01

    Full Text Available Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L and surface water (TOC=7.5 mg/L. These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia. No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  15. Ground and surface water for drinking: a laboratory study on genotoxicity using plant tests.

    Science.gov (United States)

    Feretti, Donatella; Ceretti, Elisabetta; Gustavino, Bianca; Zerbini, Llaria; Zani, Claudia; Monarca, Silvano; Rizzoni, Marco

    2012-02-17

    Surface waters are increasingly utilized for drinking water because groundwater sources are often polluted. Several monitoring studies have detected the presence of mutagenicity in drinking water, especially from surface sources due to the reaction of natural organic matter with disinfectant. The study aimed to investigate the genotoxic potential of the products of reaction between humic substances, which are naturally present in surface water, and three disinfectants: chlorine dioxide, sodium hypochlorite and peracetic acid. Commercial humic acids dissolved in distilled water at different total organic carbon (TOC) concentrations were studied in order to simulate natural conditions of both ground water (TOC=2.5 mg/L) and surface water (TOC=7.5 mg/L). These solutions were treated with the biocides at a 1:1 molar ratio of C:disinfectant and tested for genotoxicity using the anaphase chromosomal aberration and micronucleus tests in Allium cepa, and the Vicia faba and Tradescantia micronucleus tests. The tests were carried out after different times and with different modes of exposure, and at 1:1 and 1:10 dilutions of disinfected and undisinfected humic acid solutions. A genotoxic effect was found for sodium hypochlorite in all plant tests, at both TOCs considered, while chlorine dioxide gave positive results only with the A.cepa tests. Some positive effects were also detected for PAA (A.cepa and Tradescantia). No relevant differences were found in samples with different TOC values. The significant increase in all genotoxicity end-points induced by all tested disinfectants indicates that a genotoxic potential is exerted even in the presence of organic substances at similar concentrations to those frequently present in drinking water.

  16. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges

    Energy Technology Data Exchange (ETDEWEB)

    Batt, Angela L. [Department of Chemistry, State University of New York at Buffalo, 608 Natural Sciences Complex, Buffalo, NY 14260-3000 (United States)]. E-mail: abatt@hotmail.com; Bruce, Ian B. [Department of Geography, Buffalo State College, Buffalo, NY (United States)]. E-mail: ianbbruce@gmail.com; Aga, Diana S. [Department of Chemistry, State University of New York at Buffalo, 608 Natural Sciences Complex, Buffalo, NY 14260-3000 (United States)]. E-mail: dianaaga@buffalo.edu

    2006-07-15

    Effluents from three wastewater treatment plants with varying wastewater treatment technologies and design were analyzed for six antibiotics and caffeine on three sampling occasions. Sulfamethoxazole, trimethoprim, ciprofloxacin, tetracycline, and clindamycin were detected in the effluents at concentrations ranging from 0.090 to 6.0 {mu}g/L. Caffeine was detected in all effluents at concentrations ranging from 0.19 to 9.9 {mu}g/L. These findings indicate that several conventional wastewater management practices are not effective in the complete removal of antibiotics, and their discharges have a large potential to affect the aquatic environment. To evaluate the persistence of antibiotics coming from the wastewater discharges on the surrounding surface waters, samples were collected from the receiving streams at 10-, 20- and 100-m intervals. Ciprofloxacin, sulfamethoxazole, and clindamycin (0.043 to 0.076 {mu}g/L) were found as far as 100 m from the discharge point, which indicates the persistence of these drugs in surface waters. - This work investigates the extent of antibiotic concentrations in receiving waters from discharges of wastewater treatment plants.

  17. Conservation of soil, water and nutrients in surface runoff using riparian plant species.

    Science.gov (United States)

    Srivastava, Prabodh; Singh, Shipra

    2012-01-01

    Three riparian plant species viz. Cynodon dactylon (L.) Pers., Saccharum bengalensis Retz. and Parthenium hysterophorus L. were selected from the riparian zone of Kali river at Aligarh to conduct the surface runoff experiment to compare their conservation efficiencies for soil, water and nutrients (phosphorus and nitrogen). Experimental plots were prepared on artificial slopes in botanical garden and on natural slopes on study site. Selected riparian plant species showed the range of conservation values for soil and water from 47.11 to 95.22% and 44.06 to 72.50%, respectively on artificial slope and from 44.53 to 95.33% and 48.36 to 73.15%, respectively on natural slope. Conservation values for phosphorus and nitrogen ranged from 40.83 to 88.89% and 59.78 to 82.22%, respectively on artificial slope and from 50.01 to 90.16% and 68.07 to 85.62%, respectively on natural slope. It was observed that Cynodon dactylon was the most efficient riparian species in conservation of soil, water and nutrients in surface runoff.

  18. Modeling diffuse sources of surface water contamination with plant protection products

    Science.gov (United States)

    Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David

    2015-04-01

    Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff

  19. Surface Water & Surface Drainage

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains boundaries for all surface water and surface drainage for the state of New Mexico. It is in a vector digital data structure digitized from a...

  20. Stimulatory drugs of abuse in surface waters and their removal in a conventional drinking water treatment plant.

    Science.gov (United States)

    Huerta-Fontela, Maria; Galceran, Maria Teresa; Ventura, Francesc

    2008-09-15

    The presence of psychoactive stimulatory drugs in raw waters used for drinking water production and in finished drinking water was evaluated in a Spanish drinking water treatment plant (DWTP). Contamination of the river basin which provides raw water to this DWTP was also studied. In surface waters, illicit drugs such as cocaine, benzoylecgonine (cocaine metabolite), amphetamine, methamphetamine, MDMA (ecstasy), and MDA were detected at mean concentrations ranging from 4 to 350 ng/L. Nicotine, caffeine, and their metabolites were also found at the microg/L level. The elimination of these compounds during drinking water treatment was investigated in a real waterworks. Amphetamine-type stimulants (except MDMA) were completely removed during prechlorination, flocculation, and sand filtration steps, yielding concentrations lowerthan their limits of detection (LODs). Further, ozone treatment was shown to be effective in partially eliminating caffeine (76%), while subsequent granulated activated carbon (GAC) filtration removed cocaine (100%), MDMA(88%), benzoylecgonine (72%), and cotinine (63%). Postchlorination achieved the complete elimination of cocaine and nicotine and only one parent compound (caffeine) and two metabolites (cotinine and benzoylecgonine) persisted throughout treatment although reductions of 90% for caffeine and benzoylecgonine and 74% for cotinine were obtained.

  1. Towards spatially smart abatement of human pharmaceuticals in surface waters: Defining impact of sewage treatment plants on susceptible functions.

    Science.gov (United States)

    Coppens, Lieke J C; van Gils, Jos A G; Ter Laak, Thomas L; Raterman, Bernard W; van Wezel, Annemarie P

    2015-09-15

    For human pharmaceuticals, sewage treatment plants (STPs) are a major point of entry to surface waters. The receiving waters provide vital functions. Modeling the impact of STPs on susceptible functions of the surface water system allows for a spatially smart implementation of abatement options at, or in the service area of, STPs. This study was performed on a nation-wide scale for the Netherlands. Point source emissions included were 345 Dutch STPs and nine rivers from neighboring countries. The Dutch surface waters were represented by 2511 surface water units. Modeling was performed for two extreme discharge conditions. Monitoring data of 7 locations along the rivers Rhine and Meuse fall mostly within the range of modeled concentrations. Half of the abstracted volumes of raw water for drinking water production, and a quarter of the Natura 2000 areas (European Union nature protection areas) hosted by the surface waters, are influenced by STPs at low discharge. The vast majority of the total impact of all Dutch STPs during both discharge conditions can be attributed to only 19% of the STPs with regard to the drinking water function, and to 39% of the STPs with regard to the Natura 2000 function. Attributing water treatment technologies to STPs as one of the possible measures to improve water quality and protect susceptible functions can be done in a spatially smart and cost-effective way, using consumption-based detailed hydrological and water quality modeling.

  2. Y-12 Plant Groundwater Protection Program Groundwater and Surface Water sampling and Analysis Plan for Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    This plan provides a description of the groundwater and surface water quality monitoring activities planned for calendar year (CY) 2000 at the U.S. Department of Energy (DOE) Y-12 Plant that will be managed by tie Y-12 Plant Groundwater Protection Program (GWPP). Groundwater and surface water monitoring during CY 2000 will be performed in three hydrogeologic regimes at the Y-12 Plant: the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek and East Fork regimes are located in Bear Creek Valley, and the Chestnut Ridge Regime is located south of the Y-12 Plant (Figure 1). Groundwater and surface water monitoring performed under the auspices of the Y-12 Plant GWPP during CY 2000 will comply with: Tennessee Department of Environment and Conservation regulations governing detection monitoring at nonhazardous Solid Waste Disposal Facilities (SWDF); and DOE Order 5400.1 surveillance monitoring and exit pathway/perimeter monitoring. Some of the data collected for these monitoring drivers also will be used to meet monitoring requirements of the Integrated Water Quality Program, which is managed by Bechtel Jacobs Company LLC. Data from five wells that are monitored for SWDF purposes in the Chestnut Ridge Regime will be used to comply with requirements specified in the Resource Conservation and Recovery Act post closure permit regarding corrective action monitoring. Modifications to the CY 2000 monitoring program may be necessary during implementation. Changes in regulatory or programmatic requirements may alter the analytes specified for selected monitoring wells, or wells could be added or removed from the planned monitoring network. All modifications to the monitoring program will be approved by the Y-12 Plant GWPP manager and documented as addenda to this sampling and analysis plan.

  3. Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lindner, Uwe; Lingott, Jana; Richter, Silke; Jakubowski, Norbert; Panne, Ulrich

    2013-02-01

    Hydrophilic interaction chromatography (HILIC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was optimized for speciation analysis of gadolinium-based contrast agents in environmental samples, in particular surface river waters and plants. Surface water samples from the Teltow channel, near Berlin, were investigated over a distance of 5 km downstream from the influx of a wastewater treatment plant. The total concentration of gadolinium increased significantly from 50 to 990 ng L(-1) due to the influx of the contrast agents. After complete mixing with the river water, the concentration remained constant over a distance of at least 4 km. Two main substances [Dotarem(®) (Gd-DOTA) and Gadovist(®) (Gd-BT-DO3A)] have been identified in the river water using standards. A gadolinium-based contrast agent, possibly Gd-DOTA (Dotarem(®)), was also detected in water plant samples taken from the Teltow channel. Therefore, uptake of contrast agents [Gadovist(®) (Gd-BTDO3A), Magnevist(®) (Gd-DTPA), Omniscan(®) (Gd-DTPA-BMA), Dotarem(®) (Gd-DOTA), and Multihance(®) (Gd-BOPTA)] by plants was investigated in a model experiment using Lepidium sativum (cress plants). HILIC-ICP-MS was used for identification of different contrast agents, and a first approach for quantification using aqueous standard solutions was tested. For speciation analysis, all investigated contrast agents could be extracted from the plant tissues with a recovery of about 54 % for Multihance(®) (Gd-BOPTA) up to 106 % for Gadovist(®) (Gd-BT-DO3A). These experiments demonstrate that all contrast agents investigated are transported from the roots to the leaves where the highest content was measured.

  4. Comparison of zinc complexation properties of dissolved organic matter from surface waters and wastewater treatment plant effluents

    Institute of Scientific and Technical Information of China (English)

    CHENG Tao

    2005-01-01

    Unlike natural organic matter(NOM), wastewater organic matter(WWOM) from wastewater treatment plant effluents has not been extensively studied with respect to complexation reactions with heavy metals such as copper or zinc. In this study, organic matter from surface waters and a wastewater treatment plant effluent were concentrated by reverse osmosis(RO) method. The samples were treated in the laboratory to remove trace metals and major cations. The zinc complexing properties of both NOM and the WWOM were studied by square wave anodic stripping voltammetry(SWASV). Experimental data were compared to predictions using the Windermere Humic Aqueous Model(WHAM) Version VI. We found that the zinc binding of WWOM was much stronger than that of NOM and not well predicted by WHAM. This suggests that in natural water bodies that receive wastewater treatment plant effluents the ratio of WWOM to NOM must be taken into account in order to accurately predict free zinc activities.

  5. Influence of the Nogales International Wastewater Treatment Plant on surface water in the Santa Cruz River and local aquifers

    Science.gov (United States)

    LaBrie, H. M.; Brusseau, M. L.; Huth, H.

    2015-12-01

    As water resources become limited in Arizona due to drought and excessive use of ground water, treated wastewater effluent is becoming essential in creating natural ecosystems and recharging the decreasing groundwater supplies. Therefore, future water supplies are heavily dependent of the flow (quantity) and quality of the treated effluent. The Nogales International Wastewater Treatment Plant (NIWTP) releases treated wastewater from both Nogales, Arizona and Nogales, Sonora, Mexico into the Santa Cruz River. This released effluent not only has the potential to impact surface water, but also groundwater supplies in Southern Arizona. In the recent past, the NIWTP has had reoccurring issues with elevated levels of cadmium, in addition to other, more infrequent, releases of high amounts of other metals. The industrial demographic of the region, as well as limited water quality regulations in Mexico makes the NIWTP and its treated effluent an important area of study. In addition, outdated infrastructure can potentially lead to damaging environmental impacts, as well as human health concerns. The Santa Cruz River has been monitored and studied in the past, but in recent years, there has been a halt in research regarding the state of the river. Data from existing water quality databases and recent sampling reports are used to address research questions regarding the state of the Santa Cruz River. These questions include: 1) How will change in flow eventually impact surface water and future groundwater supplies 2) What factors influence this flow (such as extreme flooding and drought) 3) What is the impact of effluent on surface water quality 4) Can changes in surface water quality impact groundwater quality 5) How do soil characteristics and surface flow impact the transport of released contaminants Although outreach to stakeholders across the border and updated infrastructure has improved the quality of water in the river, there are many areas to improve upon as the

  6. Endotoxin contamination and control in surface water sources and a drinking water treatment plant in Beijing, China.

    Science.gov (United States)

    Can, Zhang; Wenjun, Liu; Wen, Sun; Minglu, Zhang; Lingjia, Qian; Cuiping, Li; Fang, Tian

    2013-07-01

    In this paper, endotoxin contamination was determined in treated water following each unit of a drinking water treatment plant (WTP) in Beijing, China and its source water (SW) from a long water diversion channel (Shijiazhuang-Beijing) originating from four reservoirs in Hebei province, China. The total-endotoxin activities in SW ranged from 21 to 41 EU/ml at five selected cross sections of the diversion channel. The total-endotoxin in raw water of the WTP ranged from 11 to 16 EU/ml due to dilution and pretreatment during water transportation from Tuancheng Lake to the WTP, and finished water of the WTP ranged from 4 to 10 EU/ml, showing a 49% decrease following the full-scale treatment process at the WTP. Compared with the 31% removal of free-endotoxin, the WTP removed up to 71% of bound-endotoxin in raw water. The traditional treatment processes (coagulation, sedimentation and filtration) in the WTP removed substantial amounts of total-endotoxin (up to 63%), while endotoxin activities increased after granular activated carbon (GAC) adsorption and chlorination. The total-endotoxin in the actual water was composed of free-endotoxin and bound-endotoxin (endotoxin aggregates, bacteria-bound endotoxins and particle-attached endotoxins). The endotoxin aggregates, bacteria-bound endotoxins and particle-attached endotoxins co-exist as suspended particles in water, and only the bacteria-bound endotoxins were correlated with bacterial cells suspended in water. The particle distribution of endotoxin aggregates in ultrapure water was also tested and the results showed that the majority (64-89%) of endotoxin aggregates had diameters endotoxin contamination and control in treated water following each unit of the WTP processes and its SW from reservoirs are discussed and compared with regard to bacterial cell counts and particle characteristics, which were dependent, to a certain extent, on different flow rates and turbulence of the water environments.

  7. Comparison of Pb, Cd Adsorption to Surface Coatings Developed in Natural Waters with that in Plant Effluents

    Institute of Scientific and Technical Information of China (English)

    DONG De-ming; LI Yu; HUA Xiu-yi; ZHANG Jing-jing

    2003-01-01

    The comparative studies of Pb and Cd adsorption to the surface coatings(Fe, Mn, Al oxides, organic materials, and associated minerals), which were developed on glass slides in five natural and two technical waters(plant effluents), were carried out under controlled laboratory conditions(mineral salts solution with defined speciation, ionic strength 0.05 mol/L, 25 ℃ and pH 6.0). The classical Langmuir adsorption isotherm was applied to estimating the equilibrium coefficients of Pb and Cd adsorption to the surface coatings. The results show that the maximum adsorption of Pb and Cd to the surface coatings mentioned above varied widely. There was a systemic increase in the maximum adsorption of Pb and Cd to the surface coatings with increasing the contents of Mn and Fe oxides in the surface coatings in significant correlation, respectively, not only highlighting the relative importance of the metal oxide fraction for Pb and Cd adsorption to the surface coatings developed in natural and technical water samples, but also implying the same adsorption mechanisms of Pb and Cd to the surface coatings developed both in natural and technical water samples.

  8. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Apfelbaum, Steven; Duvall, Kenneth; Nelson, Theresa; Mensing, Douglas; Bengtson, Harlan; Eppich, John; Penhallegon, Clayton; Thompson, Ry

    2013-09-30

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive

  9. Distribution of a pelagic tunicate, Salpa fusiformis in warm surface current of the eastern Korean waters and its impingement on cooling water intakes of Uljin nuclear power plant.

    Science.gov (United States)

    Chae, Jinho; Choi, Hyun Woo; Lee, Woo Jin; Kim, Dongsung; Lee, Jae Hac

    2008-07-01

    Impingement of a large amount of gelatinous plankton, Salpa fusiformis on the seawater intake system-screens in a nuclear power plant at Uljin was firstly recorded on 18th June 2003. Whole amount of the clogged animals was estimated were presumptively at 295 tons and the shortage of cooling seawater supply by the animal clogging caused 38% of decrease in generation capability of the power plant. Zooplankton collection with a multiple towing net during the day and at night from 5 to 6 June 2003 included various gelatinous zooplanktons known to be warm water species such as salps and siphonophores. Comparatively larger species, Salpa fusiformis occupied 25.4% in individual density among the gelatinous plankton and showed surface distribution in the depth shallower than thermocline, performing little diel vertical migration. Temperature, salinity and satellite data also showed warm surface current predominated over the southern coastal region near the power plant in June. The results suggested that warm surface current occasionally extended into the neritic region may transfer S. fusiformis, to the waters off the power plant. The environmental factors and their relation to ecobiology of the large quantity of salpa population that are being sucked into the intake channel of the power plant are discussed.

  10. Plant Watering Autonomous Mobile Robot

    Directory of Open Access Journals (Sweden)

    Hema Nagaraja

    2012-07-01

    Full Text Available Now days, due to busy routine life, people forget to water their plants. In this paper, we present a completely autonomous and a cost-effective system for watering indoor potted plants placed on an even surface. The system comprises of a mobile robot and a temperature-humidity sensing module. The system is fully adaptive to any environment and takes into account the watering needs of the plants using the temperature-humidity sensing module. The paper describes the hardware architecture of the fully automated watering system, which uses wireless communication to communicate between the mobile robot and the sensing module. This gardening robot is completely portable and is equipped with a Radio Frequency Identification (RFID module, a microcontroller, an on-board water reservoir and an attached water pump. It is capable of sensing the watering needs of the plants, locating them and finally watering them autonomously without any human intervention. Mobilization of the robot to the potted plant is achieved by using a predefined path. For identification, an RFID tag is attached to each potted plant. The paper also discusses the detailed implementation of the system supported with complete circuitry. Finally, the paper concludes with system performance including the analysis of the water carrying capacity and time requirements to water a set of plants.

  11. Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water.

    Science.gov (United States)

    Makowska, Nicoletta; Koczura, Ryszard; Mokracka, Joanna

    2016-02-01

    Wastewater treatment plants are considered hot spots for multiplication and dissemination of antibiotic-resistant bacteria and resistance genes. In this study, we determined the presence of class 1 integron integrase and genes conferring resistance to tetracyclines and sulfonamides in the genomes of culturable bacteria isolated from a wastewater treatment plant and the river that receives the treated wastewater. Moreover, using PCR-based metagenomic approach, we quantified intI1, tet and sul genes. Wastewater treatment caused the decrease in the total number of culturable heterotrophs and bacteria resistant to tetracycline and sulfonamides, along with the decrease in the number of intI1, sul and tet gene copies per ml, with significant reduction of tet(B). On the other hand, the treatment process increased both the frequency of tetracycline- and sulfonamide-resistant bacteria and intI1-positive strains, and the relative abundance of all quantified antibiotic resistance genes (ARGs) and intI1 gene; in the case of tet(A) and sul2 significantly. The discharge of treated wastewater increased the number of intI1, tet and sul genes in the receiving river water both in terms of copy number per ml and relative abundance. Hence, despite the reduction of the number of ARGs and ARBs, wastewater treatment selects for bacteria with ARGs in effluent.

  12. Determination of the priority substances regulated by 2000/60/EC and 2008/105/EC Directives in the surface waters supplying water treatment plants of Athens, Greece.

    Science.gov (United States)

    Golfinopoulos, Spyros K; Nikolaou, Anastasia D; Thomaidis, Nikolaos S; Kotrikla, Anna Maria; Vagi, Maria C; Petsas, Andreas S; Lekkas, Demetris F; Lekkas, Themistokles D

    2017-03-21

    An investigation into the occurrence of priority substances regulated by 2000/60/EC Water Framework Directive and 2008/105/EC Directive was conducted for a period of one year in the surface water sources supplying the water treatment plants (WTPs) of Athens and in the raw water of WTPs. Samples from four reservoirs and four water treatment plants of Athens were taken seasonally. The substances are divided into seven specific groups, including eight volatile organic compounds (VOCs), diethylhexylphthalate, four organochlorine pesticides (OCPs), three organophosphorus/organonitrogen pesticides (OPPs/ONPs), four triazines and phenylurea herbicides, pentachlorophenol, and four metals. The aforementioned substances belong to different chemical categories, and different analytical methods were performed for their determination. The results showed that the surface waters that feed the WTPs of Athens are not burdened with significant levels of toxic substances identified as European Union (EU) priority substances. Atrazine, hexachlorocyclohexane, endosulfan, trifluralin, anthracene and 4-nonylphenol were occasionally observed at very low concentrations. Their presence in a limited number of cases could be attributed to waste disposal, agricultural activities, and to a limited industrial activity in the area nearby the water bodies.

  13. Guidance proposal for using available DegT50 values for estimation of degradation rates of plant protection products in Dutch surface water and sediment

    NARCIS (Netherlands)

    Boesten, J.J.T.I.; Adriaanse, P.I.; Horst, ter M.M.S.; Tiktak, A.; Linden, van der A.M.A.

    2014-01-01

    The degradation rate of plant protection products and their transformation products in surface water and sediment may influence their concentrations in Dutch surface water. Therefore the estimation of these rates may be an important part of the assessment of the exposure of aquatic organisms. We

  14. Feasibility Study of Advanced NOM-Reduction by Hollow Fiber Ultrafiltration and Nanofiltration at a Swedish Surface Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Angelica Lidén

    2016-04-01

    Full Text Available Membrane technology, i.e., ultrafiltration and nanofiltration, is growing in popularity, as it is a space efficient alternative for surface water treatment. Two types of hollow fiber membranes were tested in a fully equipped and automated pilot at a Swedish water treatment plant. Raw water was treated by a nanofilter and by coagulation before an ultrafilter. Operation parameters recorded during these trials have been the basis for cost estimations and assessments of environmental impact, comparing the two membrane modules to the existing conventional treatment. The membranes required lower chemical consumption, but led to increased costs from membrane modules and a higher energy demand. Compared to the existing treatment (0.33 €/m3, the operational costs were estimated to increase 6% for ultrafiltration and 30% for nanofiltration. Considering the low emissions from Nordic energy production, the membrane processes would lower the environmental impact, including factors such as climate and ecosystem health. Greenhouse gas emissions would decrease from 161 g CO2-eq/m3 of the existing process, to 127 g CO2-eq/m3 or 83 g CO2-eq/m3 for ultrafiltration and nanofiltration, respectively. Lower chemical consumption and less pollution from the sludge leaving the water treatment plant lead to lower impacts on the environment.

  15. [Effects of ground surface mulching in tea garden on soil water and nutrient dynamics and tea plant growth].

    Science.gov (United States)

    Sun, Li-tao; Wang, Yu; Ding, Zhao-tang

    2011-09-01

    Taking a 2-year-old tea garden in Qingdao of Shandong Province as test object, this paper studied the effects of different mulching modes on the soil water and nutrient dynamics and tea plant growth. Four treatments were installed, i.e., no mulching (CK), straw mulching (T1), plastic film mulching (T2), and straw plus plastic film mulching (T3). Comparing with CK, mulching could keep the soil water content at a higher level, and enhance the water use efficiency. In treatments T1 and T3, the tea growth water use efficiency and yield water use efficiency increased by 43%-48% and 7%-13%, respectively, compared with CK. Also in treatments T1 and T3, the contents of soil organic matter, available-N, nitrate-N, and ammonium-N increased significantly, with the soil fertility improved, and the leaf nitrate-N content and nitrate reductase activity increased, which promoted the tea growth and yield (12%-13% higher than CK) and made the peak period of bud growth appeared earlier. Considering the tea growth and yield, water and nutrient use efficiency, environment safety and economic benefit, straw mulching could be an effective ground surface mulching mode for young tea garden.

  16. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water.

    Science.gov (United States)

    Estahbanati, Shirin; Fahrenfeld, N L

    2016-11-01

    The abundance of microplastic particles in the marine environment is well documented, but less is known about microplastics in the freshwater environment. Wastewater treatment plants (WWTPs) may not effectively remove microplastics allowing for their release to the freshwater environment. To investigate concentration of microplastic in fresh water and the impact of WWTP effluent, samples were collected upstream and downstream of four major municipal WWTPs on the Raritan River, NJ. Microplastics were categorized into three quantitative categories (500-2000 μm, 250-500 μm, 125-250 μm), and one semi-quantitative category (63-125 μm). Then, microplastics were classified as primary (manufactured in small size) or secondary (derived from larger plastics) based on morphology. The concentration of microplastics in the 125-250 and 250-500 μm size categories significantly increased downstream of WWTP. The smaller size classes, often not quantified in microplastic studies, were in high relative abundance across sampling sites. While primary microplastics significantly increased downstream of WWTP, secondary microplastic was the dominant type in the quantitative size categories (66-88%). A moderate correlation between microplastic and distance downstream was observed. These results have implications for understanding the fate and transport of microplastics in the freshwater environment.

  17. Widespread occurrence and seasonal variation of pharmaceuticals in surface waters and municipal wastewater treatment plants in central Finland.

    Science.gov (United States)

    Lindholm-Lehto, Petra C; Ahkola, Heidi S J; Knuutinen, Juha S; Herve, Sirpa H

    2016-04-01

    The presence of five selected pharmaceuticals, consisting of four anti-inflammatory drugs, diclofenac, ibuprofen, ketoprofen, naproxen, and an antiepileptic drug carbamazepine, was determined at four municipal wastewater treatment plants (WWTPs) and in the receiving waterway in central Finland. The samples were taken from influents and effluents of the WWTPs and from surface water of six locations along the water way, including northern Lake Päijänne. In addition, seasonal variation in the area was determined by comparing the concentrations in the winter and summer. The samples were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The concentrations in the influents and effluents ranged from hundreds of nanogram per liter to microgram per liter while ranged from tens of nanogram per liter in northern parts of the waterway to hundreds of nanogram per liter in northern Lake Päijänne near the city area. In addition, the concentrations were higher in the winter compared to summer time in surface water due to decreased temperature and solar irradiation. On the other hand, higher concentrations of ibuprofen, ketoprofen, and naproxen were found in summer at the WWTPs, possibly due to seasonal variations in consumption. In conclusion, there are considerable amounts of pharmaceuticals not only in influents and effluents of the WWTPs but also in lake water along the waterway and in northern Lake Päijänne.

  18. Impact of using paper mill sludge for surface-mine reclamation on runoff water quality and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Shipitalo, M.J.; Bonta, J.V. [USDA ARS, Coshocton, OH (United States)

    2008-11-15

    Paper mills generate large amounts of solid waste consisting of fibrous cellulose, clay, and lime. Paper mill Sludge (PMS) can improve reclamation of surface-coal mines where low pH and organic-carbon levels in the spoil cover material can inhibit revegetation. When applied at high rates, however, PMS may adversely impact the quality of surface runoff. Therefore, we applied PMS at 0, 224, and 672 dry Mg ha{sup -1} to 22.1 x 4.6-m plots at a recently mined site and monitored runoff for a total of 13 mo. The zero-rate plots served as controls and received standard reclamation consisting of mulching with hay and fertilization at planting. Compared to the control plots, PMS reduced runoff fourfold to sixfold and decreased erosion from 47 Mg ha{sup -1} to < 1 Mg ha{sup -1}. Most of the reduction occurred in the 2.5 mo before the plots were planted. Flow-weighted average dissolved oxygen concentrations in runoff from plots at the 224 and 672 Mg ha{sup -1} rates, however, were much lower ({<=} 0.4 vs. 8.2 mg L{sup -1}) and chemical oxygen demand (COD) was much higher for the 672 Mg ha{sup -1} rate plots than the control plots during the pre-plant period (7229 vs. 880 mg L{sup -1}). There were few noteworthy differences in water quality among treatments post-planting, but plant dry-matter yields were greater for the PMS plots than for the controls. The 672 Mg ha{sup -1} rate did not increase COD or nutrient loads compared to the 224 Mg ha{sup -1} rate and may have more persistent beneficial effects by increasing soil organic carbon levels and pH to a greater extent.

  19. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Plant Protection Products and their Residues (PPR

    2013-07-01

    Full Text Available EFSA’s Panel on Plant Protection Products and their Residues (PPR was tasked to revise the Guidance Document (GD on Aquatic Ecotoxicology under Council Directive 91/414/EEC (SANCO/3268/2001 rev.4 (final, 17 October 2002. This Guidance of the PPR Panel is the first of three requested deliverables within this mandate. It has its focus on tiered acute and chronic effect assessment schemes with detailed guidance on tier 1 and higher tier effect assessments for aquatic organisms in edge-of-field surface waters and on proposals regarding how to link effects to exposure estimates. The exposure assessment methodology was not reviewed and it is assumed that the current FOCUS surface water exposure assessment methodology will continue to be used for exposure assessment at EU level. The current GD is intended to be used for authorisation of active substances at EU level as well as for plant protection products at Member State level. The effect assessment schemes in this GD allow for the derivation of regulatory acceptable concentrations (RACs on the basis of two options: (1 the ecological threshold option (ETO, accepting negligible population effects only, and (2 the ecological recovery option (ERO, accepting some population-level effects if ecological recovery takes place within an acceptable time period. In the tiered effect assessment schemes, in principle, all tiers (1, 2 and 3 are able to address the ETO, while the model ecosystem approach (tier 3, under certain conditions, is able to also address the ERO. The GD provides the scientific background for the risk assessment to aquatic organisms in edge-of-field surface waters and is structured to give detailed guidance on all assessment steps. An executive summary joining all parts of the guidance and decision schemes in a concise way is provided and is intended to help applicants and regulatory authorities in day-to-day use.

  20. NMR, Water and Plants

    NARCIS (Netherlands)

    As, van H.

    1982-01-01

    This Thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and

  1. Carbonaceous and nitrogenous disinfection by-product formation in the surface and ground water treatment plants using Yellow River as water source

    Institute of Scientific and Technical Information of China (English)

    Yukun Hou; Wenhai Chu; Meng Ma

    2012-01-01

    This work investigated the formation of carbonaceous and nitrogenous disinfection by-preducts (C-DBPs,N-DBPs) upon chlorination of water samples collected from a surface water and a ground water treatment plant (SWTP and GWTP) where the conventional treatment processes,i.e.,coagulation,sedimentation,and filtration were employed.Twenty DBPs,including four trihalomethanes,nine haloacetic acids,seven N-DBPs (dichloroacetamide,trichloroacetamide,dichloroacetonitrile,trich loroacetonitrile,bromochloroacetonitrile,dibromoacetonitrile and trichloronitromethane),and eight volatile chlorinated compounds (dichlomethane (DCM),1,2-dichloroethane,tetrachloroethylene,chlorobenzene,1,2-dichlorobenzene,1,4-dichlorobenzene,1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene) were detected in the two WTPs.The concentrations of these contaminants were all below their corresponding maximum contamination levels (MCLs) regulated by the Standards for Drinking Water Quality of China (GB5749-2006) except for DCM (17.1 μg/L detected vs.20 μg/L MCL).The SWTP had much higher concentrations of DBPs detected in the treated water as well as the DBP formation potentials tested in the filtered water than the GWTP,probably because more precursors (e.g.,dissolved organic carbon,dissolved organic nitrogen) were present in the water source of the SWTP.

  2. Formation and fates of nitrosamines and their formation potentials from a surface water source to drinking water treatment plants in Southern Taiwan.

    Science.gov (United States)

    Chen, Wei-Hsiang; Wang, Chung-Ya; Huang, Tsung-Hsien

    2016-10-01

    Nitrosamines are toxic and emerging disinfection byproducts. In this study, three drinking water treatment plants (DWTPs) in southern Taiwan treating the same source water in Gaoping River with comparable technologies were selected. The objective was to evaluate the formation and fates of six nitrosamines and their formation potentials (FPs) from a surface water source to drinking water. Albeit decreased further downstream in the river, four nitrosamine-FPs were observed in the source water due to anthropogenic pollution in the upstream areas. In the DWTPs, nitrosamines were formed and NDMA was the main species. While high organic carbon concentrations indicated elevated nitrosamine-FPs in the source water, NDMA formation in the DWTPs was more positively associated with reductions of water parameters that quantify organic matters with double bonded ring structures. Although precursor removal via pre-oxidation is a viable approach to limit nitrosamine formation during post-disinfection, this study clearly indicates that a great portion of NDMA in treated water has been formed in the 1st oxidation step of drinking water treatment. The pre-oxidation simulations in the lab demonstrated the impact of pre-chlorination on nitrosamine formation. Given the limited removal in conventional treatment processes, avoiding nitrosamine-FPs in sources and/or nitrosamine formation during pre-oxidation become important issues to control the threats of nitrosamines in drinking water. Under current circumstance in which pre-oxidation is widely used to optimize the treatment effectiveness in many DWTPs, its adverse effect by forming nitrosamines needs to be carefully minimized and using technologies other than pre-chlorination (e.g., pre-ozonation) may be considered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Impact of sewage treatment plants and combined sewer overflow basins on the microbiological quality of surface water.

    Science.gov (United States)

    Rechenburg, A; Koch, Ch; Classen, Th; Kistemann, Th

    2006-01-01

    In a small river catchment, microbiological quality of different sewage treatment plants under regular conditions and in case of heavy rainfall, when combined sewage overflow basins (CSOs) are activated, was examined regarding microbial indicators and pathogens. In the watercourse, no self-cleaning effects could be observed. Small compact treatment plants discharge treated wastewater with a poor microbiological quality compared to river water quality and the quality of treated wastewater of larger plants. During storm water events, concentrations of microorganisms downstream of sewer overflows were approximately two logs higher than during dry weather conditions. Concentrations of parasites decreased slowly during the overflow, in parallel to filterable matter and particle-bound substances. The annual load of microorganisms originating from CSOs significantly exceeds the load from treated effluent of the sewage plants. Thus, an improved hygienic quality of the water course could be achieved by preventing overflows and by enhancing sewage treatment plants.

  4. Quantifying phosphorus levels in soils, plants, surface water, and shallow groundwater associated with bahiagrass-based pastures.

    Science.gov (United States)

    Sigua, Gilbert C; Hubbard, Robert K; Coleman, Samuel W

    2010-01-01

    Recent assessments of water quality status have identified eutrophication as one of the major causes of water quality 'impairment' not only in the USA but also around the world. In most cases, eutrophication has accelerated by increased inputs of phosphorus due to intensification of crop and animal production systems since the early 1990 s. Despite substantial measurements using both laboratory and field techniques, little is known about the spatial and temporal variability of phosphorus dynamics across landscapes, especially in agricultural landscapes with cow-calf operations. Critical to determining environmental balance and accountability is an understanding of phosphorus excreted by animals, phosphorus removal by plants, acceptable losses of phosphorus within the manure management and crop production systems into soil and waters, and export of phosphorus off-farm. Further research effort on optimizing forage-based cow-calf operations to improve pasture sustainability and protect water quality is therefore warranted. We hypothesized that properly managed cow-calf operations in subtropical agroecosystem would not be major contributors to excess loads of phosphorus in surface and ground water. To verify our hypothesis, we examined the comparative concentrations of total phosphorus among soils, forage, surface water, and groundwater beneath bahiagrass-based pastures with cow-calf operations in central Florida, USA. Soil samples were collected at 0-20; 20-40, 40-60, and 60-100 cm across the landscape (top slope, middle slope, and bottom slope) of 8 ha pasture in the fall and spring of 2004 to 2006. Forage availability and phosphorus uptake of bahiagrass were also measured from the top slope, middle slope, and bottom slope. Bi-weekly (2004-2006) groundwater and surface water samples were taken from wells located at top slope, middle slope, and bottom slope, and from the runoff/seepage area. Concentrations of phosphorus in soils, forage, surface water, and shallow

  5. In-Situ Measurements of Surface Elevations in Tail Water Channel for SSG Pilot Plant at Kvitsøy

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Margheritini, Lucia

    This report presents the measurements from the installation of a pressure transducer in the tail water channel at the second proposed position of the SSG pilot plant at the island of Kvitsøy near Stavanger, Norway. The measured data are compared to tide data from other source, and among the concl......This report presents the measurements from the installation of a pressure transducer in the tail water channel at the second proposed position of the SSG pilot plant at the island of Kvitsøy near Stavanger, Norway. The measured data are compared to tide data from other source, and among...

  6. Dynamics of organochlorine contaminants in surface water and in Myriophyllum aquaticum plants of the River Xanaes in central Argentina during the annual dry season.

    Science.gov (United States)

    Schreiber, René; Harguinteguy, Carlos A; Manetti, Martin D

    2013-10-01

    The dynamics of organochlorine pesticides (OCPs) and their major metabolites were studied in surface waters and plants of the River Xanaes (province of Córdoba, Argentina) during the annual dry season. The results of the 5-month monitoring study (April to August 2010) showed similar low contamination levels in nonagricultural mountain and agricultural areas in both water and plants. The concentrations of compounds detected in the surface water were plants were dry weight) with the exception of trans-permethrin (17.6 μg kg(-1), dry weight). Because no notable differences in the contamination level between samples from the mountain and the agricultural area were observed, it was assumed that OCPs may not play an important role in today's pesticide use in this area. Furthermore, the concentration-time trends for OCPs in the submerged plants showed a generally similar elimination behaviour independent of compound and sampling site, thus indicating an integral rather then a substance-specific process, such as partitioning between the plant and the ambient water. As known, rooted macrophytes can take up contaminants by way of roots, so sediments may be the principal source. To understand the dynamics of these compounds in the river area more deeply, thus further research should include study of the river sediment.

  7. Surface Acoustic Waves to Drive Plant Transpiration

    Science.gov (United States)

    Gomez, Eliot F.; Berggren, Magnus; Simon, Daniel T.

    2017-03-01

    Emerging fields of research in electronic plants (e-plants) and agro-nanotechnology seek to create more advanced control of plants and their products. Electronic/nanotechnology plant systems strive to seamlessly monitor, harvest, or deliver chemical signals to sense or regulate plant physiology in a controlled manner. Since the plant vascular system (xylem/phloem) is the primary pathway used to transport water, nutrients, and chemical signals—as well as the primary vehicle for current e-plant and phtyo-nanotechnology work—we seek to directly control fluid transport in plants using external energy. Surface acoustic waves generated from piezoelectric substrates were directly coupled into rose leaves, thereby causing water to rapidly evaporate in a highly localized manner only at the site in contact with the actuator. From fluorescent imaging, we find that the technique reliably delivers up to 6x more water/solute to the site actuated by acoustic energy as compared to normal plant transpiration rates and 2x more than heat-assisted evaporation. The technique of increasing natural plant transpiration through acoustic energy could be used to deliver biomolecules, agrochemicals, or future electronic materials at high spatiotemporal resolution to targeted areas in the plant; providing better interaction with plant physiology or to realize more sophisticated cyborg systems.

  8. The Plant Cell Surface

    Institute of Scientific and Technical Information of China (English)

    Anne-Mie C.Emons; Kurt V.Fagerstedt

    2010-01-01

    @@ Multicellular organization and tissue construction has evolved along essentially different lines in plants and animals. Since plants do not run away, but are anchored in the soil, their tissues are more or less firm and stiff. This strength stems from the cell walls, which encase the fragile cytoplasm, and protect it.

  9. Radiolytic mapping of solvent-contact surfaces in Photosystem II of higher plants: experimental identification of putative water channels within the photosystem.

    Science.gov (United States)

    Frankel, Laurie K; Sallans, Larry; Bellamy, Henry; Goettert, Jost S; Limbach, Patrick A; Bricker, Terry M

    2013-08-09

    Photosystem II uses water as an enzymatic substrate. It has been hypothesized that this water is vectored to the active site for water oxidation via water channels that lead from the surface of the protein complex to the Mn4O5Ca metal cluster. The radiolysis of water by synchrotron radiation produces amino acid residue-modifying OH(•) and is a powerful technique to identify regions of proteins that are in contact with water. In this study, we have used this technique to oxidatively modify buried amino acid residues in higher plant Photosystem II membranes. Fourier transform ion cyclotron resonance mass spectrometry was then used to identify these oxidized amino acid residues that were located in several core Photosystem II subunits (D1, D2, CP43, and CP47). While, as expected, the majority of the identified oxidized residues (≈75%) are located on the solvent-exposed surface of the complex, a number of buried residues on these proteins were also modified. These residues form groups which appear to lead from the surface of the complex to the Mn4O5Ca cluster. These residues may be in contact with putative water channels in the photosystem. These results are discussed within the context of a number of largely computational studies that have identified putative water channels in Photosystem II.

  10. Genotoxic and mutagenic effects of polluted surface water in the midwestern region of Brazil using animal and plant bioassays

    Directory of Open Access Journals (Sweden)

    Priscila Leocádia Rosa Dourado

    Full Text Available Abstract This study aimed to evaluate DNA damage in animal and plant cells exposed to water from the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil by using bioassays, and to identify the chemical compounds in the water to determine the water quality in the area. Through the cytotoxicity bioassay with Allium cepa, using micronucleus test, and comet assay, using Astyanax altiparanae fish, the results indicated that biological samples were genetically altered. Micronuclei were observed in erythrocytes of A. altiparanae after exposure to water from locations close to industrial waste discharge. The highest DNA damage observed with the comet assay in fish occurred with the exposure to water from locations where the presence of metals (Cu, Pb, Cd, Ni was high, indicating the possibility of genotoxic effects of these compounds. Thus, these results reinforce the importance of conducting genotoxicity tests for developing management plans to improve water quality, and indicate the need for waste management before domestic and industrial effluents are released into the rivers and streams.

  11. Surface-water surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Saldi, K.A.; Dirkes, R.L.; Blanton, M.L.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the Surface water on and near the Hanford Site is monitored to determine the potential effects of Hanford operations. Surface water at Hanford includes the Columbia River, riverbank springs, ponds located on the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site, and offsite water systems directly east and across the Columbia River from the Hanford Site. Columbia River sediments are also included in this discussion. Tables 5.3.1 and 5.3.2 summarize the sampling locations, sample types, sampling frequencies, and sample analyses included in surface-water surveillance activities during 1994. Sample locations are also identified in Figure 5.3.1. This section describes the surveillance effort and summarizes the results for these aquatic environments. Detailed analytical results are reported by Bisping (1995).

  12. Water quality in New Zealand's planted forests: A review

    Science.gov (United States)

    Brenda R. Baillie; Daniel G. Neary

    2015-01-01

    This paper reviewed the key physical, chemical and biological water quality attributes of surface waters in New Zealand’s planted forests. The purpose was to: a) assess the changes in water quality throughout the planted forestry cycle from afforestation through to harvesting; b) compare water quality from planted forests with other land uses in New Zealand; and c)...

  13. Surface Water in Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2003-01-01

    Surface water in Hawaii is a valued resource as well as a potential threat to human lives and property. The surface-water resources of Hawaii are of significant economic, ecologic, cultural, and aesthetic importance. Streams supply more than 50 percent of the irrigation water in Hawaii, and although streams supply only a few percent of the drinking water statewide, surface water is the main source of drinking water in some places. Streams also are a source of hydroelectric power, provide important riparian and instream habitats for many unique native species, support traditional and customary Hawaiian gathering rights and the practice of taro cultivation, and possess valued aesthetic qualities. Streams affect the physical, chemical, and aesthetic quality of receiving waters, such as estuaries, bays, and nearshore waters, which are critical to the tourism-based economy of the islands. Streams in Hawaii pose a danger because of their flashy nature; a stream's stage, or water level, can rise several feet in less than an hour during periods of intense rainfall. Streams in Hawaii are flashy because rainfall is intense, drainage basins are small, basins and streams are steep, and channel storage is limited. Streamflow generated during periods of heavy rainfall has led to loss of property and human lives in Hawaii. Most Hawaiian streams originate in the mountainous interiors of the islands and terminate at the coast. Streams are significant sculptors of the Hawaiian landscape because of the erosive power of the water they convey. In geologically young areas, such as much of the southern part of the island of Hawaii, well-defined stream channels have not developed because the permeability of the surface rocks generally is so high that rainfall infiltrates before flowing for significant distances on the surface. In geologically older areas that have received significant rainfall, streams and mass wasting have carved out large valleys.

  14. Active condensation of water by plants

    Directory of Open Access Journals (Sweden)

    Prokhorov Alexey Anatolievich

    2013-10-01

    Full Text Available This paper is devoted to some peculiarities of water condensation on the surface of plants . Arguments in support of the hypothesis that in decreasing temperature of leaves and shoots below the dew point, the plant can actively condense moisture from the air, increasing the duration of dewfall are presented. Evening dewfall on plant surfaces begins before starting the formation of fog. Morning condensation continues for some time after the air temperature exceeds the dew point . The phenomenon in question is found everywhere, but it is particularly important for plants in arid ecosystems.

  15. Plant-pathogenic oomycetes, Escherichia coli strains, and Salmonella spp. Frequently found in surface water used for irrigation of fruit and vegetable crops in New York State.

    Science.gov (United States)

    Jones, Lisa A; Worobo, Randy W; Smart, Christine D

    2014-08-01

    In the United States, surface water is commonly used to irrigate a variety of produce crops and can harbor pathogens responsible for food-borne illnesses and plant diseases. Understanding when pathogens infest water sources is valuable information for produce growers to improve the food safety and production of these crops. In this study, prevalence data along with regression tree analyses were used to correlate water quality parameters (pH, temperature, turbidity), irrigation site properties (source, the presence of livestock or fowl nearby), and precipitation data to the presence and concentrations of Escherichia coli, Salmonella spp., and hymexazol-insensitive (HIS) oomycetes (Phytophthora and Pythium spp.) in New York State surface waters. A total of 123 samples from 18 sites across New York State were tested for E. coli and Salmonella spp., of which 33% and 43% were positive, respectively. Additionally, 210 samples from 38 sites were tested for HIS oomycetes, and 88% were found to be positive, with 10 species of Phytophthora and 11 species of Pythium being identified from the samples. Regression analysis found no strong correlations between water quality parameters, site factors, or precipitation to the presence or concentration of E. coli in irrigation sources. For Salmonella, precipitation (≤ 0.64 cm) 3 days before sampling was correlated to both presence and the highest counts. Analyses for oomycetes found creeks to have higher average counts than ponds, and higher turbidity levels were associated with higher oomycete counts. Overall, information gathered from this study can be used to better understand the food safety and plant pathogen risks of using surface water for irrigation.

  16. Site characterization summary report for dry weather surface water sampling upper East Fork Poplar Creek characterization area Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This report describes activities associated with conducting dry weather surface water sampling of Upper East Fork Poplar Creek (UEFPC) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. This activity is a portion of the work to be performed at UEFPC Operable Unit (OU) 1 [now known as the UEFPC Characterization Area (CA)], as described in the RCRA Facility Investigation Plan for Group 4 at the Oak- Ridge Y-12 Plant, Oak Ridge, Tennessee and in the Response to Comments and Recommendations on RCRA Facility Investigation Plan for Group 4 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Volume 1, Operable Unit 1. Because these documents contained sensitive information, they were labeled as unclassified controlled nuclear information and as such are not readily available for public review. To address this issue the U.S. Department of Energy (DOE) published an unclassified, nonsensitive version of the initial plan, text and appendixes, of this Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) Plan in early 1994. These documents describe a program for collecting four rounds of wet weather and dry weather surface water samples and one round of sediment samples from UEFPC. They provide the strategy for the overall sample collection program including dry weather sampling, wet weather sampling, and sediment sampling. Figure 1.1 is a schematic flowchart of the overall sampling strategy and other associated activities. A Quality Assurance Project Plan (QAPJP) was prepared to specifically address four rounds of dry weather surface water sampling and one round of sediment sampling. For a variety of reasons, sediment sampling has not been conducted and has been deferred to the UEFPC CA Remedial Investigation (RI), as has wet weather sampling.

  17. Evaluating the polar organic chemical integrative sampler for the monitoring of beta-blockers and hormones in wastewater treatment plant effluents and receiving surface waters.

    Science.gov (United States)

    Jacquet, Romain; Miège, Cécile; Bados, Philippe; Schiavone, Séverine; Coquery, Marina

    2012-02-01

    Wastewater treatment plants (WWTP) are known to be a source of surface water contamination by organic compounds such as pharmaceuticals. The objective of the present work was to study the suitability of the polar organic chemical integrative sampler (POCIS) to monitor beta-blockers and hormones in effluents and surface waters. Four sampling campaigns were carried out in French rivers (the Saône, the Ardières, the Bourbre, and the Seine) between November 2007 and September 2008. Passive samplers were exposed in surface waters, upstream and downstream of WWTP outflows, and in effluents. Exposures lasted for up to 24 d to study the uptake kinetics directly in situ, and repeatability was assessed by exposure of triplicates. A good agreement was found between POCIS and water samples. With the exception of atenolol, beta-blockers showed a linear uptake during at least three weeks, and their sampling rates could be determined in situ. These sampling rates were then used to calculate time-weighted average concentrations of beta-blockers in the Seine River with an overall good accuracy and repeatability. Such calculations could not be performed for hormones because of their variable occurrences and low concentrations in water and POCIS. Polar organic chemical integrative sampler therefore seems to be a suitable tool for monitoring beta-blockers in surface waters impacted by WWTP effluents. Longer exposure durations would be necessary to determine the suitability of POCIS for monitoring hormones. Finally, preliminary assays on the use of several deuterated compounds as performance reference compounds showed promising results for deuterated atenolol. Copyright © 2011 SETAC.

  18. Water Filtration Using Plant Xylem

    CERN Document Server

    Lee, Jongho; Chambers, Valerie; Venkatesh, Varsha; Karnik, Rohit

    2013-01-01

    Effective point-of-use devices for providing safe drinking water are urgently needed to reduce the global burden of waterborne disease. Here we show that plant xylem from the sapwood of coniferous trees - a readily available, inexpensive, biodegradable, and disposable material - can remove bacteria from water by simple pressure-driven filtration. Approximately 3 cm3 of sapwood can filter water at the rate of several liters per day, sufficient to meet the clean drinking water needs of one person. The results demonstrate the potential of plant xylem to address the need for pathogen-free drinking water in developing countries and resource-limited settings.

  19. Water on graphene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, M C [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, E-41013 Sevilla (Spain); Marti, J, E-mail: cgorbar@upo.e, E-mail: jordi.marti@upc.ed [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, B4-B5 Campus Nord, E-08034 Barcelona, Catalonia (Spain)

    2010-07-21

    In this paper, we summarize the main results obtained in our group about the behavior of water confined inside or close to different graphene surfaces by means of molecular dynamics simulations. These include the inside and outside of carbon nanotubes, and the confinement inside a slit pore or a single graphene sheet. We paid special attention to some thermodynamical (binding energies), structural (hydrogen-bond distributions) and dynamic (infrared spectra) properties, and their comparison to their bulk counterparts.

  20. Wettability and water uptake of holm oak leaf surfaces

    OpenAIRE

    2014-01-01

    Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of Quercus ilex L. (holm oak) as model. By measuring the leaf water potential 24 h after the deposition of water drops on to abaxial and adaxial surfaces, evidence for water penetration through the upper l...

  1. Plant Watering Autonomous Mobile Robot

    National Research Council Canada - National Science Library

    Hema Nagaraja; Reema Aswani; Monisha Malik

    2012-01-01

    .... The system comprises of a mobile robot and a temperature-humidity sensing module. The system is fully adaptive to any environment and takes into account the watering needs of the plants using the temperature-humidity sensing module...

  2. Power Plant Water Intake Assessment.

    Science.gov (United States)

    Zeitoun, Ibrahim H.; And Others

    1980-01-01

    In order to adequately assess the impact of power plant cooling water intake on an aquatic ecosystem, total ecosystem effects must be considered, rather than merely numbers of impinged or entrained organisms. (Author/RE)

  3. Ionic behavior of treated water at a water purification plant

    OpenAIRE

    Yanagida, Kazumi; Kawahigashi, Tatsuo

    2012-01-01

    [Abstract] Water at each processing stage in a water purification plant was extracted and analyzed to investigate changes of water quality. Investigations of water at each processing stage at the water purification plant are discussed herein.

  4. Ionic behavior of treated water at a water purification plant

    OpenAIRE

    Yanagida, Kazumi; Kawahigashi, Tatsuo

    2012-01-01

    [Abstract] Water at each processing stage in a water purification plant was extracted and analyzed to investigate changes of water quality. Investigations of water at each processing stage at the water purification plant are discussed herein.

  5. Impact of wastewater treatment plants on receiving surface waters and a tentative risk evaluation: the case of estrogens and beta blockers.

    Science.gov (United States)

    Gabet-Giraud, V; Miège, C; Jacquet, R; Coquery, M

    2014-02-01

    Five estrogenic hormones (unconjugated + conjugated fractions) and 10 beta blockers were analyzed in three wastewater treatment plant (WWTP) effluents and receiving river waters in the area of Lyon, France. In the different samples, only two estrogens were quantified: estrone and estriol. Some beta blockers, such as atenolol, acebutolol, and sotalol, were almost always quantified, but others, e.g., betaxolol, nadolol, and oxprenolol were rarely quantified. Concentrations measured in river waters were in the nanogram per liter range for estrogens and between 0.3 and 210 ng/L for beta blockers depending on the substance and the distance from the WWTP outfall. The impact of the WWTP on the receiving rivers was studied and showed a clear increase in concentrations near the WWTP outfall. For estrogens, the persistence in surface waters was not evaluated given the low concentrations levels (around 1 ng/L). For beta blockers, concentrations measured downstream of the WWTP outfall were up to 16 times higher than those measured upstream. Also, the persistence of metoprolol, nadolol, and propranolol was noted even 2 km downstream of the WWTP outfall. The comparison of beta blocker fingerprints in the samples collected in effluent and in the river also showed the impact of WWTP outfall on surface waters. Finally, a tentative environmental risk evaluation was performed on 15 sites by calculating the ratio of receiving water concentrations to predicted non-effect concentrations (PNEC). For estrogens, a total PNEC of 5 ng/L was considered and these substances were not linked to any potential environmental risk (only one site showed an environmental risk ratio above 1). Unfortunately, few PNECs are available and risk evaluation was only possible for 4 of the 10 beta blockers studied: acebutolol, atenolol, metoprolol, and propranolol. Only propranolol presented a ratio near or above 1, showing a possible environmental risk for 4 receiving waters out of 15.

  6. Calendar year 1993 groundwater quality report for the Bear Creek Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater and surface water quality data and calculated rate of contaminant migration, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report contains groundwater and surface-water quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located southwest of the Y-12 Plant complex within the Bear Creek Hydrogeologic Regime (Bear Creek Regime), which is one of three regimes defined for the purposes of groundwater and surface-water quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability (HSEA) Organization manages the monitoring activities in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater and surface water report for the Bear Creek Regime is completed in two-parts; Part 1 (this report) containing the groundwater and surface-water quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater and surface-water quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.

  7. Investigation of the influence of liquid water films on O3 and PAN deposition on plant leaf surfaces treated with organic / inorganic compounds

    Science.gov (United States)

    Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Kesselmeier, Jürgen; Sörgel, Matthias

    2016-04-01

    Liquid water films on environmental surfaces play an important role in various fields of interest (Burkhardt and Eiden, 1994). For example, the deposition of water soluble trace gases could be increased by surface moisture. Chameides and Stelson (1992) found out that the dissolution of trace gases in airborne particulate matter increases with rising water/solid ratio of the particles. Further, Flechard et al. (1999) concluded that deliquescent salt particles represent a potential sink for trace gases, depending on their chemical property. The formation of surface water films and its influence on the gas deposition was proposed by many previous studies (Fuentes and Gillespie, 1992, Burkhardt and Eiden, 1994, van Hove et al., 1989, Burkhardt et al., 1999, Flechard et al., 1999). In this study we investigate the influence of leaf surface water films on the deposition of O3 and PAN under controlled laboratory conditions. A twin cuvette system described in Sun et al. (2015) was used to control the environmental parameters such as light, temperature, trace gas mixing ratio and humidity. Furthermore, the leaf surface was treated with various organic and inorganic solutions to investigate the influence of deposited compounds on the electrical surface conductance of the leaves and the surface deposition of O3 and PAN at various relative humidities. The result shows that RHcrit, where the electrical surface conductance (G) increases exponentially, was 40 % during the light period and 50 % during the dark period. Furthermore, we observed that the formation of the leaf surface liquid film was depended on the deposited compounds on the leaf cuticles. For the O3 deposition on plants (Quercus ilex) a clear enhancement at rising environmental air humidity under light and dark condition was found. The increase during light conditions can be related partly to increasing stomatal conductance with higher RH. From the non-stomatal deposition measured in dark experiments, we could

  8. Occurrence and fate of tetracycline and degradation products in municipal biological wastewater treatment plant and transport of them in surface water.

    Science.gov (United States)

    Topal, Murat; Arslan Topal, E Işıl

    2015-12-01

    The aims of this study are to investigate the fate of tetracycline (TC) and degradation products (DPs) in municipal biological wastewater treatment plant (MBWWTP) located in Elazığ City (Turkey) and to determine the occurrence and transport of TC and DPs in surface water (SW) (Kehli Stream) which the effluents of the plant discharged. The aqueous phase removal of TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), and anhydrotetracycline (ATC) in the studied treatment plant was 39.4 ± 1.9, 31.8 ± 1.5, 15.1 ± 0.7, and 16.9 ± 0.8%, respectively. According to the analyses' results of SW samples taken from downstream at every 500-m distance, TC and DPs decreased by the increase in the distance. In downstream, at 2000 m, TC, ETC, EATC, and ATC were 4.12 ± 0.20, 6.70 ± 0.33, 8.31 ± 0.41, and 3.57 ± 0.17 μg/L, respectively. As a result, antibiotic pollution in the SW that takes the effluent of MBWWTP exists.

  9. Ecotoxicological risk assessment and seasonal variation of some pharmaceuticals and personal care products in the sewage treatment plant and surface water bodies (lakes).

    Science.gov (United States)

    Archana, G; Dhodapkar, Rita; Kumar, Anupama

    2017-08-10

    This paper reports the seasonal variation and environmental quality control data for five fingerprint pharmaceuticals and personal care products (PPCPs) (acetaminophen ciprofloxacin, caffeine, irgasan and benzophenone) in the influent and the effluent of the sewage treatment plant (STP) and surface water bodies (six major lakes) in and around Nagpur, one of the "A class city" in the central India over a period of 1 year. The target compounds were analysed using developed offline solid-phase extraction (SPE) coupled with reversed phase high-performance liquid chromatography (RP-HPLC-PDA) method. All the five PPCPs were found in the influent, whereas four were found in the effluent of the STP. However, in the surface water bodies, three PPCPs were detected in all the seasons. Above PPCPs were present in the concentration range of 1-174 μg L(-1) in the surface water bodies, 12-373 μg L(-1) in the influent and 11-233 μg L(-1) in the effluent of the STP. Amongst the five PPCPs, caffeine was found to be in higher concentration as compared to others. The seasonal trends indicate higher concentrations of PPCPs in summer season and lowest in the rainy season. Additionally, physico-chemical characterisations (inorganic and organic parameters) of the collected samples were performed to access the anthropogenic pollution. Ecotoxicological risk assessment was done to appraise the degree of toxicity of the targeted compounds. Hazard quotient (HQ) values were found to be organism.

  10. Surface Disposal of Waste Water Treatment Plant Biosludge--an Important Source of Perfluorinated Compound Contamination in the Environment

    Science.gov (United States)

    What are “Biosolids”?- “Biosolids” are what remains after WWTP processing Sewage sludge probably a more accurate term - Could contain anything that comes down the pipe to the WWTP, varies greatly depending on community type, industry effluents, plant desig...

  11. Use of the Maximum Cumulative Ratio As an Approach for Prioritizing Aquatic Coexposure to Plant Protection Products: A Case Study of a Large Surface Water Monitoring Database.

    Science.gov (United States)

    Vallotton, Nathalie; Price, Paul S

    2016-05-17

    This paper uses the maximum cumulative ratio (MCR) as part of a tiered approach to evaluate and prioritize the risk of acute ecological effects from combined exposures to the plant protection products (PPPs) measured in 3 099 surface water samples taken from across the United States. Assessments of the reported mixtures performed on a substance-by-substance approach and using a Tier One cumulative assessment based on the lowest acute ecotoxicity benchmark gave the same findings for 92.3% of the mixtures. These mixtures either did not indicate a potential risk for acute effects or included one or more individual PPPs that had concentrations in excess of their benchmarks. A Tier Two assessment using a trophic level approach was applied to evaluate the remaining 7.7% of the mixtures. This assessment reduced the number of mixtures of concern by eliminating the combination of endpoint from multiple trophic levels, identified invertebrates and nonvascular plants as the most susceptible nontarget organisms, and indicated that a only a very limited number of PPPs drove the potential concerns. The combination of the measures of cumulative risk and the MCR enabled the identification of a small subset of mixtures where a potential risk would be missed in substance-by-substance assessments.

  12. Sustaining dry surfaces under water

    DEFF Research Database (Denmark)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional...... mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have...... not been investigated, and are critically important to maintain surfaces dry under water.In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical...

  13. Sustaining dry surfaces under water

    Science.gov (United States)

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-08-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments.

  14. Artificial Ground Water Recharge with Surface Water

    Science.gov (United States)

    Heviánková, Silvie; Marschalko, Marian; Chromíková, Jitka; Kyncl, Miroslav; Korabík, Michal

    2016-10-01

    With regard to the adverse manifestations of the recent climatic conditions, Europe as well as the world have been facing the problem of dry periods that reduce the possibility of drawing drinking water from the underground sources. The paper aims to describe artificial ground water recharge (infiltration) that may be used to restock underground sources with surface water from natural streams. Among many conditions, it aims to specify the boundary and operational conditions of the individual aspects of the artificial ground water recharge technology. The principle of artificial infiltration lies in the design of a technical system, by means of which it is possible to conduct surplus water from one place (in this case a natural stream) into another place (an infiltration basin in this case). This way, the water begins to infiltrate into the underground resources of drinking water, while the mixed water composition corresponds to the water parameters required for drinking water.

  15. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water.

    Science.gov (United States)

    Tang, Junying; Bu, Yuanqing; Zhang, Xu-Xiang; Huang, Kailong; He, Xiwei; Ye, Lin; Shan, Zhengjun; Ren, Hongqiang

    2016-10-01

    The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Feasibility study: using δ18O-PO4 to identify phosphate sources in Dutch surface waters: peat, manure, sewage treatment plant or natural, nutrient-rich groundwater?

    NARCIS (Netherlands)

    Verheul, M.R.A.; Tamburini, F.; Griffioen, J.J.; Chardon, W.

    2012-01-01

    High nutrient concentrations are in the Netherlands and most other European nations the biggest challenge to comply with the European water quality guidelines. The continuous application of manure and fertilizers by farmers has a strong impact on the phosphate concentrations in surface water systems

  17. Feasibility study: using δ18O-PO4 to identify phosphate sources in Dutch surface waters: peat, manure, sewage treatment plant or natural, nutrient-rich groundwater?

    NARCIS (Netherlands)

    Verheul, M.R.A.; Tamburini, F.; Griffioen, J.J.; Chardon, W.

    2012-01-01

    High nutrient concentrations are in the Netherlands and most other European nations the biggest challenge to comply with the European water quality guidelines. The continuous application of manure and fertilizers by farmers has a strong impact on the phosphate concentrations in surface water systems

  18. Groundwater Protection Program Calendar Year 1998 Evaluation of Groundwater and Surface Water Quality Data for the Bear Creek Hydrogeologic Regime at the U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-09-01

    This report presents an evaluation of the water quality monitoring data obtained by the Y-12 Plant Groundwater Protection Program (GWPP) in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1998. The Bear Creek Regime contains many confirmed and potential sources of groundwater and surface water contamination associated with the U.S. Department of Energy (DOE) Oak Ridge Y-12 Plant. Applicable provisions of DOE Order 5400.1A - General Environmental Protection Program - require evaluation of groundwater and surface water quality near the Y-12 Plant to: (1) gauge groundwater quality in areas that are, or could be, affected by plant operations, (2) determine the quality of surface water and groundwater where contaminants are most likely to migrate beyond the DOE Oak Ridge Reservation (ORR) property line, and (3) identify and characterize long-term trends in groundwater quality. The following sections of this report contain relevant background information (Section 2.0); describe the results of the respective data evaluations required under DOE Order 5400.1A (Section 3.0); summarize significant findings of each evaluation (Section 4.0); and list the technical reports and regulatory documents cited for more detailed information (Section 5.0). All of the figures (maps and trend graphs) and data tables referenced in each section are presented in Appendix A and Appendix B, respectively.

  19. Wet water glass production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant of a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997. and 1998, increasing detergent zeolite production, from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate dissolution plant. The main goal was increasing the detergent zeolite production. The technological cycle of NaOH was closed, and no effluents emitted, and there is no pollution (except for the filter cake. The wet water glass production process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start - up, and repairs. By installing additional process equipment (centrifugal pumps and heat exchangers technological bottlenecks were overcome, and by adjusting the operation of autoclaves, and water glass filters and also by optimizing the capacities of process equipment.

  20. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  1. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  2. Free Surface Water Tunnel (FSWT)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Free Surface Water Tunnel consists of the intake plenum, the test section and the exit plenum. The intake plenum starts with a perforated pipe that...

  3. Advanced light water reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    Giedraityte, Zivile [Helsinki University of Technology, Otaranta 8D-84, 02150 Espoo (Finland)

    2008-07-01

    For nuclear power to be competitive with the other methods of electrical power generation the economic performance should be significantly improved by increasing the time spent on line generating electricity relative to time spent off-line conducting maintenance and refueling. Maintenance includes planned actions (surveillances) and unplanned actions (corrective maintenance) to respond to component degradation or failure. A methodology is described which is used to resolve maintenance related operating cycle length barriers. Advanced light water nuclear power plant is designed with the purpose to maximize online generating time by increasing operating cycle length. (author)

  4. Surface Water Treatment Workshop Manual.

    Science.gov (United States)

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to increase the knowledge of experienced water treatment plant operators. Each of the fourteen lessons in this document has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in this manual include: basic water…

  5. Evaluation Of Calendar Year 1997 Groundwater and surface Water Quality Data For the Bear Creek Hydrogeologic regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.

    1998-09-01

    This report presents an evaluation of the groundwater and surface water monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1997. The monitoring data were obtained in compliance with the Resource Conservation and Recovery Act (RCRA) post-closure permit for the Bear Creek Regime and U.S. Department of Energy (DOE) Order 5400.1, and are reported ixx Calendar Year 1997 Annual Groundwater A40nitoringReport for the Bear Creek Hydrogeolo@"c Regime at the US. Department ofEnergy Y-12 Plant, Oak Ridge, Tennessee (AJA Technical Services, Inc. 1998a). This report provides an evaluation of the monitoring data with respect to historical results for each sampling location, the regime-wide extent of groundwater and surface water contamination, and long-term concentration trends for selected groundwater and surface water contaminants.

  6. Purification of Water by Aquatic Plants

    OpenAIRE

    Morimitsu, Katsuhito; Kawahigashi, Tatsuo

    2013-01-01

    [Abstract] Water quality purification of many water systems including those occurring in rivers depends to a great degree on water quality purification activities of aquatic plants and microbes. This paper presents a discussion of results, based on laboratory experiments, of purification by aquatic plants.

  7. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  8. Groundwater–Surface Water Exchange

    DEFF Research Database (Denmark)

    Karan, Sachin

    The exchange of groundwater-surface water has been invetigated in the western part of Denmark. Holtum AA provides the framework for all the performed investigations. Several methods are used, primarily eld based measurements ombined with numerical models to achieve insight to the governing...... processes of interaction between groundwater and surface water. By using heat as a tracer it has been possible to use temperature directly as calibrationtargets in a groundwater and heat transport model. Thus, it is possible to use heat investigate the change in groundwater discharge in dynamic conditions...... by using simple temperature devices along a stream to delineate the areas of interest in regard to GW{SW exchange. Thus, at several locations in a stream a temperature data logger was placed in the water column and right at the streambed-water interface. By looking at the correlation of streambed...

  9. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  10. Mobile surface water filtration system

    Directory of Open Access Journals (Sweden)

    Aashish Vatsyayan

    2012-09-01

    Full Text Available To design a mobile system for surface water filtrationMethodology: the filtration of surface impurities begins with their retraction to concentrated thickness using non ionising surfactants, then isolation using surface tension property and sedimentation of impurities in process chamber using electrocoagulation. Result:following studies done to determine the rate of spreading of crude oil on water a method for retraction of spread crude oil to concentrated volumes is developed involving addition of non -ionising surfactants in contrast to use of dispersants. Electrocoagulation process involves multiple processes taking place to lead to depositionof impurities such as oil, grease, metals. Studies of experiments conducted reveals parameters necessary for design of electrocoagulation process chamber though a holistic approach towards system designing is still required. Propeller theory is used in determining the required design of propeller and the desired thrust, the overall structure will finally contribute in deciding the choice of propeller.

  11. Water Treatment Technology - General Plant Operation.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on general plant operations provides instructional materials for seven competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: water supply regulations, water plant…

  12. Regulation of Water in Plant Cells

    Science.gov (United States)

    Kowles, Richard V.

    2010-01-01

    Cell water relationships are important topics to be included in cell biology courses. Differences exist in the control of water relationships in plant cells relative to control in animal cells. One important reason for these differences is that turgor pressure is a consideration in plant cells. Diffusion and osmosis are the underlying factors…

  13. Plant water balance with tritiated water-tracing dynamical method

    Institute of Scientific and Technical Information of China (English)

    曾文炳; 颉红梅; 魏宝文; 陈荷生; 冯金朝; 董家伦

    1996-01-01

    The conception of "metabolic pool" is introduced and an ecosystem model consisting of sand body metabolic pool, plant metabolic pool, atmospheric pool and their corresponding channels is established. In addition, the input and output terms of water balance including plant transpiration etc. are measured by tritiated water-tracing dynamical method, etc. and thus a water balance table is obtained. Finally, the plant water balance in the steppified desert environment of the Shapotou area at southeastern fringe of Tengger Desert in China is comprehensively analysed.

  14. SURFACE WATER QUALITY IN ADDIS ABABA, ETHIOPIA

    African Journals Online (AJOL)

    environmental pollution derived from domestic and industrial activities. Due to the inadequacy of controlled waste management strategies and waste treatment plants ... Oxygen Demand (COD), Biological Oxygen Demand (BOD) and Dissolved ... appropriate waste water purifying plants. ..... University of Turku, Finland. 2.

  15. Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines.

    Science.gov (United States)

    Flores, Cintia; Ventura, Francesc; Martin-Alonso, Jordi; Caixach, Josep

    2013-09-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are two emerging contaminants that have been detected in all environmental compartments. However, while most of the studies in the literature deal with their presence or removal in wastewater treatment, few of them are devoted to their detection in treated drinking water and fate during drinking water treatment. In this study, analyses of PFOS and PFOA have been carried out in river water samples and in the different stages of a drinking water treatment plant (DWTP) which has recently improved its conventional treatment process by adding ultrafiltration and reverse osmosis in a parallel treatment line. Conventional and advanced treatments have been studied in several pilot plants and in the DWTP, which offers the opportunity to compare both treatments operating simultaneously. From the results obtained, neither preoxidation, sand filtration, nor ozonation, removed both perfluorinated compounds. As advanced treatments, reverse osmosis has proved more effective than reverse electrodialysis to remove PFOA and PFOS in the different configurations of pilot plants assayed. Granular activated carbon with an average elimination efficiency of 64±11% and 45±19% for PFOS and PFOA, respectively and especially reverse osmosis, which was able to remove ≥99% of both compounds, were the sole effective treatment steps. Trace levels of PFOS (3.0-21 ng/L) and PFOA (water were significantly lowered in comparison to those measured in precedent years. These concentrations represent overall removal efficiencies of 89±22% for PFOA and 86±7% for PFOS.

  16. Aquatic Plant Water Quality Criteria

    Science.gov (United States)

    The USEPA, as stated in the Clean Water Act, is tasked with developing numerical Aquatic Life Critiera for various pollutants found in the waters of the United States. These criteria serve as guidance for States and Tribes to use in developing their water quality standards. The G...

  17. Plant Surfaces: Structures and Functions for Biomimetic Innovations

    Science.gov (United States)

    Barthlott, Wilhelm; Mail, Matthias; Bhushan, Bharat; Koch, Kerstin

    2017-04-01

    for this diversity is provided. Simplified, the functions of plant surface characteristics may be grouped into six categories: (1) mechanical properties, (2) influence on reflection and absorption of spectral radiation, (3) reduction of water loss or increase of water uptake, moisture harvesting, (4) adhesion and non-adhesion (lotus effect, insect trapping), (5) drag and turbulence increase, or (6) air retention under water for drag reduction or gas exchange (Salvinia effect). This list is far from complete. A short overview of the history of bionics and the impressive spectrum of existing and anticipated biomimetic applications are provided. The major challenge for engineers and materials scientists, the durability of the fragile nanocoatings, is also discussed.

  18. Water/Wastewater Treatment Plant Operator Qualifications.

    Science.gov (United States)

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  19. Crow Nation Water Treatment Plant NPDES Permit

    Science.gov (United States)

    Under NPDES permit MT-0030538, the U.S. Bureau of Indian Affairs is authorized to discharge from the Crow Agency water treatment plants via the wastewater treatment facility located in Bighorn County, Montana to the Little Bighorn River.

  20. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    Science.gov (United States)

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the

  1. Water molecules orientation in surface layer

    Science.gov (United States)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  2. Benefit Analysis of Linghai Sewage Treatment Plant on Surface Water Environment%凌海市污水处理厂建设对地表水环境的效益分析

    Institute of Scientific and Technical Information of China (English)

    董春艳

    2011-01-01

    This paper introduces the construction of Linghai wastewater treatment plant, and analyses the present environmental quality of surface water in Linghai. The main analysis forcus on the major pollutant emissions and the environmental benefitsafter the operation of the sewage treatment plant.%介绍了凌海市污水处理厂的建设概况,对凌海市地表水环境质量现状进行了分析,监测了污水处理厂运营后主要污染物的排放量,并探讨了凌海市污水处理厂建成运营后所产生的环境效益。

  3. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  4. The Water Circuit of the Plants - Do Plants have Hearts ?

    OpenAIRE

    Kundt, Wolfgang; Gruber, Eva

    2006-01-01

    There is a correspondence between the circulation of blood in all higher animals and the circulation of sap in all higher plants - up to heights h of 140 m - through the xylem and phloem vessels. Plants suck in water from the soil, osmotically through the roothair zone, and subsequently lift it osmotically again, and by capillary suction (via their buds, leaves, and fruits) into their crowns. In between happens a reverse osmosis - the endodermis jump - realized by two layers of subcellular me...

  5. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  6. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati

  7. Water retention capacity of tissue cultured plants

    NARCIS (Netherlands)

    Klerk, de G.J.M.; Wijnhoven, F.

    2005-01-01

    Leaves rapidly close their stomata after detachment resulting in a strong reduction of water loss. It has been reported that detached leaves of in vitro produced plants show continuous water loss indicating that they are unable to close the stomata properly and/or that their cuticle is

  8. Water retention capacity of tissue cultured plants

    NARCIS (Netherlands)

    Klerk, de G.J.M.; Wijnhoven, F.

    2005-01-01

    Leaves rapidly close their stomata after detachment resulting in a strong reduction of water loss. It has been reported that detached leaves of in vitro produced plants show continuous water loss indicating that they are unable to close the stomata properly and/or that their cuticle is malfunctionin

  9. A method to determine plant water source using transpired water

    Directory of Open Access Journals (Sweden)

    L. B. Menchaca

    2007-04-01

    Full Text Available A method to determine the stable isotope ratio of a plant's water source using the plant's transpired water is proposed as an alternative to standard xylem extraction methods. The method consists of periodically sampling transpired waters from shoots or leaves enclosed in sealed, transparent bags which create a saturated environment, preclude further evaporation and allow the progressive mixing of evaporated transpired water and un-evaporated xylem water. The method was applied on trees and shrubs coexisting in a non-irrigated area where stable isotope ratios of local environmental waters are well characterized. The results show Eucalyptus globulus (tree and Genista monspessulana (shrub using water sources of different isotopic ratios congruent with groundwater and soil water respectively. In addition, tritium concentrations indicate that pine trees (Pinus sylvestris switch water source from soil water in the winter to groundwater in the summer. The method proposed is particularly useful in remote or protected areas and in large scale studies related to water management, environmental compliance and surveillance, because it eliminates the need for destructive sampling and greatly reduces costs associated with laboratory extraction of xylem waters from plant tissues for isotopic analyses.

  10. Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Bear Creek Hydrogeologic Regime (Bear Creek Regime) during calendar year (CY) 1996. The monitoring data were collected for the multiple programmatic purposes of the Y-12 Plant Groundwater Protection Program (GWPP) and have been reported in Calendar Year 1996 Annual Groundwater Monitoring Report for the Bear Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee. The Annual Monitoring report presents only the results of the monitoring data evaluations required for waste management sites addressed under the Resource Conservation and Recovery Act (RCRA) post-closure permit for the Bear Creek Regime. The Annual Monitoring Report also serves as a consolidated reference for the groundwater and surface water monitoring data obtained throughout the Bear Creek Regime under the auspices of the Y-12 GWPP. This report provides an evaluation of the CY 1996 monitoring data with an emphasis on regime-wide groundwater and surface water quality and long-term concentration trends of regulated and non-regulated monitoring parameters.

  11. Evaluation of Calendar Year 1996 groundwater and surface water quality data for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) during calendar year (CY) 1996. The East Fork Regime encompasses several confirmed and suspected sources of groundwater contamination within industrialized areas of the US Department of Energy (DOE) Y-12 Plant in Bear Creek Valley (BCV) southeast of Oak Ridge, Tennessee. The CY 1996 groundwater and surface water monitoring data are presented in Calendar Year 1996 Annual Groundwater Monitoring Report for the Upper East Fork Poplar Creek Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee, along with the required data evaluations specified in the Resource Conservation and Recovery Act (RCRA) post-closure permit for the East Fork Regime. This report provides additional evaluation of the CY 1996 groundwater and surface water monitoring data with an emphasis on regime-wide groundwater contamination and long-term concentration trends for regulated and non-regulated monitoring parameters.

  12. Rocky Mountain Arsenal surface water management plan : water year 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan (SWMP) for Water Year 2003 (WY 2003) (October I, 2002 to September 30, 2003) is an assessment of the nonpotable water demands at...

  13. Rocky Mountain Arsenal surface water management plan : water year 2005

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan for Water Year (WY) 2005 (October 1, 2004 to September 30, 2005) is an assessment of the nonpotable water demands at the Rocky...

  14. Rocky Mountain Arsenal surface water management plan : water year 2006

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan for Water Year (WY) 2006 (October 1, 2005 to September 30, 2006) is an assessment of the nonpotable water demands at the Rocky...

  15. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  16. Continuous monitoring of plant water potential.

    Science.gov (United States)

    Schaefer, N L; Trickett, E S; Ceresa, A; Barrs, H D

    1986-05-01

    Plant water potential was monitored continuously with a Wescor HR-33T dewpoint hygrometer in conjunction with a L51 chamber. This commercial instrument was modified by replacing the AC-DC mains power converter with one stabilized by zener diode controlled transistors. The thermocouple sensor and electrical lead needed to be thermally insulated to prevent spurious signals. For rapid response and faithful tracking a low resistance for water vapor movement between leaf and sensor had to be provided. This could be effected by removing the epidermis either by peeling or abrasion with fine carborundum cloth. A variety of rapid plant water potential responses to external stimuli could be followed in a range of crop plants (sunflower (Helianthus annuus L., var. Hysun 30); safflower (Carthamus tinctorious L., var. Gila); soybean (Glycine max L., var. Clark); wheat (Triticum aestivum L., var. Egret). These included light dark changes, leaf excision, applied pressure to or anaerobiosis of the root system. Water uptake by the plant (safflower, soybean) mirrored that for water potential changes including times when plant water status (soybean) was undergoing cyclical changes.

  17. for the Waste Water Cleaning Plant

    Directory of Open Access Journals (Sweden)

    E. V. Grigorieva

    2010-01-01

    Full Text Available A model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water on the given time interval is stated and solved analytically with the use of the Pontryagin Maximum Principle and Green's Theorem. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  18. Surface water discharges from onshore stripper wells.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.

    1998-01-16

    Under current US Environmental Protection Agency (EPA) rules, small onshore oil producers are allowed to discharge produced water to surface waters with approval from state agencies; but small onshore gas producers, however, are prohibited from discharging produced water to surface waters. The purpose of this report is to identify those states that allow surface water discharges from small onshore oil operations and to summarize the types of permitting controls they use. It is intended that the findings of this report will serve as a rationale to encourage the EPA to revise its rules and to remove the prohibition on surface water discharges from small gas operations.

  19. Water recovery in a concentrated solar power plant

    Science.gov (United States)

    Raza, Aikifa; Higgo, Alex R.; Alobaidli, Abdulaziz; Zhang, TieJun

    2016-05-01

    For CSP plants, water consumption is undergoing increasing scrutiny particularly in dry and arid regions with water scarcity conditions. Significant amount of water has to be used for parabolic trough mirror cleaning to maintain high mirror reflectance and optical efficiency in sandy environment. For this specific purpose, solar collectors are washed once or twice every week at Shams 1, one of the largest CSP plant in the Middle East, and about 5 million gallons of demineralized water is utilized every year without further recovery. The produced waste water from a CSP plant contains the soiling i.e. accumulated dust and some amount of organic contaminants, as indicated by our analysis of waste water samples from the solar field. We thus need to develop a membrane based system to filter fine dust particulates and to degrade organic contaminant simultaneously. Membrane filtration technology is considered to be cost-effective way to address the emerging problem of a clean water shortage, and to reuse the filtered water after cleaning solar collectors. But there are some major technical barriers to improve the robustness and energy efficiency of filtration membranes especially when dealing with the removal of ultra-small particles and oil traces. Herein, we proposed a robust and scalable nanostructured inorganic microporous filtration copper mesh. The inorganic membrane surface wettability is tailored to enhance the water permeability and filtration flux by creating nanostructures. These nanostructured membranes were successfully employed to recover water collected after cleaning the reflectors of solar field of Shams 1. Another achievement was to remove the traces of heat transfer fluid (HTF) from run-off water which was collected after accidental leakage in some of the heat exchangers during the commissioning of the Shams 1 for safe disposal into the main stream. We hope, by controlling the water recovery factor and membrane reusability performance, the membrane

  20. Water treatment plants assessment at Talkha power plant.

    Science.gov (United States)

    El-Sebaie, Olfat D; Abd El-Kerim, Ghazy E; Ramadan, Mohamed H; Abd El-Atey, Magda M; Taha, Sahr Ahmed

    2002-01-01

    Talkha power plant is the only power plant located in El-Mansoura. It generates electricity using two different methods by steam turbine and gas turbine. Both plants drew water from River Nile (208 m3 /h). The Nile raw water passes through different treatment processes to be suitable for drinking and operational uses. At Talkha power plant, there are two purification plants used for drinking water supply (100 m3/h) and for water demineralization supply (108 m3/h). This study aimed at studying the efficiency of the water purification plants. For drinking water purification plant, the annual River Nile water characterized by slightly alkaline pH (7.4-8), high annual mean values of turbidity (10.06 NTU), Standard Plate Count (SPC) (313.3 CFU/1 ml), total coliform (2717/100 ml), fecal coliform (0-2400/100 ml), and total algae (3 x 10(4) org/I). The dominant group of algae all over the study period was green algae. The blue green algae was abundant in Summer and Autumn seasons. The pH range, and the annual mean values of turbidity, TDS, total hardness, sulfates, chlorides, nitrates, nitrites, fluoride, and residual chlorine for purified water were in compliance with Egyptian drinking water standards. All the SPC recorded values with an annual mean value of 10.13 CFU/1 ml indicated that chlorine dose and contact time were not enough to kill the bacteria. However, they were in compliance with Egyptian decree (should not exceed 50 CFU/1 ml). Although the removal efficiency of the plant for total coliform and blue green algae was high (98.5% and 99.2%, respectively), the limits of the obtained results with an annual mean values of 40/100 ml and 15.6 org/l were not in compliance with the Egyptian decree (should be free from total coliform, fecal coliform and blue green algae). For water demineralization treatment plant, the raw water was characterized by slightly alkaline pH. The annual mean values of conductivity, turbidity, and TDS were 354.6 microS/cm, 10.84 NTU, and 214

  1. Water surface capturing by image processing

    Science.gov (United States)

    An alternative means of measuring the water surface interface during laboratory experiments is processing a series of sequentially captured images. Image processing can provide a continuous, non-intrusive record of the water surface profile whose accuracy is not dependent on water depth. More trad...

  2. Secret Message at the Plant Surface

    Science.gov (United States)

    Boccalandro, Hernán; Casal, Jorge

    2007-01-01

    In general, stomata open during the day and close at night. This behavior has a crucial importance because it maximizes the update of CO2 for photosynthesis and minimizes the water loss. Blue light is one of the environmental factors that regulates this process. Certainly, when either entire plants or epidermal strips adapted to the dark are exposed to blue light, the stomata open widely their pores. But, what does happen if we illuminate individual stomata instead of peels or entire plants? In the inaugural issue of PLoS ONE, we have answered this question by irradiating individual stomata with a laser attached to a confocal microscope. Our study not only demonstrates that the stomata function independently from the behavior of their neighbors, and illuminates the implication of the blue light receptors PHOTOTROPIN1 and PHOTOTROPIN2 in such response. It also gives clues about the physiological relevancy of this behavior. PMID:19704603

  3. The effect of plant water storage on water fluxes within the coupled soil-plant system.

    Science.gov (United States)

    Huang, Cheng-Wei; Domec, Jean-Christophe; Ward, Eric J; Duman, Tomer; Manoli, Gabriele; Parolari, Anthony J; Katul, Gabriel G

    2017-02-01

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress.

  4. Capacitive Soil Moisture Sensor for Plant Watering

    Science.gov (United States)

    Maier, Thomas; Kamm, Lukas

    2016-04-01

    How can you realize a water saving and demand-driven plant watering device? To achieve this you need a sensor, which precisely detects the soil moisture. Designing such a sensor is the topic of this poster. We approached this subject with comparing several physical properties of water, e.g. the conductivity, permittivity, heat capacity and the soil water potential, which are suitable to detect the soil moisture via an electronic device. For our project we have developed a sensor device, which measures the soil moisture and provides the measured values for a plant watering system via a wireless bluetooth 4.0 network. Different sensor setups have been analyzed and the final sensor is the result of many iterative steps of improvement. In the end we tested the precision of our sensor and compared the results with theoretical values. The sensor is currently being used in the Botanical Garden of the Friedrich-Alexander-University in a long-term test. This will show how good the usability in the real field is. On the basis of these findings a marketable sensor will soon be available. Furthermore a more specific type of this sensor has been designed for the EU:CROPIS Space Project, where tomato plants will grow at different gravitational forces. Due to a very small (15mm x 85mm x 1.5mm) and light (5 gramm) realisation, our sensor has been selected for the space program. Now the scientists can monitor the water content of the substrate of the tomato plants in outer space and water the plants on demand.

  5. Water Movement in Vascular Plants: A Primer

    CERN Document Server

    Sane, Sanjay P

    2011-01-01

    The origin of land plants was one of the most important events in evolutionary history of earth in terms of its broad impact on metazoan life and the biotic environment. Because vascular tissues enabled land plants to meet the challenges of terrestrial life, it is important to understand the mechanistic basis of water transport through these tissues from soil to the canopy of trees, in some cases almost 100 meters high. The answers to these questions involve not only the biology of plant vasculature, but also the physical properties of water that enable such transport. Although early researchers proposed the hypothesis of cohesion-tension of water as the likely mechanism for sap ascent, the exact mechanism of transport continues to be a hotly debated topic in the field of plant physiology. This debate continues to be enriched with several sophisticated studies on plants of various morphologies growing in diverse habitats. Although a wealth of evidence has upheld the cohesion-tension theory as being fundamenta...

  6. Cell-based Metabolomics for Assessing Chemical Exposure and Toxicity of Environmental Surface Waters

    Science.gov (United States)

    Waste water treatment plants (WWTPs), concentrated animal feeding operations (CAFOs), mining activities, and agricultural operations release contaminants that negatively affect surface water quality. Traditional methods using live animals/fish to monitor/assess contaminant exposu...

  7. Modelling of Water Turbidity Parameters in a Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    A. S. KOVO

    2005-01-01

    Full Text Available The high cost of chemical analysis of water has necessitated various researches into finding alternative method of determining portable water quality. This paper is aimed at modelling the turbidity value as a water quality parameter. Mathematical models for turbidity removal were developed based on the relationships between water turbidity and other water criteria. Results showed that the turbidity of water is the cumulative effect of the individual parameters/factors affecting the system. A model equation for the evaluation and prediction of a clarifier’s performance was developed:Model: T = T0(-1.36729 + 0.037101∙10λpH + 0.048928t + 0.00741387∙alkThe developed model will aid the predictive assessment of water treatment plant performance. The limitations of the models are as a result of insufficient variable considered during the conceptualization.

  8. Safe Drinking Water Information System (SDWIS) Surface Water Intakes

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of surface water intakes. These intake locations are part of the safe drinking water information system...

  9. Parameterizing the soil - water - plant root system

    NARCIS (Netherlands)

    Feddes, R.A.; Raats, P.A.C.

    2004-01-01

    Root water uptake is described from the local scale, to the field scale and to the regional and global scales. The local macroscopic model can be incorporated in Soil-Plant-Atmosphere Continuum (SPAC) numerical models, like the SWAP, HYSWASOR, HYDRUS, ENVIRO-GRO and FUSSIM models. These SPAC models

  10. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  11. Anti-Aliased Rendering of Water Surface

    Institute of Scientific and Technical Information of China (English)

    Xue-Ying Qin; Eihachiro Nakamae; Wei Hua; Yasuo Nagai; Qun-Sheng Peng

    2004-01-01

    Water surface is one of the most important components of landscape scenes. When rendering spacious far from the viewpoint. This is because water surface consists of stochastic water waves which are usually modeled by periodic bump mapping. The incident rays on the water surface are actually scattered by the bumped waves,pattern, we estimate this solid angle of reflected rays and trace these rays. An image-based accelerating method is adopted so that the contribution of each reflected ray can be quickly obtained without elaborate intersection calculation. We also demonstrate anti-aliased shadows of sunlight and skylight on the water surface. Both the rendered images and animations show excellent effects on the water surface of a reservoir.

  12. Petroleum pollutant degradation by surface water microorganisms.

    Science.gov (United States)

    Antić, Malisa P; Jovancićević, Branimir S; Ilić, Mila; Vrvić, Miroslav M; Schwarzbauer, Jan

    2006-09-01

    It is well known that the composition of petroleum or some of its processing products changes in the environment mostly under the influence of microorganisms. A series of experiments was conducted in order to define the optimum conditions for an efficient biodegradation of petroleum pollutant, or bioremediation of different segments of the environment. The aim of these investigations was to show to what extent the hydrocarbons of a petroleum pollutant are degraded by microbial cultures which were isolated as dominant microorganisms from a surface water of a wastewater canal of an oil refinery and a nitrogen plant. Biodegradation experiments were conducted on one paraffinic, and one naphthenic type of petroleum during a three month period under aerobic conditions, varying the following parameters: Inorganic (Kp) or an organic medium (Bh) with or without exposition to light. Microorganisms were analyzed in a surface water sample from a canal (Pancevo, Serbia), into which wastewater from an oil refinery and a nitrogen plant is released. The consortia of microorganisms were isolated from the water sample (most abundant species: Phormidium foveolarum--filamentous Cyanobacteria, blue-green algae and Achanthes minutissima, diatoms, algae). The simulation experiments of biodegradation were conducted with the biomass suspension and crude oils Sirakovo (Sir, paraffinic type) and Velebit (Ve, naphthenic type). After a three month period, organic substance was extracted by means of chloroform. In the extracts, the content of saturated hydrocarbons, aromatic hydrocarbons, alcohols and fatty acids was determined (the group composition). n-Alkanes and isoprenoid aliphatic alkanes, pristane and phytane, in the aliphatic fractions, were analyzed using gas chromatography (GC). Total isoprenoid aliphatic alkanes and polycyclic alkanes of sterane and triterpane types were analyzed by GC-MS. Paraffinic type petroleums have a significant loss of saturated hydrocarbons. For naphthenic

  13. SURFACE WATER QUALITY IN THE RIVER PRUT

    Directory of Open Access Journals (Sweden)

    MIHAELA DUMITRAN

    2011-03-01

    Full Text Available Water is an increasingly important and why it is important to surfacewater quality, which is given by the analysis of physical - chemical, biological andobserving the investigation of water, biota, environments investigation. Analysis ofthe Prut river in terms of biological and physical elements - chemical. Evaluationof ecological and chemical status of water was done according to order of approvalof the standard classification nr.161/2006 surface water to determine the ecologicalstatus of water bodies

  14. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  15. Desalination plant aids Australian water shortage

    Energy Technology Data Exchange (ETDEWEB)

    Stocking, A.W.

    2010-09-15

    This article described a reverse-osmosis desalination plant that was commissioned for Adelaide, South Australia, which operates under permanent water restrictions. The plant will supplement the freshwater supply, reduce the pressure on the existing rainwater catchment system, and allow water levels to regenerate. The company that won the bid on the project used 3-dimensional modelling to get accurate cost estimates and visualize the plant impact on the environment, the community, and a culturally important site. A detailed diffusion plan was devised to mitigate the effects of saline concentrate release. As reverse osmosis is so energy intensive that it can be difficult to justify a plant on sustainability grounds. Energy recovery devices were included in the process building and outfall shaft, and solar energy panels will be installed on the process building roof. The energy recovery devices use energy stored in the brine to increase the output of the high-pressure pumps that feed the reverse osmosis units. Energy recovery units in the outfall shaft will produce electricity and provide power to the grid for the process plant to use. The 3-dimensional model was credited as a key factor in winning the bid, and the many advantages of 3-dimensional modelling were described. 3 figs.

  16. Water chemistry at RBMK plants: Problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mamet, V.; Yurmanov, V. [VNIIAES (Russian Federation)

    2002-07-01

    After around 15 years of operation RBMK-1000 units undergo a major refit, which includes safety system upgrading, fuel tube replacement, etc. The above upgrading has created problems for water chemistry. In particular, in late 80's in-core insertion time of the portion of control rods was reduced 10-fold thanks to a transfer from water to filming cooling of scram channels. Scram channels are cooled with inner surface water film cooling and nitrogen is injected into heads via special pipelines. Such cooling system modernization ensures fast insertion of absorber rods. The above upgrade intensified nitric acid radiolytic generation in water coolant and pH{sub 25} value shift to acid conditions (up to 4.5). The results of corrosion tests in such conditions proved the necessity to improve water chemistry to ensure corrosion protection of scram/control rod and circuit components, especially those made out of aluminium alloy. Since 1990 the new revision of the RBMK-1000 water chemistry standard specified the new normal operational limit and action levels for possible temporary deviations of pH{sub 25} value. RBMK plant specific measures were implemented at RBMK plants to meet the above requirements of the 1990 revision of the RBMK-1000 water chemistry standard. Clean-up systems of the above circuit were upgraded to ensure intensive absorption of nitric acid from water and pH{sub 25} maintenance in a slightly acid area. (authors)

  17. Plant hydraulic traits govern forest water use and growth

    Science.gov (United States)

    Matheny, Ashley; Bohrer, Gil; Fiorella, Rich; Mirfenderesgi, Golnazalsadat

    2016-04-01

    species, like red maple. Advanced plant hydrodynamic models, including the FETCH2 model, are able to capture the effects that traits regulating water loss (e. g. isohydry/anisohydry, conductivity of woody tissue, and rooting depth) impose upon transpiration at scales of a single tree to a whole forest. The integration of detailed knowledge of species-specific hydraulic traits, available through the TRY Global Plant Trait Database, provides biologically relevant constraints for the governing parameters within these modeling systems. By incorporating the effects of plant hydraulic traits at the leaf, stem, and root levels, with mechanistically based predictions of transpiration, growth, and mortality, we can improve simulations of the surface energy budget and global carbon and water balances.

  18. Sample preparation for SEM of plant surfaces

    Directory of Open Access Journals (Sweden)

    A.K. Pathan

    2010-01-01

    Full Text Available Plant tissues must be dehydrated for observation in most electron microscopes. Although a number of sample processing techniques have been developed for preserving plant tissues in their original form and structure, none of them are guaranteed artefact-free. The current paper reviews common scanning electron microscopy techniques and the sample preparation methods employed for visualisation of leaves under specific types of electron microscopes. Common artefacts introduced by specific techniques on different leaf types are discussed. Comparative examples are depicted from our lab using similar techniques; the pros and cons for specific techniques are discussed. New promising techniques and microscopes, which can alleviate some of the problems encountered in conventional methods of leaf sample processing and visualisation, are also discussed. It is concluded that the choice of technique for a specific leaf sample is dictated by the surface features that need to be preserved (such as trichomes, epidermal cells or wax microstructure, the resolution to be achieved, availability of the appropriate processing equipment and the technical capabilities of the available electron microscope.

  19. Manufacturing and characterisation of water repellent surfaces

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Botija, Pablo; Hansen, Hans Nørgaard

    2006-01-01

    design criteria for such surfaces. The problem of adapting this behaviour to artificially roughened surfaces is addressed by providing design criteria for superhydrophobic, water-repellent and self-cleaning surfaces according to the concrete performance desired for them. Different kind of manufacturing...

  20. Surface Water Quality Monitoring Sites

    Data.gov (United States)

    Minnesota Department of Natural Resources — The MN Department of Agriculture (MDA) is charged with periodically collecting and analyzing water samples from selected locations throughout the state to determine...

  1. Study on the water flow in the xylem of plants

    Science.gov (United States)

    Ma, Wenkui

    2017-05-01

    Water is one of the direct materials of plant photosynthesis, and water through transpiration control plant stomatal opening and closing, which affects the important life activities of plant photosynthesis. Therefore, water transport in plant tissue has been an important topic in the field of plant fluid mechanics. This paper mainly use the method and theory of fluid mechanics to analyses plant xylem water transport mechanism, namely: C - T theory; And based on the knowledge of fluid mechanics, the state of water flow in the xylem is analyzed, and the mass conservation equation, momentum conservation equation, energy conservation equation and so on are obtained.

  2. Ultrasonic Sensing of Plant Water Needs for Agriculture

    Directory of Open Access Journals (Sweden)

    Tomas Gómez Álvarez-Arenas

    2016-07-01

    Full Text Available Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70% corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively, These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained.

  3. Ultrasonic Sensing of Plant Water Needs for Agriculture

    Science.gov (United States)

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  4. IMPROVING CYANOBACTERIA AND CYANOTOXIN MONITORING IN SURFACE WATERS FOR DRINKING WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-06-01

    Full Text Available Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drinking water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT to help regulators/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyanobacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.

  5. Evidence for water structuring forces between surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Christopher B [ORNL; Rau, Dr. Donald [National Institutes of Health

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  6. The Use of Water Plants for Storm Water Runoff Treatment

    Directory of Open Access Journals (Sweden)

    Lina Varneckaitė

    2011-04-01

    Full Text Available The popularity of using water plants for storm water runoff treatment has been largely due to the fact that pond and wetland based systems offer the advantages of providing a relatively passive, natural, low-maintenance and operationally simple treatment solution while enhancing habitat and aesthetic values at the same time. While ponds are generally effective at removing coarse suspended sediments, they are less effective at removing finer particulates and dissolved contaminants. To provide enhanced treatment, a wetland can be placed downstream of a pond.Article in Lithuanian

  7. Ozone - plant surface reactions an important ozone loss term?

    Science.gov (United States)

    Hansel, Armin; Jud, Werner; Fischer, Lukas; Canaval, Eva; Wohlfahrt, Georg; Tissier, Alain

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants responsible for global crop losses with associated economic costs of several billions dollar per year. Plant injuries have been related to the uptake of ozone through stomatal pores and oxidative effects damaging the internal leaf tissue. But a striking question remains: How much ozone enters the plant through open stomata and how much ozone is lost by chemical reactions at the plant surface? Until now surface losses are estimated from measured total ozone deposition fluxes and calculated stomatal conductance values. While stomatal conductance of CO2 and H2O is well understood and extensively used in describing plant atmosphere gas exchange, stomatal conductance of ozone is not well known. Here we use different Nicotiana tabacum varieties and find that surface reactions of ozone with diterpenoids synthesized by glandular trichomes reduce ozone flux through open stomata. Our measurements reveal that fast ozone loss at the plant surface is accompanied with prompt release of oxygenated volatile compounds. In the ozone fumigation experiments of different Nicotiana tabacum varieties the release of specific volatile oxy-VOCs allowed to identify the semi volatile precursor compounds at the plant surface. Ozone fumigation experiments with Norway spruce (Picea abies) and Scots Pine (Pinus sylvestris), two common species in the Northern Hemisphere, show also a significant ozone loss at the plant surface for Picea abies. Fluid dynamic calculations of ozone transport in the diffusive leaf boundary layer reveal a vertical but no horizontal ozone gradient thus reducing ozone fluxes through the pores in case of efficient ozone scavenging plant surfaces. We explain this efficient ozone protection mechanism by the porous surface architecture of plants in combination with unsaturated semi-volatile compounds deposited at the plant surface. These results show that unsaturated semi-volatile compounds at

  8. Total Phosphorus in Surface Water (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALPFuture is reported in kilograms/hectare/year. More information about these resources,...

  9. Surface processing using water cluster ion beams

    Science.gov (United States)

    Takaoka, Gikan H.; Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku

    2013-07-01

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO2, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  10. Surface processing using water cluster ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Gikan H., E-mail: gtakaoka@kuee.kyoto-u.ac.jp [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Ryuto, Hiromichi; Takeuchi, Mitsuaki; Ichihashi, Gaku [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2013-07-15

    Vaporized water clusters were produced by an adiabatic expansion phenomenon, and various substrates such as Si(1 0 0), SiO{sub 2}, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) were irradiated by water cluster ion beams. The sputtered depth increased with increasing acceleration voltage, and the sputtering rate was much larger than that obtained using Ar monomer ion irradiation. The sputtering yield for PMMA was approximately 200 molecules per ion, at an acceleration voltage of 9 kV. X-ray photoelectron spectroscopy (XPS) measurements showed that high-rate sputtering for the PMMA surface can be ascribed to the surface erosion by the water cluster ion irradiation. Furthermore, the micropatterning was demonstrated on the PMMA substrate. Thus, the surface irradiation by water cluster ion beams exhibited a chemical reaction based on OH radicals, as well as excited hydrogen atoms, which resulted in a high sputtering rate and low irradiation damage of the substrate surfaces.

  11. Exit Creek Water Surface Survey, June 2013

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset consists of survey data from a longitudinal profile of water surface surveyed June 23-24, 2013 at Exit Creek, a stream draining Exit Glacier in Kenai...

  12. US Forest Service Surface Drinking Water Importance

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting watershed indexes to help identify areas of interest for protecting surface drinking water quality. The dataset depicted in this...

  13. Total Nitrogen in Surface Water (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALNFuture is reported in kilograms/hectare/year. More information about these resources, including...

  14. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  15. The Dynamic Surface Tension of Water.

    Science.gov (United States)

    Hauner, Ines M; Deblais, Antoine; Beattie, James K; Kellay, Hamid; Bonn, Daniel

    2017-03-23

    The surface tension of water is an important parameter for many biological or industrial processes, and roughly a factor of 3 higher than that of nonpolar liquids such as oils, which is usually attributed to hydrogen bonding and dipolar interactions. Here we show by studying the formation of water drops that the surface tension of a freshly created water surface is even higher (∼90 mN m(-1)) than under equilibrium conditions (∼72 mN m(-1)) with a relaxation process occurring on a long time scale (∼1 ms). Dynamic adsorption effects of protons or hydroxides may be at the origin of this dynamic surface tension. However, changing the pH does not significantly change the dynamic surface tension. It also seems unlikely that hydrogen bonding or dipole orientation effects play any role at the relatively long time scale probed in the experiments.

  16. Water desorption from nanostructured graphite surfaces.

    Science.gov (United States)

    Clemens, Anna; Hellberg, Lars; Grönbeck, Henrik; Chakarov, Dinko

    2013-12-21

    Water interaction with nanostructured graphite surfaces is strongly dependent on the surface morphology. In this work, temperature programmed desorption (TPD) in combination with quadrupole mass spectrometry (QMS) has been used to study water ice desorption from a nanostructured graphite surface. This model surface was fabricated by hole-mask colloidal lithography (HCL) along with oxygen plasma etching and consists of a rough carbon surface covered by well defined structures of highly oriented pyrolytic graphite (HOPG). The results are compared with those from pristine HOPG and a rough (oxygen plasma etched) carbon surface without graphite nanostructures. The samples were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The TPD experiments were conducted for H2O coverages obtained after exposures between 0.2 and 55 langmuir (L) and reveal a complex desorption behaviour. The spectra from the nanostructured surface show additional, coverage dependent desorption peaks. They are assigned to water bound in two-dimensional (2D) and three-dimensional (3D) hydrogen-bonded networks, defect-bound water, and to water intercalated into the graphite structures. The intercalation is more pronounced for the nanostructured graphite surface in comparison to HOPG surfaces because of a higher concentration of intersheet openings. From the TPD spectra, the desorption energies for water bound in 2D and 3D (multilayer) networks were determined to be 0.32 ± 0.06 and 0.41 ± 0.03 eV per molecule, respectively. An upper limit for the desorption energy for defect-bound water was estimated to be 1 eV per molecule.

  17. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during convention

  18. Polyfluorinated chemicals in European surface waters, ground- and drinking waters

    NARCIS (Netherlands)

    Eschauzier, C.; de Voogt, P.; Brauch, H.-J.; Lange, F.T.; Knepper, T.P.; Lange, F.T.

    2012-01-01

    Polyfluorinated chemicals (PFCs), especially short chain fluorinated alkyl sulfonates and carboxylates, are ubiquitously found in the environment. This chapter aims at giving an overview of PFC concentrations found in European surface, ground- and drinking waters and their behavior during

  19. Performance of small water treatment plants: The case study of Mutshedzi Water Treatment Plant

    Science.gov (United States)

    Makungo, R.; Odiyo, J. O.; Tshidzumba, N.

    The performance of small water treatment plants (SWTPs) was evaluated using Mutshedzi WTP as a case study. The majority of SWTPs in South Africa (SA) that supply water to rural villages face problems of cost recovery, water wastages, limited size and semi-skilled labour. The raw and final water quality analyses and their compliance were used to assess the performance of the Mutshedzi WTP. Electrical conductivity (EC), pН and turbidity were measured in the field using a portable multimeter and a turbidity meter respectively. Atomic Absorption Spectrometry and Ion Chromatography were used to analyse metals and non-metals respectively. The results were compared with the Department of Water Affairs (DWA) guidelines for domestic use. The turbidity levels partially exceeded the recommended guidelines for domestic water use of 1 NTU. The concentrations of chemical parameters in final water were within the DWA guidelines for domestic water use except for fluoride, which exceeded the maximum allowable guideline of 1.5 mg/L in August 2009. Mutshedzi WTP had computed compliance for raw and final water analyses ranging from 79% to 93% and 86% to 93% throughout the sampling period, respectively. The results from earlier studies showed that the microbiological quality of final water in Mutshedzi WTP complied with the recommended guidelines, eliminating the slight chance of adverse aesthetic effects and infectious disease transmission associated with the turbidity values between 1 and 5 NTU. The study concluded that Mutshedzi WTP, though moving towards compliance, is still not producing adequate quality of water. Other studies also indicated that the quantity of water produced from Mutshedzi WTP was inadequate. The findings of the study indicate that lack of monitoring of quantity of water supplied to each village, dosage of treatment chemicals, the treatment capacity of the WTP and monitoring the quality of water treated are some of the factors that limit the performance of

  20. Wind increases "evaporative demand" but reduces plant water requirements

    Science.gov (United States)

    Schymanski, S. J.; Or, D.

    2015-12-01

    Transpiration is commonly conceptualised as a fraction of some potential rate, determined by stomatal or canopy resistance. Therefore, so-called "atmospheric evaporative demand" or "potential evaporation" is generally used alongside with precipitation and soil moisture to characterise the environmental conditions that affect plant water use. An increase in potential evaporation (e.g. due to climate change) is generally believed to cause increased transpiration and/or vegetation water stress, aggravating drought effects. In the present study, we investigated the question whether potential evaporation constitutes a meaningful reference for transpiration and compared sensitivity of potential evaporation and leaf transpiration to atmospheric forcing. Based on modelling results and supporting experimental evidence, we conclude that stomatal resistance cannot be parameterised as a factor relating transpiration to potential evaporation, as the ratio between transpiration and potential evaporation not only varies with stomatal resistance, but also with wind speed, air temperature, irradiance and relative humidity. Furthermore, the effect of wind speed in particular implies increase in potential evaporation, which is commonly interpreted as increased "water stress", but at the same time can reduce leaf transpiration, implying a decrease in water demand at the leaf scale. In fact, in a range of field measurements, we found that water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, enabling plants to conserve water during photosynthesis. We estimate that the observed global decrease in terrestrial near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric carbon dioxide concentrations. We conclude that trends in wind speed and atmospheric carbon dioxide concentrations have to be considered explicitly for the estimation of drought effects on

  1. Let’s not forget the critical role of surface tension in xylem water relations

    Science.gov (United States)

    Jean-Christophe Domec

    2011-01-01

    The widely supported cohesion–tension theory of water transport explains the importance of a continuous water column and the mechanism of long-distance ascent of sap in plants (Dixon 1914, Tyree 2003, Angeles et al. 2004). The evaporation of water from the surfaces of mesophyll cells causes the air–water interface to retreat into the cellulose matrix of the plant cell...

  2. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    OpenAIRE

    Krzysztof Klamkowski; Waldemar Treder

    2006-01-01

    The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’) under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Wat...

  3. Stable water layers on solid surfaces.

    Science.gov (United States)

    Hong, Ying-Jhan; Tai, Lin-Ai; Chen, Hung-Jen; Chang, Pin; Yang, Chung-Shi; Yew, Tri-Rung

    2016-02-17

    Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 μm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems.

  4. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    Science.gov (United States)

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed.

  5. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    Energy Technology Data Exchange (ETDEWEB)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements their overall research effort by evaluating water availability at power plants under drought conditions. While there are a number of competing demands on water uses, particularly during drought conditions, this report focuses solely on impacts to the U.S. steam electric power plant fleet. Included are both fossil-fuel and nuclear power plants. One plant examined also uses biomass as a fuel. The purpose of this project is to estimate the impact on generation capacity of a drop in water level at U.S. steam electric power plants due to climatic or other conditions. While, as indicated above, the temperature of the water can impact decisions to halt or curtail power plant operations, this report specifically examines impacts as a result of a drop in water levels below power plant submerged cooling water intakes. Impacts due to the combined effects of excessive temperatures of the returned cooling water and elevated temperatures of receiving waters (due to high ambient temperatures associated with drought) may be examined in a subsequent study. For this study, the sources of cooling water used by the U.S. steam electric power plant fleet were examined. This effort entailed development of a database of power plants and cooling water intake locations and depths for those plants that use surface water as a source of cooling water. Development of the database and its general characteristics are described in Chapter 2 of this report. Examination of the database gives an indication of how low water levels can drop before cooling water intakes cease to function. Water level drops are evaluated against a number of different power plant characteristics, such as the nature of the water source (river vs. lake or reservoir

  6. I-131 Extraction from Fresh water and Sewage plant effluent

    Energy Technology Data Exchange (ETDEWEB)

    Souti, Maria-Evangelia; Hormann, Volker; Toma, Edda; Fischer, Helmut W. [University of Bremen, Institute of Environmental Physics, Otto-Hahn-Alle 1, D-28359 Bremen (Germany)

    2014-07-01

    The amount of maximum I-131 body activity of a patient released from a hospital in Germany (250 MBq) is comparable to the yearly reported total release of I-131 from all commercial nuclear power plants to ambient air and water. A large fraction of the body activity will be excreted and find its way to surface waters, through the sewage system. Thus medical iodine is the major contributor to the environmental I-131 in surface waters. Due to the path it follows (patient-sewage-sewage plant-fresh water) it can form organic complexes and as a result its concentration of organic iodine is relatively high. Existing methods, focusing on the removal of mainly iodide (I{sup -}) and iodate (IO{sub 3}{sup -}), were found to be insufficient to successfully extract the iodine from environmental samples, leading to highly variable results depending on the contribution of organic iodine. The reported work is based on testing and modifying existing methods. In order to accomplish the highest iodine yield, the inorganic iodine extraction is followed by a supplementary procedure for additionally separating the iodine bound to dissolved organic matter. The results show only slight variations of the I-131 extraction yield which is close to 90%, constituting this method as appropriate for successfully extracting I-131 from environmental samples (WWTP effluent, river water, lake water). Another advantage of our method is its applicability to high volume samples (20 L, 50 L), making it possible for a gamma spectrometer to detect activities as low as 0.5 mBq/l. (authors)

  7. Radiolysis of water with aluminum oxide surfaces

    Science.gov (United States)

    Reiff, Sarah C.; LaVerne, Jay A.

    2017-02-01

    Aluminum oxide, Al2O3, nanoparticles with water were irradiated with γ-rays and 5 MeV He ions followed by the determination of the production of molecular hydrogen, H2, and characterization of changes in the particle surface. Surface analysis techniques included: diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), nitrogen absorption with the Brunauer - Emmett - Teller (BET) methodology for surface area determination, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Production of H2 by γ-ray radiolysis was determined for samples with adsorbed water and for Al2O3 - water slurries. For Al2O3 samples with adsorbed water, the radiation chemical yield of H2 was measured as 80±20 molecules/100 eV (1 molecule/100 eV=1.04×10-7 mol/J). The yield of H2 was observed to decrease as the amount of water present in the Al2O3 - water slurries increased. Surface studies indicated that the α-phase Al2O3 samples changed phase following irradiation by He ions, and that the oxyhydroxide layer, present on the pristine sample, is removed by γ-ray and He ion irradiation.

  8. Water vapor interactions with polycrystalline titanium surfaces

    Science.gov (United States)

    Azoulay, A.; Shamir, N.; Volterra, V.; Mintz, M. H.

    1999-02-01

    The initial interactions of water vapor with polycrystalline titanium surfaces were studied at room temperature. Measurements of water vapor surface accumulation were performed in a combined surface analysis system incorporating direct recoils spectrometry (DRS), Auger electron spectroscopy and X-ray photoelectron spectroscopy. The kinetics of accommodation of the water dissociation fragments (H, O and OH) displayed a complex behavior depending not only on the exposure dose but also on the exposure pressure. For a given exposure dose the efficiency of chemisorption increased with increasing exposure pressure. DRS measurements indicated the occurrence of clustered hydroxyl moieties with tilted O-H bonds formed even at very low surface coverage. A model which assumes two parallel routes of chemisorption, by direct collisions (Langmuir type) and by a precursor state is proposed to account for the observed behavior. The oxidation efficiency of water seemed to be much lower than that of oxygen. No Ti 4+ states were detected even at high water exposure values. It is likely that hydroxyl species play an important role in the reduced oxidation efficiency of water.

  9. Stable isotope techniques in plant water sources:a review

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually characterized by different isotopic signatures (18O/16O and D/H ratios).Because there are relative abundance variations in water,and plant roots do not discriminate against specific water isotopes during water uptake,hydrogen and oxygen stable isotope ratios of water within plants provide new information on water sources,interactions between plant species and water use patterns under natural conditions.At present,the measurement of δD,δ18O composition of various potential water sources and stem water has become significant means to identify plant water sources.Based on previous studies,this review highlights recent advances such as theory basis,methodology,as well as different spatial and temporal scales,and existed questions and prospects.Stable isotope techniques for estimating plant water sources have provided valuable tools for conducting basic and applied research.Future studies emphasize the modification of preparing methods,isotope technique combined with other measurements,and aerial organs of plant water source should be en-couraged.

  10. Water in the physiology of plant: thermodynamics and kinetic

    Directory of Open Access Journals (Sweden)

    Maurizio Cocucci

    2011-02-01

    Full Text Available Molecular properties of water molecule determine its role in plant physiology. At molecular level the properties of water molecules determine the behaviour of other plant molecules; in particular its physic characteristics are important in the operativeness of macromolecules and in plant thermoregulation. Plant water supply primarily dependent on thermodynamics properties in particular water chemical potential and its components, more recently there are evidences that suggest an important role in the water kinetic characteristics, depending, at cell membrane level, in particular plasmalemma, on the presence of specific water channel, the aquaporines controlled in its activity by a number of physiological and biochemical factors. Thermodynamics and kinetic factors controlled by physiological, biochemical properties and molecular effectors, control water supply and level in plants to realize their survival, growth and differentiation and the consequent plant production.

  11. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well

  12. Nuclear magnetic resonance imaging of water motion in plants

    NARCIS (Netherlands)

    Scheenen, T.W.J.

    2001-01-01

    This Thesis treats one of the new techniques in plant science i.e. nuclear magnetic resonance imaging (NMRi) applied to water motion in plants. It is a challenge, however, to measure this motion in intact plants quantitatively, because plants impose specific problems when studied using

  13. Nuclear magnetic resonance imaging of water motion in plants

    NARCIS (Netherlands)

    Scheenen, T.W.J.

    2001-01-01

    This Thesis treats one of the new techniques in plant science i.e. nuclear magnetic resonance imaging (NMRi) applied to water motion in plants. It is a challenge, however, to measure this motion in intact plants quantitatively, because plants impose specific problems when studied using NMRi. At high

  14. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...... by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear...... relations are assumed to be obeyed exactly, this leads to a universal relationship between the catalytic rate and the oxygen binding energy. Finally, we conclude that for systems obeying these relations, there is a limit to how good a water splitting catalyst an oxidized metal surface can become. (c) 2005...

  15. Improvement of water desalination technologies in reverse osmosis plants

    Science.gov (United States)

    Vysotskii, S. P.; Konoval'chik, M. V.; Gul'ko, S. E.

    2017-07-01

    The strengthening of requirements for the protection of surface-water sources and increases in the cost of reagents lead to the necessity of using membrane (especially, reverse osmosis) technologies of water desalination as an alternative to ion-exchange technologies. The peculiarities of using reverse osmosis technologies in the desalination of waters with an increased salinity have been discussed. An analogy has been made between the dependence of the adsorptive capacity of ion-exchange resins on the reagent consumption during ion exchange and the dependence of the specific ion flux on the voltage in the electrodialysis and productivity of membrane elements on the excess of the pressure of source water over the osmotic pressure in reverse osmosis. It has been proposed to regulate the number of water desalination steps in reverse osmosis plants, which makes it possible to flexibly change the productivity of equipment and the level of desalinization, depending on the requirements for the technological process. It is shown that the selectivity of reverse osmotic membranes with respect to bivalent ions (calcium, magnesium, and sulfates) is approximately four times higher than the selectivity with respect to monovalent ions (sodium and chlorine). The process of desalination in reverse osmosis plants depends on operation factors, such as the salt content and ion composition of source water, the salt content of the concentrate, and the temperatures of solution and operating pressure, and the design features of devices, such as the length of the motion of the desalination water flux, the distance between membranes, and types of membranes and turbulators (spacers). To assess the influence of separate parameters on the process of reverse osmosis desalination of water solutions, we derived criteria equations by compiling problem solution matrices on the basis of the dimensional method, taking into account the Huntley complement. The operation of membrane elements was

  16. Algae form brominated organic compounds in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Huetteroth, A.; Putschew, A.; Jekel, M. [Tech. Univ. Berlin (Germany)

    2004-09-15

    Monitoring of organic halogen compounds, measured as adsorbable organic bromine (AOBr) revealed seasonal high concentrations of organic bromine compounds in a surface water (Lake Tegel, Berlin, Germany). Usually, in late summer, concentrations are up to five times higher than during the rest of the year. The AOBr of the lake inflows (throughout the year less then 6 {mu}g/L) were always lower then those in the lake, which indicates a production of AOBr in the lake. A correlation of the AOBr and chlorophyll-a concentration (1) in the lake provides first evidence for the influence of phototrophic organisms. The knowledge of the natural production of organohalogens is relatively recent. Up to now there are more then 3800 identified natural organohalogen compounds that have been detected in marine plants, animals, and bacteria and also in terrestrial plants, fungi, lichen, bacteria, insects, some higher animals, and humans. Halogenated organic compounds are commonly considered to be of anthropogenic origin; derived from e.g. pharmaceuticals, herbicides, fungicides, insecticides, flame retardants, intermediates in organic synthesis and solvents. Additionally they are also produced as by-products during industrial processes and by waste water and drinking water disinfection. Organohalogen compounds may be toxic, persistent and/or carcinogenic. In order to understand the source and environmental relevance of naturally produced organobromine compounds in surface waters, the mechanism of the formation was investigated using batch tests with lake water and algae cultures.

  17. Sample preparation for SEM of plant surfaces

    OpenAIRE

    A.K. Pathan; Bond, J.; R.E. Gaskin

    2010-01-01

    Plant tissues must be dehydrated for observation in most electron microscopes. Although a number of sample processing techniques have been developed for preserving plant tissues in their original form and structure, none of them are guaranteed artefact-free. The current paper reviews common scanning electron microscopy techniques and the sample preparation methods employed for visualisation of leaves under specific types of electron microscopes. Common artefacts introduced by specific techniq...

  18. Surface Modification of Water Purification Membranes.

    Science.gov (United States)

    Miller, Daniel J; Dreyer, Daniel R; Bielawski, Christopher W; Paul, Donald R; Freeman, Benny D

    2017-04-18

    Polymeric membranes are an energy-efficient means of purifying water, but they suffer from fouling during filtration. Modification of the membrane surface is one route to mitigating membrane fouling, as it helps to maintain high levels of water productivity. Here, a series of common techniques for modification of the membrane surface are reviewed, including surface coating, grafting, and various treatment techniques such as chemical treatment, UV irradiation, and plasma treatment. Historical background on membrane development and surface modification is also provided. Finally, polydopamine, an emerging material that can be easily deposited onto a wide variety of substrates, is discussed within the context of membrane modification. A brief summary of the chemistry of polydopamine, particularly as it may pertain to membrane development, is also described. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Capital Cost: Pressurized Water Reactor Plant Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139-MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume includes in addition to the foreword and summary, the plant description and the detailed cost estimate.

  20. Elevated carbon dioxide: impacts on soil and plant water relations

    National Research Council Canada - National Science Library

    Kirkham, M. B

    2011-01-01

    .... Focusing on this critical issue, Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations presents research conducted on field-grown sorghum, winter wheat, and rangeland plants under elevated CO2...

  1. Surface Water Protection by Productive Buffers

    DEFF Research Database (Denmark)

    Christen, Benjamin

    Vegetated riparian buffer zones are a widely recommended best management practice in agriculture for protecting surface and coastal waters from diffuse nutrient pollution. On the background of the EU funded research project NitroEurope (NEU; www.NitroEurope.eu), this study concentrates...... on the mitigation of nitrogen pollution in surface and groundwater, using riparian buffer zones for biomass production. The objectives are to map suitable areas for buffer implementation across the six NEU study landscapes, model tentative N-loss mitigation, calculate biomass production potential and economic...... designed for local conditions could be a way of protecting water quality attractive to many stakeholders....

  2. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  3. Ultra Water Repellent Polypropylene Surfaces with Tunable Water Adhesion.

    Science.gov (United States)

    Zhu, Tang; Cai, Chao; Guo, Jing; Wang, Rong; Zhao, Ning; Xu, Jian

    2017-03-22

    Polypropylene (PP), including isotactic PP (i-PP) and atactic PP (a-PP) with distinct tacticity, is one of the most widely used general plastics. Herein, ultra water repellent PP coatings with tunable adhesion to water were prepared via a simple casting method. The pure i-PP coating shows a hierarchical morphology with micro/nanobinary structures, exhibiting a water contact angle (CA) larger than 150° and a sliding angle less than 5° (for 5 μL water droplet). In contrast, the pure a-PP coating has a less rough morphology with a water contact angle of about 130°, and the water droplets stick on the coating at any tilted angles. For the composite i-PP/a-PP coatings, however, ultra water repellency with CA > 150° but water adhesion tailorable from slippery to sticky can be realized, depending on the contents of a-PP and i-PP. The different wetting behaviors are due to the various microstructures of the composite coatings resulting from the distinct crystallization ability of a-PP and i-PP. Furthermore, the existence of a-PP in the composite coatings enhances the mechanical properties compared to the i-PP coating. The proposed method is feasible to modify various substrates and potential applications in no-loss liquid transportation, slippery surfaces, and patterned superhydrophobic surfaces are demonstrated.

  4. On fuzzy control of water desalination plants

    Energy Technology Data Exchange (ETDEWEB)

    Titli, A. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Jamshidi, M. [New Mexico Univ., Albuquerque, NM (United States); Olafsson, F. [Institute of Technology, Norway (Norway)

    1995-12-31

    In this report we have chosen a sub-system of an MSF water desalination plant, the brine heater, for analysis, synthesis, and simulation. This system has been modelled and implemented on computer. A fuzzy logic controller (FLC) for the top brine temperature control loop has been designed and implemented on the computer. The performance of the proposed FLC is compared with three other conventional control strategies: PID, cascade and disturbance rejection control. One major concern on FLC`s has been the lack of stability criteria. An up to-date survey of stability of fuzzy control systems is given. We have shown stability of the proposed FLC using the Sinusoidal Input Describing Functions (SIDF) method. The potential applications of fuzzy controllers for complex and large-scale systems through hierarchy of rule sets and hybridization with conventional approaches are also investigated. (authors)

  5. Topography mediates plant water stress: coupling groundwater flow and rhizosphere-xylem hydraulics

    Science.gov (United States)

    Mackay, D. S.; Tai, X.

    2016-12-01

    Explicit representation of groundwater movement and its subsidy to the unsaturated zone have long been recognized to affect land surface fluxes. But its impact on mediating plant safety during drought has not yet been evaluated, due to the oversimplified representation of the soil-plant-atmospheric continuum in current mainstream land surface models. Here we evaluated the interaction between groundwater processes and plant hydraulics by integrating a three-dimensional groundwater model - ParFlow with a physiologically sophisticated plant model - TREES. A series of simulation experiments using representative hillslope shapes during a general dry down period were carried out to explore the impacts of topography, soil properties, and plant traits - maximum hydraulic conductance (Kmax), root area (Ar), and vulnerability to cavitation on plant hydraulic stress and the potential feedbacks to soil water spatial dynamics. From an initial condition of uniform pressure, lateral redistribution dominated the first stage when soils were wet, resulting in various water table depths. As drought progressed, the tension wetted zone provided a water subsidy to the root zone, causing various rates of soil dry down at different locations. In the end, the root zone soil water remains stable and dry, with diurnal fluctuations induced by the hydraulic redistribution of plant roots. Plants, in general, had higher transpiration and lower hydraulic stress on concave hillslopes. The same plant growing on fine-textured soils had higher transpiration rate, and therefore stronger feedbacks to the water table depths, compared to coarse-textured soil. But these responses could further vary by plant traits. For locations with shallow water table, Kmax is the most important factor determining plant function. When soil is dry, plants with higher Ar and more resistant xylem sustained higher transpiration rates. Those promising performance suggests that the coupled model could be a powerful tool for

  6. Real-time analysis of water movement in plant sample

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Harumi; Furukawa, Jun; Tanoi, Keitaro [Graduate School, Tokyo Univ. (Japan)

    2000-07-01

    To know the effect of drought stress on two cultivars of cowpea, drought tolerant (DT) and drought sensitive (DS), and to estimate vanadium treatment on plant activity, we performed real time{sup 18}F labeled water uptake measurement by PETIS. Fluoride-18 was produced by bombarding a cubic ice target with 50 MeV protons using TIARA AVF cyclotron. Then {sup 18}F labeled water was applied to investigate water movement in a cowpea plant. Real time water uptake manner could be monitored by PETIS. After the analysis by PETIS, we also measured the distribution of {sup 18}F in a whole plant by BAS. When a cowpea plant was treated with drought stress, there was a difference in water uptake manner between DT and DS cultivar. When a cowpea plant was treated with V for 20 hours before the water uptake experiment, the total amount of {sup 18}F labeled water absorption was found to be drastically decreased. (author)

  7. Aquaporins: highly regulated channels controlling plant water relations.

    Science.gov (United States)

    Chaumont, François; Tyerman, Stephen D

    2014-04-01

    Plant growth and development are dependent on tight regulation of water movement. Water diffusion across cell membranes is facilitated by aquaporins that provide plants with the means to rapidly and reversibly modify water permeability. This is done by changing aquaporin density and activity in the membrane, including posttranslational modifications and protein interaction that act on their trafficking and gating. At the whole organ level aquaporins modify water conductance and gradients at key "gatekeeper" cell layers that impact on whole plant water flow and plant water potential. In this way they may act in concert with stomatal regulation to determine the degree of isohydry/anisohydry. Molecular, physiological, and biophysical approaches have demonstrated that variations in root and leaf hydraulic conductivity can be accounted for by aquaporins but this must be integrated with anatomical considerations. This Update integrates these data and emphasizes the central role played by aquaporins in regulating plant water relations.

  8. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  9. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  10. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    Directory of Open Access Journals (Sweden)

    Krzysztof Klamkowski

    2006-12-01

    Full Text Available The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’ under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Water stress was imposed by reducing the irrigation according to substratum moisture readings. Water stressed plants had the lowest values of water potential and showed strong decrease in gas exchange rate. Also, biomass and leaf area were the lowest in this group of plants. No differences in the length of root system were observed between control and water stressed plants. The lack of water in growing medium resulted also in a decrease of density and reduction of dimensions of stomata on plant leaves. These changes contribute to optimizing the use of assimilates and water use efficiency in periods when water availability is decreased.

  11. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    Directory of Open Access Journals (Sweden)

    Krzysztof Klamkowski

    2006-01-01

    Full Text Available The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’ under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Water stress was imposed by reducing the irrigation according to substratum moisture readings. Water stressed plants had the lowest values of water potential and showed strong decrease in gas exchange rate. Also, biomass and leaf area were the lowest in this group of plants. No differences in the length of root system were observed between control and water stressed plants. The lack of water in growing medium resulted also in a decrease of density and reduction of dimensions of stomata on plant leaves.These changes contribute to optimizing the use of assimilates and water use efficiency in periods when water availability is decreased.

  12. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA...

  13. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Vesna Kostik; Biljana Bauer; Zoran Kavrakovski

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  14. Thermodynamic properties of water solvating biomolecular surfaces

    Science.gov (United States)

    Heyden, Matthias

    Changes in the potential energy and entropy of water molecules hydrating biomolecular interfaces play a significant role for biomolecular solubility and association. Free energy perturbation and thermodynamic integration methods allow calculations of free energy differences between two states from simulations. However, these methods are computationally demanding and do not provide insights into individual thermodynamic contributions, i.e. changes in the solvent energy or entropy. Here, we employ methods to spatially resolve distributions of hydration water thermodynamic properties in the vicinity of biomolecular surfaces. This allows direct insights into thermodynamic signatures of the hydration of hydrophobic and hydrophilic solvent accessible sites of proteins and small molecules and comparisons to ideal model surfaces. We correlate dynamic properties of hydration water molecules, i.e. translational and rotational mobility, to their thermodynamics. The latter can be used as a guide to extract thermodynamic information from experimental measurements of site-resolved water dynamics. Further, we study energy-entropy compensations of water at different hydration sites of biomolecular surfaces. This work is supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the Deutsche Forschungsgemeinschaft.

  15. Impinging Water Droplets on Inclined Glass Surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Lance, Blake; Ho, Clifford K.

    2017-09-01

    Multiphase computational models and tests of falling water droplets on inclined glass surfaces were developed to investigate the physics of impingement and potential of these droplets to self-clean glass surfaces for photovoltaic modules and heliostats. A multiphase volume-of-fluid model was developed in ANSYS Fluent to simulate the impinging droplets. The simulations considered different droplet sizes (1 mm and 3 mm), tilt angles (0deg, 10deg, and 45deg), droplet velocities (1 m/s and 3 m/s), and wetting characteristics (wetting=47deg contact angle and non-wetting = 93deg contact angle). Results showed that the spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) decreased with increasing inclination angle due to the reduced normal force on the surface. The hydrophilic surface yielded greater spread factors than the hydrophobic surface in all cases. With regard to impact forces, the greater surface tilt angles yielded lower normal forces, but higher shear forces. Experiments showed that the experimentally observed spread factor (maximum droplet diameter during impact divided by the initial droplet diameter) was significantly larger than the simulated spread factor. Observed spread factors were on the order of 5 - 6 for droplet velocities of %7E3 m/s, whereas the simulated spread factors were on the order of 2. Droplets were observed to be mobile following impact only for the cases with 45deg tilt angle, which matched the simulations. An interesting phenomenon that was observed was that shortly after being released from the nozzle, the water droplet oscillated (like a trampoline) due to the "snapback" caused by the surface tension of the water droplet being released from the nozzle. This oscillation impacted the velocity immediately after the release. Future work should evaluate the impact of parameters such as tilt angle and surface wettability on the impact of particle/soiling uptake and removal to investigate ways that

  16. The use of soil electrical resistivity to monitor plant and soil water relationships in vineyards

    Science.gov (United States)

    Brillante, L.; Mathieu, O.; Bois, B.; van Leeuwen, C.; Lévêque, J.

    2015-03-01

    Soil water availability deeply affects plant physiology. In viticulture it is considered a major contributor to the "terroir" effect. The assessment of soil water in field conditions is a difficult task, especially over large surfaces. New techniques are therefore required in order to better explore variations of soil water content in space and time with low disturbance and with great precision. Electrical resistivity tomography (ERT) meets these requirements for applications in plant sciences, agriculture and ecology. In this paper, possible techniques to develop models that allow the use of ERT to spatialise soil water available to plants are reviewed. An application of soil water monitoring using ERT in a grapevine plot in Burgundy (north-east France) during the vintage 2013 is presented. We observed the lateral heterogeneity of ERT-derived fraction of transpirable soil water (FTSW) variations, and differences in water uptake depend on grapevine water status (leaf water potentials measured both at predawn and at solar noon and contemporary to ERT monitoring). Active zones in soils for water movements were identified. The use of ERT in ecophysiological studies, with parallel monitoring of plant water status, is still rare. These methods are promising because they have the potential to reveal a hidden part of a major function of plant development: the capacity to extract water from the soil.

  17. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    Science.gov (United States)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  18. Carbon Assimilation Pathways, Water Relationships and Plant Ecology.

    Science.gov (United States)

    Etherington, John R.

    1988-01-01

    Discusses between-species variation in adaptation of the photosynthetic mechanism to cope with wide fluctuations of environmental water regime. Describes models for water conservation in plants and the role of photorespiration in the evolution of the different pathways. (CW)

  19. Water at surfaces with tunable surface chemistries and the chiral imprint of water around DNA

    Science.gov (United States)

    Petersen, Poul

    Aqueous interfaces are ubiquitous in atmospheric chemistry and biological systems but are notoriously hard to probe experimentally. Surface-specific vibrational spectroscopy offers an avenue to directly probe the vibrational modes of the water OH stretching band but this method is challenging to implement to buried surfaces. Here we present results from sum-frequency generation (SFG) spectroscopy probing the buried interface between a functionalized surface and aqueous solutions. Studying such buried surfaces offers the advantage of being able to systematically tune the surface chemistry using self-assembled monolayers, i.e. the hydrophobic and hydrophilic character, and examine the effect on the interfacial water. In addition to water at these controlled surfaces, we have initiated studying water at biological surfaces. This includes the solvation structure around DNA. X-ray experiments at cryogenic temperatures have found crystallographic water in the minor grove of DNA giving rise to the notion of a spine of hydration surrounding DNA. Such structured water should exhibit a chiral structure adapted from DNA. We investigate if such a chiral water structure exist around DNA at room temperature using chiral SFG. This work was supported by the National Science Foundation under a NSF CAREER Grant (CHE-1151079).

  20. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  1. The incidence and implications of clouds for cloud forest plant water relations.

    Science.gov (United States)

    Goldsmith, Gregory R; Matzke, Nicholas J; Dawson, Todd E

    2013-03-01

    Although clouds are the most recognisable and defining feature of tropical montane cloud forests, little research has focussed on how clouds affect plant functioning. We used satellite and ground-based observations to study cloud and leaf wetting patterns in contrasting tropical montane and pre-montane cloud forests. We then studied the consequences of leaf wetting for the direct uptake of water accumulated on leaf surfaces into the leaves themselves. During the dry season, the montane forest experienced higher precipitation, cloud cover and leaf wetting events of longer duration than the pre-montane forest. Leaf wetting events resulted in foliar water uptake in all species studied. The capacity for foliar water uptake differed significantly between the montane and pre-montane forest plant communities, as well as among species within a forest. Our results indicate that foliar water uptake is common in these forest plants and improves plant water status during the dry season.

  2. Streamers sliding on a water surface

    Science.gov (United States)

    Akishev, Yuri Semenov; Karalnik, Vladimir; Medvedev, Mikhail; Petryakov, Alexander; Trushkin, Nikolay; Shafikov, Airat

    2017-06-01

    The features of an electrical interaction between surface streamers (thin current filaments) sliding on a liquid and liquid itself are still unknown in many details. This paper presents the experimental results on properties of the surface streamers sliding on water with different conductivity (distilled and tap water). The streamers were initiated with a sharpened thin metallic needle placed above the liquid and stressed with a periodical or pulsed high voltage. Two electrode systems were used and tested. The first of them provides in advance the existence of the longitudinal electric field above the water. The second one imitates the electrode geometry of a pin-to-plane dielectric barrier discharge in which the barrier is a thick layer of liquid. The electrical and optical characteristics of streamers were complemented with data on the spectroscopic measurements. It was revealed that surface streamers on water have no spatial memory. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  3. Uncertainty in surface water flood risk modelling

    Science.gov (United States)

    Butler, J. B.; Martin, D. N.; Roberts, E.; Domuah, R.

    2009-04-01

    Two thirds of the flooding that occurred in the UK during summer 2007 was as a result of surface water (otherwise known as ‘pluvial') rather than river or coastal flooding. In response, the Environment Agency and Interim Pitt Reviews have highlighted the need for surface water risk mapping and warning tools to identify, and prepare for, flooding induced by heavy rainfall events. This need is compounded by the likely increase in rainfall intensities due to climate change. The Association of British Insurers has called for the Environment Agency to commission nationwide flood risk maps showing the relative risk of flooding from all sources. At the wider European scale, the recently-published EC Directive on the assessment and management of flood risks will require Member States to evaluate, map and model flood risk from a variety of sources. As such, there is now a clear and immediate requirement for the development of techniques for assessing and managing surface water flood risk across large areas. This paper describes an approach for integrating rainfall, drainage network and high-resolution topographic data using Flowroute™, a high-resolution flood mapping and modelling platform, to produce deterministic surface water flood risk maps. Information is provided from UK case studies to enable assessment and validation of modelled results using historical flood information and insurance claims data. Flowroute was co-developed with flood scientists at Cambridge University specifically to simulate river dynamics and floodplain inundation in complex, congested urban areas in a highly computationally efficient manner. It utilises high-resolution topographic information to route flows around individual buildings so as to enable the prediction of flood depths, extents, durations and velocities. As such, the model forms an ideal platform for the development of surface water flood risk modelling and mapping capabilities. The 2-dimensional component of Flowroute employs

  4. [XPS analysis of tea plant leaf and root surface].

    Science.gov (United States)

    Fang, Jiang-yu; Wan, Xiao-chun

    2008-09-01

    , verifying more active chemical property on the root surface and more water and solute molecules passing. Again the protein content was in the order of root, abaxial and adaxial, indicating the same order of the wetness degree. Higher binding energy of Al than 73. 50 eV showed oxidized aluminum in tea plant surface, which might enhance the absorption, and more oxidized aluminum in the root meants that it has more powerful absorbability.

  5. Urban Water-Quality Management. Rain Garden Plants

    OpenAIRE

    French, Sue (Sue C.); Fox, Laurie; Andruczyk, Mike; Gilland, Traci; Swanson, Lynette

    2009-01-01

    A rain garden is a landscaped area specially designed to collect rainfall and storm-water runoff. The plants and soil in the rain garden clean pollutants from the water as it seeps into the ground and evaporates back into the atmosphere. For a rain garden to work, plants must be selected, installed, and maintained properly.

  6. A nuclear magnetic resonance study of plant-water relationships

    NARCIS (Netherlands)

    Reinders, J.E.A.

    1987-01-01

    Water is one of the most important constituents of a plant. It is the medium in which many biological reactions take place and nutrients are transported throughout the plant in aqueous solutions. Because it serves as a hydrogen donor In photosynthesis water can be considered as one of the

  7. Topographic, edaphic, and vegetative controls on plant-available water

    Science.gov (United States)

    Dymond, Salli F.; Bradford, John B.; Bolstad, Paul V.; Kolka, Randall K.; Sebestyen, Stephen D.; DeSutter, Thomas S.

    2017-01-01

    Soil moisture varies within landscapes in response to vegetative, physiographic, and climatic drivers, which makes quantifying soil moisture over time and space difficult. Nevertheless, understanding soil moisture dynamics for different ecosystems is critical, as the amount of water in a soil determines a myriad ecosystem services and processes such as net primary productivity, runoff, microbial decomposition, and soil fertility. We investigated the patterns and variability in in situ soil moisture measurements converted to plant-available water across time and space under different vegetative cover types and topographic positions at the Marcell Experimental Forest (Minnesota, USA). From 0 – 228.6 cm soil depth, plant-available water was significantly higher under the hardwoods (12%), followed by the aspen (8%) and red pine (5%) cover types. Across the same soil depth, toeslopes were wetter (mean plant-available water = 10%) than ridges and backslopes (mean plant-available water was 8%), although these differences were not statistically significant (p plant-available water and that topography was not significantly related to plant-available water within this low-relief landscape. Additionally, during the three-year monitoring period, red pine and quaking aspen sites experienced plant-available water levels that may be considered limiting to plant growth and function. Given that increasing temperatures and more erratic precipitation patterns associated with climate change may result in decreased soil moisture in this region, these species may be sensitive and vulnerable to future shifts in climate.

  8. Plant surface cues prime Ustilago maydis for biotrophic development.

    Directory of Open Access Journals (Sweden)

    Daniel Lanver

    2014-07-01

    Full Text Available Infection-related development of phytopathogenic fungi is initiated by sensing and responding to plant surface cues. This response can result in the formation of specialized infection structures, so-called appressoria. To unravel the program inducing filaments and appressoria in the biotrophic smut fungus Ustilago maydis, we exposed cells to a hydrophobic surface and the cutin monomer 16-hydroxy hexadecanoic acid. Genome-wide transcriptional profiling at the pre-penetration stage documented dramatic transcriptional changes in almost 20% of the genes. Comparisons with the U. maydis sho1 msb2 double mutant, lacking two putative sensors for plant surface cues, revealed that these plasma membrane receptors regulate a small subset of the surface cue-induced genes comprising mainly secreted proteins including potential plant cell wall degrading enzymes. Targeted gene deletion analysis ascribed a role to up-regulated GH51 and GH62 arabinofuranosidases during plant penetration. Among the sho1/msb2-dependently expressed genes were several secreted effectors that are essential for virulence. Our data also demonstrate specific effects on two transcription factors that redirect the transcriptional regulatory network towards appressorium formation and plant penetration. This shows that plant surface cues prime U. maydis for biotrophic development.

  9. Plant surface cues prime Ustilago maydis for biotrophic development.

    Science.gov (United States)

    Lanver, Daniel; Berndt, Patrick; Tollot, Marie; Naik, Vikram; Vranes, Miroslav; Warmann, Tobias; Münch, Karin; Rössel, Nicole; Kahmann, Regine

    2014-07-01

    Infection-related development of phytopathogenic fungi is initiated by sensing and responding to plant surface cues. This response can result in the formation of specialized infection structures, so-called appressoria. To unravel the program inducing filaments and appressoria in the biotrophic smut fungus Ustilago maydis, we exposed cells to a hydrophobic surface and the cutin monomer 16-hydroxy hexadecanoic acid. Genome-wide transcriptional profiling at the pre-penetration stage documented dramatic transcriptional changes in almost 20% of the genes. Comparisons with the U. maydis sho1 msb2 double mutant, lacking two putative sensors for plant surface cues, revealed that these plasma membrane receptors regulate a small subset of the surface cue-induced genes comprising mainly secreted proteins including potential plant cell wall degrading enzymes. Targeted gene deletion analysis ascribed a role to up-regulated GH51 and GH62 arabinofuranosidases during plant penetration. Among the sho1/msb2-dependently expressed genes were several secreted effectors that are essential for virulence. Our data also demonstrate specific effects on two transcription factors that redirect the transcriptional regulatory network towards appressorium formation and plant penetration. This shows that plant surface cues prime U. maydis for biotrophic development.

  10. Influences of plant type on bacterial and archaeal communities in constructed wetland treating polluted river water.

    Science.gov (United States)

    Long, Yan; Yi, Hao; Chen, Sili; Zhang, Zhengke; Cui, Kai; Bing, Yongxin; Zhuo, Qiongfang; Li, Bingxin; Xie, Shuguang; Guo, Qingwei

    2016-10-01

    Both bacteria and archaeal communities can play important roles in biogeochemical processes in constructed wetland (CW) system. However, the influence of plant type on microbial community in surface water CW remains unclear. The present study investigated bacterial and archaeal communities in five surface water CW systems with different plant species. The abundance, richness, and diversity of both bacterial and archaeal communities considerably differed in these five CW systems. Compared with the other three CW systems, the CW systems planted with Vetiveria zizanioides or Juncus effusus L. showed much higher bacterial abundance but lower archaeal abundance. Bacteria outnumbered archaea in each CW system. Moreover, the CW systems planted with V. zizanioides or J. effusus L. had relatively lower archaeal but higher bacterial richness and diversity. In each CW system, bacterial community displayed much higher richness and diversity than archaeal community. In addition, a remarkable difference of both bacterial and archaeal community structures was observed in the five studied CW systems. Proteobacteria was the most abundant bacterial group (accounting for 33-60 %). Thaumarchaeota organisms (57 %) predominated in archaeal communities in CW systems planted with V. zizanioides or J. effusus L., while Woesearchaeota (23 or 24 %) and Euryarchaeota (23 or 15 %) were the major archaeal groups in CW systems planted with Cyperus papyrus or Canna indica L. Archaeal community in CW planted with Typha orientalis Presl was mainly composed of unclassified archaea. Therefore, plant type exerted a considerable influence on microbial community in surface water CW system.

  11. Pesticide monitoring in surface water and groundwater using passive samplers

    Science.gov (United States)

    Kodes, V.; Grabic, R.

    2009-04-01

    Passive samplers as screening devices have been used within a czech national water quality monitoring network since 2002 (SPMD and DGT samplers for non polar substances and metals). The passive sampler monitoring of surface water was extended to polar substances, in 2005. Pesticide and pharmaceutical POCIS samplers have been exposed in surface water at 21 locations and analysed for polar pesticides, perfluorinated compounds, personal care products and pharmaceuticals. Pesticide POCIS samplers in groundwater were exposed at 5 locations and analysed for polar pesticides. The following active substances of plant protection products were analyzed in surface water and groundwater using LC/MS/MS: 2,4,5-T, 2,4-D, Acetochlor, Alachlor, Atrazine, Atrazine_desethyl, Azoxystrobin, Bentazone, Bromacil, Bromoxynil, Carbofuran, Clopyralid, Cyanazin, Desmetryn, Diazinon, Dicamba, Dichlobenil, Dichlorprop, Dimethoat, Diuron, Ethofumesate, Fenarimol, Fenhexamid, Fipronil, Fluazifop-p-butyl, Hexazinone, Chlorbromuron, Chlorotoluron, Imazethapyr, Isoproturon, Kresoxim-methyl, Linuron, MCPA, MCPP, Metalaxyl, Metamitron, Methabenzthiazuron, Methamidophos, Methidathion, Metobromuron, Metolachlor, Metoxuron, Metribuzin, Monolinuron, Nicosulfuron, Phorate, Phosalone, Phosphamidon, Prometryn, Propiconazole, Propyzamide, Pyridate, Rimsulfuron, Simazine, Tebuconazole, Terbuthylazine, Terbutryn, Thifensulfuron-methyl, Thiophanate-methyl and Tri-allate. The POCIS samplers performed very well being able to provide better picture than grab samples. The results show that polar pesticides and also perfluorinated compounds, personal care products and pharmaceuticals as well occur in hydrosphere of the Czech republic. Acknowledgment: Authors acknowledge the financial support of grant No. 2B06095 by the Ministry of Education, Youth and Sports.

  12. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels.

  13. Modelling of water potential and water uptake rate of tomato plants in the greenhouse: preliminary results.

    NARCIS (Netherlands)

    Bruggink, G.T.; Schouwink, H.E.; Gieling, Th.H.

    1988-01-01

    A dynamic model is presented which predicts water potential and water uptake rate of greenhouse tomato plants using transpiration rate as input. The model assumes that water uptake is the resultant of water potential and hydraulic resistance, and that water potential is linearly related to water con

  14. Presence of Acanthamoeba spp.in water purification plants in southern England

    Institute of Scientific and Technical Information of China (English)

    Shanmuganathan V; Khan NA

    2009-01-01

    Objective:To identify the prevalence of Acanthamoeba in drinking water treatment plants during the course of the purification processes.Methods:Samples were taken from two drinking water purification plants and moni-tored for the presence of Acanthamoeba in order to estimate the removal capacity of treatment methods em-ployed.Water samples were collected at each step in the purification,during the one year survey,and ana-lysed for the presence of Acanthamoeba spp.by plating on bacterial-seeded plates.Results:The results showed that amoebae were present in surface raw waters in 100 % of the samples tested.Acanthamoeba spp.were iso-lated from 71 % and 57 % of the water samples collected from post flat-bottom clarifier 1 and post-sedimenta-tion plant respectively.Considering the outflow drinking waters,the removal capacity was 100 % in both puri-fication plants monitored.The occurrence of Acanthamoeba was not associated with seasonality.Conclusion:These findings confirm that water purification plants employing methods of flocculation,sedimentation,and fil-tration in combination with activated charcoal filtration,ozonisation and chlorination exhibited sufficient Acan-thamoeba removal capacity and the presence of amoebae in the tap water may be due to older plumbing,water storage tanks,tap water hygiene,and /or environmental settings.

  15. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Artificial Intelligence Based Alum Dosage Control in Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    P Poongodi

    2013-08-01

    Full Text Available Supplying good quality of drinking water is a challenging task during the rainy season and floods. During this period water becomes highly polluted with suspended solids which increase the water turbidity. Alum is used to reduce the turbidity of the water. Typically in water treatment plants alum dosage is decided by the Jar test and the desired alum dosage is added manually. This research proposes an automatic alum dosage mixing process. The alum dosage is controlled by an intelligent controller which consists of a dosage predictor, an inverse model of the dosage pump and a Pulse Width Modulation (PWM controller. The optimal alum dosage is predicted by the dosage predictor. The PWM controller controls the flow rate of the alum dosing pump. This proposed method has been implemented in a laboratory based water treatment plant and it ensures the automation in water treatment plant to supply good quality drinking water.

  17. How Water Advances on Superhydrophobic Surfaces

    Science.gov (United States)

    Schellenberger, Frank; Encinas, Noemí; Vollmer, Doris; Butt, Hans-Jürgen

    2016-03-01

    Superliquid repellency can be achieved by nano- and microstructuring surfaces in such a way that protrusions entrap air underneath the liquid. It is still not known how the three-phase contact line advances on such structured surfaces. In contrast to a smooth surface, where the contact line can advance continuously, on a superliquid-repellent surface, the contact line has to overcome an air gap between protrusions. Here, we apply laser scanning confocal microscopy to get the first microscopic videos of water drops advancing on a superhydrophobic array of micropillars. In contrast to common belief, the liquid surface gradually bends down until it touches the top face of the next micropillars. The apparent advancing contact angle is 180°. On the receding side, pinning to the top faces of the micropillars determines the apparent receding contact angle. Based on these observations, we propose that the apparent receding contact angle should be used for characterizing superliquid-repellent surfaces rather than the apparent advancing contact angle and hysteresis.

  18. Convergent surface water distributions in U.S. cities

    Science.gov (United States)

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  19. Plant surface wax affects parasitoid's response to host footprints

    Science.gov (United States)

    Rostás, Michael; Ruf, Daniel; Zabka, Vanessa; Hildebrandt, Ulrich

    2008-10-01

    The plant surface is the substrate upon which herbivorous insects and natural enemies meet and thus represents the stage for interactions between the three trophic levels. Plant surfaces are covered by an epicuticular wax layer which is highly variable depending on species, cultivar or plant part. Differences in wax chemistry may modulate ecological interactions. We explored whether caterpillars of Spodoptera frugiperda, when walking over a plant surface, leave a chemical trail (kairomones) that can be detected by the parasitoid Cotesia marginiventris. Chemistry and micromorphology of cuticular waxes of two barley eceriferum wax mutants ( cer-za.126, cer-yp.949) and wild-type cv. Bonus (wt) were assessed. The plants were then used to investigate potential surface effects on the detectability of caterpillar kairomones. Here we provide evidence that C. marginiventris responds to chemical footprints of its host. Parasitoids were able to detect the kairomone on wild-type plants and on both cer mutants but the response to cer-yp.949 (reduced wax, high aldehyde fraction) was less pronounced. Experiments with caterpillar-treated wt and mutant leaves offered simultaneously, confirmed this observation: no difference in wasp response was found when wt was tested against cer-za.126 (reduced wax, wt-like chemical composition) but wt was significantly more attractive than cer-yp.949. This demonstrates for the first time that the wax layer can modulate the detectability of host kairomones.

  20. The Soil Characteristic Curve at Low Water Contents: Relations to Specific Surface Area and Texture

    DEFF Research Database (Denmark)

    Resurreccion, Augustus; Møldrup, Per; Schjønning, Per;

    Accurate description of the soil-water retention curve (SWRC) at low water contents is important for simulating water dynamics, plant-water relations, and microbial processes in surface soil. Soil-water retention at soil-water matric potential of less than -10 MPa, where adsorptive forces dominate...... that measurements by traditional pressure plate apparatus generally overestimated water contents at -1.5 MPa (plant wilting point). The 41 soils were classified into four textural classes based on the so-called Dexter index n (= CL/OC), and the Tuller-Or (TO) general scaling model describing the water film...... thickness at a given soil-water matric potential (low organic soils with n > 10, the estimated SA from the dry soil-water retention was in good agreement with the SA measured using ethylene glycol monoethyl ether (SA_EGME). A strong relationship between the ratio...

  1. Review: mechanisms for boron deficiency-mediated changes in plant water relations.

    Science.gov (United States)

    Wimmer, Monika A; Eichert, Thomas

    2013-04-01

    Boron (B) is an essential microelement for plants and is constantly needed throughout the plant life due to its function as a structural element of the plant cell wall. B deficiency is a wide-spread problem in agricultural areas world-wide, and management of B nutrition is challenged by sudden occurrences of B deficiency or inconsistent effects of foliar B application. The effects of insufficient B supply on different structures relevant for the plant water status have been heavily researched, but the resulting conclusions are contradictory and no clear picture has so far emerged that fully explains the inconsistencies. B deficiency can affect water uptake by inhibition of root and shoot growth and by upregulation of water channels. Structural damage to xylem vessels can limit water transport to arial plant parts, while water loss can be altered by impaired barrier functions of leaf surfaces and reduced photosynthesis. In consequence of all these effects, transpiration is reduced in B-deficient plants under well-watered conditions. Under drought conditions, the responsiveness of stomata is impaired. Possible consequences of damaged vasculature for plant B nutrition include the reduced effectiveness of foliar B fertilization, especially in species with high B phloem mobility. Changes in leaf surface properties can further reduce B uptake after foliar application. In species with low B phloem mobility, weakened xylem vessels may not be able to supply sufficient B to arial parts under conditions of increased B demand, such as during bud development of trees. Since structural damage to vessels is hardly reversible, these effects could be permanent, even if B deficiency was only transient. Another consequence of reduced water status is the higher susceptibility of B-deficient plants to other abiotic stresses, which also impair water relations, especially drought. Since damage to vasculature can occur before visible symptoms of B deficiency appear in shoots, the

  2. Effects of water blowers on service life of combustion chamber heating surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Habryka, A. (Zaklad Techniki Cieplnej i Gospodarki Energetycznej (Poland))

    1990-07-01

    Discusses control of fouling in steam generators of coal-fired power plants and the performance of water jet equipment. Heating surfaces of combustion chambers were monitored by optical probes, industrial television cameras, photo- and film cameras. Continuous observation was accompanied by temperature measurements with thermocouples. Negative effects of water jet application and experience gained in Poland, Estonia and in the FRG concerning periods of cleaning cycles are considered. Improved heating surface cleaning procedures and application of water-jet cleaners of the type used in the Thierbach and Jaenschwalde power plants (FRG) are recommended. 8 refs.

  3. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  4. Bacteriophages as surface and ground water tracers

    Science.gov (United States)

    Rossi, P.; Dörfliger, N.; Kennedy, K.; Müller, I.; Aragno, M.

    Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra). In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  5. Water droplet evaporation from sticky superhydrophobic surfaces

    Science.gov (United States)

    Lee, Moonchan; Kim, Wuseok; Lee, Sanghee; Baek, Seunghyeon; Yong, Kijung; Jeon, Sangmin

    2017-07-01

    The evaporation dynamics of water from sticky superhydrophobic surfaces was investigated using a quartz crystal microresonator and an optical microscope. Anodic aluminum oxide (AAO) layers with different pore sizes were directly fabricated onto quartz crystal substrates and hydrophobized via chemical modification. The resulting AAO layers exhibited hydrophobic or superhydrophobic characteristics with strong adhesion to water due to the presence of sealed air pockets inside the nanopores. After placing a water droplet on the AAO membranes, variations in the resonance frequency and Q-factor were measured throughout the evaporation process, which were related to changes in mass and viscous damping, respectively. It was found that droplet evaporation from a sticky superhydrophobic surface followed a constant contact radius (CCR) mode in the early stage of evaporation and a combination of CCR and constant contact angle modes without a Cassie-Wenzel transition in the final stage. Furthermore, AAO membranes with larger pore sizes exhibited longer evaporation times, which were attributed to evaporative cooling at the droplet interface.

  6. System curves for 100-K water plant expansion pump analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rudock, E.R.

    1958-06-05

    Modifications to the 100-K water plant will be made, under Project CG-775, to increase total process water flow rates to 175,000 gpm or greater. Included in the modifications will be the installation of new pump impellers for the primary and secondary process water pumps located in the 190-K Buildings.

  7. Evaluation of the surface free energy of plant surfaces: toward standardizing the procedure.

    Science.gov (United States)

    Fernández, Victoria; Khayet, Mohamed

    2015-01-01

    Plant surfaces have been found to have a major chemical and physical heterogeneity and play a key protecting role against multiple stress factors. During the last decade, there is a raising interest in examining plant surface properties for the development of biomimetic materials. Contact angle measurement of different liquids is a common tool for characterizing synthetic materials, which is just beginning to be applied to plant surfaces. However, some studies performed with polymers and other materials showed that for the same surface, different surface free energy values may be obtained depending on the number and nature of the test liquids analyzed, materials' properties, and surface free energy calculation methods employed. For 3 rough and 3 rather smooth plant materials, we calculated their surface free energy using 2 or 3 test liquids and 3 different calculation methods. Regardless of the degree of surface roughness, the methods based on 2 test liquids often led to the under- or over-estimation of surface free energies as compared to the results derived from the 3-Liquids method. Given the major chemical and structural diversity of plant surfaces, it is concluded that 3 different liquids must be considered for characterizing materials of unknown physico-chemical properties, which may significantly differ in terms of polar and dispersive interactions. Since there are just few surface free energy data of plant surfaces with the aim of standardizing the calculation procedure and interpretation of the results among for instance, different species, organs, or phenological states, we suggest the use of 3 liquids and the mean surface tension values provided in this study.

  8. Coupled Soil-Plant Water Dynamics During Drought-Rewetting Transitions

    Science.gov (United States)

    Volkmann, T. H.; Haberer, K.; Gessler, A.; Weiler, M.

    2013-12-01

    The predicted climate and land-use changes could have dramatic effects on the water balance of the soil-vegetation system, particularly under frequent drought and subsequent rewetting conditions. Yet, estimation of these effects and associated consequences for the structure and functioning of ecosystems, groundwater recharge, drinking water availability, and the water cycle is currently impeded by gaps in our understanding of the spatiotemporal dynamics of soil water in the rooted soil horizons, the dynamics and driving physiological processes of plant water acquisition, and the transpiration from plant leaves under changing environmental conditions. Combining approaches from the disciplines of plant ecophysiology and soil and isotope hydrology, this work aims to fill this gap by quantitatively characterizing the interaction between plant water use - as affected by rooting patterns and ecophysiology of different plant functional groups - and the water balance of variably complex ecosystems with emphasis on drought and rewetting phases. Results from artificial drought and subsequent rewetting in field experiments using isotopically and dye (Brilliant Blue FCF) labeled water conducted on plots of various surface cover (bare soil, grass, beech, oak, vine) established on luvisol on loess in southwestern Germany are presented. Detailed spatiotemporal insights into the coupled short-term (hours to days) dynamics of soil and plant water during the experiments is facilitated by the application of newly developed techniques for high-frequency in-situ monitoring of stable isotope signatures in both pore water and transpired water using commercial laser-based spectrometers in conjunction with plant ecophysiological, soil physical state, and dye staining observations. On the one hand, the spatiotemporal patterns of plant water uptake are assessed and related to morphological and physiological traits driving plant water uptake, functional adaptations of plants to changes of

  9. Spatial and temporal variability of soil water in drylands:plant water potential as a diagnostic tool

    Institute of Scientific and Technical Information of China (English)

    Maik VESTE; Markus STAUDINGER; Manfred K(U)PPERS

    2008-01-01

    Arid and semi-arid regions are characterized by low rainfall and high potential evaporative demand. Here, water is the major limiting factor for plant growth and productivity. Soil and surface hydrology properties (e.g. Field capacity, infiltration rates) effectively control the water re-distribution in the ecosystem, a fact that is aggravated in arid environments. Information of the spatial and temporal accessibility of soil water in desert ecosystems is limited. The purpose of the studies is the application of plant water potential to estimate the spatial and temporal variations of soil water availability in different arid ecosystems of the Negcv (Israel) and southern Morocco. As model plants the evergreen shrubs Retama raetam, Thymelaea kirsuta and trees (Acacia tortilis) were chosen. Seasonal and spatial variations of the pre-dawn water potential (ψpd) were examined as diagnostic tool to determine water availability on the landscape level. The seasonal differences in the pre-dawn water potential were less pronounced on the dune compared to the intcrdune. This showed a better water availability on the dune slope. Also in the investigated wadis systems spatial differences of the water potential could be detected and related to the vegetation pattern.

  10. Water use, productivity and interactions among desert plants

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Water plays a central role affecting all aspects of the dynamics in aridland ecosystems. Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. The ecological studies in this project revolve around one fundamental premise: that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process. In contrast, hydrogen is not fractionated during water uptake through the root. Soil water availability in shallow, deep, and/or groundwater layers vary spatially; therefore hydrogen isotope ratios of xylem sap provide a direct measure of the water source currently used by a plant. The longer-term record of carbon and hydrogen isotope ratios is recorded annually in xylem tissues (tree rings). The research in this project addresses variation in stable isotopic composition of aridland plants and its consequences for plant performance and community-level interactions.

  11. Nitrate reducing activity pervades surface waters during upwelling.

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Halarnekar, R.; Malik, A.; Vijayan, V.; Varik, S.; RituKumari; Jineesh V.K.; Gauns, M.U.; Nair, S.; LokaBharathi, P.A.

    Nitrate reducing activity (NRA) is known to be mediated by microaerophilic to anaerobic bacteria and generally occurs in the sub-surface waters. However, we hypothesize that NRA could become prominent in the surface waters during upwelling. Hence...

  12. Variation of Plant Electrophysiology in Cucumber under Different Water Status

    Institute of Scientific and Technical Information of China (English)

    LI Guo-chen; YU Hai-ye; MA Cheng-lin; WANG Rui

    2005-01-01

    AP and VP were measured in cucumbers under water sufficiency and water stress. The results indicated that, the AP would be evoked by electrical impulse, for water-stressed cucumber, its amplitude could reached more than 40 mV which was obviously greater than that (about 10-20 mV) of plant under well-watered,and no VP came out. Along with the intensity of light increased, the VP appeared going-up trend, and accompanied by evidently spiking electrical signal, for plant under water stress, the VP increased more clearly, but the change of spiking amplitude of AP (about 3 mY) was rather smaller than that (8-10 mY) of plant under well-watered.

  13. Analysis the Existence of Heterotrophic Bacteria in Active Water Desalination Plant Output of Kashan City, Iran

    Directory of Open Access Journals (Sweden)

    Hosseindoost Gh. MSc,

    2015-12-01

    Full Text Available Aims One of the consequences of taking ground water into surface is changing its chemical quality, specially increasing the concentration of dissolved salts. This research was performed in order to analyze growth possibility of heterotrophic bacteria in the membrane of active desalination plants in Kashan City, Iran. Instrument & Methods This descriptive cross-sectional study was done on water output of 20 active desalination plants in 2013 in Kashan City, Iran and 200 specimens of input and output water was randomly extracted from desalination plants. Awareness and education level of system operators, filter changing intervals, HPC of input and output water and chlorine concentration of input and output water were measured and recorded. Obtained data were analyzed statistically with SPSS 18 software using one-way ANOVA, Chi-square, McNemar and one-sample T tests. Findings There was a significant relation between the interval time and output HPC level of the plants (p0.05. The mean concentration of chlorine in samples of 20 desalination plants was 0.76±0.44mg/l in input water and 0.64±0.52mg/l in output water (p>0.05. Level of awareness had significant relation with the output water pollution with HPC (p0.05. Conclusion The mean level of HPC

  14. Water recovery using waste heat from coal fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Stephen W.; Morrow, Charles W.; Altman, Susan Jeanne; Dwyer, Brian P.

    2011-01-01

    The potential to treat non-traditional water sources using power plant waste heat in conjunction with membrane distillation is assessed. Researchers and power plant designers continue to search for ways to use that waste heat from Rankine cycle power plants to recover water thereby reducing water net water consumption. Unfortunately, waste heat from a power plant is of poor quality. Membrane distillation (MD) systems may be a technology that can use the low temperature waste heat (<100 F) to treat water. By their nature, they operate at low temperature and usually low pressure. This study investigates the use of MD to recover water from typical power plants. It looks at recovery from three heat producing locations (boiler blow down, steam diverted from bleed streams, and the cooling water system) within a power plant, providing process sketches, heat and material balances and equipment sizing for recovery schemes using MD for each of these locations. It also provides insight into life cycle cost tradeoffs between power production and incremental capital costs.

  15. Groundwater–surface water interactions in wetlands for integrated water resources management (preface)

    NARCIS (Netherlands)

    Schot, P.P.; Winter, T.C.

    2006-01-01

    Groundwater–surface water interactions constitute an important link between wetlands and the surrounding catchment. Wetlands may develop in topographic lows where groundwater exfiltrates. This water has its functions for ecological processes within the wetland, while surface water outflow from

  16. General survey and conclusions with regard to the connection of water quantity and water quality studies of surface waters

    NARCIS (Netherlands)

    Rijtema, P.E.

    1979-01-01

    Publikatie die bestaat uit twee delen: 1. General survey of the relation between water quantity and water quality; 2. Conclusions with regard to the connection of water quantity and water quality studies of surface waters

  17. Crow Municipal Rural & Industrial Pilot Water Treatment Plant NPDES Permit

    Science.gov (United States)

    Under NPDES permit MT-0031827, the Crow Indian Tribe is authorized to discharge from the Crow Municipal Rural & Industrial (MR&I) Pilot Water Treatment Plant in Bighorn County, Montana to the Bighorn River.

  18. Region 9 NPDES Outfalls 2012- Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  19. Region 9 NPDES Outfalls - Waste Water Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — Point geospatial dataset representing locations of NPDES outfalls/dischargers for waste water treatment plants which generally represent the site of the discharge....

  20. Water Treatment Plants, Published in 2006, City of Carson City.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, was produced all or in part from Hardcopy Maps information as of 2006. Data by this publisher are often provided in State Plane...

  1. Safe Drinking Water Information System (SDWIS) Sewer Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a point feature dataset showing the locations of sewer treatment plants. These facility locations are part of the safe drinking water information system...

  2. Use of reclaimed water for power plant cooling.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Environmental Science Division

    2007-10-16

    Freshwater demands are steadily increasing throughout the United States. As its population increases, more water is needed for domestic use (drinking, cooking, cleaning, etc.) and to supply power and food. In arid parts of the country, existing freshwater supplies are not able to meet the increasing demands for water. New water users are often forced to look to alternative sources of water to meet their needs. Over the past few years, utilities in many locations, including parts of the country not traditionally water-poor (e.g., Georgia, Maryland, Massachusetts, New York, and North Carolina) have needed to reevaluate the availability of water to meet their cooling needs. This trend will only become more extreme with time. Other trends are likely to increase pressure on freshwater supplies, too. For example, as populations increase, they will require more food. This in turn will likely increase demands for water by the agricultural sector. Another example is the recent increased interest in producing biofuels. Additional water will be required to grow more crops to serve as the raw materials for biofuels and to process the raw materials into biofuels. This report provides information about an opportunity to reuse an abundant water source -- treated municipal wastewater, also known as 'reclaimed water' -- for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Innovations for Existing Plants research program (Feeley 2005). This program initiated an energy-water research effort in 2003 that includes the availability and use of 'nontraditional sources' of water for use at power plants. This report represents a unique reference for information on the use of reclaimed water for power plant cooling. In particular, the database of reclaimed water user facilities described in Chapter 2 is the first comprehensive national effort

  3. Water imaging in living plant by nondestructive neutron beam analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, M. Tomoko [Graduate School of Agricultural and Life Sciences, Univ. of Tokyo, Tokyo (Japan)

    1998-12-31

    Analysis of biological activity in intact cells or tissues is essential to understand many life processes. Techniques for these in vivo measurements have not been well developed. We present here a nondestructive method to image water in living plants using a neutron beam. This technique provides the highest resolution for water in tissue yet obtainable. With high specificity to water, this neutron beam technique images water movement in seeds or in roots imbedded in soil, as well as in wood and meristems during development. The resolution of the image attainable now is about 15um. We also describe how this new technique will allow new investigations in the field of plant research. (author)

  4. How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles?

    Science.gov (United States)

    Burkhardt, J; Pariyar, S

    2016-01-01

    Atmospheric vapour pressure deficit (VPD) is the driving force for plant transpiration. Plants have different strategies to respond to this 'atmospheric drought'. Deposited aerosols on leaf surfaces can interact with plant water relations and may influence VPD response. We studied transpiration and water use efficiency of pine, beech and sunflower by measuring sap flow, gas exchange and carbon isotopes, thereby addressing different time scales of plant/atmosphere interaction. Plants were grown (i) outdoors under rainfall exclusion (OD) and in ventilated greenhouses with (ii) ambient air (AA) or (iii) filtered air (FA), the latter containing plants were sprayed once with 25 mM salt solution of (NH4 )2 SO4 or NaNO3 . Carbon isotope values (δ(13) C) became more negative in the presence of more particles; more negative for AA compared to FA sunflower and more negative for OD Scots pine compared to other growth environments. FA beech had less negative δ(13) C than AA, OD and NaNO3 -treated beech. Anisohydric beech showed linearly increasing sap flow with increasing VPD. The slopes doubled for (NH4 )2 SO4 - and tripled for NaNO3 -sprayed beech compared to control seedlings, indicating decreased ability to resist atmospheric demand. In contrast, isohydric pine showed constant transpiration rates with increasing VPD, independent of growth environment and spray, likely caused by decreasing gs with increasing VPD. Generally, NaNO3 spray had stronger effects on water relations than (NH4 )2 SO4 spray. The results strongly support the role of leaf surface particles as an environmental factor affecting plant water use. Hygroscopic and chaotropic properties of leaf surface particles determine their ability to form wicks across stomata. Such wicks enhance unproductive water loss of anisohydric plant species and decrease CO2 uptake of isohydric plants. They become more relevant with increasing number of fine particles and increasing VPD and are thus related to air pollution and

  5. Influence of Host-Plant Surface Chemicals on the Oviposition of the Cereal Stemborer Busseola Fusca.

    Science.gov (United States)

    Juma, Gerald; Clément, Gilles; Ahuya, Peter; Hassanali, Ahmed; Derridj, Sylvie; Gaertner, Cyrile; Linard, Romain; Le Ru, Bruno; Frérot, Brigitte; Calatayud, Paul-André

    2016-05-01

    The chemical composition of plant surfaces plays a role in selection of host plants by herbivorous insects. Once the insect reaches the plant, these cues determine host acceptance. Laboratory studies have shown that the stem borer Busseola fusca (Lepidoptera: Noctuidae), an important pest of sorghum and maize in sub-Saharan Africa, is able to differentiate between host and non-host plant species. However, no information is available on the cues used by this insect to seek and accept the host plant. Thus, the role of surface phytochemical stimuli on host selection and oviposition by B. fusca was studied in the laboratory using two host plants, sorghum, Sorghum bicolor, and maize, Zea mays, and one non-host plant, Napier grass, Pennisetum purpureum. The numbers of eggs and egg masses deposited on the three plant species were compared first under no-choice and choice conditions. In both cases, more eggs and egg masses were laid on maize and sorghum than on the non-host. Artificial surrogate stems treated with a water or chloroform surface extract of each plant were then compared with surrogate stems treated with, respectively, water or chloroform as controls, under similar conditions. Surrogate stems treated with plant water extracts did not show an increase in oviposition when compared to controls, indicating that the major compounds in these extracts, i.e., simple sugars and free amino acids, are not significantly responsible for the oviposition preference. By contrast, a chloroform extract of sorghum enhanced oviposition on the surrogate stems compared to the control, while those of maize and Napier grass showed no significant effects. Analysis of the chloroform extract of sorghum showed higher amounts of α-amyrin, ß-amyrin, and n-nonacosane compared to those of maize and Napier grass. A blend of the three chemicals significantly increased oviposition compared to the chloroform-treated control, indicating that these compounds are part of the surface chemical

  6. Hydraulic modelling of drinking water treatment plant operations

    OpenAIRE

    L. C. Rietveld; Borger, K.J.; Van Schagen, K.M.; Mesman, G.A.M.; G. I. M. Worm

    2008-01-01

    For a drinking water treatment plant simulation, water quality models, a hydraulic model, a process-control model, an object model, data management, training and decision-support features and a graphic user interface have been integrated. The integration of a hydraulic model in the simulator is necessary to correctly determine the division of flows over the plant's lanes and, thus, the flow through the individual treatment units, based on valve positions and pump speeds. The flow through a un...

  7. Growing under water - how plants cope with low CO2

    DEFF Research Database (Denmark)

    Pedersen, Ole; Hinke, Anne Bækbo; Konnerup, Dennis

    2017-01-01

    Aquatic plants are never short of water but instead they are challenged with low light and slow movement of oxygen (O₂) and carbon dioxide (CO₂). In the present paper, we focus on CO₂ limitation of underwater photosynthesis and the various strategies to overcome the limitation resulting from...... evolutionary adaptation to growth under water. Knowledge of such strategies helps you to select the right CO₂ environment and thereby maximize the chances that your favorite plants flourish....

  8. Wind and water dispersal of wetland plants across fragmented landscapes

    NARCIS (Netherlands)

    Soomers, H.; Karssenberg, D.J.; Soons, M.B.; Verweij, P.A.; Verhoeven, J.T.A.; Wassen, M.J.

    2013-01-01

    Biodiversity in wetlands is threatened by habitat loss and fragmentation, of which agricultural activities often are a cause. Dispersal of plant seeds via wind and ditches (water) may contribute to connecting remnant wetland plant populations in modern agricultural landscapes, and help to

  9. Gas exchange under water : acclimation of terrestrial plants to submergence

    NARCIS (Netherlands)

    Mommer, Liesje

    2005-01-01

    Gas exchange between the plant and the environment is severely hampered when plants are submerged, leading to oxygen and energy deficits. A straightforward way to reduce these shortages of oxygen and carbohydrates would be prolonged photosynthesis under water, but this has received only little atten

  10. Recovery from acidification in European surface waters

    Directory of Open Access Journals (Sweden)

    C. D. Evans

    2001-01-01

    Full Text Available Water quality data for 56 long-term monitoring sites in eight European countries are used to assess freshwater responses to reductions in acid deposition at a large spatial scale. In a consistent analysis of trends from 1980 onwards, the majority of surface waters (38 of 56 showed significant (p ≤0.05 decreasing trends in pollution-derived sulphate. Only two sites showed a significant increase. Nitrate, on the other hand, had a much weaker and more varied pattern, with no significant trend at 35 of 56 sites, decreases at some sites in Scandinavia and Central Europe, and increases at some sites in Italy and the UK. The general reduction in surface water acid anion concentrations has led to increases in acid neutralising capacity (significant at 27 of 56 sites but has also been offset in part by decreases in base cations, particularly calcium (significant at 26 of 56 sites, indicating that much of the improvement in runoff quality to date has been the result of decreasing ionic strength. Increases in acid neutralising capacity have been accompanied by increases in pH and decreases in aluminium, although fewer trends were significant (pH 19 of 56, aluminium 13 of 53. Increases in pH appear to have been limited in some areas by rising concentrations of organic acids. Within a general trend towards recovery, some inter-regional variation is evident, with recovery strongest in the Czech Republic and Slovakia, moderate in Scandinavia and the United Kingdom, and apparently weakest in Germany. Keywords: acidification, recovery, European trends, sulphate, nitrate, acid neutralising capacity

  11. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    OpenAIRE

    CORNELIA DIANA HERTIA; ANCA ELENA GURZAU; MARIA ILONA SZASZ

    2011-01-01

    This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very...

  12. Solar geoengineering, atmospheric water vapor transport, and land plants

    Science.gov (United States)

    Caldeira, Ken; Cao, Long

    2015-04-01

    This work, using the GeoMIP database supplemented by additional simulations, discusses how solar geoengineering, as projected by the climate models, affects temperature and the hydrological cycle, and how this in turn is related to projected changes in net primary productivity (NPP). Solar geoengineering simulations typically exhibit reduced precipitation. Solar geoengineering reduces precipitation because solar geoengineering reduces evaporation. Evaporation precedes precipitation, and, globally, evaporation equals precipitation. CO2 tends to reduce evaporation through two main mechanisms: (1) CO2 tends to stabilize the atmosphere especially over the ocean, leading to a moister atmospheric boundary layer over the ocean. This moistening of the boundary layer suppresses evaporation. (2) CO2 tends to diminish evapotranspiration, at least in most land-surface models, because higher atmospheric CO2 concentrations allow leaves to close their stomata and avoid water loss. In most high-CO2 simulations, these effects of CO2 which tend to suppress evaporation are masked by the tendency of CO2-warming effect to increase evaporation. In a geoengineering simulation, with the warming effect of CO2 largely offset by the solar geoengineering, the evaporation suppressing characteristics of CO2 are no longer masked and are clearly exhibited. Decreased precipitation in solar geoengineering simulations is a bit like ocean acidification - an effect of high CO2 concentrations that is not offset by solar geoengineering. Locally, precipitation ultimately either evaporates (much of that through the leaves of plants) or runs off through groundwater to streams and rivers. On long time scales, runoff equals precipitation minus evaporation, and thus, water runoff generated at a location is equal to the net atmospheric transport of water to that location. Runoff typically occurs where there is substantial soil moisture, at least seasonally. Locations where there is enough water to maintain

  13. Surface finishing in hydroelectric power plants; Veredeln von Laufrad-Oberflaechen in Wasserkraftanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Marion

    2010-07-01

    Flow optimized high performance surfaces of the rotor disks are prerequisite to reach high conversion efficiencies in hydroelectric power plants. The surface treatment can be performed using cold metal transfer (CMT) arc welding techniques developed by Fronius International GmbH, Wels, Austria. This technique yields significantly improved results with respect to energy, time and material savings compared to MIG welding or thermal spraying. Water-contact components, sealing and sliding surfaces are cladded using high-performance stainless materials. The CMT process is mainly used by Andritz Hydro Ravensburg for cladding purposes.

  14. Structures and construction of nuclear power plants on lunar surface

    Science.gov (United States)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji

    1991-07-01

    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  15. Cuticle surface coat of plant-parasitic nematodes.

    Science.gov (United States)

    Davies, Keith G; Curtis, Rosane H C

    2011-01-01

    The surface coat (SC) of the plant-parasitic nematode cuticle is an understudied area of current research, even though it likely plays key roles in both nematode-plant and nematode-microbe interactions. Although in several ways Caenorhabditis elegans is a poor model for plant-parasitic nematodes, it is a useful starting point for investigations of the cuticle and its SC, especially in the light of recent work using this species as a model for innate immunity and the generic biology underpinning much host-parasite biology. We review the research focused on the involvement of the SC of plant-parasitic nematodes. Using the insights gained from animal-parasitic nematodes and other sequenced nematodes, we discuss the key roles that the SC may play. Copyright © 2011 by Annual Reviews. All rights reserved.

  16. Urea Synthesis Plant - Process Water Treatment

    Directory of Open Access Journals (Sweden)

    Matijašević, Lj.

    2007-09-01

    Full Text Available After the years of operation of Petrokemija d. d. from Kutina it has been recognized that the technology of urea production can be improved at several points, including wastewater treatment.The wastewater treatment area is a part of the urea plant, Urea 2 of Petrokemija d. d., Kutina. The plant has been in operation since 1983 based on the licensed Stamicarbon CO2 stripping process. So far there have been no major process improvements in terms of utility savings. This part of the plant releases into the environment almost 800 t per day of superfluous wastewater polluted with small, however significant, amounts of urea and ammonium. As such, this wastewater cannot be used in any other segment of urea production. The aim of this paper is to improve the current process from the economical and ecological point of view with ultimate goal of implementing the results obtained.

  17. Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Jager, A.R.

    1996-03-01

    It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

  18. Structured free-water clusters near lubricating surfaces are essential in water-based lubrication.

    Science.gov (United States)

    Hou, Jiapeng; Veeregowda, Deepak H; de Vries, Joop; Van der Mei, Henny C; Busscher, Henk J

    2016-10-01

    Water-based lubrication provides cheap and environmentally friendly lubrication and, although hydrophilic surfaces are preferred in water-based lubrication, often lubricating surfaces do not retain water molecules during shear. We show here that hydrophilic (42° water contact angle) quartz surfaces facilitate water-based lubrication to the same extent as more hydrophobic Si crystal surfaces (61°), while lubrication by hydrophilic Ge crystal surfaces (44°) is best. Thus surface hydrophilicity is not sufficient for water-based lubrication. Surface-thermodynamic analyses demonstrated that all surfaces, regardless of their water-based lubrication, were predominantly electron donating, implying water binding with their hydrogen groups. X-ray photoelectron spectroscopy showed that Ge crystal surfaces providing optimal lubrication consisted of a mixture of -O and =O functionalities, while Si crystal and quartz surfaces solely possessed -O functionalities. Comparison of infrared absorption bands of the crystals in water indicated fewer bound-water layers on hydrophilic Ge than on hydrophobic Si crystal surfaces, while absorption bands for free water on the Ge crystal surface indicated a much more pronounced presence of structured, free-water clusters near the Ge crystal than near Si crystal surfaces. Accordingly, we conclude that the presence of structured, free-water clusters is essential for water-based lubrication. The prevalence of structured water clusters can be regulated by adjusting the ratio between surface electron-donating and electron-accepting groups and between -O and =O functionalities.

  19. Results of soil, ground-water, surface-water, and streambed-sediment sampling at Air Force Plane 85, Columbus, Ohio, 1996

    Science.gov (United States)

    Parnell, J.M.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, prepared the Surface- and Ground- Water Monitoring Work Plan for Air Force Plant 85 (AFP 85 or Plant), Columbus, Ohio, under the Air Force Installation Restoration Program to characterize any ground-water, surface-water, and soil contamination that may exist at AFP 85. The USGS began the study in November 1996. The Plant was divided into nine sampling areas, which included some previously investi gated study sites. The investigation activities included the collection and presentation of data taken during drilling and water-quality sampling. Data collection focused on the saturated and unsatur ated zones and surface water. Twenty-three soil borings were completed. Ten monitoring wells (six existing wells and four newly constructed monitoring wells) were selected for water-quality sam pling. Surface-water and streambed-sediment sampling locations were chosen to monitor flow onto and off of the Plant. Seven sites were sampled for both surface-water and streambed-sediment quality. This report presents data on the selected inorganic and organic constituents in soil, ground water, surface water, and streambed sediments at AFP 85. The methods of data collection and anal ysis also are included. Knowledge of the geologic and hydrologic setting could aid Aeronautical Systems Center, Environmental Management Directorate, Restoration Division, and its governing regulatory agencies in future remediation studies.

  20. Potentially hazardous substances in surface waters. II. Cholinesterase inhibitors in Dutch surface waters

    NARCIS (Netherlands)

    Greve, P.A.; Freudenthal, J.; Wit, S.L.

    1972-01-01

    Several analytical methods were employed to determine the concentrations of cholinesterase inhibitors in several Dutch surface waters. An Auto-Analyzer method was used for screening purposes; thin-layer chromatography and gas-liquid chromatography-mass spectrometry were used for identification and q

  1. Mathematical modelling of plant water and nutrient uptake

    Science.gov (United States)

    Roose, Tiina

    2010-05-01

    In this presentation I will describe a model of plant water and nutrient uptake and how to translate this model and experimental data from the single root scale to the root branching structure scale. The model starts at the single root scale and describes the water and nutrient movement in the soil using Richards' equation (water uptake) and diffusion-convection equation (nutrient uptake). The water and nutrient uptake in the single root scale model is represented by boundary conditions. In the case of nutrient uptake this has the form of a non-linear Michaelis-Menten uptake law and in the case of water this is given by a soil-xylem pressure difference boundary condition. The flow of water in the xylem is modeled as Poiseuille flow. We solve the single root scale models using the analytic approximate technique of asymptotic expansions similar to Oseen expansions known from fluid dynamics. We will then discuss how to use the analytic expression to estimate the water and nutrient uptake by growing root branching systems. We model the growth of the root system using a dynamic population model to describe the branching and elongation of roots in the branching system. This root branching population model results in a hyperbolic equation similar to age dependent population models and it can be solved fully analytically using the method of characteristics. Thus we have a fully analytic description of the root branching system evolution. We use this branching model to estimate the nutrient uptake in a scenario when the competition between subbranches is small, i.e., as it is in the case of phosphate, potassium and arsenic. We compare our approximate analytic model to a full 3d simulation of the root system phosphate uptake and find that the analytic model almost perfectly reproduces the 3d numerical model. In addition the analytic model can be included in larger field/catchment/climate scale models something which is not practically possible with the numerical simulations

  2. The evolution of water transport in plants: an integrated approach.

    Science.gov (United States)

    Pittermann, J

    2010-03-01

    This review examines the evolution of the plant vascular system from its beginnings in the green algae to modern arborescent plants, highlighting the recent advances in developmental, organismal, geochemical and climatological research that have contributed to our understanding of the evolution of xylem. Hydraulic trade-offs in vascular structure-function are discussed in the context of canopy support and drought and freeze-thaw stress resistance. This qualitative and quantitative neontological approach to palaeobotany may be useful for interpreting the water-transport efficiencies and hydraulic limits in fossil plants. Large variations in atmospheric carbon dioxide levels are recorded in leaf stomatal densities, and may have had profound impacts on the water conservation strategies of ancient plants. A hypothesis that links vascular function with stomatal density is presented and examined in the context of the evolution of wood and/or vessels. A discussion of the broader impacts of plant transport on hydrology and climate concludes this review.

  3. Real Time Monitoring of Dissolved Organic Carbon Concentration and Disinfection By-Product Formation Potential in a Surface Water Treatment Plant with Simulaneous UV-VIS Absorbance and Fluorescence Excitation-Emission Mapping

    Science.gov (United States)

    Gilmore, A. M.

    2015-12-01

    This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.

  4. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filt

  5. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    Science.gov (United States)

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  6. White root tips supply plants with oxygen, water and nutrients

    NARCIS (Netherlands)

    Heuvelink, E.; Kierkels, T.

    2016-01-01

    The main, most important function of roots belonging to horticultural crops is the uptake of water and nutrients. Healthy roots are essential for a healthy plant. After all, if the uptake of water and nutrients is not functioning properly, then other aspects also leave a lot to be desired

  7. Uptake of water from soils by plant roots

    NARCIS (Netherlands)

    Raats, P.A.C.

    2007-01-01

    Uptake of water by plant roots can be considered at two different Darcian scales, referred to as the mesoscopic and macroscopic scales. At the mesoscopic scale, uptake of water is represented by a flux at the soil¿root interface, while at the macroscopic scale it is represented by a sink term in the

  8. Water-integrated scheduling of batch process plants

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo

    2017-01-01

    Efficient water management is becoming increasingly important in production systems, but companies often do not have any concrete strategies to implement. While there are numerous technological options for improving water efficiency in process plants, there is a lack of effective decision support to

  9. Phosphate Removal and Recovery using Drinking Water Plant Waste Residuals

    Science.gov (United States)

    Water treatment plants are used to provide safe drinking water. In parallel, however, they also produce a wide variety of waste products which, in principle, could be possible candidates as resources for different applications. Calcium carbonate is one of such residual waste in ...

  10. Increasing demands on limited water resources: Consequences for two endangered plants in Amargosa Valley, USA.

    Science.gov (United States)

    Hasselquist, Niles J; Allen, Michael F

    2009-03-01

    Recent population expansion throughout the Southwest United States has created an unprecedented demand for already limited water resources, which may have severe consequences on the persistence of some species. Two such species are the federally protected Nitrophila mohavensis (Chenopodiaceae) and Grindelia fraxino-pratensis (Asteraceae) found in Amargosa Valley, one valley east of Death Valley, California. Because both species are federally protected, no plant material could be harvested for analysis. We therefore used a chamber system to collect transpired water for isotopic analysis. After a correction for isotopic enrichment during transpiration, δ(18)O values of plant xylem water were significantly different between N. mohavensis and G. fraxino-pratensis throughout the study. Using a multisource mixing model, we found that both N. mohavensis and G. fraxino-pratensis used soil moisture near the soil surface in early spring when surface water was present. However, during the dry summer months, G. fraxino-pratensis tracked soil moisture to deeper depths, whereas N. mohavensis continued to use soil moisture near the soil surface. These results indicate that pumping groundwater and subsequently lowering the water table may directly prevent G. fraxino-pratensis from accessing water, whereas these same conditions may indirectly affect N. mohavensis by reducing surface soil moisture and thus its ability to access water.

  11. Plants for water recycling, oxygen regeneration and food production

    Science.gov (United States)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  12. Plants for water recycling, oxygen regeneration and food production

    Science.gov (United States)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  13. Grooved organogel surfaces towards anisotropic sliding of water droplets.

    Science.gov (United States)

    Zhang, Pengchao; Liu, Hongliang; Meng, Jingxin; Yang, Gao; Liu, Xueli; Wang, Shutao; Jiang, Lei

    2014-05-21

    Periodic micro-grooved organogel surfaces can easily realize the anisotropic sliding of water droplets attributing to the formed slippery water/oil/solid interface. Different from the existing anisotropic surfaces, this novel surface provides a versatile candidate for the anisotropic sliding of water droplets and might present a promising way for the easy manipulation of liquid droplets for water collection, liquid-directional transportation, and microfluidics.

  14. Naegleria fowleri in cooling waters of power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cerva, L.; Kasprzak, W.; Mazur, T.

    1982-01-01

    Six strains of nonvirulent and three strains of virulent variants of Naegleria fowleri amoebae were isolated from the examined cooling water samples from 9 power plants. The virulent variants were obtained solely from effluents discharged from power plants with a closed-circuit cooling N. fowleri was not detected outside the reach of the thermal pollution. A disinfection of out-flowing cooling water seems to be an unnecessary investment in our climate. Warm discharge water should under no conditions be used directly for sports and recreational purposes.

  15. Optimal control of a waste water cleaning plant

    Directory of Open Access Journals (Sweden)

    Ellina V. Grigorieva

    2010-09-01

    Full Text Available In this work, a model of a waste water treatment plant is investigated. The model is described by a nonlinear system of two differential equations with one bounded control. An optimal control problem of minimizing concentration of the polluted water at the terminal time T is stated and solved analytically with the use of the Pontryagin Maximum Principle. Dependence of the optimal solution on the initial conditions is established. Computer simulations of a model of an industrial waste water treatment plant show the advantage of using our optimal strategy. Possible applications are discussed.

  16. Does Trichomes on the Plant Epidermic Surface Disturb Ants Locomotion?

    Directory of Open Access Journals (Sweden)

    Danon C. Cardoso

    2009-01-01

    Full Text Available Problem Statement: Many morphological characteristics, both physical and chemical, are used in the defense against herbivores on plants. Trichomes are structures used by plants as physics defense and when associated with glands combine physics and chemistry defense. Many species of ants are herbivores and use leaves and seeds, others ants use Extra Floral Nectars as a food resource, and the majority of the species are predators of other ants and other insects, and use plants as foraging substrate in search of prey. Likewise, on the assumption that ants feed preferentially in plants free of trichomes, we tested the hypothesis that trichomes plants clouded locomotion of ants. Approach: Experiments were carried out in the field using cotton to mimic the plants surface. Thirty traps for the treatment were assembled with cotton as well as other 30 experiments for the control (treatment without cotton. Each trap consisted of Petri dishes of 14,5 cm diameter with bait (sardine and honey in a disc (3 cm diameter in the center of the plate. Around the bait, 10 grams of cotton prepared uniformly were placed. Furthermore, morphometric analysis on the length of body and legs of ants was performed. Results: The number of ants which accessed baits in the center of Petri dishes in treatment with cotton was not statistically different of the number of accesses in the control treatment without cotton. The trichomes do not cloud locomotion of ants and that leg length is equal to or greater than body length. Conclusions/Recommendations: Data revealed that the trichomes do not cloud locomotion of ants; this allows the free walking of ants on the plants surface. However, glandular trichomes that combine physics and chemistry defense with release toxic and adhesives compounds when mechanically stressed may be more efficient in the defense against these insects.

  17. System configuration for advanced water management in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Queirazza, G.; Sigon, F.; Zagano, C. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-12-01

    Water ie required for power plant operation and electricity generation. The water demand is steadily increasing depending on the enrgy pro-capite demand, the available or innovative technologies for power generation and the need for emissions control. Water management is also required to comply with the regulatory trends and it agrees with the guidelines for the sustainable development, as recommended at the Rio conference (Agenda 21). In order to assess the design and the operating alternatives for the water system of power plants and the impact of innovative technologies, a simulation code has been developed. The ENEL proprietary WATERSOFT code is presented in this paper. Some significant results will be presented and discussed, within the frame of improving the water management and optimizing the overall performances of the actual water systems.

  18. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India

    Energy Technology Data Exchange (ETDEWEB)

    Jha, V.N., E-mail: jhavn1971@gmail.com; Tripathi, R.M., E-mail: tripathirm@yahoo.com; Sethy, N.K., E-mail: sethybarc@rediffmail.com; Sahoo, S.K., E-mail: sksbarc@gmail.com

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r = 0.86, p < 0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r = 0.88, p < 0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p < 0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. - Highlights: • Uranium mill tailings pond. • Jaduguda, India. • Fresh water plants. • Uranium uptake. • Relationship of uranium with stable elements.

  19. Straw gasification biochar increases plant available water capacity and plant growth in coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant available water capacity (AWC) and plant growth in diverse soil types needs further reserach. A pot experiment with spring barley...

  20. Water vulnerabilities for existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were

  1. Urban surface water pollution problems arising from misconnections.

    Science.gov (United States)

    Revitt, D Michael; Ellis, J Bryan

    2016-05-01

    The impacts of misconnections on the organic and nutrient loadings to surface waters are assessed using specific household appliance data for two urban sub-catchments located in the London metropolitan region and the city of Swansea. Potential loadings of biochemical oxygen demand (BOD), soluble reactive phosphorus (PO4-P) and ammoniacal nitrogen (NH4-N) due to misconnections are calculated for three different scenarios based on the measured daily flows from specific appliances and either measured daily pollutant concentrations or average pollutant concentrations for relevant greywater and black water sources obtained from an extensive review of the literature. Downstream receiving water concentrations, together with the associated uncertainties, are predicted from derived misconnection discharge concentrations and compared to existing freshwater standards for comparable river types. Consideration of dilution ratios indicates that these would need to be of the order of 50-100:1 to maintain high water quality with respect to BOD and NH4-N following typical misconnection discharges but only poor quality for PO4-P is likely to be achievable. The main pollutant loading contributions to misconnections arise from toilets (NH4-N and BOD), kitchen sinks (BOD and PO4-P) washing machines (PO4-P and BOD) and, to a lesser extent, dishwashers (PO4-P). By completely eliminating toilet misconnections and ensuring misconnections from all other appliances do not exceed 2%, the potential pollution problems due to BOD and NH4-N discharges would be alleviated but this would not be the case for PO4-P. In the event of a treatment option being preferred to solve the misconnection problem, it is shown that for an area the size of metropolitan Greater London, a sewage treatment plant with a Population Equivalent value approaching 900,000 would be required to efficiently remove BOD and NH4-N to safely dischargeable levels but such a plant is unlikely to have the capacity to deal

  2. Energy from fresh and brackish water aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R.

    1981-01-01

    Aquatic plants can achieve relatively high biomass productivities when compared to terrestrial plants because they need not be water-stressed and can be optimally supplied with nutrients. Based on literature reports, productivities in southern US regions of about 40 to 60 t/ha-yr (dry weight basis) can be predicted for green algae or marsh plants and about 80 t/ha-yr for water hyacinth. Higher productivities may be possible in exceptionally favorable locations by assuming development of advanced cultivation technologies and genetic selection of improved strains. The lack of established cultivation systems and low-cost harvesting processes imposes great uncertainties on the cost of biomass production by aquatic plants. Three potentially practical aquatic biomass energy systems are chemicals production from microalgae, alcohol production from marsh plants, and methane production from water hyacinths. At present, aquatic plants are not being used commercially as a fuel source any place in the world. Nevertheless, it is clear that aquatic plants have potentially high biomass productivities and, specifically for the case of microalgae, could produce a high-quality, high-value biomass suitable for conversion to fuels and extraction of other products. A list of the relative advantages and disadvantages of aquatic plant energy systems in comparison with the concepts of terrestrial tree or herbaceous plant energy farming is given. Three favorable aspects of aquatic plant biomass systems should be stressed - the relative short-term research and development effort that will be required to determine the practical feasibility of such systems, the continuous production nature of such systems, and the relative independence of aquatic biomass systems from soil characteristics and weather fluctuations. The fast generation times of most aquatic plants allow rapid data acquisition, as compared to even short-rotation trees.

  3. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    K. J. Borger

    2008-10-01

    Full Text Available For a drinking water treatment plant simulation, water quality models, a hydraulic model, a process-control model, an object model, data management, training and decision-support features and a graphic user interface have been integrated. The integration of a hydraulic model in the simulator is necessary to correctly determine the division of flows over the plant's lanes and, thus, the flow through the individual treatment units, based on valve positions and pump speeds. The flow through a unit is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes. Using this library, a hydraulic model was set up and validated for the drinking water treatment plant Harderbroek.

  4. Estimating plant root water uptake using a neural network approach

    DEFF Research Database (Denmark)

    Qiao, D M; Shi, H B; Pang, H B

    2010-01-01

    and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root...... density distributions, which is tedious to measure in situ and prone to uncertainty because of the complexity of root architecture hidden in the opaque soils. As a result, developing alternative methods that do not explicitly need the root density to estimate the root water uptake is practically useful......Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil...

  5. Nuclear driven water decomposition plant for hydrogen production

    Science.gov (United States)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  6. A functional cutin matrix is required for plant protection against water loss

    OpenAIRE

    Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Li, Chao; Yamaji, Naoki; Nevo, Eviatar

    2011-01-01

    The plant cuticle, a cutin matrix embedded with and covered by wax, seals the aerial organ's surface to protect the plant against uncontrolled water loss. The cutin matrix is essential for the cuticle to function as a barrier to water loss. Recently, we identified from wild barley a drought supersensitive mutant, eibi1, which is caused by a defective cutin matrix as the result of the loss of function of HvABCG31, an ABCG full transporter. Here, we report that eibi1 epidermal cells contain lip...

  7. Importance of water quality in container plant production

    Science.gov (United States)

    John M. Ruter

    2013-01-01

    High substrate pH is a major problem for producers of container-grown plants and seedlings. The primary cause of high substrate pH is irrigation water with high alkalinity. Alkalinity is defined as the capacity of water to neutralize acids. Some alkalinity in irrigation water is beneficial as it serves as a buffer to large swings in pH levels, but high alkalinity in...

  8. USE of mine pool water for power plant cooling.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Kupar, J. M .; Puder, M. G.

    2006-11-27

    Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

  9. 'plant available water' aspects of water use efficiency under irrigated ...

    African Journals Online (AJOL)

    This review provides an overview of Water Research Commission (WRC)-funded research over the past 36 years. A total .... Management strategies and water balance measurements made to ...... Development in Africa and Asia, 14 to 16 July 2009, Göttingen,. Germany. ... Plots in the Central Region of South Africa.

  10. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.

    Science.gov (United States)

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-11-26

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant's ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters.

  11. Water vulnerabilities for existing coal-fired power plants.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Kuiper, J.; Environmental Science Division

    2010-08-19

    This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements the Existing Plants Research Program's overall research effort by evaluating water issues that could impact power plants. Water consumption by all users in the United States over the 2005-2030 time period is projected to increase by about 7% (from about 108 billion gallons per day [bgd] to about 115 bgd) (Elcock 2010). By contrast, water consumption by coal-fired power plants over this period is projected to increase by about 21% (from about 2.4 to about 2.9 bgd) (NETL 2009b). The high projected demand for water by power plants, which is expected to increase even further as carbon-capture equipment is installed, combined with decreasing freshwater supplies in many areas, suggests that certain coal-fired plants may be particularly vulnerable to potential water demand-supply conflicts. If not addressed, these conflicts could limit power generation and lead to power disruptions or increased consumer costs. The identification of existing coal-fired plants that are vulnerable to water demand and supply concerns, along with an analysis of information about their cooling systems and related characteristics, provides information to help focus future research and development (R&D) efforts to help ensure that coal-fired generation demands are met in a cost-effective manner that supports sustainable water use. This study identified coal-fired power plants that are considered vulnerable to water demand and supply issues by using a geographical information system (GIS) that facilitated the analysis of plant-specific data for more than 500 plants in the NETL's Coal Power Plant Database (CPPDB) (NETL 2007a) simultaneously with 18 indicators of water demand and supply. Two types of demand indicators were

  12. Book of Abstracts of the XII Portuguese-Spanish Symposium on Plant Water Relations (2014)

    OpenAIRE

    Coelho, Renato R. P.; Vaz, Margarida M.

    2014-01-01

    Contents PLENARY CONFERENCES AND THEMATIC CONFERENCES Molecular Mechanisms of Plant Adaptation to Drought Water Relations in the Irrigation Scheduling of Olive Orchards Physiological Limits for Plant-Based Water Stress Indicators Water Use in Montado Ecosystems Hydrological, Engineering and Physiological Approaches to Water Conservation From Leaf to Whole Plant Water Use Efficiency: Solving the Gaps Efficient Use of Water Under Mediterranean Conditions: Agronomic Too...

  13. Critical issues with cryogenic water extraction for tracing plant's source water

    Science.gov (United States)

    Orlowski, Natalie; Winkler, Anna; McDonnell, Jeffrey J.; Breuer, Lutz

    2016-04-01

    Numerous scientists and disciplines around the world are applying stable water isotope techniques-, especially in the ecohydrological context. For more than two decades, cryogenic vacuum extraction has been the most widely used method for obtaining water from soils and plant tissues for isotope analysis. Recent findings suggested that cryogenic extraction conditions (extraction time, temperature, vacuum threshold) and physicochemical soil properties considerably affected the extracted soil water isotope results. The key question therefore is: Which soil water pool/s are we actually extracting cryogenically under certain extraction conditions and is this soil water pool the source of plant water uptake? We conducted a greenhouse trial with two different plant species grown on two physicochemically different soils (sandy soil and clayey loam) to test the effects of varying cryogenic extraction conditions and physicochemical soil properties on extracted soil water isotope results. We further aimed to identify the unique soil water isotopic signature which mirrors plant's water source. We sampled root crowns and an aliquot of the first and second soil layer for cryogenic water extraction. To determine the plant water available soil water pool/s, we varied water extraction parameters (time and temperature). Our dual-isotope study showed that physicochemical soil properties (i.e. clay content, pore size) along with extraction parameters lead to isotope fractionation effects of soil water. Extraction temperature and time significantly impacted isotope results of clayey loam samples but no effect could be observed for the sandy soil. In general, for water extracts of both soil types, longer extraction times and higher temperatures resulted in enriched isotopic signatures, although this influence was more pronounced for the clayey loam. Determining ideal soil water extraction parameters to identify plant available soil water pools revealed that extraction settings of 200

  14. Plants Clean Air and Water for Indoor Environments

    Science.gov (United States)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  15. Water Quality Impacts of Pure Chlorine Dioxide Pretreatment at the Roanoke County (Virginia) Water Treatment Plant

    OpenAIRE

    Ellenberger, Christine Spada

    1999-01-01

    WATER QUALITY IMPACTS OF PURE CHLORINE DIOXIDE PRETREATMENT AT THE ROANOKE COUNTY (VIRGINIA) WATER TREATMENT PLANT by Christine S. Ellenberger Dr. Robert C. Hoehn, Chairman (ABSTRACT) Chlorine dioxide (ClO2) was included in the Spring Hollow Water Treatment Plant (Roanoke County, Virginia) to oxidize manganese and iron, prevent tastes and odors, and avoid the formation of excessive halogenated disinfection by-products. A state-of-the-art, gas:solid ClO2 generation system ...

  16. Safe corrosion inhibitor for treating cooling water on heat power engineering plants

    Science.gov (United States)

    Nikolaeva, L. A.; Khasanova, D. I.; Mukhutdinova, E. R.; Safin, D. Kh.; Sharifullin, I. G.

    2017-08-01

    Heat power engineering (HPE) consumes significant volumes of water. There are, therefore, problems associated with corrosion, biological fouling, salt deposits, and sludge formation on functional surfaces of heat power equipment. One of the effective ways to solve these problems is the use of inhibitory protection. The development of new Russian import-substituting environmentally friendly inhibitors is very relevant. This work describes experimental results on the OPC-800 inhibitor (TU 2415-092-00206 457-2013), which was produced at Karpov Chemical Plant and designed to remove mineral deposits, scale, and biological fouling from the surfaces of water-rotation node systems on HPE objects. This reagent is successfully used as an effective corrosion inhibitor in the water recycling systems of Tatarstan petrochemical enterprises. To save fresh make-up water, the circulating system is operated in a no-blow mode, which is characterized by high evaporation and salt content coefficients. It was experimentally found that corrosion rate upon treatment of recycled water with the OPC-800 inhibitor is 0.08-0.10 mm/year. HPE mainly uses inhibitors based on oxyethylidene diphosphonic (OEDPA) and nitrilotrimethylphosphonic (NTMPA) acids. The comparative characteristic of inhibition efficiency for OPC-800 and OEDF-Zn-U2 is given. The results obtained indicate that OPC-800 can be used as an inhibitor for treatment of cooling water in HPE plants. In this case, it is necessary to take into account the features of water rotation of a thermal power plant.

  17. Atmospheric Water Harvesting: Role of Surface Wettability and Edge Effect

    KAUST Repository

    Jin, Yong

    2017-06-23

    Atmospheric water is emerging as an important potable water source. The present work experimentally and theoretically investigates water condensation and collection on flat surfaces with contrasting contact angles and contact angle hysteresis (CAH) to elucidate their roles on water mass collection efficiency. The experimental results indicate that a hydrophilic surface promotes nucleation and individual droplets growth, and a surface with a low CAH tends to let a smaller droplet to slide down, but the overall water mass collection efficiency is independent of both surface contact angle and CAH. The experimental results agree well with our theoretical calculations. During water condensation, a balance has to be struck between single droplet growth and droplet density on a surface so as to maintain a constant water droplet surface coverage ratio, which renders the role of both surface wettability and hysteresis insignificant to the ultimate water mass collection. Moreover, water droplets on the edges of a surface grow much faster than those on the non-edge areas and thus dominate the contribution to the water mass collection by the entire surface, directly pointing out the very important role of edge effect on water condensation and collection.

  18. Adsorbed water on iron surface by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, F.W.; Campos, T.M.B.; Cividanes, L.S., E-mail: flaviano@ita.br; Simonetti, E.A.N.; Thim, G.P.

    2016-01-30

    Graphical abstract: - Highlights: • We developed a new force field to describe the Fe–H{sub 2}O interaction. • We developed a new force field to describe the flexible water model at low temperature. • We analyze the orientation of water along the iron surface. • We calculate the vibrational spectra of water near the iron surface. • We found a complex relationship between water orientation and the atomic vibrational spectra at different sites of adsorption along the iron surface. - Abstract: The adsorption of H{sub 2}O molecules on metal surfaces is important to understand the early process of water corrosion. This process can be described by computational simulation using molecular dynamics and Monte Carlo. However, this simulation demands an efficient description of the surface interactions between the water molecule and the metallic surface. In this study, an effective force field to describe the iron-water surface interactions was developed and it was used in a molecular dynamics simulation. The results showed a very good agreement between the simulated vibrational-DOS spectrum and the experimental vibrational spectrum of the iron–water interface. The water density profile revealed the presence of a water double layer in the metal interface. Furthermore, the horizontal mapping combined with the angular distribution of the molecular plane allowed the analysis of the water structure above the surface, which in turn agrees with the model of the double layer on metal surfaces.

  19. 40 CFR 258.27 - Surface water requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water requirements. 258.27... FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.27 Surface water requirements. MSWLF... wetlands, that violates any requirements of the Clean Water Act, including, but not limited to,...

  20. Floating Vegetated Mats For Improving Surface Water Quality

    Science.gov (United States)

    Contamination of surface and ground waters is an environmental concern. Pollution from both point and nonpoint sources can render water unsuitable for use. Surface waters of concern include streams, rivers, ponds, lakes, canals, and wastewater lagoons. Lagooned wastewater from confined animal feedi...

  1. Comparison of fipronil sources in North Carolina surface water ...

    Science.gov (United States)

    Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which makes the greatest contribution to fipronil in surface water has yet to be determined. A sampling effort designed to prioritize known fipronil inputs (golf courses, residential areas, biosolids application sites and wastewater facilities) was conducted in North Carolina to learn more about the origins of fipronil in surface water. High resolution mass spectrometry (HRMS) analysis indicated that fipronil and its known derivatives were routinely present in all samples, but concentrations were substantially elevated near wastewater treatment plant outfalls (range 10–500 ng/L combined), suggesting that they predominate as environmental sources. Corresponding recycled wastewater samples, which were treated with NaOCl for disinfection, showed disappearance of fipronil and all known degradates. HRMS and nuclear magnetic resonance (NMR) analysis techniques were used to determine that all fipronil-related compounds are oxidized to a previously unidentified fipronil sulfone chloramine species in recycled wastewater. The implications of the presence of a new fipronil-related compound in recycled wastewater need to be considered. Journal Article Highlights • The most important sources of fipronil in

  2. Surface water quality management using an integrated discharge permit and the reclaimed water market.

    Science.gov (United States)

    Jamshidi, Shervin; Niksokhan, Mohammad Hossein; Ardestani, Mojtaba

    2014-01-01

    Water quality trading is a sustainable framework for surface water quality management. It uses discharge permits to reduce the total treatment costs. For example, the case of Gharesoo River in Iran shows that the nitrogen permit market between point and non-point sources is 37% more economical than the command and control framework. Nevertheless, the cost saving may be reduced to 6% by the end of the study period (2050). This depression may be due to the limited technical support for wastewater treatment plants. Therefore, an integrated market is recommended in which the discharge permits and the reclaimed water are traded simultaneously. In this framework, the allocation of secondary treated domestic wastewater for irrigation can provide capacity for other pollutants to discharge into the surface water. This innovative approach may decrease the total treatment costs by 63% at present, while 65%, may be achieved by the end of the study period. Furthermore, this market is able to determine the environmental penalty, trading permits, and reuse prices. For example, the maximum ratio of the average reuse price to the penalty cost is determined as 1 to 10. It is introduced as an incentive indicator for stakeholders to consider the integrated market. Consequently, the applicability and the efficiency of using this approach are verified long term.

  3. Water use, productivity and interactions among desert plants

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. This project assumes that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to the interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process.

  4. Water use, productivity and interactions among desert plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. This project assumes that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to the interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process.

  5. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vesna Kostik

    2014-07-01

    Full Text Available The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupled plasma-mass spectrometry, while in ground water samples from wells boreholes and mineral waters with the technique of ion chromatography. The research shows that lithium concentration in potable water ranging from 0.1 to 5.2 μg/L; in surface water from 0.5 to 15.0 μg/L; ground water from wells boreholes from 16.0 to 49.1 μg/L and mineral water from 125.2 to 484.9 μg/L. Obtained values are in accordance with the relevant international values for the lithium content in water.

  6. Raman and surface enhanced Raman spectroscopic investigation on Lamiaceae plants

    Science.gov (United States)

    Rösch, P.; Popp, J.; Kiefer, W.

    1999-05-01

    The essential oils of Thymus vulgaris and Origanum vulgaris are studied by means of micro-Raman spectroscopy. The containing monoterpenes can be identified by their Raman spectra. Further the essential oils are investigated in their natural environment, the so-called oil cells of these Lamiaceae plants, with surface enhanced Raman spectroscopy (SERS). This method has the advantage to enhance Raman signals and furthermore the SERS effect leads to fluorescence quenching.

  7. Wildlife habitats provided by aquatic plant communities of surface mine lakes

    Energy Technology Data Exchange (ETDEWEB)

    Coss, R.D.; Nawrot, J.R.; Klimstra, W.D.

    1985-12-01

    Over 6000 ha of water impoundments have resulted from surface mining for coal in Illinois. A study was conducted to characterize aquatic plant communities in selected bodies of water, to evaluate these communities as wildlife habitat, and to determine utilization of vegetation by vertebrates. Study areas included between spoilbank impoundments and final cuts/haulroad incline lakes. All lakes had water quality sufficient to support aquatic plants dominated by Chara and Potamogeton. Littoral zone cover was good throughout the growing season; and remained relatively stable. Emergent plant communities were well-developed at only one lake; cattle grazing and steep shorelines restricted growth at other sites. A total of 89 vertebrate species was identified in and near the lakes studied. Utilization was most probably affected by development of emergent and watershed vegetation, accessibility of aquatic plants, and morphological features of the lakes. Management recommendations for enhancing wildlife habitat included grading to develop topographic variation and extensive littoral areas, and partial exclusion of cattle. Such waters can contribute significantly to available wildlife habitat in certain areas in Illinois, and may, in many instances, be a more desirable post-mining land use than row-crop production. 41 references, 4 figure, 3 table.

  8. Plant water-stress parameterization determines the strength of land-atmosphere coupling

    Science.gov (United States)

    Combe, Marie; Vilà-Guerau de Arellano, Jordi; Ouwersloot, Huug G.; Peters, Wouter

    2016-04-01

    Land-surface models that are currently used in numerical weather predictions models and earth system models all assume various plant water-stress parameterizations. We investigate the impact of this variety of parametrizations on the performance of atmospheric models. For this, we use a conceptual framework where a convective atmospheric boundary-layer (ABL) model is coupled to a daytime model for the land surface fluxes of carbon, water, and energy. We first validate our coupled model for a set of surface and upper-atmospheric diurnal observations over a grown maize field in the Netherlands. We then perform a sensitivity analysis of this coupled land-atmosphere system by varying the modeled plant water-stress response from a very insensitive to a sensitive response during dry soil conditions. We first propose and verify a feedback diagram that ties plant water-stress response and large-scale atmospheric conditions to the diurnal cycles of ABL CO2, humidity and temperature. Based on our undertanstanding of the diurnal coupled system, we then explore the impact of the assumed water-stress reponse for the development of a dry spell on a synoptic time scale. We find that during a progressive 3-week soil drying caused by evapotranspiration, an insensitive plant will dampen atmospheric heating because the vegetation continues to transpire while soil moisture is available. In contrast, the sensitive plant reduces its transpiration to prevent soil moisture depletion. But when absolute soil moisture comes close to wilting point, the insensitive plant will suddenly close its stomata causing a switch to a land-atmosphere coupling regime dominated by sensible heat exchange. We find that in both cases, our modeled progressive soil moisture depletion contributes to further atmospheric warming up to 6 K, reduced photosynthesis up to 89 %, and CO2 enrichment up to 30 ppm, but the full impact is strongly delayed for the insensitive plant. Finally, we demonstrate that the assumed

  9. Uptake of antibiotics from irrigation water by plants

    DEFF Research Database (Denmark)

    Azanu, David; Mortey, Christiana; Darko, Godfred;

    2016-01-01

    The capacity of carrot (Daucus corota L.) and lettuce (Lactuca sativa L.), two plants that are usually eaten raw, to uptake tetracycline and amoxicillin (two commonly used antibiotics) from irrigated water was investigated in order to assess the indirect human exposure to antibiotics through...... consumption of uncooked vegetables. Antibiotics in potted plants that had been irrigated with known concentrations of the antibiotics were extracted using accelerated solvent extraction and analyzed on a liquid chromatograph-tandem mass spectrometer. The plants absorbed the antibiotics from water in all...... samples. The mean concentration of amoxicillin (27.1 ng g(-1)) in all the samples was significantly higher (p = 0.04) than that of tetracycline (20.2 ng g(-1)) indicating higher uptake of amoxicillin than tetracycline. This suggests that the low antibiotic concentrations found in plants could be important...

  10. How to repel hot water from a superhydrophobic surface?

    KAUST Repository

    Yu, Zhejun

    2014-01-01

    Superhydrophobic surfaces, with water contact angles greater than 150° and slide angles less than 10°, have attracted a great deal of attention due to their self-cleaning ability and excellent water-repellency. It is commonly accepted that a superhydrophobic surface loses its superhydrophobicity in contact with water hotter than 50 °C. Such a phenomenon was recently demonstrated by Liu et al. [J. Mater. Chem., 2009, 19, 5602], using both natural lotus leaf and artificial leaf-like surfaces. However, our work has shown that superhydrophobic surfaces maintained their superhydrophobicity, even in water at 80 °C, provided that the leaf temperature is greater than that of the water droplet. In this paper, we report on the wettability of water droplets on superhydrophobic thin films, as a function of both their temperatures. The results have shown that both the water contact and slide angles on the surfaces will remain unchanged when the temperature of the water droplet is greater than that of the surface. The water contact angle, or the slide angle, will decrease or increase, however, with droplet temperatures increasingly greater than that of the surfaces. We propose that, in such cases, the loss of superhydrophobicity of the surfaces is caused by evaporation of the hot water molecules and their condensation on the cooler surface. © 2014 the Partner Organisations.

  11. Crop modeling: Studying the effect of water stress on the driving forces governing plant water potential

    Science.gov (United States)

    van Emmerik, T. H. M.; Mirfenderesgi, G.; Bohrer, G.; Steele-Dunne, S. C.; Van De Giesen, N.

    2015-12-01

    Water stress is one of the most important environmental factors that influence plant water dynamics. To prevent excessive water loss and physiological damage, plants can regulate transpiration by adjusting the stomatal aperture. This enhances survival, but also reduced photosynthesis and productivity. During periods of low water availability, stomatal regulation is a trade-off between optimization of either survival or production. Water stress defence mechanisms lead to significant changes in plant dynamics, e.g. leaf and stem water content. Recent research has shown that water content in a corn canopy can change up to 30% diurnally as a result of water stress, which has a considerable influence on radar backscatter from a corn canopy [1]. This highlighted the potential of water stress detection using radar. To fully explore the potential of water stress monitoring using radar, we need to understand the driving forces governing plant water potential. For this study, the recently developed the Finite-Element Tree-Crown Hydrodynamic model version 2 (FETCH2) model is applied to a corn canopy. FETCH2 is developed to resolve the hydrodynamic processes within a plant using the porous media analogy, allowing investigation of the influence of environmental stress factors on plant dynamics such as transpiration, photosynthesis, stomatal conductance, and leaf and stem water content. The model is parameterized and evaluated using a detailed dataset obtained during a three-month field experiment in Flevoland, the Netherlands, on a corn canopy. [1] van Emmerik, T., S. Steele-Dunne, J. Judge and N. van de Giesen: "Impact of Diurnal Variation in Vegetation Water Content on Radar Backscatter of Maize During Water Stress", Geosciences and Remote Sensing, IEEE Transactions on, vol. 52, issue 7, doi: 10.1109/TGRS.2014.2386142, 2015.

  12. Water Treatment Plants, Water Treatment Plants, Published in 2010, 1:24000 (1in=2000ft) scale, Lafayette County Land Records.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Water Treatment Plants dataset, published at 1:24000 (1in=2000ft) scale as of 2010. It is described as 'Water Treatment Plants'. Data by this publisher are...

  13. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water

    Science.gov (United States)

    Li, Jing; Yu, Haixin; Luan, Yaning

    2015-01-01

    The use of aquatic plants for phytoremediation is an important method for restoring polluted ecosystems. We sought to analyze the capacity of different aquatic plant species to absorb heavy metals and to summarize available relevant scientific data on this topic. We present a meta-analysis of Cu, Zn, and Cd absorption capacities of aquatic plants to provide a scientific basis for the selection of aquatic plants suitable for remediation of heavy-metal pollution. Plants from the Gramineae, Pontederiaceae, Ceratophyllaceae, Typhaceae and Haloragaceae showed relatively strong abilities to absorb these metals. The ability of a particular plant species to absorb a given metal was strongly correlated with its ability to absorb the other metals. However, the absorption abilities varied with the plant organ, with the following trend: roots > stems > leaves. The pH of the water and the life habits of aquatic plants (submerged and emerged) also affect the plant’s ability to absorb elements. Acidic water aids the uptake of heavy metals by plants. The correlation observed between element concentrations in plants with different aquatic life habits suggested that the enrichment mechanism is related to the surface area of the plant exposed to water. We argue that this meta-analysis would aid the selection of aquatic plants suitable for heavy-metal absorption from polluted waters. PMID:26703632

  14. Structure and reactivity of water at biomaterial surfaces.

    Science.gov (United States)

    Vogler, E A

    1998-02-01

    Molecular self association in liquids is a physical process that can dominate cohesion (interfacial tension) and miscibility. In water, self association is a powerful organizational force leading to a three-dimensional hydrogen-bonded network (water structure). Localized perturbations in the chemical potential of water as by, for example, contact with a solid surface, induces compensating changes in water structure that can be sensed tens of nanometers from the point of origin using the surface force apparatus (SFA) and ancillary techniques. These instruments reveal attractive or repulsive forces between opposing surfaces immersed in water, over and above that anticipated by continuum theory (DLVO), that are attributed to a variable density (partial molar volume) of a more-or-less ordered water structure, depending on the water wettability (surface energy) of the water-contacting surfaces. Water structure at surfaces is thus found to be a manifestation of hydrophobicity and, while mechanistic/theoretical interpretation of experimental results remain the subject of some debate in the literature, convergence of experimental observations permit, for the first time, quantitative definition of the relative terms 'hydrophobic' and 'hydrophilic'. In particular, long-range attractive forces are detected only between surfaces exhibiting a water contact angle theta > 65 degrees (herein defined as hydrophobic surfaces with pure water adhesion tension tau O = gamma O cos theta 30 dyn/cm). These findings suggest at least two distinct kinds of water structure and reactivity: a relatively less-dense water region against hydrophobic surfaces with an open hydrogen-bonded network and a relatively more-dense water region against hydrophilic surfaces with a collapsed hydrogen-bonded network. Importantly, membrane and SFA studies reveal a discrimination between biologically-important ions that preferentially solubilizes divalent ions in more-dense water regions relative to less

  15. Distribution of {sup 129}I in terrestrial surface water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuegao [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Gong, Meng [College of Hydrology and Water Resources, Hohai University, Nanjing (China); Yi, Peng, E-mail: pengyi1915@163.com [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Aldahan, Ala [Department of Earth Sciences, Uppsala University, Uppsala (Sweden); Department of Geology, United Arab Emirates University, Al Ain (United Arab Emirates); Yu, Zhongbo [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China); Possnert, Göran [Tandem Laboratory, Uppsala University, Uppsala (Sweden); Chen, Li [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098 (China); College of Hydrology and Water Resources, Hohai University, Nanjing (China)

    2015-10-15

    The global distribution of the radioactive isotope iodine-129 in surface waters (lakes and rivers) is presented here and compared with the atmospheric deposition and distribution in surface marine waters. The results indicate relatively high concentrations in surface water systems in close vicinity of the anthropogenic release sources as well as in parts of Western Europe, North America and Central Asia. {sup 129}I level is generally higher in the terrestrial surface water of the Northern hemisphere compared to the southern hemisphere. The highest values of {sup 129}I appear around 50°N and 40°S in the northern and southern hemisphere, separately. Direct gaseous and marine atmospheric emissions are the most likely avenues for the transport of {sup 129}I from the sources to the terrestrial surface waters. To apply iodine-129 as process tracer in terrestrial surface water environment, more data are needed on {sup 129}I distribution patterns both locally and globally.

  16. Water content distribution in the surface layer of Maoping slope

    Institute of Scientific and Technical Information of China (English)

    LIU Yuewu; CHEN Huixin; LIU Qingquan; GONG Xin; ZHANG Dawei; LI Lianxiang

    2005-01-01

    The water content distribution in the surface layer of Maoping slope has been studied by testing the water content at 31 control sites. The water content profiles at these sites have also been determined. The water content distributions at different segments have been obtained by using the Kriging method of geostatistics. By comparing the water content distributions with the landform of the slope, it was shown that the water content is closely dependent on the landform of the slope. The water content distribution in the surface layer provided a fundamental basis for landslide predication and treatment.

  17. Use of reactor effluent water as steam plant boiler feed

    Energy Technology Data Exchange (ETDEWEB)

    Clukey, H.V.

    1953-12-08

    The radiological aspects of a proposal to recover some of the heat now wasted in cooling water from the Hanford reactors by using the hot water as boiler feed for the steam plants in the 100 Areas are evaluated. The radioactive material in the hot effluent water will contaminate the boiler feed water system, cause additional radiation exposure of personnel, and increase the cost of maintenance and radiation protection, but very little radioactive material will be carried over into the steam system. At present steam loads, this proposal is economically attractive; other proposals being considered may nullify any savings from this one. 21 refs., 1 fig., 10 tabs.

  18. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    Science.gov (United States)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  19. Section 11: Surface Water Pathway - Likelihood of Release

    Science.gov (United States)

    Surface water releases can include the threat to targets from overland flow of hazardous substances and from flooding or the threat from the release of hazardous substances to ground water and the subsequent discharge of contaminated ground w

  20. Biofilm development on metal surfaces in tropical marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, F.P.; Bhosle, N.B.

    environments. However, little is known about biofilm bacteria developed on metal surfaces, especially immersed in tropical marine waters. Similarly, not much is known about the nature of organic matter deposited on the surfaces over the period of immersion...

  1. The glass-liquid transition of water on hydrophobic surfaces.

    Science.gov (United States)

    Souda, Ryutaro

    2008-09-28

    Interactions of thin water films with surfaces of graphite and vitrified room-temperature ionic liquid [1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)])] were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature and annealing time to elucidate the glass-liquid transition of water at the molecular level. Surface diffusion of water occurs at temperatures higher than 120 K, thereby forming three-dimensional clusters (a two-dimensional layer) on the [bmim][PF(6)] (graphite) surface. The hydrophobic effect of the surface decreases with increasing coverage of water; the bulklike properties evolve up to 40 ML, as evidenced by the occurrence of film dewetting at around the conventional glass transition temperature (140 K). Results also showed that aging is necessary for the water monolayer (a 40 ML water film) to dewet the graphite ([bmim][PF(6)]) surface. The occurrence of aging is explainable by the successive evolution of two distinct liquids during the glass-liquid transition: low density liquid is followed by supercooled liquid water. The water monolayer on graphite is characterized by the preferred orientation of unpaired OH groups toward the surface; this structure is arrested during the aging time despite the occurrence of surface diffusion. However, the water monolayer formed on the [bmim][PF(6)] surface agglomerates immediately after the commencement of surface diffusion. The structure of low density liquid tends to be arrested by the attractive interaction with the neighbors.

  2. Water quality and ground-water/surface-water interactions along the John River near Anaktuvuk Pass, Alaska, 2002-2003

    Science.gov (United States)

    Moran, Edward H.; Brabets, Timothy P.

    2005-01-01

    The headwaters of the John River are located near the village ofAnaktuvuk Pass in the central Brooks Range of interior Alaska. With the recent construction of a water-supply system and a wastewater-treatment plant, most homes in Anaktuvuk Pass now have modern water and wastewater systems. The effluent from the treatment plant discharges into a settling pond near a tributary of the John River. The headwaters of the John River are adjacent to Gates of the Arctic National Park and Preserve, and the John River is a designated Wild River. Due to the concern about possible water-quality effects from the wastewater effluent, the hydrology of the John River near Anaktuvuk Pass was studied from 2002 through 2003. Three streams form the John River atAnaktuvuk Pass: Contact Creek, Giant Creek, and the John RiverTributary. These streams drain areas of 90.3 km (super 2) , 120 km (super 2) , and 4.6 km (super 2) , respectively. Water-qualitydata collected from these streams from 2002-03 indicate that the waters are a calcium-bicarbonate type and that Giant Creek adds a sulfate component to the John River. The highest concentrations of bicarbonate, calcium, sodium, sulfate, and nitrate were found at the John River Tributary below the wastewater-treatment lagoon. These concentrations have little effect on the water quality of the John River because the flow of the John River Tributary is only about 2 percent of the John River flow. To better understand the ground-water/surface-water interactions of the upper John River, a numerical groundwater-flow model of the headwater area of the John River was constructed. Processes that occur during spring break-up, such as thawing of the active layer and the frost table and the resulting changes of storage capacity of the aquifer, were difficult to measure and simulate. Application and accuracy of the model is limited by the lack of specific hydrogeologic data both spatially and temporally. However

  3. Engineering Extreme Hydrophobic and Super Slippery Water Shedding Surfaces

    Science.gov (United States)

    McHale, Glen

    2017-04-01

    The intrinsic water repellency of a material is fundamentally determined by its surface chemistry, but alone this does not determine the ability of a surface to shed water. Physical factors such as the surface texture/topography, rigidity/flexibility, granularity/porosity combined with the intrinsic wetting properties of the liquid with the surface and whether it is infused by a lubricating liquid are equally important. In this talk I will outline fundamental, but simple, ideas on the topographic enhancement of surface chemistry to create superhydrophobicity, the adhesion of particles to liquid-air interfaces to create liquid marbles, elastocapillarity to create droplet wrapping, and lubricant impregnated surfaces to create completely mobile droplets [1-3]. I will discuss how these ideas have their origins in natural systems and surfaces, such as Lotus leaves, galling aphids and the Nepenthes pitcher plant. I will show how we have applied these concepts to study the wetting of granular systems, such as sand, to understand extreme soil water repellency. I will argue that relaxing the assumption that a solid substrate is fixed in shape and arrangement, can lead to the formation of liquid marbles, whereby a droplet self-coats in a hydrophobic powder/grains. I will show that the concepts of wetting and porosity blur as liquids penetrate into a porous or granular substrate. I will also discuss how lubricant impregnated super slippery surfaces can be used to study a pure constant contact angle mode of droplet evaporation [4]. Finally, I will show dewetting of a surface is not simply a video reversal of wetting [5], and I will give an example of the use of perfect hydrophobicity using the Leidenfrost effect to create a new type of low friction mechanical and hear engine [6]. References: [1] Shirtcliffe, N. J., et al., An introduction to superhydrophobicity. Advances in Colloid and Interface Science, vol. 161, pp.124-138 (2010). [2] McHale, G. & Newton, M. I. Liquid

  4. Conjunctive Surface Water and Groundwater Management under Climate Change

    Directory of Open Access Journals (Sweden)

    Xiaodong eZhang

    2015-09-01

    Full Text Available Climate change can result in significant impacts on regional and global surface water and groundwater resources. Using groundwater as a complimentary source of water has provided an effective means to satisfy the ever-increasing water demands and deal with surface water shortages problems due to robust capability of groundwater in responding to climate change. Conjunctive use of surface water and groundwater is crucial for integrated water resources management. It is helpful to reduce vulnerabilities of water supply systems and mitigate the water supply stress in responding to climate change. Some critical challenges and perspectives are discussed to help decision/policy makers develop more effective management and adaptation strategies for conjunctive water resources use in facing climate change under complex uncertainties.

  5. Nicotiana tabacum as model for ozone - plant surface reactions

    Science.gov (United States)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  6. Measurements and simulations of water transport in maize plants

    Science.gov (United States)

    Heinlein, Florian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2017-04-01

    In Central Europe climate change will become manifest in the increase of extreme weather events like flash floods, heat waves and summer droughts, and in a shift of precipitation towards winter months. Therefore, regional water availability will alter which has an effect on future crop growth, water use efficiency and yields. To better estimate these effects accurate model descriptions of transpiration and other parts of the water balance are important. In this study, we determined transpiration of four maize plants on a field of the research station Scheyern (about 40km North of Munich) by means of sap flow measurement devices (ICQ International Pty Ltd, Australia) using the Heat-Ratio-Method: two temperature probes, 0.5 cm above and below a heater, detect a heat pulse and its speed which facilitates the calculation of sap flow. Additionally, high resolution changes of stem diameters were measured with dendrometers (DD-S, Ecomatik). The field was also situated next to an eddy covariance station which provided latent heat fluxes from the soil-plant system. We also performed terrestrial laser scans of the respective plants to extract the plant architectures. These structures serve as input for our mechanistic transpiration model simulating the water transport within the plant. This model, which has already been successfully applied to single Fagus sylvatica L. trees, was adapted to agricultural plants such as maize. The basic principle of this model is to solve a 1-D Richards equation along the graph of the single plants. A comparison between the simulations and the measurements is presented and discussed.

  7. Spreading of Cholera through Surface Water

    Science.gov (United States)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i

  8. Invasive alien plants and water resources in South Africa: current understanding, predictive ability and research challenges

    CSIR Research Space (South Africa)

    Gorgens, AHM

    2004-01-01

    Full Text Available Predictions that invasive alien Plants would use significant amounts of water were a major factor in the establishment of South Africa's Working for Water programme, which aims to protect water resources by clearing these plants. The predictions...

  9. Region 9 Surface Water Intakes (SDWIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPAâ??s Safe Drinking Water Information System (SDWIS) databases store information about drinking water. The federal version (SDWIS/FED) stores the information EPA...

  10. COMMUNITY PARTICIPATION IN SURFACE WATER HARVESTING ...

    African Journals Online (AJOL)

    USER

    2014-11-25

    Nov 25, 2014 ... There is seasonal water scarcity in Marigat Division and the water demand has been ... with improved storage and rainwater harvesting methods. Such water can be ..... in the planning process and decision making and this ... The organizations support the community ... systems for domestic uses in urban.

  11. Scenarios for low carbon and low water electric power plant operations: implications for upstream water use

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset includes all data used in the creation of figures and graphs in the paper: "Scenarios for low carbon and low water electric power plant operations:...

  12. Quantitative assessment to the structural basis of water repellency in natural and technical surfaces.

    Science.gov (United States)

    Wagner, P; Fürstner, R; Barthlott, W; Neinhuis, C

    2003-04-01

    Many plant surfaces are water-repellent because of a complex 3-dimensional microstructure of the epidermal cells (papillae) and a superimposed layer of hydrophobic wax crystals. Due to its surface tension, water does not spread on such surfaces but forms spherical droplets that lie only on the tips of the microstructures. Studying six species with heavily microstructured surfaces by a new type of confocal light microscopy, the number, height, and average distance of papillae per unit area were measured. These measurements were combined with those of an atomic force microscope which was used to measure the exposed area of the fine-structure on individual papillae. According to calculations based upon these measurements, roughening results in a reduction of the contact area of more than 95% compared with the projected area of a water droplet. By applying water/methanol solutions of decreasing surface tension to a selection of 33 water-repellent species showing different types of surface structures, the critical value at which wetting occurs was determined. The results impressively demonstrated the importance of roughening on different length scales for water-repellency, since extremely papillose surfaces, having an additional wax layer, are able to resist up to 70% methanol. Surfaces that lack papillae or similar structures on the same length scale are much more easily wetted.

  13. Integrating water by plant roots over spatially distributed soil salinity

    Science.gov (United States)

    Homaee, Mehdi; Schmidhalter, Urs

    2010-05-01

    In numerical simulation models dealing with water movement and solute transport in vadose zone, the water budget largely depends on uptake patterns by plant roots. In real field conditions, the uptake pattern largely changes in time and space. When dealing with soil and water salinity, most saline soils demonstrate spatially distributed osmotic head over the root zone. In order to quantify such processes, the major difficulty stems from lacking a sink term function that adequately accounts for the extraction term especially under variable soil water osmotic heads. The question of how plants integrate such space variable over its rooting depth remains as interesting issue for investigators. To move one step forward towards countering this concern, a well equipped experiment was conducted under heterogeneously distributed salinity over the root zone with alfalfa. The extraction rates of soil increments were calculated with the one dimensional form of Richards equation. The results indicated that the plant uptake rate under different mean soil salinities preliminary reacts to soil salinity, whereas at given water content and salinity the "evaporative demand" and "root activity" become more important to control the uptake patterns. Further analysis revealed that root activity is inconstant when imposed to variable soil salinity. It can be concluded that under heterogeneously distributed salinity, most water is taken from the less saline increment while the extraction from other root zone increments with higher salinities never stops.

  14. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  15. Adsorption mechanism of water molecule on goethite (010) surface

    Science.gov (United States)

    Xiu, Fangyuan; Zhou, Long; Xia, Shuwei; Yu, Liangmin

    2016-12-01

    Goethite widely exists among ocean sediments; it plays an important role in fixing heavy metals and adsorbing organic contaminants. So the understanding of the adsorbing process of water molecule on its surface will be very helpful to further reveal such environmental friendly processes. The configuration, electronic properties and interaction energy of water molecules adsorbed on pnma goethite (010) surface were investigated in detail by using density functional theory on 6-31G (d,p) basis set and projector- augment wave (PAW) method. The mechanism of the interaction between goethite surface and H2O was proposed. Despite the differences in total energy, there are four possible types of water molecule adsorption configurations on goethite (010) surface (Aa, Ab, Ba, Bb), forming coordination bond with surface Fe atom. Results of theoretical modeling indicate that the dissociation process of adsorbed water is an endothermic reaction with high activation energy. The dissociation of adsorbed water molecule is a proton transportation process between water's O atoms and surface. PDOS results indicate that the bonding between H2O and (010) surface is due to the overlapping of water's 2p orbitals and Fe's 3d orbitals. These results clarify the mechanism on how adsorbed water is dissociated on the surface of goethite and potentially provide useful information of the surface chemistry of goethite.

  16. Mathematics for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    Science.gov (United States)

    South Dakota Dept. of Environmental Protection, Pierre.

    This booklet is intended to aid the prospective waste treatment plant operator or drinking water plant operator in learning to solve mathematical problems, which is necessary for Class I certification. It deals with the basic mathematics which a Class I operator may require in accomplishing day-to-day tasks. The book also progresses into problems…

  17. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository

    HEPPELL, J.

    2014-06-01

    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil parameters that are averaged over the soil profile. However, many applications require models to more accurately represent the soil–plant–atmosphere continuum, in particular, water movement and saturation within specific parts of the soil profile. In this paper a mathematical model for water uptake by a plant root system from unsaturated soil is presented. The model provides an estimate of the water content level within the soil at different depths, and the uptake of water by the root system. The model was validated using field data, which include hourly water content values at five different soil depths under a grass/herb cover over 1 year, to obtain a fully calibrated system for plant water uptake with respect to climate conditions. When compared quantitatively to a simple water balance model, the proposed model achieves a better fit to the experimental data due to its ability to vary water content with depth. To accurately model the water content in the soil profile, the soil water retention curve and saturated hydraulic conductivity needed to vary with depth.

  18. Infiltration of pesticides in surface water into nearby drinking water supply wells

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    Drinking water wells are often placed near streams because streams often overly permeable sediments and the water table is near the surface in valleys, and so pumping costs are reduced. The lowering of the water table by pumping wells can reverse the natural flow from the groundwater to the stream......, inducing infiltration of surface water to groundwater and consequently to the drinking water well. Many attenuation processes can take place in the riparian zone, mainly due to mixing, biodegradation and sorption. However, if the water travel time from the surface water to the pumping well is too short......, or if the compounds are poorly degradable, contaminants can reach the drinking water well at high concentrations, jeopardizing drinking water quality. Here we developed a reactive transport model to evaluate the risk of contamination of drinking water wells by surface water pollution. The model was validated using...

  19. Effect of drinking water treatment process parameters on biological removal of manganese from surface water.

    Science.gov (United States)

    Hoyland, Victoria W; Knocke, William R; Falkinham, Joseph O; Pruden, Amy; Singh, Gargi

    2014-12-01

    Soluble manganese (Mn) presents a significant treatment challenge to many water utilities, causing aesthetic and operational concerns. While application of free chlorine to oxidize Mn prior to filtration can be effective, this is not feasible for surface water treatment plants using ozonation followed by biofiltration because it inhibits biological removal of organics. Manganese-oxidizing bacteria (MOB) readily oxidize Mn in groundwater treatment applications, which normally involve pH > 7.0. The purpose of this study was to evaluate the potential for biological Mn removal at the lower pH conditions (6.2-6.3) often employed in enhanced coagulation to optimize organics removal. Four laboratory-scale biofilters were operated over a pH range of 6.3-7.3. The biofilters were able to oxidize Mn at a pH as low as pH 6.3 with greater than 98% Mn removal. Removal of simulated organic ozonation by-products was also greater than 90% in all columns. Stress studies indicated that well-acclimated MOB can withstand variations in Mn concentration (e.g., 0.1-0.2 mg/L), hydraulic loading rate (e.g., 2-4 gpm/ft(2); 1.36 × 10(-3)-2.72 × 10(-3) m/s), and temperature (e.g., 7-22 °C) typically found at surface water treatment plants at least for relatively short (1-2 days) periods of time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Uptake of antibiotics from irrigation water by plants.

    Science.gov (United States)

    Azanu, David; Mortey, Christiana; Darko, Godfred; Weisser, Johan Juhl; Styrishave, Bjarne; Abaidoo, Robert Clement

    2016-08-01

    The capacity of carrot (Daucus corota L.) and lettuce (Lactuca sativa L.), two plants that are usually eaten raw, to uptake tetracycline and amoxicillin (two commonly used antibiotics) from irrigated water was investigated in order to assess the indirect human exposure to antibiotics through consumption of uncooked vegetables. Antibiotics in potted plants that had been irrigated with known concentrations of the antibiotics were extracted using accelerated solvent extraction and analyzed on a liquid chromatograph-tandem mass spectrometer. The plants absorbed the antibiotics from water in all tested concentrations of 0.1-15 mg L(-1). Tetracycline was detected in all plant samples, at concentrations ranging from 4.4 to 28.3 ng/g in lettuce and 12.0-36.8 ng g(-1) fresh weight in carrots. Amoxicillin showed absorption with concentrations ranging from 13.7 ng g(-1) to 45.2 ng g(-1) for the plant samples. The mean concentration of amoxicillin (27.1 ng g(-1)) in all the samples was significantly higher (p = 0.04) than that of tetracycline (20.2 ng g(-1)) indicating higher uptake of amoxicillin than tetracycline. This suggests that the low antibiotic concentrations found in plants could be important for causing antibiotics resistance when these levels are consumed.

  1. Soil Salinity Controls on Water and Carbon Cycling by Sunflower Plants

    Science.gov (United States)

    Runkle, B.; Liang, X.; Dracup, J.; Hao, F.; Zeng, A.; Zhang, J.; He, B.; Oki, T.

    2007-12-01

    Agricultural effects on water cycling are of great importance for regional water resources management. These effects vary based on local soil and climate conditions, and are particularly modulated by high soil salinity levels, which stress plant growth and change their water use efficiency. Increasing salinization is predicted under hotter, drier conditions resulting from global climate change and from increased societal pressure on agricultural lands. This increased ionic presence creates a higher soil osmotic pressure that increases the resistance to water flow through the plant. This change also impacts the assimilation of carbon dioxide through the stomatal opening, and so affects rates of both photosynthesis and transpiration. Current agricultural and land-surface models that account for salinity do so in an overly empirical manner that cannot account for changes at different time scales in meteorological conditions. They tend to be ill equipped to examine how changing carbon dioxide levels may modify a plant's response to soil salinity. As a result, we present a new model of soil-vegetation- atmosphere water transfer that explicitly incorporates the role of soil salinity in changing this system's behavior. This model will allow for much greater flexibility in examining how vegetation may change the local water cycle under the joint impacts of both salinity and climate change. This model is supported by field research on the effects of salinity on sunflower plants in a large irrigation district in Inner Mongolia, China. Results presented include the role of salinity in changing stomatal regulation of water use efficiency, sub-canopy changes in leaf pressure, and changes in root activity. Modeling at sub-hourly time scales allows for a more precise understanding of how soil salinity changes the diurnal cycle of plant water use.

  2. Classroom Techniques to Illustrate Water Transport in Plants

    Science.gov (United States)

    Lakrim, Mohamed

    2013-01-01

    The transport of water in plants is among the most difficult and challenging concepts to explain to students. It is even more difficult for students enrolled in an introductory general biology course. An easy approach is needed to demonstrate this complex concept. I describe visual and pedagogical examples that can be performed quickly and easily…

  3. Modelling total sewage water discharge to a regional treatment plant.

    NARCIS (Netherlands)

    Witter, J.V.; Stricker, H.

    1986-01-01

    In the Netherlands, sewage water is often treated on a regional basis. In case of combined systems that are spread within a large region of several hundreds of square kilometers, reduction of the hydraulic capacity of the regional treatment plant seems possible, because of space-time variations in r

  4. Identifying Energy Savings in Water and Wastewater Plants - Illinois

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  5. Identifying Energy Savings in Water and Wastewater Plants - Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  6. Identifying Energy Savings in Water and Wastewater Plants - West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  7. Identifying Energy Savings in Water and Wastewater Plants - Iowa

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  8. Identifying Energy Savings in Water and Wastewater Plants - Indiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  9. Classroom Techniques to Illustrate Water Transport in Plants

    Science.gov (United States)

    Lakrim, Mohamed

    2013-01-01

    The transport of water in plants is among the most difficult and challenging concepts to explain to students. It is even more difficult for students enrolled in an introductory general biology course. An easy approach is needed to demonstrate this complex concept. I describe visual and pedagogical examples that can be performed quickly and easily…

  10. Simulation of water cluster assembly on a graphite surface.

    Science.gov (United States)

    Lin, C S; Zhang, R Q; Lee, S T; Elstner, M; Frauenheim, Th; Wan, L J

    2005-07-28

    The assembly of small water clusters (H2O)n, n = 1-6, on a graphite surface is studied using a density functional tight-binding method complemented with an empirical van der Waals force correction, with confirmation using second-order Møller-Plesset perturbation theory. It is shown that the optimized geometry of the water hexamer may change its original structure to an isoenergy one when interacting with a graphite surface in some specific orientation, while the smaller water cluster will maintain its cyclic or linear configurations (for the water dimer). The binding energy of water clusters interacting with graphite is dependent on the number of water molecules that form hydrogen bonds, but is independent of the water cluster size. These physically adsorbed water clusters show little change in their IR peak position and leave an almost perfect graphite surface.

  11. Occurrence of bisphenol A in surface water, drinking water and plasma from Malaysia with exposure assessment from consumption of drinking water.

    Science.gov (United States)

    Santhi, V A; Sakai, N; Ahmad, E D; Mustafa, A M

    2012-06-15

    This study investigated the level of bisphenol A (BPA) in surface water used as potable water, drinking water (tap and bottled mineral water) and human plasma in the Langat River basin, Malaysia. BPA was present in 93% of the surface water samples at levels ranging from below limit of quantification (LOQ; 1.3 ng/L) to 215 ng/L while six fold higher levels were detected in samples collected near industrial and municipal sewage treatment plant outlets. Low levels of BPA were detected in most of the drinking water samples. BPA in tap water ranged from 3.5 to 59.8 ng/L with the highest levels detected in samples collected from taps connected to PVC pipes and water filter devices. Bottled mineral water had lower levels of BPA (3.3±2.6 ng/L) although samples stored in poor storage condition had significantly higher levels (11.3±5.3 ng/L). Meanwhile, only 17% of the plasma samples had detectable levels of BPA ranging from 0.81 to 3.65 ng/mL. The study shows that BPA is a ubiquitous contaminant in surface, tap and bottled mineral water. However, exposure to BPA from drinking water is very low and is less than 0.01% of the tolerable daily intake (TDI).

  12. Surface Curvature-Induced Directional Movement of Water Droplets

    CERN Document Server

    Lv, Cunjing; Yin, Yajun; Zheng, Quanshui

    2010-01-01

    Here we report a surface curvature-induced directional movement phenomenon, based on molecular dynamics simulations, that a nanoscale water droplet at the outer surface of a graphene cone always spontaneously moves toward the larger end of the cone, and at the inner surface toward the smaller end. The analysis on the van der Waals interaction potential between a single water molecule and a curved graphene surface reveals that the curvature with its gradient does generate the driving force resulting in the above directional motion. Furthermore, we found that the direction of the above movement is independent of the wettability, namely is regardless of either hydrophobic or hydrophilic of the surface. However, the latter surface is in general leading to higher motion speed than the former. The above results provide a basis for a better understanding of many reported observations, and helping design of curved surfaces with desired directional surface water transportation.

  13. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  14. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  15. Models of Fate and Transport of Pollutants in Surface Waters

    Science.gov (United States)

    Okome, Gloria Eloho

    2013-01-01

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states.…

  16. Plant rooting strategies in water-limited ecosystems

    Science.gov (United States)

    Collins, D. B. G.; Bras, R. L.

    2007-06-01

    Root depth and distribution are vital components of a plant's strategy for growth and survival in water-limited ecosystems and play significant roles in hydrologic and biogeochemical cycling. Knowledge of root profiles is invaluable in measuring and predicting ecosystem dynamics, yet data on root profiles are difficult to obtain. We developed an ecohydrological model of environmental forcing, soil moisture dynamics, and transpiration to explore dependencies of optimal rooting on edaphic, climatic, and physiological factors in water-limited ecosystems. The analysis considers individual plants with fixed biomass. Results of the optimization approach are consistent with profiles observed in nature. Optimal rooting was progressively deeper, moving from clay to loam, silt and then sand, and in wetter and cooler environments. Climates with the majority of the rainfall in winter produced deeper roots than if the rain fell in summer. Long and infrequent storms also favored deeper rooting. Plants that exhibit water stress at slight soil moisture deficiencies consistently showed deeper optimal root profiles. Silt generated the greatest sensitivity to differences in climatic and physiological parameters. The depth of rooting is governed by the depth to which water infiltrates, as influenced by soil properties and the timing and magnitude of water input and evaporative demand. These results provide a mechanistic illustration of the diversity of rooting strategies in nature.

  17. Water osmotic absorption in Coleus blumei plants under salinity stress

    Directory of Open Access Journals (Sweden)

    José Ozinaldo Alves de Sena

    2006-11-01

    Full Text Available Three month old Coleus blumei plants in pots were treated with different NaCl concentrations: 0.00, 0.25, 0.50 and 1.00%. To determine the water osmotic absorption, the plants had their stems cut at 10 cm from the soil surface. The remaining stems were linked to glass tubes by flexible rubber tubes. Readings of the water column level in the glass tubes were performed at each 30 minutes, corresponding to the water osmotic absorption, with a total of eleven readings. Other Coleus blumei, with the same age, received the NaCl concentrations, and were evaluated under field conditions in terms of transpiration and stomatal resistance. A randomized complete block analysis was used with five replications. An increase of osmotic absorption was verified for all treatments up to three hours after application. Then a proportional reversion of osmotic absorption to the increases on saline concentration was observed, with a higher effect in the treatment with NaCl 1.00%, showing the increase of water loss by the roots. During this period time, the treatment showed a normal linear growth of the osmotic absorption. Transpiration was reduced proportionally to the increase of salinity concentration.Mudas envasadas de Coleus blumei, com três meses de idade, foram submetidas a diferentes concentrações de cloreto de sódio (NaCl: 0,00; 0,25; 0,50 e 1,00%. Visando determinar a absorção osmótica, as mudas tiveram seus caules cortados a 10 cm acima do solo. Os caules remanescentes foram interligados a tubos de vidro por tubos flexíveis de borracha. Foram feitas leituras (cm a cada 30 minutos dos níveis das colunas de água nos capilares, correspondentes às absorções osmóticas de água, sendo ao todo realizadas onze leituras. Em outro momento, mudas de C. blumei, com a mesma idade das anteriores, receberam as mesmas concentrações de NaCl descritas anteriormente, e, ao ar livre, foram avaliadas em termos de transpiração e resistência estomática, usando

  18. Effects of lowering nitrogen and phosphorus surpluses in agriculture on the quality of groundwater and surface water in the Netherlands

    NARCIS (Netherlands)

    Oenema, O.; Liere, van L.; Schoumans, O.F.

    2005-01-01

    The ecological status of many surface waters in the Netherlands (NL) is poor, due to relatively high discharges of N and P from agriculture, industry and wastewater treatment plants. Agriculture is suggested to be a major source, as discharges from industry and wastewater treatment plants have sharp

  19. Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces.

    Science.gov (United States)

    Delele, M A; Nuyttens, D; Duga, A T; Ambaw, A; Lebeau, F; Nicolai, B M; Verboven, P

    2016-09-14

    The dynamic impact behaviour of water droplets on plant surfaces was investigated based on a multiphase computational fluid dynamics (CFD) model. The study was conducted using the Volume Of Fluid (VOF) approach. The static contact angle of water droplets on leaf surfaces of different plants (apple, pear, leek and cabbage) was measured and found to vary between 54.9 and 138.2°. Impact experiments were conducted by monitoring the flow and impact characteristics of water droplets on leaves in still air with a high speed camera. Droplets were generated by an agricultural flat fan spray nozzle moving across the leaf at constant speed. The nozzle produced droplets with diameters ranging from 20.6 up to 550.8 μm, and droplet velocity values near the impact between 0.03 and 13.2 m s(-1). The CFD model was capable of predicting the observed dynamic impact behaviour of droplets on the plant surfaces. The fate of the droplets after the impact process for adhesion, bouncing or splashing was accurately predicted for Weber numbers (We) in the range of 0.007 to 1096 and droplet Reynolds numbers (Re) between 5 to 8000. The process was highly dependent on the surface and droplet flow characteristics during the impact. Combinations of We, Re and Ohnesorge (Oh) numbers defined the droplet maximum spread factor, the number of secondary droplets generated as a result of the splashing process and the transition between the different impact outcomes. These criteria can then be used in field scale spray deposition and drift models to better understand agricultural spray operations.

  20. Uranium and radon estimation in water and plants using SSNTD

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N.P.; Singh, M.; Singh, S.; Virk, H.S. (Guru Nanak Dev Univ., Amritsar (India). Dept. of Physics)

    1984-01-01

    Lexan plastic track detector is used to estimate the uranium content of water and plant samples collected from the Dalhousie area, Chamba district, Himachal Pradesh, India. Uranium content has been found to vary from 0.26 +- 0.01 to 6.77 +- 0.06 ppb in water and from 0.65 +- 0.04 to 2.61 +- 0.08 ppm in plant samples. The track production rate due to radon in water has been found to vary from 1.44 +- 0.18 to 385.25 +- 0.70 tracks cm/sup -2/ hr/sup -1/ litre/sup -1/ using LR-115 plastic as a solid state nuclear track detector.

  1. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  2. Naturally occurring radionuclides in materials derived from urban water treatment plants in southeast Queensland, Australia.

    Science.gov (United States)

    Kleinschmidt, Ross; Akber, Riaz

    2008-04-01

    An assessment of radiologically enhanced residual materials generated during treatment of domestic water supplies in southeast Queensland, Australia, was conducted. Radioactivity concentrations of U-238, Th-232, Ra-226, Rn-222, and Po-210 in water, sourced from both surface water catchments and groundwater resources were examined both pre- and post-treatment under typical water treatment operations. Surface water treatment processes included sedimentation, coagulation, flocculation and filtration, while the groundwater was treated using cation exchange, reverse osmosis, activated charcoal or methods similar to surface water treatment. Waste products generated as a result of treatment included sediments and sludges, filtration media, exhausted ion exchange resin, backwash and wastewaters. Elevated residual concentrations of radionuclides were identified in these waste products. The waste product activity concentrations were used to model the radiological impact of the materials when either utilised for beneficial purposes, or upon disposal. The results indicate that, under current water resource exploitation programs, reuse or disposal of the treatment wastes from large scale urban water treatment plants in Australia do not pose a significant radiological risk.

  3. Shallow Water Propagation and Surface Reverberation Modeling

    Science.gov (United States)

    2014-07-29

    term goals were to 1. exploit measurements of breaking wave noise and photographic images of whitecaps to infer bubble cloud populations at the sea ...surface reverberation in wind-driven seas , an additional objective has been to study the role of sub-surface bubbles on the attenuation and scattering of...acoustic signals, including determining methods for quantifying bubble populations with video footage of the sea surface and developing models of

  4. Water-Mediated Interactions between Hydrophilic and Hydrophobic Surfaces.

    Science.gov (United States)

    Kanduč, Matej; Schlaich, Alexander; Schneck, Emanuel; Netz, Roland R

    2016-09-01

    All surfaces in water experience at short separations hydration repulsion or hydrophobic attraction, depending on the surface polarity. These interactions dominate the more long-ranged electrostatic and van der Waals interactions and are ubiquitous in biological and colloidal systems. Despite their importance in all scenarios where the surface separation is in the nanometer range, the origin of these hydration interactions is still unclear. Using atomistic solvent-explicit molecular dynamics simulations, we analyze the interaction free energies of charge-neutral model surfaces with different elastic and water-binding properties. The surface polarity is shown to be the most important parameter that not only determines the hydration properties and thereby the water contact angle of a single surface but also the surface-surface interaction and whether two surfaces attract or repel. Elastic properties of the surfaces are less important. On the basis of surface contact angles and surface-surface binding affinities, we construct a universal interaction diagram featuring three different interaction regimes-hydration repulsion, cavitation-induced attraction-and for intermediate surface polarities-dry adhesion. On the basis of scaling arguments and perturbation theory, we establish simple combination rules that predict the interaction behavior for combinations of dissimilar surfaces.

  5. Water Extraction from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or

  6. Surface water quality assessment by environmetric methods.

    Science.gov (United States)

    Boyacioglu, Hülya; Boyacioglu, Hayal

    2007-08-01

    This environmetric study deals with the interpretation of river water monitoring data from the basin of the Buyuk Menderes River and its tributaries in Turkey. Eleven variables were measured to estimate water quality at 17 sampling sites. Factor analysis was applied to explain the correlations between the observations in terms of underlying factors. Results revealed that, water quality was strongly affected from agricultural uses. Cluster analysis was used to classify stations with similar properties and results distinguished three groups of stations. Water quality at downstream of the river was quite different from the other part. It is recommended to involve the environmetric data treatment as a substantial procedure in assessment of water quality data.

  7. 40 CFR 257.3-3 - Surface water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Surface water. 257.3-3 Section 257.3-3... and Practices § 257.3-3 Surface water. (a) For purposes of section 4004(a) of the Act, a facility... Water Act, as amended. (b) For purposes of section 4004(a) of the Act, a facility shall not cause...

  8. Construction of a new waste-water treatment plant, building 676, route Maxwell

    CERN Multimedia

    TS Department

    2008-01-01

    A new waste-water treatment plant is being constructed on Route Maxwell to treat the effluents from the TS/MME/CCS surface treatment workshops. For this purpose, excavation work is being performed in two separate locations along Route Maxwell, causing a slight disruption to traffic in these areas. Site access through Gate C should, however, be maintained. The work is scheduled to continue until February 2009.

  9. Preliminary monitoring of faecal indicator organisms of surface water ...

    African Journals Online (AJOL)

    Preliminary monitoring of faecal indicator organisms of surface water: A case study ... in Mvudi River used as a source of domestic water for people who live around it. ... of Water Affairs and Forestry of South Africa (DWAF) and the World Health ...

  10. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2013-05-15

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon.

  11. Multivariate statistical analysis for the surface water quality of the Luan River, China

    Institute of Scientific and Technical Information of China (English)

    Zhi-wei ZHAO; Fu-yi CUI

    2009-01-01

    In order to analyze the characteristics of surface water resource quality for the reconstruction of old water treatment plant, multivariate statistical techniques such as cluster analysis and factor analysis were applied to the data of Yuqiao Reservoir--surface water resource of the Luan River, China. The results of cluster analysis demonstrate that the months of one year were divided into 3 groups and the characteristic of clusters was agreed with the seasonal characteristics in North China. Three factors were derived from the complicated set using factor analysis. Factor 1 included turbidity and chlorophyll, which seemed to be related to the anthropogenic activities; factor 2 included alkaline and hardness, which were related to the natural characteristic of surface water; and factor 3 included Cl and NO-N affected by mineral and agricultural activities. The sinusoidal shape of the score plots of the three factors shows that the temporal variations caused by natural and human factors are linked to seasouality.

  12. Layers of Porous Superhydrophobic Surfaces for Robust Water Repellency

    Science.gov (United States)

    Ahmadi, Farzad; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    In nature, birds exhibit multiple layers of superhydrophobic feathers that repel water. Inspired by bird feathers, we utilize porous superhydrophobic surfaces and compare the wetting and dewetting characteristics of a single surface to stacks of multiple surfaces. The superhydrophobic surfaces were submerged in water in a closed chamber. Pressurized gas was regulated to measure the critical pressure for the water to fully penetrate through the surfaces. In addition to using duck feathers, two-tier porous superhydrophobic surfaces were fabricated to serve as synthetic mimics with a controlled surface structure. The energy barrier for the wetting transition was modeled as a function of the number of layers and their orientations with respect to each other. Moreover, after partial impalement into a subset of the superhydrophobic layers, it was observed that a full dewetting transition was possible, which suggests that natural organisms can exploit their multiple layers to prevent irreversible wetting.

  13. Implication of plants and microbial metalloproteins in the bioremediation of polluted waters: A review

    Science.gov (United States)

    Fosso-Kankeu, E.; Mulaba-Bafubiandi, A. F.

    Traditional approaches to municipal water monitoring barely includes procedures for toxic heavy metals testing. However, the presence of such contaminants in water sources is expected in South African surface and ground waters as a result of dispersion of effluents from acid mine drainage sites. Cheap and eco-friendly methods using microorganisms and plants are discussed in this review. Metal uptake mechanisms involving special proteins namely metalloproteins or metal-binding proteins and peptides, are elaborated and supported with some examples. The potential of phytochelatins and metallothioneins as metal chelating ligands in plants and microorganisms are reviewed and suggestion made to engineer these peptides in microbial sorbents for improved metal uptake. This review covers a number of approaches in the bioremediation of metal polluted effluents and systematically explains the mechanisms involved in the bio-uptake of metals, while highlighting the contribution of metal-binding proteins.

  14. Concentration data for anthropogenic organic compounds in groundwater, surface water, and finished water of selected community water systems in the United States, 2002-10

    Science.gov (United States)

    Carter, Janet M.; Kingsbury, James A.; Hopple, Jessica A.; Delzer, Gregory C.

    2010-01-01

    The National Water-Quality Assessment Program of the U.S. Geological Survey began implementing Source Water-Quality Assessments (SWQAs) in 2001 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems in the United States. As used in SWQA studies, source water is the raw (ambient) water collected at the supply well before water treatment (for groundwater) or the raw (ambient) water collected from the river near the intake (for surface water), and finished water is the water that has been treated and is ready to be delivered to consumers. Finished-water samples are collected before the water enters the distribution system. The primary objective of SWQAs is to determine the occurrence of more than 250 anthropogenic organic compounds in source water used by community water systems, many of which currently are unregulated in drinking water by the U.S. Environmental Protection Agency. A secondary objective is to understand recurrence patterns in source water and determine if these patterns also occur in finished water before distribution. SWQA studies were conducted in two phases for most studies completed by 2005, and in one phase for most studies completed since 2005. Analytical results are reported for a total of 295 different anthropogenic organic compounds monitored in source-water and finished-water samples collected during 2002-10. The 295 compounds were classified according to the following 13 primary use or source groups: (1) disinfection by-products; (2) fumigant-related compounds; (3) fungicides; (4) gasoline hydrocarbons, oxygenates, and oxygenate degradates; (5) herbicides and herbicide degradates; (6) insecticides and insecticide degradates; (7) manufacturing additives; (8) organic synthesis compounds; (9) pavement- and combustion-derived compounds; (10) personal-care and domestic-use products; (11) plant- or animal-derived biochemicals; (12) refrigerants and

  15. Climate Variability and Water-Regulation Effects on Surface Water and Groundwater Interactions in California's Central Valley

    Science.gov (United States)

    Munoz-Arriola, F.; Dettinger, M. D.; Hanson, R. T.; Faunt, C.; Cayan, D. R.

    2011-12-01

    California's Central Valley is one of the most important agricultural areas in the world and is highly dependent on the availability and management of surface water and groundwater. As such, it is a valuable large-scale system for investigating the interaction of climate variability and water-resource management on surface-water and groundwater interactions. In the Central Valley, multiple tools are available to allow scientists to understand these interactions. However, the full effect of human activities on the interactions occurring along the Aquifer-Soil-Plant-Atmosphere continuum remains uncertain. Two models were linked to investigate how non-regulated (natural conditions) and regulated (releases from dams) surface-water inflows from the surrounding contributing drainage areas to the alluvial plains of the Central Valley affects the valley's surface-water supply and groundwater pumpage under different climate conditions. The Variable Infiltration Capacity (VIC) macroscale (surface) hydrologic model was used to estimate the non-regulated streamflow. The U.S. Geological Survey's recently developed Central Valley Hydrologic Model (CVHM) was used to route both the regulated and non-regulated streamflow to the Central Valley and simulate the resulting hydrologic system. The CVHM was developed using MODFLOW's Farm Process (MF-FMP) in order to simulate agricultural water demand, surface-water deliveries, groundwater pumpage, and return flows in 21 water-balance subregions. As such, the CVHM simulates conjunctive use of water, providing a broad perspective on changes in the water systems of the Valley. Inflows from the contributing mountain watersheds are simulated in CVHM using the streamflow-routing package for the 1961-2003 time period. In order to analyze the affect of climate variability, dry and wet years were identified from below the 10th and above the 90th percentiles, respectively, in a multi-decadal time series (1961-2003) of surface-water inflows. The

  16. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  17. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  18. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    Science.gov (United States)

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-11-12

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall.

  19. Surface properties of a single perfluoroalkyl group on water surfaces studied by surface potential measurements.

    Science.gov (United States)

    Shimoaka, Takafumi; Tanaka, Yuki; Shioya, Nobutaka; Morita, Kohei; Sonoyama, Masashi; Amii, Hideki; Takagi, Toshiyuki; Kanamori, Toshiyuki; Hasegawa, Takeshi

    2016-12-01

    A discriminative study of a single perfluoroalkyl (Rf) group from a bulk material is recently recognized to be necessary toward the total understanding of Rf compounds based on a primary chemical structure. The single molecule and the bulk matter have an interrelationship via an intrinsic two-dimensional (2D) aggregation property of an Rf group, which is theorized by the stratified dipole-arrays (SDA) theory. Since an Rf group has dipole moments along many C-F bonds, a single Rf group would possess a hydrophilic-like character on the surface. To reveal the hydration character of a single Rf group, in the present study, surface potential (ΔV) measurements are performed for Langmuir monolayers of Rf-containing compounds. From a comparative study with a monolayer of a normal hydrocarbon compound, the hydration/dehydration dynamics of a lying Rf group on water has first been monitored by ΔV measurements, through which a single Rf group has been revealed to have a unique "dipole-interactive" character, which enables the Rf group interacted with the water 'surface.' In addition, the SDA theory proves to be useful to predict the 2D aggregation property across the phase transition temperature of 19°C by use of the ΔV measurements.

  20. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    Science.gov (United States)

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  1. Interim Enhanced Surface Water Treatment Rule Documents

    Science.gov (United States)

    The IESWTR balances the need for treatment with potential increases in disinfection by -products. The materials found on this page are intended to assist public water systems and state in the implementation of the IESWTR.

  2. SurfaceWater Source Protection Areas (SPAs)

    Data.gov (United States)

    Vermont Center for Geographic Information — Source Protection Area (SPA) boundaries have been located on RF 24000 & RF 25000 scale USGS topographic maps by Water Supply Division (DEC) and VT Dept of Health...

  3. Bioinspired aquatic microrobot capable of walking on water surface like a water strider.

    Science.gov (United States)

    Zhang, Xinbin; Zhao, Jie; Zhu, Qing; Chen, Ning; Zhang, Mingwen; Pan, Qinmin

    2011-07-01

    Walking on the water surface is a dream of humans, but it is exactly the way of life for some aquatic insects. In this study, a bionic aquatic microrobot capable of walking on the water surface like a water strider was reported. The novel water strider-like robot consisted of ten superhydrophobic supporting legs, two miniature dc motors, and two actuating legs. The microrobot could not only stand effortlessly but also walk and turn freely on the water surface, exhibiting an interesting motion characteristic. A numerical model describing the interface between the partially submerged leg and the air-water surface was established to fully understand the mechanism for the large supporting force of the leg. It was revealed that the radius and water contact angle of the legs significantly affect the supporting force. Because of its high speed, agility, low cost, and easy fabrication, this microrobot might have a potential application in water quality surveillance, water pollution monitoring, and so on.

  4. Magnetic resonance imaging of plants: plant water status and drought stress response

    NARCIS (Netherlands)

    Weerd, van der L.

    2002-01-01

    This Thesis presents an approach for the study of plant water balance during drought stress, using a combination of in vivo NMR experiments and computer simulations. The ultimate aim is the interpretation of the NMR parameters in terms of physiologically relevant characteristics, such as cell dimens

  5. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    Full Text Available Plant productivity is severely affected by unfavourable environmental conditions (biotic and abiotic stresses. Among others, water deficit is the plant stress condition which mostly limits the quality and the quantity of plant products. Tolerance to water deficit is a polygenic trait strictly dependent on the coordinated expression of a large set of genes coding for proteins directly involved in stress-induced protection/repair mechanisms (dehydrins, chaperonins, enzymes for the synthesis of osmoprotectants and detoxifying compounds, and others as well as genes involved in transducing the stress signal and regulating gene expression (transcription factors, kinases, phosphatases. Recently, research activities in the field evolved from the study of single genes directly involved in cellular stress tolerance (functional genes to the identification and characterization of key regulatory genes involved in stress perception and transduction and able to rapidly and efficiently activate the complex gene network involved in the response to stress. The complexity of the events occurring in response to stress have been recently approached by genomics tools; in fact the analysis of transcriptome, proteome and metabolome of a plant tissue/cell in response to stress already allowed to have a global view of the cellular and molecular events occurring in response to water deficit, by the identification of genes activated and co-regulated by the stress conditions and the characterization of new signalling pathways. Moreover the recent application of forward and reverse genetic approaches, trough mutant collection development, screening and characterization, is giving a tremendous impulse to the identification of gene functions with key role in stress tolerance. The integration of data obtained by high-throughput genomic approaches, by means of powerful informatic tools, is allowing nowadays to rapidly identify of major genes/QTLs involved in stress tolerance

  6. Impacts of invading alien plant species on water flows at stand and catchment scales

    Science.gov (United States)

    Le Maitre, D. C.; Gush, M. B.; Dzikiti, S.

    2015-01-01

    There have been many studies of the diverse impacts of invasions by alien plants but few have assessed impacts on water resources. We reviewed the information on the impacts of invasions on surface runoff and groundwater resources at stand to catchment scales and covering a full annual cycle. Most of the research is South African so the emphasis is on South Africa's major invaders with data from commercial forest plantations where relevant. Catchment studies worldwide have shown that changes in vegetation structure and the physiology of the dominant plant species result in changes in surface runoff and groundwater discharge, whether they involve native or alien plant species. Where there is little change in vegetation structure [e.g. leaf area (index), height, rooting depth and seasonality] the effects of invasions generally are small or undetectable. In South Africa, the most important woody invaders typically are taller and deeper rooted than the native species. The impacts of changes in evaporation (and thus runoff) in dryland settings are constrained by water availability to the plants and, thus, by rainfall. Where the dryland invaders are evergreen and the native vegetation (grass) is seasonal, the increases can reach 300–400 mm/year. Where the native vegetation is evergreen (shrublands) the increases are ∼200–300 mm/year. Where water availability is greater (riparian settings or shallow water tables), invading tree water-use can reach 1.5–2.0 times that of the same species in a dryland setting. So, riparian invasions have a much greater impact per unit area invaded than dryland invasions. The available data are scattered and incomplete, and there are many gaps and issues that must be addressed before a thorough understanding of the impacts at the site scale can be gained and used in extrapolating to watershed scales, and in converting changes in flows to water supply system yields. PMID:25935861

  7. Water Treatment Pilot Plant Design Manual: Low Flow Conventional/Direct Filtration Water Treatment Plant for Drinking Water Treatment Studies

    Science.gov (United States)

    This manual highlights the project constraints and concerns, and includes detailed design calculations and system schematics. The plant is based on engineering design principles and practices, previous pilot plant design experiences, and professional experiences and may serve as ...

  8. Unique water-water coordination tailored by a metal surface

    DEFF Research Database (Denmark)

    Schiros, T.; Andersson, Klas Jerker; MacNaughton, J.;

    2013-01-01

    At low coverage of water on Cu(110), substrate-mediated electrostatics lead to zigzagging chains along [001] as observed with STM [T. Yamada, S. Tamamori, H. Okuyama, and T. Aruga, “Anisotropic water chain growth on Cu(110) observed with scanning tunneling microscopy” Phys. Rev. Lett. 96, 036105...... (2006)]. Using x-ray absorption spectroscopy we find an anomalous low-energy resonance at ~533.1 eV which, based on density functional theory spectrum simulations, we assign to an unexpected configuration of water units whose uncoordinated O-H bonds directly face those of their neighbors...

  9. Measurements of water surface snow lines in classical protoplanetary disks

    CERN Document Server

    Blevins, Sandra M; Banzatti, Andrea; Zhang, Ke; Najita, Joan R; Carr, John S; Salyk, Colette; Blake, Geoffrey A

    2015-01-01

    We present deep Herschel-PACS spectroscopy of far-infrared water lines from a sample of four protoplanetary disks around solar-mass stars, selected to have strong water emission at mid-infrared wavelengths. By combining the new Herschel spectra with archival Spitzer-IRS spectroscopy, we retrieve a parameterized radial surface water vapor distribution from 0.1-100 AU using two-dimensional dust and line radiative transfer modeling. The surface water distribution is modeled with a step model comprising of a constant inner and outer relative water abundance and a critical radius at which the surface water abundance is allowed to change. We find that the four disks have critical radii of $\\sim 3-11$ AU, at which the surface water abundance decreases by at least 5 orders of magnitude. The measured values for the critical radius are consistently smaller than the location of the surface snow line, as predicted by the observed spectral energy distribution. This suggests that the sharp drop-off of the surface water abu...

  10. Survival of Phytophthora infestans in Surface Water.

    Science.gov (United States)

    Porter, Lyndon D; Johnson, Dennis A

    2004-04-01

    ABSTRACT Coverless petri dishes with water suspensions of sporangia and zoospores of Phytophthora infestans were embedded in sandy soil in eastern Washington in July and October 2001 and July 2002 to quantify longevity of spores in water under natural conditions. Effects of solar radiation intensity, presence of soil in petri dishes (15 g per dish), and a 2-h chill period on survival of isolates of clonal lineages US-8 and US-11 were investigated. Spores in water suspensions survived 0 to 16 days under nonshaded conditions and 2 to 20 days under shaded conditions. Mean spore survival significantly increased from 1.7 to 5.8 days when soil was added to the water. Maximum survival time of spores in water without soil exposed to direct sunlight was 2 to 3 days in July and 6 to 8 days in October. Mean duration of survival did not differ significantly between chilled and nonchilled sporangia, but significantly fewer chilled spores survived for extended periods than that of nonchilled spores. Spores of US-11 and US-8 isolates did not differ in mean duration of survival, but significantly greater numbers of sporangia of US-8 survived than did sporangia of US-11 in one of three trials.

  11. Georgia's Surface-Water Resources and Streamflow Monitoring Network, 2008

    Science.gov (United States)

    ,

    2008-01-01

    Surface water provides 5 billion gallons per day, or 78 percent, of the total freshwater used (including thermoelectric) in Georgia (Fanning, 2003). Climate, geology, and landforms control the natural distribution of Georgia's water resources. Georgia is a 'headwaters' State, with most of the rivers beginning in northern Georgia and increasing in size downstream (see map at right for major watersheds). Surface water is the primary source of water in the northern one-half of the State, including the Atlanta metropolitan area, where limited ground-water resources are difficult to obtain. In Georgia, periodic droughts exacerbate competition for surface-water supplies. Many areas of Georgia also face a threat of flooding because of spring frontal thunderstorms and the potential for hurricanes from both the Atlantic Ocean and Gulf of Mexico. As the population of Georgia increases, these flood risks will increase with development in flood-risk zones, particularly in the coastal region.

  12. Significance of Plant Root Microorganisms in Reclaiming Water in CELSS

    Science.gov (United States)

    Bubenheim, David L.; Greene, Catherine; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Since many microorganisms demonstrate the ability to quickly break down complex mixtures of waste and environmental contaminants, examining their potential use for water recycling in a closed environment is appealing. Water contributes approximately 90 percent of the life sustaining provisions in a human space habitat. Nearly half of the daily water requirements will be used for personal hygiene and dish washing. The primary contaminants of the used "gray" water will be the cleansing agents or soaps used to carry out these functions. Reclaiming water from the gray water waste streams is one goal of the NASA program, Controlled Ecological Life Support Systems (CELSS). The microorganisms of plane roots are well documented to be of a beneficial effect to promote plant growth. Most plants exhibit a range of bacteria and fungi which can be highly plant-specific. In our investigations with lettuce grown in hydroponic culture, we identified a microflora of normal rhizosphere. When the roots were exposed to an anionic surfactant, the species diversity changed, based on morphological characteristics, with the numbers of species being reduced from 7 to 2 after 48 hours of exposure. In addition, the species that became dominant in the presence of the anionic surfactant also demonstrated a dramatic increase in population density which corresponded to the degradation of the surfactant in the root zone. The potential for using these or other rhizosphere bacteria as a primary or secondary waste processor is promising, but a number of issues still warrant investigation; these include but are not limited to: (1) the full identification of the microbes, (2) the classes of surfactants the microbes will degrade, (3) the environmental conditions required for optimal processing efficiency and (4) the ability of transferring the microbes to a non-living solid matrix such as a bioreactor.

  13. Significance of Plant Root Microorganisms in Reclaiming Water in CELSS

    Science.gov (United States)

    Bubenheim, David L.; Greene, Catherine; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Since many microorganisms demonstrate the ability to quickly break down complex mixtures of waste and environmental contaminants, examining their potential use for water recycling in a closed environment is appealing. Water contributes approximately 90 percent of the life sustaining provisions in a human space habitat. Nearly half of the daily water requirements will be used for personal hygiene and dish washing. The primary contaminants of the used "gray" water will be the cleansing agents or soaps used to carry out these functions. Reclaiming water from the gray water waste streams is one goal of the NASA program, Controlled Ecological Life Support Systems (CELSS). The microorganisms of plane roots are well documented to be of a beneficial effect to promote plant growth. Most plants exhibit a range of bacteria and fungi which can be highly plant-specific. In our investigations with lettuce grown in hydroponic culture, we identified a microflora of normal rhizosphere. When the roots were exposed to an anionic surfactant, the species diversity changed, based on morphological characteristics, with the numbers of species being reduced from 7 to 2 after 48 hours of exposure. In addition, the species that became dominant in the presence of the anionic surfactant also demonstrated a dramatic increase in population density which corresponded to the degradation of the surfactant in the root zone. The potential for using these or other rhizosphere bacteria as a primary or secondary waste processor is promising, but a number of issues still warrant investigation; these include but are not limited to: (1) the full identification of the microbes, (2) the classes of surfactants the microbes will degrade, (3) the environmental conditions required for optimal processing efficiency and (4) the ability of transferring the microbes to a non-living solid matrix such as a bioreactor.

  14. Surface complexation at calcium mineral-water interfaces

    OpenAIRE

    Wu, Liuming

    1994-01-01

    Surface reactions occurring at solid-water interfaces in calcium mineral-ligands systems have been studied. Both hydrous apatite and fluorite surfaces show clear amphoteric properties. An ion exchange process between lattice ions of F- on fluorite and OH- ions in bulk solution is discovered. The surface adsorption of Alizarin Red S and sodium oleate are determined. Surface chemical reaction models are established based on acidbase potentiometric titrations, solubility, adsorption and zeta-pot...

  15. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    L(U) Yongjun; WEI Bingbo

    2006-01-01

    Molecular dynamics simulations were performed to study the surface properties of water in a temperature range from 228 to 293 K by using the extended simple point charge (SPC/E) and four-site TIP4P potentials. The calculated surface tension increases with the decrease of temperature, and moreover the slopes of the surface tension-temperature curves show a weak rise below 273 K, whereas no obvious anomalies appear near 228 K, which accords with the previous experiments. Compared with the measured values, the SPC/E potential shows a good agreement, and the TIP4P potential scription of the surface structure of supercooled water for the SPC/E. When simulating the orientational distributions of water molecules near the surface, the SPC/E potential produces higher ordering and larger surface potentials than the TIP4P potential.

  16. Tractor beam on the water surface

    CERN Document Server

    Punzmann, Horst; Xia, Hua; Falkovich, Gregory; Shats, Michael

    2014-01-01

    Can one send a wave to bring an object from a distance? The general idea is inspired by the recent success in moving micro particles using light and the development of a tractor beam concept. For fluid surfaces, however, the only known paradigm is the Stokes drift model, where linear planar waves push particles in the direction of the wave propagation. Here we show how to fetch a macroscopic floater from a large distance by sending a surface wave towards it. We develop a new method of remote manipulation of floaters by forming inward and outward surface jets, stationary vortices, and other complex surface flows using nonlinear waves generated by a vertically oscillating plunger. The flows can be engineered by changing the geometry and the power of a wave maker, and the flow dissipation. The new method is robust and works both for long gravity and for short capillary waves. We use a novel method of visualising 3D particle trajectories on the surface. This letter introduces a new conceptual framework for unders...

  17. An Ontology-Driven Dependable Water Treatment Plant CPS

    Directory of Open Access Journals (Sweden)

    SANISLAV Teodora

    2013-05-01

    Full Text Available The paper introduces an ontology-drivenCyber-Physical System with dependability features tocontrol, monitor and diagnose a water treatment plant,with emphasis on the ontology, as a new approach forthe existing industrial control systems used in thisfield. The proposed dependability ontology is based ona fault forecasting technique, a qualitative evaluationof the water treatment plant Cyber-Physical Systembehaviour - Failure Modes and Effects Analysis. Theontology has two important parts: one is the ontologyof faults including several categories of system faultsand the other is the ontology of failures includingseveral categories of system failures. The dependabilityontology plays a central role in the Cyber-PhysicalSystem architecture and drives various aspects of thissystem, especially the ones related to system diagnosis.

  18. Experimental Observation of Dark Solitons on Water Surface

    Science.gov (United States)

    2016-06-13

    vertical walls are made of transparent sections of glass supported by the metal frame. The water level of the free surface is measured with seven resistive...Experimental observation of dark solitons on water surface A. Chabchoub1,∗, O. Kimmoun2, H. Branger3, N. Hoffmann1, D. Proment4, M. Onorato4,5, and N...observation of dark solitons on the water surface. It takes the form of an amplitude drop of the carrier wave which does not change shape in propagation

  19. Classification of washery water at a coal-cleaning plant

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, I.N.; Preobrazhenskii, B.P.; Voznyi, G.F.; Tereshkin, L.M.; Berdichevskii, L.L.; Stel' makh, N.A.

    1976-01-01

    The introduction of new water-slurry flowsheets at many coal-cleaning plants has greatly reduced the solids content of the water in circulation (to 70-100 g/liter). The lower size limit for effective jigging has also been reduced; at the Enakievo C and CW washery, for example, it is now 0.15 mm. This has made it worthwhile to remove all the greater than 0.15 mm cleaned coal particles along with the jig concentrate and only subject the less than 0.15 mm slurry to flotation.

  20. Accumulation of three different sizes of particulate matter on plant leaf surfaces: Effect on leaf traits

    Directory of Open Access Journals (Sweden)

    Chen Xiaoping

    2015-01-01

    Full Text Available Plants not only improve air quality by adsorbing particulate matter (PM on leaf surfaces but can also be affected by their accumulation. In this study, a field investigation was performed in Wuhan, China, into the relationship between seven leaf traits and the accumulation of three different sizes of PM (PM11, PM2.5 and PM0.2 on leaves. The retention abilities of plant leaves with respect to the three sizes of PM differed significantly at different sites and species. The average PM retention capabilities of plant leaves and specific leaf area (SLA were significantly greater in a seriously polluted area, whereas the average values of chlorophyll a (Chl a, chlorophyll b (Chl b, total chlorophyll, carotenoid, pH and relative water content (RWC were greater at the control site. SLA significantly positively correlated with the size of PM, but Chl a, Chl b, total chlorophyll, RWC significantly negatively correlated with the size of PM, whereas the pH did not correlate significantly with the the PM fractions. Additionally, SLA was found to be affected by large particles (PM11, p<0.01; PM2.5 had a more obvious effect on plant leaf traits than the other PM (p<0.05. Overall, the findings from this study provide useful information regarding the selection of plants to reduce atmospheric pollution.

  1. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  2. Drainage-water travel times as a key factor for surface water contamination

    OpenAIRE

    Groenendijk, P.; Eertwegh, van den, A.J.M.

    2004-01-01

    The importance of the unsaturated zone as an inextricable part of the hydrologic cycle has long been recognized. The root zone and the unsaturated sub-surface domain are chemically and biologically the most active zones. The interrelationships between soil, subsoil and surface waters make it unrealistic to treat the saturated and unsaturated zones and the discharge to surface waters separately. Point models describe vertical water flow in the saturated zone and possibly lateral flow by defini...

  3. Sewage effluent as a source of Campylobacter sp. in a surface water catchment.

    Science.gov (United States)

    Rechenburg, Andrea; Kistemann, Thomas

    2009-08-01

    Campylobacter sp. can regularly be found in wastewater-affected surface waters. The occurrence of Campylobacter sp. in rivers, treated sewage and combined sewer overflows was analysed in a catchment with sparse annual precipitation. During regular treatment the reduction efficacy for Campylobacter sp. varies between 1.75 and 3.5 log(10). However, Campylobacter sp. concentrations do not increase downstream in the river as more sewage treatment plants discharge into it. During rain events, the Campylobacter sp. concentration in the river upstream of any sewage plant rises and in the sewer overflow water it is more than 150-fold higher than the average concentration in the river water at the river mouth. The highest Campylobacter sp. loads and the highest risk of infection occur during summertime after heavy rainfall. Risk management strategies should focus on problems regarding water scarcity, reuse of sewage effluent and the impact of heavy rain events.

  4. Prevalence and characteristics of ESBL-producing E. coli in Dutch recreational waters influenced by wastewater treatment plants.

    Science.gov (United States)

    Blaak, Hetty; de Kruijf, Patrick; Hamidjaja, Raditijo A; van Hoek, Angela H A M; de Roda Husman, Ana Maria; Schets, Franciska M

    2014-07-16

    Outside health care settings, people may acquire ESBL-producing bacteria through different exposure routes, including contact with human or animal carriers or consumption of contaminated food. However, contact with faecally contaminated surface water may also represent a possible exposure route. The current study investigated the prevalence and characteristics of ESBL-producing Escherichia coli in four Dutch recreational waters and the possible role of nearby waste water treatment plants (WWTP) as contamination source. Isolates from recreational waters were compared with isolates from WWTP effluents, from surface water upstream of the WWTPs, at WWTP discharge points, and in connecting water bodies not influenced by the studied WWTPs. ESBL-producing E. coli were detected in all four recreational waters, with an average concentration of 1.3 colony forming units/100ml, and in 62% of all samples. In surface waters not influenced by the studied WWTPs, ESBL-producing E. coli were detected in similar concentrations, indicating the existence of additional ESBL-E. coli contamination sources. Isolates with identical ESBL-genes, phylogenetic background, antibiotic resistance profiles, and sequence type, were obtained from effluent and different surface water sites in the same watershed, on the same day; occasionally this included isolates from recreational waters. Recreational waters were identified as a potential exposure source of ESBL-producing E. coli. WWTPs were shown to contribute to the presence of these bacteria in surface waters, but other (yet unidentified) sources likely co-contribute.

  5. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    Science.gov (United States)

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, pplants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, pplants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent.

  6. Quality of surface water in Missouri, water year 2012

    Science.gov (United States)

    Barr, Miya N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2012 water year (October 1, 2011, through September 30, 2012), data were collected at 81 stations—73 Ambient Water-Quality Monitoring Network stations, 6 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 78 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  7. Quality of surface water in Missouri, water year 2013

    Science.gov (United States)

    Barr, Miya N.; Schneider, Rachel E.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2013 water year (October 1, 2012, through September 30, 2013), data were collected at 79 stations—73 Ambient Water-Quality Monitoring Network stations, 4 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 76 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  8. ASSESSMENT OF SURFACE WATER QUALITY IN AN ARSENIC CONTAMINATED VILLAGE

    Directory of Open Access Journals (Sweden)

    Kumud C. Saikia

    2012-01-01

    Full Text Available Arsenic contamination of ground water has occurred in various parts of the world, becoming a menace in the Ganga-Meghna-Brahmaputra basin (West Bengal and Assam in India and Bangladesh. Recently arsenic has been detected in Cachar and Karimganj districts of barak valley, Assam, bordering Bangladesh. In this area coli form contamination comprises the major constraint towards utilization of its otherwise ample surface water resources. The local water management exploited ground water sources using a centralized piped water delivery scheme without taking into account the geologically arsenic-prone nature of the sediments and aquifers in this area. Thus surface water was the suggestive alternative for drinking water in this area. The present study investigated surface water quality and availability in a village of Karimganj district, Assam, India contaminated with arsenic for identifying the potential problems of surface water quality maintenance so that with effective management safe drinking water could be provided. The study revealed that the area was rich in freshwater ecosystems which had all physico-chemical variables such as water temperature, pH, DO, total alkalinity, free CO2, heavy metals like lead, chromium and cadmium within WHO standards. In contrast, coli form bacteria count was found far beyond permissible limit in all the sources. Around 60% people of the village preferred ground water for drinking and only 6% were aware of arsenic related problems. The problem of bacterial contamination could be controlled by implementing some ameliorative measures so that people can safely use surface water. Inhabitants of the two districts should be given proper education regarding arsenic contamination and associated health risk. Effluents should be treated to acceptable levels and standards before discharging them into natural streams.

  9. Salt—Water Dynamics in Soils:Ⅲ.Effect of Crop Planting

    Institute of Scientific and Technical Information of China (English)

    YOUWEN-RUI; MENGFAN-HUA

    1993-01-01

    Through a simulation test conducted with soil columns (61.8cm in diameter) in field condition,effect of crop planting upon the regulation of salt-water dynamics in soils was studied by monitoring of salt-water dynamics in situ,using soil salinity sensors and tensiometers.The results indicated that the amount of water absorbed by crops from the soil was generally larger than the decrement of water consumption from soil surface evaporation reduced by the crop covering the soil surface and improving the soil structure,therefore,under the conditions of crop growing and non-irrigation,water content in soil profile was less than that without crop growing,and the gradient of negative pressure of soil water in soil profile especially in the root zone was enlarged,thus causing the water flowing from subsoils into root zone and increasing the groundwater moving upwards into soil layer via capillary rise,so that the groundwater evaporation increased.Consequently,under the condition of crop growing,the salt was mainly accumulated towards the root zone rather than to the top soil.the accumulating rate of salt in groundwater via capillary rise of soil water to subsoils was increased thereby.

  10. Photodegradation of pesticides on plant and soil surfaces.

    Science.gov (United States)

    Katagi, Toshiyuki

    2004-01-01

    importance of an emission spectrum of the light source near its surface was clarified. Most photochemical information comes from photolysis in organic solvents or on glass surfaces and/or plant metabolism studies. Epicuticular waxes may be approximated by long-chain hydrocarbons as a very viscous liquid or solid, but the existing form of pesticide molecules in waxes is still obscure. Either coexistence of formulation agents or steric constraint in the rigid medium would cause a change of molecular excitation, deactivation, and photodegradation mechanisms, which should be further investigated to understand the dissipation profiles of a pesticide in or on crops in the field. A thin-layer system with a coat of epicuticular waxes extracted from leaves or isolated cuticles has been utilized as a model, but its application has been very limited. There appear to be gaps in our knowledge about the surface chemistry and photochemistry of pesticides in both rigid media and plant metabolism. Photodegradation studies, for example, by using these models to eliminate contribution from metabolic conversion as much as possible, should be extensively conducted in conjunction with wax chemistry, with the controlling factors being clarified. As with soil surfaces, the effects of atmospheric oxidants should also be investigated. Based on this knowledge, new methods of kinetic analysis or a device simulating the fate of pesticides on these surfaces could be more rationally developed. Concerning soil photolysis, detailed mechanistic analysis of the mobility and fate of pesticides together with volatilization from soil surfaces has been initiated and its spatial distribution with time has been simulated with reasonable precision on a laboratory scale. Although mechanistic analyses have been conducted on penetration of pesticides through cuticular waxes, its combination with photodegradation to simulate the real environment is awaiting further investigation.

  11. Removal of fluoride contamination in water by three aquatic plants.

    Science.gov (United States)

    Karmakar, Sukalpa; Mukherjee, Joydeep; Mukherjee, Somnath

    2016-01-01

    Phytoremediation, popularly known as 'green technology' has been employed in the present investigation to examine the potential of fluoride removal from water by some aquatic plants. Fluoride contamination in drinking water is very much prevalent in different parts of the world including India. Batch studies were conducted using some aquatic plants e.g., Pistia stratiotes, Eichhornia crassipes, and Spirodela polyrhiza which profusely grow in natural water bodies. The experimental data exhibited that all the above three aquatic floating macrophytes could remove fluoride to some relative degree of efficiency corresponding to initial concentration of fluoride 3, 5, 10, 20 mg/l after 10 days exposure time. Result showed that at lower concentration level i.e., 3 mg/L removal efficiency of Pistia stratiotes (19.87%) and Spirodela polyrhiza (19.23%) was found to be better as compared to Eichhornia crassipes (12.71%). Some of the physiological stress induced parameters such as chlorophyll a, chlorophyll b, total chlorophyll, carotenoid, total protein, catalase, and peroxidase were also studied to explore relative damage within the cell. A marginal stress was imparted among all the plants for lower concentration values (3 mg/L), whereas at 20 mg/l, maximum damage was observed.

  12. Tools and data acquisition of borehole geophysical logging for the Florida Power and Light Company Turkey Point Power Plant in support of a groundwater, surface-water, and ecological monitoring plan, Miami-Dade County, Florida

    Science.gov (United States)

    Wacker, Michael A.

    2010-01-01

    Borehole geophysical logs were obtained from selected exploratory coreholes in the vicinity of the Florida Power and Light Company Turkey Point Power Plant. The geophysical logging tools used and logging sequences performed during this project are summarized herein to include borehole logging methods, descriptions of the properties measured, types of data obtained, and calibration information.

  13. Evaluation of calendar year 1996 groundwater and surface water quality data for the Chesnut Ridge Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This report presents an evaluation of the groundwater monitoring data obtained in the Chesnut Ridge Hydrogeologic Regime (Chesnut Ridge Regime) during calendar year (CY) 1996. The Chesnut Ridge Regime encompasses a section of Chesnut Ridge bordered by the US Department of Energy (DOE) Y-12 Plant in Bear Creek Valley (BCV) to the north, Scarboro Road to the east, Bethel Valley Road to the south, and an unnamed drainage basin southwest of the Y-12 Plant. Groundwater quality monitoring is performed at hazardous and nonhazardous waste management facilities in the regime under the auspices of the Y-12 Plant Groundwater Protection Program (GWPP). The CY 1996 monitoring data are presented in Calendar Year 1996 Annual Groundwater Monitoring Report for the Chesnut Ridge Hydrogeologic Regime at the US Department of Energy Y-12 Plant, Oak Ridge, Tennessee, along with the required evaluations of applicable site-specific monitoring data (AJA Technical Services, Inc. 1997a). This report provides additional evaluation of the CY 1996 data with an emphasis on regime-wide groundwater geochemistry and long-term concentration trends of regulated and non-regulated monitoring parameters.

  14. Electron bombardment of water adsorbed on Zr(0001) surfaces

    CERN Document Server

    Ankrah, S; Ramsier, R D

    2003-01-01

    A study of the effects of electron bombardment on water adsorbed on Zr(0001) is reported. Zirconium surfaces are dosed with isotopic water mixtures at 160 K followed by electron bombardment (485 eV). The system is then probed by low energy electron diffraction, temperature programmed desorption (TPD) and Auger electron spectroscopy (AES). No evidence is found that would indicate preferential mixing of hydrogen from the bulk with isotopic water dissociation products during TPD. However, electron bombardment results in the sharpening of a hydrogen/deuterium desorption peak near 320 K and the production of water near 730 K at low water exposures. In addition, although water does not oxidize Zr(0001) thermally, electron bombardment of adsorbed water induces a shift of about 2 eV in the Zr AES features indicating that the surface is partially oxidized by electron bombardment.

  15. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.''...

  16. In-plant material test experience under hydrogen water chemistry at a Japanese BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Masami; Koshiishi, Masato; Kato, Takahiko [Hitachi Ltd., Ibaraki (Japan). Hitachi Works; Abe, Ayumi; Sekiguchi, Masahiko; Takiguchi, Hideki

    1999-07-01

    Hydrogen injection technology has been applied to Japanese domestic aged BWR plants since 1994 to mitigate corrosive environment regarding Intergranular Stress Corrosion Cracking (IGSCC) of Reactor Internals (RINs). The Tsuruga Unit-1 plant has also been operated with this technology since 1997, considering suppression of radiation increase in the main steam piping system besides mitigation of corrosive environment in the reactor; the hydrogen injection rate in the feed water was about 0.5 ppm. In order to confirm the effects of the hydrogen injection on suppression of SCC susceptibility of the RIN materials, several in-plant material tests have been conducted using the reactor water clean up system (RWCU). Cyclic-Slow Strain Rate Tensile (C-SSRT) test, Slow Strain Rate Tensile (SSRT) test and Compact Tension (CT) test were performed in the test facilities which were installed at the sampling line from the RWCU. Evaluation of SCC life by means of the C-SSRT test was the first application as an accelerated SCC test for in-plant material tests. It was confirmed that the hydrogen injection in the feed water has a good mitigation effects on IGSCC performance of the RIN materials. Results will be discussed from a viewpoint of the test condition such as total oxidant, ECP, conductivity and loading/unloading. (author)

  17. Significantly improving trace thallium removal from surface waters during coagulation enhanced by nanosized manganese dioxide.

    Science.gov (United States)

    Huangfu, Xiaoliu; Ma, Chengxue; Ma, Jun; He, Qiang; Yang, Chun; Jiang, Jin; Wang, Yaan; Wu, Zhengsong

    2017-02-01

    Thallium (Tl) is an element of high toxicity and significant accumulation in human body. There is an urgent need for the development of appropriate strategies for trace Tl removal in drinking water treatment plants. In this study, the efficiency and mechanism of trace Tl (0.5 μg/L) removal by conventional coagulation enhanced by nanosized manganese dioxide (nMnO2) were explored in simulated water and two representative surface waters (a river water and a reservoir water obtained from Northeast China). Experimental results showed that nMnO2 significantly improve Tl(I) removal from selected waters. The removal efficiency was dramatically higher in the simulated water, demonstrating by less than 0.1 μg/L Tl residual. The enhancement of trace Tl removal in the surface waters decreased to a certain extent. Both adjusting water pH to alkaline condition and preoxidation of Tl(I) to Tl(III) benefit trace Tl removal from surface waters. Data also indicated that competitive cation of Ca(2+) decreased the efficiency of trace Tl removal, resulting from the reduction of Tl adsorption on nMnO2. Humic acid could largely low Tl removal efficiency during nMnO2 enhanced coagulation processes. Trace elemental Tl firstly adsorbed on nMnO2 and then removed accompanying with nMnO2 settling. The information obtained in the present study may provide a potential strategy for drinking water treatment plants threatened by trace Tl.

  18. Comparing Column Water Vapor Retrievals from AVIRIS imagery and their Uncertainties over Varying Surfaces

    Science.gov (United States)

    Shivers, S.; Roberts, D. A.; Thompson, D. R.; Dennison, P. E.

    2016-12-01

    Column water vapor is a critical element of climate, a component of weather systems, and a potent greenhouse gas. Water vapor in the lower boundary layer also varies as a function of evapotranspiration, and thus is related to plant production. Understanding the spatial and temporal distribution of atmospheric water vapor is paramount to predicting future climate scenarios and better understanding energy fluxes at the surface. Imaging spectrometers like NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) provide unique measurements of water vapor absorption, mapping wide areas at fine spatial scales. Although studies have proven the ability of retrieving remotely sensed column water vapor from AVIRIS imagery, existing algorithms continue to produce significantly different pixel-level estimates of water vapor while also containing surface artifacts. This study compares three well-known algorithms for retrieving column water vapor: ACORN, ATCOR, and the HyspIRI iteration of ATREM on AVIRIS imagery over the Central Valley of California to investigate the spatiotemporal uncertainties of column water vapor estimates. The three algorithms are compared with the MODIS water vapor product, ground-based precipitable water vapor estimates from GPS, and reflectance targets for validation. By better understanding the differences between models and associated uncertainties, this research will assist future algorithm development and refinement and improve knowledge of regional variations in water vapor. Copyright 2016, All Rights Reserved.

  19. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    Science.gov (United States)

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  20. Water balance measurements and simulations of maize plants on lysimeters

    Science.gov (United States)

    Heinlein, Florian; Biernath, Christian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2016-04-01

    In Central Europe expected major aspects of climate change are a shift of precipitation events and amounts towards winter months, and the general increase of extreme weather events like heat waves or summer droughts. This will lead to strongly changing regional water availability and will have an impact on future crop growth, water use efficiency and yields. Therefore, to estimate future crop yields by growth models accurate descriptions of transpiration as part of the water balance is important. In this study, maize was grown on weighing lysimeters (sowdate: 24 April 2013). Transpiration was determined by sap flow measurement devices (ICT International Pty Ltd, Australia) using the Heat-Ratio-Method: two temperature probes, 0.5 cm above and below a heater, detect a heat pulse and its speed which allows the calculation of sap flow. Water balance simulations were executed with different applications of the model framework Expert-N. The same pedotransfer and hydraulic functions and the same modules to simulate soil water flow, soil heat and nitrogen transport, nitrification, denitrification and mineralization were used. Differences occur in the chosen potential evapotranspiration ETpot (Penman-Monteith ASCE, Penman-Monteith FAO, Haude) and plant modules (SPASS, CERES). In all simulations ETpot is separated into a soil and a plant part using the leaf are index (LAI). In a next step, these parts are reduced by soil water availability. The sum of these parts is the actual evapotranspiration ETact which is compared to the lysimeter measurements. The results were analyzed from Mid-August to Mid-September 2013. The measured sap flow rates show clear diurnal cycles except on rainy days. The SPASS model is able to simulate these diurnal cycles, overestimates the measurements on rainy days and at the beginning of the analyzed period, and underestimates transpiration on the other days. The main reason is an overestimation of potential transpiration Tpot due to too high

  1. Evaluation of Subsurface Flow and Free-water Surface Wetlands Treating NPR-3 Produced Water - Year No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Myers, J. E.; Jackson, L. M.

    2001-10-13

    This paper is a summary of some of the activities conducted during the first year of a three-year cooperative research and development agreement (CRADA) between the Department of Energy (DOE) Rocky Mountain Oilfield Testing Center (RMOTC) and Texaco relating to the treatment of produced water by constructed wetlands. The first year of the CRADA is for design, construction and acclimation of the wetland pilot units. The second and third years of the CRADA are for tracking performance of pilot wetlands as the plant and microbial communities mature. A treatment wetland is a proven technology for the secondary and tertiary treatment of produced water, storm water and other wastewaters. Treatment wetlands are typically classified as either free-water surface (FWS) or subsurface flow (SSF). Both FWS and SSF wetlands work well when properly designed and operated. This paper presents a collection of kinetic data gathered from pilot units fed a slipstream of Wyoming (NPR-3) produced water. The pilot units are set up outdoors to test climatic influences on treatment. Monitoring parameters include evapotranspiration, plant growth, temperature, and NPDES discharge limits. The pilot wetlands (FWS and SSF) consist of a series of 100-gal plastic tubs filled with local soils, gravel, sharp sand and native wetland plants (cattail (Typha spp.), bulrush (Scirpus spp.), dwarf spikerush (Eleocharis)). Feed pumps control hydraulic retention time (HRT) and simple water control structures control the depth of water. The treated water is returned to the existing produced water treatment system. All NPDES discharge limits are met. Observations are included on training RMOTC summer students to do environmental work.

  2. Quality of surface water in Missouri, water year 2014

    Science.gov (United States)

    Barr, Miya N.

    2015-12-18

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2014 water year (October 1, 2013, through September 30, 2014), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  3. Quality of surface water in Missouri, water year 2010

    Science.gov (United States)

    Barr, Miya N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2010 water year (October 1, 2009 through September 30, 2010), data were collected at 75 stations-72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  4. Quality of surface water in Missouri, water year 2009

    Science.gov (United States)

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  5. Quality of surface water in Missouri, water year 2011

    Science.gov (United States)

    Barr, Miya N.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2011 water year (October 1, 2010, through September 30, 2011), data were collected at 75 stations—72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  6. Quality of surface water in Missouri, water year 2015

    Science.gov (United States)

    Barr, Miya N.; Heimann, David C.

    2016-11-14

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.

  7. EVALUATION OF THE QUALITY OF DRINKING WATER PRODUCED BY THE TREATMENT PLANT: CASE OF MAURITANIA

    Directory of Open Access Journals (Sweden)

    MOHAMEDEN TFEILA

    2015-10-01

    Full Text Available This study aims to evaluate the performance of treatment plants after three years of operation of the city of Nouakchott. It essentially aims to study the evolution of various raw water qualities during the different processing steps (T °, pH, EC, MES, Cl-, NO3-, NO2-, sulfate.... The water treatment in Béni Nadji pretreatment station has led to a significant removal of turbidity, organic matter, and a 99-100 % elimination of SS (Suspended Solids. For drinking water, the total hardness varies between 3.8 and 5.6 °fH. The value of turbidity in drinking water was between 0.2 and 0.3 NTU with turbidity varying between 21 and 330 NTU in the surface water. Aluminum surface concentration surface was between 0.1 and 0.7 mg·L-1. The nitrate concentration varies between 0.5 and 2 mg·L-1, which is lower than that suggested by The World Health Organization (50 mg·L-1. As a result of this study, we concluded that water clarification phases of Nouakchott must be improved.

  8. Role of water in polymer surface modification using organosilanes

    Science.gov (United States)

    Thallapalle, Pradeep Kumar; Zhang Newby, Bi-Min

    2002-03-01

    In general, polymers exhibit excellent bulk properties but may not possess specific surface properties for successful applications in biomaterials and nanotechnology. Surface modification of polymers with the self-assembled monolayers (SAMs) of organosilanes - ‘Silanization’ - is an attractive approach to alter surface properties without altering the polymer’s desired bulk properties. However, a pretreatment such as exposure to UV/O or plasma is normally required to generate active surface groups prior to silanization. These pretreatments cause undesirable surface changes such as severe surface roughening and excessive surface damage. Recent studies in silanization suggest that the presence of water or OH groups on the surface is essential to form SAMs. In this study we investigated the importance of surface water layer and OH groups in the formation of SAMs for a variety of polymers. The pre and post-modified polymers were examined using fourier transform infrared spectrometry, scanning probe microscopy and contact angle measurements. The results show that organosilanes can be grafted to a polymer surface as long as a water layer can be physisorbed to the surface or the polymer itself contains OH groups. However the monolayers formed are less organized compared to those formed on silicon wafers due to the amorphous nature of the polymers.

  9. Robust Instrumentation[Water treatment for power plant]; Robust Instrumentering

    Energy Technology Data Exchange (ETDEWEB)

    Wik, Anders [Vattenfall Utveckling AB, Stockholm (Sweden)

    2003-08-01

    Cementa Slite Power Station is a heat recovery steam generator (HRSG) with moderate steam data; 3.0 MPa and 420 deg C. The heat is recovered from Cementa, a cement industry, without any usage of auxiliary fuel. The Power station commenced operation in 2001. The layout of the plant is unusual, there are no similar in Sweden and very few world-wide, so the operational experiences are limited. In connection with the commissioning of the power plant a R and D project was identified with the objective to minimise the manpower needed for chemistry management of the plant. The lean chemistry management is based on robust instrumentation and chemical-free water treatment plant. The concept with robust instrumentation consists of the following components; choice of on-line instrumentation with a minimum of O and M and a chemical-free water treatment. The parameters are specific conductivity, cation conductivity, oxygen and pH. In addition to that, two fairly new on-line instruments were included; corrosion monitors and differential pH calculated from specific and cation conductivity. The chemical-free water treatment plant consists of softening, reverse osmosis and electro-deionisation. The operational experience shows that the cycle chemistry is not within the guidelines due to major problems with the operation of the power plant. These problems have made it impossible to reach steady state and thereby not viable to fully verify and validate the concept with robust instrumentation. From readings on the panel of the online analysers some conclusions may be drawn, e.g. the differential pH measurements have fulfilled the expectations. The other on-line analysers have been working satisfactorily apart from contamination with turbine oil, which has been noticed at least twice. The corrosion monitors seem to be working but the lack of trend curves from the mainframe computer system makes it hard to draw any clear conclusions. The chemical-free water treatment has met all

  10. Water chemical evolution in Underground Pumped Storage Hydropower plants and induced consequences

    Science.gov (United States)

    Pujades, Estanislao; Orban, Philippe; Jurado, Anna; Ayora, Carlos; Brouyère, Serge; Dassargues, Alain

    2017-04-01

    Underground Pumped Storage Hydropower (UPSH) using abandoned mines is an alternative to manage the electricity production in flat regions. UPSH plants consist of two reservoirs; the upper reservoir is located at the surface or at shallow depth, while the lower reservoir is underground. These plants have potentially less constraints that the classical Pumped Storage Hydropower plants because more sites are available and impacts on landscape, land use, environment and society seem lower. Still, it is needed to consider the consequences of the groundwater exchanges occurring between the underground reservoir and surrounding porous media. Previous studies have been focused on the influence of these groundwater exchanges on the efficiency and on groundwater flow impacts. However, hydrochemical variations induced by the surface exposure of pumped water and their consequences have not been yet addressed. The objective of this work is to evaluate the hydrochemical evolution of the water in UPSH plants and its effects on the environment and on the UPSH efficiency. The problem is studied numerically by means of reactive transport modelling. Different scenarios are considered varying the chemical properties of the surrounding porous medium and groundwater. Results show that the dissolution and/or precipitation of some compounds may affect (1) the groundwater quality, and (2) the efficiency and the useful life of the used pumps and turbines of the UPSH system.

  11. ARSENIC REMOVAL FROM DRINKING WATER BY COAGULATION/FILTRATION AND LIME SOFTENING PLANTS

    Science.gov (United States)

    This report documents a long term performance (one year) study of 3 water treatment plants to remove arsenic from drinking water sources. The 3 plants consisted of 2 conventional coagulation/filtration plants and 1 lime softening plant. The study involved the collecting of weekly...

  12. SWFSC FED Mid Water Trawl Juvenile Rockfish Survey, Surface Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — SWFSC FED Mid Water Trawl Juvenile Rockfish Survey: Station Information and Surface Data. Surveys have been conducted along the central California coast in May/June...

  13. Treatability of South African surface waters by enhanced coagulation

    African Journals Online (AJOL)

    2013-06-05

    Jun 5, 2013 ... The majority of South African inland surface water sources are compromised due to a ... minimising residual coagulant, minimising sludge production .... included as being indicative of the worst effects of indirect reuse.

  14. Second Inflection Point of the Surface Tension of Water

    Science.gov (United States)

    Kalova, Jana; Mares, Radim

    2012-06-01

    The theme of a second inflection point of the temperature dependence of the surface tension of water remains a subject of controversy. Using data above 273 K, it is difficult to get a proof of existence of the second inflection point, because of experimental uncertainties. Data for the surface tension of supercooled water and results of a molecular dynamics study were included into the exploration of existence of an inflection point. A new term was included into the IAPWS equation to describe the surface tension in the supercooled water region. The new equation describes the surface tension values of ordinary water between 228 K and 647 K and leads to the inflection point value at a temperature of about 1.5 °C.

  15. Self-supporting power plant. Capturing evaporated water and save energy a new source of water

    Energy Technology Data Exchange (ETDEWEB)

    Daal, Ludwin; Vos, Frank de [KEMA Netherlands BV, Arnhem (Netherlands). Process and Cooling Water; KEMA Energy Consulting Co.Ltd, Beijing (China); Wageningen Univ. (Netherlands). Environmental Systems Analysis; Heijboer, Rob [KEMA Netherlands BV, Arnhem (Netherlands). Process and Cooling Water; Bekker, Bert [KEMA Energy Consulting Co.Ltd, Beijing (China); Gao, Xiu Xiu [Wageningen Univ. (Netherlands). Environmental Systems Analysis

    2013-07-01

    One of the major challenges of this century is the provision of water for a growing population and industry. The shortage in water resources in arid areas requires the availability of more efficient and cheaper water production processes. In some arid regions water is even more important than electricity. A large source of water is found in the form of evaporated water emitted from different industrial processes. If for example 20% of the evaporated water from the flue gas stream of a coal fired power plant would be captured, the plant would be self-supporting from a process water point of view. This is about 30m{sup 3} of water per hour. The results of the proof of principle project (2001-2008) show that >40% recovery can be achieved. Also an overall energy efficiency improvement can be achieved for industrial plants that reheat their flue gases. Calculations show that this can be about 1% overall efficiency for a coal fired power plant utilizing flue gas reheating. With an installed capacity of more than 600GWe in China, this energy saving results in a very large economic and fuel (coal) impact. This energy efficiency will most likely be the driving force to implement the technology in both water rich and water poor regions. For the capture of evaporated water no chemicals are used, there is no waste water formed and corrosion attack in stacks is mitigated. These results have led to the set up of a large international project named CapWa which aims to produce a membrane modular system suitable for industrial applications within 2-3years. The produced demin water from this system should be competitive with existing demin water technologies. The starting point will be the water vapour selective composite membranes that are developed in the proof of principle project. The CapWa project started in 2010 and consists of 14 partners of which 9 from the EU, 3 from the African continent and 2 from the Middle East.

  16. Mercury Bioaccumulation Potential from Wastewater Treatment Plants in Receiving Waters

    Science.gov (United States)

    Dean, J. D.; Mason, R. P.

    2008-12-01

    In early 2007, the Water Environment Research Foundation (WERF) mercury bioavailability project was initiated in response to the establishment of mercury Total Maximum Daily Load (TMDL) criteria around the country. While many TMDLs recognize that point sources typically constitute a small fraction of the mercury load to a water body, the question was raised concerning the relative bioavailablity of mercury coming from various sources. For instance, is the mercury discharged from a wastewater treatment plant more or less bioavailable than mercury contributed from other sources? This talk will focus on the results of a study investigating approaches to the estimation of bioavailability and potential bioaccumulation of mercury from wastewater treatment plants and other sources in receiving waters. From the outset, a working definition of bioavailability was developed which included not only methylmercury, the form that readily bioaccumulates in aquatic food chains, but also bioavailable inorganic mercury species that could be converted to methylmercury within a scientifically reasonable time frame. Factors that enhance or mitigate the transformation of inorganic mercury to methylmercury and its subsequent bioaccumulation were identified. Profiles were developed for various sources of mercury in watersheds, including wastewater treatment plants, with regard to methylmercury and inorganic bioavailable mercury, and the key factors that enhance or mitigate mercury bioavailability. Technologies that remove mercury from wastewater were reviewed and evaluated for their effect on bioavailability. A screening procedure was developed for making preliminary estimates of bioavailable mercury concentrations and fluxes in wastewater effluents and in fresh, estuarine and marine receiving waters. The procedure was validated using several diverse river and reservoir data sets. A "Bioavailability Tool" was developed which allows a user to estimate the bioavailability of an effluent and

  17. Root-zone plant available water estimation using the SMOS-derived soil water index

    Science.gov (United States)

    González-Zamora, Ángel; Sánchez, Nilda; Martínez-Fernández, José; Wagner, Wolfgang

    2016-10-01

    Currently, there are several space missions capable of measuring surface soil moisture, owing to the relevance of this variable in meteorology, hydrology and agriculture. However, the Plant Available Water (PAW), which in some fields of application could be more important than the soil moisture itself, cannot be directly measured by remote sensing. Considering the root zone as the first 50 cm of the soil, in this study, the PAW at 25 cm and 50 cm and integrated between 0 and 50 cm of soil depth was estimated using the surface soil moisture provided by the Soil Moisture Ocean Salinity (SMOS) mission. For this purpose, the Soil Water Index (SWI) has been used as a proxy of the root-zone soil moisture, involving the selection of an optimal T (Topt), which can be interpreted as a characteristic soil water travel time. In this research, several tests using the correlation coefficient (R), the Nash-Sutcliffe score (NS), several error estimators and bias as predictor metrics were applied to obtain the Topt, making a comprehensive study of the T parameter. After analyzing the results, some differences were found between the Topt obtained using R and NS as decision metrics, and that obtained using the errors and bias, but the SWI showed good results as an estimator of the root-zone soil moisture. This index showed good agreement, with an R between 0.60 and 0.88. The method was tested from January 2010 to December 2014, using the database of the Soil Moisture Measurements Stations Network of the University of Salamanca (REMEDHUS) in Spain. The PAW estimation showed good agreement with the in situ measurements, following closely the dry-downs and wetting-up events, with R ranging between 0.60 and 0.92, and error values lower than 0.05 m3m-3. A slight underestimation was observed for both the PAW and root-zone soil moisture at the different depths; this could be explained by the underestimation pattern observed with the SMOS L2 soil moisture product, in line with previous

  18. Innovative Fresh Water Production Process for Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air

  19. Shallow Water Propagation and Surface Reverberation Modeling

    Science.gov (United States)

    2012-09-30

    compare the results with experiment. This work will be used to help interpret field data of bistatic scattering from sea ice cover and calibrate...approximate analytical and numerical acoustic models used to compute bistatic scattering. The clouds of bubbles entrained at the sea surface by breaking...ABSTRACT SAR 18. NUMBER OF PAGES 7 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified

  20. Tracer injection techniques in flowing surface water

    Science.gov (United States)

    Wörman, A.

    2009-04-01

    Residence time distributions for flowing water and reactive matter are commonly used integrated properties of the transport process for determining technical issues of water resource management and in eco-hydrological science. Two general issues for tracer techniques are that the concentration-vs-time relation following a tracer injection (the breakthrough curve) gives unique transport information in different parts of the curve and separation of hydromechanical and reactive mechanisms often require simultaneous tracer injections. This presentation discusses evaluation methods for simultaneous tracer injections based on examples of tracer experiments in small rivers, streams and wetlands. Tritiated water is used as a practically inert substance to reflect the actual hydrodynamics, but other involved tracers are Cr(III)-51, P-32 and N-15. Hydromechanical, in-stream dispersion is reflected as a symmetrical spreading of the spatial concentration distribution. This requires that the transport distance over water depth is larger than about five times the flow Peclet number. Transversal retention of both inert and reactive solutes is reflected in terms of the tail of the breakthrough curve. Especially, reactive solutes can have a substantial magnification of the tailing behaviour depending on reaction rates or partitioning coefficients. To accurately discriminate between the effects of reactions and hydromechanical mixing its is relevant to use simultaneous injections of inert and reactive tracers with a sequential or integrated evaluation procedure. As an example, the slope of the P-32 tailing is consistently smaller than that of a simultaneous tritium injection in Ekeby wetland, Eskilstuna. The same applies to N-15 injected in the same experiment, but nitrogen is affected also by a systematic loss due to denitrification. Uptake in stream-bed sediments can be caused by a pumping effect arising when a variable pressure field is created on the stream bottom due to bed

  1. Conventional Treatment of Surface Water Using Moringa Oleifera Seeds Extract as a Primary Coagulant

    Directory of Open Access Journals (Sweden)

    Suleyman A. Muyibi, Ahmed Hissein M Birima, Thamer A. Mohammed

    2012-10-01

    Full Text Available The present study involved the use of a model pilot scale water treatment plant to treat turbid surface water from a stream using processed Moringa oleifera seed with 25 % w/w oil extracted as primary coagulant. The water treatment plant was made up of four unit operations: coagulation, flocculation, sedimentation, and filtration (rapid sand filter. Test runs were carried out for three hours per run over a three-month period with turbidities ranging from 18 to 261 NTU. The turbidity, pH, and alkalinity as well as the filter head loss were measured every 30 minutes during the experimental runs. Average turbidity removal of up to 96 % at an effective doses of 20 and 30 mg/l of oil extracted M. oleifera for low (< 50 NTU and moderate turbidity (< 100 NTU water respectively was observed doses 50 – 80 mg/l for high turbidity (> 100 NTU water. M. oleifera seed extract was found to have no significant effect on pH or alkalinity of the water. The residual turbidities measured during most of the test runs satisfied the Malaysian Guideline for Drinking Water Supplies. Key Words: Moringa oleifera, primary coagulant, coagulation, pilot plant, filtration.

  2. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.;

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  3. Super water repellent surface 'strictly' mimicking the surface structure of lotus leaf

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Tae Gon; Kim, Ho Young [Seoul National University, Seoul (Korea, Republic of); Yi, Jin Woo; Lee, Kwang Ryeol; Moon, Myoung Woon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2009-07-01

    To achieve the hierarchy of roughness as observed in lotus leaves, most artificial water-repellent surfaces have nano-asperities on top of micropillars. However, observation of real lotus leaves through SEM reveals that nonoscale roughness covers the entire surface including the base as well as bumps. Thus we fabricate surfaces having the same hierarchical roughness structure as the lotus leaf by forming nanopillars on both micropillars and base. We compare the measures of water-repellency (static contact angle, contact angle hysteresis, and transition pressure between the Cassie and Wenzel states) of the lotus-like surface with those of surfaces having single micro- and nano- roughness. The results show that nanoscale roughness covering entire surface area leads to superior water-repellency to other surface roughness structures. We also give a theoretical consideration of this observation.

  4. 78 FR 35330 - Initial Test Programs for Water-Cooled Nuclear Power Plants

    Science.gov (United States)

    2013-06-12

    ... COMMISSION Initial Test Programs for Water-Cooled Nuclear Power Plants AGENCY: Nuclear Regulatory Commission... revision to Regulatory Guide (RG), 1.68, ``Initial Test Programs for Water-Cooled Nuclear Power Plants... Initial Test Programs (ITPs) for light water cooled nuclear power plants. ADDRESSES: Please refer...

  5. Analysis of selected elements in water in the drinking water preparation plants in Belgrade, Serbia

    Directory of Open Access Journals (Sweden)

    Antanasijević Davor Z.

    2011-01-01

    Full Text Available Belgrade's water supply relies mainly on the River Sava and groundwater supply wells, which are located in the vicinity of the river and Ada Ciganlija. In this paper, the content of aluminum, boron, chromium, manganese, cobalt, nickel, copper, zinc, arsenic, cadmium, barium and lead was analyzed in raw water as well as drinking water distributed by the Water Supply and Sewage of Belgrade. A total of 14 samples were examined from all water treatment plants that are part of the distribution system. The measurements were conducted using the inductively coupled plasma-mass spectrometry (ICP-MS technique. The aim of this research was to examine the effectiveness of drinking water preparation process in the plants belonging to the Water Supply and Sewage of Belgrade. The content of certain elements varies considerably in raw water (river and groundwater: the concentration of boron in river water is two to three times lower than the concentration in groundwater; the concentration of arsenic in river water is ten to twenty five times lower than the concentration in groundwater; the concentration of aluminum in all groundwater samples was below the detection limit of the instrument (0.50 μg/dm3, whilst in the river water the content of aluminum was about 50 μg/dm3 and the concentration of manganese in the river water was up to 10 times lower than the concentrations in groundwater. In all drinking water samples the concentration of the elements were bellow the maximum allowed levels according to the Serbian regulations. Correlation coefficients determined for boron, manganese, cobalt, nickel, copper, zinc, arsenic, barium and lead, which were analyzed in raw waters, show that four groups of elements can be distinguished. Boron, manganese, arsenic and barium are related to each other and probably have a common natural origin; copper and lead probably have a common anthropogenic origin; correlation of nickel and cobalt was observed, while zinc was not in

  6. Simulation method for determining biodegradation in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Schoeberl, P.; Guhl, W. [Henkel KGaA, Duesseldorf (Germany). Hauptabteilung Oekologie; Scholz, N. [OXENO GmbH, Marl (Germany); Taeger, K. [BASF AG, Ludwigshafen am Rhein (Germany)

    1998-07-01

    OECD guidelines and EU directives on the biological testing of chemicals contain no methods able to simulate biodegradation in surface waters. The surface water simulation method presented in this paper is suitable for closing this gap. The species in the autochthonous biocoenosis used in the method form part of the food web in natural surface waters. The microbial degradation activity measured by the half-life is comparable with that in surface waters. The degrees of degradation measured in this surface water simulation method can be applied to natural surface waters. (orig.) [Deutsch] Die OECD- und EU-Richtlinien zur biologischen Pruefung von Chemikalien enthalten kein Verfahren, mit dem der biologische Abbau in Fliessgewaessern simuliert werden kann. Das in dieser Arbeit vorgestellte Fliessgewaesser-Simulationsmodell ist geeignet, diese Luecke zu schliessen. Die Arten der autochthonen Biocoenose des Modells sind Glieder im Nahrungsnetz natuerlicher Fliessgewaesser. Die an der Halbwertszeit gemessene mikrobielle Abbauaktivitaet ist mit derjenigen in Fliessgewaessern vergleichbar. Die im Fliessgewaesser-Simulationsmodell gemessenen Abbaugrade sind auf natuerliche Fliessgewaesser uebertragbar. (orig.)

  7. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  8. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    Science.gov (United States)

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  9. Emergency membrane contactor based absorption system for ammonia leaks in water treatment plants

    Institute of Scientific and Technical Information of China (English)

    SHAO Jiahui; FANG Xuliang; HE Yiliang; JIN Qiang

    2008-01-01

    Because of the suspected health risks of trihalomethanes (THMs), more and more water treatment plants have replaced traditionalchlorine disinfection process with chloramines but often without the proper absorption system installed in the case of ammonia leaksin the storage room. A pilot plant membrane absorption system was developed and installed in a water treatment plant for this purpose.Experimentally determined contact angle, surface tension, and corrosion tests indicated that the sulfuric acid was the proper choice as the absorbent for leaking ammonia using polypropylene hollow fiber membrane contactor. Effects of several operating conditionson the mass transfer coefficient, ammonia absorption, and removal efficiency were examined, including the liquid concentration,liquid velocity, and feed gas concentration. Under the operation conditions investigated, the gas absorption efficiency over 99.9%was achieved. This indicated that the designed pilot plant membrane absorption system was effective to absorb the leaking ammonia in the model storage room. The removal rate of the ammonia in the model storage room was also experimentally and theoretically foundto be primarily determined by the ammonia suction flow rate from the ammonia storage room to the membrane contactor. The ammoniaremoval rate of 99.9% was expected to be achieved within 1.3 h at the ammonia gas flow rate of 500 m3/h. The success of the pilot plantmembrane absorption system developed in this study illustrated the potential of this technology for ammonia leaks in water treatmentplant, also paved the way towards a larger scale application.

  10. Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent.

    Science.gov (United States)

    Beltrán-Heredia, J; Sánchez-Martín, J

    2009-05-01

    Moringa oleifera extract is a high-capacity flocculant agent for turbidity removal in surface water treatment. A complete study of a pilot-plant installation has been carried out. Because of flocculent sedimentability of treated water, a residual turbidity occured in the pilot plant (around 30 NTU), which could not be reduced just by a coagulation-flocculation-sedimentation process. Because of this limitation, the pilot plant (excluded filtration) achieved a turbidity removal up to 70%. A slow sand filter was put in as a complement to installation. A clogging process was characterized, according to Carman-Kozeny's hydraulic hypothesis. Kozeny's k parameter was found to be 4.18. Through fouling stages, this k parameter was found to be up to 6.36. The obtained data are relevant for the design of a real filter in a continuous-feeding pilot plant. Slow sand filtration is highly recommended owing to its low cost, easy-handling and low maintenance, so it is a very good complement to Moringa water treatment in developing countries.

  11. Water-clay surface interaction: A neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, O., E-mail: sobolev38@gmail.com [LGIT, University of Grenoble and CNRS, BP 53-38041 Grenoble (France); Favre Buivin, F. [HES-SO Fribourg, Bd de Perolles 80-CP 32, CH-1705 Fribourg (Switzerland); Kemner, E.; Russina, M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Glienicker Strasse 100, D-14109 Berlin (Germany); Beuneu, B. [Laboratoire Leon Brillouin, C.E. Saclay, 91191 Gif sur Yvette (France); Cuello, G.J. [Institut Laue Langevin and Ikerbasque, 6, rue Jules Horowitz, BP 156, 38042 Grenoble, Cedex 9 (France); Charlet, L. [LGIT, University of Grenoble and CNRS, BP 53-38041 Grenoble (France)

    2010-08-23

    Graphical abstract: Interaction between water molecules and internal clay surfaces was studied by means of neutron diffraction and quasielastic neutron scattering. A hydrophobic cation, TMA{sup +} was used to reduce hydration of interlayer cations. - Abstract: The aim of this study was to investigate interaction between water molecules and internal clay surfaces by means of neutron diffraction and quasielastic neutron scattering. A hydrophobic cation, TMA{sup +} (NC{sub 4}H{sub 12}), was used to saturate the interlayer space of nontronite NAu-1 in order to reduce hydration of interlayer cations that could hinder the effects related to the clay-water interactions. The water content was low in order to reduce hydrogen bonding between water molecules. It was found that water molecules form strong hydrogen bonds with surface oxygen atoms of nontronite. The diffusion activation energy value E{sub a} = 29 {+-} 3 kJ/mol was obtained for water molecules hydrating the clay surface. These results confirm the assumption that surfaces of smectite clays with tetrahedral substitutions are hydrophilic.

  12. Policy Brief: Enhancing water-use efficiency of thermal power plants in India: need for mandatory water audits

    Energy Technology Data Exchange (ETDEWEB)

    Batra, R.K. (ed.)

    2012-12-15

    This policy brief discusses the challenges of water availability and opportunity to improve the water use efficiency in industries specially the thermal power plants. It presents TERI’s experience from comprehensive water audits conducted for thermal power plants in India. The findings indicate that there is a significant scope for saving water in the waste water discharge, cooling towers, ash handling systems, and the township water supply. Interventions like recycling wastewater, curbing leakages, increasing CoC (Cycles of concentration) in cooling towers, using dry ash handling etc., can significantly reduce the specific water consumption in power plants. However, the first step towards this is undertaking regular water audits. The policy brief highlights the need of mandatory water audits necessary to understand the current water use and losses as well as identify opportunities for water conservation, reduction in specific water consumption, and an overall improvement in water use efficiency in industries.

  13. Characterization of NORM material produced in a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Suursoo, S.; Kiisk, M.; Jantsikene, A.; Koch, R.; Isakar, K.; Realo, E. [University of Tartu, Institute of Physics (Estonia); Lumiste, L. [Tallinn University of Technology (Estonia)

    2014-07-01

    In February 2012 a water treatment plant was opened in Viimsi, Estonia. The plant is designed for removal of iron, manganese, and radium from groundwater. The first 2 years of operation have shown that the purification process generates significant amounts of materials with elevated radium levels. The treatment plant is fed by nine wells, which open to radium-rich aquifers. Purification is achieved by aeration and filtration processes. Aerated water is led through two successive filter columns, first of them is filled with MnO{sub 2} coated material FMH and filtration sand, the second one with zeolite. The plant has five parallel treatment lines with a total of 95 tons of FMH + filtration sand, and 45 tons of zeolite. The average capacity of the facility has been 2400 m{sup 3}/day. Yearly input of radium to the plant is estimated to be 325 MBq for Ra-226, and 420 MBq for Ra-228. Most of the radium (about 90%) accumulates in the filter columns. Some 8-9% of it is removed by backwash water during regular filter backwash cycles. To characterize radium accumulation and its removal by backwash in detail, treatment line no. 5 is sampled monthly for filter materials and backwash water. A steady growth of radium activity concentrations is apparent in both filter materials. In the top layer of the first stage filter (FMH+sand), Ra-226 and Ra-228 activity concentrations (per unit dry weight) reached (1540 ± 60) Bq/kg and (2510 ± 50) Bq/kg (k=2), respectively, by April 2013. At the same time, radium content in the top layer of the second stage filter (zeolite) was an order of magnitude higher: (19 600 ± 130) Bq/kg for Ra-226, and (22 260 ± 170) Bq/kg for Ra-228 (k=2). Radium is not evenly distributed throughout the filter columns. A rough estimate can be given that after 1.25 years of operation (by April 2013) the accumulated activities in treatment line no. 5 reached 1000 MBq for Ra-226 and 1200 MBq for Ra-228. Although filters are the most important type of NORM

  14. Dropwise condensation rate of water breath figures on polymer surfaces having similar surface free energies

    Science.gov (United States)

    Ucar, Ikrime O.; Erbil, H. Yildirim

    2012-10-01

    This study investigates the effect of surface roughness, wettability, water contact angle hysteresis (CAH) and wetting hysteresis (WH) of polymeric substrates to the water drop condensation rate. We used five polyolefin coatings whose surface free energies were in a close range of 30-37 mJ/m2 but having different surface roughness and CAH. The formation of water breath figures was monitored at a temperature just below the dew point. The initial number of the condensed droplets per unit area (N0) and droplet surface coverage were determined during the early stage of drop condensation where the droplet coalescence was negligible. It was found that the mean drop diameter of condensed droplets on these polymer surfaces grow according to a power law with exponent 1/3 of time, similar to the previous reports given in the literature. It was determined that surface roughness and corresponding CAH and WH properties of polymers have important effects on the number of nucleation sites and growth rate of the condensed water droplets. N0 values and the surface coverage increased with the increase in surface roughness, CAH and WH of the polymer surfaces. The total condensed water drop volume also increased with the increase in surface roughness in accordance with the increase of the number of nucleated droplets.

  15. Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization

    Science.gov (United States)

    Westerhoff, P.; Anning, D.

    2000-01-01

    Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p wastewater-treatment plant effluent were higher in DOC concentration (p wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition. (C) 2000 Elsevier Science B.V.Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (pwastewater-treatment plant effluent were higher in DOC concentration (pwastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition.The influence of urbanization, becoming increasingly common in arid regions, on dissolved organic carbon (DOC) concentrations in surface water resources was studied. DOC concentration and composition, seasonal watershed runoff events, streamflow variations, water management practices, and urban infrastructure in several Arizona watersheds were monitored. Ephemeral sites had the highest DOC levels, and unregulated perennial sites and lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater treatment plants. Reservoir outflows

  16. Stable isotopes in leaf water of terrestrial plants.

    Science.gov (United States)

    Cernusak, Lucas A; Barbour, Margaret M; Arndt, Stefan K; Cheesman, Alexander W; English, Nathan B; Feild, Taylor S; Helliker, Brent R; Holloway-Phillips, Meisha M; Holtum, Joseph A M; Kahmen, Ansgar; McInerney, Francesca A; Munksgaard, Niels C; Simonin, Kevin A; Song, Xin; Stuart-Williams, Hilary; West, Jason B; Farquhar, Graham D

    2016-05-01

    Leaf water contains naturally occurring stable isotopes of oxygen and hydrogen in abundances that vary spatially and temporally. When sufficiently understood, these can be harnessed for a wide range of applications. Here, we review the current state of knowledge of stable isotope enrichment of leaf water, and its relevance for isotopic signals incorporated into plant organic matter and atmospheric gases. Models describing evaporative enrichment of leaf water have become increasingly complex over time, reflecting enhanced spatial and temporal resolution. We recommend that practitioners choose a model with a level of complexity suited to their application, and provide guidance. At the same time, there exists some lingering uncertainty about the biophysical processes relevant to patterns of isotopic enrichment in leaf water. An important goal for future research is to link observed variations in isotopic composition to specific anatomical and physiological features of leaves that reflect differences in hydraulic design. New measurement techniques are developing rapidly, enabling determinations of both transpired and leaf water δ(18) O and δ(2) H to be made more easily and at higher temporal resolution than previously possible. We expect these technological advances to spur new developments in our understanding of patterns of stable isotope fractionation in leaf water.

  17. Geochemistry of ground water at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Marine, I.W.

    1976-09-01

    Subsurface hydrogeologic systems underlying the Savannah River Plant (SRP) were studied to determine the origin and age of the contained fluids. Three distinct systems exist beneath SRP: the Coastal Plain sediments, crystalline metamorphic basement rock, and a Triassic rock basin surrounded by the crystalline rock. The water in the Coastal Plain sediments is low in dissolved solids (approximately 30 mg/l), acidic (pH approximately 5.5), and comparatively recent. Water in the crystalline rock is high in dissolved solids (approximately 6000 mg/l), alkaline (pH approximately 8), and approximately 840,000 years old as determined by helium dating techniques. Water in the Triassic rock is highest in dissolved solids (approximately 18,000 mg/l) and is probably older than the water in the surrounding crystalline rock; a quantitative age was not determined. The origin of the water in the crystalline and Triassic rock could not be determined with certainty; however, it is not relic sea water. A detailed geologic-hydrologic history of the SRP region is presented.

  18. Plant-available soil water capacity: estimation methods and implications

    Directory of Open Access Journals (Sweden)

    Bruno Montoani Silva

    2014-04-01

    Full Text Available The plant-available water capacity of the soil is defined as the water content between field capacity and wilting point, and has wide practical application in planning the land use. In a representative profile of the Cerrado Oxisol, methods for estimating the wilting point were studied and compared, using a WP4-T psychrometer and Richards chamber for undisturbed and disturbed samples. In addition, the field capacity was estimated by the water content at 6, 10, 33 kPa and by the inflection point of the water retention curve, calculated by the van Genuchten and cubic polynomial models. We found that the field capacity moisture determined at the inflection point was higher than by the other methods, and that even at the inflection point the estimates differed, according to the model used. By the WP4-T psychrometer, the water content was significantly lower found the estimate of the permanent wilting point. We concluded that the estimation of the available water holding capacity is markedly influenced by the estimation methods, which has to be taken into consideration because of the practical importance of this parameter.

  19. Macro-invertebrate decline in surface water polluted with imidacloprid

    NARCIS (Netherlands)

    van Dijk, T.; van Staalduinen, M.A.; van der Sluijs, J.P.

    2013-01-01

    Imidacloprid is one of the most widely used insecticides in the world. Its concentration in surface water exceeds the water quality norms in many parts of the Netherlands. Several studies have demonstrated harmful effects of this neonicotinoid to a wide range of non-target species. Therefore we expe

  20. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China.

    Science.gov (United States)

    Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing

    2010-04-01

    Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment.

  1. Practical aspects of tritium measurement in ground and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nitzsche, O. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik; Hebert, D. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Angewandte Physik

    1997-03-01

    Tritium measurements are a powerful tool in hydrological and hydrogeological investigations for detecting mean residence times of several water reservoirs. Due to the low tritium activities in precipitation, ground and surface waters a low level measurement is necessary. Therefore often the liquid scintillation counting after an electrolytic enrichment of water is used. In this paper some practical aspects and problems of measurement are discussed and the problem of contamination in low level laboratories is shown. (orig.)

  2. Assessment of heavy metal river Ingulets surface water pollution

    OpenAIRE

    Trokhymenko, Ganna G.; Tsyhanyuk, Nina V.

    2017-01-01

    The low efficiency of implemented targeted programs to reduce the anthropogenic impact on hydroecosystem and overcoming its negative consequences demand a search for the optimal evidence reasonable decisions to improve the quality of Ingul river water basin for different economic sectors of water resources and the required number and suitable quality. Methodical bases of such research must be based on a detailed and comprehensive study of the hydrochemical regime and surface water quality. Th...

  3. Effects of Dimethyl Sulfoxide on Surface Water near Phospholipid Bilayers.

    Science.gov (United States)

    Lee, Yuno; Pincus, Philip A; Hyeon, Changbong

    2016-12-06

    Despite much effort to probe the properties of dimethyl sulfoxide (DMSO) solution, the effects of DMSO on water, especially near plasma membrane surfaces, still remain elusive. By performing molecular dynamics simulations at varying DMSO concentrations (XDMSO), we study how DMSO affects structural and dynamical properties of water in the vicinity of phospholipid bilayers. As proposed by a number of experiments, our simulations confirm that DMSO induces dehydration from bilayer surfaces and disrupts the H-bond structure of water. However, DMSO-enhanced water diffusivity at solvent-bilayer interfaces, an intriguing discovery reported by a spin-label measurement, is not confirmed in our simulations. To resolve this discrepancy, we examine the location of the spin label (Tempo) relative to the solvent-bilayer interface. In accord with the evidence in the literature, our simulations, which explicitly model Tempo-phosphatidylcholine, find that the Tempo moiety is equilibrated at ∼8-10 Å below the bilayer surface. Furthermore, the DMSO-enhanced surface-water diffusion is confirmed only when water diffusion is analyzed around the Tempo moiety that is immersed below the bilayer surface, which implies that the experimentally detected signal of water using Tempo stems from the interior of bilayers, not from the interface. Our analysis finds that the increase of water diffusion below the bilayer surface is coupled to the increase of area per lipid with an increasing XDMSO(≲10mol%). Underscoring the hydrophobic nature of the Tempo moiety, our study calls for careful re-evaluation of the use of Tempo in measurements on lipid bilayer surfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  5. Removal of Metal Nanoparticles Colloidal Solutions by Water Plants

    Science.gov (United States)

    Olkhovych, Olga; Svietlova, Nataliia; Konotop, Yevheniia; Karaushu, Olena; Hrechishkina, Svitlana

    2016-11-01

    The ability of seven species of aquatic plants ( Elodea canadensis, Najas guadelupensis, Vallisneria spiralis L., Riccia fluitans L., Limnobium laevigatum, Pistia stratiotes L., and Salvinia natans L.) to absorb metal nanoparticles from colloidal solutions was studied. It was established that investigated aquatic plants have a high capacity for removal of metal nanoparticles from aqueous solution (30-100%) which indicates their high phytoremediation potential. Analysis of the water samples content for elements including the mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag + Ag2O) before and after exposure to plants showed no significant differences when using submerged or free-floating hydrophytes so-called pleuston. However, it was found that the presence of submerged hydrophytes in aqueous medium ( E. canadensis, N. guadelupensis, V. spiralis L., and R. fluitans L.) and significant changes in the content of photosynthetic pigments, unlike free-floating hydrophytes ( L. laevigatum, P. stratiotes L., S. natans L.), had occur. Pleuston possesses higher potential for phytoremediation of contaminated water basins polluted by metal nanoparticles. In terms of removal of nanoparticles among studied free-floating hydrophytes, P. stratiotes L. and S. natans L. deserve on special attention.

  6. Indirect heat integration across plants using hot water circles☆

    Institute of Scientific and Technical Information of China (English)

    Chenglin Chang; Yufei Wang; Xiao Feng

    2015-01-01

    Total site heat integration (TSHI) provides more opportunities for energy saving in industry clusters. Some design methods including direct integration using process streams and indirect integration using intermediate-fluid cir-cuits, i.e., steam, dowtherms and hot water, have been proposed during last few decades. Indirect heat integration is preferred when the heat sources and sinks are separated in independent plants with rather long distance. This improves energy efficiency by adaption of intermediate fluid circle which acts as a utility provider for plants in a symbiotic network. However, there are some significant factors ignored in conventional TSHI, i.e. the investment of pipeline, cost of pumping and heat loss. These factors simultaneously determine the possibility and perfor-mance of heat integration. This work presents a new methodology for indirect heat integration in low tempera-ture range using hot water circuit as intermediate-fluid medium. The new methodology enables the targeting of indirect heat integration across plants considering the factors mentioned earlier. An MINLP model with economic objective is established and solved. The optimization results give the mass flow rate of intermediate-fluid, diam-eter of pipeline, the temperature of the circuits and the matches of heat exchanger networks (HENS) automati-cally. Finally, the application of this proposed methodology is il ustrated with a case study.

  7. Rapid surface-water volume estimations in beaver ponds

    Science.gov (United States)

    Karran, Daniel J.; Westbrook, Cherie J.; Wheaton, Joseph M.; Johnston, Carol A.; Bedard-Haughn, Angela

    2017-02-01

    Beaver ponds are surface-water features that are transient through space and time. Such qualities complicate the inclusion of beaver ponds in local and regional water balances, and in hydrological models, as reliable estimates of surface-water storage are difficult to acquire without time- and labour-intensive topographic surveys. A simpler approach to overcome this challenge is needed, given the abundance of the beaver ponds in North America, Eurasia, and southern South America. We investigated whether simple morphometric characteristics derived from readily available aerial imagery or quickly measured field attributes of beaver ponds can be used to approximate surface-water storage among the range of environmental settings in which beaver ponds are found. Studied were a total of 40 beaver ponds from four different sites in North and South America. The simplified volume-area-depth (V-A-h) approach, originally developed for prairie potholes, was tested. With only two measurements of pond depth and corresponding surface area, this method estimated surface-water storage in beaver ponds within 5 % on average. Beaver pond morphometry was characterized by a median basin coefficient of 0.91, and dam length and pond surface area were strongly correlated with beaver pond storage capacity, regardless of geographic setting. These attributes provide a means for coarsely estimating surface-water storage capacity in beaver ponds. Overall, this research demonstrates that reliable estimates of surface-water storage in beaver ponds only requires simple measurements derived from aerial imagery and/or brief visits to the field. Future research efforts should be directed at incorporating these simple methods into both broader beaver-related tools and catchment-scale hydrological models.

  8. Effect of copper deficiency and of water stress on the microstructure of tomato leaf surface

    OpenAIRE

    Barbara Dyki; Jan Borowski; Waldemar Kowalczyk

    2013-01-01

    The reaction of tomato plants cv. Tukan F1 to copper deficiency and to water stress was compared. Plants grown in copper deficiency and in conditions of water stress were significantly smaller than controls. They had also lower turgor. The epidermis cells of the upper side leaf in the plants growing in copper deficiency or water stress conditions were smaller than in control plants. However the stomata and trichomes number of leaves plants with copper or water deficiency grown were bigger in ...

  9. Plant Litter Submergence Affects the Water Quality of a Constructed Wetland.

    Science.gov (United States)

    Pan, Xu; Ping, Yunmei; Cui, Lijuan; Li, Wei; Zhang, Xiaodong; Zhou, Jian; Yu, Fei-Hai; Prinzing, Andreas

    2017-01-01

    Plant litter is an indispensable component of constructed wetlands, but how the submergence of plant litter affects their ecosystem functions and services, such as water purification, is still unclear. Moreover, it is also unclear whether the effects of plant litter submergence depend on other factors such as the duration of litter submergence, water source or litter species identity. Here we conducted a greenhouse experiment by submerging the litter of 7 wetland plant species into three types of water substrates and monitoring changes in water nutrient concentrations. Litter submergence affected water quality positively via decreasing the concentration of nitrate nitrogen and negatively via increasing the concentrations of total nitrogen, ammonium nitrogen and total phosphorus. The effects of litter submergence depended on the duration of litter submergence, the water source, the litter species identity, and the plant life form. Different plant species had different effects on the water nutrient concentrations during litter submergence, and the effects of floating plants might be more negative than that of emergent plants. These results are novel evidence of how the submergence of different plant (life form) litter may affect the purification function of constructed wetlands. For water at low eutrophication levels, submerging a relative small amount of plant litter might improve water quality, via benefiting the denitrification process in water. These findings emphasized the management of floating plant litter (a potential removal) during the maintenance of human-controlled wetland ecosystems and provided a potential tool to improve the water quality of constructed wetlands via submerging plant litter of different types.

  10. Evaluation of Calendar Year 1997 Groundwater and Surface Water Quality Data For The Upper East Fork Poplar Creek Hydrogeologic Regime At The U.S. Department of Energy Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.B.

    1998-09-01

    1 1.0 INTRODUCTION This report presents an evaluation of the groundwater quality monitoring data reported in: Calendar Year 1997 Annual Groundwatw Monitoring Report for the Upper East Fork Poplar Creek Hydrogeologtc Rep-meat the US. Department of Energy Y-12 Plant, Oak Ridge, Tennessee (AJA Technical Services, Inc. 1998), which is hereafter referenced as the Annual Monitoring Report. Section 2.0 presents background information for the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime) that is relevant to data evaluation, including brief descriptions of the geology, the groundwater flow system, the contaminant source areas, and the extent of groundwater contamination in the regime. Section 3.0 provides an overview of the groundwater sampling and analysis activities petiormed during calendar year (CY) 1997, including monitoring well locations, sampling frequency and methods, and laboratory analyses. Evaluation and interpretation of the monitoring da% described in Section 4.0, is generally focused on an overview of data quality assurance/quality control (QA/QC), long-term concentration trends for selected inorganic, organic, and radiological contaminants, and consistency with applicable site-specific conceptual contaminant transport models described in: Report on the Remedial Investigation of the Upper East Fork Poplar Creek Characterization Area at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (U.S. Department of Energy 1998), which is referenced hereafter as the Remedial Investigation @I) Report. Findings of the data evaluations are summarized :in Section 5.0 and a list of technical reports and regulatory documents cited for more detailed irdormation (Section 6.0) concludes the report. All of the illustrations (maps and trend graphs) and data summary tables referenced in the text are presented in Appendm A and Appendix B, respectively. Appendix C provides a summary of the analytical results that meet applicable data quality objectives (DQOS) of

  11. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    Science.gov (United States)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  12. Nonzero Ideal Gas Contribution to the Surface Tension of Water.

    Science.gov (United States)

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2017-06-15

    Surface tension, the tendency of fluid interfaces to behave elastically and minimize their surface, is routinely calculated as the difference between the lateral and normal components of the pressure or, invoking isotropy in momentum space, of the virial tensor. Here we show that the anisotropy of the kinetic energy tensor close to a liquid-vapor interface can be responsible for a large part of its surface tension (about 15% for water, independent from temperature).

  13. Micro Hydropower generation by Discharge water of Dongbu Sewage Treatment Plant in Seogwipo City

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Il Seong

    2005-02-15

    This study aims to examine the possibility of Micro hydroelectric power plants by using discharged water from Dongbu Sewage Treatment Plant located in Seogwipo City, Jeju do. The results are as follows; The best location for installing the hydropower plant is at the location of EL(+)2.0, the joint owned surface of the water on the west between discharge flow meter chamber and the surface of the sea water. In calculating the quantity of electric power generation, the amount used is 0.157m{sup 3}/sec, the average 95day water Flow for the recent 3 years. The effective difference in elevation is 12.41m between discharge flow meter chamber and the location of hydraulic turbine installation. Therefore, the quantity of electric generation is expected to be 14.6kW. The monthly quantity of electric generation is 9.46 MW and the yearly quantity of electric generation is calculated to be 113.53 MW. The type of hydraulic turbine to be applied to the hydro power generation is the hydraulic turbine of low head miniflow. Therefore, it is recommended to choose an all-in-one inline-type hydraulic turbine generator. The recommended capacity is 50kW. The hydropower generation has The system of pollution-free energy production. Because the Jejudo government has promoted the free international city project, the image of Clean Jeju is expected to continuously rise. In addition, sewage disposal plants have been regarded as disgusting facilities. Considering this fact, the hydropower generation is expected to build up the image of friendly natural environment. In a word, this project should be considered to be The project of alternative energy production.

  14. Fate of geosmin and 2-methylisoborneol in full-scale water treatment plants.

    Science.gov (United States)

    Zamyadi, Arash; Henderson, Rita; Stuetz, Richard; Hofmann, Ron; Ho, Lionel; Newcombe, Gayle

    2015-10-15

    The increasing frequency and intensity of taste and odour (T&O) producing cyanobacteria in water sources is a growing global issue. Geosmin and 2-methylisoborneol (MIB) are the main cyanobacterial T&O compounds and can cause complaints from consumers at levels as low as 10 ng/L. However, literature concerning the performance of full-scale treatment processes for geosmin and MIB removal is rare. Hence, the objectives of this study were to: 1) estimate the accumulation and breakthrough of geosmin and MIB inside full-scale water treatment plants; 2) verify the potential impact of sludge recycling practice on performance of plants; and, 3) assess the effectiveness of aged GAC for the removal of these compounds. Sampling after full-scale treatment processes and GAC pilot assays were conducted to achieve these goals. Geosmin and MIB monitoring in full-scale plants provided the opportunity to rank the performance of studied treatment processes with filtration and granular activated carbon providing the best barriers for removal of total and extracellular compounds, correspondingly. Geosmin was removed to a greater extent than MIB using GAC. Geosmin and MIB residuals in water post GAC contactors after two years of operation was 20% and 40% of initial concentrations, correspondingly. Biological activity on the GAC surface enhanced the removal of T&O compounds. These observations demonstrated that a multi-barrier treatment approach is required to ensure cyanobacteria and their T&O compounds are effectively removed from drinking water.

  15. Metropolitan Spokane Region Water Resources Study. Appendix A. Surface Water

    Science.gov (United States)

    1976-01-01

    the river as surface supply. This second area lies mostly north of the Spokane River extending up the val- ley known as Rathdrum Prairie and includes...4 10. 2-29 I .~ -A- IvA -4 -4 IS I rp4r 1-4 - 4NCs 4~ 10. 2- 3o * r~tar gg~wr 4 . fAPPENDIX I en00 -4 - r., 0 CM- WMC q ~~0 0r0 4. .44 . VFog 4102A3

  16. Viral persistence in surface and drinking water: Suitability of PCR pre-treatment with intercalating dyes.

    Science.gov (United States)

    Prevost, B; Goulet, M; Lucas, F S; Joyeux, M; Moulin, L; Wurtzer, S

    2016-03-15

    After many outbreaks of enteric virus associated with consumption of drinking water, the study of enteric viruses in water has increased significantly in recent years. In order to better understand the dynamics of enteric viruses in environmental water and the associated viral risk, it is necessary to estimate viral persistence in different conditions. In this study, two representative models of human enteric viruses, adenovirus 41 (AdV 41) and coxsackievirus B2 (CV-B2), were used to evaluate the persistence of enteric viruses in environmental water. The persistence of infectious particles, encapsidated genomes and free nucleic acids of AdV 41 and CV-B2 was evaluated in drinking water and surface water at different temperatures (4 °C, 20 °C and 37 °C). The infectivity of AdV 41 and CV-B2 persisted for at least 25 days, whatever the water temperature, and for more than 70 days at 4 °C and 20 °C, in both drinking and surface water. Encapsidated genomes persisted beyond 70 days, whatever the water temperature. Free nucleic acids (i.e. without capsid) also were able to persist for at least 16 days in drinking and surface water. The usefulness of a detection method based on an intercalating dye pre-treatment, which specifically targets preserved particles, was investigated for the discrimination of free and encapsidated genomes and it was compared to virus infectivity. Further, the resistance of AdV 41 and CV-B2 against two major disinfection treatments applied in drinking water plants (UV and chlorination) was evaluated. Even after the application of UV rays and chlorine at high doses (400 mJ/cm(2) and 10 mg.min/L, respectively), viral genomes were still detected with molecular biology methods. Although the intercalating dye pre-treatment had little use for the detection of the effects of UV treatment, it was useful in the case of treatment by chlorination and less than 1 log10 difference in the results was found as compared to the infectivity measurements

  17. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    Science.gov (United States)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  18. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  19. Surface Water Resources Response to Climate Changes in Jilin Province

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The response of surface water resources on climate changes was studied.[Method] By dint of monthly average temperature and precipitation in 45 meteorological stations in Jilin Province from 1960 to 2000,monthly runoff in 56 hydrological stations in Songhuajiang and Liaohe region,the surface runoff change and the response of surface water resources to climate change in 41 years were expounded.[Result] The runoff of Songliao region was limited during 1960s and 1970s.It began to increase slowly in ...

  20. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent.

    Science.gov (United States)

    Wu, Haiming; Lin, Li; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Liu, Hai

    2016-11-01

    In this study, a two-year experiment was carried out to investigate variation of carbon dioxide (CO2) flux from free water surface constructed wetlands (FWS CW) systems treating sewage treatment plant effluent, and treatment performance was also evaluated. The better 74.6-76.6% COD, 92.7-94.4% NH4(+)-N, 60.1-84.7% TN and 49.3-70.7% TP removal efficiencies were achieved in planted CW systems compared with unplanted systems. The planted CW was a net CO2 sink, while the unplanted CW was a net CO2 source in the entire study period. An obvious annual and seasonal variability of CO2 fluxes from different wetland systems was also presented with the average CO2 flux ranging from -592.83mgm(-2)h(-1) to 553.91mgm(-2)h(-1) during 2012-2013. In addition, the net exchange of CO2 between CW systems and the atmosphere was significantly affected by air temperature, and the presence of plants also had the significant effect on total CO2 emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Potential of Using Solar Energy for Drinking Water Treatment Plant

    Science.gov (United States)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  2. The Proposed Surface Water and Ocean Topography (SWOT) Mission

    Science.gov (United States)

    Fu, Lee-Lueng; Alsdorf, Douglas; Rodriguez, Ernesto; Morrow, Rosemary; Mognard, Nelly; Vaze, Parag; Lafon, Thierry

    2012-01-01

    A new space mission concept called Surface Water and Ocean Topography (SWOT) is being developed jointly by a collaborative effort of the international oceanographic and hydrological communities for making high-resolution measurement of the water elevation of both the ocean and land surface water to answer the questions about the oceanic submesoscale processes and the storage and discharge of land surface water. The key instrument payload would be a Ka-band radar interferometer capable of making high-resolution wide-swath altimetry measurement. This paper describes the proposed science objectives and requirements as well as the measurement approach of SWOT, which is baselined to be launched in 2019. SWOT would demonstrate this new approach to advancing both oceanography and land hydrology and set a standard for future altimetry missions.

  3. Carbon isotopes and water use efficiency in C4 plants.

    Science.gov (United States)

    Ellsworth, Patrick Z; Cousins, Asaph B

    2016-06-01

    Drought is a major agricultural problem worldwide. Therefore, selection for increased water use efficiency (WUE) in food and biofuel crop species will be an important trait in plant breeding programs. The leaf carbon isotopic composition (δ(13)Cleaf) has been suggested to serve as a rapid and effective high throughput phenotyping method for WUE in both C3 and C4 species. This is because WUE, leaf carbon discrimination (Δ(13)Cleaf), and δ(13)Cleaf are correlated through their relationships with intercellular to ambient CO2 partial pressures (Ci/Ca). However, in C4 plants, changing environmental conditions may influence photosynthetic efficiency (bundle-sheath leakiness) and post-photosynthetic fractionation that will potentially alter the relationship between δ(13)Cleaf and Ci/Ca. Here we discuss how these factors influence the relationship between δ(13)Cleaf and WUE, and the potential of using δ(13)Cleaf as a meaningful proxy for WUE.

  4. Life Cycle Assesment of Daugavgriva Waste Water Treatment Plant

    Science.gov (United States)

    Romagnoli, F.; Sampaio, F.; Blumberga, D.

    2009-01-01

    This paper presents the assessment of the environmental impacts caused by the treatment of Riga's waste water in the Daugavgriva plant with biogas energy cogeneration through the life cycle assessment (LCA). The LCA seems to be a good tool to assess and evaluate the most serious environmental impacts of a facility The results showed clearly that the impact category contributing the most to the total impact -eutrophicationcomes from the wastewater treatment stage. Climate change also seems to be a relevant impact coming from the wastewater treatment stage and the main contributor to the Climate change is N2O. The main environmental benefits, in terms of the percentages of the total impact, associated to the use of biogas instead of any other fossil fuel in the cogeneration plant are equal to: 3,11% for abiotic depletation, 1,48% for climate change, 0,51% for acidification and 0,12% for eutrophication.

  5. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  6. The influence of lithology on surface water sources | Science ...

    Science.gov (United States)

    Understanding the temporal and spatial variability of surface water sources within a basin is vital to our ability to manage the impacts of climate variability and land cover change. Water stable isotopes can be used as a tool to determine geographic and seasonal sources of water at the basin scale. Previous studies in the Coastal Range of Oregon reported that the variation in the isotopic signatures of surface water does not conform to the commonly observed “rainout effect”, which exhibits a trend of increasing isotopic depletion with rising elevation. The primary purpose of this research is to investigate the mechanisms governing seasonal and spatial variations in the isotopic signature of surface waters within the Marys River Basin, located in the leeward side of the Oregon Coastal Range. Surface water and precipitation samples were collected every 2-3 weeks for isotopic analysis of δ18O and δ2H for one year. Results indicate a significant difference in isotopic signature between watersheds underlain by basalt and sandstone. The degree of separation was the most distinct during the summer when low flows reflect deeper groundwater sources, whereas isotopic signatures during the rainy season (fall and winter) showed a greater degree of similarity between the two lithologies. This indicates that baseflow within streams drained by sandstone versus basalt is being supplied from two distinctly separate water sources. In addition, Marys River flow at the outle

  7. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    Science.gov (United States)

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  8. Surface water waves due to an oscillatory wavemaker in the presence of surface tension

    Directory of Open Access Journals (Sweden)

    B. N. Mandal

    1992-01-01

    Full Text Available The initial value problem of generation of surface water waves by a harmonically oscillating plane vertical wavemaker in an infinite incompressible fluid under the action of gravity and surface tension is investigated. In the asymptotic evaluation of the free surface depression for large time and distance, the contribution to the integral by stationary phase method gives rise to transient component of the free surface depression while the contribution from the poles give rise to steady state component. It is observed that the presence of surface tension sometimes changes the qualitative nature of the transient component of free surface depression.

  9. Integrated Modeling of Groundwater and Surface Water Interactions in a Manmade Wetland

    Directory of Open Access Journals (Sweden)

    Guobiao Huang Gour-Tsyh Yeh

    2012-01-01

    Full Text Available A manmade pilot wetland in south Florida, the Everglades Nutrient Removal (ENR project, was modeled with a physics-based integrated approach using WASH123D (Yeh et al. 2006. Storm water is routed into the treatment wetland for phosphorus removal by plant and sediment uptake. It overlies a highly permeable surficial groundwater aquifer. Strong surface water and groundwater interactions are a key component of the hydrologic processes. The site has extensive field measurement and monitoring tools that provide point scale and distributed data on surface water levels, groundwater levels, and the physical range of hydraulic parameters and hydrologic fluxes. Previous hydrologic and hydrodynamic modeling studies have treated seepage losses empirically by some simple regression equations and, only surface water flows are modeled in detail. Several years of operational data are available and were used in model historical matching and validation. The validity of a diffusion wave approximation for two-dimensional overland flow (in the region with very flat topography was also tested. The uniqueness of this modeling study is notable for (1 the point scale and distributed comparison of model results with observed data; (2 model parameters based on available field test data; and (3 water flows in the study area include two-dimensional overland flow, hydraulic structures/levees, three-dimensional subsurface flow and one-dimensional canal flow and their interactions. This study demonstrates the need and the utility of a physics-based modeling approach for strong surface water and groundwater interactions.

  10. Impact of plant water uptake strategy on soil moisture and evaporation dynamics during drydown

    NARCIS (Netherlands)

    Teuling, A.J.; Uijlenhoet, R.; Hupet, F.; Troch, P.A.A.

    2006-01-01

    Experiments have shown that plants can compensate for water stress in the upper, more densely rooted, soil layers by increasing the water uptake from deeper layers. By adapting root water uptake to water availability, plants are able to extend the period of unstressed transpiration. This strategy co

  11. Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems

    Science.gov (United States)

    Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.

    2016-10-01

    The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.

  12. Supplementary report on surface-water and ground-water surveys, Nueces River Basin, Texas

    Science.gov (United States)

    Broadhurst, W.L.; Ellsworth, C.E.

    1950-01-01

    A report on the ground-water and surface-water surveys of the Nueces River Basin was included in a report by the Bureau of Reclamation, entitled "Comprehensive plan for water-resources development of the Nueces River Basin project planning report number 5-14.04-3, February 1946".

  13. Innovative Fresh Water Production Process for Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2006-09-29

    significant advantage when using the heated air/heated water process with a less dense less specific surface area packed bed. Use of one configuration over the other depends upon the environment and the desired operating conditions.

  14. Upgrading coagulation with hollow-fibre nanofiltration for improved organic matter removal during surface water treatment.

    Science.gov (United States)

    Köhler, Stephan J; Lavonen, Elin; Keucken, Alexander; Schmitt-Kopplin, Philippe; Spanjer, Tom; Persson, Kenneth

    2016-02-01

    Rising organic matter concentrations in surface waters in many Nordic countries require current drinking water treatment processes to be adapted. Accordingly, the use of a novel nanofiltration (NF) membrane was studied during a nine month period in pilot scale at a large drinking water treatment plant in Stockholm, Sweden. A chemically resistant hollow-fibre NF membrane was fed with full scale process water from a rapid sand filter after aluminum sulfate coagulation. The combined coagulation and NF process removed more than 90% of the incoming lake water dissolved organic carbon (DOC) (8.7 mg C L(-1)), and 96% of the absorbance at 254 nm (A254) (0.28 cm(-1) incoming absorbance). Including granulated active carbon GAC) filter, the complete pilot plant treatment process we observed decreases in DOC concentration (8.7-0.5 mg C L(-1)), SUVA (3.1-1.7 mg(-1) L m(-1)), and the average nominal molecular mass (670-440 Da). Meanwhile, water hardness was practically unaffected (iron concentrations were low (samples. Given the recommended limit of 4 mg L(-1) for chemical oxygen demand (COD) for Swedish drinking water, coagulation will need to be supplemented with one or more treatment steps irrespective whether climate change will lead to drier or wetter conditions in order to maintain sufficient DOC removal with the current increasing concentrations in raw waters.

  15. Leaf water and plant wax hydrogen isotopes in a European sample network

    Science.gov (United States)

    Nelson, D. B.; Kahmen, A.

    2014-12-01

    a more focused framework for understanding the environmental signal captured in leaf waxes, and will be used to refine models of isotopic processes within plants as well as the impact of these processes on surface and atmospheric water.

  16. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  17. Spatial Variation of Arsenic in Soil, Irrigation Water, and Plant Parts: A Microlevel Study

    Science.gov (United States)

    Kabir, M. S.; Salam, M. A.; Paul, D. N. R.; Hossain, M. I.; Rahman, N. M. F.; Aziz, Abdullah

    2016-01-01

    Arsenic pollution became a great problem in the recent past in different countries including Bangladesh. The microlevel studies were conducted to see the spatial variation of arsenic in soils and plant parts contaminated through ground water irrigation. The study was performed in shallow tube well command areas in Sadar Upazila (subdistrict), Faridpur, Bangladesh, where both soil and irrigation water arsenic are high. Semivariogram models were computed to determine the spatial dependency of soil, water, grain, straw, and husk arsenic (As). An arsenic concentration surface was created spatially to describe the distribution of arsenic in soil, water, grain, straw, and husk. Command area map was digitized using Arcview GIS from the “mouza” map. Both arsenic contaminated irrigation water and the soils were responsible for accumulation of arsenic in rice straw, husk, and grain. The accumulation of arsenic was higher in water followed by soil, straw, husk, and grain. Arsenic concentration varied widely within command areas. The extent and propensity of arsenic concentration were higher in areas where high concentration of arsenic existed in groundwater and soils. Spherical model was a relatively better and appropriate model. Kriging method appeared to be more suitable in creating interpolated surface. The average arsenic content in grain was 0.08–0.45 mg/kg while in groundwater arsenic level it ranged from 138.0 to 191.3 ppb.

  18. An evaluation of free water surface wetlands as tertiary sewage water treatment of micro-pollutants.

    Science.gov (United States)

    Breitholtz, Magnus; Näslund, Maria; Stråe, Daniel; Borg, Hans; Grabic, Roman; Fick, Jerker

    2012-04-01

    Increased attention is currently directed towards potential negative effects of pharmaceuticals and other micro-pollutants discharged into the aquatic environment via municipal sewage water. A number of additional treatment technologies, such as ozonation, have therefore been suggested as promising tools for improving the removal efficiency of pharmaceuticals in existing Sewage Treatment Plants (STPs). Constructed wetlands are also capable of removing a variety of micro-pollutants, including some pharmaceuticals, and could hence be a resource efficient complement to more advanced treatment technologies. The purpose of the present study was therefore to increase the knowledge base concerning the potential use of constructed wetlands as a treatment step to reduce emissions of organic micro-pollutants from municipal sewage effluents. Under cold winter conditions, incoming and outgoing waters from four Swedish free water surface wetlands, operated as final treatment steps of sewage effluent from municipal STPs, were sampled and analyzed for levels of a set of 92 pharmaceuticals and 22 inorganic components as well as assessed using subchronic ecotoxicity tests with a macro-alga and a crustacean. Sixty-five pharmaceuticals were detected in the range from 1 ng L(-1) to 7.6 μg L(-1) in incoming and outgoing waters from the four investigated wetlands. Although the sampling design used in the present study lacks the robustness of volume proportional to 24h composite samples, the average estimated removal rates ranged from 42% to 52%, which correlates to previous published values. The effects observed in the ecotoxicity tests with the macro-alga (EC(50)s in the range of 7.5-46%) and the crustacean (LOECs in the range of 11.25-90%) could not be assigned to either pharmaceutical residues or metals, but in general showed that these treatment facilities release water with a relatively low toxic potential, comparable to water that has been treated with advanced tertiary

  19. Application of a fully-integrated groundwater-surface water flow model in municipal asset management

    Science.gov (United States)

    Bowman, L. K.; Unger, A.; Jones, J. P.

    2014-12-01

    Access to affordable potable water is critical in the development and maintenance of urban centres. Given that water is a public good in Canada, all funds related to operation and maintenance of the drinking water and wastewater networks must come from consumers. An asset management system can be put in place by municipalities to more efficiently manage their water and wastewater distribution system to ensure proper use of these funds. The system works at the operational, tactical, and strategic levels, thus ensuring optimal scheduling of operation and maintenance activities, as well as prediction of future water demand scenarios. At the operational level, a fully integrated model is used to simulate the groundwater-surface water interaction of the Laurel Creek Watershed, of which 80% is urbanized by the City of Waterloo. Canadian municipalities typically lose 13% of their potable water through leaks in watermains and sanitary sewers, and sanitary sewers often generate substantial inflows from fractures in pipe walls. The City of Waterloo sanitary sewers carry an additional 10,000 cubic meters of water to wastewater treatment plants. Therefore, watermain and sanitary sewers present a significant impact on the groundwater-surface water interaction, as well as the affordability of the drinking water and wastewater networks as a whole. To determine areas of concern within the network, the integrated groundwater-surface water model also simulates flow through the City of Waterloo's watermain and sanitary sewer networks. The final model will be used to assess the interaction between measured losses of water from the City of Waterloo's watermain system, infiltration into the sanitary sewer system adjacent to the watermains, and the response of the groundwater system to deteriorated sanitary sewers or to pipes that have been recently renovated. This will ultimately contribute to the City of Waterloo's municipal asset management plan.

  20. Water relations, nutrient content and developmental responses of Euonymus plants irrigated with water of different degrees of salinity and quality.

    Science.gov (United States)

    Gómez-Bellot, María José; Alvarez, Sara; Castillo, Marco; Bañón, Sebastián; Ortuño, María Fernanda; Sánchez-Blanco, María Jesús

    2013-07-01

    For 20 weeks, the physiological responses of Euonymus japonica plants to different irrigation sources were studied. Four irrigation treatments were applied at 100 % water holding capacity: control (electrical conductivity (EC) plants were rewatered with the same amount and quality of irrigation water as the control plants. Despite the differences in the chemical properties of the water used, the plants irrigated with NaCl and WW showed similar alterations in growth and size compared with t