WorldWideScience

Sample records for plant-associated bacterial degradation

  1. Plant-associated bacterial degradation of toxic organic compounds in soil.

    LENUS (Irish Health Repository)

    McGuinness, Martina

    2009-08-01

    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review.

  2. Exploring bacterial lignin degradation.

    Science.gov (United States)

    Brown, Margaret E; Chang, Michelle C Y

    2014-04-01

    Plant biomass represents a renewable carbon feedstock that could potentially be used to replace a significant level of petroleum-derived chemicals. One major challenge in its utilization is that the majority of this carbon is trapped in the recalcitrant structural polymers of the plant cell wall. Deconstruction of lignin is a key step in the processing of biomass to useful monomers but remains challenging. Microbial systems can provide molecular information on lignin depolymerization as they have evolved to break lignin down using metalloenzyme-dependent radical pathways. Both fungi and bacteria have been observed to metabolize lignin; however, their differential reactivity with this substrate indicates that they may utilize different chemical strategies for its breakdown. This review will discuss recent advances in studying bacterial lignin degradation as an approach to exploring greater diversity in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    could potentially improve bioremediation of BAM. An important prerequisite for bioaugmentation is the potential to produce the degrader strain at large quantities within reasonable time. The aim of manuscript II, was to optimize the growth medium for Aminobacter MSH1 and to elucidate optimal growth...

  4. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  5. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    Science.gov (United States)

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  6. Diazotrophic Bacterial Community of Degraded Pastures

    OpenAIRE

    João Tiago Correia Oliveira; Everthon Fernandes Figueredo; Williane Patrícia da Silva Diniz; Lucianne Ferreira Paes de Oliveira; Pedro Avelino Maia de Andrade; Fernando Dini Andreote; Júlia Kuklinsky-Sobral; Danúbia Ramos de Lima; Fernando José Freire

    2017-01-01

    Pasture degradation can cause changes in diazotrophic bacterial communities. Thus, this study aimed to evaluate the culturable and total diazotrophic bacterial community, associated with regions of the rhizosphere and roots of Brachiaria decumbens Stapf. pastures in different stages of degradation. Samples of roots and rhizospheric soil were collected from slightly, partially, and highly degraded pastures. McCrady’s table was used to obtain the Most Probable Number (MPN) of bacteria per gram ...

  7. Exploring the plant-associated bacterial communities in Medicago sativa L

    Directory of Open Access Journals (Sweden)

    Pini Francesco

    2012-05-01

    Full Text Available Abstract Background Plant-associated bacterial communities caught the attention of several investigators which study the relationships between plants and soil and the potential application of selected bacterial species in crop improvement and protection. Medicago sativa L. is a legume crop of high economic importance as forage in temperate areas and one of the most popular model plants for investigations on the symbiosis with nitrogen fixing rhizobia (mainly belonging to the alphaproteobacterial species Sinorhizobium meliloti. However, despite its importance, no studies have been carried out looking at the total bacterial community associated with the plant. In this work we explored for the first time the total bacterial community associated with M. sativa plants grown in mesocosms conditions, looking at a wide taxonomic spectrum, from the class to the single species (S. meliloti level. Results Results, obtained by using Terminal-Restriction Fragment Length Polymorphism (T-RFLP analysis, quantitative PCR and sequencing of 16 S rRNA gene libraries, showed a high taxonomic diversity as well as a dominance by members of the class Alphaproteobacteria in plant tissues. Within Alphaproteobacteria the families Sphingomonadaceae and Methylobacteriaceae were abundant inside plant tissues, while soil Alphaproteobacteria were represented by the families of Hyphomicrobiaceae, Methylocystaceae, Bradyirhizobiaceae and Caulobacteraceae. At the single species level, we were able to detect the presence of S. meliloti populations in aerial tissues, nodules and soil. An analysis of population diversity on nodules and soil showed a relatively low sharing of haplotypes (30-40% between the two environments and between replicate mesocosms, suggesting drift as main force shaping S. meliloti population at least in this system. Conclusions In this work we shed some light on the bacterial communities associated with M. sativa plants, showing that Alphaproteobacteria may

  8. Diazotrophic Bacterial Community of Degraded Pastures

    Directory of Open Access Journals (Sweden)

    João Tiago Correia Oliveira

    2017-01-01

    Full Text Available Pasture degradation can cause changes in diazotrophic bacterial communities. Thus, this study aimed to evaluate the culturable and total diazotrophic bacterial community, associated with regions of the rhizosphere and roots of Brachiaria decumbens Stapf. pastures in different stages of degradation. Samples of roots and rhizospheric soil were collected from slightly, partially, and highly degraded pastures. McCrady’s table was used to obtain the Most Probable Number (MPN of bacteria per gram of sample, in order to determine population density and calculate the Shannon-Weaver diversity index. The diversity of total diazotrophic bacterial community was determined by the technique of Denaturing Gradient Gel Electrophoresis (DGGE of the nifH gene, while the diversity of the culturable diazotrophic bacteria was determined by the Polymerase Chain Reaction (BOX-PCR technique. The increase in the degradation stage of the B. decumbens Stapf. pasture did not reduce the population density of the cultivated diazotrophic bacterial community, suggesting that the degradation at any degree of severity was highly harmful to the bacteria. The structure of the total diazotrophic bacterial community associated with B. decumbens Stapf. was altered by the pasture degradation stage, suggesting a high adaptive capacity of the bacteria to altered environments.

  9. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  10. Bacterial enzymes involved in lignin degradation

    NARCIS (Netherlands)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-01-01

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the

  11. Microbial activity and bacterial community structure during degradation of microcystins

    DEFF Research Database (Denmark)

    Christoffersen, K.; Lyck, Susanne; Winding, A.

    2002-01-01

    experiments were analysed by polymerase chain reaction-density gradient gel electrophoresis (PCR-DGGE) of 16S rDNA, which showed that the indigenous bacterial community responded quickly to the addition of lysates. Our study confirms that bacteria can efficiently degrade microcystins in natural waters....... It was hypothesised that the bacterial community from a lake with frequent occurrence of toxic cyanobacteria can degrade microcystin along with other organic compounds. The initial dissolved microcystin concentrations ranged between 10 and 136 mug 1(-1) (microcystin-LR equivalents) in the laboratory experiment, using...... experiment to evaluate the effects of organic lysates on bacterial proliferation in the absence of microcystin. An exponential decline of the dissolved toxins was observed in all cases with toxins present, and the degradation rates ranged between 0.5 and 1.0 d(-1). No lag phases were observed but slow...

  12. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    International Nuclear Information System (INIS)

    Cherrier, J.

    2005-01-01

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblages collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO 2 could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO 2 was used as the indicator of hydrocarbon degradation and (delta) 13 C analysis of the resultant CO 2 was used to evaluate the source of the respired CO 2 (i.e. petroleum hydrocarbons or the pinfish cometabolite). Results from these time

  13. Isolation of amoebic-bacterial consortia capable of degrading trichloroethylene

    International Nuclear Information System (INIS)

    Tyndall, R.L.; Ironside, K.; Little, C.D.; Katz, S.; Kennedy, J.

    1990-01-01

    Groundwater from a waste disposal site contaminated with chlorinated alkenes was examined for the presence of amoebic-bacterial consortia capable of degrading the suspected carcinogen, trichloroethylene (TCE). Consortia were readily isolated from all of four test wells. They contained free-living amoebae, and heterotrophic and methylotrophic bacteria. Electron microscopic examination showed bacteria localized throughout the amoebic cytoplasm and an abundance of hyphomicrobium, but not Type I methanotrophs. The presence of Type II methanotrophs was indirectly indicated by lipid analysis of one consortium. The consortia have been passaged for over two years on mineral salts media in a methane atmosphere, which would not be expected to maintain the heterotrophs or amoebae separately. The methanotrophic bacteria apparently provided a stable nutrient source, allowing the persistence of the various genera. By use of 14 C-radiotracer techniques, the degradation of TCE by the consortia was observed with 14 C eventuating predominantly in CO 2 and water-soluble products. In a more detailed examination of one consortia, the amoebae and heterotrohic components did not degrade TCE, while a mixed culture of heterotrophs and methanotrophs did degrade TCE, suggesting the latter component was the primary cause for the consortium's ability to degrade TCE. Amoebic-bacterial consortia may play a role in stabilizing and preserving methylotrophic bacteria in hostile environments

  14. Carbazole degradation in the soil microcosm by tropical bacterial strains

    Directory of Open Access Journals (Sweden)

    Lateef B. Salam

    2015-01-01

    Full Text Available In a previous study, three bacterial strains isolated from tropical hydrocarbon-contaminated soils and phylogenetically identified as Achromobacter sp. strain SL1, Pseudomonassp. strain SL4 and Microbacterium esteraromaticum strain SL6 displayed angular dioxygenation and mineralization of carbazole in batch cultures. In this study, the ability of these isolates to survive and enhance carbazole degradation in soil were tested in field-moist microcosms. Strain SL4 had the highest survival rate (1.8 x 107 cfu/g after 30 days of incubation in sterilized soil, while there was a decrease in population density in native (unsterilized soil when compared with the initial population. Gas chromatographic analysis after 30 days of incubation showed that in sterilized soil amended with carbazole (100 mg/kg, 66.96, 82.15 and 68.54% were degraded by strains SL1, SL4 and SL6, respectively, with rates of degradation of 0.093, 0.114 and 0.095 mg kg−1 h−1. The combination of the three isolates as inoculum in sterilized soil degraded 87.13% carbazole at a rate of 0.121 mg kg−1 h−1. In native soil amended with carbazole (100 mg/kg, 91.64, 87.29 and 89.13% were degraded by strains SL1, SL4 and SL6 after 30 days of incubation, with rates of degradation of 0.127, 0.121 and 0.124 mg kg−1h−1, respectively. This study successfully established the survivability (> 106 cfu/g detected after 30 days and carbazole-degrading ability of these bacterial strains in soil, and highlights the potential of these isolates as seed for the bioremediation of carbazole-impacted environments.

  15. Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation.

    Science.gov (United States)

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-10-03

    Bioremediation of polluted soils is a promising technique with low environmental impact, which uses soil organisms to degrade soil contaminants. In this study, 19 bacterial strains isolated from a diesel-contaminated soil were screened for their diesel-degrading potential, biosurfactant (BS) production, and biofilm formation abilities, all desirable characteristics when selecting strains for re-inoculation into hydrocarbon-contaminated soils. Diesel-degradation rates were determined in vitro in minimal medium with diesel as the sole carbon source. The capacity to degrade diesel range organics (DROs) of strains SPG23 (Arthobacter sp.) and PF1 (Acinetobacter oleivorans) reached 17-26% of total DROs after 10 days, and 90% for strain GK2 (Acinetobacter calcoaceticus). The amount and rate of alkane degradation decreased significantly with increasing carbon number for strains SPG23 and PF1. Strain GK2, which produced BSs and biofilms, exhibited a greater extent, and faster rate of alkane degradation compared to SPG23 and PF1. Based on the outcomes of degradation experiments, in addition to BS production, biofilm formation capacities, and previous genome characterizations, strain GK2 is a promising candidate for microbial-assisted phytoremediation of diesel-contaminated soils. These results are of particular interest to select suitable strains for bioremediation, not only presenting high diesel-degradation rates, but also other characteristics which could improve rhizosphere colonization.

  16. Metagenomic data of free cyanide and thiocyanate degrading bacterial communities

    Directory of Open Access Journals (Sweden)

    Lukhanyo Mekuto

    2017-08-01

    Full Text Available The data presented in this article contains the bacterial community structure of the free cyanide (CN- and thiocyanate (SCN- degrading organisms that were isolated from electroplating wastewater and synthetic SCN- containing wastewater. PCR amplification of the 16S rRNA V1-V3 regions was undertaken using the 27F and 518R oligonucleotide primers following the metacommunity DNA extraction procedure. The PCR amplicons were processed using the illumina® reaction kits as per manufacturer׳s instruction and sequenced using the illumina® MiSeq-2000, using the MiSeq V3 kit. The data was processed using bioinformatics tools such as QIIME and the raw sequence files are available via NCBI׳s Sequence Read Archive (SRA database.

  17. In-vitro Degradation Behaviour of Irradiated Bacterial Cellulose Membrane

    International Nuclear Information System (INIS)

    Darwis, D.; Khusniya, T.; Hardiningsih, L.; Nurlidar, F.; Winarno, H.

    2012-01-01

    Bacterial cellulose membrane synthesized by Acetobacter xylinum in coconut water medium has potential application for Guided bone Regeneration. However, this membrane may not meet some application requirements due to its low biodegradation properties. In this paper, incorporation of gamma irradiation into the membrane is a developed strategy to increase its biodegradability properties. The in-vitro degradation study in synthetic body fluid (SBF) of the irradiated membrane has been analyzed during periods of 6 months by means of weight loss, mechanical properties and scanning electron microscopy observation compared to that the un-irradiated one. The result showed that weight loss of irradiated membrane with 25 kGy and 50 kGy and immersed in SBF solution for 6 months reached 18% and 25% respectively. While un-irradiated membrane did not give significant weight loss. Tensile strength of membranes decreases with increasing of irradiation dose and further decreases in tensile strength is observed when irradiated membrane was followed by immersion in SBF solution. Microscope electron image of cellulose membranes shows that un-irradiated bacterial cellulose membrane consists of dense ultrafine fibril network structures, while irradiation result in cleavage of fibrils network of cellulose. The fibrils network become loosely after irradiated membrane immersed in SBF solution due to released of small molecular weight carbohydrates formed during by irradiation from the structure (author)

  18. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.

    Science.gov (United States)

    Kandasamy, Sujatha; Dananjeyan, Balachandar; Krishnamurthy, Kumar; Benckiser, Gero

    2015-01-01

    Ten bacterial strains that utilize cyanide (CN) as a nitrogen source were isolated from cassava factory wastewater after enrichment in a liquid media containing sodium cyanide (1 mM) and glucose (0.2% w/v). The strains could tolerate and grow in cyanide concentrations of up to 5 mM. Increased cyanide levels in the media caused an extension of lag phase in the bacterial growth indicating that they need some period of acclimatisation. The rate of cyanide removal by the strains depends on the initial cyanide and glucose concentrations. When initial cyanide and glucose concentrations were increased up to 5 mM, cyanide removal rate increased up to 63 and 61 per cent by Bacillus pumilus and Pseudomonas putida. Metabolic products such as ammonia and formate were detected in culture supernatants, suggesting a direct hydrolytic pathway without an intermediate formamide. The study clearly demonstrates the potential of aerobic treatment with cyanide degrading bacteria for cyanide removal in cassava factory wastewaters.

  19. Curcumin Quantum Dots Mediated Degradation of Bacterial Biofilms

    Directory of Open Access Journals (Sweden)

    Ashish K. Singh

    2017-08-01

    Full Text Available Bacterial biofilm has been reported to be associated with more than 80% of bacterial infections. Curcumin, a hydrophobic polyphenol compound, has anti-quorum sensing activity apart from having antimicrobial action. However, its use is limited by its poor aqueous solubility and rapid degradation. In this study, we attempted to prepare quantum dots of the drug curcumin in order to achieve enhanced solubility and stability and investigated for its antimicrobial and antibiofilm activity. We utilized a newer two-step bottom up wet milling approach to prepare Curcumin Quantum Dots (CurQDs using acetone as a primary solvent. Minimum inhibitory concentration against select Gram-positive and Gram-negative bacteria was performed. The antibiofilm assay was performed at first using 96-well tissue culture plate and subsequently validated by Confocal Laser Scanning Microscopy. Further, biofilm matrix protein was isolated using formaldehyde sludge and TCA/Acetone precipitation method. Protein extracted was incubated with varying concentration of CurQDs for 4 h and was subjected to SDS–PAGE. Molecular docking study was performed to observe interaction between curcumin and phenol soluble modulins as well as curli proteins. The biophysical evidences obtained from TEM, SEM, UV-VIS, fluorescence, Raman spectroscopy, and zeta potential analysis confirmed the formation of curcumin quantum dots with increased stability and solubility. The MICs of curcumin quantum dots, as observed against both select gram positive and negative bacterial isolates, was observed to be significantly lower than native curcumin particles. On TCP assay, Curcumin observed to be having antibiofilm as well as biofilm degrading activity. Results of SDS–PAGE and molecular docking have shown interaction between biofilm matrix proteins and curcumin. The results indicate that aqueous solubility and stability of Curcumin can be achieved by preparing its quantum dots. The study also demonstrates

  20. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts

    Science.gov (United States)

    Chenthamara, Komal; Zhang, Jian; Atanasova, Lea; Yang, Dongqing; Miao, Youzhi; Grujic, Marica; Pourmehdi, Shadi; Pretzer, Carina; Kopchinskiy, Alexey G.; Hundley, Hope; Wang, Mei; Aerts, Andrea; Salamov, Asaf; Lipzen, Anna; Barry, Kerrie; Grigoriev, Igor V.; Shen, Qirong; Kubicek, Christian P.

    2018-01-01

    Unlike most other fungi, molds of the genus Trichoderma (Hypocreales, Ascomycota) are aggressive parasites of other fungi and efficient decomposers of plant biomass. Although nutritional shifts are common among hypocrealean fungi, there are no examples of such broad substrate versatility as that observed in Trichoderma. A phylogenomic analysis of 23 hypocrealean fungi (including nine Trichoderma spp. and the related Escovopsis weberi) revealed that the genus Trichoderma has evolved from an ancestor with limited cellulolytic capability that fed on either fungi or arthropods. The evolutionary analysis of Trichoderma genes encoding plant cell wall-degrading carbohydrate-active enzymes and auxiliary proteins (pcwdCAZome, 122 gene families) based on a gene tree / species tree reconciliation demonstrated that the formation of the genus was accompanied by an unprecedented extent of lateral gene transfer (LGT). Nearly one-half of the genes in Trichoderma pcwdCAZome (41%) were obtained via LGT from plant-associated filamentous fungi belonging to different classes of Ascomycota, while no LGT was observed from other potential donors. In addition to the ability to feed on unrelated fungi (such as Basidiomycota), we also showed that Trichoderma is capable of endoparasitism on a broad range of Ascomycota, including extant LGT donors. This phenomenon was not observed in E. weberi and rarely in other mycoparasitic hypocrealean fungi. Thus, our study suggests that LGT is linked to the ability of Trichoderma to parasitize taxonomically related fungi (up to adelphoparasitism in strict sense). This may have allowed primarily mycotrophic Trichoderma fungi to evolve into decomposers of plant biomass. PMID:29630596

  1. Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter

    DEFF Research Database (Denmark)

    Kamjunke, Norbert; Nimptsch, Jorge; Harir, Mourad

    2017-01-01

    characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures...

  2. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    International Nuclear Information System (INIS)

    Banitz, Thomas; Wick, Lukas Y.; Fetzer, Ingo; Frank, Karin; Harms, Hauke; Johst, Karin

    2011-01-01

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: → Bacterial dispersal networks can considerably improve biodegradation performance. → They facilitate bacterial access to dispersal-limited areas and remote resources. → Abiotic conditions, time horizon and network structure govern the improvements. → Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  3. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Banitz, Thomas, E-mail: thomas.banitz@ufz.de [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Wick, Lukas Y.; Fetzer, Ingo [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Frank, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Harms, Hauke [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Johst, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-10-15

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: > Bacterial dispersal networks can considerably improve biodegradation performance. > They facilitate bacterial access to dispersal-limited areas and remote resources. > Abiotic conditions, time horizon and network structure govern the improvements. > Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  4. Soil bacterial diversity in degraded and restored lands of Northeast Brazil.

    Science.gov (United States)

    Araújo, Ademir Sérgio Ferreira; Borges, Clovis Daniel; Tsai, Siu Mui; Cesarz, Simone; Eisenhauer, Nico

    2014-11-01

    Land degradation deteriorates biological productivity and affects environmental, social, and economic sustainability, particularly so in the semi-arid region of Northeast Brazil. Although some studies exist reporting gross measures of soil microbial parameters and processes, limited information is available on how land degradation and restoration strategies influence the diversity and composition of soil microbial communities. In this study we compare the structure and diversity of bacterial communities in degraded and restored lands in Northeast Brazil and determine the soil biological and chemical properties influencing bacterial communities. We found that land degradation decreased the diversity of soil bacteria as indicated by both reduced operational taxonomic unit (OTU) richness and Shannon index. Soils under native vegetation and restoration had significantly higher bacterial richness and diversity than degraded soils. Redundancy analysis revealed that low soil bacterial diversity correlated with a high respiratory quotient, indicating stressed microbial communities. By contrast, soil bacterial communities in restored land positively correlated with high soil P levels. Importantly, however, we found significant differences in the soil bacterial community composition under native vegetation and in restored land, which may indicate differences in their functioning despite equal levels of bacterial diversity.

  5. The effects of temperature and pH bacterial degradation of latex ...

    African Journals Online (AJOL)

    The goal of this study was to integrate the activities of paint deterioration of microbial communities (microcosms) on the basis of environmental factors. The effect of temperature and pH on bacterial degradation of latex paint under humid condition by bacterial isolates was studied. Results obtained revealed that paint ...

  6. Aerobic Degradation of Drill Muds by Axenic and Mixed Bacterial ...

    African Journals Online (AJOL)

    Prof. Ogunji

    significant difference in the degradation of the drilling muds by the isolates (p > 0.05). ... the potentials of some indigenous bacteria to biodegrade drilling muds used in ... transported to the laboratory aseptically for evaluation, in labeled plastic.

  7. Ultrasound-assisted degradation of a new bacterial ...

    African Journals Online (AJOL)

    user

    2012-05-14

    May 14, 2012 ... polysaccharide composed of rhamnose, glucose, mannose, galactose and glucuronic acid in the molar ... distinguish it from thermal or photochemical degradation ..... hydrolysis with dilute acid cleaves the glycosidic bonds in.

  8. Evaluation of various pesticides-degrading pure bacterial cultures ...

    African Journals Online (AJOL)

    IASA

    2016-10-05

    Oct 5, 2016 ... Full Length Research Paper ... field experimentations for the degradation of various pesticides like Ridomil ... hazardous/toxic chemicals which might be harmful to the ... The isolation of microorganisms involved in pesticide/.

  9. Bacterial degradation of naphtha and its influence on corrosion

    International Nuclear Information System (INIS)

    Rajasekar, A.; Maruthamuthu, S.; Muthukumar, N.; Mohanan, S.; Subramanian, P.; Palaniswamy, N.

    2005-01-01

    The degradation problem of naphtha arises since hydrocarbon acts as an excellent food source for a wide variety of microorganisms. Microbial activity leads to unacceptable level of turbidity, corrosion of pipeline and souring of stored product. In the present study, biodegradation of naphtha in the storage tank and its influence on corrosion was studied. The corrosion studies were carried out by gravimetric method. Uniform corrosion was observed from the weight loss coupons in naphtha (0.024 mm/yr) whereas in presence of naphtha with water, blisters (1.2052 mm/yr) were noticed. The naphtha degradation by microbes was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (NMR). IR study reveals the formation of primary alcohol during degradation process. It was found that microbes degrade (CH 2 -CH 2 ) n to R-CH 3 . Iron bacteria, manganese oxidizing bacteria, acid producers, and heterotrophic bacteria were enumerated and identified in the pipeline. SRB could not be noticed. Since water stratifies in the pipeline, the naphtha-degraded product may adsorb on pipeline, which would enhance the rate of microbial corrosion. On the basis of degradation and corrosion data, a hypothesis for microbial corrosion has been proposed

  10. Studies on hydrocarbon degradation by the bacterial isolate ...

    African Journals Online (AJOL)

    The hydrocarbon utilizing capability of Stenotrophomonas rhizophila (PM-1), isolated from oil contaminated soil composts from Western Ghats region of Karnataka was analyzed. In the bioremediation experiment, ONGC heavy crude oil and poly aromatic hydrocarbons (PAHs) utilization by the bacterial isolate was studied.

  11. Evaluation of various pesticides-degrading pure bacterial cultures ...

    African Journals Online (AJOL)

    Due to the intensive use of pesticides within the greenhouse-rose production, remediation of polluted soils has become a hot topic for researchers in recent decades. Several bacterial strains having the ability to utilize various pesticides as a sole source of carbon and energy were isolated from pesticidecontaminated soils ...

  12. Factors that influence the speed of bacterial wood degradation

    NARCIS (Netherlands)

    Klaassen, R.K.W.M.; Overeem, van B.S.

    2012-01-01

    Bacterial wood decay is a serious threat to the many wooden foundation piles in the Netherlands. In order to learn more about the factors that influence the process of decay, approx. 2000 wood samples taken from Amsterdam piles heads were analysed on type and degree of decay and for 59 extracted

  13. Research on heavy oil degradation by four thermophilic bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Bao, M.; Chen, Q.; Liu, Z.; Li, Y. [Ocean Univ. of China, Qingdao, Shandong (China)

    2009-07-01

    The Shengli oilfield is the second largest onshore oil field in China, with a crude oil output of approximately 30 million tons per year. The large quantities of wastewater that are produced during thermal recovery methods have posed a challenge in terms of water reuse, reinjection and discharge. The important aspect of wastewater treatment is the removal of residual heavy oil. Biological methods are considered to be efficient in solving this problem. This paper reported on a study in which 4 thermophilic microorganisms which had the ability to biodegrade heavy oil were screened from heavy oil wastewater in the Shengli oilfield. Their degradation to heavy oil was discussed and the suitable biodegradation conditions of these bacteria were investigated. The study showed that the degrading efficiency of heavy oil by the 4 bacteria was up to 42.0, 47.6, 55.6 and 43.4 per cent in the wastewater which contained 500 mg per litre of heavy oil, respectively. The crude oil samples were analyzed using gas chromatography/flame ionization detection (GC/FID) and gas chromatography/mass spectrometry (GC/MS) before and after degradation. The single 4 strains demonstrated strong biodegradability to normal alkanes and aromatics, and the average degrading efficiency was about 50 and 35 per cent. The degrading efficiency of the mixed 4 strains was better than the single ones, particularly for the poor biodegradable hydrocarbons such as phenanthrenes and fluorines. 21 refs., 2 tabs., 17 figs.

  14. Degradation of petroleum hydrocarbons by oil field isolated bacterial ...

    African Journals Online (AJOL)

    A mixed consortium was prepared with 15 bacteria isolated by enrichment technique from the sample collected from an oil contaminated site. This consortium was incubated with crude oil to investigate the metabolic capability of bacteria. The degradation efficiency of the isolates in consortium was checked with 2% crude oil ...

  15. Degradation of Polyester Polyurethane by Bacterial Polyester Hydrolases

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    2017-02-01

    Full Text Available Polyurethanes (PU are widely used synthetic polymers. The growing amount of PU used industrially has resulted in a worldwide increase of plastic wastes. The related environmental pollution as well as the limited availability of the raw materials based on petrochemicals requires novel solutions for their efficient degradation and recycling. The degradation of the polyester PU Impranil DLN by the polyester hydrolases LC cutinase (LCC, TfCut2, Tcur1278 and Tcur0390 was analyzed using a turbidimetric assay. The highest hydrolysis rates were obtained with TfCut2 and Tcur0390. TfCut2 also showed a significantly higher substrate affinity for Impranil DLN than the other three enzymes, indicated by a higher adsorption constant K. Significant weight losses of the solid thermoplastic polyester PU (TPU Elastollan B85A-10 and C85A-10 were detected as a result of the enzymatic degradation by all four polyester hydrolases. Within a reaction time of 200 h at 70 °C, LCC caused weight losses of up to 4.9% and 4.1% of Elastollan B85A-10 and C85A-10, respectively. Gel permeation chromatography confirmed a preferential degradation of the larger polymer chains. Scanning electron microscopy revealed cracks at the surface of the TPU cubes as a result of enzymatic surface erosion. Analysis by Fourier transform infrared spectroscopy indicated that the observed weight losses were a result of the cleavage of ester bonds of the polyester TPU.

  16. Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Leão, Bruna A; Tótola, Marcos R; Borges, Arnaldo C

    2011-02-01

    The acute toxicity of bacterial surfactants LBBMA111A, LBBMA155, LBBMA168, LBBMA191 and LBBMA201 and the synthetic surfactant sodium dodecyl sulfate (SDS) on the bioluminescent bacterium Vibrio fischeri was evaluated by measuring the reduction of light emission (EC(20)) by this microorganism when exposed to different surfactant concentrations. Moreover, the toxic effects of different concentrations of biological and synthetic surfactants on the growth of pure cultures of isolates Acinetobacter baumannii LBBMA04, Acinetobacter junni LBBMA36, Pseudomonas sp. LBBMA101B and Acinetobacter baumanni LBBMAES11 were evaluated in mineral medium supplemented with glucose. The EC(20) values obtained confirmed that the biosurfactants have a significantly lower toxicity to V. fischeri than the SDS. After 30 min of exposure, bacterial luminescence was almost completely inhibited by SDS at a concentration of 4710 mg L(-1). Growth reduction of pure bacterial cultures caused by the addition of biosurfactants to the growth medium was lower than that caused by SDS. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil

    International Nuclear Information System (INIS)

    Elazhari-Ali, Abdulmagid; Singh, Arvind K.; Davenport, Russell J.; Head, Ian M.; Werner, David

    2013-01-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition. Highlights: ► The effect of 10% ethanol or 20% biodiesel on the biodegradability of volatile petroleum hydrocarbons in soil was investigated. ► Competition for scarce inorganic nutrients between biofuel and VPH degraders slowed monoaromatic hydrocarbon degradation. ► Biofuel effects were transitional. ► Each fuel selected for a distinct predominant bacterial community. ► All bacterial communities were dominated by Pseudomonas spp. - Blending of petroleum with ethanol or biodiesel changes the fuel degrading soil bacterial community structure, but the long-term effects on fuel biodegradability are minor.

  18. Accumulation of metabolites during bacterial degradation of PAH-mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Vila, J.; Lopez, Z.; Bauza, J.I. [Universitat de Barcelona (Spain). Department de Microbiologia; Minguillon, C. [Parc Cientific de Barcelona (ES). Institut de Recerca de Barcelona (IRB-PCB); Grifoll, M.

    2003-07-01

    In a previous work we identified a number of metabolites accumulated during growth in pyrene by Mycobacterium sp. AP1, and proposed a metabolic pathway for pyrene utilization. In order to confirm and complete this pathway we have isolated and identified the pyrene-degrading strains Mycobacterium sp. PGP2, CP1 and CP2. During growth on pyrene, strains AP1, PGP2, CP1 and CP2 accumulated 4,5-cis-pyrene-dihydrodiol, 4,5-phenanthrene dicarboxylic acid, 4-phenanthrene carboxylic acid, 3,4-dihydroxy-3-hydrophenanthrene-4-carboxylic acid, phthalic acid, and 6,6'-dihydroxy-2,2'-biphenyl dicarboxylic acid. Strains AP1, PGP2, CP1 and CP2 also grew on fluoranthene accumulating acenaphthenone, naphthalene-1,8-dicarboxylic acid, 9-fluorenone-1-carboxylic acid, Z-9-carboxymethylenefluorene-1-carboxylic acid and benzene-1,2,3-tricarboxylic acid. Similar metabolites were produced during growth onf fluoranthene by the Gram-positive strains CFt2 and CFt6, isolated by their capability of using this PAH as a sole source of carbon and energy. These fluoranthene-degrading strains also accumulated cis-1,9a-dihydroxy-1-hydrofluorene-9-one-8-carboxylic acid. In addition to pyrene and fluoranthene, all pyrene-degrading utilized phenanthrene as a sole source of carbon and energy, while the fluoranthene-degrading strains were unable to utilize pyrene or phenanthrene. Mycobacterium sp. AP1 acted on a wide range of PAHs, accumulating aromatic dicarboxylic acids, hydroxyacids, and ketones resulting from dioxygenation and ortho-cleavage, dioxygenation and meta-cleavage, and monooxygenation reactions. In cultures of strains AP1 and CP1 with a defined PAH-mixture only 20% removal of the parent compounds was observed. Analysis of acidic extracts showed the accumulation of the anticipated aromatic acids, suggesting that accumulation of acidic compounds could prevent further degradation of the mixture. Those results led us to isolation of strains DF11 and OH3, able to grow on the selected

  19. Bacterial community dynamics during polysaccharide degradation at contrasting sites in the Southern and Atlantic Oceans.

    Science.gov (United States)

    Wietz, Matthias; Wemheuer, Bernd; Simon, Heike; Giebel, Helge-Ansgar; Seibt, Maren A; Daniel, Rolf; Brinkhoff, Thorsten; Simon, Meinhard

    2015-10-01

    The bacterial degradation of polysaccharides is central to marine carbon cycling, but little is known about the bacterial taxa that degrade specific marine polysaccharides. Here, bacterial growth and community dynamics were studied during the degradation of the polysaccharides chitin, alginate and agarose in microcosm experiments at four contrasting locations in the Southern and Atlantic Oceans. At the Southern polar front, chitin-supplemented microcosms were characterized by higher fractions of actively growing cells and a community shift from Alphaproteobacteria to Gammaproteobacteria and Bacteroidetes. At the Antarctic ice shelf, chitin degradation was associated with growth of Bacteroidetes, with 24% higher cell numbers compared with the control. At the Patagonian continental shelf, alginate and agarose degradation covaried with growth of different Alteromonadaceae populations, each with specific temporal growth patterns. At the Mauritanian upwelling, only the alginate hydrolysis product guluronate was consumed, coincident with increasing abundances of Alteromonadaceae and possibly cross-feeding SAR11. 16S rRNA gene amplicon libraries indicated that growth of the Bacteroidetes-affiliated genus Reichenbachiella was stimulated by chitin at all cold and temperate water stations, suggesting comparable ecological roles over wide geographical scales. Overall, the predominance of location-specific patterns showed that bacterial communities from contrasting oceanic biomes have members with different potentials to hydrolyse polysaccharides. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Carbon and Hydrogen Stable Isotope Fractionation during Aerobic Bacterial Degradation of Aromatic Hydrocarbons†

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Schink, Bernhard; Vieth, Andrea; Meckenstock, Rainer U.

    2002-01-01

    13C/12C and D/H stable isotope fractionation during aerobic degradation was determined for Pseudomonas putida strain mt-2, Pseudomonas putida strain F1, Ralstonia pickettii strain PKO1, and Pseudomonas putida strain NCIB 9816 grown with toluene, xylenes, and naphthalene. Different types of initial reactions used by the respective bacterial strains could be linked with certain extents of stable isotope fractionation during substrate degradation. PMID:12324375

  1. High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments

    International Nuclear Information System (INIS)

    Dell'Anno, Antonio; Beolchini, Francesca; Rocchetti, Laura; Luna, Gian Marco; Danovaro, Roberto

    2012-01-01

    We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments. - Highlights: ► Bioremediation performance was investigated on hydrocarbon contaminated sediments. ► Major changes in bacterial diversity and assemblage composition were observed. ► Temperature exerted the major effect on bacterial assemblages. ► High bacterial diversity increased significantly biodegradation performance. ► This should be considered for sediment remediation by bio-treatments. - Bioremediation strategies which can sustain high levels of bacterial diversity may significantly increase the biodegradation of hydrocarbons in contaminated marine sediments.

  2. Idiosyncratic Genome Degradation in a Bacterial Endosymbiont of Periodical Cicadas.

    Science.gov (United States)

    Campbell, Matthew A; Łukasik, Piotr; Simon, Chris; McCutcheon, John P

    2017-11-20

    When a free-living bacterium transitions to a host-beneficial endosymbiotic lifestyle, it almost invariably loses a large fraction of its genome [1, 2]. The resulting small genomes often become stable in size, structure, and coding capacity [3-5], as exemplified by Sulcia muelleri, a nutritional endosymbiont of cicadas. Sulcia's partner endosymbiont, Hodgkinia cicadicola, similarly remains co-linear in some cicadas diverged by millions of years [6, 7]. But in the long-lived periodical cicada Magicicada tredecim, the Hodgkinia genome has split into dozens of tiny, gene-sparse circles that sometimes reside in distinct Hodgkinia cells [8]. Previous data suggested that all other Magicicada species harbor complex Hodgkinia populations, but the timing, number of origins, and outcomes of the splitting process were unknown. Here, by sequencing Hodgkinia metagenomes from the remaining six Magicicada and two sister species, we show that each Magicicada species harbors Hodgkinia populations of at least 20 genomic circles. We find little synteny among the 256 Hodgkinia circles analyzed except between the most closely related cicada species. Gene phylogenies show multiple Hodgkinia lineages in the common ancestor of Magicicada and its closest known relatives but that most splitting has occurred within Magicicada and has given rise to highly variable Hodgkinia gene dosages among species. These data show that Hodgkinia genome degradation has proceeded down different paths in different Magicicada species and support a model of genomic degradation that is stochastic in outcome and nonadaptive for the host. These patterns mirror the genomic instability seen in some mitochondria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effective pesticide nano formulations and their bacterial degradation

    Science.gov (United States)

    Ramadass, M.; Thiagarajan, P.

    2017-11-01

    The use of chemical pesticides for agricultural pest control and the consequent damage to the ecosystem at air, water and soil levels has become a factor of common knowledge. This alarming trend has led to research and development in the area of nanoformulations to achieve the end use of pest control with very low concentrations of pesticides. Such formulations are being proven to be as effective as traditional formulations due to their inherent ability to achieve controlled delivery of their respective active ingredients. The end result is a successful pest control with minimum environmental damage. Despite this, certain organic groups, that form the essential structural constituents of these pesticides, are not readily degraded due to their complex nature. They continue to persist, accumulate and biomagnify in the environment leading to short and long term hazards. In this context, it has been noted that certain common genera of bacteria such as Bacillus, Pseudomonas, Flavobacterium, Sphingomonas, Brevibacterium, Burkholderia, etc possess the inherent ability to utilise specific chemical groups in the pesticides as their sole source of either carbon and / or nitrogen and consequently achieve their conversion into non-toxic end products. A potential bioremediation process is thus slowly gaining popularity and being implemented on a pilot scale. However, large scale successful pesticide microbial remediation will involve experimentation with several combinations of a variety of nano pesticide formulations with different genera of bacteria under optimised conditions. Such studies will throw light on the precise genus and species of bacteria that may degrade the required groups of pesticides, for environmental damage control in the long run.

  4. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM)

    International Nuclear Information System (INIS)

    Knudsen, Berith Elkær; Ellegaard-Jensen, Lea; Albers, Christian Nyrop; Rosendahl, Søren; Aamand, Jens

    2013-01-01

    Introduction of specific degrading microorganisms into polluted soil or aquifers is a promising remediation technology provided that the organisms survive and spread in the environment. We suggest that consortia, rather than single strains, may be better suited to overcome these challenges. Here we introduced a fungal–bacterial consortium consisting of Mortierella sp. LEJ702 and the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 into small sand columns. A more rapid mineralisation of BAM was obtained by the consortium compared to MSH1 alone especially at lower moisture contents. Results from quantitative real-time polymerase chain reaction (qPCR) demonstrated better spreading of Aminobacter when Mortierella was present suggesting that fungal hyphae may stimulate bacterial dispersal. Extraction and analysis of BAM indicated that translocation of the compound was also affected by the fungal hyphae in the sand. This suggests that fungal–bacterial consortia are promising for successful bioremediation of pesticide contamination. -- Highlights: •Presence of fungi increased the rate of BAM mineralization by Aminobacter sp. MSH1. •Fungal–bacterial consortium enhanced BAM degradation at low moisture contents. •Mortierella hyphae facilitated transport of the BAM degrader Aminobacter sp. MSH1. -- This study brings new knowledge to the benefits of applying bacterial–fungal consortia for bioremediation

  5. Degradation of lucerne stem cell walls by five rumen bacterial species

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.; Weimer, P.J.

    2004-01-01

    The rumen bacterial strains Butyrivibrio fibrisolvens H17c, Fibrobacter succinogenes S85, Lachnospira multiparus 40, Ruminococcus albus 7 and R. flavefaciens FD-1 were compared individually and as a five-species mixture with a rumen inoculum for their ability to degrade lucerne (Medicago sativa L.)

  6. Delignification and Enhanced Gas Release from Soil Containing Lignocellulose by Treatment with Bacterial Lignin Degraders.

    Science.gov (United States)

    Rashid, Goran M M; Duran-Pena, Maria Jesus; Rahmanpour, Rahman; Sapsford, Devin; Bugg, Timothy D H

    2017-04-10

    The aim of the study was to isolate bacterial lignin-degrading bacteria from municipal solid waste soil, and to investigate whether they could be used to delignify lignocellulose-containing soil, and enhance methane release. A set of 20 bacterial lignin degraders, including 11 new isolates from municipal solid waste soil, were tested for delignification and phenol release in soil containing 1% pine lignocellulose. A group of 7 strains were then tested for enhancement of gas release from soil containing 1% lignocellulose in small-scale column tests. Using an aerobic pre-treatment, aerobic strains such as Pseudomonas putida showed enhanced gas release from the treated sample, but four bacterial isolates showed 5-10 fold enhancement in gas release in an in situ experiment under microanaerobic conditions: Agrobacterium sp., Lysinibacillus sphaericus, Comamonas testosteroni, and Enterobacter sp.. The results show that facultative anaerobic bacterial lignin degraders found in landfill soil can be used for in situ delignification and enhanced gas release in soil containing lignocellulose. The study demonstrates the feasibility of using an in situ bacterial treatment to enhance gas release and resource recovery from landfill soil containing lignocellulosic waste. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Simultaneous Microcystis Algicidal and Microcystin Degrading Capability by a Single Acinetobacter Bacterial Strain.

    Science.gov (United States)

    Li, Hong; Ai, Hainan; Kang, Li; Sun, Xingfu; He, Qiang

    2016-11-01

    Measures for removal of toxic harmful algal blooms often cause lysis of algal cells and release of microcystins (MCs). In this study, Acinetobacter sp. CMDB-2 that exhibits distinct algal lysing activity and MCs degradation capability was isolated. The physiological response and morphological characteristics of toxin-producing Microcystis aeruginosa, the dynamics of intra- and extracellular MC-LR concentration were studied in an algal/bacterial cocultured system. The results demonstrated that Acinetobacter sp. CMDB-2 caused thorough decomposition of algal cells and impairment of photosynthesis within 24 h. Enhanced algal lysis and MC-LR release appeared with increasing bacterial density from 1 × 10 3 to 1 × 10 7 cells/mL; however, the MC-LR was reduced by nearly 94% within 14 h irrespective of bacterial density. Measurement of extracellular and intracellular MC-LR revealed that the toxin was decreased by 92% in bacterial cell incubated systems relative to control and bacterial cell-free filtrate systems. The results confirmed that the bacterial metabolite caused 92% lysis of Microcystis aeruginosa cells, whereas the bacterial cells were responsible for approximately 91% reduction of MC-LR. The joint efforts of the bacterium and its metabolite accomplished the sustainable removal of algae and MC-LR. This is the first report of a single bacterial strain that achieves these dual actions.

  8. Evaluating robustness of a diesel-degrading bacterial consortium isolated from contaminated soil

    DEFF Research Database (Denmark)

    Sydow, Mateusz; Owsianiak, Mikolaj; Szczepaniak, Zuzanna

    2016-01-01

    It is not known whether diesel-degrading bacterial communities are structurally and functionally robust when exposed to different hydrocarbon types. Here, we exposed a diesel-degrading consortium to model either alkanes, cycloalkanes or aromatic hydrocarbons as carbon sources to study its...... structural resistance. The structural resistance was low, with changes in relative abundances of up to four orders of magnitude, depending on hydrocarbon type and bacterial taxon. This low resistance is explained by the presence of hydrocarbon-degrading specialists in the consortium and differences in growth...... kinetics on individual hydrocarbons. However, despite this low resistance, structural and functional resilience were high, as verified by re-exposing the hydrocarbon-perturbed consortium to diesel fuel. The high resilience is either due to the short exposure time, insufficient for permanent changes...

  9. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway.

    Science.gov (United States)

    Zhao, Huanhuan; Xu, Jun; Dong, Fengshou; Liu, Xingang; Wu, Yanbing; Wu, Xiaohu; Zheng, Yongquan

    2016-08-01

    Persistent use of the diphenyl ether herbicides oxyfluorfen may seriously increase the health risks and ecological safety problems. A newly bacterium R-21 isolated from active soil was able to degrade and utilize oxyfluorfen as the sole carbon source. R-21 was identified as Chryseobacterium aquifrigidense by morphology, physiobiochemical characteristics, and genetic analysis. Under the optimum cultural conditions (pH 6.9, temperature 33.4 °C, and inoculum size 0.2 g L(-1)), R-21 could degrade 92.1 % of oxyfluorfen at 50 mg L(-1) within 5 days. During oxyfluorfen degradation, six metabolites were detected and identified by atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry and ultra-performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry, and a plausible degradation pathway was deduced. Strain R-21 is a promising potential in bioremediation of oxyfluorfen-contaminated environments.

  10. In vitro estimation of rumen protein degradability using 35S to label the bacterial mass

    International Nuclear Information System (INIS)

    Khristov, A.; Aleksandrov, S.; Aleksiev, I.

    1994-01-01

    An experiment was carried out in order to simplify a previously developed 15 N-method for in vitro estimation of rumen protein degradability. Casein (Cas), whole soybeans (Sb) heated at 120 o C for 20 min (SbTherm) and sunflower (Sfl) were incubated at 39 o C for 4 hours in a water bathshaker with the following media: McDougall's buffer, strained and enriched with particle associated bacteria rumen fluid (2:1), rapidly (maltose, sucrose, glucose) and more slowly (pectin, soluble starch) degradable carbohydrates with final concentration of 815 mg/100 ml and 21.7 μCi/100 ml of 35 S (from Na 2 35 SO 4 ). After the incubation had been ceased, a bacterial fraction was isolated through differential centrifugation and specific activity of bacterial (Bac) and high speed total solids (TS) nitrogen was measured. The ratio was used to calculate bacterial mass in TS and through the Kjeldahl nitrogen concentration in TS - the net bacterial growth (against control vessels without protein). The level of ammonia-N in the supernate after blank correction was used to find the ammonia-N released from protein degradation. The data showed that the rate (and extend) of degradation for the Cas (as a standard protein) was lower compared to those obtained through the 15 N-method but it was higher than the rate derived through another in vitro method. The Cas equivalent of the Sb was higher than the figure we found in a previous experiment with solvent extracted soybean meal suggesting that the 35 S-method underestimated the degradability of the Cas. After being tested on a wider range of foodstuffs, the proposed 35 S-method might be considered as an alternative procedure which is less laborous than the 15 N-method. (author)

  11. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter

    DEFF Research Database (Denmark)

    Logue, J.B.; Stedmon, Colin; Kellerman, A.M.

    2016-01-01

    and ecosystem functioning in that differently structured aquatic bacterial communities differed in their degradation of terrestrially derived DOM. Although the same amount of carbon was processed, both the temporal pattern of degradation and the compounds degraded differed among communities. We, moreover...

  12. Fungal–bacterial consortia increase diuron degradation in water-unsaturated systems

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea; Knudsen, Berith Elkær; Johansen, Anders

    2014-01-01

    organism. In addition, fungal hyphae may function as transport vectors for bacteria, thereby facilitating a more effective spreading of degrader organisms in the soil. A more rapid mineralization of the phenylurea herbicide diuron was found in sand with added microbial consortia consisting of both...... degrading bacteria and fungi. Facilitated transport of bacteria by fungal hyphae was demonstrated using a system where herbicide-spiked sand was separated from the consortium by a layer of sterile glass beads. Several fungal–bacterial consortia were investigated by combining different diuron...

  13. Degradation of paracetamol by pure bacterial cultures and their microbial consortium.

    Science.gov (United States)

    Zhang, Lili; Hu, Jun; Zhu, Runye; Zhou, Qingwei; Chen, Jianmeng

    2013-04-01

    Three bacterial strains utilizing paracetamol as the sole carbon, nitrogen, and energy source were isolated from a paracetamol-degrading aerobic aggregate, and assigned to species of the genera Stenotrophomonas and Pseudomonas. The Stenotrophomonas species have not included any known paracetamol degraders until now. In batch cultures, the organisms f1, f2, and fg-2 could perform complete degradation of paracetamol at concentrations of 400, 2,500, and 2,000 mg/L or below, respectively. A combination of three microbial strains resulted in significantly improved degradation and mineralization of paracetamol. The co-culture was able to use paracetamol up to concentrations of 4,000 mg/L, and mineralized 87.1 % of the added paracetamol at the initial of 2,000 mg/L. Two key metabolites of the biodegradation pathway of paracetamol, 4-aminophenol, and hydroquinone were detected. Paracetamol was degraded predominantly via 4-aminophenol to hydroquinone with subsequent ring fission, suggesting new pathways for paracetamol-degrading bacteria. The degradation of paracetamol could thus be performed by the single isolates, but is stimulated by a synergistic interaction of the three-member consortium, suggesting a possible complementary interaction among the various isolates. The exact roles of each of the strains in the consortium need to be further elucidated.

  14. Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities.

    Science.gov (United States)

    Sauret, Caroline; Tedetti, Marc; Guigue, Catherine; Dumas, Chloé; Lami, Raphaël; Pujo-Pay, Mireille; Conan, Pascal; Goutx, Madeleine; Ghiglione, Jean-François

    2016-03-01

    We evaluated the relative impact of anthropogenic polycyclic aromatic hydrocarbons (PAHs) among biogeochemical variables on total, metabolically active, and PAH bacterial communities in summer and winter in surface microlayer (SML) and subsurface seawaters (SSW) across short transects along the NW Mediterranean coast from three harbors, one wastewater effluent, and one nearshore observatory reference site. At both seasons, significant correlations were found between dissolved total PAH concentrations and PAH-degrading bacteria that formed a gradient from the shore to nearshore waters. Accumulation of PAH degraders was particularly high in the SML, where PAHs accumulated. Harbors and wastewater outfalls influenced drastically and in a different way the total and active bacterial community structure, but they only impacted the communities from the nearshore zone (PAH concentrations on the spatial and temporal dynamic of total and active communities in this area, but this effect was putted in perspective by the importance of other biogeochemical variables.

  15. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters

    OpenAIRE

    Bacosa, Hernando P.; Liu, Zhanfei; Erdner, Deana L.

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH ...

  16. Dissolution and degradation of crude oil droplets by different bacterial species and consortia by microcosm microfluidics

    Science.gov (United States)

    Jalali, Maryam; Sheng, Jian

    2017-11-01

    Bacteria are involved in cleanup and degradation of crude oil in polluted marine and soil environments. A number of bacterial species have been identified for consuming petroleum hydrocarbons with diverse metabolic capabilities. We conducted laboratory experiments to investigate bacterial consumption by monitoring the volume change to oil droplets as well as effects of oil droplet size on this process. To conduct our study, we developed a micro-bioassay containing an enclosed chamber with bottom substrate printed with stationary oil microdroplets and a digital holographic interferometer (DHI). The morphology of microdroplets was monitored in real time over 100 hours and instantaneous flow field was also measured by digital holographic microscope. The substrates with printed oil droplets were further evaluated with atomic force microscopy (AFM) at the end of each experiment. Three different bacteria species, Pseudomonas sp, Alcanivorax borkumensis, and Marinobacter hydrocarbonoclasticus, as well as six bacterial consortia were used in this study. The results show that droplets smaller than 20µm in diameter are not subject to bacterial degradation and the volume of droplet did not change beyond dissolution. Substantial species-specific behaviors have been observed in isolates. The experiments of consortia and various flow shears on biodegradation and dissolution are ongoing and will be reported.

  17. Regional analysis of potential polychlorinated biphenyl degrading bacterial strains from China

    Directory of Open Access Journals (Sweden)

    Jianjun Shuai

    Full Text Available ABSTRACT Polychlorinated biphenyls (PCBs, the chlorinated derivatives of biphenyl, are one of the most prevalent, highly toxic and persistent groups of contaminants in the environment. The objective of this study was to investigate the biodegradation of PCBs in northeastern (Heilongjiang Province, northern (Shanxi Province and eastern China (Shanghai municipality. From these areas, nine soil samples were screened for PCB-degrading bacteria using a functional complementarity method. The genomic 16S rDNA locus was amplified and the products were sequenced to identify the bacterial genera. Seven Pseudomonas strains were selected to compare the capacity of bacteria from different regions to degrade biphenyl by HPLC. Compared to the biphenyl content in controls of 100%, the biphenyl content went down to 3.7% for strain P9-324, 36.3% for P2-11, and 20.0% for the other five strains. These results indicate that a longer processing time led to more degradation of biphenyl. PCB-degrading bacterial strains are distributed differently in different regions of China.

  18. Characterization of Bacterial Hydrocarbon Degradation Potential in the Red Sea Through Metagenomic and Cultivation Methods

    KAUST Repository

    Bianchi, Patrick

    2018-01-01

    The focus of this thesis is on the characterization at the metagenomic level of the water column of the Red Sea and on the isolation and characterization of novel hydrocarbon-degrading species and genomes adapted to the unique environmental characteristics of the basin. The presence of metabolic genes responsible of both linear and aromatic hydrocarbon degradation has been evaluated from a metagenomic survey and a meta-analysis of already available datasets. In parallel, water column-based microcosms have been established with crude oil as the sole carbon source, with aim to isolate potential novel bacterial species and provide new genome-based insights on the hydrocarbon degradation potential available in the Red Sea.

  19. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance

    Science.gov (United States)

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-01-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with soils, and this pattern was exaggerated following disturbance. Degradation with and without MAP was predictable by initial bacterial diversity and the abundance of specific assemblages of Betaproteobacteria, respectively. High Betaproteobacteria abundance was positively correlated with high diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future. PMID:23389106

  20. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters.

    Science.gov (United States)

    Bacosa, Hernando P; Liu, Zhanfei; Erdner, Deana L

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

  1. Bacterial growth and substrate degradation by BTX-oxidizing culture in response to salt stress.

    Science.gov (United States)

    Lee, Chi-Yuan; Lin, Ching-Hsing

    2006-01-01

    Interactions between microbial growth and substrate degradation are important in determining the performance of trickle-bed bioreactors (TBB), especially when salt is added to reduce biomass formation in order to alleviate media clogging. This study was aimed at quantifying salinity effects on bacterial growth and substrate degradation, and at acquiring kinetic information in order to improve the design and operation of TBB. Experiment works began by cultivating a mixed culture in a chemostat reactor receiving artificial influent containing a mixture of benzene, toluene, and xylene (BTX), followed by using the enrichment culture to degrade the individual BTX substrates under a particular salinity, which ranged 0-50 g l(-1) in batch mode. Then, the measured concentrations of biomass and residual substrate versus time were analyzed with the microbial kinetics; moreover, the obtained microbial kinetic constants under various salinities were modeled using noncompetitive inhibition kinetics. For the three substrates the observed bacterial yields appeared to be decreased from 0.51-0.74 to 0.20-0.22 mg mg(-1) and the maximum specific rate of substrate utilization, q, declined from 0.25-0.42 to 0.07-0.11 h(-1), as the salinity increased from 0 to 50 NaCl g l(-1). The NaCl acted as noncompetitive inhibitor, where the modeling inhibitions of the coefficients, K ( T(S)), were 22.7-29.7 g l(-1) for substrate degradation and K ( T(mu)), 13.0-19.0 g l(-1), for biomass formation. The calculated ratios for the bacterial maintenance rate, m (S), to q, further indicated that the percentage energy spent on maintenance increased from 19-24 to 86-91% as salinity level increased from 0 to 50 g l(-1). These results revealed that the bacterial growth was more inhibited than substrate degradation by the BTX oxidizers under the tested salinity levels. The findings from this study demonstrate the potential of applying NaCl salt to control excessive biomass formation in biotrickling filters.

  2. Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter

    Science.gov (United States)

    Kamjunke, Norbert; Nimptsch, Jorge; Harir, Mourad; Herzsprung, Peter; Schmitt-Kopplin, Philippe; Neu, Thomas R.; Graeber, Daniel; Osorio, Sebastian; Valenzuela, Jose; Carlos Reyes, Juan; Woelfl, Stefan; Hertkorn, Norbert

    2017-03-01

    Aquacultures are of great economic importance worldwide but pollute pristine headwater streams, lakes, and estuaries. However, there are no in-depth studies of the consequences of aquacultures on dissolved organic matter (DOM) composition and structure. We performed a detailed molecular level characterization of aquaculture DOM quality and its bacterial degradation using four salmon aquacultures in Chile. Fluorescence measurements, ultrahigh-resolution mass spectrometry, and nuclear magnetic resonance spectroscopy of the DOM revealed specific and extensive molecular alterations caused by aquacultures. Aquacultures released large quantities of readily bioavailable metabolites (primarily carbohydrates and peptides/proteins, and lipids), causing the organic matter downstream of all the investigated aquacultures to deviate strongly from the highly processed, polydisperse and molecularly heterogeneous DOM found in pristine rivers. However, the upstream individual catchment DOM signatures remained distinguishable at the downstream sites. The benthic algal biovolume decreased and the bacterial biovolume and production increased downstream of the aquacultures, shifting stream ecosystems to a more heterotrophic state and thus impairing the ecosystem health. The bacterial DOM degradation rates explain the attenuation of aquaculture DOM within the subsequent stream reaches. This knowledge may aid the development of improved waste processing facilities and may help to define emission thresholds to protect sensitive stream ecosystems.

  3. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM).

    Science.gov (United States)

    Knudsen, Berith Elkær; Ellegaard-Jensen, Lea; Albers, Christian Nyrop; Rosendahl, Søren; Aamand, Jens

    2013-10-01

    Introduction of specific degrading microorganisms into polluted soil or aquifers is a promising remediation technology provided that the organisms survive and spread in the environment. We suggest that consortia, rather than single strains, may be better suited to overcome these challenges. Here we introduced a fungal-bacterial consortium consisting of Mortierella sp. LEJ702 and the 2,6-dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 into small sand columns. A more rapid mineralisation of BAM was obtained by the consortium compared to MSH1 alone especially at lower moisture contents. Results from quantitative real-time polymerase chain reaction (qPCR) demonstrated better spreading of Aminobacter when Mortierella was present suggesting that fungal hyphae may stimulate bacterial dispersal. Extraction and analysis of BAM indicated that translocation of the compound was also affected by the fungal hyphae in the sand. This suggests that fungal-bacterial consortia are promising for successful bioremediation of pesticide contamination. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Bio-degradation of oily food waste employing thermophilic bacterial strains.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Selvam, Ammaiyappan; Chan, Man Ting; Wong, Jonathan W C

    2018-01-01

    The objective of this work was to isolate a novel thermophilic bacterial strain and develop a bacterial consortium (BC) for efficient degradation oily food waste. Four treatments were designed: 1:1 mixture of pre-consumption food wastes (PrCFWs) and post-consumption food wastes (PCFWs) (T-1), 1:2 mixture of PrCFWs and PCFWs mixture (T-2), PrCFWs (T-3) and PCFWs (T-4). Equal quantity of BC was inoculated into each treatment to compare the oil degradation efficiency. Results showed that after 15days of incubation, a maximum oil reduction of 65.12±0.08% was observed in treatment T-4, followed by T-2 (55.44±0.12%), T-3 (54.79±0.04%) and T-1 (52.52±0.02%), while oil reduction was negligible in control. Results indicate that the development of oil utilizing thermophilic BC was more cost-effective in solving the degradation of oily food wastes and conversion into a stable end product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance.

    Science.gov (United States)

    Bell, Terrence H; Yergeau, Etienne; Maynard, Christine; Juck, David; Whyte, Lyle G; Greer, Charles W

    2013-06-01

    Increased exploration and exploitation of resources in the Arctic is leading to a higher risk of petroleum contamination. A number of Arctic microorganisms can use petroleum for growth-supporting carbon and energy, but traditional approaches for stimulating these microorganisms (for example, nutrient addition) have varied in effectiveness between sites. Consistent environmental controls on microbial community response to disturbance from petroleum contaminants and nutrient amendments across Arctic soils have not been identified, nor is it known whether specific taxa are universally associated with efficient bioremediation. In this study, we contaminated 18 Arctic soils with diesel and treated subsamples of each with monoammonium phosphate (MAP), which has successfully stimulated degradation in some contaminated Arctic soils. Bacterial community composition of uncontaminated, diesel-contaminated and diesel+MAP soils was assessed through multiplexed 16S (ribosomal RNA) rRNA gene sequencing on an Ion Torrent Personal Genome Machine, while hydrocarbon degradation was measured by gas chromatography analysis. Diversity of 16S rRNA gene sequences was reduced by diesel, and more so by the combination of diesel and MAP. Actinobacteria dominated uncontaminated soils with diesel degradation in MAP-treated soils, suggesting this may be an important group to stimulate. The predictability with which bacterial communities respond to these disturbances suggests that costly and time-consuming contaminated site assessments may not be necessary in the future.

  6. Characterization of para-Nitrophenol-Degrading Bacterial Communities in River Water by Using Functional Markers and Stable Isotope Probing.

    Science.gov (United States)

    Kowalczyk, Agnieszka; Eyice, Özge; Schäfer, Hendrik; Price, Oliver R; Finnegan, Christopher J; van Egmond, Roger A; Shaw, Liz J; Barrett, Glyn; Bending, Gary D

    2015-10-01

    Microbial degradation is a major determinant of the fate of pollutants in the environment. para-Nitrophenol (PNP) is an EPA-listed priority pollutant with a wide environmental distribution, but little is known about the microorganisms that degrade it in the environment. We studied the diversity of active PNP-degrading bacterial populations in river water using a novel functional marker approach coupled with [(13)C6]PNP stable isotope probing (SIP). Culturing together with culture-independent terminal restriction fragment length polymorphism analysis of 16S rRNA gene amplicons identified Pseudomonas syringae to be the major driver of PNP degradation in river water microcosms. This was confirmed by SIP-pyrosequencing of amplified 16S rRNA. Similarly, functional gene analysis showed that degradation followed the Gram-negative bacterial pathway and involved pnpA from Pseudomonas spp. However, analysis of maleylacetate reductase (encoded by mar), an enzyme common to late stages of both Gram-negative and Gram-positive bacterial PNP degradation pathways, identified a diverse assemblage of bacteria associated with PNP degradation, suggesting that mar has limited use as a specific marker of PNP biodegradation. Both the pnpA and mar genes were detected in a PNP-degrading isolate, P. syringae AKHD2, which was isolated from river water. Our results suggest that PNP-degrading cultures of Pseudomonas spp. are representative of environmental PNP-degrading populations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Formation of Chromophoric Dissolved Organic Matter by Bacterial Degradation of Phytoplankton-Derived Aggregates

    Directory of Open Access Journals (Sweden)

    Joanna D. Kinsey

    2018-01-01

    Full Text Available Organic matter produced and released by phytoplankton during growth is processed by heterotrophic bacterial communities that transform dissolved organic matter into biomass and recycle inorganic nutrients, fueling microbial food web interactions. Bacterial transformation of phytoplankton-derived organic matter also plays a poorly known role in the formation of chromophoric dissolved organic matter (CDOM which is ubiquitous in the ocean. Despite the importance of organic matter cycling, growth of phytoplankton and activities of heterotrophic bacterial communities are rarely measured in concert. To investigate CDOM formation mediated by microbial processing of phytoplankton-derived aggregates, we conducted growth experiments with non-axenic monocultures of three diatoms (Skeletonema grethae, Leptocylindrus hargravesii, Coscinodiscus sp. and one haptophyte (Phaeocystis globosa. Phytoplankton biomass, carbon concentrations, CDOM and base-extracted particulate organic matter (BEPOM fluorescence, along with bacterial abundance and hydrolytic enzyme activities (α-glucosidase, β-glucosidase, leucine-aminopeptidase were measured during exponential growth and stationary phase (~3–6 weeks and following 6 weeks of degradation. Incubations were performed in rotating glass bottles to keep cells suspended, promoting cell coagulation and, thus, formation of macroscopic aggregates (marine snow, more similar to surface ocean processes. Maximum carbon concentrations, enzyme activities, and BEPOM fluorescence occurred during stationary phase. Net DOC concentrations (0.19–0.46 mg C L−1 increased on the same order as open ocean concentrations. CDOM fluorescence was dominated by protein-like signals that increased throughout growth and degradation becoming increasingly humic-like, implying the production of more complex molecules from planktonic-precursors mediated by microbial processing. Our experimental results suggest that at least a portion of open

  8. Characterization of Bacterial Hydrocarbon Degradation Potential in the Red Sea Through Metagenomic and Cultivation Methods

    KAUST Repository

    Bianchi, Patrick

    2018-02-01

    Prokaryotes are the main actors in biogeochemical cycles that are fundamental in global nutrient cycling. The characterization of microbial communities and isolates can enhance the comprehension of such cycles. Potentially novel biochemical processes can be discovered in particular environments with unique characteristics. The Red Sea can be considered as a unique natural laboratory due to its peculiar hydrology and physical features including temperature, salinity and water circulation. Moreover the Red Sea is subjected to hydrocarbon pollution by both anthropogenic and natural sources that select hydrocarbon degrading prokaryotes. Due to its unique features the Red Sea has the potential to host uncharacterized novel microorganisms with hydrocarbondegrading pathways. The focus of this thesis is on the characterization at the metagenomic level of the water column of the Red Sea and on the isolation and characterization of novel hydrocarbon-degrading species and genomes adapted to the unique environmental characteristics of the basin. The presence of metabolic genes responsible of both linear and aromatic hydrocarbon degradation has been evaluated from a metagenomic survey and a meta-analysis of already available datasets. In parallel, water column-based microcosms have been established with crude oil as the sole carbon source, with aim to isolate potential novel bacterial species and provide new genome-based insights on the hydrocarbon degradation potential available in the Red Sea.

  9. Use of biolog methodology for optimizing the degradation of hydrocarbons by bacterial consortia.

    Science.gov (United States)

    Ambrosoli, R; Bardi, L; Minati, J L; Belviso, S; Ricci, R; Marzona, M

    2003-01-01

    Biolog methodology was used for the preliminary screening of different cultural conditions in order to detect the best combination/s of factors influencing the metabolic performance of bacterial consortia active in the degradation of hydrocarbons. Two microbial consortia were tested for their activity on 2 hydrocarbons (nonadecane and eicosane) in presence of the following cultural coadjuvants: vegetal oil, beta-cyclodextrine, sodium acetate, mineral solution. Tests were conducted in Biolog MT plates, where only the redox indicator of microbial growth (tetrazolium violet) and no carbon sources are provided. The microwells were filled with various combinations of hydrocarbons, microbial inoculum and coadjuvants. Blanks were prepared with the same combinations but without hydrocarbons. The results obtained show the suitability of the methodology developed to identify the most active consortium and the conditions for its best degradation performance. The efficacy of Biolog methodology (Biolog Inc., USA) for the characterization of microbial communities on the basis of the metabolic profiles obtained on specific carbon sources in the microwells of Elisa-type plates, is widely acknowledged (Garland, 1997; Pietikäinen et al., 2000; Dauber and Wolters, 2000). Due to its aptitude to simultaneously evaluate multiple microbial responses and directly organize the results, it can be adapted to meet specific study purposes (Gamo and Shji, 1999). In the present research Biolog methodology was fitted for the preliminary screening of different cultural conditions, in order to detect the best combination/s of factors influencing the metabolic performance of bacterial consortia active in the degradation of aliphatic hydrocarbons, in view of their utilization for the bioremediation of polluted sites.

  10. Evidence and Role for Bacterial Mucin Degradation in Cystic Fibrosis Airway Disease

    Science.gov (United States)

    Flynn, Jeffrey M.; Niccum, David; Dunitz, Jordan M.

    2016-01-01

    Chronic lung infections in cystic fibrosis (CF) patients are composed of complex microbial communities that incite persistent inflammation and airway damage. Despite the high density of bacteria that colonize the lower airways, nutrient sources that sustain bacterial growth in vivo, and how those nutrients are derived, are not well characterized. In this study, we examined the possibility that mucins serve as an important carbon reservoir for the CF lung microbiota. While Pseudomonas aeruginosa was unable to efficiently utilize mucins in isolation, we found that anaerobic, mucin-fermenting bacteria could stimulate the robust growth of CF pathogens when provided intact mucins as a sole carbon source. 16S rRNA sequencing and enrichment culturing of sputum also identified that mucin-degrading anaerobes are ubiquitous in the airways of CF patients. The collective fermentative metabolism of these mucin-degrading communities in vitro generated amino acids and short chain fatty acids (propionate and acetate) during growth on mucin, and the same metabolites were also found in abundance within expectorated sputum. The significance of these findings was supported by in vivo P. aeruginosa gene expression, which revealed a heightened expression of genes required for the catabolism of propionate. Given that propionate is exclusively derived from bacterial fermentation, these data provide evidence for an important role of mucin fermenting bacteria in the carbon flux of the lower airways. More specifically, microorganisms typically defined as commensals may contribute to airway disease by degrading mucins, in turn providing nutrients for pathogens otherwise unable to efficiently obtain carbon in the lung. PMID:27548479

  11. The Role of the Bacterial Community of an Agroecosystem in Simazine Degradation

    Directory of Open Access Journals (Sweden)

    Roberto Ciccoli

    2011-02-01

    Full Text Available The use of pesticides and fertilizers in agricultural practice is the main source of soil and groundwater contamination. S-Triazines are among the most used herbicides in the world for selective weed control in several types of crops. The homeostatic capability of an agroecosystem to remove a triazinic herbicide, simazine, was assessed in microcosms treated with the herbicide in presence/absence of urea fertilizer. The latter, as well as a fertilizer, is also one of the last by-products before simazine mineralization. The biodegradation, in terms of disappearance of 50% of the initial concentration (DT50, was compared to the degradation and metabolite formation occurring in sterilized soil. Moreover, the bacterial community response was assessed in terms of abundance and community structure by the epifluorescence direct count method and fluorescence in situ hybridization. The results show that the microbial community has a primary role in simazine degradation and that this process is due to the presence of a microbial pool working in succession and of which the metabolism may be modulated by exogenous sources of nitrogen, like urea. The latter influences the degradative pathway with a greater formation and accumulation of the desethyl-simazine metabolite, which is a hazardous contaminant of soil and groundwater ecosystems, as well as its parent compound.

  12. The Role of the Bacterial Community of an Agroecosystem in Simazine Degradation

    Directory of Open Access Journals (Sweden)

    Anna Barra Caracciolo

    Full Text Available The use of pesticides and fertilizers in agricultural practice is the main source of soil and groundwater contamination. S-Triazines are among the most used herbicides in the world for selective weed control in several types of crops. The homeostatic capability of an agroecosystem to remove a triazinic herbicide, simazine, was assessed in microcosms treated with the herbicide in presence/absence of urea fertilizer. The latter, as well as a fertilizer, is also one of the last by-products before simazine mineralization. The biodegradation, in terms of disappearance of 50% of the initial concentration (DT50, was compared to the degradation and metabolite formation occurring in sterilized soil. Moreover, the bacterial community response was assessed in terms of abundance and community structure by the epifluorescence direct count method and fluorescence in situ hybridization. The results show that the microbial community has a primary role in simazine degradation and that this process is due to the presence of a microbial pool working in succession and of which the metabolism may be modulated by exogenous sources of nitrogen, like urea. The latter influences the degradative pathway with a greater formation and accumulation of the desethyl-simazine metabolite, which is a hazardous contaminant of soil and groundwater ecosystems, as well as its parent compound.

  13. Bacterial degradation of styrene in waste gases using a peat filter

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, M.; Reittu, A. [Kuopio Univ. (Finland). Dept. of Environmental Sciences; Wright, A. von; Suihko, M.L. [VTT Biotechnology and Food Research (Finland); Martikainen, P.J. [Kuopio Univ. (Finland). Dept. of Environmental Sciences]|[National Public Health Inst., Lab. of Environmental Microbiology, Kuopio (Finland)

    1997-12-31

    A biofiltration process was developed for styrene-containing off-gases using peat as filter material. The average styrene reduction ratio after 190 days of operation was 70% (max. 98%) and the mean styrene elimination capacity was 12 g m{sup -3} h{sup -1} (max. 30 g m{sup -3} h{sup -1}). Efficient styrene degradation required addition of nutrients to the peat, adjustment of the pH to a neutral level and efficient control of the humidity. Maintenance of the water balance was easier in a down-flow than in an up-flow process, the former consequently resulting in much better filtration efficiency. The optimum operation temperature was around 23 C, but the styrene removal was still satisfactory at 12 C. Seven different bacterial isolates belonging to the genera Tsukamurella, Pseudomonas, Sphingomonas, Xanthomonas and an unidentified genus in the {gamma} group of the Proteobacteria isolated from the microflora of active peat filter material were capable of styrene degradation. The isolates differed in their capacity to decompose styrene to carbon dioxide and assimilate it to biomass. No toxic intermediate degradation products of styrene were detected in the filter outlet gas or in growing cultures of isolated bacteria. The use of these isolates in industrial biofilters is beneficial at low styrene concentrations and is safe from both the environmental and public health points of view. (orig.)

  14. Bacterial degradation of styrene in waste gases using a peat filter.

    Science.gov (United States)

    Arnold, M; Reittu, A; von Wright, A; Martikainen, P J; Suihko, M L

    1997-12-01

    A biofiltration process was developed for styrene-containing off-gases using peat as filter material. The average styrene reduction ratio after 190 days of operation was 70% (max. 98%) and the mean styrene elimination capacity was 12 g m-3 h-1 (max. 30 g m-3 h-1). Efficient styrene degradation required addition of nutrients to the peat, adjustment of the pH to a neutral level and efficient control of the humidity. Maintenance of the water balance was easier in a down-flow than in an up-flow process, the former consequently resulting in much better filtration efficiency. The optimum operation temperature was around 23 degrees C, but the styrene removal was still satisfactory at 12 degrees C. Seven different bacterial isolates belonging to the genera Tsukamurella, Pseudomonas, Sphingomonas, Xanthomonas and an unidentified genus in the gamma group of the Proteobacteria isolated from the microflora of active peat filter material were capable of styrene degradation. The isolates differed in their capacity to decompose styrene to carbon dioxide and assimilate it to biomass. No toxic intermediate degradation products of styrene were detected in the filter outlet gas or in growing cultures of isolated bacteria. The use of these isolates in industrial biofilters is beneficial at low styrene concentrations and is safe from both the environmental and public health points of view.

  15. Effect of catchment land use and soil type on the concentration, quality, and bacterial degradation of riverine dissolved organic matter

    DEFF Research Database (Denmark)

    Autio, Iida; Soinne, Helena; Helin, Janne

    2016-01-01

    We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations...... of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5–9 % of the DOC and 45 % of the DON were degraded by the bacterial...

  16. Effects of surfactants on bacteria and the bacterial degradation of alkanes in crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Bruheim, Per

    1998-12-31

    This thesis investigates the effects of surfactants on the bacterial degradation of alkanes in crude oil. Several alkane oxidising Gram positive and Gram negative were tested for their abilities to oxidise alkanes in crude oil emulsified with surfactants. The surfactants used to make the oil in water emulsions were either of microbial or chemical origin. Oxidation rates of resting bacteria oxidising various crude oil in water emulsions were measured by Warburg respirometry. The emulsions were compared with non-emulsified oil to see which was the preferred substrate. The bacteria were pregrown to both the exponential and stationary phase of growth before harvesting and preparation for the Warburg experiments. 123 refs., 4 figs., 14 tabs.

  17. The Potency of Local Bacterial Isolates Encapsulated Within Sodium Alginate in Carbofuran Degradation

    Science.gov (United States)

    Priyani, Nunuk; Pratiwi, Dian; Suryanto, Dwi

    2018-03-01

    Research on the viability of bacteria encapsulated within sodium alginate and their potential in carbofuran degradation has been done. A total of 8 bacterial isolates have been isolated from slaughter house waste. A 100 ml of Bushnell-Hass Broth (BHB) medium containing 146.982 ppm of carbofuran was used as a medium. As much as 2 gr of beads which equal to 108cells.ml‑1 was inoculated into each medium culture and incubated for 15 days at ambient temperature and was shaken at 100 rpm. Analysis of carbofuran residues using High Performance Liquid Chromatography (HPLC) showed that the best 2 isolates, DN 1 and OR 2, were able to decrease carbofuran phenol concentration up to 30.37 % and 32.09% respectively compared to control. These results suggested that no significant different from the ability of free cell which decreased carbofuran phenol concentration up to 32.54% and 28.29%.

  18. Bacterial community dynamics during start-up of a trickle-bed bioreactor degrading aromatic compounds.

    Science.gov (United States)

    Stoffels, M; Amann, R; Ludwig, W; Hekmat, D; Schleifer, K H

    1998-03-01

    This study was performed with a laboratory-scale fixed-bed bioreactor degrading a mixture of aromatic compounds (Solvesso100). The starter culture for the bioreactor was prepared in a fermentor with a wastewater sample of a care painting facility as the inoculum and Solvesso100 as the sole carbon source. The bacterial community dynamics in the fermentor and the bioreactor were examined by a conventional isolation procedure and in situ hybridization with fluorescently labeled rRNA-targeted oligonucleotides. Two significant shifts in the bacterial community structure could be demonstrated. The original inoculum from the wastewater of the car factory was rich in proteobacteria of the alpha and beta subclasses, while the final fermentor enrichment was dominated by bacteria closely related to Pseudomonas putida or Pseudomonas mendocina, which both belong to the gamma subclass of the class Proteobacteria. A second significant shift was observed when the fermentor culture was transferred as inoculum to the trickle-bed bioreactor. The community structure in the bioreactor gradually returned to a higher complexity, with the dominance of beta and alpha subclass proteobacteria, whereas the gamma subclass proteobacteria sharply declined. Obviously, the preceded pollutant adaptant did not lead to a significant enrichment of bacteria that finally dominated in the trickle-bed bioreactor. In the course of experiments, three new 16S as well as 23S rRNA-targeted probes for beta subclass proteobacteria were designed, probe SUBU1237 for the genera Burkholderia and Sutterella, probe ALBO34a for the genera Alcaligenes and Bordetella, and probe Bcv13b for Burkholderia cepacia and Burkholderia vietnamiensis. Bacteria hybridizing with the probe Bcv13b represented the main Solvesso100-degrading population in the reactor.

  19. Investigating bacterial populations in styrene-degrading biofilters by 16S rDNA tag pyrosequencing.

    Science.gov (United States)

    Portune, Kevin J; Pérez, M Carmen; Álvarez-Hornos, F Javier; Gabaldón, Carmen

    2015-01-01

    Microbial biofilms are essential components in the elimination of pollutants within biofilters, yet still little is known regarding the complex relationships between microbial community structure and biodegradation function within these engineered ecosystems. To further explore this relationship, 16S rDNA tag pyrosequencing was applied to samples taken at four time points from a styrene-degrading biofilter undergoing variable operating conditions. Changes in microbial structure were observed between different stages of biofilter operation, and the level of styrene concentration was revealed to be a critical factor affecting these changes. Bacterial genera Azoarcus and Pseudomonas were among the dominant classified genera in the biofilter. Canonical correspondence analysis (CCA) and correlation analysis revealed that the genera Brevundimonas, Hydrogenophaga, and Achromobacter may play important roles in styrene degradation under increasing styrene concentrations. No significant correlations (P > 0.05) could be detected between biofilter operational/functional parameters and biodiversity measurements, although biological heterogeneity within biofilms and/or technical variability within pyrosequencing may have considerably affected these results. Percentages of selected bacterial taxonomic groups detected by fluorescence in situ hybridization (FISH) were compared to results from pyrosequencing in order to assess the effectiveness and limitations of each method for identifying each microbial taxon. Comparison of results revealed discrepancies between the two methods in the detected percentages of numerous taxonomic groups. Biases and technical limitations of both FISH and pyrosequencing, such as the binding of FISH probes to non-target microbial groups and lack of classification of sequences for defined taxonomic groups from pyrosequencing, may partially explain some differences between the two methods.

  20. Functional diversity of bacterial genes associated with aromatic hydrocarbon degradation in anthropogenic dark earth of Amazonia

    Directory of Open Access Journals (Sweden)

    Mariana Gomes Germano

    2012-05-01

    Full Text Available The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE and their biochar (BC. Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (α-ARHD bacterial gene were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirão Experimental Station - secondary forest (SF and agriculture (AG -, and the biochar (SF_BC and AG_BC, respectively. Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.

  1. Mass production of bacterial communities adapted to the degradation of volatile organic compounds (TEX).

    Science.gov (United States)

    Lapertot, Miléna; Seignez, Chantal; Ebrahimi, Sirous; Delorme, Sandrine; Peringer, Paul

    2007-06-01

    This study focuses on the mass cultivation of bacteria adapted to the degradation of a mixture composed of toluene, ethylbenzene, o-, m- and p-xylenes (TEX). For the cultivation process Substrate Pulse Batch (SPB) technique was adapted under well-automated conditions. The key parameters to be monitored were handled by LabVIEW software including, temperature, pH, dissolved oxygen and turbidity. Other parameters, such as biomass, ammonium or residual substrate concentrations needed offline measurements. SPB technique has been successfully tested experimentally on TEX. The overall behavior of the mixed bacterial population was observed and discussed along the cultivation process. Carbon and nitrogen limitations were shown to affect the integrity of the bacterial cells as well as their production of exopolymeric substances (EPS). Average productivity and yield values successfully reached the industrial specifications, which were 0.45 kg(DW)m(-3) d(-1) and 0.59 g(DW)g (C) (-1) , respectively. Accuracy and reproducibility of the obtained results present the controlled SPB process as a feasible technique.

  2. Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues.

    Science.gov (United States)

    Bengelsdorf, Frank R; Gerischer, Ulrike; Langer, Susanne; Zak, Manuel; Kazda, Marian

    2013-04-01

    The resident microbiota was analyzed in a mesophilic, continuously operating biogas plant predominantly utilizing food residues, stale bread, and other waste cosubstrates together with pig manure and maize silage. The dominating bacterial, archaeal, and eukaryotic community members were characterized by two different 16S/18S rRNA gene culture-independent approaches. Prokaryotic 16S rRNA gene and eukaryotic 18S rRNA gene clone libraries were constructed and further analyzed by restriction fragment length polymorphism (RFLP), 16S/18S rRNA gene sequencing, and phylogenetic tree reconstruction. The most dominant bacteria belonged to the phyla Bacteriodetes, Chloroflexus, and Firmicutes. On the family level, the bacterial composition confirmed high differences among biogas plants studied so fare. In contrast, the methanogenic archaeal community was similar to that of other studied biogas plants. Furthermore, it was possible to identify fungi at the genus level, namely Saccharomyces and Mucor. Both genera, which are important for microbial degradation of complex compounds, were up to now not found in biogas plants. The results revealed their long-term presence as indicated by denaturating gradient gel electrophoresis (DGGE). The DGGE method confirmed that the main members of the microbial community were constantly present over more than one-year period. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  3. Degradation and depolymerization of plastic waste by local bacterial isolates and bubble column reactor

    Science.gov (United States)

    Hussein, Amal A.; Alzuhairi, Mohammed; Aljanabi, Noor H.

    2018-05-01

    Accumulation of plastics, especially Polyethylene terephthalate (PET), is an ever increasing ecological threat due to its excessive usage in everyday human life. Nowadays, there are many methods to get rid of plastic wastes including burning, recycling and burying. However, these methods are not very active since their long period, anaerobic conditions that increase the rate of toxic materials released into the environment. This work aims to study the biological degradation of PET microorganism isolated from soil sample. Thirty eight (38) bacterial isolates were isolated from ten soil and plastic waste sample collected from four different waste disposal sites in Baghdad city during different periods between December 2016 and March 2017. Isolation was performed using enrichment culture method (flasks method) by culturing the soil samples in flasks with MSM medium where there is no carbon source only PET. Results showed that Al-Za'farania sample gave a higher number of isolates (13 isolates), while other samples gave less number of isolates. Screening was performed depending on their ability to grow in liquid MSM which contains PET powder and pieces and change the color of the PET-emulsified liquid medium as well as their ability to form the clear zone on PET-MSM agar. The results showed that NH-D-1 isolate has the higher ability to degrade DPET and PET pieces. According to morphological, biochemical characterization and Vitek-2 technique, the most active isolate was identified as Acinetobacter baumannii.

  4. Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting.

    Science.gov (United States)

    Arumugam, Karthika; Renganathan, Seenivasagan; Babalola, Olubukola Oluranti; Muthunarayanan, Vasanthy

    2018-04-01

    Disposable Paper cups are a threat to the environment and are composed of 90% high strength paper with 5% thin coating of polyethylene. This polyethylene prevents the paper cup from undergoing degradation in the soil. Hence, in the present study two different approaches towards the management of paper cup waste through vermicomposting technology has been presented. The experimental setup includes 2 plastic reactors namely Vermicompost (VC) (Cow dung + Paper cup waste + Earthworm (Eudrillus eugeinea)) and Vermicompost with bacterial consortium (VCB) (Cow dung + Paper cup waste + Eudrillus eugeinea + Microbial consortia such as Bacillus anthracis, B. endophyticus, B. funiculus, B. thuringiensis, B. cereus, B. toyonensis, Virigibacillius chiquenigi, Acinetobacter baumanni and Lactobacillus pantheries). After treatment the physicochemical parameters were analysed. The results showed that the values of TOC (26.52 and 37.47%), TOM (36.01 and 33.13%) and C/N (15.02 and 11.92%) ratio are reduced in both VC and VCB whereas, the values of pH (8.01 and 7.56), EC (1.2-1.9 µs -1 and 1.4-1.9 µs -1 ), TP (46.1 and 51%), TMg (50.52 and 64.3%), TCa (50 and 64%), TNa (1.39 and 1.75%) and TK (1.75 and 1.86%) have increased. This study substantiates the addition of the microbial consortia augmenting the degradation in VCB reactor by reducing the period of process from 19 to 12 weeks. Further the characterisation of the vermicompost prepared from paper cup with FT-IR shows high degradation of carboxylic and aliphatic group; SEM analysis shows the disaggregation of cellulose and lignin; XRD shows the degradation of cellulose. All these analyses endorse the degradation of the paper cup waste faster with microbes (VCB). Thus, this present study high lights management of the paper cup waste in a relatively short period of time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat.

    Science.gov (United States)

    Pankratov, Timofey A; Ivanova, Anastasia O; Dedysh, Svetlana N; Liesack, Werner

    2011-07-01

    Northern peatlands represent a major global carbon store harbouring approximately one-third of the global reserves of soil organic carbon. A large proportion of these peatlands consists of acidic Sphagnum-dominated ombrotrophic bogs, which are characterized by extremely low rates of plant debris decomposition. The degradation of cellulose, the major component of Sphagnum-derived litter, was monitored in long-term incubation experiments with acidic (pH 4.0) peat extracts. This process was almost undetectable at 10°C and occurred at low rates at 20°C, while it was significantly accelerated at both temperature regimes by the addition of available nitrogen. Cellulose breakdown was only partially inhibited in the presence of cycloheximide, suggesting that bacteria participated in this process. We aimed to identify these bacteria by a combination of molecular and cultivation approaches and to determine the factors that limit their activity in situ. The indigenous bacterial community in peat was dominated by Alphaproteobacteria and Acidobacteria. The addition of cellulose induced a clear shift in the community structure towards an increase in the relative abundance of the Bacteroidetes. Increasing temperature and nitrogen availability resulted in a selective development of bacteria phylogenetically related to Cytophaga hutchinsonii (94-95% 16S rRNA gene sequence similarity), which densely colonized microfibrils of cellulose. Among isolates obtained from this community only some subdivision 1 Acidobacteria were capable of degrading cellulose, albeit at a very slow rate. These Acidobacteria represent indigenous cellulolytic members of the microbial community in acidic peat and are easily out-competed by Cytophaga-like bacteria under conditions of increased nitrogen availability. Members of the phylum Firmicutes, known to be key players in cellulose degradation in neutral habitats, were not detected in the cellulolytic community enriched at low pH. © 2011 Society for

  6. Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes

    International Nuclear Information System (INIS)

    Gentili, A.R.; Cubitto, M.A.; Ferrero, M.; Rodriguez, M.S.

    2006-01-01

    In this laboratory-scale study, we examined the potential of chitin and chitosan flakes obtained from shrimp wastes as carrier material for a hydrocarbon-degrading bacterial strain. Flakes decontamination, immobilization conditions and the survival of the immobilized bacterial strain under different storage temperatures were evaluated. The potential of immobilized hydrocarbon-degrading bacterial strain for crude oil polluted seawater bioremediation was tested in seawater microcosms. In terms of removal percentage of crude oil after 15 days, the microcosms treated with the immobilized inoculants proved to be the most successful. The inoculants formulated with chitin and chitosan as carrier materials improved the survival and the activity of the immobilized strain. It is important to emphasize that the inoculants formulated with chitin showed the best performance during storage and seawater bioremediation. (author)

  7. EDTA addition enhances bacterial respiration activities and hydrocarbon degradation in bioaugmented and non-bioaugmented oil-contaminated desert soils.

    Science.gov (United States)

    Al Kharusi, Samiha; Abed, Raeid M M; Dobretsov, Sergey

    2016-03-01

    The low number and activity of hydrocarbon-degrading bacteria and the low solubility and availability of hydrocarbons hamper bioremediation of oil-contaminated soils in arid deserts, thus bioremediation treatments that circumvent these limitations are required. We tested the effect of Ethylenediaminetetraacetic acid (EDTA) addition, at different concentrations (i.e. 0.1, 1 and 10 mM), on bacterial respiration and biodegradation of Arabian light oil in bioaugmented (i.e. with the addition of exogenous alkane-degrading consortium) and non-bioaugmented oil-contaminated desert soils. Post-treatment shifts in the soils' bacterial community structure were monitored using MiSeq sequencing. Bacterial respiration, indicated by the amount of evolved CO2, was highest at 10 mM EDTA in bioaugmented and non-bioaugmented soils, reaching an amount of 2.2 ± 0.08 and 1.6 ± 0.02 mg-CO2 g(-1) after 14 days of incubation, respectively. GC-MS revealed that 91.5% of the C14-C30 alkanes were degraded after 42 days when 10 mM EDTA and the bacterial consortium were added together. MiSeq sequencing showed that 78-91% of retrieved sequences in the original soil belonged to Deinococci, Alphaproteobacteria, Gammaproteobacteia and Bacilli. The same bacterial classes were detected in the 10 mM EDTA-treated soils, however with slight differences in their relative abundances. In the bioaugmented soils, only Alcanivorax sp. MH3 and Parvibaculum sp. MH21 from the exogenous bacterial consortium could survive until the end of the experiment. We conclude that the addition of EDTA at appropriate concentrations could facilitate biodegradation processes by increasing hydrocarbon availability to microbes. The addition of exogenous oil-degrading bacteria along with EDTA could serve as an ideal solution for the decontamination of oil-contaminated desert soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Potential Environmental Factors Affecting Oil-Degrading Bacterial Populations in Deep and Surface Waters of the Northern Gulf of Mexico.

    Science.gov (United States)

    Liu, Jiqing; Bacosa, Hernando P; Liu, Zhanfei

    2016-01-01

    Understanding bacterial community dynamics as a result of an oil spill is important for predicting the fate of oil released to the environment and developing bioremediation strategies in the Gulf of Mexico. In this study, we aimed to elucidate the roles of temperature, water chemistry (nutrients), and initial bacterial community in selecting oil degraders through a series of incubation experiments. Surface (2 m) and bottom (1537 m) waters, collected near the Deepwater Horizon site, were amended with 200 ppm light Louisiana sweet crude oil and bacterial inoculums from surface or bottom water, and incubated at 4 or 24°C for 50 days. Bacterial community and residual oil were analyzed by pyrosequencing and gas chromatography-mass spectrometry (GC-MS), respectively. The results showed that temperature played a key role in selecting oil-degrading bacteria. Incubation at 4°C favored the development of Cycloclasticus, Pseudoalteromonas , Sulfitobacter , and Reinekea , while 24°C incubations enhanced Oleibacter, Thalassobius, Phaeobacter, and Roseobacter. Water chemistry and the initial community also had potential roles in the development of hydrocarbon-degrading bacterial communities. Pseudoalteromonas , Oleibacter , and Winogradskyella developed well in the nutrient-enriched bottom water, while Reinekea and Thalassobius were favored by low-nutrient surface water. We revealed that the combination of 4°C, crude oil and bottom inoculum was a key factor for the growth of Cycloclasticus , while the combination of surface inoculum and bottom water chemistry was important for the growth of Pseudoalteromonas . Moreover, regardless of the source of inoculum, bottom water at 24°C was a favorable condition for Oleibacter. Redundancy analysis further showed that temperature and initial community explained 57 and 19% of the variation observed, while oil and water chemistry contributed 14 and 10%, respectively. Overall, this study revealed the relative roles of temperature, water

  9. Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation.

    Science.gov (United States)

    Elliott, David R; Caporn, Simon J M; Nwaishi, Felix; Nilsson, R Henrik; Sen, Robin

    2015-01-01

    The UK hosts 15-19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat

  10. Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation.

    Directory of Open Access Journals (Sweden)

    David R Elliott

    Full Text Available The UK hosts 15-19% of global upland ombrotrophic (rain fed peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6 and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals. Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in

  11. Bacterial and Fungal Communities in a Degraded Ombrotrophic Peatland Undergoing Natural and Managed Re-Vegetation

    Science.gov (United States)

    Elliott, David R.; Caporn, Simon J. M.; Nwaishi, Felix; Nilsson, R. Henrik; Sen, Robin

    2015-01-01

    The UK hosts 15–19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare

  12. Novel salicylazo polymers for colon drug delivery: dissolving polymers by means of bacterial degradation.

    Science.gov (United States)

    Saphier, Sigal; Karton, Yishai

    2010-02-01

    Novel azo polymers were prepared for colonic drug delivery with a release mechanism based on structural features of azo derivatives designed for rapid bacterial degradation leading to soluble polymers. Two Salicylazo derivatives were prepared and conjugated as side chains at different ratios to methacrylic acid-methyl methacrylate copolymers (Eudragits). The azo compounds were designed to have a hydrophilic and a hydrophobic part on opposite sides of the azo bond. Upon reduction of the azo bonds, the hydrophobic part is released, resulting in a more water soluble polymer. The solubility of the polymeric films was studied relative to Eudragit S known to dissolve toward the end of the small intestine. One of the two azo derivatives prepared gave rise to polymers, which showed reduced solubility relative to Eudragit S. These polymers were subjected to reduction tests in anaerobic rat cecal suspensions by following the release of the hydrophobic product. Reduction rate was found to be rapid, comparable to that of Sulfasalazine. Studies on the azopolymeric films in anaerobic rat cecal suspensions, showed that these polymers dissolve faster than in sterilized suspensions. Solid dosage forms may be coated with these polymers to provide an efficient delivery system to the colon with a rapid release mechanism. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  13. Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden.

    Science.gov (United States)

    Zeng, Yin-Xin; Qiao, Zong-Yun; Yu, Yong; Li, Hui-Rong; Luo, Wei

    2016-09-08

    Dimethylsulfoniopropionate (DMSP), which is the major source of organic sulfur in the world's oceans, plays a significant role in the global sulfur cycle. This compound is rapidly degraded by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methylmercaptopropionate (MMPA). The diversity of genes encoding bacterial demethylation (dmdA) and DMS production (dddL and dddP) were measured in Arctic Kongsfjorden. Both dmdA and dddL genes were detected in all stations along a transect from the outer to the inner fjord, while dddP gene was only found in the outer and middle parts of the fjord. The dmdA gene was completely confined to the Roseobacter clade, while the dddL gene was confined to the genus Sulfitobacter. Although the dddP gene pool was also dominated by homologs from the Roseobacter clade, there were a few dddP genes showing close relationships to both Alphaproteobacter and Gammaproteobacter. The results of this study suggest that the Roseobacter clade may play an important role in DMSP catabolism via both demethylation and cleavage pathways in surface waters of Kongsfjorden during summer.

  14. Enrichment and molecular characterization of a bacterial culture that degrades methoxy-methyl urea herbicides and their aniline derivatives.

    Science.gov (United States)

    El-Fantroussi, S; Verstraete, W; Top, E M

    2000-12-01

    Soil treated with linuron for more than 10 years showed high biodegradation activity towards methoxy-methyl urea herbicides. Untreated control soil samples taken from the same location did not express any linuron degradation activity, even after 40 days of incubation. Hence, the occurrence in the field of a microbiota having the capacity to degrade a specific herbicide was related to the long-term treatment of the soil. The enrichment culture isolated from treated soil showed specific degradation activity towards methoxy-methyl urea herbicides, such as linuron and metobromuron, while dimethyl urea herbicides, such as diuron, chlorotoluron, and isoproturon, were not transformed. The putative metabolic intermediates of linuron and metobromuron, the aniline derivatives 3, 4-dichloroaniline and 4-bromoaniline, were also degraded. The temperature of incubation drastically affected degradation of the aniline derivatives. Whereas linuron was transformed at 28 and 37 degrees C, 3,4-dichloroaniline was transformed only at 28 degrees C. Monitoring the enrichment process by reverse transcription-PCR and denaturing gradient gel electrophoresis (DGGE) showed that a mixture of bacterial species under adequate physiological conditions was required to completely transform linuron. This research indicates that for biodegradation of linuron, several years of adaptation have led to selection of a bacterial consortium capable of completely transforming linuron. Moreover, several of the putative species appear to be difficult to culture since they were detectable by DGGE but were not culturable on agar plates.

  15. Degradation of Bacterial Quorum Sensing Signaling Molecules by the Microscopic Yeast Trichosporon loubieri Isolated from Tropical Wetland Waters

    Directory of Open Access Journals (Sweden)

    Cheng-Siang Wong

    2013-09-01

    Full Text Available Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast.

  16. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures

    International Nuclear Information System (INIS)

    Boonchan, S.; Britz, M.L.; Stanley, G.A.

    2000-01-01

    This study investigated the biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) in liquid media and soil by bacteria (Stenotrophomonas maltophilia VUN 10,010 and bacterial consortium VUN 10,009) and a fungus (Penicillium janthinellum VUO 10,201) that were isolated from separate creosote- and manufactured-gas plant-contaminated soils. The bacteria could use pyrene as their sole carbon and energy source in a basal salts medium (BSM) and mineralized significant amounts of benzo[a]pyrene cometabolically when pyrene was also present in BSM. P. janthinellum VUO 10,201 could not utilize any high-molecular-weight PAH as sole carbon and energy source but could partially degrade these if cultured in a nutrient broth. Although small amounts of chrysene, benz[a]pyrene, and dibenz[a,h]anthracene were degraded by axenic cultures of these isolates in BSM containing a single PAH, such conditions did not support significant microbial growth or PAH mineralization. However, significant degradation of, and microbial growth on, pyrene, chrysene, benz[a]anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene, each as a single PAH in BSM, occurred when P. janthinellum VUO 10,201 and either bacterial consortium VUN 10,009 or S. maltophilia VUN 10,010 were combined in the one culture, i.e., fungal-bacterial cocultures: 25% of the benzo[a]pyrene was mineralized to CO 2 by these cocultures over 49 days, accompanied by transient accumulation and disappearance of intermediates detected by high-pressure liquid chromatography. Inoculation of fungal-bacterial cocultures into PAH-contaminated soil resulted in significantly improved degradation of high-molecular-weight PAHs, benzo[a]pyrene mineralization, and reduction in the mutagenicity of organic soil extracts, compared with the indigenous microbes and soil amended with only axenic inocula

  17. Comparison of Paraffin and Diesel Oil as Cultivation Medium Supplements for Preparing a Hydrocarbon-Degrading Bacterial Biomass

    Directory of Open Access Journals (Sweden)

    Dokukins Eduards

    2016-05-01

    Full Text Available The effect of liquid paraffin and diesel oil as nutrient amendments for hydrocarbon-degrading bacteria was compared. Different parameters were analyzed - optical density of bacterial suspension, oxygen consumption by biomass, morphology of bacteria, etc. In some experiments the paraffin was more preferable for microorganisms, but in other tests the results for both substances were similar. The influence of the comparable substances strongly depends on cultivation conditions.

  18. Molecular analysis of the bacterial diversity in a specialized consortium for diesel oil degradation

    Energy Technology Data Exchange (ETDEWEB)

    Paixao, Douglas Antonio Alvaredo; Accorsini, Fabio Raphael; Vidotti, Maria Benincasa; Lemos, Eliana Gertrudes de Macedo [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Fac. de Ciencias Agrarias e Veterinarias], Emails: douglas_unespfcav@yahoo.com.br, vidotti@netsite.com.bregerle@fcav.unesp.br; Dimitrov, Mauricio Rocha [Universidade de Sao Paulo (USP), SP (Brazil)], Email: mau_dimitrov@yahoo.com.br; Pereira, Rodrigo Matheus [EMBRAPARA Soybean - Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA - Soja), Londrina, PR (Brazil)], Email: poetbr@gmail.com

    2010-05-15

    Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega), and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones), followed by Alphaproteobacteira (44.8 %) and Betaproteobacteria (5.4 %). The Pseudomonas genus was the most abundant in the metagenomics library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI), a strong correlation was found between the data generated by the software used and the data deposited in NCBI. (author)

  19. Transport of EDTA into cells of the EDTA-degrading bacterial strain DSM 9103.

    Science.gov (United States)

    Witschel, M; Egli, T; Zehnder, A J; Wehrli, E; Spycher, M

    1999-04-01

    In the bacterial strain DSM 9103, which is able to grow with the complexing agent EDTA as the sole source of carbon, nitrogen and energy, the transport of EDTA into whole cells was investigated. EDTA uptake was found to be dependent on speciation: free EDTA and metal-EDTA complexes with low stability constants were readily taken up, whereas those with stability constants higher than 1016 were not transported. In EDTA-grown cells, initial transport rates of CaEDTA showed substrate-saturation kinetics with a high apparent affinity for CaEDTA (affinity constant Kt= 0.39 microM). Several uncouplers had an inhibitory effect on CaEDTA transport. CaEDTA uptake was also significantly reduced in the presence of an inhibitor of ATPase and the ionophore nigericin, which dissipates the proton gradient. Valinomycin, however, which affects the electrical potential, had little effect on uptake, indicating that EDTA transport is probably driven by the proton gradient. Of various structurally related compounds tested only Ca2+-complexed diethylenetriaminepentaacetate (CaDTPA) competitively inhibited CaEDTA transport. Uptake in fumarate-grown cells was low compared to that measured in EDTA-grown bacteria. These results strongly suggest that the first step in EDTA degradation by strain DSM 9103 consists of transport by an inducible energy-dependent carrier. Uptake experiments with 45Ca2+ in the presence and absence of EDTA indicated that Ca2+ is transported together with EDTA into the cells. In addition, these transport studies and electron-dispersive X-ray analysis of electron-dense intracellular bodies present in EDTA-grown cells suggest that two mechanisms acting simultaneously allow the cells to cope with the large amounts of metal ions taken up together with EDTA. In one mechanism the metal ions are excreted, in the other they are inactivated intracellularly in polyphosphate granules.

  20. Effects of the antibiotic ciprofloxacin on the bacterial community structure and degradation of pyrene in marine sediment

    International Nuclear Information System (INIS)

    Naeslund, Johan; Hedman, Jenny E.; Agestrand, Cecilia

    2008-01-01

    The ecological consequences of antibiotics in the aquatic environment have been an issue of concern over the past years due to the potential risk for negative effects on indigenous microorganisms. Microorganisms provide important ecosystem services, such as nutrient recycling, organic matter mineralization and degradation of pollutants. In this study, effects of exposure to the antibiotic ciprofloxacin on the bacterial diversity and pollutant degradation in natural marine sediments were studied using molecular methods (T-RFLP) in combination with radiorespirometry. In a microcosm experiment, sediment spiked with 14 C-labelled pyrene was exposed to five concentrations of ciprofloxacin (0, 20, 200, 1000 and 2000 μg L -1 ) in a single dose to the overlying water. The production of 14 CO 2 (i.e. complete mineralization of pyrene) was measured during 11 weeks. Sediment samples for bacterial community structure analysis were taken after 7 weeks. Results showed a significant dose-dependent inhibition of pyrene mineralization measured as the total 14 CO 2 production. The nominal EC 50 was calculated to 560 μg L -1 , corresponding to 0.4 μg/kg d.w. sediment. The lowest effect concentration on the bacterial community structure was 200 μg L -1 , which corresponds to 0.1 μg/kg d.w. sediment. Our results show that antibiotic pollution can be a potential threat to both bacterial diversity and an essential ecosystem service they perform in marine sediment

  1. Effect of exposure to sunlight and phosphorus-limitation on bacterial degradation of coloured dissolved organic matter (CDOM) in freshwater.

    Science.gov (United States)

    Kragh, Theis; Søndergaard, Morten; Tranvik, Lars

    2008-05-01

    This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used to calculate bacterial growth efficiency (BGE). Bacterial degradation of DOC increased with increasing exposure to simulated sunlight and availability of phosphorus and no detectable growth occurred on DOC that was not pre-exposed to simulated sunlight. The outcome of photochemical degradation of DOC changed with increasing availability of phosphorus, resulting in an increase in BGE from about 5% to 30%. Thus, the availability of phosphorus has major implications for the quantitative transfer of carbon in microbial food webs.

  2. Dynamics of indigenous bacterial communities associated with crude oil degradation in soil microcosms during nutrient-enhanced bioremediation.

    Science.gov (United States)

    Chikere, Chioma B; Surridge, Karen; Okpokwasili, Gideon C; Cloete, Thomas E

    2012-03-01

    present study therefore demonstrated that the soil investigated harbours hydrocarbon-degrading bacterial populations which can be biostimulated to achieve effective bioremediation of oil-contaminated soil.

  3. Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat, India.

    Science.gov (United States)

    Patel, Vilas; Jain, Siddharth; Madamwar, Datta

    2012-03-01

    Naphthalene degrading bacterial consortium (DV-AL) was developed by enrichment culture technique from sediment collected from the Alang-Sosiya ship breaking yard, Gujarat, India. The 16S rRNA gene based molecular analyzes revealed that the bacterial consortium (DV-AL) consisted of four strains namely, Achromobacter sp. BAB239, Pseudomonas sp. DV-AL2, Enterobacter sp. BAB240 and Pseudomonas sp. BAB241. Consortium DV-AL was able to degrade 1000 ppm of naphthalene in Bushnell Haas medium (BHM) containing peptone (0.1%) as co-substrate with an initial pH of 8.0 at 37°C under shaking conditions (150 rpm) within 24h. Maximum growth rate and naphthalene degradation rate were found to be 0.0389 h(-1) and 80 mg h(-1), respectively. Consortium DV-AL was able to utilize other aromatic and aliphatic hydrocarbons such as benzene, phenol, carbazole, petroleum oil, diesel fuel, and phenanthrene and 2-methyl naphthalene as sole carbon source. Consortium DV-AL was also efficient to degrade naphthalene in the presence of other pollutants such as petroleum hydrocarbons and heavy metals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Enhancement of pyrene degradation efficacy of Synechocystis sp., by construction of an artificial microalgal-bacterial consortium

    Directory of Open Access Journals (Sweden)

    Jignasa G. Patel

    2015-12-01

    Full Text Available This study was carried out to investigate the ability of microalgae Synechocystis sp. to high molecular weight Polycyclic Aromatic Hydrocarbon pyrene (PYR and artificial microalgal–bacterial consortium at different concentrations. The consortium consisted of one axenic species Synechocystis sp. and two PYR-degrading bacteria with known complementary degradative capabilities viz. Pseudomonas sp. and Bacillus sp. The influence of PYR on growth in terms of chlorophyll-a were analysed, and it was found that in the presence of bacteria, Synechocystis sp. tremendously increased in growth as well as biodegradation capability, whereas Synechocystis sp. alone exhibited concentration-dependent decrease in growth and biodegradation ability. Degradation of PYR shows that the consortium could eliminate PYR by 94.1% at 50 mg/L; however, Synechocystis sp alone could degrade up to 36% at 1.5 mg/L after 16 days of incubation. The study revealed that microalgae grew better in the presence of the aerobic heterotrophic bacteria and provided them with necessary organics for efficient PYR degradation activities. Moreover, consortium JP-NKA7B2 grows efficiently on other xenobiotic compounds. The artificial consortia JP-NK is thus proven to be an effective and promising system for bioremediating PYR compound and could be suggested in degradation of PYR compound in hydrocarbon-polluted areas in situ and ex situ.

  5. Characterization of Enzymatic Activity of MlrB and MlrC Proteins Involved in Bacterial Degradation of Cyanotoxins Microcystins.

    Science.gov (United States)

    Dziga, Dariusz; Zielinska, Gabriela; Wladyka, Benedykt; Bochenska, Oliwia; Maksylewicz, Anna; Strzalka, Wojciech; Meriluoto, Jussi

    2016-03-16

    Bacterial degradation of toxic microcystins produced by cyanobacteria is a common phenomenon. However, our understanding of the mechanisms of these processes is rudimentary. In this paper several novel discoveries regarding the action of the enzymes of the mlr cluster responsible for microcystin biodegradation are presented using recombinant proteins. In particular, the predicted active sites of the recombinant MlrB and MlrC were analyzed using functional enzymes and their inactive muteins. A new degradation intermediate, a hexapeptide derived from linearized microcystins by MlrC, was discovered. Furthermore, the involvement of MlrA and MlrB in further degradation of the hexapeptides was confirmed and a corrected biochemical pathway of microcystin biodegradation has been proposed.

  6. Characterization of Enzymatic Activity of MlrB and MlrC Proteins Involved in Bacterial Degradation of Cyanotoxins Microcystins

    Directory of Open Access Journals (Sweden)

    Dariusz Dziga

    2016-03-01

    Full Text Available Bacterial degradation of toxic microcystins produced by cyanobacteria is a common phenomenon. However, our understanding of the mechanisms of these processes is rudimentary. In this paper several novel discoveries regarding the action of the enzymes of the mlr cluster responsible for microcystin biodegradation are presented using recombinant proteins. In particular, the predicted active sites of the recombinant MlrB and MlrC were analyzed using functional enzymes and their inactive muteins. A new degradation intermediate, a hexapeptide derived from linearized microcystins by MlrC, was discovered. Furthermore, the involvement of MlrA and MlrB in further degradation of the hexapeptides was confirmed and a corrected biochemical pathway of microcystin biodegradation has been proposed.

  7. Bacterial diversity and reductive dehalogenase redundancy in a 1,2-dichloroethane-degrading bacterial consortium enriched from a contaminated aquifer

    Directory of Open Access Journals (Sweden)

    Wittebolle Lieven

    2010-02-01

    Full Text Available Abstract Background Bacteria possess a reservoir of metabolic functionalities ready to be exploited for multiple purposes. The use of microorganisms to clean up xenobiotics from polluted ecosystems (e.g. soil and water represents an eco-sustainable and powerful alternative to traditional remediation processes. Recent developments in molecular-biology-based techniques have led to rapid and accurate strategies for monitoring and identification of bacteria and catabolic genes involved in the degradation of xenobiotics, key processes to follow up the activities in situ. Results We report the characterization of the response of an enriched bacterial community of a 1,2-dichloroethane (1,2-DCA contaminated aquifer to the spiking with 5 mM lactate as electron donor in microcosm studies. After 15 days of incubation, the microbial community structure was analyzed. The bacterial 16S rRNA gene clone library showed that the most represented phylogenetic group within the consortium was affiliated with the phylum Firmicutes. Among them, known degraders of chlorinated compounds were identified. A reductive dehalogenase genes clone library showed that the community held four phylogenetically-distinct catalytic enzymes, all conserving signature residues previously shown to be linked to 1,2-DCA dehalogenation. Conclusions The overall data indicate that the enriched bacterial consortium shares the metabolic functionality between different members of the microbial community and is characterized by a high functional redundancy. These are fundamental features for the maintenance of the community's functionality, especially under stress conditions and suggest the feasibility of a bioremediation treatment with a potential prompt dehalogenation and a process stability over time.

  8. Crude oil degradation by bacterial consortia under four different redox and temperature conditions.

    Science.gov (United States)

    Xiong, Shunzi; Li, Xia; Chen, Jianfa; Zhao, Liping; Zhang, Hui; Zhang, Xiaojun

    2015-02-01

    There is emerging interest in the anaerobic degradation of crude oil. However, there is limited knowledge about the geochemical effects and microbiological activities for it. A mixture of anaerobic sludge and the production water from an oil well was used as an inoculum to construct four consortia, which were incubated under sulfate-reducing or methanogenic conditions at either mesophilic or thermophilic temperatures. Significant degradation of saturated and aromatic hydrocarbons and the changing quantities of some marker compounds, such as pristane, phytane, hopane and norhopane, and their relative quantities, suggested the activity of microorganisms in the consortia. Notably, the redox conditions and temperature strongly affected the diversity and structure of the enriched microbial communities and the oil degradation. Although some specific biomarker showed larger change under methanogenic condition, the degradation efficiencies for total aromatic and saturated hydrocarbon were higher under sulfate-reducing condition. After the 540-day incubation, bacteria of unknown classifications were dominant in the thermophilic methanogenic consortia, whereas Clostridium dominated the mesophilic methanogenic consortia. With the exception of the dominant phylotypes that were shared with the methanogenic consortia, the sulfate-reducing consortia were predominantly composed of Thermotogae, Deltaproteobacteria, Spirochaeta, and Synergistetes phyla. In conclusion, results in this study demonstrated that the different groups of degraders were responsible for degradation in the four constructed crude oil degrading consortia and consequently led to the existence of different amount of marker compounds under these distinct conditions. There might be distinct metabolic mechanism for degrading crude oil under sulfate-reducing and methanogenic conditions.

  9. Molecular diversity analysis and bacterial population dynamics of an adapted seawater microbiota during the degradation of Tunisian zarzatine oil.

    Science.gov (United States)

    Zrafi-Nouira, Ines; Guermazi, Sonda; Chouari, Rakia; Safi, Nimer M D; Pelletier, Eric; Bakhrouf, Amina; Saidane-Mosbahi, Dalila; Sghir, Abdelghani

    2009-07-01

    The indigenous microbiota of polluted coastal seawater in Tunisia was enriched by increasing the concentration of zarzatine crude oil. The resulting adapted microbiota was incubated with zarzatine crude oil as the only carbon and energy source. Crude oil biodegradation capacity and bacterial population dynamics of the microbiota were evaluated every week for 28 days (day 7, day 14, day 21, and day 28). Results show that the percentage of petroleum degradation was 23.9, 32.1, 65.3, and 77.8%, respectively. At day 28, non-aromatic and aromatic hydrocarbon degradation rates reached 92.6 and 68.7%, respectively. Bacterial composition of the adapted microflora was analysed by 16S rRNA gene cloning and sequencing, using total genomic DNA extracted from the adapted microflora at days 0, 7, 14, 21, and 28. Five clone libraries were constructed and a total of 430 sequences were generated and grouped into OTUs using the ARB software package. Phylogenetic analysis of the adapted microbiota shows the presence of four phylogenetic groups: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Diversity indices show a clear decrease in bacterial diversity of the adapted microflora according to the incubation time. The Proteobacteria are the most predominant (>80%) at day 7, day 14 and day 21 but not at day 28 for which the microbiota was reduced to only one OTU affiliated with the genus Kocuria of the Actinobacteria. This study shows that the degradation of zarzatine crude oil components depends on the activity of a specialized and dynamic seawater consortium composed of different phylogenetic taxa depending on the substrate complexity.

  10. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms.

    Science.gov (United States)

    Silva-Bedoya, Lina Marcela; Sánchez-Pinzón, María Solange; Cadavid-Restrepo, Gloria Ester; Moreno-Herrera, Claudia Ximena

    2016-11-01

    The operation of wastewater treatment technologies depends on a combination of physical, chemical and biological factors. Microorganisms present in wastewater treatment plants play essential roles in the degradation and removal of organic waste and xenobiotic pollutants. Several microorganisms have been used in complementary treatments to process effluents rich in fats and oils. Microbial lipases have received significant industrial attention because of their stability, broad substrate specificity, high yields, and regular supply, as well as the fact that the microorganisms producing them grow rapidly on inexpensive media. In Colombia, bacterial community studies have focused on populations of cultivable nitrifying, heterotrophic and nitrogen-fixing bacteria present in constructed wetlands. In this study, culture-dependent methods, culture-independent methods (TTGE, RISA) and enzymatic methods were used to estimate bacterial diversity, to monitor temporal and spatial changes in bacterial communities, and to screen microorganisms that presented lipolytic activity. The dominant microorganisms in the Wastewater Treatment Plant (WWTP) examined in this study belonged to the phyla Firmicutes, Proteobacteria and Bacteroidetes. The enzymatic studies performed indicated that five bacterial isolates and three fungal isolates possessed the ability to degrade lipids; additionally, the Serratia, Kosakonia and Mucor genera presented lipase-mediated transesterification activity. The implications of these findings in regard to possible applications are discussed later in this paper. Our results indicate that there is a wide diversity of aerobic Gram-negative bacteria inhabiting the different sections of the WWTP, which could indicate its ecological condition, functioning and general efficiency. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Stable Isotope Fractionation Caused by Glycyl Radical Enzymes during Bacterial Degradation of Aromatic Compounds

    Science.gov (United States)

    Morasch, Barbara; Richnow, Hans H.; Vieth, Andrea; Schink, Bernhard; Meckenstock, Rainer U.

    2004-01-01

    Stable isotope fractionation was studied during the degradation of m-xylene, o-xylene, m-cresol, and p-cresol with two pure cultures of sulfate-reducing bacteria. Degradation of all four compounds is initiated by a fumarate addition reaction by a glycyl radical enzyme, analogous to the well-studied benzylsuccinate synthase reaction in toluene degradation. The extent of stable carbon isotope fractionation caused by these radical-type reactions was between enrichment factors (ɛ) of −1.5 and −3.9‰, which is in the same order of magnitude as data provided before for anaerobic toluene degradation. Based on our results, an analysis of isotope fractionation should be applicable for the evaluation of in situ bioremediation of all contaminants degraded by glycyl radical enzyme mechanisms that are smaller than 14 carbon atoms. In order to compare carbon isotope fractionations upon the degradation of various substrates whose numbers of carbon atoms differ, intrinsic ɛ (ɛintrinsic) were calculated. A comparison of ɛintrinsic at the single carbon atoms of the molecule where the benzylsuccinate synthase reaction took place with compound-specific ɛ elucidated that both varied on average to the same extent. Despite variations during the degradation of different substrates, the range of ɛ found for glycyl radical reactions was reasonably narrow to propose that rough estimates of biodegradation in situ might be given by using an average ɛ if no fractionation factor is available for single compounds. PMID:15128554

  12. Characterization of the biodegradation, bioremediation and detoxification capacity of a bacterial consortium able to degrade the fungicide thiabendazole.

    Science.gov (United States)

    Perruchon, Chiara; Pantoleon, Anastasios; Veroutis, Dimitrios; Gallego-Blanco, Sara; Martin-Laurent, F; Liadaki, Kalliopi; Karpouzas, Dimitrios G

    2017-12-01

    Thiabendazole (TBZ) is a persistent fungicide used in the post-harvest treatment of fruits. Its application results in the production of contaminated effluents which should be treated before their environmental discharge. In the absence of efficient treatment methods in place, biological systems based on microbial inocula with specialized degrading capacities against TBZ could be a feasible treatment approach. Only recently the first bacterial consortium able to rapidly transform TBZ was isolated. This study aimed to characterize its biodegradation, bioremediation and detoxification potential. The capacity of the consortium to mineralize 14 C-benzyl-ring labelled TBZ was initially assessed. Subsequent tests evaluated its degradation capacity under various conditions (range of pH, temperatures and TBZ concentration levels) and relevant practical scenarios (simultaneous presence of other postharvest compounds) and its bioaugmentation potential in soils contaminated with increasing TBZ levels. Finally cytotoxicity assays explored its detoxification potential. The consortium effectively mineralized the benzoyl ring of the benzimidazole moiety of TBZ and degraded spillage level concentrations of the fungicide in aqueous cultures (750 mg L -1 ) and in soil (500 mg kg -1 ). It maintained its high degradation capacity in a wide range of pH (4.5-7.5) and temperatures (15-37 °C) and in the presence of other pesticides (ortho-phenylphenol and diphenylamine). Toxicity assays using the human liver cancer cell line HepG2 showed a progressive decrease in cytotoxicity, concomitantly with the biodegradation of TBZ, pointing to a detoxification process. Overall, the bacterial consortium showed high potential for future implementation in bioremediation and biodepuration applications.

  13. Behaviour of marine oil-degrading bacterial populations in a continuous culture system

    Digital Repository Service at National Institute of Oceanography (India)

    Mohandass, C.; David, J.J.; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    In pursuit of developing an oil-degrading microbial consortium, we used the principle of "plasmid assisted molecular breeding" (PAMB) in a continuous culture system. Three marine bacteria, Pseudomonas putida, Brevibacterium epidermidis...

  14. Bacterial diversity exploration in hydrocarbon polluted soil: metabolic potential and degrader community evolution revealed by isotope labeling

    International Nuclear Information System (INIS)

    Martin, F.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous compounds produced by incomplete combustion of organic matter. They are a source of environmental pollution, especially associated to oil product exploitation, and represent a threat for living organisms including human beings because of their toxicity. Many bacteria capable of degrading PAHs have been isolated and studied. However, since less than 5% of soil bacteria can be cultivated in the laboratory, bacterial species able to degrade PAHs in situ have been poorly studied. The first goal of this study was to identify bacteria that degrade PAHs in soil using culture-independent molecular methods. To this end, a strategy known a stable isotope probing has been implemented based on the use of phenanthrene, a three rings PAH, in which the natural isotope of carbon was replaced by 13 C. This molecule has been introduced as a tracer in microcosms containing soil from a constructed wetlands collecting contaminated water from highway runoff. Bacteria having incorporated the 13 C were then identified by 16 S rRNA gene sequence analysis after PCR amplification from labeled genomic DNA extracted from soil. The results show that so far little studied Betaproteobacteria, belonging to the genera Acidovorax, Rhodoferax, Hydrogenophaga and Thiobacillus, as well as Rhodocyclaceae, were the key players in phenanthrene degradation. Predominance of Betaproteobacteries was established thanks to quantitative PCR measurements. A dynamic analysis of bacterial diversity also showed that the community structure of degraders depended on phenanthrene bioavailability. In addition, the phylogenetic diversity of ring-hydroxylating di-oxygenases, enzymes involved in the first step of PAH degradation, has been explored. We detected new sequences, mostly related to di-oxygenases from Sphingomonadales and Burkholderiales. For the first time, we were able to associate a catalytic activity for oxidation of PAHs to partial gene sequences

  15. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil

    Czech Academy of Sciences Publication Activity Database

    Uhlík, O.; Musilová, L.; Rídl, Jakub; Hroudová, Miluše; Vlček, Čestmír; Koubek, J.; Holečková, M.; Mackova, M.; Macek, T.

    2013-01-01

    Roč. 97, č. 20 (2013), s. 9245-9256 ISSN 0175-7598 Grant - others:EK(XE) 265946; GA MŠk(CZ) ME10041 Institutional support: RVO:68378050 Keywords : plant secondary metabolites (PSM) * bacterial community * metabolic activity * bioremediation * pyrosequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.811, year: 2013

  16. Substrate Shift Reveals Roles for Members of Bacterial Consortia in Degradation of Plant Cell Wall Polymers.

    Science.gov (United States)

    Carlos, Camila; Fan, Huan; Currie, Cameron R

    2018-01-01

    Deconstructing the intricate matrix of cellulose, hemicellulose, and lignin poses a major challenge in biofuel production. In diverse environments in nature, some microbial communities, are able to overcome plant biomass recalcitrance. Identifying key degraders of each component of plant cell wall can help improve biological degradation of plant feedstock. Here, we sequenced the metagenome of lignocellulose-adapted microbial consortia sub-cultured on xylan and alkali lignin media. We observed a drastic shift on community composition after sub-culturing, independently of the original consortia. Proteobacteria relative abundance increased after growth in alkali lignin medium, while Bacteroidetes abundance increased after growth in xylan medium. At the genus level, Pseudomonas was more abundant in the communities growing on alkali lignin, Sphingobacterium in the communities growing on xylan and Cellulomonas abundance was the highest in the original microbial consortia. We also observed functional convergence of microbial communities after incubation in alkali lignin, due to an enrichment of genes involved in benzoate degradation and catechol ortho-cleavage pathways. Our results represent an important step toward the elucidation of key members of microbial communities on lignocellulose degradation and may aide the design of novel lignocellulolytic microbial consortia that are able to efficiently degrade plant cell wall polymers.

  17. Substrate Shift Reveals Roles for Members of Bacterial Consortia in Degradation of Plant Cell Wall Polymers

    Directory of Open Access Journals (Sweden)

    Camila Carlos

    2018-03-01

    Full Text Available Deconstructing the intricate matrix of cellulose, hemicellulose, and lignin poses a major challenge in biofuel production. In diverse environments in nature, some microbial communities, are able to overcome plant biomass recalcitrance. Identifying key degraders of each component of plant cell wall can help improve biological degradation of plant feedstock. Here, we sequenced the metagenome of lignocellulose-adapted microbial consortia sub-cultured on xylan and alkali lignin media. We observed a drastic shift on community composition after sub-culturing, independently of the original consortia. Proteobacteria relative abundance increased after growth in alkali lignin medium, while Bacteroidetes abundance increased after growth in xylan medium. At the genus level, Pseudomonas was more abundant in the communities growing on alkali lignin, Sphingobacterium in the communities growing on xylan and Cellulomonas abundance was the highest in the original microbial consortia. We also observed functional convergence of microbial communities after incubation in alkali lignin, due to an enrichment of genes involved in benzoate degradation and catechol ortho-cleavage pathways. Our results represent an important step toward the elucidation of key members of microbial communities on lignocellulose degradation and may aide the design of novel lignocellulolytic microbial consortia that are able to efficiently degrade plant cell wall polymers.

  18. Characterization of bacterial consortia capable of degrading 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions.

    Science.gov (United States)

    Song, Bongkeun; Kerkhof, Lee J; Häggblom, Max M

    2002-08-06

    4-Chlorobenzoate and 4-bromobenzoate were readily degraded in denitrifying enrichment cultures established with river sediment, estuarine sediment or agricultural soil as inoculum. Stable denitrifying consortia were obtained and maintained by serial dilution and repeated feeding of substrates. Microbial community analyses were performed to characterize the 4-chlorobenzoate and 4-bromobenzoate degrading consortia with terminal restriction fragment length polymorphism (T-RFLP) and cloning of 16S rRNA genes from the cultures. Interestingly, two major terminal restriction fragments (T-RFs) in the 4-chlorobenzoate degrading consortia and one T-RF in the 4-bromobenzoate utilizing consortium were observed from T-RFLP analysis regardless of their geographical and ecological origins. The two T-RFs (clones 4CB1 and 4CB2) in 4-chlorobenzoate degrading consortia were identified as members of the beta-subunit of the Proteobacteria on the basis of 16S rRNA sequencing analysis. Phylogenetic analysis of 16S rRNA genes showed that clone 4CB1 was closely related to Thauera aromatica while clone 4CB2 was distantly related to the genera Limnobacter and Ralstonia. The 4-bromobenzoate utilizing consortium mainly consisted of one T-RF, which was identical to clone 4CB2 in spite of different enrichment substrate. This suggests that degradation of 4-chlorobenzoate and 4-bromobenzoate under denitrifying conditions was mediated by bacteria belonging to the beta-subunit of the Proteobacteria.

  19. Degradation pathways of 1-methylphenanthrene in bacterial Sphingobium sp. MP9-4 isolated from petroleum-contaminated soil.

    Science.gov (United States)

    Zhong, Jianan; Luo, Lijuan; Chen, Baowei; Sha, Sha; Qing, Qing; Tam, Nora F Y; Zhang, Yong; Luan, Tiangang

    2017-01-30

    Alkylated polycyclic aromatic hydrocarbons (PAHs) are abundant in petroleum, and alkylated phenanthrenes are considered as the primary PAHs during some oil spill events. Bacterial strain of Sphingobium sp. MP9-4, isolated from petroleum-contaminated soil, was efficient to degrade 1-methylphenanthrene (1-MP). A detailed metabolism map of 1-MP in this strain was delineated based on analysis of metabolites with gas chromatograph-mass spectrometer (GC-MS). 1-MP was initially oxidized via two different biochemical strategies, including benzene ring and methyl-group attacks. Benzene ring attack was initiated with dioxygenation of the non-methylated aromatic ring via similar degradation pathways of phenanthrene (PHE) by bacteria. For methyl-group attack, mono oxygenase system was involved and more diverse enzymes were needed than that of PHE degradation. This study enhances the understanding of the metabolic pathways of alkylated PAHs and shows the significant potential of Sphingobium sp. MP9-4 for the bioremediation of alkylated PAHs contaminated environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM)

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær; Ellegaard-Jensen, Lea; Albers, Christian Nyrop

    2013-01-01

    Abstract Introduction of specific degrading microorganisms into polluted soil or aquifers is a promising remediation technology provided that the organisms survive and spread in the environment. We suggest that consortia, rather than single strains, may be better suited to overcome these challenges...

  1. EFFECT OF BTEX ON THE DEGRADATION OF MTBE AND TBA BY MIXED BACTERIAL CONSORTIUM

    Science.gov (United States)

    Methyl tert-butyl ether (MTBE) contamination in groundwater often coexists with benzene, toluene, ethylbenzene, and xylene (BTEX) near the source of the plume. Tertiary butyl alcohol (TBA) is a prevalent intermediate of MTBE degradation. Therefore, there is a significant p...

  2. [Isolation, identification and characterization of a diethylstilbestrol-degrading bacterial strain Serratia sp].

    Science.gov (United States)

    Xu, Ran-Fang; Sun, Min-Xia; Liu, Juan; Wang, Hong; Li, Xin; Zhu, Xue-Zhu; Ling, Wan-Ting

    2014-08-01

    Utilizing the diethylstilbestrol (DES)-degrading bacteria to biodegrade DES is a most reliable technique for cleanup of DES pollutants from the environment. However, little information is available heretofore on the isolation of DES-degrading bacteria and their DES removal performance in the environment. A novel bacterium capable of degrading DES was isolated from the activated sludge of a wastewater treatment plant. According to its morphology, physiochemical characteristics, and 16S rDNA sequence analysis, this strain was identified as Serratia sp.. The strain was an aerobic bacterium, and it could degrade 68.3% of DES (50 mg x L(-1)) after culturing for 7 days at 30 degrees C, 150 r x min(-1) in shaking flasks. The optimal conditions for DES biodegradation by the obtained strain were 30 degrees C, 40-60 mg x L(-1) DES, pH 7.0, 5% of inoculation volume, 0 g x L(-1) of added NaCl, and 10 mL of liquid medium volume in 100 mL flask.

  3. Immobilization of mixed bacterial cultures degrading EDTA and isolated from Bulgarian and Czech sources

    Czech Academy of Sciences Publication Activity Database

    Ivanova, V.; Tonkova, A.; Vassileva, A.; Šafaříková, Miroslava

    2004-01-01

    Roč. 51, č. 3 (2004), s. 312-317 ISSN 0477-0250. [Food Science, Techniques and Technologies 2004. Plovdiv, 27.10.2004-29.10.2004] R&D Projects: GA AV ČR IBS6087204 Institutional research plan: CEZ:AV0Z6087904 Keywords : EDTA * degradation * immobilization Subject RIV: EE - Microbiology, Virology

  4. Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost.

    Science.gov (United States)

    Ichida, J M; Krizova, L; LeFevre, C A; Keener, H M; Elwell, D L; Burtt, E H

    2001-11-01

    Native microbial populations can degrade poultry waste, but the process can be hastened by using feather-degrading bacteria. Strains of Bacillus licheniformis and a Streptomyces sp. isolated from the plumage of wild birds were grown in a liquid basal medium and used to inoculate feathers in compost bioreaction vessels. Control vessels had only basal medium added to the feathers, litter and straw. Temperature, ammonia, carbon and nitrogen were monitored for 4 weeks. Scanning electron microscopy of the feather samples showed more complete keratin-degradation, more structural damage, and earlier microbial biofilm formation on inoculated feathers than on uninoculated feathers. A diverse community of aerobic bacteria and fungi were cultured early, but declined rapidly. Thermophilic B. licheniformis and Streptomyces spp. were abundant throughout. Enteric gram-negative bacteria, (e.g., Salmonella, E. coli) originally found on waste feathers were not recovered after day 4. Vessel temperatures reached 64-71 degrees C within 36 h and stabilized at 50 degrees C. When tumble-mixed at day 14, renewed activity peaked at 59 degrees C and quickly dropped as available carbon was used. Feathers soaked in an inoculum of B. licheniformis and Streptomyces degraded more quickly and more completely than feathers that were not presoaked. Inoculation of feather waste could improve composting of the large volume of feather waste generated every year by poultry farms and processing plants.

  5. The function of a toluene-degrading bacterial community in a waste gas trickling filter

    DEFF Research Database (Denmark)

    Pedersen, A.R.; Arvin, E.

    1999-01-01

    oligonucleotide 16S ribosomal RNA probe targeting the toluene-degrading species Pseudomonas putida, and by computer simulations (AQUASIM) of the biofilm growth based on a food web model. Biofilms were taken from a lab-scale trickling filter for treatment of toluene-polluted air. The biofilm growth...

  6. Bacterial Degradation of Nitrogenous Energetic Compounds (NEC) in Coastal Waters and Sediments

    Science.gov (United States)

    2008-09-10

    isotope values in the upper bay; C) DOC appears to be high in lignin concentration, especially in the Patuxent River. Figure 12. Bacterial...polycyclic aromatic hydrocarbons (PAHs, lignin ; Suen et al. 1996). We hypothesized that nitrogenous energetics will be transient in nitrogen-limited...water, TNT nitro groups can be reduced to amines (Barrows et al. 1996) affecting its reactivity (Achtnich et al. 2000). The presence of reduced

  7. Evaluation of effectiveness of bacterial product which can degrade pesticide-dimethoate on the scale of true practice test

    International Nuclear Information System (INIS)

    Pham Thi Le Ha; Tran Thi Thuy; Le Hai; Nguyen Duy Hang; Vo Thi Thu Ha; Nguyen Tuong Ly Lan; Le Tat Mua; Tran Kim Duyen; Mai Hoang Lam

    2004-01-01

    Dimethoate, an organophosphate pesticide has been widely used in Dalat, Lamdong. It is much toxic to birds, human being and other mammals. Its widespread use has caused environmental concern on the basic of frequent detection of dimethoate in soil and water. Microorganisms are key agents in the degradation of waste, oil and a vast array of organic pesticide in terrestrial and aquatic ecosystems. In previous study, bacteria products which can degrade. Dimethoate were produced. The present study was designed to evaluate the effectiveness of bacterial product which can degrade Pesticide-Dimethoate on the scale of true practice test. The results indicated that application bacteria product to soil grown with Cauliflower and Chinese Cabbage sprayed with organic phosphorus pesticides (Dimethoate and Chloropyrifos), the pesticide residues in soil, water and vegetables were as follow: The residues of Dimethoate and Chloropyrifos in soil grown with Cauliflower, Chinese cabbages are different. They concentrated mostly in the surface litter and top soil layers with the depth from 0 to 20 cm. From the depth of 20 cm to 100 cm, the pesticide residues were ignorable. Residue of Chloropyrifos in soil was small as well. Dimethoate residues in soil grown with Cauliflower were higher than that of Chinese cabbages. On the basis of the environmental criteria of Ministry for Science, Technology and Environment (6/95), Dimethoate residues in soil grown with cauliflowers were in excess of the maximum limit. In the case of using bacteria product to soil, pesticide residues in soil were decreased. The results also indicated that Chloropyrifos residues in water (water obtained at the depth of 75 cm and 100 cm by days) were small. Residue of Dimethoate in water small. Residue of Dimethoate in water obtained from the Cauliflower bed were higher than of Chinese cabbages one. Using bacteria product to soil, pesticide residues in water decreased. On the basis of the environmental criteria of

  8. Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes

    Directory of Open Access Journals (Sweden)

    Chinnashanmugam Saravanan

    2017-09-01

    Full Text Available In this study, the synthesis and characterization of exopolysaccharide-stabilized sliver nanoparticles (AgNPs was carried out for the degradation of industrial textile dyes. Characterization of AgNPs was done using surface plasmon spectra using UV–Vis spectroscopy, X-ray diffraction (XRD and Raman spectroscopy. The morphological nature of AgNPs was determined through transmission electron microscopy (TEM, scanning electron microscopy (SEM and atomic force microscopy (AFM, which indicated that the AgNPs were spherical in shape, with an average size of 35 nm. The thermal behaviour of AgNPs revealed that it is stable up to 437.1 °C and the required energy is 808.2J/g in TGA-DTA analysis. Ability of EPS stabilized AgNPs for degradation of azo dyes such as Methyl orange (MO and Congo red (CR showed that EPS stabilized AgNPs were found to be efficient in facilitating the degradation process of industrial textile dyes. The electron transfer takes place from reducing agent to dye molecule via nanoparticles, resulting in the destruction of the dye chromophore structure. This makes EPS-AgNPs a suitable, cheap and environment friendly candidate for biodegradation of harmful textile dyes.

  9. Improvement of the Bacterial Pure Culture 3A by Gamma Irradiation for Increasing Efficiency in Degrading Pesticides

    International Nuclear Information System (INIS)

    Tongpim, Saowanit; Piadaeng, Nattaya

    2006-09-01

    This research work had an objective to improve bacterial activity in degrading a herbicide: 2,4-dichlorophenoxyacetic acid (2,4-D). The bacterial isolate 3 A , kept in the culture collection of Khon Kaen University that could degrade 2,4-D, was employed in this experiment. Cell suspension of isolate 3 A was exposed to gamma irradiation at various doses (1-5 kGy). The isolated survivors were screened on the basis of forming larger colonies than the parent strain 3 A when grown on mineral salts agar containing 2,4-D (MS + 2,4-D) as the sole carbon source. We obtained 70 effective isolates which 6 isolates called 3 A I2-21, 3 A I2-23, 3 A I1-51, 3 A I2-71, 3 A I1-52 and 3 A I2-73 were chosen for further studies. These 6 irradiated isolates together with the parent strain were characterized using morphological, physiological and biochemical tests. They were all identified as Pseudomonas cepacia. All isolates had optimal growth pH of 7 and grew best at 30 o C. Biodegradation experiments performed in mineral salts medium containing 200 ppm of 2,4-D showed that after 20 days of incubation 36.9%, 65.3%, 57.2%, 54.8%, 53.4%, 47.3% and 45.8% of 2,4- D was degraded by isolates 3 A , 3 A I2-21, 3 A I2-23, 3 A I1-51, 3 A I2-71, 3 A I1-52 and 3 A I2-73, respectively. Comparing the irradiated strains with parent strain 3 A revealed that the isolate 3 A I2-21 was the most effective one as it could degrade 2,4-D about 28.4% greater than the parent strain 3 A .

  10. Deciphering Cyanide-Degrading Potential of Bacterial Community Associated with the Coking Wastewater Treatment Plant with a Novel Draft Genome.

    Science.gov (United States)

    Wang, Zhiping; Liu, Lili; Guo, Feng; Zhang, Tong

    2015-10-01

    Biotreatment processes fed with coking wastewater often encounter insufficient removal of pollutants, such as ammonia, phenols, and polycyclic aromatic hydrocarbons (PAHs), especially for cyanides. However, only a limited number of bacterial species in pure cultures have been confirmed to metabolize cyanides, which hinders the improvement of these processes. In this study, a microbial community of activated sludge enriched in a coking wastewater treatment plant was analyzed using 454 pyrosequencing and Illumina sequencing to characterize the potential cyanide-degrading bacteria. According to the classification of these pyro-tags, targeting V3/V4 regions of 16S rRNA gene, half of them were assigned to the family Xanthomonadaceae, implying that Xanthomonadaceae bacteria are well-adapted to coking wastewater. A nearly complete draft genome of the dominant bacterium was reconstructed from metagenome of this community to explore cyanide metabolism based on analysis of the genome. The assembled 16S rRNA gene from this draft genome showed that this bacterium was a novel species of Thermomonas within Xanthomonadaceae, which was further verified by comparative genomics. The annotation using KEGG and Pfam identified genes related to cyanide metabolism, including genes responsible for the iron-harvesting system, cyanide-insensitive terminal oxidase, cyanide hydrolase/nitrilase, and thiosulfate:cyanide transferase. Phylogenetic analysis showed that these genes had homologs in previously identified genomes of bacteria within Xanthomonadaceae and even presented similar gene cassettes, thus implying an inherent cyanide-decomposing potential. The findings of this study expand our knowledge about the bacterial degradation of cyanide compounds and will be helpful in the remediation of cyanides contamination.

  11. Effects of forest management practices in temperate beech forests on bacterial and fungal communities involved in leaf litter degradation.

    Science.gov (United States)

    Purahong, Witoon; Kapturska, Danuta; Pecyna, Marek J; Jariyavidyanont, Katalee; Kaunzner, Jennifer; Juncheed, Kantida; Uengwetwanit, Tanaporn; Rudloff, Renate; Schulz, Elke; Hofrichter, Martin; Schloter, Michael; Krüger, Dirk; Buscot, François

    2015-05-01

    Forest management practices (FMPs) significantly influence important ecological processes and services in Central European forests, such as leaf litter decomposition and nutrient cycling. Changes in leaf litter diversity, and thus, its quality as well as microbial community structure and function induced by different FMPs were hypothesized to be the main drivers causing shifts in decomposition rates and nutrient release in managed forests. In a litterbag experiment lasting 473 days, we aimed to investigate the effects of FMPs (even-aged timber management, selective logging and unmanaged) on bacterial and fungal communities involved in leaf litter degradation over time. Our results showed that microbial communities in leaf litter were strongly influenced by both FMPs and sampling date. The results from nonmetric multidimensional scaling (NMDS) ordination revealed distinct patterns of bacterial and fungal successions over time in leaf litter. We demonstrated that FMPs and sampling dates can influence a range of factors, including leaf litter quality, microbial macronutrients, and pH, which significantly correlate with microbial community successions.

  12. Bacterial degradation of emulsified crude oil and the effects of various surfactants

    International Nuclear Information System (INIS)

    Bruheim, P.; Bredholt, H.; Eimhjellen, K.

    1997-01-01

    The effects of surfactants on the oxidation rate of alkanes in crude oil were investigated using a selected bacterial species, Rhodococcus sp., pregrown to various growth stages. Oxidation rates were measured in a three-hour period by Warburg respirometry. Response to emulsified oil was found to be dependent on the physiological state of the bacteria. In the exponential growth phase oxidation rates were negatively affected by surfactant amendment, whereas in the stationary growth phase oxidation rates appear to have been stimulated. The stimulatory effect was attributed to the chemical structure and physico-chemical properties of the surfactants. Surfactants with hydrophilic-lipophilic balance values (HLB) in the intermediate range of 8-12 gave the best values. Neither the commercial dispersants nor the biosurfactants exhibited any stimulative effects. 21 refs., 4 tabs., 1 fig

  13. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation.

    Science.gov (United States)

    Ramya, Shanivarsanthe Leelesh; Venkatesan, Thiruvengadam; Srinivasa Murthy, Kottilingam; Jalali, Sushil Kumar; Verghese, Abraham

    2016-01-01

    Diamondback moth (DBM), Plutella xylostella (Linnaeus), is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n=13) and adults (n=12) of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%), followed by bacilli (15.4%). Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%), bacilli (16.7%) and flavobacteria (16.7%). Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32μmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus - KC985225 and Pantoea agglomerans - KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26μmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus, from India and its possible role in indoxacarb degradation

    Directory of Open Access Journals (Sweden)

    Shanivarsanthe Leelesh Ramya

    2016-06-01

    Full Text Available Abstract Diamondback moth (DBM, Plutella xylostella (Linnaeus, is a notorious pest of brassica crops worldwide and is resistant to all groups of insecticides. The insect system harbors diverse groups of microbiota, which in turn helps in enzymatic degradation of xenobiotic-like insecticides. The present study aimed to determine the diversity of gut microflora in DBM, quantify esterase activity and elucidate their possible role in degradation of indoxacarb. We screened 11 geographic populations of DBM in India and analyzed them for bacterial diversity. The culturable gut bacterial flora underwent molecular characterization with 16S rRNA. We obtained 25 bacterial isolates from larvae (n = 13 and adults (n = 12 of DBM. In larval gut isolates, gammaproteobacteria was the most abundant (76%, followed by bacilli (15.4%. Molecular characterization placed adult gut bacterial strains into three major classes based on abundance: gammaproteobacteria (66%, bacilli (16.7% and flavobacteria (16.7%. Esterase activity from 19 gut bacterial isolates ranged from 0.072 to 2.32 µmol/min/mg protein. Esterase bands were observed in 15 bacterial strains and the banding pattern differed in Bacillus cereus – KC985225 and Pantoea agglomerans – KC985229. The bands were characterized as carboxylesterase with profenofos used as an inhibitor. Minimal media study showed that B. cereus degraded indoxacarb up to 20%, so it could use indoxacarb for metabolism and growth. Furthermore, esterase activity was greater with minimal media than control media: 1.87 versus 0.26 µmol/min/mg protein. Apart from the insect esterases, bacterial carboxylesterase may aid in the degradation of insecticides in DBM.

  15. Biodegradation of petroleum hydrocarbons in seawater at low temperatures (0-5 degrees C) and bacterial communities associated with degradation.

    Science.gov (United States)

    Brakstad, Odd G; Bonaunet, Kristin

    2006-02-01

    In this study biodegradation of hydrocarbons in thin oil films was investigated in seawater at low temperatures, 0 and 5 degrees C. Heterotrophic (HM) or oil-degrading (ODM) microorganisms enriched at the two temperatures showed 16S rRNA sequence similarities to several bacteria of Arctic or Antarctic origin. Biodegradation experiments were conducted with a crude mineral oil immobilized as thin films on hydrophobic Fluortex adsorbents in nutrient-enriched or sterile seawater. Chemical and respirometric analysis of hydrocarbon depletion showed that naphthalene and other small aromatic hydrocarbons (HCs) were primarily biodegraded after dissolution to the water phase, while biodegradation of larger polyaromatic hydrocarbons (PAH) and C(10)-C(36) n-alkanes, including n-hexadecane, was associated primarily with the oil films. Biodegradation of PAH and n-alkanes was significant at both 0 and 5 degrees C, but was decreased for several compounds at the lower temperature. n-Hexadecane biodegradation at the two temperatures was comparable at the end of the experiments, but was delayed at 0 degree C. Investigations of bacterial communities in seawater and on adsorbents by PCR amplification of 16S rRNA gene fragments and DGGE analysis indicated that predominant bacteria in the seawater gradually adhered to the oil-coated adsorbents during biodegradation at both temperatures. Sequence analysis of most DGGE bands aligned to members of the phyla Proteobacteria (Gammaproteobacteria) or Bacteroidetes. Most sequences from experiments at 0 degree C revealed affiliations to members of Arctic or Antarctic consortia, while no such homology was detected for sequences from degradation experiment run at 5 degrees C. In conclusion, marine microbial communities from cold seawater have potentials for oil film HC degradation at temperatures < or =5 degrees C, and psychrotrophic or psychrophilic bacteria may play an important role during oil HC biodegradation in seawater close to freezing

  16. Heat degradation of eukaryotic and bacterial DNA: an experimental model for paleomicrobiology

    Directory of Open Access Journals (Sweden)

    Nguyen-Hieu Tung

    2012-09-01

    Full Text Available Abstract Background Theoretical models suggest that DNA degradation would sharply limit the PCR-based detection of both eukaryotic and prokaryotic DNA within ancient specimens. However, the relative extent of decay of eukaryote and prokaryote DNA over time is a matter of debate. In this study, the murine macrophage cell line J774, alone or infected with Mycobacterium smegmatis bacteria, were killed after exposure to 90°C dry heat for intervals ranging from 1 to 48 h in order to compare eukaryotic cells, extracellular bacteria and intracellular bacteria. The sizes of the resulting mycobacterial rpoB and murine rpb2 homologous gene fragments were then determined by real-time PCR and fluorescent probing. Findings The cycle threshold (Ct values of PCR-amplified DNA fragments from J774 cells and the M. smegmatis negative controls (without heat exposure varied from 26–33 for the J774 rpb2 gene fragments and from 24–29 for M. smegmatis rpoB fragments. After 90°C dry heat incubation for up to 48 h, the Ct values of test samples increased relative to those of the controls for each amplicon size. For each dry heat exposure time, the Ct values of the 146-149-bp fragments were lower than those of 746-747-bp fragments. During the 4- to 24-h dry heat incubation, the non-infected J774 cell DNA was degraded into 597-bp rpb2 fragments. After 48 h, however, only 450-bp rpb2 fragments of both non-infected and infected J774 cells could be amplified. In contrast, the 746-bp rpoB fragments of M. smegmatis DNA could be amplified after the 48-h dry heat exposure in all experiments. Infected and non-infected J774 cell DNA was degraded more rapidly than M. smegmatis DNA after dry heat exposure (ANOVA test, p  Conclusion In this study, mycobacterial DNA was more resistant to dry-heat stress than eukaryotic DNA. Therefore, the detection of large, experimental, ancient mycobacterial DNA fragments is a suitable approach for paleomicrobiological studies.

  17. Metabolism of 2,4-dichlorophenol in tobacco engineered with bacterial degradative genes

    International Nuclear Information System (INIS)

    Perkins, E.J.; Sekine, M.; Gordon, M.P.

    1990-01-01

    The potential use of plants in toxic waste remediation has been overlooked. While chlorophenols are relatively slowly metabolized in Nicotiana tabacum var. Xanthi leaf extracts, chlorocatechols are rapidly metabolized, presumably by polyphenol oxidases. Our initial focus has been the fate of 2,4-dichlorophenol (2,4DCP) in var. Xanthi plants which express a bacterial 2,4DCP hydroxylase, which converts 2,4DCP to 3,5-dichlorocatechol. The roots of wild type and 2,4DCP hydroxylase transgenic plants growing in hydroponics were exposed to 14 C-2,4DCP. Approximately 95% of 14 C-2,4DCP metabolites remained in the roots when exposed to 2,4DCP. Upon extraction of root tissue, three major metabolites were found in untransformed plants and four major metabolites in transformed plants. Upon digestion with beta-D-glucosidase, these metabolites disappeared concomitant with the appearance of free 2,4DCP in wild type plants and 2,4DCP and 3,5-dichlorocatechol in transgenic plants. It is apparent that the chlorophenols are not readily available substrates for polyphenol oxidases in whole plants

  18. Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates

    Energy Technology Data Exchange (ETDEWEB)

    Marquez-Rocha, F.J.; Olmos-Soto, J. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, San Diego, CA (United States). Departamento de Biotecnologia Marina; Rosano-Hernandez, M.A.; Muriel-Garcia, M. [Instituto Mexicano del Petroleo, CD Carmen Camp (Mexico). Zona Marina/Tecnologia Ambiental

    2005-01-01

    Of more than 20 bacteria isolated from a tropical soil using minimal medium supplemented with hydrocarbons, 11 grew well on diesel as sole carbon source, and another 11 grew in the presence of polynuclear aromatic hydrocarbons (PAHs). Ten isolates were identified phenotypically as Pseudomonas sp. and eight as Bacillus sp. Gene sequences representing the catabolic genes (alkM, todM, ndoM, and xylM) and 16S rRNA gene sequences characteristic for Pseudomona and Bacillus were amplified by PCR, using DNA recovered from the supernatant of hydrocarbon-contaminated soil suspensions. Based on their rapid growth characteristics in the presence of hydrocarbons and the formation of PCR products for the catabolic genes alkM and ndoM six isolates were selected for biodegradation assays. After 30 days a mixed culture of two isolates achieved close to 70% hydrocarbon removal and apparent mineralization of 16% of the hydrocarbons present in the soil. Biodegradation rates varied from 275 to 387 mg hydrocarbon kg{sup -1} day{sup -1}. Several bacterial isolates obtained in this study have catabolic capabilities for the biodegradation of alkanes and aromatic hydrocarbons including PAHs. (author)

  19. Assessment of Bacterial Degradation of Aromatic Hydrocarbons in the Environment by Analysis of Stable Carbon Isotope Fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Meckenstock, Rainer U. [Eberhard-Karls University of Tuebingen, Center for Applied Geoscience (Germany)], E-mail: rainer.meckenstock@uni-tuebingen.de; Morasch, Barbara [University of Konstanz, Faculty of Biology (Germany); Kaestner, Matthias; Vieth, Andrea; Richnow, Hans Hermann [Center for Environmental Research, Department of Remediation Research (Germany)

    2002-05-15

    {sup 13}C/{sup 12}C stable carbon isotope fractionation was used to assess biodegradation in contaminated aquifers with toluene as a model compound. Different strains of anaerobic bacteria (Thauera aromatica, Geobacter metallireducens, and the sulfate-reducing strain TRM1) showed consistent {sup 13}C/{sup 12}C carbon isotope fractionation with fractionation factors between {alpha}C = 1.0017 and 1.0018. In contrast, three cultures of aerobic organisms, using different mono- and dioxygenase enzyme systems to initiate toluene degradation, showed variable isotope fractionation factors of {alpha}C = 1.0027 (Pseudomonasputida strain mt-2), {alpha}C = 1.0011 (Ralstonia picketii), and{alpha}C = 1.0004 (Pseudomonas putida strain F1). The great variability of isotope fractionation between different aerobic bacterial strains suggests that interpretation of isotope data in oxic habitats can only be qualitative. A soil column was run as a model system for contaminated aquifers with toluene as the carbon source and sulfate as the electron acceptor and samples were taken at different ports along the column. Microbial toluene degradation was calculated based on the {sup 13}C/{sup 12}C isotope fractionation factors of the batch culture experiments together with the observed {sup 13}C/{sup 12}C isotope shifts of the residual toluene fractions. The calculated percentage of biodegradation, B, correlated well with the decreasing toluene concentrations at the sampling ports and indicated the increasing extent of biodegradation along the column. The theoretical toluene concentrations as calculated based on the isotope values matched the measured concentrations at the different sampling ports indicating that the Rayleigh equation can be used to calculate biodegradation in quasi closed systems based on measured isotope shifts. A similar attempt was performed to assess toluene degradation in a contaminated, anoxic aquifer. A transect of groundwater wells was monitored along the main

  20. Assessment of Bacterial Degradation of Aromatic Hydrocarbons in the Environment by Analysis of Stable Carbon Isotope Fractionation

    International Nuclear Information System (INIS)

    Meckenstock, Rainer U.; Morasch, Barbara; Kaestner, Matthias; Vieth, Andrea; Richnow, Hans Hermann

    2002-01-01

    13 C/ 12 C stable carbon isotope fractionation was used to assess biodegradation in contaminated aquifers with toluene as a model compound. Different strains of anaerobic bacteria (Thauera aromatica, Geobacter metallireducens, and the sulfate-reducing strain TRM1) showed consistent 13 C/ 12 C carbon isotope fractionation with fractionation factors between αC = 1.0017 and 1.0018. In contrast, three cultures of aerobic organisms, using different mono- and dioxygenase enzyme systems to initiate toluene degradation, showed variable isotope fractionation factors of αC = 1.0027 (Pseudomonasputida strain mt-2), αC = 1.0011 (Ralstonia picketii), andαC = 1.0004 (Pseudomonas putida strain F1). The great variability of isotope fractionation between different aerobic bacterial strains suggests that interpretation of isotope data in oxic habitats can only be qualitative. A soil column was run as a model system for contaminated aquifers with toluene as the carbon source and sulfate as the electron acceptor and samples were taken at different ports along the column. Microbial toluene degradation was calculated based on the 13 C/ 12 C isotope fractionation factors of the batch culture experiments together with the observed 13 C/ 12 C isotope shifts of the residual toluene fractions. The calculated percentage of biodegradation, B, correlated well with the decreasing toluene concentrations at the sampling ports and indicated the increasing extent of biodegradation along the column. The theoretical toluene concentrations as calculated based on the isotope values matched the measured concentrations at the different sampling ports indicating that the Rayleigh equation can be used to calculate biodegradation in quasi closed systems based on measured isotope shifts. A similar attempt was performed to assess toluene degradation in a contaminated, anoxic aquifer. A transect of groundwater wells was monitored along the main direction of the groundwater flow and revealed decreasing

  1. Salix purpurea Stimulates the Expression of Specific Bacterial Xenobiotic Degradation Genes in a Soil Contaminated with Hydrocarbons.

    Directory of Open Access Journals (Sweden)

    Antoine P Pagé

    Full Text Available The objectives of this study were to uncover Salix purpurea-microbe xenobiotic degradation systems that could be harnessed in rhizoremediation, and to identify microorganisms that are likely involved in these partnerships. To do so, we tested S. purpurea's ability to stimulate the expression of 10 marker microbial oxygenase genes in a soil contaminated with hydrocarbons. In what appeared to be a detoxification rhizosphere effect, transcripts encoding for alkane 1-monooxygenases, cytochrome P450 monooxygenases, laccase/polyphenol oxidases, and biphenyl 2,3-dioxygenase small subunits were significantly more abundant in the vicinity of the plant's roots than in bulk soil. This gene expression induction is consistent with willows' known rhizoremediation capabilities, and suggests the existence of S. purpurea-microbe systems that target many organic contaminants of interest (i.e. C4-C16 alkanes, fluoranthene, anthracene, benzo(apyrene, biphenyl, polychlorinated biphenyls. An enhanced expression of the 4 genes was also observed within the bacterial orders Actinomycetales, Rhodospirillales, Burkholderiales, Alteromonadales, Solirubrobacterales, Caulobacterales, and Rhizobiales, which suggest that members of these taxa are active participants in the exposed partnerships. Although the expression of the other 6 marker genes did not appear to be stimulated by the plant at the community level, signs of additional systems that rest on their expression by members of the orders Solirubrobacterales, Sphingomonadales, Actinomycetales, and Sphingobacteriales were observed. Our study presents the first transcriptomics-based identification of microbes whose xenobiotic degradation activity in soil appears stimulated by a plant. It paints a portrait that contrasts with the current views on these consortia's composition, and opens the door for the development of laboratory test models geared towards the identification of root exudate characteristics that limit the

  2. Isolation and characterization of two new methanesulfonic acid-degrading bacterial isolates from a Portuguese soil sample.

    Science.gov (United States)

    De Marco, P; Murrell, J C; Bordalo, A A; Moradas-Ferreira, P

    2000-02-01

    Two novel bacterial strains that can utilize methanesulfonic acid as a source of carbon and energy were isolated from a soil sample collected in northern Portugal. Morphological, physiological, biochemical and molecular biological characterization of the two isolates indicate that strain P1 is a pink-pigmented facultative methylotroph belonging to the genus Methylobacterium, while strain P2 is a restricted methylotroph belonging to the genus Hyphomicrobium. Both strains are strictly aerobic, degrade methanesulfonate, and release small quantities of sulfite into the medium. Growth on methanesulfonate induces a specific polypeptide profile in each strain. This, together with the positive hybridization to a DNA probe that carries the msm genes of Methylosulfonomonas methylovora strain M2, strongly endorses the contention that a methanesulfonic acid monooxygenase related to that found in the previously known methanesulfonate-utilizing bacteria is present in strains P1 and P2. The isolation of bacteria containing conserved msm genes from diverse environments and geographical locations supports the hypothesis that a common enzyme may be globally responsible for the oxidation of methanesulfonate by natural methylotrophic communities.

  3. Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus.

    Science.gov (United States)

    Su, Xiao-Mei; Liu, Yin-Dong; Hashmi, Muhammad Zaffar; Ding, Lin-Xian; Shen, Chao-Feng

    2015-05-01

    Biphenyl (BP)-degrading bacteria were identified to degrade various polychlorinated BP (PCB) congers in long-term PCB-contaminated sites. Exploring BP-degrading capability of potentially useful bacteria was performed for enhancing PCB bioremediation. In the present study, the bacterial composition of the PCB-contaminated sediment sample was first investigated. Then extracellular organic matter (EOM) from Micrococcus luteus was used to enhance BP biodegradation. The effect of the EOM on the composition of bacterial community was investigated by combining with culture-dependent and culture-independent methods. The obtained results indicate that Proteobacteria and Actinobacteria were predominant community in the PCB-contaminated sediment. EOM from M. luteus could stimulate the activity of some potentially difficult-to-culture BP degraders, which contribute to significant enhancement of BP biodegradation. The potentially difficult-to-culture bacteria in response to EOM addition were mainly Rhodococcus and Pseudomonas belonging to Gammaproteobacteria and Actinobacteria respectively. This study provides new insights into exploration of functional difficult-to-culture bacteria with EOM addition and points out broader BP/PCB degrading, which could be employed for enhancing PCB-bioremediation processes. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  4. Molecular Characterization of the Bacterial Community in Biofilms for Degradation of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) Films in Seawater.

    Science.gov (United States)

    Morohoshi, Tomohiro; Ogata, Kento; Okura, Tetsuo; Sato, Shunsuke

    2018-03-29

    Microplastics are fragmented pieces of plastic in marine environments, and have become a serious environmental issue. However, the dynamics of the biodegradation of plastic in marine environments have not yet been elucidated in detail. Polyhydroxyalkanoates (PHAs) are biodegradable polymers that are synthesized by a wide range of microorganisms. One of the PHA derivatives, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) has flexible material properties and a low melting temperature. After an incubation in seawater samples, a significant amount of biofilms were observed on the surfaces of PHBH films, and some PHBH films were mostly or partially degraded. In the biofilms that formed on the surfaces of unbroken PHBH films, the most dominant operational taxonomic units (OTUs) showed high similarity with the genus Glaciecola in the family Alteromonadaceae. On the other hand, the dominant OTUs in the biofilms that formed on the surfaces of broken PHBH films were assigned to the families Rhodobacteraceae, Rhodospirillaceae, and Oceanospirillaceae, and the genus Glaciecola mostly disappeared. The bacterial community in the biofilms on PHBH films was assumed to have dynamically changed according to the progression of degradation. Approximately 50 colonies were isolated from the biofilm samples that formed on the PHBH films and their PHBH-degrading activities were assessed. Two out of three PHBH-degrading isolates showed high similarities to Glaciecola lipolytica and Aestuariibacter halophilus in the family Alteromonadaceae. These results suggest that bacterial strains belonging to the family Alteromonadaceae function as the principal PHBH-degrading bacteria in these biofilms.

  5. Fourier transform infrared spectroscopy as a metabolite fingerprinting tool for monitoring the phenotypic changes in complex bacterial communities capable of degrading phenol.

    Science.gov (United States)

    Wharfe, Emma S; Jarvis, Roger M; Winder, Catherine L; Whiteley, Andrew S; Goodacre, Royston

    2010-12-01

    The coking process produces great volumes of wastewater contaminated with pollutants such as cyanides, sulfides and phenolics. Chemical and physical remediation of this wastewater removes the majority of these pollutants; however, these processes do not remove phenol and thiocyanate. The removal of these compounds has been effected during bioremediation with activated sludge containing a complex microbial community. In this investigation we acquired activated sludge from an industrial bioreactor capable of degrading phenol. The sludge was incubated in our laboratory and monitored for its ability to degrade phenol over a 48 h period. Multiple samples were taken across the time-course and analysed by Fourier transform infrared (FT-IR) spectroscopy. FT-IR was used as a whole-organism fingerprinting approach to monitor biochemical changes in the bacterial cells during the degradation of phenol. We also investigated the ability of the activated sludge to degrade phenol following extended periods (2-131 days) of storage in the absence of phenol. A reduction was observed in the ability of the microbial community to degrade phenol and this was accompanied by a detectable biochemical change in the FT-IR fingerprint related to cellular phenotype of the microbial community. In the absence of phenol a decrease in thiocyanate vibrations was observed, reflecting the ability of these communities to degrade this substrate. Actively degrading communities showed an additional new band in their FT-IR spectra that could be attributed to phenol degradation products from the ortho- and meta-cleavage of the aromatic ring. This study demonstrates that FT-IR spectroscopy when combined with chemometric analysis is a very powerful high throughput screening approach for assessing the metabolic capability of complex microbial communities. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Effect of biostimulation using sewage sludge, soybean meal and wheat straw on oil degradation and bacterial community composition in a contaminated desert soil

    Directory of Open Access Journals (Sweden)

    Sumaiya eAl-Kindi

    2016-03-01

    Full Text Available Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography-mass spectrometry (GC-MS, shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities more than the addition of soybean meal. GC-MS analysis revealed that the addition of addition of sewage sludge and wheat straw resulted in 1.7 to 1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥ 90% of the C14 to C30 alkanes were measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5-86.4% of total sequences of acquired sequences from the original soil belonged to Alphaproteobacteria, Gammaproteobacteria and Firmicutes. Multivariate analysis of operational taxonomic units (OTUs placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R=0.66, P=0.0001. The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95-98% of the total sequences belonging to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils.

  7. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil

    Science.gov (United States)

    Al-Kindi, Sumaiya; Abed, Raeid M. M.

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils. PMID:26973618

  8. Bacterial carbohydrate-degrading capacity in foal faeces: changes from birth to pre-weaning and the impact of maternal supplementation with fermented feed products.

    Science.gov (United States)

    Faubladier, Céline; Julliand, Véronique; Danel, Justine; Philippeau, Christelle

    2013-09-28

    The present study aimed at (1) describing age-related changes in faecal bacterial functional groups involved in carbohydrate degradation and in their activities in foals (n 10) from birth (day (d) 0) to 6 months (d180) and (2) investigating the effect of maternal supplementation (five mares per treatment) from d - 45 to d60 with fermented feed products on response trends over time of the foal bacterial carbohydratedegrading capacity. Maternal supplementation with fermented feed products stimulated foal growth from d0 to d60 and had an impact on the establishment of some digestive bacterial groups and their activities in foals from d0 to d5 but not in the longer term. Irrespective of the maternal treatment, total bacteria, total anaerobic, lactate-utilising and amylolytic bacteria were established immediately after birth (Panaerobes and lactate utilisers were established rapidly between d0 and d2 (P=0·021 and 0·066, respectively) and the increase in the percentage of propionate occurred earlier (P=0·013). Maternal supplementation had no effect on the establishment of fibrolytic bacteria and their activity. Cellulolytic bacteria and Fibrobacter succinogenes first appeared at d2 and d5, and increased progressively, reaching stable values at d30 and d60, respectively. From the second week of life, the increase in the molar percentage of acetate and the ratio (acetate + butyrate):propionate (P<0·05) suggested that fibrolytic activity had begun. From d60, only minor changes in bacterial composition and activities occurred, showing that the bacterial carbohydrate-degrading capacity was established at 2 months of age.

  9. Bioremediation of high molecular weight polyaromatic hydrocarbons co-contaminated with metals in liquid and soil slurries by metal tolerant PAHs degrading bacterial consortium.

    Science.gov (United States)

    Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi

    2012-11-01

    Bioremediation of polyaromatic hydrocarbons (PAH) contaminated soils in the presence of heavy metals have proved to be difficult and often challenging due to the ability of toxic metals to inhibit PAH degradation by bacteria. In this study, a mixed bacterial culture designated as consortium-5 was isolated from a former manufactured gas plant (MGP) site. The ability of this consortium to utilise HMW PAHs such as pyrene and BaP as a sole carbon source in the presence of toxic metal Cd was demonstrated. Furthermore, this consortium has proven to be effective in degradation of HMW PAHs even from the real long term contaminated MGP soil. Thus, the results of this study demonstrate the great potential of this consortium for field scale bioremediation of PAHs in long term mix contaminated soils such as MGP sites. To our knowledge this is the first study to isolate and characterize metal tolerant HMW PAH degrading bacterial consortium which shows great potential in bioremediation of mixed contaminated soils such as MGP.

  10. Isolation and identification of bacterial consortia responsible for degrading oil spills from the coastal area of Yanbu, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Amr Abd-EL Mooti EL Hanafy

    2016-01-01

    Full Text Available Twenty-three crude-oil-degrading bacteria were isolated from oil-contaminated sites near the Red Sea. Based on a high growth rate on crude oil and on hydrocarbon degradation ability, four strains were selected from the 23 isolated strains for further study. These four strains were selected on the basis of dichlorophenolindophenol assay. The nucleotide sequences of the 16S rRNA gene showed that these isolated strains belonged to genus Pseudomonas and Nitratireductor. Among the four isolates, strains S5 (Pseudomonas sp., 95% and 4b (Nitratireductor sp., 70% were the most effective ones in degrading crude oil. Using a spectrophotometer and gas chromatography–mass spectrometry, degradation of more than 90% of the crude oil was observed after two weeks of cultivation in Bushnell–Haas medium. The results showed that these strains have the ability to degrade crude oil and may be used for environmental remediation.

  11. Effects of dietary protein levels and 2-methylbutyrate on ruminal fermentation, nutrient degradability, bacterial populations and urinary purine derivatives in Simmental steers.

    Science.gov (United States)

    Wang, C; Liu, Q; Guo, G; Huo, W J; Pei, C X; Zhang, S L; Yang, W Z

    2018-06-01

    The objective of this study was to evaluate the effects of dietary crude protein (CP) levels and 2-methylbutyrate (MB) supplementation on ruminal fermentation, bacterial populations, microbial enzyme activity and urinary excretion of purine derivatives (PD) in Simmental steers. Eight ruminally cannulated Simmental steers, averaging 18 months of age and 465 ± 8.6 kg of body weight (BW), were used in a replicated 4 × 4 Latin square design by a 2 × 2 factorial arrangement. Low protein (98.5 g CP/kg dry matter [LP] or high protein (128.7 g CP/kg dry matter [HP]) diets were fed with MB supplementation (0 g [MB-] or 16.8 g steer -1  day -1 [MB+]). Steers were fed a total mixed ration with dietary corn straw to concentrate ratio of 50:50 (dry matter [DM] basis). The CP × MB interaction was observed for ruminal total VFA, molar proportions of acetate and propionate, acetate to propionate ratio, ammonia-N, effective degradability of neutral detergent fibre (NDF) and CP, microbial enzyme activity, bacterial populations and total PD excretion (p Ruminal pH decreased (p ruminal total VFA concentration increased (p Ruminal ammonia-N content increased (p = .034) with increasing dietary CP level, but decreased (p = .012) with MB supplementation. The effective degradability of NDF and CP increased (p ruminal fermentation, nutrient degradability, microbial enzyme activity, ruminal bacterial populations and microbial protein synthesis improved with increasing dietary CP level or MB supplementation in steers. © 2017 Blackwell Verlag GmbH.

  12. Impact of protists on a hydrocarbon-degrading bacterial community from deep-sea Gulf of Mexico sediments: A microcosm study

    Science.gov (United States)

    Beaudoin, David J.; Carmichael, Catherine A.; Nelson, Robert K.; Reddy, Christopher M.; Teske, Andreas P.; Edgcomb, Virginia P.

    2016-07-01

    In spite of significant advancements towards understanding the dynamics of petroleum hydrocarbon degrading microbial consortia, the impacts (direct or indirect via grazing activities) of bacterivorous protists remain largely unknown. Microcosm experiments were used to examine whether protistan grazing affects the petroleum hydrocarbon degradation capacity of a deep-sea sediment microbial community from an active Gulf of Mexico cold seep. Differences in n-alkane content between native sediment microcosms and those treated with inhibitors of eukaryotes were assessed by comprehensive two-dimensional gas chromatography following 30-90 day incubations and analysis of shifts in microbial community composition using small subunit ribosomal RNA gene clone libraries. More biodegradation was observed in microcosms supplemented with eukaryotic inhibitors. SSU rRNA gene clone libraries from oil-amended treatments revealed an increase in the number of proteobacterial clones (particularly γ-proteobacteria) after spiking sediments with diesel oil. Bacterial community composition shifted, and degradation rates increased, in treatments where protists were inhibited, suggesting protists affect the hydrocarbon degrading capacity of microbial communities in sediments collected at this Gulf of Mexico site.

  13. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  14. Effect of exposure to sunlight and phosphorus-limitation on bacterial degradation of coloured dissolved organic matter (CDOM) in freshwater

    DEFF Research Database (Denmark)

    Kragh, Theis; Søndergaard, Morten; Tranvik, Lars

    2008-01-01

    This study reports on the interacting effect of photochemical conditioning of dissolved organic matter and inorganic phosphorus on the metabolic activity of bacteria in freshwater. Batch cultures with lake-water bacteria and dissolved organic carbon (DOC) extracted from a humic boreal river were...... arranged in an experimental matrix of three levels of exposure to simulated sunlight and three levels of phosphorus concentration. We measured an increase in bacterial biomass, a decrease in DOC and bacterial respiration as CO(2) production and O(2) consumption over 450 h. These measurements were used...

  15. Effect of Sphingobium yanoikuyae B1 inoculation on bacterial community dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils

    International Nuclear Information System (INIS)

    Cunliffe, Michael; Kertesz, Michael A.

    2006-01-01

    Sphingobium yanoikuyae B1 is able to degrade a range of polycyclic aromatic hydrocarbons (PAHs) and as a sphingomonad belongs to one of the dominant genera found in PAH-contaminated soils. We examined the ecological effect that soil inoculation with S. yanoikuyae B1 has on the native bacterial community in three different soils: aged PAH-contaminated soil from an industrial site, compost freshly contaminated with PAHs and un-contaminated compost. Survival of S. yanoikuyae B1 was dependent on the presence of PAHs, and the strain was unable to colonize un-contaminated compost. Inoculation with S. yanoikuyae B1 did not cause extensive changes in the native bacterial community of either soil, as assessed by denaturing gel electrophoresis, but its presence led to an increase in the population level of two other species in the aged contaminated soil community and appeared to have an antagonistic affect on several members of the contaminated compost community, indicating niche competition. - Sphingobium yanoikuyae B1 does not cause major changes in the native bacterial community while colonizing PAH-contaminated soils, but some niche competition is evident

  16. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    Science.gov (United States)

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Soil bacterial and fungal community successions under the stress of chlorpyrifos application and molecular characterization of chlorpyrifos-degrading isolates using ERIC-PCR*

    Science.gov (United States)

    Chen, Lie-zhong; Li, Yan-li; Yu, Yun-long

    2014-01-01

    Chlorpyrifos is a widely used insecticide in recent years, and it will produce adverse effects on soil when applied on crops or mixed with soil. In this study, nested polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) were combined to explore the bacterial and fungal community successions in soil treated with 5 and 20 mg/kg of chlorpyrifos. Furthermore, isolates capable of efficiently decomposing chlorpyrifos were molecular-typed using enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR). Under the experimental conditions, degradation of chlorpyrifos in soil was interpreted with the first-order kinetics, and the half-lives of chlorpyrifos at 5 and 20 mg/kg doses were calculated to be 8.25 and 8.29 d, respectively. DGGE fingerprint and principal component analysis (PCA) indicated that the composition of the fungal community was obviously changed with the chlorpyrifos treatment, and that samples of chlorpyrifos treatment were significantly separated from those of the control from the beginning to the end. While for the bacterial community, chlorpyrifos-treated soil samples were apparently different in the first 30 d and recovered to a similar level of the control up until 60 d, and the distance in the PCA between the chlorpyrifos-treated samples and the control was getting shorter through time and was finally clustered into one group. Together, our results demonstrated that the application of chlorpyrifos could affect the fungal community structure in a quick and lasting way, while only affecting the bacterial community in a temporary way. Finally, nine typical ERIC types of chlorpyrifos-degrading isolates were screened. PMID:24711353

  18. Microbial degradation of phosmet on blueberry fruit and in aqueous systems by indigenous bacterial flora on lowbush blueberries (Vaccinium angustifolium).

    Science.gov (United States)

    Crowe, K M; Bushway, A A; Bushway, R J; Davis-Dentici, K

    2007-10-01

    Phosmet-adapted bacteria isolated from lowbush blueberries (Vaccinium angustifolium) were evaluated for their ability to degrade phosmet on blueberry fruit and in minimal salt solutions. Microbial metabolism of phosmet by isolates of Enterobacter agglomerans and Pseudomonas fluorescens resulted in significant reductions (P blueberries and in minimal salt solutions. Thus, the role of adapted strains of E. agglomerans and P. fluorescens in degrading phosmet on blueberries represents an extensive plant-microorganism relationship, which is essential to determination of phosmet persistence under pre- and postharvest conditions.

  19. Complementary Mechanisms for Degradation of Inulin-Type Fructans and Arabinoxylan Oligosaccharides among Bifidobacterial Strains Suggest Bacterial Cooperation.

    Science.gov (United States)

    Rivière, Audrey; Selak, Marija; Geirnaert, Annelies; Van den Abbeele, Pieter; De Vuyst, Luc

    2018-05-01

    Inulin-type fructans (ITF) and arabinoxylan oligosaccharides (AXOS) are broken down to different extents by various bifidobacterial strains present in the human colon. To date, phenotypic heterogeneity in the consumption of these complex oligosaccharides at the strain level remains poorly studied. To examine mechanistic variations in ITF and AXOS constituent preferences present in one individual, ITF and AXOS consumption by bifidobacterial strains isolated from the simulator of the human intestinal microbial ecosystem (SHIME) after inoculation with feces from one healthy individual was investigated. Among the 18 strains identified, four species-independent clusters displaying different ITF and AXOS degradation mechanisms and preferences were found. Bifidobacterium bifidum B46 showed limited growth on all substrates, whereas B. longum B24 and B. longum B18 could grow better on short-chain-length fractions of fructooligosaccharides (FOS) than on fructose. B. longum B24 could cleave arabinose substituents of AXOS extracellularly, without using the AXOS-derived xylose backbones, whereas B. longum B18 was able to consume oligosaccharides (up to xylotetraose) preferentially and consumed AXOS to a limited extent. B. adolescentis B72 degraded all fractions of FOS simultaneously, partially degraded inulin, and could use xylose backbones longer than xylotetraose extracellularly. The strain-specific degradation mechanisms were suggested to be complementary and indicated resource partitioning. Specialization in the degradation of complex carbohydrates by bifidobacteria present on the individual level could have in vivo implications for the successful implementation of ITF and AXOS, aiming at bifidogenic and/or butyrogenic effects. Finally, this work shows the importance of taking microbial strain-level differences into account in gut microbiota research. IMPORTANCE It is well known that bifidobacteria degrade undigestible complex polysaccharides, such as ITF and AXOS, in the

  20. Mass culture strategy for bacterial yeast co-culture for degradation of petroleum hydrocarbons in marine environment.

    Science.gov (United States)

    Priya, Anchal; Mandal, Ajoy K; Ball, Andrew S; Manefield, Mike; Lal, Banwari; Sarma, Priyangshu M

    2015-11-15

    In the present study a metabolically versatile co-culture with two Bacilli and one yeast strain was developed using enrichment culture techniques. The developed co-culture had affinity to degrade both aliphatic and aromatic fractions of petroleum crude oil. Degradation kinetics was established for designing the fermentation protocol of the co-culture. The developed mass culture strategy led to achieve the reduction in surface tension (26dynescm(-1) from 69 dynescm(-1)) and degradation of 67% in bench scale experiments. The total crude oil degradation of 96% was achieved in 4000l of natural seawater after 28days without adding any nutrients. The survival of the augmented co-culture was maintained (10(9)cellsml(-1)) in contaminated marine environment. The mass culture protocol devised for the bioaugmentation was a key breakthrough that was subsequently used for pilot scale studies with 100l and 4000l of natural seawater for potential application in marine oil spills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Bacterial degradation of Aroclor 1242 in the mycorrhizosphere soils of zucchini (Cucurbita pepo L.) inoculated with arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Qin, Hua; Brookes, Philip C; Xu, Jianming; Feng, Youzhi

    2014-11-01

    A greenhouse experiment was conducted to investigate the effects of zucchini (Cucurbita pepo L.), inoculated with the arbuscular mycorrhizal (AM) species Acaulospora laevis, Glomus caledonium, and Glomus mosseae, on the soil bacterial community responsible for Aroclor 1242 dissipation. The dissipation rates of Aroclor 1242 and soil bacteria abundance were much higher with the A. laevis and G. mosseae treatments compared to the non-mycorrhizal control. The biphenyl dioxygenase (bphA) and Rhodococcus-like 2,3-dihydroxybiphenyl dioxygenase (bphC) genes were more abundant in AM inoculated soils, suggesting that the bphA and Rhodococcus-like bphC pathways play an important role in Aroclor 1242 dissipation in the mycorrhizosphere. The soil bacterial communities were dominated by classes Betaproteobacteria and Actinobacteria, while the relative proportion of Actinobacteria was significantly (F=2.288, P<0.05) correlated with the PCB congener profile in bulk soil. Our results showed that AM fungi could enhance PCB dissipation by stimulating bph gene abundance and the growth of specific bacterial groups.

  2. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential

    KAUST Repository

    Soussi, Asma; Ferjani, Raoudha; Marasco, Ramona; Guesmi, Amel; Cherif, Hanene; Rolli, Eleonora; Mapelli, Francesca; Ouzari, Hadda Imene; Daffonchio, Daniele; Cherif, Ameur

    2015-01-01

    Selection and recruitment of the plant associated bacterial assemblages is mediated by the combination of the bio-pedo-agroclimatic conditions and the plant species or varieties. Diversity and functional redundancy of these associated PGPR makes them very active in supporting plant improvement, health and resistance to drought, salt and related stresses. Implementing proper biotechnological applications of the arid and desert-adapted PGPR constitute the challenge to be raised.

  3. The structures of lipopolysaccharides from plant-associated gram-negative bacteria

    DEFF Research Database (Denmark)

    Molinaro, Antonio; Newman, Mari-Anne; Lanzetta, Rosa

    2009-01-01

    Gram-negative bacterial lipopolysaccharides (LPSs) have multiple roles in plant-microbe interactions. LPSs contribute to the low permeabilities of bacterial outer membranes, which act as barriers to protect bacteria from plant-derived antimicrobial substances. Conversely, perception of LPSs...... is an important prerequisite for any further understanding of the biological processes in plant-microbe interactions. Moreover, the LPSs from Gram-negative bacteria - especially those originating from plant-associated bacteria - are a great source of novel monosaccharides with unusual and occasionally astounding...

  4. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    OpenAIRE

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BS) are green amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm biosurfactant producing strains or mixed consortia. The community structure of the best consortia based on the drop c...

  5. Effect of feeding tannin degrading bacterial culture (Streptococcus gallolyticus strain TDGB 406) on nutrient utilization, urinary purine derivatives and growth performance of goats fed on Quercus semicarpifolia leaves.

    Science.gov (United States)

    Kumar, K; Chaudhary, L C; Agarwal, N; Kamra, D N

    2014-10-01

    To study the effect of supplementation of tannin degrading bacterial culture (Streptococcus gallolyticus strain TDGB 406) on growth performance, nutrient utilization and urinary purine derivatives of goats fed on oak (Quercus semicarpifolia) leaves. For growth study, eighteen billy goats (4 month old, average body weight 9.50 ± 1.50 kg) were distributed into three groups of six animals each. The animals of group 1 served as control while animals of groups 2 (T1) and 3 (T2) were given (@ 5 ml/kg live weight) autoclaved and live culture of isolate TDGB 406 (10(6) cells/ml) respectively. The animals were fed measured quantity of dry oak leaves as the main roughage source and ad libitum maize hay along with fixed quantity of concentrate mixture. The feeding of live culture of isolate TDGB 406 (probiotic) did not affect dry matter intake and digestibility of nutrients except that of dry matter and crude protein, which was higher in T2 group as compared to control. All the animals were in positive nitrogen balance. There was no significant effect of feeding isolate TDGB 406 on urinary purine derivatives (microbial protein production) in goats. The body weight gain and average live weight gain was significantly higher (p = 0.071) in T2 group as compared to control. Feed conversion efficiency was also better in the goats fed on live culture of TDGB 406 (T2). The feeding of tannin degrading bacterial isolate TDGB 406 as probiotic resulted in improved growth performance and feed conversion ratio in goats fed on oak leaves as one of the main roughage source. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  6. Degradation of potassium rock by earthworms and responses of bacterial communities in its gut and surrounding substrates after being fed with mineral.

    Science.gov (United States)

    Liu, Dianfeng; Lian, Bin; Wang, Bin; Jiang, Guofang

    2011-01-01

    Earthworms are an ecosystem's engineers, contributing to a wide range of nutrient cycling and geochemical processes in the ecosystem. Their activities can increase rates of silicate mineral weathering. Their intestinal microbes usually are thought to be one of the key drivers of mineral degradation mediated by earthworms,but the diversities of the intestinal microorganisms which were relevant with mineral weathering are unclear. In this report, we show earthworms' effect on silicate mineral weathering and the responses of bacterial communities in their gut and surrounding substrates after being fed with potassium-bearing rock powder (PBRP). Determination of water-soluble and HNO(3)-extractable elements indicated some elements such as Al, Fe and Ca were significantly released from mineral upon the digestion of earthworms. The microbial communities in earthworms' gut and the surrounding substrates were investigated by amplified ribosomal DNA restriction analysis (ARDRA) and the results showed a higher bacterial diversity in the guts of the earthworms fed with PBRP and the PBRP after being fed to earthworms. UPGMA dendrogram with unweighted UniFrac analysis, considering only taxa that are present, revealed that earthworms' gut and their surrounding substrate shared similar microbiota. UPGMA dendrogram with weighted UniFrac, considering the relative abundance of microbial lineages, showed the two samples from surrounding substrate and the two samples from earthworms' gut had similarity in microbial community, respectively. Our results indicated earthworms can accelerate degradation of silicate mineral. Earthworms play an important role in ecosystem processe since they not only have some positive effects on soil structure, but also promote nutrient cycling of ecosystem by enhancing the weathering of minerals.

  7. Degradation of potassium rock by earthworms and responses of bacterial communities in its gut and surrounding substrates after being fed with mineral.

    Directory of Open Access Journals (Sweden)

    Dianfeng Liu

    Full Text Available BACKGROUND: Earthworms are an ecosystem's engineers, contributing to a wide range of nutrient cycling and geochemical processes in the ecosystem. Their activities can increase rates of silicate mineral weathering. Their intestinal microbes usually are thought to be one of the key drivers of mineral degradation mediated by earthworms,but the diversities of the intestinal microorganisms which were relevant with mineral weathering are unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this report, we show earthworms' effect on silicate mineral weathering and the responses of bacterial communities in their gut and surrounding substrates after being fed with potassium-bearing rock powder (PBRP. Determination of water-soluble and HNO(3-extractable elements indicated some elements such as Al, Fe and Ca were significantly released from mineral upon the digestion of earthworms. The microbial communities in earthworms' gut and the surrounding substrates were investigated by amplified ribosomal DNA restriction analysis (ARDRA and the results showed a higher bacterial diversity in the guts of the earthworms fed with PBRP and the PBRP after being fed to earthworms. UPGMA dendrogram with unweighted UniFrac analysis, considering only taxa that are present, revealed that earthworms' gut and their surrounding substrate shared similar microbiota. UPGMA dendrogram with weighted UniFrac, considering the relative abundance of microbial lineages, showed the two samples from surrounding substrate and the two samples from earthworms' gut had similarity in microbial community, respectively. CONCLUSIONS/SIGNIFICANCE: Our results indicated earthworms can accelerate degradation of silicate mineral. Earthworms play an important role in ecosystem processe since they not only have some positive effects on soil structure, but also promote nutrient cycling of ecosystem by enhancing the weathering of minerals.

  8. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    Directory of Open Access Journals (Sweden)

    Eleftheria eAntoniou

    2015-04-01

    Full Text Available Biosurfactants (BS are green amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm biosurfactant producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on biosurfactant production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography (TLC and Fourier transform infrared spectroscopy (FT-IR. Results indicate that biosurfactant production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil implies that the BS producing microbes generate no more than the required amount of biosurfactants that enables biodegradation of the crude oil. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of crude oil has emerged as a promising substrate for BS production (by marine BS producers with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents.

  9. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source.

    Science.gov (United States)

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are "green" amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS - lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents.

  10. Biosurfactant production from marine hydrocarbon-degrading consortia and pure bacterial strains using crude oil as carbon source

    Science.gov (United States)

    Antoniou, Eleftheria; Fodelianakis, Stilianos; Korkakaki, Emmanouela; Kalogerakis, Nicolas

    2015-01-01

    Biosurfactants (BSs) are “green” amphiphilic molecules produced by microorganisms during biodegradation, increasing the bioavailability of organic pollutants. In this work, the BS production yield of marine hydrocarbon degraders isolated from Elefsina bay in Eastern Mediterranean Sea has been investigated. The drop collapse test was used as a preliminary screening test to confirm BS producing strains or mixed consortia. The community structure of the best consortia based on the drop collapse test was determined by 16S-rDNA pyrotag screening. Subsequently, the effect of incubation time, temperature, substrate and supplementation with inorganic nutrients, on BS production, was examined. Two types of BS – lipid mixtures were extracted from the culture broth; the low molecular weight BS Rhamnolipids and Sophorolipids. Crude extracts were purified by silica gel column chromatography and then identified by thin layer chromatography and Fourier transform infrared spectroscopy. Results indicate that BS production yield remains constant and low while it is independent of the total culture biomass, carbon source, and temperature. A constant BS concentration in a culture broth with continuous degradation of crude oil (CO) implies that the BS producing microbes generate no more than the required amount of BSs that enables biodegradation of the CO. Isolated pure strains were found to have higher specific production yields than the complex microbial marine community-consortia. The heavy oil fraction of CO has emerged as a promising substrate for BS production (by marine BS producers) with fewer impurities in the final product. Furthermore, a particular strain isolated from sediments, Paracoccus marcusii, may be an optimal choice for bioremediation purposes as its biomass remains trapped in the hydrocarbon phase, not suffering from potential dilution effects by sea currents. PMID:25904907

  11. Isolate PM1 populations are dominant and novel methyl tert-butyl ether-degrading bacterial in compost biofilter enrichments.

    Science.gov (United States)

    Bruns, M A; Hanson, J R; Mefford, J; Scow, K M

    2001-03-01

    The gasoline additive MTBE, methyl tert-butyl ether, is a widespread and persistent groundwater contaminant. MTBE undergoes rapid mineralization as the sole carbon and energy source of bacterial strain PM1, isolated from an enrichment culture of compost biofilter material. In this report, we describe the results of microbial community DNA profiling to assess the relative dominance of isolate PM1 and other bacterial strains cultured from the compost enrichment. Three polymerase chain reaction (PCR)-based profiling approaches were evaluated: denaturing gradient gel electrophoresis (DGGE) analysis of 230 bp 16S rDNA fragments; thermal gradient gel electrophoresis (TGGE) analysis of 575 bp 16S rDNA fragments; and non-denaturing polyacrylamide gel electrophoresis of 300-1,500 bp fragments containing 16S/23S ribosomal intergenic transcribed spacer (ITS) regions. Whereas all three DNA profiling approaches indicated that PM1-like bands predominated in mixtures from MTBE-grown enrichments, ITS profiling provided the most abundant and specific sequence data to confirm strain PM1's presence in the enrichment. Moreover, ITS profiling did not produce non-specific PCR products that were observed with T/DGGE. A further advantage of ITS community profiling over other methods requiring restriction digestion (e.g. terminal restriction fragment length polymorphisms) was that it did not require an additional digestion step or the use of automated sequencing equipment. ITS bands, excised from similar locations in profiles of the enrichment and PM1 pure culture, were 99.9% identical across 750 16S rDNA positions and 100% identical across 691 spacer positions. BLAST comparisons of nearly full-length 16S rDNA sequences showed 96% similarity between isolate PM1 and representatives of at least four different genera in the Leptothrix subgroup of the beta-Proteobacteria (Aquabacterium, Leptothrix, Rubrivivax and Ideonella). Maximum likelihood and parsimony analyses of 1,249 nucleotide

  12. Terminal processes in the anaerobic degradation of an algal-bacterial mat in a high-sulfate hot spring

    International Nuclear Information System (INIS)

    Ward, D.M.; Olson, G.J.

    1980-01-01

    The algal-bacterial mat of a high-sulfate hot spring (Bath Lake) provided an environment in which to compare terminal processes involved in anaerobic decomposition. Sulfate reduction was found to dominate methane production, as indicated by comparison of initial electron flow through the two processes, rapid conversion of [2- 14 C]acetate to 14 CO 2 and not to 14 CH 4 , and the lack of rapid reduction of NaH 14 CO 3 to 14 CH 4 . Sulfate reduction was the dominant process at all depth intervals, but a marked decrease of sulfate reduction and sulfate-reducing bacteria was observed with depth. Concurrent methanogenesis was indicated by the presence of viable methanogenic bacteria and very low but detectable rates of methane production. A marked increase in methane production was observed after sulfate depletion despite high concentrations of sulfide (>1.25 mM), indicating that methanogenesis was not inhibited by sulfide in the natural environment. Although a sulfate minimum and sulfide maximum occurred in the region of maximal sulfate reduction, the absence of sulfate depletion in interstitial water suggests that methanogenesis is always severely limited in Bath Lake sediments. Low initial methanogenesis was not due to anaerobic methane oxidation

  13. Phytoremediation of abandoned crude oil contaminated drill sites of Assam with the aid of a hydrocarbon-degrading bacterial formulation.

    Science.gov (United States)

    Yenn, R; Borah, M; Boruah, H P Deka; Roy, A Sarma; Baruah, R; Saikia, N; Sahu, O P; Tamuli, A K

    2014-01-01

    Environmental deterioration due to crude oil contamination and abandoned drill sites is an ecological concern in Assam. To revive such contaminated sites, afield study was conducted to phytoremediate four crude oil abandoned drill sites of Assam (Gelakey, Amguri, Lakwa, and Borholla) with the aid of two hydrocarbon-degrading Pseudomonas strains designated N3 and N4. All the drill sites were contaminated with 15.1 to 32.8% crude oil, and the soil was alkaline in nature (pH8.0-8.7) with low moisture content, low soil conductivity and low activities of the soil enzymes phosphatase, dehydrogenase and urease. In addition, N, P, K, and C contents were below threshold limits, and the soil contained high levels of heavy metals. Bio-augmentation was achieved by applying Pseudomonas aeruginosa strains N3 and N4 followed by the introduction of screened plant species Tectona grandis, Gmelina arborea, Azadirachta indica, and Michelia champaca. The findings established the feasibility of the phytoremediation of abandoned crude oil-contaminated drill sites in Assam using microbes and native plants.

  14. Increased susceptibility of skin from HERDA (Hereditary Equine Regional Dermal Asthenia)-affected horses to bacterial collagenase degradation: a potential contributing factor to the clinical signs of HERDA.

    Science.gov (United States)

    Rashmir-Raven, Ann; Lavagnino, Michael; Sedlak, Aleksa; Gardner, Keri; Arnoczky, Steven

    2015-12-01

    Hereditary equine regional dermal asthenia (HERDA) is a genetic disorder of collagen resulting in fragile, hyper-extensible skin and ulcerative lesions. The predominance of skin lesions have been shown to occur on the dorsum of HERDA-affected horses. While this has been postulated to be due to increased exposure to sunlight of these areas, the precise pathological mechanism which causes this to occur is unclear. We hypothesized that an increase in collagenase activity, that has been associated with the exposure of dermal fibroblasts to sunlight, will significantly degrade the material properties of skin from HERDA-affected horses when compared to unaffected controls. Six unaffected and seven HERDA-affected horses, all euthanized for other reasons. Full-thickness skin samples from similar locations on each horse were collected and cut into uniform strips and their material properties (tensile modulus) determined by mechanical testing before (n = 12 samples/horse) or after (n = 12 samples/horse) incubation in bacterial collagenase at 37°C for 6 h. The change in modulus following treatment was then compared between HERDA-affected and unaffected horses using a Student's t-test. The modulus of skin from HERDA-affected horses decreased significantly more than that from unaffected horses following collagenase treatment (54 ± 7% versus 30 ± 16%, P = 0.004). The significant decrease in the modulus of skin from HERDA-affected horses following collagenase exposure suggests that their altered collagen microarchitecture is more susceptible to enzymatic degradation and may explain the localization of skin lesions in HERDA-affected horses to those areas of the body most exposed to sunlight. These findings appear to support the previously reported benefits of sunlight restriction in HERDA-affected horses. © 2015 ESVD and ACVD.

  15. Bacterial degradation of fluorinated compounds

    NARCIS (Netherlands)

    Ferreira, Maria Isabel Martins

    2007-01-01

    Fluorine was produced for the first time by Henri Moissan in 1886, for which he received the Nobel Prize in chemistry in 1906. The unique properties of fluorine have led to the development of fluorine chemistry and numerous synthetic fluorinated compounds have been prepared and tested for different

  16. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential

    KAUST Repository

    Soussi, Asma

    2015-08-28

    Background: Aridification is a worldwide serious threat directly affecting agriculture and crop production. In arid and desert areas, it has been found that microbial diversity is huge, built of microorganisms able to cope with the environmental harsh conditions by developing adaptation strategies. Plants growing in arid lands or regions facing prolonged abiotic stresses such as water limitation and salt accumulation have also developed specific physiological and molecular stress responses allowing them to thrive under normally unfavorable conditions. Scope: Under such extreme selection pressures, special root-associated bacterial assemblages, endowed with capabilities of plant growth promotion (PGP) and extremophile traits, are selected by the plants. In this review, we provide a general overview on the microbial diversity in arid lands and deserts versus specific microbial assemblages associated with plants. The ecological drivers that shape this diversity, how plant-associated microbiomes are selected, and their biotechnological potential are discussed. Conclusions: Selection and recruitment of the plant associated bacterial assemblages is mediated by the combination of the bio-pedo-agroclimatic conditions and the plant species or varieties. Diversity and functional redundancy of these associated PGPR makes them very active in supporting plant improvement, health and resistance to drought, salt and related stresses. Implementing proper biotechnological applications of the arid and desert-adapted PGPR constitute the challenge to be raised.

  17. Repeat-containing protein effectors of plant-associated organisms

    Directory of Open Access Journals (Sweden)

    Carl H. Mesarich

    2015-10-01

    Full Text Available Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.

  18. Diagnostic Utility of Broad Range Bacterial 16S rRNA Gene PCR with Degradation of Human and Free Bacterial DNA in Bloodstream Infection Is More Sensitive Than an In-House Developed PCR without Degradation of Human and Free Bacterial DNA

    Directory of Open Access Journals (Sweden)

    Petra Rogina

    2014-01-01

    Full Text Available We compared a commercial broad range 16S rRNA gene PCR assay (SepsiTest to an in-house developed assay (IHP. We assessed whether CD64 index, a biomarker of bacterial infection, can be used to exclude patients with a low probability of systemic bacterial infection. From January to March 2010, 23 patients with suspected sepsis were enrolled. CD64 index, procalcitonin, and C-reactive protein were measured on admission. Broad range 16S rRNA gene PCR was performed from whole blood (SepsiTest or blood plasma (IHP and compared to blood culture results. Blood samples spiked with Staphylococcus aureus were used to assess sensitivity of the molecular assays in vitro. CD64 index was lower in patients where possible sepsis was excluded than in patients with microbiologically confirmed sepsis (P=0.004. SepsiTest identified more relevant pathogens than blood cultures (P=0.008; in three patients (13% results from blood culture and SepsiTest were congruent, whereas in four cases (17.4% relevant pathogens were detected by SepsiTest only. In vitro spiking experiments suggested equal sensitivity of SepsiTest and IHP. A diagnostic algorithm using CD64 index as a decision maker to perform SepsiTest shows improved detection of pathogens in patients with suspected blood stream infection and may enable earlier targeted antibiotic therapy.

  19. A highly infective plant-associated bacterium influences reproductive rates in pea aphids.

    Science.gov (United States)

    Hendry, Tory A; Clark, Kelley J; Baltrus, David A

    2016-02-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction.

  20. A highly infective plant-associated bacterium influences reproductive rates in pea aphids

    Science.gov (United States)

    Hendry, Tory A.; Clark, Kelley J.; Baltrus, David A.

    2016-01-01

    Pea aphids, Acyrthosiphon pisum, have the potential to increase reproduction as a defence against pathogens, though how frequently this occurs or how infection with live pathogens influences this response is not well understood. Here we determine the minimum infective dose of an environmentally common bacterium and possible aphid pathogen, Pseudomonas syringae, to determine the likelihood of pathogenic effects to pea aphids. Additionally, we used P. syringae infection to investigate how live pathogens may alter reproductive rates. We found that oral bacterial exposure decreased subsequent survival of aphids in a dose-dependent manner and we estimate that ingestion of less than 10 bacterial cells is sufficient to increase aphid mortality. Pathogen dose was positively related to aphid reproduction. Aphids exposed to low bacterial doses showed decreased, although statistically indistinguishable, fecundity compared to controls. Aphids exposed to high doses reproduced significantly more than low dose treatments and also more, but not significantly so, than controls. These results are consistent with previous studies suggesting that pea aphids may use fecundity compensation as a response to pathogens. Consequently, even low levels of exposure to a common plant-associated bacterium may therefore have significant effects on pea aphid survival and reproduction. PMID:26998321

  1. Hydrocarbon degradation and plant colonization of selected bacterial strains isolated from the rhizsophere and plant interior of Italian ryegrass and Birdsfoot trefoil

    Science.gov (United States)

    Sohail, Y.; Andria, V.; Reichenauer, T. G.; Sessitsch, A.

    2009-04-01

    Hydrocarbon-degrading strains were isolated from the rhizosphere, root and shoot interior of Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo) grown in a soil contaminated with petroleum oil. Strains were tested regarding their phylogeny and their degradation efficiency. The most efficient strains were tested regarding their suitability to be applied for phytoremediation of diesel oils. Sterilized and non-sterilized agricultural soil, with and with out compost, were spiked with diesel and used for planting Italian ryegrass and birdsfoot trefoil. Four selected strains with high degradation activities, derived from the rhizosphere and plant interior, were selected for individual inoculation. Plants were harvested at flowering stage and plant biomass and hydrocarbon degradation was determined. Furthermore, it was investigated to which extent the inoculant strains were able to survive and colonize plants. Microbial community structures were analysed by 16S rRNA and alkB gene analysis. Results showed efficient colonization by the inoculant strains and improved degradation by the application of compost combined with inoculation as well as on microbial community structures will be presented.

  2. Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes.

    Science.gov (United States)

    Gurav, Ranjit; Lyu, Honghong; Ma, Jianli; Tang, Jingchun; Liu, Qinglong; Zhang, Hairong

    2017-04-01

    In the present study, salt-tolerant strains, Dietzia sp. HRJ2, Corynebacterium variabile HRJ4, Dietzia cinnamea HRJ5 and Bacillus tequilensis HRJ6 were isolated from the Dagang oil field, China. These strains degraded n-alkanes and polycyclic aromatic hydrocarbons (PAHs) aerobically from heavy crude oil (HCO) in an experiment at 37 °C and 140 rpm. The GC/MS investigation for degradation of different chain lengths of n-alkanes (C8-C40) by individual strains showed the highest degradation of C8-C19 (HRJ5), C20-C30 (HRJ4) and C31-C40 (HRJ5), respectively. Moreover, degradation of 16 PAHs with individual strains demonstrated that the bicyclic and pentacyclic aromatic hydrocarbons (AHs) were mostly degraded by HRJ5, tricyclic and tetracyclic AHs by HRJ6 and hexacyclic AHs by HRJ2. However, the highest degradation of total petroleum hydrocarbons (TPHs), total saturated hydrocarbons (TSH), total aromatic hydrocarbons (TAH), n-alkanes (C8-C40) and 16 PAHs was achieved by a four-membered consortium (HRJ2 + 4 + 5 + 6) within 12 days, with the predominance of HRJ4 and HRJ6 strains which was confirmed by denaturing gradient gel electrophoresis. The abundance of alkB and nah genes responsible for catabolism of n-alkanes and PAHs was quantified using the qPCR. Maximum copy numbers of genes were observed in HRJ2 + 4 + 5 + 6 consortium (gene copies l -1 ) 2.53 × 10 4 (alkB) and 3.47 × 10 3 (nah) at 12 days, which corresponded to higher degradation rates of petroleum hydrocarbons. The superoxide dismutase (SOD) (total SOD (T-SOD), Cu 2+ Zn 2+ -SOD), catalase (CAT) and ascorbate peroxidase (APX) activities in Allium sativum and Triticum aestivum were lower in the HRJ2 + 4 + 5 + 6-treated HCO as compared to the plantlets exposed directly to HCO. The present results revealed the effective degradation of HCO-contaminated saline medium using the microbial consortium having greater metabolic diversity.

  3. pcaH, a molecular marker for estimating the diversity of the protocatechuate-degrading bacterial community in the soil environment

    DEFF Research Database (Denmark)

    El Azhari, Najoi

    2007-01-01

    Microorganisms degrading phenolic compounds play an important role in soil carbon cycling as well as in pesticide degradation. The pcaH gene encoding a key ring-cleaving enzyme of the β-ketoadipate pathway was selected as a functional marker. Using a degenerate primer pair, pcaH fragments were cl......H sequences from Actinobacteria and Proteobacteria phyla. This confirms that the developed primer pair targets a wide diversity of pcaH sequences, thereby constituting a suitable molecular marker to estimate the response of the pca community to agricultural practices....

  4. Degradation and mineralization of 2-chloro-, 3-chloro- and 4-chlorobiphenyl by a newly characterized natural bacterial strain isolated from an electrical transformer fluid-contaminated soil.

    Science.gov (United States)

    Ilori, Matthew O; Robinson, Gary K; Adebusoye, Sunday A

    2008-01-01

    A bacterium classified as Achromobacter xylosoxidans strain IR08 by phenotypic typing coupled with 16S rRNA gene analysis was isolated from a soil contaminated with electrical transformer fluid for over sixty years using Aroclor 1221 as an enrichment substrate. The substrate utilization profiles revealed that IR08 could grow on all three monochlorobiphenyls (CBs), 2,4'- and 4,4'-dichlorobiphenyl as well as 2-chlorobenzoate (2-CBA), 3-CBA, 4-CBA, and 2,3-dichlorobenzoate. Unusually, growth was poorly sustained on biphenyl and benzoate. In growth experiments, IR08 degraded all CBs (0.27 mmol/L) in less than 96 h with concomitant stoichiometric release of inorganic chloride and growth yields were 2-3 times higher than those observed on biphenyl. In contrast to most of the chlorobiphenyl-degrading strains described in the literature, which are reported to form CBA, no metabolite was identified in the culture broth by HPLC analysis. When co-incubated with respective CBs and biphenyl, strain IR08 preferentially utilized the chlorinated analogues in less than 96 h while it took another 264 h before 90% of the initially supplied biphenyl could be degraded. The promotion of co-metabolic transformation of halogenated substrates by the inclusion of their non-halogenated derivatives may not therefore, result in universal benefits.

  5. Transcriptional responses to sucrose mimic the plant-associated life style of the plant growth promoting endophyte Enterobacter sp. 638.

    Science.gov (United States)

    Taghavi, Safiyh; Wu, Xiao; Ouyang, Liming; Zhang, Yian Biao; Stadler, Andrea; McCorkle, Sean; Zhu, Wei; Maslov, Sergei; van der Lelie, Daniel

    2015-01-01

    Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g., flagella biosynthesis) and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  6. Transcriptional responses to sucrose mimic the plant-associated life style of the plant growth promoting endophyte Enterobacter sp. 638.

    Directory of Open Access Journals (Sweden)

    Safiyh Taghavi

    Full Text Available Growth in sucrose medium was previously found to trigger the expression of functions involved in the plant associated life style of the endophytic bacterium Enterobacter sp. 638. Therefore, comparative transcriptome analysis between cultures grown in sucrose or lactate medium was used to gain insights in the expression levels of bacterial functions involved in the endophytic life style of strain 638. Growth on sucrose as a carbon source resulted in major changes in cell physiology, including a shift from a planktonic life style to the formation of bacterial aggregates. This shift was accompanied by a decrease in transcription of genes involved in motility (e.g., flagella biosynthesis and an increase in the transcription of genes involved in colonization, adhesion and biofilm formation. The transcription levels of functions previously suggested as being involved in endophytic behavior and functions responsible for plant growth promoting properties, including the synthesis of indole-acetic acid, acetoin and 2,3-butanediol, also increased significantly for cultures grown in sucrose medium. Interestingly, despite an abundance of essential nutrients transcription levels of functions related to uptake and processing of nitrogen and iron became increased for cultures grown on sucrose as sole carbon source. Transcriptome data were also used to analyze putative regulatory relationships. In addition to the small RNA csrABCD regulon, which seems to play a role in the physiological adaptation and possibly the shift between free-living and plant-associated endophytic life style of Enterobacter sp. 638, our results also pointed to the involvement of rcsAB in controlling responses by Enterobacter sp. 638 to a plant-associated life style. Targeted mutagenesis was used to confirm this role and showed that compared to wild-type Enterobacter sp. 638 a ΔrcsB mutant was affected in its plant growth promoting ability.

  7. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification

    Directory of Open Access Journals (Sweden)

    Paolo Longoni

    2015-01-01

    Full Text Available Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  8. Production by Tobacco Transplastomic Plants of Recombinant Fungal and Bacterial Cell-Wall Degrading Enzymes to Be Used for Cellulosic Biomass Saccharification.

    Science.gov (United States)

    Longoni, Paolo; Leelavathi, Sadhu; Doria, Enrico; Reddy, Vanga Siva; Cella, Rino

    2015-01-01

    Biofuels from renewable plant biomass are gaining momentum due to climate change related to atmospheric CO2 increase. However, the production cost of enzymes required for cellulosic biomass saccharification is a major limiting step in this process. Low-cost production of large amounts of recombinant enzymes by transgenic plants was proposed as an alternative to the conventional microbial based fermentation. A number of studies have shown that chloroplast-based gene expression offers several advantages over nuclear transformation due to efficient transcription and translation systems and high copy number of the transgene. In this study, we expressed in tobacco chloroplasts microbial genes encoding five cellulases and a polygalacturonase. Leaf extracts containing the recombinant enzymes showed the ability to degrade various cell-wall components under different conditions, singly and in combinations. In addition, our group also tested a previously described thermostable xylanase in combination with a cellulase and a polygalacturonase to study the cumulative effect on the depolymerization of a complex plant substrate. Our results demonstrate the feasibility of using transplastomic tobacco leaf extracts to convert cell-wall polysaccharides into reducing sugars, fulfilling a major prerequisite of large scale availability of a variety of cell-wall degrading enzymes for biofuel industry.

  9. Novel Bioengineered Cassava Expressing an Archaeal Starch Degradation System and a Bacterial ADP-Glucose Pyrophosphorylase for Starch Self-Digestibility and Yield Increase

    Directory of Open Access Journals (Sweden)

    Ayalew Ligaba-Osena

    2018-02-01

    Full Text Available To address national and global low-carbon fuel targets, there is great interest in alternative plant species such as cassava (Manihot esculenta, which are high-yielding, resilient, and are easily converted to fuels using the existing technology. In this study the genes encoding hyperthermophilic archaeal starch-hydrolyzing enzymes, α-amylase and amylopullulanase from Pyrococcus furiosus and glucoamylase from Sulfolobus solfataricus, together with the gene encoding a modified ADP-glucose pyrophosphorylase (glgC from Escherichia coli, were simultaneously expressed in cassava roots to enhance starch accumulation and its subsequent hydrolysis to sugar. A total of 13 multigene expressing transgenic lines were generated and characterized phenotypically and genotypically. Gene expression analysis using quantitative RT-PCR showed that the microbial genes are expressed in the transgenic roots. Multigene-expressing transgenic lines produced up to 60% more storage root yield than the non-transgenic control, likely due to glgC expression. Total protein extracted from the transgenic roots showed up to 10-fold higher starch-degrading activity in vitro than the protein extracted from the non-transgenic control. Interestingly, transgenic tubers released threefold more glucose than the non-transgenic control when incubated at 85°C for 21-h without exogenous application of thermostable enzymes, suggesting that the archaeal enzymes produced in planta maintain their activity and thermostability.

  10. The Influence of Land Use Intensity on the Plant-Associated Microbiome of Dactylis glomerata L.

    Directory of Open Access Journals (Sweden)

    Jennifer Estendorfer

    2017-06-01

    Full Text Available In this study, we investigated the impact of different land use intensities (LUI on the root-associated microbiome of Dactylis glomerata (orchardgrass. For this purpose, eight sampling sites with different land use intensity levels but comparable soil properties were selected in the southwest of Germany. Experimental plots covered land use levels from natural grassland up to intensively managed meadows. We used 16S rRNA gene based barcoding to assess the plant-associated community structure in the endosphere, rhizosphere and bulk soil of D. glomerata. Samples were taken at the reproductive stage of the plant in early summer. Our data indicated that roots harbor a distinct bacterial community, which clearly differed from the microbiome of the rhizosphere and bulk soil. Our results revealed Pseudomonadaceae, Enterobacteriaceae and Comamonadaceae as the most abundant endophytes independently of land use intensity. Rhizosphere and bulk soil were dominated also by Proteobacteria, but the most abundant families differed from those obtained from root samples. In the soil, the effect of land use intensity was more pronounced compared to root endophytes leading to a clearly distinct pattern of bacterial communities under different LUI from rhizosphere and bulk soil vs. endophytes. Overall, a change of community structure on the plant–soil interface was observed, as the number of shared OTUs between all three compartments investigated increased with decreasing land use intensity. Thus, our findings suggest a stronger interaction of the plant with its surrounding soil under low land use intensity. Furthermore, the amount and quality of available nitrogen was identified as a major driver for shifts in the microbiome structure in all compartments.

  11. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    Science.gov (United States)

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  12. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  13. 78 FR 65690 - Trees and Plantings Associated With Eligible Facilities, RP9524.5

    Science.gov (United States)

    2013-11-01

    ...] Trees and Plantings Associated With Eligible Facilities, RP9524.5 AGENCY: Federal Emergency Management... policy Trees and Plantings Associated with Eligible Facilities. The Federal Emergency Management Agency... trees, shrubs, and other plantings, including limited eligibility for replacement of grass and sod...

  14. Classification of plant associated bacteria using RIF, a computationally derived DNA marker.

    Directory of Open Access Journals (Sweden)

    Kevin L Schneider

    Full Text Available A DNA marker that distinguishes plant associated bacteria at the species level and below was derived by comparing six sequenced genomes of Xanthomonas, a genus that contains many important phytopathogens. This DNA marker comprises a portion of the dnaA replication initiation factor (RIF. Unlike the rRNA genes, dnaA is a single copy gene in the vast majority of sequenced bacterial genomes, and amplification of RIF requires genus-specific primers. In silico analysis revealed that RIF has equal or greater ability to differentiate closely related species of Xanthomonas than the widely used ribosomal intergenic spacer region (ITS. Furthermore, in a set of 263 Xanthomonas, Ralstonia and Clavibacter strains, the RIF marker was directly sequenced in both directions with a success rate approximately 16% higher than that for ITS. RIF frameworks for Xanthomonas, Ralstonia and Clavibacter were constructed using 682 reference strains representing different species, subspecies, pathovars, races, hosts and geographic regions, and contain a total of 109 different RIF sequences. RIF sequences showed subspecific groupings but did not place strains of X. campestris or X. axonopodis into currently named pathovars nor R. solanacearum strains into their respective races, confirming previous conclusions that pathovar and race designations do not necessarily reflect genetic relationships. The RIF marker also was sequenced for 24 reference strains from three genera in the Enterobacteriaceae: Pectobacterium, Pantoea and Dickeya. RIF sequences of 70 previously uncharacterized strains of Ralstonia, Clavibacter, Pectobacterium and Dickeya matched, or were similar to, those of known reference strains, illustrating the utility of the frameworks to classify bacteria below the species level and rapidly match unknown isolates to reference strains. The RIF sequence frameworks are available at the online RIF database, RIFdb, and can be queried for diagnostic purposes with RIF

  15. Bacterial degradation of m-nitrobenzoic acid.

    OpenAIRE

    Nadeau, L J; Spain, J C

    1995-01-01

    Pseudomonas sp. strain JS51 grows on m-nitrobenzoate (m-NBA) with stoichiometric release of nitrite. m-NBA-grown cells oxidized m-NBA and protocatechuate but not 3-hydroxybenzoate, 4-hydroxy-3-nitrobenzoate, 4-nitrocatechol, and 1,2,4-benzenetriol. Protocatechuate accumulated transiently when succinate-grown cells were transferred to media containing m-NBA. Respirometric experiments indicated that the conversion of m-NBA to protocatechuate required 1 mol of oxygen per mol of substrate. Conver...

  16. Effects of Biological and Photochemical Degradation on the Optical Properties of CDOM Exported to Coastal Marine Environments

    National Research Council Canada - National Science Library

    Moran, Mary

    2004-01-01

    .... This project quantitatively assessed the ability of coastal ocean bacteria to degrade and produce CDOM and investigated the synergistic interactions between bacterial degradation and photochemical...

  17. Autophagy and bacterial clearance: a not so clear picture

    OpenAIRE

    Mostowy, Serge

    2012-01-01

    Autophagy, an intracellular degradation process highly conserved from yeast to humans, is viewed as an important defence mechanism to clear intracellular bacteria. However, recent work has shown that autophagy may have different roles during different bacterial infections that restrict bacterial replication (antibacterial autophagy), act in cell autonomous signalling (non-bacterial autophagy) or support bacterial replication (pro-bacterial autophagy). This review will focus on newfound intera...

  18. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    International Nuclear Information System (INIS)

    Yousaf, Sohail; Afzal, Muhammad; Reichenauer, Thomas G.; Brady, Carrie L.; Sessitsch, Angela

    2011-01-01

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: → E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. → E. ludwigii strains efficiently expressed alkane degradation genes in plants. → E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. → E. ludwigii interacted more effectively with Italian ryegrass than with other plants. → Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  19. Hydrocarbon degradation, plant colonization and gene expression of alkane degradation genes by endophytic Enterobacter ludwigii strains

    Energy Technology Data Exchange (ETDEWEB)

    Yousaf, Sohail [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Afzal, Muhammad [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad (Pakistan); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Environmental Resources and Technologies Unit, A-2444 Seibersdorf (Austria); Brady, Carrie L. [Forestry and Agricultural Biotechnology Institute, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria (South Africa); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.at [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2011-10-15

    The genus Enterobacter comprises a range of beneficial plant-associated bacteria showing plant growth promotion. Enterobacter ludwigii belongs to the Enterobacter cloacae complex and has been reported to include human pathogens but also plant-associated strains with plant beneficial capacities. To assess the role of Enterobacter endophytes in hydrocarbon degradation, plant colonization, abundance and expression of CYP153 genes in different plant compartments, three plant species (Italian ryegrass, birdsfoot trefoil and alfalfa) were grown in sterile soil spiked with 1% diesel and inoculated with three endophytic E. ludwigii strains. Results showed that all strains were capable of hydrocarbon degradation and efficiently colonized the rhizosphere and plant interior. Two strains, ISI10-3 and BRI10-9, showed highest degradation rates of diesel fuel up to 68% and performed best in combination with Italian ryegrass and alfalfa. All strains expressed the CYP153 gene in all plant compartments, indicating an active role in degradation of diesel in association with plants. - Highlights: > E. ludwigii strains efficiently colonized plants in a non-sterile soil environment. > E. ludwigii strains efficiently expressed alkane degradation genes in plants. > E. ludwigii efficiently degraded alkane contaminations and promoted plant growth. > E. ludwigii interacted more effectively with Italian ryegrass than with other plants. > Degradation activity varied with plant and microbial genotype as well as with time. - Enterobacter ludwigii strains belonging to the E. cloacae complex are able to efficiently degrade alkanes when associated with plants and to promote plant growth.

  20. Bacterial prostatitis.

    Science.gov (United States)

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  1. Biotechnological applications of bacterial cellulases

    Czech Academy of Sciences Publication Activity Database

    Menéndez, E.; García-Fraile, Paula; Rivas, R.

    2015-01-01

    Roč. 2, č. 3 (2015), s. 163-182 ISSN 2306-5354 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Institutional support: RVO:61388971 Keywords : Biotechnological applications * Bacterial cellulases * Cellulose degradation Subject RIV: EE - Microbiology, Virology

  2. Degradation of multiwall carbon nanotubes by bacteria

    International Nuclear Information System (INIS)

    Zhang, Liwen; Petersen, Elijah J.; Habteselassie, Mussie Y.; Mao, Liang; Huang, Qingguo

    2013-01-01

    Understanding the environmental transformation of multiwall carbon nanotubes (MWCNTs) is important to their life cycle assessment and potential environmental impacts. We report that a bacterial community is capable of degrading 14 C-labeled MWCNTs into 14 CO 2 in the presence of an external carbon source via co-metabolism. Multiple intermediate products were detected, and genotypic characterization revealed three possible microbial degraders: Burkholderia kururiensis, Delftia acidovorans, and Stenotrophomonas maltophilia. This result suggests that microbe/MWCNTs interaction may impact the long-term fate of MWCNTs. Highlights: •Mineralization of MWCNTs by a bacterial community was observed. •The mineralization required an external carbon source. •Multiple intermediate products were identified in the MWCNT degrading culture. •Three bacterial species were found likely responsible for MWCNT degradation. -- The 14 C-labeled multiwall carbon nanotubes can be degraded to 14 CO 2 and other byproducts by a bacteria community under natural conditions

  3. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  4. Degradabilidade in situ de silagens de milho confeccionadas com inoculantes bacteriano e/ou enzimático - DOI: 10.4025/actascianimsci.v28i1.658 In situ degradability of corn silages prepared with bacterial and/or enzymatic inoculants - DOI: 10.4025/actascianimsci.v28i1.658

    Directory of Open Access Journals (Sweden)

    Elzânia Sales Pereira

    2006-01-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos de inoculantes bacterianos e/ou enzimáticos sobre a degradabilidade ruminal da silagem de milho. Foi utilizada a técnica in situ, em quatro bovinos adultos, distribuídos em quadrado latino 4x4. Os tratamentos avaliados foram: SC (silagem controle, SIB (silagem com inoculante bacteriano, SIBE (silagem com inoculante bacteriano e enzimático e SIE (silagem com inoculante enzimático. Não houve diferença entre tratamentos nas frações solúvel (a, potencialmente degradável (b, taxa de degradação da fração b (c, degradabilidade potencial (DP e degradabilidade efetiva (DE da MS e MO. A DE da PB foi maior para o tratamento SIE (63,13% e menor para o tratamento SIBE (53,69%. A fração b da FDN apresentou maior valor para SIBE (74,13% e menor para SIB (64,07%. O resíduo indigerido (I da FDN não diferiu entre os tratamentos. As frações b e I e a taxa c da FDA não diferiram entre os tratamentos. Palavras-chave: degradação, fibra, matéria orgânica, matéria seca, proteína bruta.The objective of this work was to evaluate the effects of the bacterial and/or enzymatic inoculants on corn silage degradation. The in situ technique was used in four adult steers in a 4x4 latin square design. The evaluated treatments were: CS (control silage, SBI (silage with bacterial inoculant, SBEI (silage with bacterial and enzymatic inoculant and SEI (silage with enzymatic inoculant. There was no difference among treatments in soluble fraction (a, potential degradable fraction (b, fraction b rate of degradation (c, potential degradability (PD and effective degradability (ED of DM and OM. The ED of CP was higher in SEI treatment (63.13% and lower in SBEI treatment (53.69%. The b fraction of NDF was higher for SBEI (74.13% and lower for SBI (64.07%. The NDF indigestible residue (I did not show any difference among treatments. The ADF b and I fraction and the c rate values did not show any difference among

  5. Influence of bacteria on degradation of bioplastics

    Science.gov (United States)

    Blinková, M.; Boturová, K.

    2017-10-01

    The degradation rate of bioplastic in soil is closely related to the diversity of soil microbiota. To investigate the effect of soil bacterial on biodegradation, 4 bacterial strains of soil - Pseudomonas chlororaphis, Kocuria rosea, Cupriavidus necator and Bacillus cereus, were used to accelerate the decomposition of bioplastics manufactured from Polylactid acid (PLA) by direct action during 250 days. The best results were obtained with bacterial strains Cupriavidus necator and Pseudomonas chlororaphis that were isolated of lagoons with anthropogenic sediments.

  6. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity.

    Science.gov (United States)

    Pfeilmeier, Sebastian; Saur, Isabel Marie-Luise; Rathjen, John Paul; Zipfel, Cyril; Malone, Jacob George

    2016-05-01

    The plant innate immune system employs plasma membrane-localized receptors that specifically perceive pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern-triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant-associated bacteria. Here, we show that cyclic-di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic-di-GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf-5 inhibit flagellin synthesis and help the bacteria to evade FLS2-mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic-di-GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic-di-GMP signalling on bacterial behaviour. © 2015 THE AUTHORS MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  7. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  8. Bacterial meningitis

    NARCIS (Netherlands)

    Heckenberg, Sebastiaan G. B.; Brouwer, Matthijs C.; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained,

  9. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  10. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  11. BIOTRANSFORMATION OF 2,4,6-TRINITROTOLUENE (TNT) BY A PLANT-ASSOCIATED FUNGUS FUSARIUM OXYSPORUM

    Science.gov (United States)

    The capability of a plant-associated fungus, Fusarium oxyvorum, to transform TNT in liquid cultures was investigated. TNT was transformed into 2-amino-4, 6-dinitrotoluene (2-A-DNT), 4-amino-2, 6-dinitrotoluene (4-A- DNT), and 2, 4-diamino-6-nitrotoluene (2, 4-DAT) via 2- and 4-hy...

  12. Evolutionary history of the phl gene cluster in the plant-associated bacterium Pseudomonas fluorescens

    NARCIS (Netherlands)

    Moynihan, J.A.; Morrissey, J.P.; Coppoolse, E.; Stiekema, W.J.; O'Gara, F.; Boyd, E.F.

    2009-01-01

    Pseudomonas fluorescens is of agricultural and economic importance as a biological control agent largely because of its plant-association and production of secondary metabolites, in particular 2, 4-diacetylphloroglucinol (2, 4-DAPG). This polyketide, which is encoded by the eight gene phl cluster,

  13. Removal of Chlorpyrifos by Water Hyacinth (Eichhornia crassipes) and the Role of a Plant-Associated Bacterium.

    Science.gov (United States)

    Anudechakul, Choochai; Vangnai, Alisa S; Ariyakanon, Naiyanan

    2015-01-01

    The objective of this research was to study the efficiency of water hyacinth (Eichhornia crassipes) and the role of any plant-associated bacteria in removing chlorpyrifos from water. The relative growth rate (RGR) of E. crassipes in the presence of 0.1 mg/L chlorpyrifos was not significantly different from that in its absence and only slightly decreased at concentrations of 0.5 and 1.0 mg/L by ∼1.1- and ∼1.2-fold, respectively, with an observed dry weight based RGRDW for E. crassipes of 0.036-0.041 mg/g/d. The removal rate constants of chlorpyrifos in the absence of plants were low at 3.52, 2.29 and 1.84 h(-1) for concentrations of 0.1, 0.5 and 1.0 mg/L, respectively, but were some 3.89- to 4.87-fold higher in the presence of E. crassipes. Chlorpyrifos removal was markedly facilitated by the presence of a root-associated bacterium, preliminarily identified as Acinetobacter sp. strain WHA. The interaction of E. crassipes and Acinetobacter sp. strain WHA provide an efficient and ecological alternative to accelerate the removal and degradation of chlorpyrifos pollution from aquatic systems including wastewater.

  14. Molecular analysis of the bacterial diversity in a specialized consortium for diesel oil degradation Análise molecular da diversidade bacteriana de um consórcio degradador de óleo diesel

    Directory of Open Access Journals (Sweden)

    Douglas Antonio Alvaredo Paixão

    2010-06-01

    Full Text Available Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega, and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones, followed by Alphaproteobacteira (44.8 % and Betaproteobacteria (5.4 %. The Pseudomonas genus was the most abundant in the metagenomic library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI, a strong correlation was found between the data generated by the software used and the data deposited in NCBI.O óleo diesel é um composto derivado do petróleo, constituído basicamente por hidrocarbonetos. Condições precárias no processo de transporte e armazenagem

  15. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  16. Bacterial mitosis

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...... act together to generate the force required for plasmid movement during segregation. ParR protein binds cooperatively to the centromeric parC DNA region, thereby forming a complex that interacts with the filament-forming actin-like ParM protein in an ATP-dependent manner, suggesting that plasmid...

  17. Bacterial polyhydroxyalkanoates: Still fabulous?

    Science.gov (United States)

    Możejko-Ciesielska, Justyna; Kiewisz, Robert

    2016-11-01

    Bacterial polyhydroxyalkanoates (PHA) are polyesters accumulated as carbon and energy storage materials under limited growth conditions in the presence of excess carbon sources. They have been developed as biomaterials with unique properties for the past many years being considered as a potential substitute for conventional non-degradable plastics. Due to the increasing concern towards global climate change, depleting petroleum resource and problems with an utilization of a growing number of synthetic plastics, PHAs have gained much more attention from industry and research. These environmentally friendly microbial polymers have great potential in biomedical, agricultural, and industrial applications. However, their production on a large scale is still limited. This paper describes the backgrounds of PHAs and discussed the current state of knowledge on the polyhydroxyalkanoates. Ability of bacteria to convert different carbon sources to PHAs, the opportunities and challenges of their introduction to global market as valuable renewable products have been also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils.

    Science.gov (United States)

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W; Fallmann, Katharina; Puschenreiter, Markus

    2013-05-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.

  19. Bacterial consortia for crude oil spill remediation

    International Nuclear Information System (INIS)

    Chhatre, S.; Purohit, H.; Shanker, R.; Khanna, P.

    1996-01-01

    Oil spills generate enormous public concern and highlight the need for cost effective ad environmentally acceptable mitigation technologies. Physico-chemical methods are not completely effective after a spill. Hence, there is a need for improved and alternative technologies. Bioremediation is the most environmentally sound technology for clean up. This report intends to determine the potential of a bacterial consortium for degradation of Gulf and Bombay High crude oil. A four membered consortium was designed that could degrade 70% of the crude oil. A member of consortium produced a biosurfactant, rhamnolipid, that emulsified crude oil efficiently for effective degradation by the other members of consortium. The wide range of hydrocarbonoclastic capabilities of the selected members of bacterial consortium leads to the degradation of both aromatic and aliphatic fractions of crude oil in 72 hours. (Author)

  20. Efecto de la inoculación de la cepa Sphingomonas paucimobilis 20006FA sobre la composición de un consorcio bacteriano degradador de fenantreno Effect of the inoculant strain Sphingomonas paucimobilis 20006FA on the bacterial composition of a phenanthrene-degrading consortium

    Directory of Open Access Journals (Sweden)

    L. Madueño

    2009-06-01

    Full Text Available Se estudió el efecto de la inoculación con la cepa Sphingomonas paucimobilis 20006FA sobre la composición bacteriana de un consorcio degradador de fenantreno en cultivos discontinuos (batch con 8 repiques sucesivos. El consorcio original se obtuvo a partir de un suelo prístino. A los fines del estudio, se obtuvieron y mantuvieron dos consorcios: uno inoculado (F200+I y otro sin inocular (F200. Se estudió la diversidad bacteriana de los consorcios mediante el análisis de microorganismos cultivables (por caracterización fenotípica y genotípica y totales (por PCR-DGGE. A lo largo de los repiques sucesivos pudo observarse en ambos consorcios una tendencia a la pérdida de la capacidad degradadora de fenantreno, acompañada por una disminución de la diversidad bacteriana. Si bien la inoculación no produjo cambios significativos en la capacidad degradadora de fenantreno de los consorcios (29,9% para F200 y 27,6% para F200+I hacia el tercer repique, sí produjo cambios en la composición bacteriana, ya que los perfiles de DGGE revelaron una dinámica estructural diferente en el consorcio inoculado. En ambos consorcios se pudo observar la presencia de una banda intensa posicionada a la misma altura que el ADN del inóculo en el gel de DGGE; sin embargo, los cultivos aislados de los consorcios que presentaban idéntica posición de banda en el perfil PCR-DGGE que la cepa S. paucimobilis 20006FA mostraron baja similitud con la cepa inoculada mediante la técnica de RAPD.The effect of the inoculant strain Sphingomonas paucimobilis 20006FA on the bacterial composition of a phenanthrene-degrading consortium obtained from a pristine soil in sequencing batch cultures was studied. Inoculated (F200+I and non-inoculated (F200 phenanthrene-degrading consortia, were obtained. Bacterial diversity of consortia was studied at cultivable (phenotype and genotype characterization and non-cultivable (PCR-DGGE levels. During the successive cultures, a loss in

  1. Taxonomical analysis of the suspended bacterial fraction in the ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... hundred individuals representative of the rumen bacterial community. A preliminary analysis ... sterile plastic syringes from eviscerated animals. The fluid was .... engaged in the active degradation of the substrate to which as a ...

  2. Effects of bacterial inoculation on the fermentation characteristics ...

    African Journals Online (AJOL)

    DNkosi

    2016-05-11

    May 11, 2016 ... The chopped forages were treated with or without the bacterial .... packed loosely in an open plastic jar, which was covered with two ..... be because LD inoculant contains enzymes that may be capable of degrading fibre.

  3. Characterization of resistant tomato mutants to bacterial canker ...

    African Journals Online (AJOL)

    Yomi

    2012-04-19

    Apr 19, 2012 ... Cmm bacteria induce bacterial canker and wilt during infection. It is unknown ... are able to degrade plant cell walls and attack xylem vessels and ... seedlings were transferred into plastic pots at four to five true leaf stages.

  4. THE EFFECTS OF TEMPERATURE AND pH ON BACTERIAL ...

    African Journals Online (AJOL)

    PROF EKWUEME

    The effect of temperature and pH on bacterial degradation of latex paint under humid condition by .... blade and plastic bags as described by Okpokwasili and. Ituen(1996) and .... provided different ecological niche for bacteria at favourable ...

  5. Bacterial removal of toxic phenols from an industrial effluent

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... Chlorinated phenols, widely used in industries, are of growing concern owing to their high toxicity, .... phenol-degradation ability of bacterial isolate at the high phenol .... ed virtually no decrease in the respiratory response over.

  6. Bacteria-mediated bisphenol A degradation.

    Science.gov (United States)

    Zhang, Weiwei; Yin, Kun; Chen, Lingxin

    2013-07-01

    Bisphenol A (BPA) is an important monomer in the manufacture of polycarbonate plastics, food cans, and other daily used chemicals. Daily and worldwide usage of BPA and BPA-contained products led to its ubiquitous distribution in water, sediment/soil, and atmosphere. Moreover, BPA has been identified as an environmental endocrine disruptor for its estrogenic and genotoxic activity. Thus, BPA contamination in the environment is an increasingly worldwide concern, and methods to efficiently remove BPA from the environment are urgently recommended. Although many factors affect the fate of BPA in the environment, BPA degradation is mainly depended on the metabolism of bacteria. Many BPA-degrading bacteria have been identified from water, sediment/soil, and wastewater treatment plants. Metabolic pathways of BPA degradation in specific bacterial strains were proposed, based on the metabolic intermediates detected during the degradation process. In this review, the BPA-degrading bacteria were summarized, and the (proposed) BPA degradation pathway mediated by bacteria were referred.

  7. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    compounds these must first be undergo extracellular hydrolysis. Bacteria have a great diversity with respect to types of metabolism that far exceeds the metabolic repertoire of eukaryotic organisms. Bacteria play a fundamental role in the biosphere and certain key processes such as, for example......, the production and oxidation of methane, nitrate reduction and fixation of atmospheric nitrogen are exclusively carried out by different groups of bacteria. Some bacterial species – ‘extremophiles’ – thrive in extreme environments in which no eukaryotic organisms can survive with respect to temperature, salinity...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  8. Bacterial Actins.

    Science.gov (United States)

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  9. GENOMIC ANALYSIS OF PLANT-ASSOCIATED BACTERIA AND THEIR POTENTIAL IN ENHANCING PHYTOREMEDIATION EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Artur Piński

    2017-07-01

    Full Text Available Phytoremediation is an emerging technology that uses plants in order to cleanup pollutants including xenobiotics and heavy metals from soil, water and air. Inoculation of plants with plant growth promoting endophytic and rhizospheric bacteria can enhance efficiency of phytoremediation. Genomic analysis of four plant-associated strains belonging to the Stenotrophomonas maltophilia species revealed the presence of genes encoding proteins involved in plant growth promotion, biocontrol of phytopathogens, biodegradation of xenobiotics, heavy metals resistance and plant-bacteria-environment interaction. The results of this analysis suggest great potential of bacteria belonging to Stenotrophomonas maltophilia species in enhancing phytoremediation efficiency.

  10. Complete genome sequence of the plant-associated Serratia plymuthica strain AS13

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Saraswoti [Uppsala University, Uppsala, Sweden; Finlay, Roger D. [Uppsala University, Uppsala, Sweden; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Alstrom, Sadhna [Uppsala University, Uppsala, Sweden; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Han, James [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Held, Brittany [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J C [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Hogberg, Nils [Uppsala University, Uppsala, Sweden

    2012-01-01

    Serratia plymuthica AS13 is a plant-associated Gammaproteobacteria, isolated from rapeseed roots. It is of special interest because of its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The complete genome of S. plymuthica AS13 consists of a 5,442,549 bp circular chromosome. The chromosome contains 4,951 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced as part of the project enti- tled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens within the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  11. Brood size modifications affect plumage bacterial assemblages of European starlings.

    Science.gov (United States)

    Lucas, Françoise S; Moureau, Benoit; Jourdie, Violaine; Heeb, Philipp

    2005-02-01

    During reproduction, birds face trade-offs between time and energy devoted to parental effort and traits associated with self-maintenance. We manipulated brood sizes to investigate the effects of such trade-offs on feather bacterial densities and the structure of bacterial assemblages on feathers in adult European starlings, Sturnus vulgaris, and in vitro feather degradation. As predicted by a trade-off between parental effort and self-maintenance, we found that birds with enlarged broods had more free-living bacteria on their feathers than birds with reduced broods. Furthermore, we found a significant interaction between brood manipulation and original brood size on free-living bacterial densities suggesting that the trade-off is mediated by the adults' initial reproductive investment. In contrast, brood size manipulations had no significant effect on densities of attached bacteria. Using ribosomal intergenic spacer analysis (RISA), we demonstrated that brood manipulations significantly modified the structure (band pattern) of feather-degrading bacterial assemblages, but had no significant effect on their richness (number of bands) or the in vitro feather degradation. In vitro feather degradation varied in relation to the premanipulation brood size and positively with the richness of the feather degrading bacterial community. Besides brood manipulation effect, we found that ecological factors and individual traits, such as the age, the nest location or the capture date, shaped bacterial assemblages and feather degradation capacities.

  12. Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides

    NARCIS (Netherlands)

    van der Heijden, I. M.; Wilbrink, B.; Tchetverikov, I.; Schrijver, I. A.; Schouls, L. M.; Hazenberg, M. P.; Breedveld, F. C.; Tak, P. P.

    2000-01-01

    The continuous presence of bacteria or their degraded antigens in the synovium may be involved in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to determine the presence of bacterial nucleic acids and bacterial cell wall constituents in the joints of patients with RA and

  13. Type III secretion system and virulence markers highlight similarities and differences between human- and plant-associated pseudomonads related to Pseudomonas fluorescens and P. putida.

    Science.gov (United States)

    Mazurier, Sylvie; Merieau, Annabelle; Bergeau, Dorian; Decoin, Victorien; Sperandio, Daniel; Crépin, Alexandre; Barbey, Corinne; Jeannot, Katy; Vicré-Gibouin, Maïté; Plésiat, Patrick; Lemanceau, Philippe; Latour, Xavier

    2015-04-01

    Pseudomonas fluorescens is commonly considered a saprophytic rhizobacterium devoid of pathogenic potential. Nevertheless, the recurrent isolation of strains from clinical human cases could indicate the emergence of novel strains originating from the rhizosphere reservoir, which could be particularly resistant to the immune system and clinical treatment. The importance of type three secretion systems (T3SSs) in the related Pseudomonas aeruginosa nosocomial species and the occurrence of this secretion system in plant-associated P. fluorescens raise the question of whether clinical isolates may also harbor T3SSs. In this study, isolates associated with clinical infections and identified in hospitals as belonging to P. fluorescens were compared with fluorescent pseudomonads harboring T3SSs isolated from plants. Bacterial isolates were tested for (i) their genetic relationships based on their 16S rRNA phylogeny, (ii) the presence of T3SS genes by PCR, and (iii) their infectious potential on animals and plants under environmental or physiological temperature conditions. Two groups of bacteria were delineated among the clinical isolates. The first group encompassed thermotolerant (41°C) isolates from patients suffering from blood infections; these isolates were finally found to not belong to P. fluorescens but were closely related and harbored highly conserved T3SS genes belonging to the Ysc-T3SS family, like the T3SSs from P. aeruginosa. The second group encompassed isolates from patients suffering from cystic fibrosis; these isolates belonged to P. fluorescens and harbored T3SS genes belonging to the Hrp1-T3SS family found commonly in plant-associated P. fluorescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Biochemical activities of 1,2-dichloroethane (DCA) degrading bacteria

    African Journals Online (AJOL)

    Five indigenous DCA degrading bacterial isolates capable of completely degrading DCA under aerobic conditions recently isolated from South African waste water treatment facilities, were found to belong to the genus Ancylobacter. The specific activities of the enzymes in DCA catabolism were compared with previously ...

  15. Bacterial strategies of resistance to antimicrobial peptides.

    Science.gov (United States)

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  16. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview

    Science.gov (United States)

    Tiwari, Shalini; Lata, Charu

    2018-01-01

    Several anthropogenic activities including mining, modern agricultural practices, and industrialization have long-term detrimental effect on our environment. All these factors lead to increase in heavy metal concentration in soil, water, and air. Soil contamination with heavy metals cause several environmental problems and imparts toxic effect on plant as well as animals. In response to these adverse conditions, plants evolve complex molecular and physiological mechanisms for better adaptability, tolerance, and survival. Nowadays conventional breeding and transgenic technology are being used for development of metal stress resistant varieties which, however, are time consuming and labor intensive. Interestingly the use of microbes as an alternate technology for improving metal tolerance of plants is gaining momentum recently. The use of these beneficial microorganisms is considered as one of the most promising methods for safe crop-management practices. Interaction of plants with soil microorganisms can play a vital role in acclimatizing plants to metalliferous environments, and can thus be explored to improve microbe-assisted metal tolerance. Plant-associated microbes decrease metal accumulation in plant tissues and also help to reduce metal bioavailability in soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e., genetically transformed bacteria has been used to increase remediation of heavy metals and stress tolerance in plants. This review takes into account our current state of knowledge of the harmful effects of heavy metal stress, the signaling responses to metal stress, and the role of plant-associated microbes in metal stress tolerance. The review also highlights the challenges and opportunities in this continued area of research on plant–microbe–metal interaction. PMID:29681916

  17. Heavy Metal Stress, Signaling, and Tolerance Due to Plant-Associated Microbes: An Overview

    Directory of Open Access Journals (Sweden)

    Shalini Tiwari

    2018-04-01

    Full Text Available Several anthropogenic activities including mining, modern agricultural practices, and industrialization have long-term detrimental effect on our environment. All these factors lead to increase in heavy metal concentration in soil, water, and air. Soil contamination with heavy metals cause several environmental problems and imparts toxic effect on plant as well as animals. In response to these adverse conditions, plants evolve complex molecular and physiological mechanisms for better adaptability, tolerance, and survival. Nowadays conventional breeding and transgenic technology are being used for development of metal stress resistant varieties which, however, are time consuming and labor intensive. Interestingly the use of microbes as an alternate technology for improving metal tolerance of plants is gaining momentum recently. The use of these beneficial microorganisms is considered as one of the most promising methods for safe crop-management practices. Interaction of plants with soil microorganisms can play a vital role in acclimatizing plants to metalliferous environments, and can thus be explored to improve microbe-assisted metal tolerance. Plant-associated microbes decrease metal accumulation in plant tissues and also help to reduce metal bioavailability in soil through various mechanisms. Nowadays, a novel phytobacterial strategy, i.e., genetically transformed bacteria has been used to increase remediation of heavy metals and stress tolerance in plants. This review takes into account our current state of knowledge of the harmful effects of heavy metal stress, the signaling responses to metal stress, and the role of plant-associated microbes in metal stress tolerance. The review also highlights the challenges and opportunities in this continued area of research on plant–microbe–metal interaction.

  18. Manipulation of host membranes by bacterial effectors.

    Science.gov (United States)

    Ham, Hyeilin; Sreelatha, Anju; Orth, Kim

    2011-07-18

    Bacterial pathogens interact with host membranes to trigger a wide range of cellular processes during the course of infection. These processes include alterations to the dynamics between the plasma membrane and the actin cytoskeleton, and subversion of the membrane-associated pathways involved in vesicle trafficking. Such changes facilitate the entry and replication of the pathogen, and prevent its phagocytosis and degradation. In this Review, we describe the manipulation of host membranes by numerous bacterial effectors that target phosphoinositide metabolism, GTPase signalling and autophagy.

  19. Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association

    Science.gov (United States)

    Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz

    2012-01-01

    The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant. PMID:22481887

  20. Analysis of 16S rRNA and mxaF genes reveling insights into Methylobacterium niche-specific plant association

    Directory of Open Access Journals (Sweden)

    Manuella Nóbrega Dourado

    2012-01-01

    Full Text Available The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.

  1. Analysis of 16S rRNA and mxaF genes revealing insights into Methylobacterium niche-specific plant association.

    Science.gov (United States)

    Dourado, Manuella Nóbrega; Andreote, Fernando Dini; Dini-Andreote, Francisco; Conti, Raphael; Araújo, Janete Magali; Araújo, Welington Luiz

    2012-01-01

    The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.

  2. Dominant petroleum hydrocarbon-degrading bacteria in the Archipelago Sea in South-West Finland (Baltic Sea) belong to different taxonomic groups than hydrocarbon degraders in the oceans.

    Science.gov (United States)

    Reunamo, Anna; Riemann, Lasse; Leskinen, Piia; Jørgensen, Kirsten S

    2013-07-15

    The natural petroleum hydrocarbon degrading capacity of the Archipelago Sea water in S-W Finland was studied in a microcosm experiment. Pristine and previously oil exposed sites were examined. Bacterial community fingerprinting was performed using terminal restriction fragment length polymorphism (T-RFLP) and samples from selected microcosms were sequenced. The abundance of PAH degradation genes was measured by quantitative PCR. Bacterial communities in diesel exposed microcosms diverged from control microcosms during the experiment. Gram positive PAH degradation genes dominated at both sites in situ, whereas gram negative PAH degrading genes became enriched in diesel microcosms. The dominant bacterial groups after a 14 days of diesel exposure were different depending on the sampling site, belonging to the class Actinobacteria (32%) at a pristine site and Betaproteobacteria (52%) at a previously oil exposed site. The hydrocarbon degrading bacteria in the Baltic Sea differ from those in the oceans, where most hydrocarbon degraders belong to Gammaproteobacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Is the plant-associated microbiota of Thymus spp. adapted to plant essential oil?

    Science.gov (United States)

    Checcucci, Alice; Maida, Isabel; Bacci, Giovanni; Ninno, Cristina; Bilia, Anna Rita; Biffi, Sauro; Firenzuoli, Fabio; Flamini, Guido; Fani, Renato; Mengoni, Alessio

    2017-04-01

    We examined whether the microbiota of two related aromatic thyme species, Thymus vulgaris and Thymus citriodorus, differs in relation to the composition of the respective essential oil (EO). A total of 576 bacterial isolates were obtained from three districts (leaves, roots and rhizospheric soil). They were taxonomically characterized and inspected for tolerance to the EO from the two thyme species. A district-related taxonomic pattern was found. In particular, high taxonomic diversity among the isolates from leaves was detected. Moreover, data obtained revealed a differential pattern of resistance of the isolates to EOs extracted from T. vulgaris and T. citriodorus, which was interpreted in terms of differing chemical composition of the EO of their respective host plants. In conclusion, we suggest that bacterial colonization of leaves in Thymus spp. is influenced by the EO present in leaf glandular tissue as one of the selective forces shaping endophytic community composition. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Copper effects on bacterial activity of estuarine silty sediments

    Science.gov (United States)

    Almeida, Adelaide; Cunha, Ângela; Fernandes, Sandra; Sobral, Paula; Alcântara, Fernanda

    2007-07-01

    Bacteria of silty estuarine sediments were spiked with copper to 200 μg Cu g -1 dry weight sediment in order to assess the impact of copper on bacterial degradation of organic matter and on bacterial biomass production. Bacterial density was determined by direct counting under epifluorescence microscopy and bacterial production by the incorporation of 3H-Leucine. Leucine turnover rate was evaluated by 14C-leucine incorporation and ectoenzymatic activities were estimated as the hydrolysis rate of model substrates for β-glucosidase and leucine-aminopeptidase. The presence of added copper in the microcosms elicited, after 21 days of incubation, generalised anoxia and a decrease in organic matter content. The non-eroded surface of the copper-spiked sediment showed, when compared to the control, a decrease in bacterial abundance and significant lower levels of bacterial production and of leucine turnover rate. Bacterial production and leucine turnover rate decreased to 1.4% and 13% of the control values, respectively. Ectoenzymatic activities were also negatively affected but by smaller factors. After erosion by the water current in laboratory flume conditions, the eroded surface of the control sediment showed a generalised decline in all bacterial activities. The erosion of the copper-spiked sediment showed, however, two types of responses with respect to bacterial activities at the exposed surface: positive responses of bacterial production and leucine turnover rate contrasting with slight negative responses of ectoenzymatic activities. The effects of experimental erosion in the suspended cells were also different in the control and in the copper-spiked sediment. Bacterial cells in the control microcosm exhibited, when compared to the non-eroded sediment cells, decreases in all activities after the 6-h suspension. The response of the average suspended copper-spiked sediment cell differed from the control by a less sharp decrease in ectoenzymatic activities and

  5. Raccoon Use of Den Trees and Plant Associations in Western Mesophytic Forests: Tree Attributes and Availability or Landscape Heterogeneity?

    Science.gov (United States)

    Winston P. Smith; Keith M. Endres

    2012-01-01

    We monitored 15 radio-collared raccoons (Procyon lotor) on Davies Island in March 1987 - May 1988 to determine the extent to which individual tree attributes or spatial configuration of plant associations (habitat types) across the land-scape influenced den use. Of 1091 verified den sites, 428 were in tree cavities. Raccoon occurrence among 4 cover...

  6. Characterization of TEMPO-oxidized bacterial cellulose

    International Nuclear Information System (INIS)

    Nascimento, Eligenes S.; Pereira, Andre L.S.; Lima, Helder L.; Barroso, Maria K. de A.; Barros, Matheus de O.; Morais, Joao P.S.; Borges, Maria de F.; Rosa, Morsyleide de F.

    2015-01-01

    The aim of this study was to characterize the TEMPO-oxidized bacterial cellulose, as a preliminary research for further application in nanocomposites. Bacterial cellulose (BC) was selectively oxidized at C-6 carbon by TEMPO radical. Oxidized bacterial cellulose (BCOX) was characterized by TGA, FTIR, XRD, and zeta potential. BCOX suspension was stable at pH 7.0, presented a crystallinity index of 83%, in spite of 92% of BC, because of decrease in the free hydroxyl number. FTIR spectra showed characteristic BC bands and, in addition, band of carboxylic group, proving the oxidation. BCOX DTG showed, in addition to characteristic BC thermal events, a maximum degradation peak at 233 °C, related to sodium anhydro-glucuronate groups formed during the cellulose oxidation. Thus, BC can be TEMPO-oxidized without great loss in its structure and properties. (author)

  7. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress.

    Science.gov (United States)

    Chen, Yanmei; Chao, Yuanqing; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong; Qiu, Rongliang

    2016-01-04

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Congruence and diversity of butterfly-host plant associations at higher taxonomic levels.

    Directory of Open Access Journals (Sweden)

    José R Ferrer-Paris

    Full Text Available We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1 is there a general correlation between host diversity and butterfly species richness?, (2 has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3 what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea and 1,193 genera (66.3%. The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp. from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae, and Satyrinae (42.6% of all Nymphalidae. We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids, but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages.

  9. Congruence and diversity of butterfly-host plant associations at higher taxonomic levels.

    Science.gov (United States)

    Ferrer-Paris, José R; Sánchez-Mercado, Ada; Viloria, Ángel L; Donaldson, John

    2013-01-01

    We aggregated data on butterfly-host plant associations from existing sources in order to address the following questions: (1) is there a general correlation between host diversity and butterfly species richness?, (2) has the evolution of host plant use followed consistent patterns across butterfly lineages?, (3) what is the common ancestral host plant for all butterfly lineages? The compilation included 44,148 records from 5,152 butterfly species (28.6% of worldwide species of Papilionoidea) and 1,193 genera (66.3%). The overwhelming majority of butterflies use angiosperms as host plants. Fabales is used by most species (1,007 spp.) from all seven butterfly families and most subfamilies, Poales is the second most frequently used order, but is mostly restricted to two species-rich subfamilies: Hesperiinae (56.5% of all Hesperiidae), and Satyrinae (42.6% of all Nymphalidae). We found a significant and strong correlation between host plant diversity and butterfly species richness. A global test for congruence (Parafit test) was sensitive to uncertainty in the butterfly cladogram, and suggests a mixed system with congruent associations between Papilionidae and magnoliids, Hesperiidae and monocots, and the remaining subfamilies with the eudicots (fabids and malvids), but also numerous random associations. The congruent associations are also recovered as the most probable ancestral states in each node using maximum likelihood methods. The shift from basal groups to eudicots appears to be more likely than the other way around, with the only exception being a Satyrine-clade within the Nymphalidae that feed on monocots. Our analysis contributes to the visualization of the complex pattern of interactions at superfamily level and provides a context to discuss the timing of changes in host plant utilization that might have promoted diversification in some butterfly lineages.

  10. Water use in four model tropical plant associations established in the lowlands of Costa Rica

    Directory of Open Access Journals (Sweden)

    Marco V Gutiérrez-Soto

    2008-12-01

    Full Text Available We examined soil water use patterns of four model plant associations established in the North Caribbean lowlands of Costa Rica by comparing the stable hydrogen isotope composition, δD, in xylem sap and in soil water at different depths, under rainy and dry conditions. Four 5-year-old model plant associations composed of 2 tree species (Hyeronima alchorneoides and Cedrela odorata having different architecture and phenology were studied. Average tree height was 8.9 and 7.6 m, respectively. Each tree species was grown in monoculture and in polyculture with 2 perennial monocotyledons (Euterpe oleracea and Heliconia imbricata. Maximum rooting depth at the time of δD determination was ~ 2 m for almost all species. Most roots of all species were concentrated in the upper soil layers. Stomatal conductance to water vapor (gS was higher in the deciduous C. odorata than in the evergreen H. alchorneoides; within each species, gS did not differ when the trees were grown in mono or in polyculture. During the rainy season, gradients in soil water δD were not observed. Average rainy season xylem sap δD did not differ among members of the plant combinations tested (-30 ‰, and was more similar to δD values of shallow soil water. Under dry conditions, volumetric soil water content declined from 50 to ~ 35%, and modest gradients in soil water δD were observed. xylem sap δD obtained during dry conditions was significantly lower than rainy season values. xylem sap δD of plants growing in the four associations varied between -9 and -22‰, indicating that shallow water was predominantly absorbed during the dry period too. Differences in xylem sap δD of trees and monocots were also detected, but no significant patterns emerged. The results suggest that: a the plant associations examined extracted water predominantly from shallow soil layers (Examinamos los patrones de uso de agua del suelo de cuatro asociaciones vegetales establecidas en el Caribe norte de

  11. Removal of Triphenylmethane Dyes by Bacterial Consortium

    Directory of Open Access Journals (Sweden)

    Jihane Cheriaa

    2012-01-01

    Full Text Available A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila-(CM-4 was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L and malachite green (50 mg/L dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  12. Hydrocarbon pollutants shape bacterial community assembly of harbor sediments

    KAUST Repository

    Barbato, Marta

    2016-02-02

    Petroleum pollution results in co-contamination by different classes of molecules, entailing the occurrence of marine sediments difficult to remediate, as in the case of the Ancona harbor (Mediterranean Sea, Italy). Autochthonous bioaugmentation (ABA), by exploiting the indigenous microbes of the environment to be treated, could represent a successful bioremediation strategy. In this perspective we aimed to i) identify the main drivers of the bacterial communities\\' richness in the sediments, ii) establish enrichment cultures with different hydrocarbon pollutants evaluating their effects on the bacterial communities\\' composition, and iii) obtain a collection of hydrocarbon degrading bacteria potentially exploitable in ABA. The correlation between the selection of different specialized bacterial populations and the type of pollutants was demonstrated by culture-independent analyses, and by establishing a collection of bacteria with different hydrocarbon degradation traits. Our observations indicate that pollution dictates the diversity of sediment bacterial communities and shapes the ABA potential in harbor sediments.

  13. Rhizosphere Bacterial Degradation of RDX, Understanding and Enhancement

    Science.gov (United States)

    2014-02-01

    conditions tested for detection in non-eukaryotic RNA. We hesitate to interpret this data until heavier labeling, longer time course , and larger...searches, SignalP predictions and AutoAnnotate. All of this information was stored in a MySQL database and associated files which were downloaded for...predictions and AutoAnnotate. All of this information was stored in a MySQL database and associated files which were downloaded for review and manual

  14. Structural Characterization and Bacterial Degradation of Marine Carbohydrates

    Science.gov (United States)

    1993-06-01

    of glycerol, and a mono- or oligosaccharide glycosydically linked to the #3 carbon. The NMR 3 spectra of F3, however, are not consistent with a major... hydrolase activity has been demonstrated in a number of diatoms (Myldestad et al., 1982) and has been detected in beach sands collected from beneath...Four different pullulanases and pullulan hydrolases , with different specificities, have been I found in a range of bacteria. The enzymes in the

  15. Isolation of polyvinyl chloride degrading bacterial strains from ...

    African Journals Online (AJOL)

    acer

    2012-04-17

    Apr 17, 2012 ... container was stored in laboratory at room temperature. Commercially obtained plastic .... un-reacted Ba(OH)2 in the sample was treated with 0.05 N HCI control, containing .... It did not ferment lactose, galactose, mannose ...

  16. Evaluation of various pesticides-degrading pure bacterial cultures ...

    African Journals Online (AJOL)

    IASA

    2016-10-05

    Oct 5, 2016 ... Full Length Research Paper. Evaluation of various ..... Uso de plaguicidas en dos zonas agrícolas de México and evaluación de la Contaminación de agua and sedimentos. ... Degradacion del clorotalonilo por un consorcio ...

  17. MICROBIAL DEGRADATION OF SEVEN AMIDES BY SUSPENDED BACTERIAL POPULATIONS

    Science.gov (United States)

    Microbial transformation rate constants were determined for seven amides in natural pond water. A second-order mathematical rate expression served as the model for describing the microbial transformation. Also investigated was the relationship between the infrared spectra and the...

  18. Bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.M.; Ewing, D.K.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    A retrospective review of patients with bacterial lung abscess was carried out. Demographic, clinical, and radiographical features of this patient group are compared with similar data from patients with empyema and/or cavitated lung carcinoma; differential diagnostic points are stressed. The entity of radiographically occult lung abscess is discussed. Complications associated with bacterial lung abscess are discussed. Current therapeutic options and treatment philosophy for patients with bacterial lung abscess are noted

  19. Peritonitis - spontaneous bacterial

    Science.gov (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  20. Microbial degradation of polycyclic aromatic hydrocarbons (PAHs). Pt. 1

    International Nuclear Information System (INIS)

    Eichler, B.; Bryniok, D.; Vorbeck, C.; Lutz, M.; Ackermann, B.; Freier-Schroeder, D.; Knackmuss, H.J.

    1992-01-01

    Productive degradation of the higher molecular PAHs benz(a)anthracene (four rings), benzo(a)pyrene and benzo(k)fluoranthene (five rings) through pure bacterial cultures is demonstrated in this paper for the first time. Consequently, a degradation potential for lower and higher molecular polycyclic aromatics up to five rings exists both in the ground of the fromer coking site and in the ground of the former gas works of Stuttgart. Further samples from contaminated soils, coking waste water and sediments showed similar results. This suggests that the bacterial flora present in the soil itself can be successfully used to clean up contaminated ground. (orig.) [de

  1. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil

    International Nuclear Information System (INIS)

    Andria, Verania; Reichenauer, Thomas G.; Sessitsch, Angela

    2009-01-01

    For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. - Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.

  2. Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Andria, Verania [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria); Reichenauer, Thomas G. [AIT Austrian Institute of Technology GmbH, Unit of Environmental Resources and Technologies, A-2444 Seibersdorf (Austria); Sessitsch, Angela, E-mail: angela.sessitsch@ait.ac.a [AIT Austrian Institute of Technology GmbH, Bioresources Unit, A-2444 Seibersdorf (Austria)

    2009-12-15

    For phytoremediation of organic contaminants, plants have to host an efficiently degrading microflora. To assess the role of endophytes in alkane degradation, Italian ryegrass was grown in sterile soil with 0, 1 or 2% diesel and inoculated either with an alkane degrading bacterial strain originally derived from the rhizosphere of Italian ryegrass or with an endophyte. We studied plant colonization of these strains as well as the abundance and expression of alkane monooxygenase (alkB) genes in the rhizosphere, shoot and root interior. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior. - Bacterial alkane degradation genes are expressed in the rhizosphere and in the plant interior.

  3. The succession of plant associations at the territories of the alienation zone in post-Chernobyl period

    International Nuclear Information System (INIS)

    Gusev, A.P.

    2004-01-01

    The article discusses the results of studies on ecological succession in the zone of alienation (Vetkovskij area of the Gomel' region). The lands of this zone have not been used for agricultural purposes. The connection between characteristics of regeneration ecosystems and ecological condition of agricultural landscape is established. The change of vegetation in the course of succession is considered. Plant associations which are formed in the zone of alienation are described. (authors)

  4. Nest Material Shapes Eggs Bacterial Environment.

    Directory of Open Access Journals (Sweden)

    Cristina Ruiz-Castellano

    Full Text Available Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus of eggshells in nests of spotless starlings (Sturnus unicolor at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and

  5. Nest Material Shapes Eggs Bacterial Environment.

    Science.gov (United States)

    Ruiz-Castellano, Cristina; Tomás, Gustavo; Ruiz-Rodríguez, Magdalena; Martín-Gálvez, David; Soler, Juan José

    2016-01-01

    Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus) of eggshells in nests of spotless starlings (Sturnus unicolor) at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and geographically

  6. Distribution, origin and transformation of amino sugars sand bacterial contribution to estuarine particulate organic matter

    Digital Repository Service at National Institute of Oceanography (India)

    Khodse, V.B.; Bhosle, N.B.

    transformation and greater bacterial contribution to POM during the former season. Degradation trends observed with TPAS were well supported by those obtained with carbohydrates andaminoacids. Based on Murconcent rations,bacteria accounted for 24% to 35...

  7. New method to determine wools and hairs degradation

    OpenAIRE

    Marsal Amenós, Félix

    2013-01-01

    A new method is proposed, validated in the industrial practice, to determine possible bacterial and microbial degradation in textile wools and hairs. It is applied to wools of variable fineness between 18 and 34 microns and to alpaca fibers between 20 and 36 microns. It is based on a dynamometer test to determine tribocharge excision the slivers combed. The rheological behavior of degraded fiber slivers is quite different in the spinning process in addition to the major problems that appear i...

  8. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    . As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  9. Degradation of microbial polyesters.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  10. Assembly and loss of the polar flagellum in plant-associated methylobacteria

    Science.gov (United States)

    Doerges, L.; Kutschera, U.

    2014-04-01

    On the leaf surfaces of numerous plant species, inclusive of sunflower ( Helianthus annuus L.), pink-pigmented, methanol-consuming, phytohormone-secreting prokaryotes of the genus Methylobacterium have been detected. However, neither the roles, nor the exact mode of colonization of these epiphytic microbes have been explored in detail. Using germ-free sunflower seeds, we document that, during the first days of seedling development, methylobacteria exert no promotive effect on organ growth. Since the microbes are evenly distributed over the outer surface of the above-ground phytosphere, we analyzed the behavior of populations taken from two bacterial strains that were cultivated as solid, biofilm-like clones on agar plates in different aqueous environments ( Methylobacterium mesophilicum and M. marchantiae, respectively). After transfer into liquid medium, the rod-shaped, immobile methylobacteria assembled a flagellum and developed into planktonic microbes that were motile. During the linear phase of microbial growth in liquid cultures, the percentage of swimming, flagellated bacteria reached a maximum, and thereafter declined. In stationary populations, living, immotile bacteria, and isolated flagella were observed. Hence, methylobacteria that live in a biofilm, transferred into aqueous environments, assemble a flagellum that is lost when cell density has reached a maximum. This swimming motility, which appeared during ontogenetic development within growing microbial populations, may be a means to colonize the moist outer surfaces of leaves.

  11. Microbial ecology of bacterially mediated PCB biodegradation

    International Nuclear Information System (INIS)

    Pettigrew, C.A. Jr.

    1989-01-01

    The roles of plasmid mediated and consortia mediated polychlorinated biphenyl (PCB) biodegradation by bacterial populations isolated from PCB contaminated freshwater sediments were investigated. PCB degrading bacteria were isolated by DNA:DNA colony hybridization, batch enrichments, and chemostat enrichment. Analysis of substrate removal and metabolite production were done using chlorinated biphenyl spray plates, reverse phase high pressure liquid chromatography, Cl - detection, and 14 C-labeled substrate mineralization methods. A bacterial consortium, designated LPS10, involved in a concerted metabolic attack on chlorinated biphenyls, was shown to mineralize 4-chlorobiphenyl (4CB) and 4,4'-dichlorobiphenyl (4,4' CB). The LPS10 consortium was isolated by both batch and chemostat enrichment using 4CB and biphenyl (BP) as sole carbon source and was found to have tree bacterial isolates that predominated; these included: Pseudomonas, testosteroni LPS10A which mediated the breakdown of 4CB and 4,4' CB to the putative meta-cleavage product and subsequently to 4-chlorobenzoic acid (4CBA), an isolate tentatively identified as an Arthrobacter sp. LPS10B which mediated 4CBA degradation, and Pseudomonas putida by A LPS10C whose role in the consortium has not been determined

  12. Corruption of innate immunity by bacterial proteases.

    Science.gov (United States)

    Potempa, Jan; Pike, Robert N

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host's innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections.

  13. Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis

    Science.gov (United States)

    Fong, Stephanie; Yerrapragada, Shailaja; Estrada-de los Santos, Paulina; Yang, Paul; Song, Nannie; Kano, Stephanie; de Faria, Sergio M.; Dakora, Felix D.; Weinstock, George; Hirsch, Ann M.

    2014-01-01

    Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low. PMID:24416172

  14. Bioremediation of MGP soils with mixed fungal and bacterial cultures

    International Nuclear Information System (INIS)

    Lee, C.J.B.; Fletcher, M.A.; Avila, O.I.; Munnecke, D.M.; Callanan, J.; Yunker, S.

    1995-01-01

    This culture selection study examines the degradation of polycyclic automatic hydrocarbon (PAH) by a number of brown- and white-rot fungi and bacterial cultures for the treatment of coal tar wastes. Cultures were screened for naphthalene degradation in shake flasks, and selected organisms were then examined for their ability to degrade a mixture of PAHs in aqueous culture. PAH degradation in the presence of the surfactant, TWEEN 80, was examined for some cultures. Many of the organisms were observed to be resistant to greater than 10 mg/L free cyanide. Solid substrate growth conditions were optimized for the selected fungal cultures in preparation for manufactured gas plant (MGP) soil microcosm experiments. The fungi generally produced more biomass under conditions of acidic to neutral pH, incubation at 30 C with 90% moisture saturation, and with granulated corncobs or alfalfa pellets supplied as a lignocellulosic substrate. Of the cultures screened, nine fungal cultures were selected based on their ability to degrade at least 40% of naphthalene, fluorene, or benzo(a)pyrene in 2 weeks or less. A bacterial culture capable of degrading 30 mg/L of naphthalene in 1 week was also selected, and the cultures were examined further in PAH-degradation studies in contaminated soils

  15. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    Science.gov (United States)

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  16. Postviral Complications: Bacterial Pneumonia.

    Science.gov (United States)

    Prasso, Jason E; Deng, Jane C

    2017-03-01

    Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies. Published by Elsevier Inc.

  17. Gas generation from transuranic waste degradation: an interim assessment

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1979-10-01

    A review of all available, applicable data pertaining to gas generation from the degradation of transuranic waste matrix material and packaging is presented. Waste forms are representative of existing defense-related TRU wastes and include cellulosics, plastics, rubbers, concrete, process sludges, and mild steel. Degradation mechanisms studied were radiolysis, thermal, bacterial, and chemical corrosion. Gas generation rates are presented in terms of moles of gas produced per year per drum, and in G(gas) values for radiolytic degradation. Comparison of generation rates is made, as is a discussion of potential short- and long-term concerns. Techniques for reducing gas generation rates are discussed. 6 figures, 10 tables

  18. Amylase activity of a starch degrading bacteria isolated from soil ...

    African Journals Online (AJOL)

    Starch degrading bacteria are most important for industries such as food, fermentation, textile and paper. Thus isolating and manipulating pure culture from various waste materials has manifold importance for various biotechnology industries. In the present investigation a bacterial strain was isolated from soil sample ...

  19. COMETABOLIC DEGRADATION OF CHLOROALLYL ALCOHOLS IN BATCH AND CONTINUOUS CULTURES

    NARCIS (Netherlands)

    VANDERWAARDE, JJ; KOK, R; JANSSEN, DB; Waarde, J.J. van der

    1994-01-01

    The biodegradation of chloroallyl alcohols by pure and mixed bacterial cultures was investigated. Only 2-chloroallyl alcohol and cis- and trans-3-chloroallyl alcohol served as growth substrate for pure cultures. The other chloroallyl alcohols could be cometabolically degraded during growth on

  20. Petroleum degrading potentials of single and mixed microbial ...

    African Journals Online (AJOL)

    The ability of three bacterial isolates (Bacillus spp, Micrococcus spp and Proteus spp.) and some fungal species (Penicillin spp., Aspergillus spp. and Rhizopus spp.) isolated from two rivers and refinery effluent to degrade two Nigerian Crude oils was studied. The results showed changes in pH, optical density and total ...

  1. Bacterial vaginosis - aftercare

    Science.gov (United States)

    Bacterial vaginosis (BV) is a type of vaginal infection. The vagina normally contains both healthy bacteria and unhealthy bacteria. BV occurs when more unhealthy bacteria grow than healthy bacteria. No one knows ...

  2. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  3. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  4. Diagnosis of bacterial infection

    African Journals Online (AJOL)

    direct or indirect evidence of a compatible bacterial pathogen. Inflammation may be .... cardinal features (fever, confusion, headache and neck stiffness). .... specificity, inappropriate indications or poor sampling technique may diminish this ...

  5. The Bacterial Microflora of Fish, Revised

    Directory of Open Access Journals (Sweden)

    B. Austin

    2006-01-01

    Full Text Available The results of numerous studies indicate that fish possess bacterial populations on or in their skin, gills, digestive tract, and light-emitting organs. In addition, the internal organs (kidney, liver, and spleen of healthy fish may contain bacteria, but there is debate about whether or not muscle is actually sterile. Using traditional culture-dependent techniques, the numbers and taxonomic composition of the bacterial populations generally reflect those of the surrounding water. More modern culture-independent approaches have permitted the recognition of previously uncultured bacteria. The role of the organisms includes the ability to degrade complex molecules (therefore exercising a potential benefit in nutrition, to produce vitamins and polymers, and to be responsible for the emission of light by the light-emitting organs of deep-sea fish. Taxa, including Pseudomonas, may contribute to spoilage by the production of histamines in fish tissue.

  6. Nanobiocatalytic Degradation of Acid Orange 7

    Science.gov (United States)

    Hastings, Jason

    The catalytic properties of various metal nanoparticles have led to their use in environmental remediation applications. However, these remediation strategies are limited by their ability to deliver catalytic nanoparticles and a suitable electron donor to large treatment zones. Clostridium pasteurianum BC1 cells, loaded with bio-Pd nanoparticles, were used to effectively catalyze the reductive degradation and removal of Acid Orange 7 (AO7), a model azo compound. Hydrogen produced fermentatively by the C. pasteurianum BC1 acted as the electron donor for the process. Pd-free bacterial cultures or control experiments conducted with heat-killed cells showed limited reduction of AO7. Experiments also showed that the in situ biological production of H2 by C. pasteurianum BC1 was essential for the degradation of AO7, which suggests a novel process where the in situ microbial production of hydrogen is directly coupled to the catalytic bio-Pd mediated reduction of AO7. The differences in initial degradation rate for experiments conducted using catalyst concentrations of 1ppm Pd and 5ppm Pd and an azo dye concentration of 100ppm AO7 was 0.39 /hr and 1.94 /hr respectively, demonstrating the importance of higher concentrations of active Pd(0). The degradation of AO7 was quick as demonstrated by complete reductive degradation of 50ppm AO7 in 2 hours in experiments conducted using a catalyst concentration of 5ppm Pd. Dye degradation products were analyzed via Gas Chromatograph-Mass Spectrometer (GCMS), High Performance Liquid Chromatography (HPLC), UltraViolet-Visible spectrophotometer (UV-Vis) and Matrix-Assisted Laser Desorption/Ionization (MALDI) spectrometry. The presence of 1-amino 2-naphthol, one of the hypothesized degradation products, was confirmed using mass spectrometry.

  7. Bovine intestinal bacteria inactivate and degrade ceftiofur and ceftriaxone with multiple beta-lactamases.

    Science.gov (United States)

    Wagner, R Doug; Johnson, Shemedia J; Cerniglia, Carl E; Erickson, Bruce D

    2011-11-01

    The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific β-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum β-lactamases and metallo-β-lactamases. Seven isolates of Bacteroides spp. produced multiple β-lactamases, including possibly CepA, and metallo-β-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading β-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that β-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple β-lactamases from bacteria in the large intestines of cattle.

  8. Bovine Intestinal Bacteria Inactivate and Degrade Ceftiofur and Ceftriaxone with Multiple β-Lactamases▿

    Science.gov (United States)

    Wagner, R. Doug; Johnson, Shemedia J.; Cerniglia, Carl E.; Erickson, Bruce D.

    2011-01-01

    The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific β-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum β-lactamases and metallo-β-lactamases. Seven isolates of Bacteroides spp. produced multiple β-lactamases, including possibly CepA, and metallo-β-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading β-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that β-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple β-lactamases from bacteria in the large intestines of cattle. PMID:21876048

  9. Chemical composition and ruminal degradability of the sugar cane silage treated with chemical and bacterial additivesComposição química e degradabilidade ruminal de silagens da cana-de-açúcar tratada com aditivos químicos e bacteriano

    Directory of Open Access Journals (Sweden)

    Luiz Eduardo dos Santos

    2012-02-01

    Full Text Available The objective of this trial was to evaluate the effect of the addition of chemical and bacterial additive in the ensiling of sugar cane (Saccharum officinarum L. on chemical composition, pH, kinectic fraction and in situ degradation of nutritions components of silages. Five rumen-cannulated ½ Simental + ½ Zebu steers were allotted to a completely randomized design. The steers were placed in individual cages and they were fed with diets with 76% forage (%DM. Five silages were evaluated: control – sugar cane, no additives; urea – sugar cane + 0.5% of urea (wet basis; inoculant – sugar cane inoculated with LactoSilo® (390 g/40 t forage; NaOH – sugar cane + 1.0% of sodium hydroxide (wet basis; CaOH – sugar cane + 0.6% of calcium hydroxide (wet basis. The silage additives with sodium hydroxide showed the highest pH values before (11.20 and after (4.87 for silage. No differences were observed among the silages for dry matter (26.85, crude protein (5.25 and acid detergent fiber (57.21. Fractionation of dry matter and organic matter of silages showed similar behavior, with higher values of the soluble fraction (fraction A for silages with sodium hydroxide (45.86 and 30.95% and calcium hydroxide (29.47 and 26.13%. The use of sodium hydroxide allowed obtaining higher values for the degradation of cell wall components of silages from cane sugar. The potencial and effective degradability with 3, 5 and 8%/h of passage rate were respectively 88.44, 64.45, 56.73 and 49.83% for NDF and 82.57, 55.51, 46.72 and 38.83% for ADF, indicating that the use of sodium hydroxide as chemical additives can improve the nutritive value of cane sugar silage.Objetivou-se avaliar o efeito da inclusão de aditivos químicos e bacterianos na ensilagem de cana-de-açúcar sobre a composição, pH, fracionamento e cinética de degradação in situ dos componentes nutritivos. Utilizaram-se cinco bovinos ½ Simental + ½ Zebu providos de cânula ruminal, alocados em

  10. Abundance and activity of oil-degrading and indigenous bacteria in sediment microcosms

    International Nuclear Information System (INIS)

    Araujo, R.; Molina, M.; Bachoon, D.

    1995-01-01

    The responses of bacterial community composition and degradation crude oil to applications of bioremediation products and plant detrital material were investigated in wetlands microcosms. The microcosms were constructed of sieved sediments and operated as tidal marshes. Products included nutrients, organisms, surfactants and combinations thereof; dried ground Spartina was the source of detrital material. Plate count and most probable-number techniques were used to enumerate microbial populations and GC/MS analysis of indicator petroleum hydrocarbons was used to assess oil degradation. Microbial communities were characterized by whole-genome hybridization and specific probes for bacterial groups, including Pseudomonas, Streptomycetes, Vibrio, and sulfate-reducing bacteria. Although the total microbial numbers were similar in all bioremediation treatments, the numbers of oil degraders increased two to three log units in the fertilizer and microbial-degrader-enriched treatments. Oil-degraders comprised the largest fraction of the total population in the treatment amended with microbial degraders, apparently at the expense of indigenous bacteria, as indicated by specific probes. Oil-degraders were also detected in the subsurface in all treatments except the controls. The extent of oil degradation was not consistent with bacterial numbers; only nutrient additions resulted in significantly enhanced degradation of oil. After 1 month of microcosm operation, oil-degraders had increased at least two orders of magnitude in sediment surface layers when oil was added alone or with Spartina detritus, although total bacterial numbers and the number of oil-degraders decreased to near initial levels by 2 months. The peak coincides with bacterial utilization of the alkane fraction of petroleum hydrocarbons

  11. Fourier transform Raman spectroscopic characterisation of cells of the plant-associated soil bacterium Azospirillum brasilense Sp7

    Science.gov (United States)

    Kamnev, A. A.; Tarantilis, P. A.; Antonyuk, L. P.; Bespalova, L. A.; Polissiou, M. G.; Colina, M.; Gardiner, P. H. E.; Ignatov, V. V.

    2001-05-01

    Structural and compositional features of bacterial cell samples and of lipopolysaccharide-protein complex isolated from the cell surface of the plant-growth-promoting rhizobacterium Azospirillum brasilense (wild-type strain Sp7) were characterised using Fourier transform (FT) Raman spectroscopy. The structural spectroscopic information obtained is analysed and considered together with analytical data on the content of metal cations (Co 2+, Cu 2+ and Zn 2+) in the bacterial cells grown in a standard medium as well as in the presence of each of the cations (0.2 mM). The latter, being taken up by bacterial cells from the culture medium in significant amounts, were shown to induce certain metabolic changes in the bacterium revealed in FT-Raman spectra, which is discussed from the viewpoint of bacterial response to environmental stresses.

  12. Degradations and Rearrangement Reactions

    Science.gov (United States)

    Zhang, Jianbo

    This section deals with recent reports concerning degradation and rearrangement reactions of free sugars as well as some glycosides. The transformations are classified in chemical and enzymatic ways. In addition, the Maillard reaction will be discussed as an example of degradation and rearrangement transformation and its application in current research in the fields of chemistry and biology.

  13. Mathematical Modelling of Bacterial Populations in Bio-remediation Processes

    Science.gov (United States)

    Vasiliadou, Ioanna A.; Vayenas, Dimitris V.; Chrysikopoulos, Constantinos V.

    2011-09-01

    An understanding of bacterial behaviour concerns many field applications, such as the enhancement of water, wastewater and subsurface bio-remediation, the prevention of environmental pollution and the protection of human health. Numerous microorganisms have been identified to be able to degrade chemical pollutants, thus, a variety of bacteria are known that can be used in bio-remediation processes. In this study the development of mathematical models capable of describing bacterial behaviour considered in bio-augmentation plans, such as bacterial growth, consumption of nutrients, removal of pollutants, bacterial transport and attachment in porous media, is presented. The mathematical models may be used as a guide in designing and assessing the conditions under which areas contaminated with pollutants can be better remediated.

  14. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas.

    Science.gov (United States)

    Gilani, Razia Alam; Rafique, Mazhar; Rehman, Abdul; Munis, Muhammad Farooq Hussain; Rehman, Shafiq Ur; Chaudhary, Hassan Javed

    2016-02-01

    Chlorpyrifos is an organophosphorus pesticide commonly used in agriculture. It is noxious to a variety of organisms that include living soil biota along with beneficial arthropods, fish, birds, humans, animals, and plants. Exposure to chlorpyrifos may cause detrimental effects as delayed seedling emergence, fruit deformities, and abnormal cell division. Contamination of chlorpyrifos has been found about 24 km from the site of its application. There are many physico-chemical and biological approaches to remove organophosphorus pesticides from the ecosystem, among them most promising is biodegradation. The 3,5,6-trichloro-2-pyridinol (TCP) and diethylthiophosphate (DETP) as primary products are made when chlorpyrifos is degraded by soil microorganisms which further break into nontoxic metabolites as CO(2), H(2)O, and NH(3). Pseudomonas is a diversified genus possessing a series of catabolic pathways and enzymes involved in pesticide degradation. Pseudomonas putida MAS-1 is reported to be more efficient in chlorpyrifos degradation by a rate of 90% in 24 h among Pseudomonas genus. The current review analyzed the comparative potential of bacterial species in Pseudomonas genus for degradation of chlorpyrifos thus, expressing an ecofriendly approach for the treatment of environmental contaminants like pesticides. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  16. Biodegradability of bacterial surfactants.

    Science.gov (United States)

    Lima, Tânia M S; Procópio, Lorena C; Brandão, Felipe D; Carvalho, André M X; Tótola, Marcos R; Borges, Arnaldo C

    2011-06-01

    This work aimed at evaluating the biodegradability of different bacterial surfactants in liquid medium and in soil microcosms. The biodegradability of biosurfactants by pure and mixed bacterial cultures was evaluated through CO(2) evolution. Three bacterial strains, Acinetobacter baumanni LBBMA ES11, Acinetobacter haemolyticus LBBMA 53 and Pseudomonas sp. LBBMA 101B, used the biosurfactants produced by Bacillus sp. LBBMA 111A (mixed lipopeptide), Bacillus subtilis LBBMA 155 (lipopeptide), Flavobacterium sp. LBBMA 168 (mixture of flavolipids), Dietzia Maris LBBMA 191(glycolipid) and Arthrobacter oxydans LBBMA 201(lipopeptide) as carbon sources in minimal medium. The synthetic surfactant sodium dodecyl sulfate (SDS) was also mineralized by these microorganisms, but at a lower rate. CO(2) emitted by a mixed bacterial culture in soil microcosms with biosurfactants was higher than in the microcosm containing SDS. Biosurfactant mineralization in soil was confirmed by the increase in surface tension of the soil aqueous extracts after incubation with the mixed bacterial culture. It can be concluded that, in terms of biodegradability and environmental security, these compounds are more suitable for applications in remediation technologies in comparison to synthetic surfactants. However, more information is needed on structure of biosurfactants, their interaction with soil and contaminants and scale up and cost for biosurfactant production.

  17. Intermittent degradation and schizotypy

    Directory of Open Access Journals (Sweden)

    Matthew W. Roché

    2015-06-01

    Full Text Available Intermittent degradation refers to transient detrimental disruptions in task performance. This phenomenon has been repeatedly observed in the performance data of patients with schizophrenia. Whether intermittent degradation is a feature of the liability for schizophrenia (i.e., schizotypy is an open question. Further, the specificity of intermittent degradation to schizotypy has yet to be investigated. To address these questions, 92 undergraduate participants completed a battery of self-report questionnaires assessing schizotypy and psychological state variables (e.g., anxiety, depression, and their reaction times were recorded as they did so. Intermittent degradation was defined as the number of times a subject’s reaction time for questionnaire items met or exceeded three standard deviations from his or her mean reaction time after controlling for each item’s information processing load. Intermittent degradation scores were correlated with questionnaire scores. Our results indicate that intermittent degradation is associated with total scores on measures of positive and disorganized schizotypy, but unrelated to total scores on measures of negative schizotypy and psychological state variables. Intermittent degradation is interpreted as potentially derivative of schizotypy and a candidate endophenotypic marker worthy of continued research.

  18. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    Marji, S.

    2007-01-01

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  19. Bacterial carbon utilization in vertical subsurface flow constructed wetlands.

    Science.gov (United States)

    Tietz, Alexandra; Langergraber, Günter; Watzinger, Andrea; Haberl, Raimund; Kirschner, Alexander K T

    2008-03-01

    Subsurface vertical flow constructed wetlands with intermittent loading are considered as state of the art and can comply with stringent effluent requirements. It is usually assumed that microbial activity in the filter body of constructed wetlands, responsible for the removal of carbon and nitrogen, relies mainly on bacterially mediated transformations. However, little quantitative information is available on the distribution of bacterial biomass and production in the "black-box" constructed wetland. The spatial distribution of bacterial carbon utilization, based on bacterial (14)C-leucine incorporation measurements, was investigated for the filter body of planted and unplanted indoor pilot-scale constructed wetlands, as well as for a planted outdoor constructed wetland. A simple mass-balance approach was applied to explain the bacterially catalysed organic matter degradation in this system by comparing estimated bacterial carbon utilization rates with simultaneously measured carbon reduction values. The pilot-scale constructed wetlands proved to be a suitable model system for investigating microbial carbon utilization in constructed wetlands. Under an ideal operating mode, the bulk of bacterial productivity occurred within the first 10cm of the filter body. Plants seemed to have no significant influence on productivity and biomass of bacteria, as well as on wastewater total organic carbon removal.

  20. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  1. Identification of New Aflatoxin B1-Degrading Bacteria from Iran

    Directory of Open Access Journals (Sweden)

    Fahimeh Sangi

    2018-04-01

    Full Text Available Background: Aflatoxin B1 (AFB1 is a mutagenic and carcinogenic compound mainly produced by the Aspergillus parasiticus, A. flavus, A. nomius, A. tamari, and A. pseudotamarii. AFB1 biodegradation is the most important strategy for reducing AFB1 in plant tissues. Bacteria can deactivate and biodegrade AFB1 for effective detoxification of contaminated products. The present study investigated the efficiency of AFB1 degradation by soil bacteria from the Southern Khorasan Province in Eastern Iran by thin-layer and high-performance liquid chromatography during 2014–2015. Methods: DNA was extracted from AFB1-degrading isolates by the cetyltrimethylammonium bromide method and the 16S rRNA gene was amplified with the 27f and 1492r general bacterial primers and the sequences were used to identify the isolates based on their similarity to Gene Bank sequences of known bacterial species. Results: We isolated five strains from four species of AFB1-degrading bacteria from Birjand plain, including Bacillus pumilus, two isolates of Ochrobactrum pseudogrigonens, Pseudomonas aeruginosa, and Enterobacter cloace, which had AFB1-degrading activities of 88%, 78%, 61%, 58%, and 51%, respectively. Conclusion: We provide the first demonstration of AFB1 degradation by B. pumilus in from Iran and the first report identifying O. pseudogrigonens and E. cloace species as having AFB1-degrading activity.

  2. Associations of Pseudomonas species and forage grasses enhance degradation of chlorinated benzoic acids in soil

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, S. D.

    1998-12-01

    Using chlorinated benzoic acid (CBA) as a model compound, this study attempted to show that microorganisms and plants can be used as bioremediation agents to clean up contaminated soil sites in a cost effective and environmentally friendly manner. CBA was used because it is present in soils contaminated with polychlorinated biphenyls (PCBs), or chlorinated pesticides. Sixteen forage grasses were screened in combination with 12 bacterial inoculants for their ability to promote the degradation of CBA in soil. Five associations of plants and bacteria were found to degrade CBA to a greater extent than plants without bacterial inoculants. Bacterial inoculants were shown to stimulate CBA degradation by altering the microbial community present on the root surface and thereby increasing the ability of this community to degrade CBA.

  3. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...

  4. Balancing the organic load and light supply in symbiotic microalgal–bacterial biofilm reactors treating synthetic municipal wastewater

    NARCIS (Netherlands)

    Boelee, N.C.; Temmink, B.G.; Janssen, M.; Buisman, C.J.N.; Wijffels, R.H.

    2014-01-01

    Symbiotic microalgal–bacterial biofilms can be very attractive for municipal wastewater treatment. Microalgae remove nitrogen and phosphorus and simultaneously produce the oxygen that is required for the aerobic, heterotrophic degradation of organic pollutants. For the application of these biofilms

  5. Comparative Genomic Analysis of Bacillus amyloliquefaciens and Bacillus subtilis Reveals Evolutional Traits for Adaptation to Plant-Associated Habitats

    Science.gov (United States)

    Zhang, Nan; Yang, Dongqing; Kendall, Joshua R. A.; Borriss, Rainer; Druzhinina, Irina S.; Kubicek, Christian P.; Shen, Qirong; Zhang, Ruifu

    2016-01-01

    Bacillus subtilis and its sister species B. amyloliquefaciens comprise an evolutionary compact but physiologically versatile group of bacteria that includes strains isolated from diverse habitats. Many of these strains are used as plant growth-promoting rhizobacteria (PGPR) in agriculture and a plant-specialized subspecies of B. amyloliquefaciens—B. amyloliquefaciens subsp. plantarum, has recently been recognized, here we used 31 whole genomes [including two newly sequenced PGPR strains: B. amyloliquefaciens NJN-6 isolated from Musa sp. (banana) and B. subtilis HJ5 from Gossypium sp. (cotton)] to perform comparative analysis and investigate the genomic characteristics and evolution traits of both species in different niches. Phylogenomic analysis indicated that strains isolated from plant-associated (PA) habitats could be distinguished from those from non-plant-associated (nPA) niches in both species. The core genomes of PA strains are more abundant in genes relevant to intermediary metabolism and secondary metabolites biosynthesis as compared with those of nPA strains, and they also possess additional specific genes involved in utilization of plant-derived substrates and synthesis of antibiotics. A further gene gain/loss analysis indicated that only a few of these specific genes (18/192 for B. amyloliquefaciens and 53/688 for B. subtilis) were acquired by PA strains at the initial divergence event, but most were obtained successively by different subgroups of PA stains during the evolutional process. This study demonstrated the genomic differences between PA and nPA B. amyloliquefaciens and B. subtilis from different niches and the involved evolutional traits, and has implications for screening of PGPR strains in agricultural production. PMID:28066362

  6. How do polymers degrade?

    Science.gov (United States)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  7. Purex diluent degradation

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO 3 system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO 2 ) molecule, not HNO 3 as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO 3 concentration and the temperature. The rate was decreased by argon sparging to remove NO 2 and by the addition of butanol, which probably acts as a NO 2 scavenger. 13 references, 11 figures

  8. Bacteria and lignin degradation

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Hongli YUAN; Jinshui YANG

    2009-01-01

    Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.

  9. Fungal degradation of polyhydroxyalkanoates and a semiquantitative assay for screening their degradation by terrestrial fungi.

    Science.gov (United States)

    Matavulj, M; Molitoris, H P

    1992-12-01

    The current problems with decreasing fossile resources and increasing environmental pollution by petrochemical-based plastics have stimulated investigations to find biosynthetic materials which are also biodegradable. Bacterial reserve materials such as polyhydroxyalkanoates (PHA) have been discovered to possess thermoplastic properties and can be synthesized from renewable resources. Poly-beta-hydroxybutyric acid (PHB) is at present the most promising PHA; and BIOPOL, its copolymer with poly-beta-hydroxy-valerate (PHV), is already industrially produced (ICI, UK), and used as packaging material (WELLA, FRG). According to the literature, PHA degradation has so far mainly been observed in bacteria; only under certain environmental conditions has fungal degradation of PHAs been indicated. Since fungi constitute an important part of microbial populations participating in degradation processes, a simple screening method for fungal degradation of BIOPOL, a PHA-based plastic, was developed. Several media with about 150 fungal strains from different terrestrial environments and belonging to different systematic and ecological groups were used. PHA depolymerization was tested on three PHB-based media, each with 0.1% BIOPOL or PHB homopolymer causing turbidity of the medium. The media contained either a comparatively low or high content of organic carbon (beside PHA) or were based on mineral medium with PHA as the principal source of carbon. The degradation activity was detectable due to formation of a clear halo around the colony (Petri plates) or a clear zone under the colony (test tubes).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Glycogen with short average chain length enhances bacterial durability

    Science.gov (United States)

    Wang, Liang; Wise, Michael J.

    2011-09-01

    Glycogen is conventionally viewed as an energy reserve that can be rapidly mobilized for ATP production in higher organisms. However, several studies have noted that glycogen with short average chain length in some bacteria is degraded very slowly. In addition, slow utilization of glycogen is correlated with bacterial viability, that is, the slower the glycogen breakdown rate, the longer the bacterial survival time in the external environment under starvation conditions. We call that a durable energy storage mechanism (DESM). In this review, evidence from microbiology, biochemistry, and molecular biology will be assembled to support the hypothesis of glycogen as a durable energy storage compound. One method for testing the DESM hypothesis is proposed.

  11. Rehosting of Bacterial Chaperones for High-Quality Protein Production▿

    Science.gov (United States)

    Martínez-Alonso, Mónica; Toledo-Rubio, Verónica; Noad, Rob; Unzueta, Ugutz; Ferrer-Miralles, Neus; Roy, Polly; Villaverde, Antonio

    2009-01-01

    Coproduction of DnaK/DnaJ in Escherichia coli enhances solubility but promotes proteolytic degradation of their substrates, minimizing the yield of unstable polypeptides. Higher eukaryotes have orthologs of DnaK/DnaJ but lack the linked bacterial proteolytic system. By coexpression of DnaK and DnaJ in insect cells with inherently misfolding-prone recombinant proteins, we demonstrate simultaneous improvement of soluble protein yield and quality and proteolytic stability. Thus, undesired side effects of bacterial folding modulators can be avoided by appropriate rehosting in heterologous cell expression systems. PMID:19820142

  12. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  13. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  14. Bacterial fingerprints across Europe

    NARCIS (Netherlands)

    Glasner, Corinna

    2014-01-01

    Bacterial pathogens, such as Staphylococcus aureus and carbapenemase-producing Enterobacteriaceae (CPE), impose major threats to human health worldwide. Both have a ‘Jekyll & Hyde’ character, since they can be present as human commensals, but can also become harmful invasive pathogens especially

  15. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  16. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  17. Exploring the microbiota dynamics related to vegetable biomasses degradation and study of lignocellulose-degrading bacteria for industrial biotechnological application

    Science.gov (United States)

    Ventorino, Valeria; Aliberti, Alberto; Faraco, Vincenza; Robertiello, Alessandro; Giacobbe, Simona; Ercolini, Danilo; Amore, Antonella; Fagnano, Massimo; Pepe, Olimpia

    2015-02-01

    The aims of this study were to evaluate the microbial diversity of different lignocellulosic biomasses during degradation under natural conditions and to isolate, select, characterise new well-adapted bacterial strains to detect potentially improved enzyme-producing bacteria. The microbiota of biomass piles of Arundo donax, Eucalyptus camaldulensis and Populus nigra were evaluated by high-throughput sequencing. A highly complex bacterial community was found, composed of ubiquitous bacteria, with the highest representation by the Actinobacteria, Proteobacteria, Bacteroidetes and Firmicutes phyla. The abundances of the major and minor taxa retrieved during the process were determined by the selective pressure produced by the lignocellulosic plant species and degradation conditions. Moreover, cellulolytic bacteria were isolated using differential substrates and screened for cellulase, cellobiase, xylanase, pectinase and ligninase activities. Forty strains that showed multienzymatic activity were selected and identified. The highest endo-cellulase activity was seen in Promicromonospora sukumoe CE86 and Isoptericola variabilis CA84, which were able to degrade cellulose, cellobiose and xylan. Sixty-two percent of bacterial strains tested exhibited high extracellular endo-1,4-ß-glucanase activity in liquid media. These approaches show that the microbiota of lignocellulosic biomasses can be considered an important source of bacterial strains to upgrade the feasibility of lignocellulose conversion for the `greener' technology of second-generation biofuels.

  18. Corticosteroids for Bacterial Keratitis

    Science.gov (United States)

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objective To determine whether there is a benefit in clinical outcomes with the use of topical corticosteroids as adjunctive therapy in the treatment of bacterial corneal ulcers. Methods Randomized, placebo-controlled, double-masked, multicenter clinical trial comparing prednisolone sodium phosphate, 1.0%, to placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and received topical moxifloxacin for at least 48 hours before randomization. Main Outcome Measures The primary outcome was best spectacle-corrected visual acuity (BSCVA) at 3 months from enrollment. Secondary outcomes included infiltrate/scar size, reepithelialization, and corneal perforation. Results Between September 1, 2006, and February 22, 2010, 1769 patients were screened for the trial and 500 patients were enrolled. No significant difference was observed in the 3-month BSCVA (−0.009 logarithm of the minimum angle of resolution [logMAR]; 95% CI, −0.085 to 0.068; P = .82), infiltrate/scar size (P = .40), time to reepithelialization (P = .44), or corneal perforation (P > .99). A significant effect of corticosteroids was observed in subgroups of baseline BSCVA (P = .03) and ulcer location (P = .04). At 3 months, patients with vision of counting fingers or worse at baseline had 0.17 logMAR better visual acuity with corticosteroids (95% CI, −0.31 to −0.02; P = .03) compared with placebo, and patients with ulcers that were completely central at baseline had 0.20 logMAR better visual acuity with corticosteroids (−0.37 to −0.04; P = .02). Conclusions We found no overall difference in 3-month BSCVA and no safety concerns with adjunctive corticosteroid therapy for bacterial corneal ulcers. Application to Clinical Practice Adjunctive topical corticosteroid use does not improve 3-month vision in patients with bacterial corneal ulcers. PMID:21987582

  19. Bacterial infec tions in travellers

    African Journals Online (AJOL)

    namely bacterial causes of travellers' diarrhoea and skin infections, as well as .... Vaccination: protective efficacy against typhoid may be overcome by ingesting a high bacterial load. Vaccine ..... preparation such as cream sauce. Only after ...

  20. Interaction of polybrominated diphenyl ethers (PBDEs) with anaerobic mixed bacterial cultures isolated from river sediment

    Energy Technology Data Exchange (ETDEWEB)

    Yen, J H; Liao, W C; Chen, W C [Department of Agricultural Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China); Wang, Y.S., E-mail: yswang@ntu.edu.tw [Department of Agricultural Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)

    2009-06-15

    The degradation of flame retardant polybrominated diphenyl ethers (PBDE), including tetra-brominated diphenyl ether (BDE-47), penta-brominated diphenyl ether (BDE-99 and -100), and hexa-brominated diphenyl ether (BDE-153 and -154), by anaerobic bacterial mixed cultures isolated from river sediment was investigated. The effects of PBDEs on changes of anaerobic bacterial community in sediment culture were also studied. Sediments were collected from Er-Jen River and Nan-Kan River basins, which were both heavily polluted rivers in Taiwan, and bacteria from the sediment samples were enriched before the experiment was conducted. Into the anaerobic bacterial mixed cultures, 0.1 {mu}g/mL of PBDEs was added followed by incubation under 30 deg. C for 70 days. Residues of PBDE were determined by gas chromatography with electron capture detector (GC-ECD), and the changes of bacterial community were analyzed by denaturing gradient gel electrophoresis (DGGE). Less than 20% of PBDEs were degraded after 70 days of incubation in all samples except for BDE-47 from the Nan-Kan River sediment. In that culture, BDE-47 was found to have notably degraded. In particular, after 42 days of incubation; BDE-47 was degraded, suddenly and sharply, to a negligible level on Day 70, and the result was confirmed by a repeated experiment. An interesting result was that although BDE-47 was degraded fast in the Nan-Kan River sediment, the bacterial communities did not shift significantly as we had speculated at Day 70. From UPGMA dendrograms, PBDEs changed the composition of bacterial communities, and the extents varied with the variety of PBDE congeners. By the amendment with BDE-153 or -154, bacterial communities would be changed immediately and irreversibly throughout the rest of the incubation period. No significant difference in degradation of PBDEs was observed between sediment bacteria from Er-Jen River and Nan-Kan River. However, the results verified the persistence of PBDEs in the environment.

  1. Interaction of polybrominated diphenyl ethers (PBDEs) with anaerobic mixed bacterial cultures isolated from river sediment

    International Nuclear Information System (INIS)

    Yen, J.H.; Liao, W.C.; Chen, W.C.; Wang, Y.S.

    2009-01-01

    The degradation of flame retardant polybrominated diphenyl ethers (PBDE), including tetra-brominated diphenyl ether (BDE-47), penta-brominated diphenyl ether (BDE-99 and -100), and hexa-brominated diphenyl ether (BDE-153 and -154), by anaerobic bacterial mixed cultures isolated from river sediment was investigated. The effects of PBDEs on changes of anaerobic bacterial community in sediment culture were also studied. Sediments were collected from Er-Jen River and Nan-Kan River basins, which were both heavily polluted rivers in Taiwan, and bacteria from the sediment samples were enriched before the experiment was conducted. Into the anaerobic bacterial mixed cultures, 0.1 μg/mL of PBDEs was added followed by incubation under 30 deg. C for 70 days. Residues of PBDE were determined by gas chromatography with electron capture detector (GC-ECD), and the changes of bacterial community were analyzed by denaturing gradient gel electrophoresis (DGGE). Less than 20% of PBDEs were degraded after 70 days of incubation in all samples except for BDE-47 from the Nan-Kan River sediment. In that culture, BDE-47 was found to have notably degraded. In particular, after 42 days of incubation; BDE-47 was degraded, suddenly and sharply, to a negligible level on Day 70, and the result was confirmed by a repeated experiment. An interesting result was that although BDE-47 was degraded fast in the Nan-Kan River sediment, the bacterial communities did not shift significantly as we had speculated at Day 70. From UPGMA dendrograms, PBDEs changed the composition of bacterial communities, and the extents varied with the variety of PBDE congeners. By the amendment with BDE-153 or -154, bacterial communities would be changed immediately and irreversibly throughout the rest of the incubation period. No significant difference in degradation of PBDEs was observed between sediment bacteria from Er-Jen River and Nan-Kan River. However, the results verified the persistence of PBDEs in the environment.

  2. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    D. Kicker

    2004-01-01

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal stress. (3) The DRKBA

  3. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. Kicker

    2004-09-16

    Degradation of underground openings as a function of time is a natural and expected occurrence for any subsurface excavation. Over time, changes occur to both the stress condition and the strength of the rock mass due to several interacting factors. Once the factors contributing to degradation are characterized, the effects of drift degradation can typically be mitigated through appropriate design and maintenance of the ground support system. However, for the emplacement drifts of the geologic repository at Yucca Mountain, it is necessary to characterize drift degradation over a 10,000-year period, which is well beyond the functional period of the ground support system. This document provides an analysis of the amount of drift degradation anticipated in repository emplacement drifts for discrete events and time increments extending throughout the 10,000-year regulatory period for postclosure performance. This revision of the drift degradation analysis was developed to support the license application and fulfill specific agreement items between the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Department of Energy (DOE). The earlier versions of ''Drift Degradation Analysis'' (BSC 2001 [DIRS 156304]) relied primarily on the DRKBA numerical code, which provides for a probabilistic key-block assessment based on realistic fracture patterns determined from field mapping in the Exploratory Studies Facility (ESF) at Yucca Mountain. A key block is defined as a critical block in the surrounding rock mass of an excavation, which is removable and oriented in an unsafe manner such that it is likely to move into an opening unless support is provided. However, the use of the DRKBA code to determine potential rockfall data at the repository horizon during the postclosure period has several limitations: (1) The DRKBA code cannot explicitly apply dynamic loads due to seismic ground motion. (2) The DRKBA code cannot explicitly apply loads due to thermal

  4. Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea.

    Science.gov (United States)

    Levine, Naomi Marcil; Varaljay, Vanessa A; Toole, Dierdre A; Dacey, John W H; Doney, Scott C; Moran, Mary Ann

    2012-05-01

    Dimethylsulfide (DMS) is a climatically relevant trace gas produced and cycled by the surface ocean food web. Mechanisms driving intraannual variability in DMS production and dimethylsulfoniopropionate (DMSP) degradation in open-ocean, oligotrophic regions were investigated during a 10-month time-series at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. Abundance and transcription of bacterial DMSP degradation genes, DMSP lyase enzyme activity, and DMS and DMSP concentrations, consumption rates and production rates were quantified over time and depth. This interdisciplinary data set was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling. Findings supported UV-A-dependent phytoplankton DMS production. Bacterial DMSP degraders may also contribute significantly to DMS production when temperatures are elevated and UV-A dose is moderate, but may favour DMSP demethylation under low UV-A doses. Three groups of bacterial DMSP degraders with distinct intraannual variability were identified and niche differentiation was indicated. The combination of genetic and biochemical data suggest a modified 'bacterial switch' hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature and UV-A dose. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Evaluation of microbially-influenced degradation of massive concrete structures

    International Nuclear Information System (INIS)

    Hamilton, M.A.; Rogers, R.D.; Zolynski, M.; Veeh, R.

    1996-01-01

    Many low level waste disposal vaults, both above and below ground, are constructed of concrete. One potential contributing agent to the destruction of concrete structures is microbially-influenced degradation (MID). Three groups of bacteria are known to create conditions that are conducive to destroying concrete integrity. They are sulfur oxidizing bacteria, nitrifying bacteria, and heterotrophic bacteria. Research is being conducted at the Idaho National Engineering Laboratory to assess the extent of naturally occurring microbially influenced degradation (MID) and its contribution to the deterioration of massive concrete structures. The preliminary steps to understanding the extent of MID, require assessing the microbial communities present on degrading concrete surfaces. Ultimately such information can be used to develop guidelines for preventive or corrective treatments for MID and aid in formulation of new materials to resist corrosion. An environmental study was conducted to determine the presence and activity of potential MID bacteria on degrading concrete surfaces of massive concrete structures. Scanning electron microscopy detected bacteria on the surfaces of concrete structures such as bridges and dams, where corrosion was evident. Enumeration of sulfur oxidizing thiobacilli and nitrogen oxidizing Nitrosomonas sp. and Nitrobacter sp. from surface samples was conducted. Bacterial community composition varied between sampling locations, and generally the presence of either sulfur oxidizers or nitrifiers dominated, although instances of both types of bacteria occurring together were encountered. No clear correlation between bacterial numbers and degree of degradation was exhibited

  6. Bacterial Growth Physiology

    DEFF Research Database (Denmark)

    Kongstad, Mette

    level of tRNA that the tRNA level was seemingly reduced much faster than observed before, after the induction of amino acid starvation. Therefore, we developed a method for testing this observation. It turned out that tRNA degrades to ~75% of the initial level within 40 minutes after induction of amino...

  7. Structure of bacterial lipopolysaccharides.

    Science.gov (United States)

    Caroff, Martine; Karibian, Doris

    2003-11-14

    Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.

  8. Cooperative Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2009-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a novel optimization algorithm based on the social foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm, namely, the Cooperative Bacterial Foraging Optimization (CBFO, which significantly improve the original BFO in solving complex optimization problems. This significant improvement is achieved by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous cooperation on the implicit space decomposition level and the serial heterogeneous cooperation on the hybrid space decomposition level. The experiments compare the performance of two CBFO variants with the original BFO, the standard PSO and a real-coded GA on four widely used benchmark functions. The new method shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  9. Developments in polymer degradation - 7

    International Nuclear Information System (INIS)

    Grassie, N.

    1987-01-01

    A selection of topics which are representative of the continually expanding area of polymer degradation is presented. The aspects emphasised include the products of degradation of specific polymers, degradation by high energy radiation and mechanical forces, fire retardant studies and the special role of small radicals in degradation processes. (author)

  10. Bacterial control of cyanobacteria

    CSIR Research Space (South Africa)

    Ndlela, Luyanda L

    2017-08-01

    Full Text Available of biological control appears to be direct contact. • Ndlela, L. L. et al. (2016) ‘An overview of cyanobacterial bloom occurrences and research in Africa over the last decade’, Harmful Algae, 60 • Gumbo, J.R. et al. (2010) The Isolation and identification... of Predatory Bacteria from a Microcystis algal Bloom.. African Journal of Biotechnology, 9. *Special acknowledgement goes to the National Research foundation for funding this presentation Bacterial control of cyanobacteria Luyanda...

  11. Motor degradation prediction methods

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-12-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor`s duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures.

  12. Endocytic collagen degradation

    DEFF Research Database (Denmark)

    Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe Ziir

    2012-01-01

    it crucially important to understand both the collagen synthesis and turnover mechanisms in this condition. Here we show that the endocytic collagen receptor, uPARAP/Endo180, is a major determinant in governing the balance between collagen deposition and degradation. Cirrhotic human livers displayed a marked...... up-regulation of uPARAP/Endo180 in activated fibroblasts and hepatic stellate cells located close to the collagen deposits. In a hepatic stellate cell line, uPARAP/Endo180 was shown to be active in, and required for, the uptake and intracellular degradation of collagen. To evaluate the functional...... groups of mice clearly revealed a fibrosis protective role of uPARAP/Endo180. This effect appeared to directly reflect the activity of the collagen receptor, since no compensatory events were noted when comparing the mRNA expression profiles of the two groups of mice in an array system focused on matrix-degrading...

  13. Degradation of fluorotelomer alcohols

    DEFF Research Database (Denmark)

    Ellis, David A; Martin, Jonathan W; De Silva, Amila O

    2004-01-01

    Human and animal tissues collected in urban and remote global locations contain persistent and bioaccumulative perfluorinated carboxylic acids (PFCAs). The source of PFCAs was previously unknown. Here we present smog chamber studies that indicate fluorotelomer alcohols (FTOHs) can degrade...... in the atmosphere to yield a homologous series of PFCAs. Atmospheric degradation of FTOHs is likely to contribute to the widespread dissemination of PFCAs. After their bioaccumulation potential is accounted for, the pattern of PFCAs yielded from FTOHs could account for the distinct contamination profile of PFCAs....... The significance of the gas-phase peroxy radical cross reactions that produce PFCAs has not been recognized previously. Such reactions are expected to occur during the atmospheric degradation of all polyfluorinated materials, necessitating a reexamination of the environmental fate and impact of this important...

  14. Motor degradation prediction methods

    International Nuclear Information System (INIS)

    Arnold, J.R.; Kelly, J.F.; Delzingaro, M.J.

    1996-01-01

    Motor Operated Valve (MOV) squirrel cage AC motor rotors are susceptible to degradation under certain conditions. Premature failure can result due to high humidity/temperature environments, high running load conditions, extended periods at locked rotor conditions (i.e. > 15 seconds) or exceeding the motor's duty cycle by frequent starts or multiple valve stroking. Exposure to high heat and moisture due to packing leaks, pressure seal ring leakage or other causes can significantly accelerate the degradation. ComEd and Liberty Technologies have worked together to provide and validate a non-intrusive method using motor power diagnostics to evaluate MOV rotor condition and predict failure. These techniques have provided a quick, low radiation dose method to evaluate inaccessible motors, identify degradation and allow scheduled replacement of motors prior to catastrophic failures

  15. Ecosystem degradation in India

    International Nuclear Information System (INIS)

    Sinha, B.N.

    1990-01-01

    Environmental and ecosystem studies have assumed greater relevance in the last decade of the twentieth century than even before. The urban settlements are becoming over-crowded and industries are increasingly polluting the air, water and sound in our larger metropolises. Degradation of different types of ecosystem are discussed in this book, Ecosystem Degradation in India. The book has been divided into seven chapters: Introduction, Coastal and Delta Ecosystem, River Basin Ecosystem, Mountain Ecosystem, Forest Ecosystem, Urban Ecosystem and the last chapter deals with the Environmental Problems and Planning. In the introduction the environmental and ecosystem degradation problems in India is highlighted as a whole while in other chapters mostly case studies by experts who know their respective terrain very intimately are included. The case study papers cover most part of India and deal with local problems, stretching from east coast to west coast and from Kashmir to Kanyakumari. (author)

  16. PWR degraded core analysis

    International Nuclear Information System (INIS)

    Gittus, J.H.

    1982-04-01

    A review is presented of the various phenomena involved in degraded core accidents and the ensuing transport of fission products from the fuel to the primary circuit and the containment. The dominant accident sequences found in the PWR risk studies published to date are briefly described. Then chapters deal with the following topics: the condition and behaviour of water reactor fuel during normal operation and at the commencement of degraded core accidents; the generation of hydrogen from the Zircaloy-steam and the steel-steam reactions; the way in which the core deforms and finally melts following loss of coolant; debris relocation analysis; containment integrity; fission product behaviour during a degraded core accident. (U.K.)

  17. Bacterial growth kinetics

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1989-01-01

    Quantitative measurement of bacterial growth may be made using a radioassay technique. This method measures, by scintillation counting, the 14 CO 2 derived from the bacterial metabolism of a 14 C-labeled substrate. Mathematical growth models may serve as reliable tools for estimation of the generation rate constant (or slope of the growth curve) and provide a basis for evaluating assay performance. Two models, i.e., exponential and logistic, are proposed. Both models yielded an accurate fit to the data from radioactive measurement of bacterial growth. The exponential model yielded high precision values of the generation rate constant, with an average relative standard deviation of 1.2%. Under most conditions the assay demonstrated no changes in the slopes of growth curves when the number of bacteria per inoculation was changed. However, the radiometric assay by scintillation method had a growth-inhibiting effect on a few strains of bacteria. The source of this problem was thought to be hypersensitivity to trace amounts of toluene remaining on the detector

  18. Adaptive Bacterial Foraging Optimization

    Directory of Open Access Journals (Sweden)

    Hanning Chen

    2011-01-01

    Full Text Available Bacterial Foraging Optimization (BFO is a recently developed nature-inspired optimization algorithm, which is based on the foraging behavior of E. coli bacteria. Up to now, BFO has been applied successfully to some engineering problems due to its simplicity and ease of implementation. However, BFO possesses a poor convergence behavior over complex optimization problems as compared to other nature-inspired optimization techniques. This paper first analyzes how the run-length unit parameter of BFO controls the exploration of the whole search space and the exploitation of the promising areas. Then it presents a variation on the original BFO, called the adaptive bacterial foraging optimization (ABFO, employing the adaptive foraging strategies to improve the performance of the original BFO. This improvement is achieved by enabling the bacterial foraging algorithm to adjust the run-length unit parameter dynamically during algorithm execution in order to balance the exploration/exploitation tradeoff. The experiments compare the performance of two versions of ABFO with the original BFO, the standard particle swarm optimization (PSO and a real-coded genetic algorithm (GA on four widely-used benchmark functions. The proposed ABFO shows a marked improvement in performance over the original BFO and appears to be comparable with the PSO and GA.

  19. Isolation and characterization of diuron-degrading bacteria from lotic surface water.

    Science.gov (United States)

    Batisson, Isabelle; Pesce, Stéphane; Besse-Hoggan, Pascale; Sancelme, Martine; Bohatier, Jacques

    2007-11-01

    The bacterial community structure of a diuron-degrading enrichment culture from lotic surface water samples was analyzed and the diuron-degrading strains were selected using a series of techniques combining temporal temperature gradient gel electrophoresis (TTGE) of 16 S rDNA gene V1-V3 variable regions, isolation of strains on agar plates, colony hybridization methods, and biodegradation assays. The TTGE fingerprints revealed that diuron had a strong impact on bacterial community structure and highlighted both diuron-sensitive and diuron-adapted bacterial strains. Two bacterial strains, designated IB78 and IB93 and identified as belonging to Pseudomonas sp. and Stenotrophomonas sp., were isolated and shown to degrade diuron in pure resting cells in a first-order kinetic reaction during the first 24 h of incubation with no 3,4-DCA detected. The percentages of degradation varied from 25% to 60% for IB78 and 20% to 65% for IB93 and for a diuron concentration range from 20 mg/L to 2 mg/L, respectively. It is interesting to note that diuron was less degraded by single isolates than by mixed resting cells, thereby underlining a cumulative effect between these two strains. To the best of our knowledge, this is the first report of diuron-degrading strains isolated from lotic surface water.

  20. Antifoam degradation testing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Newell, D. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Ecology Lab. (SREL)

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  1. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.A.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. These can generally be classified as: Mechanical; Hydraulic; Tribological; Chemical; and Other (including those associated with the pump driver). Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump

  2. Studies on the physiology of microbial degradation of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Valo, R.; Apajalahti, J.; Salkinoja-Salonen, M.

    1985-03-01

    The requirements and conditions for pentachlorophenol (PCP) biodegradation by a mixed bacterial culture was studied. The effects of oxygen, nutrients, additional carbon sources, pH and temperature are described. Up to 90% of PCP was degraded into CO/sub 2/ and inorganic chloride in 1 week at an input concentration of <600 ..mu..M. Degradation continued when pO/sub 2/ was lowered to 0.0002 atm but ceased when pO/sub 2/ was further decreased to 0.00002 atm. Supplementary carbon sources, such as phenol, hydroxybenzoic acids or complex nutrients did not affect the biodegradation, but the presence of ammonium salts enhanced the rate of PCP degradation without affecting the yield of CO/sub 2/. The degrading organisms were shown to be procaryotic mesophiles; no degradation was shown at temperatures below +8/sup 0/ and above +50/sup 0/C. The optimum pH for degradation was from 6.4 to 7.2 and at higher pH value (8.4) degradation was inhibited more than at lower pH (5.6).

  3. Monitoring of Gasoline-ethanol Degradation In Undisturbed Soil

    Science.gov (United States)

    Österreicher-Cunha, P.; Nunes, C. M. F.; Vargas, E. A.; Guimarães, J. R. D.; Costa, A.

    Environmental contamination problems are greatly emphasised nowadays because of the direct threat they represent for human health. Traditional remediation methods fre- quently present low efficiency and high costs; therefore, biological treatment is being considered as an accessible and efficient alternative for soil and water remediation. Bioventing, commonly used to remediate petroleum hydrocarbon spills, stimulates the degradation capacity of indigenous microorganisms by providing better subsur- face oxygenation. In Brazil, gasoline and ethanol are mixed (78:22 v/v); some authors indicate that despite gasoline high degradability, its degradation in subsurface is hin- dered by the presence of much more rapidly degrading ethanol. Contaminant distribu- tion and degradation in the subsurface can be monitored by several physical, chemical and microbiological methodologies. This study aims to evaluate and follow the degra- dation of a gasoline-ethanol mixture in a residual undisturbed tropical soil from Rio de Janeiro. Bioventing was used to enhance microbial degradation. Shifts in bacte- rial culturable populations due to contamination and treatment effects were followed by conventional microbiology methods. Ground Penetrating Radar (GPR) measure- ments, which consist of the emission of electro-magnetic waves into the soil, yield a visualisation of contaminant degradation because of changes in soil conductivity due to microbial action on the pollutants. Chemical analyses will measure contaminant residue in soil. Our results disclosed contamination impact as well as bioventing stim- ulation on soil culturable heterotrophic bacterial populations. This multidisciplinary approach allows for a wider evaluation of processes occurring in soil.

  4. Microbial degradation of dissolved proteins in seawater

    International Nuclear Information System (INIS)

    Hollibaugh, J.T.; Azam, F.

    1983-01-01

    An experimental protocol using radiolabeled proteins was developed to investigate the rates and mechanisms whereby dissolved proteins are degraded in natural marine plankton communities. The results of field observations and laboratory experiments indicate that proteins are degraded by a particle-bound, thermolabile system, presumably bacteria-associated enzymes, with an apparent half-saturation constant of ca. 25 μg bovine serum albumin (BSA) per liter. Gel permeation chromatography indicated that peptides of chain length intermediate between BSA and the final products of degradation (MW<700) do not accumulate in the medium. Competition experiments indicate that the system is relatively nonspecific. Turnover rates for the protein pool in samples collected in the Southern California Bight were of the same order of magnitude as the turnover rate of the L-leucine pool and were correlated with primary productivity, chlorophyll a concentrations, bacterial abundance and biomass, and L-leucine turnover rate. These data suggest that amino acids derived from proteins are utilized preferentially and do not completely mix with the amino acids in the bulk phase

  5. Chemotaxis and degradation of organophosphate compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation

    OpenAIRE

    Pailan, Santanu; Saha, Pradipta

    2015-01-01

    An organophosphate (OP) degrading chemotactic bacterial strain BUR11 isolated from an agricultural field was identified as a member of Pseudomonas genus on the basis of its 16S rRNA gene sequence. The strain could utilize parathion, chlorpyrifos and their major hydrolytic intermediates as sole source of carbon for its growth and exhibited positive chemotactic response towards most of them. Optimum concentration of parathion for its growth was recorded to be 200 ppm and 62% of which was degrad...

  6. Spectroscopic characterization of cell membranes and their constituents of the plant-associated soil bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Antonyuk, L. P.; Matora, L. Yu.; Serebrennikova, O. B.; Sumaroka, M. V.; Colina, M.; Renou-Gonnord, M.-F.; Ignatov, V. V.

    1999-05-01

    Structural and compositional features of bacterial membranes and some of their isolated constituents (cell surface lipopolysaccharide, phospholipids) of the plant-growth-promoting diazotrophic rhizobacterium Azospirillum brasilense (wild-type strain Sp245) were characterized using Fourier transform infrared (FTIR) spectroscopy and some other techniques. FTIR spectra of the cell membranes were shown to comprise the main vibration modes of the relevant lipopolysaccharide and protein components which are believed to be involved in associative plant-bacterium interactions, as well as of phospholipid constituents. The role and functions of metal cations in the structural organization and physicochemical properties of bacterial cell membranes are also discussed considering their accumulation in the membranes from the culture medium.

  7. Biodegradation of petroleum oil by certain bacterial strains

    International Nuclear Information System (INIS)

    Zakaria, A.E.M.

    1998-01-01

    Balaeam base oil was chosen as a model oil in the present study through which some abiotic treatments were implemented aiming at attenuating its naphthenic and aromatic contents; such as the adsorptive technique and the gamma-irradiation technique . In an attempt to apply the biodegrading bacteria as oil pollutant bio indicators upon coastal water samples, a correlation between hydrocarbon concentration and the relative enumeration of the bacterial oil degraders was detected for some litter locations along the mediterranean Sea shore west and east Delta, Suez canal. and suez gulf. 24 petroleum utilizing bacterial isolates were isolated from El-Zayteia port (suez) and identified by morphological, physiological and environmental examination . the biodegradation capacity of the isolates towards the chosen model oil and its separate components was studied in comparison with the standard isolate pseudomonas aeruginosa. Further, the role of the bacterial plasmids taking part in the biodegradation process was investigated as well

  8. Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus.

    Science.gov (United States)

    Ruffner, Beat; Péchy-Tarr, Maria; Höfte, Monica; Bloemberg, Guido; Grunder, Jürg; Keel, Christoph; Maurhofer, Monika

    2015-08-16

    Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution.

  9. Driving factors of the communities of phytophagous and predatory mites in a physic nut plantation and spontaneous plants associated.

    Science.gov (United States)

    Cruz, Wilton P; Sarmento, Renato A; Teodoro, Adenir V; Neto, Marçal P; Ignacio, Maíra

    2013-08-01

    Seasonal changes in climate and plant diversity are known to affect the population dynamics of both pests and natural enemies within agroecosystems. In Brazil, spontaneous plants are usually tolerated in small-scale physic nut plantations over the year, which in turn may mediate interactions between pests and natural enemies within this agroecosystem. Here, we aimed to access the influence of seasonal variation of abiotic (temperature, relative humidity and rainfall) and biotic (diversity of spontaneous plants, overall richness and density of mites) factors on the communities of phytophagous and predatory mites found in a physic nut plantation and its associated spontaneous plants. Mite sampling was monthly conducted in dicotyledonous and monocotyledonous leaves of spontaneous plants as well as in physic nut shrubs over an entire year. In the dry season there was a higher abundance of phytophagous mites (Tenuipalpidae, Tarsonemidae and Tetranychidae) on spontaneous plants than on physic nut shrubs, while predatory mites (Phytoseiidae) showed the opposite pattern. The overall density of mites on spontaneous plants increased with relative humidity and diversity of spontaneous plants. Rainfall was the variable that most influenced the density of mites inhabiting physic nut shrubs. Agroecosystems comprising spontaneous plants associated with crops harbour a rich mite community including species of different trophic levels which potentially benefit natural pest control due to increased diversity and abundance of natural enemies.

  10. Molecular taxonomic analysis of the plant associations of adult pollen beetles (Nitidulidae: Meligethinae), and the population structure of Brassicogethes aeneus.

    Science.gov (United States)

    Ouvrard, Pierre; Hicks, Damien M; Mouland, Molly; Nicholls, James A; Baldock, Katherine C R; Goddard, Mark A; Kunin, William E; Potts, Simon G; Thieme, Thomas; Veromann, Eve; Stone, Graham N

    2016-12-01

    Pollen beetles (Nitidulidae: Meligethinae) are among the most abundant flower-visiting insects in Europe. While some species damage millions of hectares of crops annually, the biology of many species is little known. We assessed the utility of a 797 base pair fragment of the cytochrome oxidase 1 gene to resolve molecular operational taxonomic units (MOTUs) in 750 adult pollen beetles sampled from flowers of 63 plant species sampled across the UK and continental Europe. We used the same locus to analyse region-scale patterns in population structure and demography in an economically important pest, Brassicogethes aeneus. We identified 44 Meligethinae at ∼2% divergence, 35 of which contained published sequences. A few specimens could not be identified because the MOTUs containing them included published sequences for multiple Linnaean species, suggesting either retention of ancestral haplotype polymorphism or identification errors in published sequences. Over 90% of UK specimens were identifiable as B. aeneus. Plant associations of adult B. aeneus were found to be far wider taxonomically than for their larvae. UK B. aeneus populations showed contrasting affiliations between the north (most similar to Scandinavia and the Baltic) and south (most similar to western continental Europe), with strong signatures of population growth in the south.

  11. Plumage bacterial assemblages in a breeding wild passerine: relationships with ecological factors and body condition.

    Science.gov (United States)

    Saag, Pauli; Tilgar, Vallo; Mänd, Raivo; Kilgas, Priit; Mägi, Marko

    2011-05-01

    Microorganisms have been shown to play an important role in shaping the life histories of animals, and it has recently been suggested that feather-degrading bacteria influence the trade-off between parental effort and self-preening behavior in birds. We studied a wild breeding population of great tits (Parus major) to explore habitat-, seasonal-, and sex-related variation in feather-degrading and free-living bacteria inhabiting the birds' yellow ventral feathers and to investigate associations with body condition. The density and species richness of bacterial assemblages was studied using flow cytometry and ribosomal intergenic spacer analysis. The density of studied bacteria declined between the nest-building period and the first brood. The number of bacterial phylotypes per bird was higher in coniferous habitat, while bacterial densities were higher in deciduous habitat. Free-living bacterial density was positively correlated with female mass; conversely, there was a negative correlation between attached bacterial density and female mass during the period of peak reproductive effort. Bacterial species richness was sex dependent, with more diverse bacterial assemblages present on males than females. Thus, this study revealed that bacterial assemblages on the feathers of breeding birds are affected both by life history and ecological factors and are related to body condition.

  12. Bacterial communities in sediment of a Mediterranean marine protected area.

    Science.gov (United States)

    Catania, Valentina; Sarà, Gianluca; Settanni, Luca; Quatrini, Paola

    2017-04-01

    Biodiversity is crucial in preservation of ecosystems, and bacterial communities play an indispensable role for the functioning of marine ecosystems. The Mediterranean marine protected area (MPA) "Capo Gallo-Isola delle Femmine" was instituted to preserve marine biodiversity. The bacterial diversity associated with MPA sediment was compared with that from sediment of an adjacent harbour exposed to intense nautical traffic. The MPA sediment showed higher diversity with respect to the impacted site. A 16S rDNA clone library of the MPA sediment allowed the identification of 7 phyla: Proteobacteria (78%), Firmicutes (11%), Acidobacteria (3%), Actinobacteria (3%), Bacteroidetes (2%), Planctomycetes (2%), and Cyanobacteria (1%). Analysis of the hydrocarbon (HC)-degrading bacteria was performed using enrichment cultures. Most of the MPA sediment isolates were affiliated with Gram-positive G+C rich bacteria, whereas the majority of taxa in the harbour sediment clustered with Alpha- and Gammaproteobacteria; no Gram-positive HC degraders were isolated from the harbour sediment. Our results show that protection probably has an influence on bacterial diversity, and suggest the importance of monitoring the effects of protection at microbial level as well. This study creates a baseline of data that can be used to assess changes over time in bacterial communities associated with a Mediterranean MPA.

  13. Drift Degradation Analysis

    International Nuclear Information System (INIS)

    G.H. Nieder-Westermann

    2005-01-01

    The outputs from the drift degradation analysis support scientific analyses, models, and design calculations, including the following: (1) Abstraction of Drift Seepage; (2) Seismic Consequence Abstraction; (3) Structural Stability of a Drip Shield Under Quasi-Static Pressure; and (4) Drip Shield Structural Response to Rock Fall. This report has been developed in accordance with ''Technical Work Plan for: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The drift degradation analysis includes the development and validation of rockfall models that approximate phenomenon associated with various components of rock mass behavior anticipated within the repository horizon. Two drift degradation rockfall models have been developed: the rockfall model for nonlithophysal rock and the rockfall model for lithophysal rock. These models reflect the two distinct types of tuffaceous rock at Yucca Mountain. The output of this modeling and analysis activity documents the expected drift deterioration for drifts constructed in accordance with the repository layout configuration (BSC 2004 [DIRS 172801])

  14. Radiation degradation of silk

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Kazushige; Kamiishi, Youichi [Textile Research Institute of Gunma, Kiryu, Gunma (Japan); Takeshita, Hidefumi; Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Silk fibroin powder was prepared from irradiated silk fibroin fiber by means of only physical treatment. Silk fibroin fiber irradiated with an accelerated electron beam in the dose range of 250 - 1000 kGy was pulverized by using a ball mill. Unirradiated silk fibroin fiber was not pulverized at all. But the more irradiation was increased, the more the conversion efficiency from fiber to powder was increased. The conversion efficiency of silk fibroin fiber irradiated 1000 kGy in oxygen was 94%. Silk fibroin powder shows remarkable solubility, which dissolved 57% into water of ambient temperature. It is a very interesting phenomenon that silk fibroin which did not treat with chemicals gets solubility only being pulverized. In order to study mechanism of solubilization of silk fibroin powder, amino acid component of soluble part of silk fibroin powder was analyzed. The more irradiation dose up, the more glycine or alanine degraded, but degradation fraction reached bounds about 50%. Other amino acids were degraded only 20% even at the maximum. To consider crystal construction of silk fibroin, it is suggested that irradiation on silk fibroin fiber selectively degrades glycine and alanine in amorphous region, which makes it possible to pulverize and to dissolve silk fibroin powder. (author)

  15. Microbial Hydrocarbon and ToxicPollutant Degradation Method

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, Dietrich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Janabi, Mustafa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); O' Neil, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Budinger, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-08-16

    The goal of this project is to determine optimum conditions for bacterial oxidation of hydrocarbons and long-chain alkanes that are representative of petroleum contamination of the environment. Polycyclic Aromatic Hydrocarbons (PAHs) are of concern because of their toxicity, low volatility, and resistance to microbial degradation, especially under anaerobic conditions. The uniqueness of our approach is to use carbon-11 in lieu of the traditional use of carbon-14.

  16. Detection of pump degradation

    International Nuclear Information System (INIS)

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented

  17. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  18. Towards a universal microbial inoculum for dissolved organic carbon degradation experiments

    Science.gov (United States)

    Pastor, Ada; Catalán, Núria; Gutiérrez, Carmen; Nagar, Nupur; Casas-Ruiz, Joan P.; Obrador, Biel; von Schiller, Daniel; Sabater, Sergi; Petrovic, Mira; Borrego, Carles M.; Marcé, Rafael

    2017-04-01

    Dissolved organic carbon (DOC) is the largest biologically available pool of organic carbon in aquatic ecosystems and its degradation along the land-to-ocean continuum has implications for carbon cycling from local to global scales. DOC biodegradability is usually assessed by incubating filtered water inoculated with native microbial assemblages in the laboratory. However, the use of a native inoculum from several freshwaters, without having a microbial-tailored design, hampers our ability to tease apart the relative contribution of the factors driving DOC degradation from the effects of local microbial communities. The use of a standard microbial inoculum would allow researchers to disentangle the drivers of DOC degradation from the metabolic capabilities of microbial communities operating in situ. With this purpose, we designed a bacterial inoculum to be used in experiments of DOC degradation in freshwater habitats. The inoculum is composed of six bacterial strains that easily grow under laboratory conditions, possess a versatile metabolism and are able to grow under both aerobic and anaerobic conditions. The mixed inoculum showed higher DOC degradation rates than those from their isolated bacterial components and the consumption of organic substrates was consistently replicated. Moreover, DOC degradation rates obtained using the designed inoculum were responsive across a wide range of natural water types differing in DOC concentration and composition. Overall, our results show the potential of the designed inoculum as a tool to discriminate between the effects of environmental drivers and intrinsic properties of DOC on degradation dynamics.

  19. Radiology of bacterial pneumonia

    International Nuclear Information System (INIS)

    Vilar, Jose; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-01-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings

  20. Radiology of bacterial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Jose E-mail: vilar_jlu@gva.es; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-08-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings.

  1. Isolation of Methylophaga spp. from Marine Dimethylsulfide-Degrading Enrichment Cultures and Identification of Polypeptides Induced during Growth on Dimethylsulfide▿

    OpenAIRE

    Schäfer, Hendrik

    2007-01-01

    Dimethylsulfide (DMS)-degrading enrichment cultures were established from samples of coastal seawater, nonaxenic Emiliania huxleyi cultures, and mixed marine methyl halide-degrading enrichment cultures. Bacterial populations from a broad phylogenetic range were identified in the mixed DMS-degrading enrichment cultures by denaturing gradient gel electrophoresis (DGGE). Sequences of dominant DGGE bands were similar to those of members of the genera Methylophaga and Alcanivorax. Several closely ...

  2. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.

    Science.gov (United States)

    Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W

    2017-06-01

    Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.

  3. Transformation of pWWO in Rhizobium leguminosarum DPT to Engineer Toluene Degrading Ability for Rhizoremediation

    OpenAIRE

    Goel, Garima; Pandey, Piyush; Sood, Anchal; Bisht, Sandeep; Maheshwari, D. K.; Sharma, G. D.

    2011-01-01

    Rhizoremediation of organic xenobiotics is based on interactions between plants and their associated micro-organisms. The present work was designed to engineer a bacterial system having toluene degradation ability along with plant growth promoting characteristics for effective rhizoremediation. pWWO harboring the genes responsible for toluene breakdown was isolated from Pseudomonas putida MTCC 979 and successfully transformed in Rhizobium DPT. This resulted in a bacterial strain (DPTT) which ...

  4. Investigating the in vitro and in vivo angiogenic activity of five Philippine medicinal plants associated with wound healing properties

    International Nuclear Information System (INIS)

    Lacson, Mona Lisa B.; Macahig, Rene Angelo S.; Rojas, Nina Rosario L.

    2015-01-01

    Plants have been used since time immemorial to treat many ailments and speed up healing process. Plant parts and extracts have been traditionally used to heal wounds. Angiogenesis is one of the events associated with wound healing. It is a tightly regulated process of blood vessel formation and an important target for diseases like coronary infarction, ischemia and stroke. Several in vitro and in vivo methods have been developed to assess the angiogenic activity of different compounds. These include the chorio-allantaoic membrane (CAM) assay which uses the egg's gas exchange membrane to assess the angiogenic potential of a substance and the tube formation assay which uses endothelial cells grown in the lab. Aqueous ethanolic extracts of five Philippine medicinal plants associated with wound healing were used in the study. Preliminary phytochemical screening using spray raegents and toxicity test using brine shrimp (Artemia salina) nauplii was done. 10% of the computed LC 5 0 value was used to screen the angiogenic potential of the plant extracts using human umbilical vein endothelial cells (HUVECs) in an in vitro tube formation assay and in vivo chorio-allantoic membrane (CAM) assay. Phorbol myristate (PMA) a known pro-angiogenic compound was used as positive control. Initial phytochemical screening showed that the crude enthanolic extracts of the leaves of the five contain flavonoids, steroids, phenols, saponins, alkanoids, coumarins, anthranoids, anthraquinones, sugars and essential oils. Brine shrimp lethality assay revealed that the plants used were not toxic to Artemia salina nauplii at 1000 μg/mL. In vitro tube formation assay revealed the crude ethanolic extracts of the leaves of M. indica showed the greatest angiogenic activity, closely followed by C. pubescens, T. catappa, A. barbadensis and C. odorata. The effect of the crude ethanolic extracts of the plants on blood vessel formation in the in vivo CAM model showed A. barbadensis with the highest

  5. TALSPEAK Solvent Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Leigh R. Martin; Bruce J. Mincher

    2009-09-01

    Understanding the radiolytic degradation behavior of organic molecules involved in new or existing schemes for the recycle of used nuclear fuels is of significant interest for sustaining a closed nuclear fuel cycle. Here we have conducted several lines of investigation to begin understanding the effects of radiolysis on the aqueous phase of the TALSPEAK process for the separation of the trivalent lanthanides from the trivalent actinides. Using the 60-Co irradiator at the INL, we have begun to quantify the effects of radiation on the aqueous phase complexants used in this separation technique, and how this will affect the actinide lanthanide separation factor. In addition we have started to develop methodologies for stable product identification, a key element in determining the degradation pathways. We have also introduced a methodology to investigate the effects of alpha radiolysis that has previously received limited attention.

  6. Rapidly Degradable Pyrotechnic System

    Science.gov (United States)

    2009-02-01

    material system (structural polymer and degradation agent ) for producing a high strength, non-corroding, highly inert, environmentally safe, extended...polymer sites in the active enzyme center differs dramatically between alkyl and aromatic polyesters. More specifically, as the degree of backbone...capped and centrifuged at 3,000 g. This procedure was repeated twice. To the remaining biomass pellet 15 mL of 1 mg/mL solution of N-ethyl-N- nitrosourea

  7. Radiation degradation of chitosan

    International Nuclear Information System (INIS)

    Norzita Yacob; Maznah Mahmud; Norhashidah Talip; Kamarudin Bahari; Kamaruddin Hashim; Khairul Zaman Dahlan

    2010-01-01

    In order to obtain an oligo chitosan, degradation of chitosan s were carried out in solid state and liquid state. The effects of an irradiation on the molecular weight and viscosity of the chitosan were investigated using Ubbelohde Capillary Viscometer and Brookfield Viscometer respectively. The molecular weight and viscosity of the chitosan s were decreased with an increase in the irradiation dose. In the presence of hydrogen peroxide, the molecular weight of chitosan can be further decreased. (author)

  8. Construction and applications of DNA probes for detection of polychlorinated biphenyl-degrading genotypes in toxic organic-contaminated soil environments

    International Nuclear Information System (INIS)

    Walia, S.; Khan, A.; Rosenthal, N.

    1990-01-01

    Several DNA probes for polychlorinated biphenyl (PCB)-degrading genotypes were constructed from PCB-degrading bacteria. These laboratory-engineered DNA probes were used for the detection, enumeration, and isolation of specific bacteria degrading PCBs. Dot blot analysis of purified DNA from toxic organic chemical-contaminated soil bacterial communities showed positive DNA-DNA hybridization with a 32P-labeled DNA probe (pAW6194, cbpABCD). Less than 1% of bacterial colonies isolated from garden topsoil and greater than 80% of bacteria isolated from PCB-contaminated soils showed DNA homologies with 32P-labeled DNA probes. Some of the PCB-degrading bacterial isolates detected by the DNA probe method did not show biphenyl clearance. The DNA probe method was found to detect additional organisms with greater genetic potential to degrade PCBs than the biphenyl clearance method did. Results from this study demonstrate the usefulness of DNA probes in detecting specific PCB-degrading bacteria, abundance of PCB-degrading genotypes, and genotypic diversity among PCB-degrading bacteria in toxic chemical-polluted soil environments. We suggest that the DNA probe should be used with caution for accurate assessment of PCB-degradative capacity within soils and further recommend that a combination of DNA probe and biodegradation assay be used to determine the abundance of PCB-degrading bacteria in the soil bacterial community

  9. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  10. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1995-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  11. WEATHERABILITY OF ENHANCED DEGRADABLE PLASTICS

    Science.gov (United States)

    The main objective of this study was to assess the performance and the asociated variability of several selected enhanced degradable plastic materials under a variety of different exposure conditions. Other objectives were to identify the major products formed during degradation ...

  12. Biodegradation of di-n-butyl phthalate by bacterial consortium LV-1 enriched from river sludge.

    Directory of Open Access Journals (Sweden)

    Yangyang Wang

    Full Text Available A stable bacterial consortium (LV-1 capable of degrading di-n-butyl phthalate (DBP was enriched from river sludge. Community analysis revealed that the main families of LV-1 are Brucellaceae (62.78% and Sinobacteraceae (14.83%, and the main genera of LV-1 are Brucella spp. (62.78% and Sinobacter spp. (14.83%. The optimal pH and temperature for LV-1 to degrade DBP were pH 6.0 and 30°C, respectively. Inoculum size influenced the degradation ratio when the incubation time was < 24 h. The initial concentration of DBP also influenced the degradation rates of DBP by LV-1, and the degradation rates ranged from 69.0-775.0 mg/l/d in the first 24 h. Degradation of DBP was best fitted by first-order kinetics when the initial concentration was < 300 mg/l. In addition, Cd2+, Cr6+, and Zn2+ inhibited DBP degradation by LV-1 at all considered concentrations, but low concentrations of Pb2+, Cu2+, and Mn2+ enhanced DBP degradation. The main intermediates (mono-ethyl phthalate [MEP], mono-butyl phthalate [MBP], and phthalic acid [PA] were identified in the DBP degradation process, thus a new biochemical pathway of DBP degradation is proposed. Furthermore, LV-1 also degraded other phthalates with shorter ester chains (DMP, DEP, and PA.

  13. Bacterial community survey of sediments at Naracoorte Caves, Australia

    Directory of Open Access Journals (Sweden)

    Ball Andrew S.

    2012-07-01

    Full Text Available Bacterial diversity in sediments at UNESCO World Heritage listed Naracoorte Caves was surveyed as part of an investigation carried out in a larger study on assessing microbial communities in caves. Cave selection was based on tourist accessibility; Stick Tomato and Alexandra Cave (> 15000 annual visits and Strawhaven Cave was used as control (no tourist access. Microbial analysis showed that Bacillus was the most commonly detected microbial genus by culture dependent and independent survey of tourist accessible and inaccessible areas of show (tourist accessible and control caves. Other detected sediment bacterial groups were assigned to the Firmicutes, Actinobacteria and Proteobacteria. The survey also showed differences in bacterial diversity in caves with human access compared to the control cave with the control cave having unique microbial sequences (Acinetobacter, Agromyces, Micrococcus and Streptomyces. The show caves had higher bacterial counts, different 16S rDNA based DGGE cluster patterns and principal component groupings compared to Strawhaven. Different factors such as human access, cave use and configurations could have been responsible for the differences observed in the bacterial community cluster patterns (tourist accessible and inaccessible areas of these caves. Cave sediments can therefore act as reservoirs of microorganisms. This might have some implications on cave conservation activities especially if these sediments harbor rock art degrading microorganisms in caves with rock art.

  14. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.

    Science.gov (United States)

    Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael

    2014-09-01

    Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution.

    Science.gov (United States)

    Janusz, Grzegorz; Pawlik, Anna; Sulej, Justyna; Swiderska-Burek, Urszula; Jarosz-Wilkolazka, Anna; Paszczynski, Andrzej

    2017-11-01

    Extensive research efforts have been dedicated to describing degradation of wood, which is a complex process; hence, microorganisms have evolved different enzymatic and non-enzymatic strategies to utilize this plentiful plant material. This review describes a number of fungal and bacterial organisms which have developed both competitive and mutualistic strategies for the decomposition of wood and to thrive in different ecological niches. Through the analysis of the enzymatic machinery engaged in wood degradation, it was possible to elucidate different strategies of wood decomposition which often depend on ecological niches inhabited by given organism. Moreover, a detailed description of low molecular weight compounds is presented, which gives these organisms not only an advantage in wood degradation processes, but seems rather to be a new evolutionatory alternative to enzymatic combustion. Through analysis of genomics and secretomic data, it was possible to underline the probable importance of certain wood-degrading enzymes produced by different fungal organisms, potentially giving them advantage in their ecological niches. The paper highlights different fungal strategies of wood degradation, which possibly correlates to the number of genes coding for secretory enzymes. Furthermore, investigation of the evolution of wood-degrading organisms has been described. © FEMS 2017.

  16. Degradation and toxicity of phenyltin compounds in soil

    International Nuclear Information System (INIS)

    Paton, G.I.; Cheewasedtham, W.; Marr, I.L.; Dawson, J.J.C.

    2006-01-01

    Although the fate of organotins has been widely studied in the marine environment, fewer studies have considered their impact in terrestrial systems. The degradation and toxicity of triphenyltin in autoclaved, autoclaved-reinoculated and non-sterilised soil was studied in a 231 day incubation experiment following a single application. Degradation and toxicity of phenyltin compounds in soil was monitored using both chemical and microbial (lux-based bacterial biosensors) methods. Degradation was significantly slower in the sterile soil when compared to non-sterilised soils. In the non-sterilised treatment, the half-life of triphenyltin was 27 and 33 days at amendments of 10 and 20 mg Sn kg -1 , respectively. As initial triphenyltin degradation occurred, there was a commensurate increase in toxicity, reflecting the fact that metabolites produced may be both more bioavailable and toxic to the target receptor. Over time, the toxicity reduced as degradation proceeded. The toxicity impact on non-target receptors for these compounds may be significant. - Triphenyltin degradative metabolites cause toxic responses to biosensors

  17. Fungal degradation of pesticides - construction of microbial consortia for bioremediation

    DEFF Research Database (Denmark)

    Ellegaard-Jensen, Lea

    in groundwater contamination. New technologies are therefore needed for cleaning up contaminated soil and water resources. This PhD was part of the project entitled Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) where the overall aim is to develop new technologies for bioremediation...... of pesticide contaminated soil and water. The objectives of this PhD were to investigate fungal degradation of pesticides and following to construct microbial consortia for bioremediation. In Manuscript I the fungal degradation of the phenylurea herbicide diuron was studied. Isolates of soil fungi of the genus...... slightly enhanced BAM distribution. From this work it is evident that the fungal-bacterial consortium is capable of enhancing BAM-degradation in unsaturated systems, and may therefore be a promising application for soil bioremediation. In Manuscript III two- and three-member consortia were constructed...

  18. Bacterial communities in batch and continuous-flow wetlands treating the herbicide S-metolachlor

    International Nuclear Information System (INIS)

    Elsayed, O.F.; Maillard, E.; Vuilleumier, S.; Imfeld, G.

    2014-01-01

    Knowledge of wetland bacterial communities in the context of pesticide contamination and hydrological regime is scarce. We investigated the bacterial composition in constructed wetlands receiving Mercantor Gold ® contaminated water (960 g L −1 of the herbicide S-metolachlor, > 80% of the S-enantiomer) operated under continuous-flow or batch modes to evaluate the impact of the hydraulic regime. In the continuous-flow wetland, S-metolachlor mass removal was > 40%, whereas in the batch wetland, almost complete removal of S-metolachlor (93–97%) was observed. Detection of ethanesulfonic and oxanilic acid degradation products further indicated S-metolachlor biodegradation in the two wetlands. The dominant bacterial populations were characterised by terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing. The bacterial profiles evolved during the first 35 days of the experiment, starting from a composition similar to that of inlet water, with the use of nitrate and to a lesser extent sulphate and manganese as terminal electron acceptors for microbial metabolism. Proteobacteria were the most abundant phylum, with Beta-, Alpha- and Gammaproteobacteria representing 26%, 19% and 17% respectively of total bacterial abundance. Bacterial composition in wetland water changed gradually over time in continuous-flow wetland and more abruptly in the batch wetland. Differences in overall bacterial water structure in the two systems were modest but significant (p = 0.008), and S-metolachlor, nitrate, and total inorganic carbon concentrations correlated with changes in the bacterial profiles. Together, the results highlight that bacterial composition profiles and their dynamics may be used as bioindicators of herbicide exposure and hydraulic disturbances in wetland systems. - Highlights: • We evaluated the bacterial composition in wetlands treating S-metolachlor • Hydraulic regime impacted biogeochemical processes and S-metolachlor removal

  19. Manipulation of host membranes by the bacterial pathogens Listeria, Francisella, Shigella and Yersinia.

    Science.gov (United States)

    Pizarro-Cerdá, Javier; Charbit, Alain; Enninga, Jost; Lafont, Frank; Cossart, Pascale

    2016-12-01

    Bacterial pathogens display an impressive arsenal of molecular mechanisms that allow survival in diverse host niches. Subversion of plasma membrane and cytoskeletal functions are common themes associated to infection by both extracellular and intracellular pathogens. Moreover, intracellular pathogens modify the structure/stability of their membrane-bound compartments and escape degradation from phagocytic or autophagic pathways. Here, we review the manipulation of host membranes by Listeria monocytogenes, Francisella tularensis, Shigella flexneri and Yersinia spp. These four bacterial model pathogens exemplify generalized strategies as well as specific features observed during bacterial infection processes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Bacterial community analysis in chlorpyrifos enrichment cultures via DGGE and use of bacterial consortium for CP biodegradation.

    Science.gov (United States)

    Akbar, Shamsa; Sultan, Sikander; Kertesz, Michael

    2014-10-01

    The organophosphate pesticide chlorpyrifos (CP) has been used extensively since the 1960s for insect control. However, its toxic effects on mammals and persistence in environment necessitate its removal from contaminated sites, biodegradation studies of CP-degrading microbes are therefore of immense importance. Samples from a Pakistani agricultural soil with an extensive history of CP application were used to prepare enrichment cultures using CP as sole carbon source for bacterial community analysis and isolation of CP metabolizing bacteria. Bacterial community analysis (denaturing gradient gel electrophoresis) revealed that the dominant genera enriched under these conditions were Pseudomonas, Acinetobacter and Stenotrophomonas, along with lower numbers of Sphingomonas, Agrobacterium and Burkholderia. Furthermore, it revealed that members of Bacteroidetes, Firmicutes, α- and γ-Proteobacteria and Actinobacteria were present at initial steps of enrichment whereas β-Proteobacteria appeared in later steps and only Proteobacteria were selected by enrichment culturing. However, when CP-degrading strains were isolated from this enrichment culture, the most active organisms were strains of Acinetobacter calcoaceticus, Pseudomonas mendocina and Pseudomonas aeruginosa. These strains degraded 6-7.4 mg L(-1) day(-1) of CP when cultivated in mineral medium, while the consortium of all four strains degraded 9.2 mg L(-1) day(-1) of CP (100 mg L(-1)). Addition of glucose as an additional C source increased the degradation capacity by 8-14 %. After inoculation of contaminated soil with CP (200 mg kg(-1)) disappearance rates were 3.83-4.30 mg kg(-1) day(-1) for individual strains and 4.76 mg kg(-1) day(-1) for the consortium. These results indicate that these organisms are involved in the degradation of CP in soil and represent valuable candidates for in situ bioremediation of contaminated soils and waters.

  1. Bacterial diversity at different stages of the composting process

    Directory of Open Access Journals (Sweden)

    Paulin Lars

    2010-03-01

    Full Text Available Abstract Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants.

  2. Ecodynamics of oil-degrading bacteria and significance of marine mixed populations in the degradation of petroleum compounds

    International Nuclear Information System (INIS)

    Venkateswaran, Kasthuri; Tanaka, Hiroki; Komukai, Shyoko

    1993-01-01

    Ecological studies, screening of hydrocarbon-degrading bacteria, and studies of the potentials of various single and mixed bacterial populations in the utilization of petroleum compounds were carried out to understand the microbial hydrocarbon degradation process in marine ecosystems. Populations of hydrocarbon utilizers were larger in coastal regions than in pelagic environments. Ecological observations indicated that oil-degrading bacteria were ubiquitously distributed in both temperate and tropical environments, irrespective of oil-polluted and unpolluted ecosystem. Bacteria were grown with n-tet-radecane, pristane, propylbenzene, phenanthrene, and crude oil as the sole carbon source; and substrate specificities of the purified strains were characterized. Based on the assimilation characteristics of the isolated strains, an artificial mixed-culture system was constructed. Biodegradation of crude oil by the natural mixed population was found to be higher than by the artificial mixed population. However, when some of the substrate-specific degraders were artificially mixed with natural microflora, the degradation of hard-to-degrade aromatic hydrocarbon fractions of crude oil was enhanced

  3. Energetics of bacterial adhesion

    International Nuclear Information System (INIS)

    Loosdrecht, M.C.M. van; Zehnder, A.J.B.

    1990-01-01

    For the description of bacterial adhesion phenomena two different physico-chemical approaches are available. The first one, based on a surface Gibbs energy balance, assumes intimate contact between the interacting surfaces. The second approach, based on colloid chemical theories (DLVO theory), allows for two types of adhesion: 1) secondary minimum adhesion, which is often weak and reversible, and 2) irreversible primary minimum adhesion. In the secondary minimum adhesion a thin water film remains present between the interacting surface. The merits of both approaches are discussed in this paper. In addition, the methods available to measure the physico-chemical surface characteristics of bacteria and the influence of adsorbing (in)organic compounds, extracellular polymers and cell surface appendages on adhesion are summarized. (author) 2 figs., 1 tab., 50 refs

  4. Biosensors of bacterial cells.

    Science.gov (United States)

    Burlage, Robert S; Tillmann, Joshua

    2017-07-01

    Biosensors are devices which utilize both an electrical component (transducer) and a biological component to study an environment. They are typically used to examine biological structures, organisms and processes. The field of biosensors has now become so large and varied that the technology can often seem impenetrable. Yet the principles which underlie the technology are uncomplicated, even if the details of the mechanisms are elusive. In this review we confine our analysis to relatively current advancements in biosensors for the detection of whole bacterial cells. This includes biosensors which rely on an added labeled component and biosensors which do not have a labeled component and instead detect the binding event or bound structure on the transducer. Methods to concentrate the bacteria prior to biosensor analysis are also described. The variety of biosensor types and their actual and potential uses are described. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome.......Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the Par...

  6. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits...... and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...

  7. Anaerobes in bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Aggarwal A

    2003-01-01

    Full Text Available Four hundred high vaginal swabs were taken from patients attending gynaecology and obstetrics department of Govt. medical college, Amritsar. The patients were divided into four groups i.e. women in pregnancy (Group I, in labour/post partum (Group II, with abnormal vaginal discharge or bacterial vaginosis (Group III and asymptomatic women as control (Group IV. Anaerobic culture of vaginal swabs revealed that out of 400 cases, 212(53% were culture positive. Maximum isolation of anaerobes was in group III (84% followed by group II (56%, group I (36% and control group (15%. Gram positive anaerobes (69.2% out numbered gram negatives (30.8%. Among various isolates Peptostreptococcus spp. and Bacteroides spp. were predominant.

  8. Pseudomonas syringae evades host Immunity by degrading flagellin monomers with alkaline protease AprA

    OpenAIRE

    Pel, M.J.C.; Van Dijken, A.J.H.; Bardoel, B.W.; Seidl, M.F; Van der Ent, S.; Van Strijp, J.A.G.

    2014-01-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant athogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantl...

  9. Effectiveness of a model constructed wetland system containing Cyperus papyrus in degrading diesel oil

    Science.gov (United States)

    Harbowo, Danni Gathot; Choesin, Devi Nandita

    2014-03-01

    Synergism between wetland systems and the provision of degrading bacterial inoculum is now being developed for the recovery of areas polluted waters of pollutants. In connection with the frequent cases of diesel oil pollution in the waters of Indonesia, we need a way of water treatment as an efficient. In this study conducted a series of tests to develop an construcred wetland design that can effectively degrade diesel oil. Tested five systems: blanko (A), substrated, without bacterial inoculums, and vegetation (B); with the addition of inoculum (C); subsrated and vegetated (D); substrated and vegetated with the addition of inoculum (E). Vegetation used in this study is Cyperus papyrus because it has the ability to absorb pollutants. Inoculum used was Pseudomonas aeruginosa and Enterobacter aerogenes which is a bacteria degrading organic compounds commonly found in water. To measure the effectiveness of the system, use several indicators to see the degradation of pollutants, namely changes in viscosity, surface tension of pollutants, and the emergence of compound degradation. Based on the results of the study can be determined that the substrated and vegetated system with Cyperus papyrus inoculum (E) was considered the most capable of degrading diesel oil due to the large changes in all parameters. In the system E, 40.6% increase viscosity, surface tension decreased 32.7%, the appearance of degradation compounds with relatively 3614.7 points, and increased to 227.8% TDS. In addition the environmental conditions in the system E also supports the growth of vegetation and degrading microbes.

  10. Isolation and identification of Profenofos degrading bacteria

    Directory of Open Access Journals (Sweden)

    Saadatullah Malghani

    2009-12-01

    Full Text Available An enrichment culture technique was used to isolate bacterial strains responsible for the biodegradation of profenofos in a soil from Hubei province of central China. Two pure bacterial cultures, named W and Y, were isolated and subsequently characterized by sequencing of 16S rRNA genes and biochemical tests. Isolate W showed 96% similarity to the 16S rRNA gene of a Pseudomonas putida unlike Y which showed 99% similarity to the 16S rRNA gene of Burkholderia gladioli. Both strains grew well at pH 5.5-7.2 with a broad temperature profile ranging from 28º to 36 ºC. Bioremediation of profenofos-contaminated soil was examined using soil treated with 200 ug g-1; profenofos resulted in a higher degradation rate than control soils without inoculation. In a mineral salt medium (FTW reduction in profenofos concentration was 90% within 96 hours of incubation. A literature survey revealed that no data is available regarding the role of Burkholderia gladioli on pesticide biodegradation as well as on profenofos.

  11. Community Profiling of Fusarium in Combination with Other Plant-Associated Fungi in Different Crop Species Using SMRT Sequencing

    Directory of Open Access Journals (Sweden)

    Florian Walder

    2017-11-01

    Full Text Available Fusarium head blight, caused by fungi from the genus Fusarium, is one of the most harmful cereal diseases, resulting not only in severe yield losses but also in mycotoxin contaminated and health-threatening grains. Fusarium head blight is caused by a diverse set of species that have different host ranges, mycotoxin profiles and responses to agricultural practices. Thus, understanding the composition of Fusarium communities in the field is crucial for estimating their impact and also for the development of effective control measures. Up to now, most molecular tools that monitor Fusarium communities on plants are limited to certain species and do not distinguish other plant associated fungi. To close these gaps, we developed a sequencing-based community profiling methodology for crop-associated fungi with a focus on the genus Fusarium. By analyzing a 1600 bp long amplicon spanning the highly variable segments ITS and D1–D3 of the ribosomal operon by PacBio SMRT sequencing, we were able to robustly quantify Fusarium down to species level through clustering against reference sequences. The newly developed methodology was successfully validated in mock communities and provided similar results as the culture-based assessment of Fusarium communities by seed health tests in grain samples from different crop species. Finally, we exemplified the newly developed methodology in a field experiment with a wheat-maize crop sequence under different cover crop and tillage regimes. We analyzed wheat straw residues, cover crop shoots and maize grains and we could reveal that the cover crop hairy vetch (Vicia villosa acts as a potent alternative host for Fusarium (OTU F.ave/tri showing an eightfold higher relative abundance compared with other cover crop treatments. Moreover, as the newly developed methodology also allows to trace other crop-associated fungi, we found that vetch and green fallow hosted further fungal plant pathogens including Zymoseptoria tritici

  12. Bacterial meningitis in immunocompromised patients

    NARCIS (Netherlands)

    van Veen, K.E.B.

    2018-01-01

    Bacterial meningitis is an acute infection of the meninges, in The Netherlands most commonly caused by Streptococcus pneumoniae and Neisseria meningitides. Risk factors for acquiring bacterial meningitis include a decreased function of the immune system. The aim of this thesis was to study

  13. Bacteriële meningitis

    NARCIS (Netherlands)

    Brouwer, M. C.; van de Beek, D.

    2012-01-01

    Bacterial meningitis is a severe disease which affects 35.000 Europeans each year and has a mortality rate of about 20%. During the past 25 years the epidemiology of bacterial meningitis has changed significantly due to the implementation of vaccination against Haemophilus influenzae, Neisseria

  14. Statistical modeling for degradation data

    CERN Document Server

    Lio, Yuhlong; Ng, Hon; Tsai, Tzong-Ru

    2017-01-01

    This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.

  15. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  16. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  17. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.; Arnold, G.; Baer, M.; Langguth, H.; Gey, M.; Huebert, S.

    1985-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given. (author)

  18. Chemical degradation of pentachlorophenol

    International Nuclear Information System (INIS)

    Shukla, S.S.; Shukla, A.; Chandrasekharaiah, M.S.

    1992-01-01

    Industry produces a large volume of hazardous wastes containing pentachlorophenol, a U.S. EPA priority hazardous organic material. The environmentally safe disposal of these PCP-contaminated wastes is a serious problem for the waste management authorities as the current treatment processes are unsatisfactory. In this paper, the results of a feasibility study of chemical degradation and/or solidification methods for PCP-containing wastes. The photochemical decomposition of the PCP in a microemulsion or in micellar media obtained with the help of SDS or CTAB show the greatest promise

  19. Radiation degradation of polymethacrylamide

    International Nuclear Information System (INIS)

    O'Connor, D.J.

    1984-01-01

    The effects of radiation on polymers have been studied for many years. When polymers are subjected to ultraviolet light or ionizing radiation, chain scission and crosslinking are possible. The radiation degradations of several methacrylate type polymers were investigated. The primary polymer studied was polymethacrylamide (PMAAm). Ultraviolet irradiated PMAAm yielded a five line ESR spectrum with 22 gauss splitting which is believed to arise from a polymeric radical ending with a methacrylamide unit. The results obtained indicate that polymethacrylamide is a polymer which undergoes main chain cleavage upon irradiation. As such this polymer may have potential applicability as a positive resist for fabrication of microelectronic devices

  20. In search of a bacterial species definition

    Directory of Open Access Journals (Sweden)

    Edgardo Moreno

    2002-06-01

    seems to be the condition of many intestinal and plant associated bacteria. Genetic drift and speciation in clonal bacteria will depend almost exclusively on mutation and internal genetic rearrangement processes, whereas speciation in reticulate bacteria will depend not only on these processes but in their genetic interactions with other bacterial strains. This uncertainty, which corresponds to the evolutionary process, is at the same time one of the key factors in defining a bacterial speciesSe examinó la definición de especie bacteriana usando como ejemplos protebacterias del subgrupo α-2 asociadas con las plantas y con los animales y tomando en consideración estudios filogenéticos. taxonómicos, biológicos y el criterio de los microbiólogos. La virtud que tienen los estudios filogenéticos es que proporcionan una perspectiva evolutiva de los linajes bacterianos; sin embargo el los métodos usados poseen poca resolución para definir aquellas especies localizadas en las ramas terminales de los árboles filogenéticos. El mérito que tienen los métodos taxonómicos se debe ha que definen las especies con base en múltiples características, permitiendo así una excelente resolución en las ramas terminales de los dendogramas; su desventaja radica en su poca exactitud en los nodos iniciales de los cladogramas. A nivel individual los estudios biológicos frecuentemente presenta dificultades debido a que muchas de las características son el resultado de coevolución, evolución paralela o bien transmisión horizontal de genes; sin embargo cuando este concepto es considerado conjuntamente con el filogenético y el taxonómico, se logran responder algunas preguntas que ninguna de las estrategias puede resolver aisladamente El juicio expresado por un grupo de expertos con base en evidencias científicas y en la práctica cotidiana para proponer una nueva especie de bacteria es lo que se conoce como el criterio de los microbiólogos. El éxito de este criterio se

  1. Biogenic amines degradation by microorganisms isolated from cheese

    Directory of Open Access Journals (Sweden)

    Irena Butor

    2017-01-01

    Full Text Available The aim of this study was the isolation and characterization of microorganisms able to degrade biogenic amines and their identification. Individual microorganisms were obtained by isolation from commercially available foodstuffs and food produced in the technological laboratories of Faculty of Technology, Tomas Bata University in Zlín and subsequently identified by MALDI-TOF MS. The results of MALDI-TOF MS identification were verified by 16S rRNA sequenation. In this work was studied the ability of 5 bacterial strains positive to biogenic amines degradation isolated from dairy products to decrease biogenic amines content in vitro and quantified reduction in the concentration of biogenic amines tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine and tyramine. The level of degradation (decrease of biogenic amines was determined on the base of the ability to grow in media with biogenic amines as the sole source carbon and nitrogen. The isolated strains with the ability of degradation of one or more biogenic amines were cultured in medium supplemented with relevant biogenic amines, the media derivatized with dansyl chloride and these amines separated by HPLC at a wavelength of 254 nm. From five tested strains identified as Bacillus subtilis, Bacillus pumilus, Enterobacter cloacae, Rhizobium radiobacter and Acinetobacter pitii, isolated from gouda type cheese, the greatest ability of degradation was observed in Bacillus subtilis, which was capable to degrade almost all amount of histamine, cadaverine and putrescine. Other four strains showed a lower rate of degradation than Bacillus subtilis, but the ability to degrade biogenic amines with these microorganisms was still significant.

  2. Biodegradation of Mixed PAHs by PAH-Degrading Endophytic Bacteria

    Directory of Open Access Journals (Sweden)

    Xuezhu Zhu

    2016-08-01

    Full Text Available Endophytic bacteria can promote plant growth, induce plant defence mechanisms, and increase plant resistance to organic contaminants. The aims of the present study were to isolate highly PAH-degrading endophytic bacteria from plants growing at PAH-contaminated sites and to evaluate the capabilities of these bacteria to degrade polycyclic aromatic hydrocarbons (PAHs in vitro, which will be beneficial for re-colonizing target plants and reducing plant PAH residues through the inoculation of plants with endophytic bacteria. Two endophytic bacterial strains P1 (Stenotrophomonas sp. and P3 (Pseudomonas sp., which degraded more than 90% of phenanthrene (PHE within 7 days, were isolated from Conyza canadensis and Trifolium pretense L., respectively. Both strains could use naphthalene (NAP, PHE, fluorene (FLR, pyrene (PYR, and benzo(apyrene (B(aP as the sole sources of carbon and energy. Moreover, these bacteria reduced the contamination of mixed PAHs at high levels after inoculation for 7 days; strain P1 degraded 98.0% NAP, 83.1% FLR, 87.8% PHE, 14.4% PYR, and 1.6% B(aP, and strain P3 degraded 95.3% NAP, 87.9% FLR, 90.4% PHE, 6.9% PYR, and negligible B(aP. Notably, the biodegradation of PAHs could be promoted through additional carbon and nitrogen nutrients; therein, beef extract was suggested as the optimal co-substrate for the degradation of PAHs by these two strains (99.1% PHE was degraded within 7 days. Compared with strain P1, strain P3 has more potential for the use in the removal of PAHs from plant tissues. These results provide a novel perspective in the reduction of plant PAH residues in PAH-contaminated sites through inoculating plants with highly PAH-degrading endophytic bacteria.

  3. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated...... tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell...... with the proteases either encoded within the same polypeptide or on separate subunits. In contrast, substrate recognition by extracellular proteases is less selective and therefore these enzymes are generally expressed as zymogens to prevent premature proteolytic activity that would be detrimental to the cell...

  4. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.

    Science.gov (United States)

    Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T

    2002-04-01

    Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.

  5. Biodegradation in a Partially Saturated Sand Matrix: Compounding Effects of Water Content, Bacterial Spatial Distribution, and Motility

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Owsianiak, Mikolaj; Bazire, Alexis

    2010-01-01

    colonizing these zones or on pollutant mass transfer to neighboring zones containing degraders. In a model system, we quantified the role exerted by water on mineralization rate in the context of a heterogeneously distributed degradation potential. Alginate beads colonized by Pseudomonas putida KT2440 were......Bacterial pesticide degraders are generally heterogeneously distributed in soils, leaving soil volumes devoid of degradation potential. This is expected to have an impact on degradation rates because the degradation of pollutant molecules in such zones will be contingent either on degraders...... inserted at prescribed locations in sand microcosms so that the initial spatial distribution of the mineralization potential was controlled. The mineralization rate was strongly affected by the matric potential (decreasing rate with decreasing matric potential) and by the initial distribution...

  6. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  7. Evolution of Bacterial Suicide

    Science.gov (United States)

    Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.

  8. Synergistic degradation of chlorinated hydrocarbons with microorganisms and zero valent iron

    Science.gov (United States)

    Schöftner, Philipp; Summer, Dorothea; Leitner, Simon; Watzinger, Andrea; Wimmer, Bernhard; Reichenauer, Thomas

    2016-04-01

    Sites contaminated with chlorinated hydrocarbons (CHC) are located mainly within build-up regions. Therefore in most cases only in-situ technologies without excavation of soil material can be used for remediation. This project examines a novel in-situ remediation method, in which the biotic degradation via bacteria is combined with abiotic degradation via zero-valent iron particles (ZVI). ZVI particles are injected into the aquifer where CHC-molecules are reductively dechlorinated. However Fe0 is also oxidized by reaction with water leading to generation of H2 without any CHC degradation. To achieve biotic degradation often strictly anaerobic strains of the bacteria Dehalococcoides are used. These bacteria can dechlorinate CHC by utilizing H2. By combining these processes the H2, produced during the anaerobic corrosion of Fe0, could be used by bacteria for further CHC degradation. Therefore the amount of used Fe0 and as a consequence also remediation costs could be reduced. Additionally the continuous supply of H2 could make the bacterial degradation more controllable. Different Fe0 particles (nano- and micro-scale) were tested for their perchloroethene (PCE) degradation rate and H2 production rate in microcosms. PCE-degradation rate by different bacterial cultures was investigated in the same microcosm system. In course of these experiments the 13C enrichment factors of the PCE degradation of the different particles and cultures were determined to enable the differentiation of biotic and abiotic degradation. Preliminary results showed, that the nano-scale particles reacted faster with PCE and water than their micro-scaled counterparts. The PCE degradation via micro-scaled particles lead to 13C enrichment factors in the range of -3,6 ‰ ± 0,6 to -9,5 ‰ ± 0,2. With one of the examined bacterial cultures a fast reduction of PCE to ethene was observed. Although PCE and TCE were completely degraded by this culture the metabolites DCE and VC could still be detected

  9. Bacterial growth on macrophyte leachate and fate of bacterial production

    International Nuclear Information System (INIS)

    Findlay, S.; Carlough, L.; Crocker, M.T.; Gill, H.K.; Meyer, J.L.; Smith, P.J.

    1986-01-01

    The role bacteria play in transferring organic carbon to other trophic levels in aquatic ecosystems depends on the efficiency with which they convert dissolved organic [ 14 C]-labelled carbon into bacterial biomass and on the ability of consumers to graze bacteria. The authors have measured the conversion efficiency for bacteria growing on macrophyte-derived dissolved organic carbon and estimated the amount of bacterial production removed by grazing. Bacteria converted this DOC into new tissue with an efficiency of 53%, substantially higher than the apparent conversion efficiency of macrophyte-derived particulate organic carbon or other types of DOC. Two estimates of grazing indicate that the decline in bacterial numbers after the bloom was probably due to grazing by flagellates. These results show the significance of the bacterial link between DOC and other trophic levels

  10. Molecular detection of human bacterial pathogens

    National Research Council Canada - National Science Library

    Liu, Dongyou

    2011-01-01

    .... Molecular Detection of Human Bacterial Pathogens addresses this issue, with international scientists in respective bacterial pathogen research and diagnosis providing expert summaries on current...

  11. Isolation of imidacloprid degrading bacteria from industrial sites

    International Nuclear Information System (INIS)

    Shahid, M.N.; Jabeen, F.

    2009-01-01

    Immidacloprid is a cyclodiene organochlorine used as an insecticide all over the world and possessing a serous environmental threat. It is mostly used for cotton insects (bollworm, aphid and white fly). For isolation of imidacloprid degrading bacteria, two soil samples were collected from industrial contaminated sites of Kala Shah Kahu district sheikupura, having ten year history of use. Soil samples were analyzed by measuring pH and electric conductivity. The isolation of imidacroprid degrading bacteria was performed by enrichment technique. Eight bacterial strains, S/sub 1-a/ S/2-2-b/ S/2-c/ S/2-d/ S/2-e/ S/sub 2-f/ and S/sub 2-g/ and S/sub e-a/ were isolated on the basis of their colony morphologies. The purified colonies were characterized morphologically, physiologically and biochemically. Gram staining was done and Gram negative strain were confirmed on MacConkey agar and Eosin Methylene Blue. Bacterial strains were also checked for different minimal media in which only carbon source was the imidcloprid. For this purpose. FTW, FTW without N/sub 2/ NSM, M/sub 9/ and MM/sub 2/ media were used and their optical densities were taken on spectrophotometer isolates were checked for resistance to antibiotics and heavy metals. On these characteristics, S/sub 2-d/ and S/sub c-a/ were assigned to Enterobacteriaceae, S/sub 2-b/ to Pseudomonad and rest of the bacterial isolates were affiliated to bacillaceae. (author)

  12. Isolation and identification of aerobic polychlorinated biphenyls degrading bacteria

    Directory of Open Access Journals (Sweden)

    Bibi Fatemeh Nabavi

    2013-01-01

    Full Text Available Aims: The purpose of this study was to isolate and identify aerobic polychlorinated biphenyls (PCBs degrading bacteria. Materials and Methods: This study was performed in lab scale aerobic sequencing batch biofilm reactor. Polyurethane foams were used as bio-carrier and synthetic wastewater was prepared with PCBs in transformer oil as the main substrate (20-700 μg/l and acetone as a solvent for PCBs as well as microelements. After achieving to adequate microbial population and acclimation of microorganisms to PCB compounds with high efficiency of PCB removal, identification of degrading microbial species was performed by 16s rRNA gene sequencing of isolated bacteria. Results: Gene sequencing results of the isolated bacteria showed that Rhodococcus spp., Pseudomonas spp., Pseudoxanthomonas spp., Agromyces spp., and Brevibacillus spp. were dominant PCB-degrading bacteria. Conclusion: PCB compounds can be degraded by some microorganisms under aerobic or anaerobic conditions or at least be reduced to low chlorinated congeners, despite their chemical stability and toxicity. Based on the results of the study, five bacterial species capable of degrading PCBs in transformer oil have been identified.

  13. 'Rare biosphere' bacteria as key phenanthrene degraders in coastal seawaters.

    Science.gov (United States)

    Sauret, Caroline; Séverin, Tatiana; Vétion, Gilles; Guigue, Catherine; Goutx, Madeleine; Pujo-Pay, Mireille; Conan, Pascal; Fagervold, Sonja K; Ghiglione, Jean-François

    2014-11-01

    By coupling DNA-SIP and pyrosequencing approaches, we identified Cycloclasticus sp. as a keystone degrader of polycyclic aromatic hydrocarbons (PAH) despite being a member of the 'rare biosphere' in NW Mediterranean seawaters. We discovered novel PAH-degrading bacteria (Oceanibaculum sp., Sneathiella sp.) and we identified other groups already known to possess this function (Alteromonas sp., Paracoccus sp.). Together with Cycloclasticus sp., these groups contributed to potential in situ phenanthrene degradation at a rate >0.5 mg l(-1) day(-1), sufficient to account for a considerable part of PAH degradation. Further, we characterized the PAH-tolerant bacterial communities, which were much more diverse in the polluted site by comparison to unpolluted marine references. PAH-tolerant bacteria were also members of the rare biosphere, such as Glaciecola sp. Collectively, these data show the complex interactions between PAH-degraders and PAH-tolerant bacteria and provide new insights for the understanding of the functional ecology of marine bacteria in polluted waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Arnold, G.; Baer, M.; Gey, M.; Hubert, S.; Langguth, H.

    1984-01-01

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  15. Soil degradation in Pakistan

    International Nuclear Information System (INIS)

    Khan, M.R.

    2005-01-01

    This paper diagnoses the issues involved behind the current state, usage, interactions and linkages in the soils in Pakistan. The condition of soils is deteriorating due to developmental and environmental factors such as soil degradation, water pollution, fauna degeneration etc. Issues, problems and constraints faced in the management and usage of soils are diagnosed at different levels in the ecosystems predominant in Pakistan. The research questions propose effective solutions, types of instruments, methods or processes to resolve the issues within the various areas or ecosystems in the most sustainable and effective manner [23]. Biological solutions and methods can be applied at the sub-system level by private individuals or communities at a lower cost, and at a more localized level than engineering methods. Engineering methods may be suited for interventions at a system level rather than at a sub-system level; but even at this level they will be complementary with biological methods. (author)

  16. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA

    NARCIS (Netherlands)

    Pel, Michiel J C; van Dijken, Anja J H; Bardoel, Bart W; Seidl, Michael F; van der Ent, Sjoerd; van Strijp, Jos A G; Pieterse, Corné M J

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of

  17. Pseudomonas syringae evades host Immunity by degrading flagellin monomers with alkaline protease AprA

    NARCIS (Netherlands)

    Pel, M.J.C.; Van Dijken, A.J.H.; Bardoel, B.W.; Seidl, M.F; Van der Ent, S.; Van Strijp, J.A.G.

    2014-01-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of

  18. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) cross-inked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide (EIN-DSC) towards enzymatic degradation. Contrary to

  19. Candidates for the development of consortia capable of petroleum hydrocarbon degradation in marine environment

    Digital Repository Service at National Institute of Oceanography (India)

    David, J.; Gupta, R.; Mohandass, C.; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    Bacteria and yeasts from different niches of the tropical Indian waters were screened for their hydrocarbon degrading potential using 1% w/v in artificial seawater over a period of 6 days. About 20% of the 75 bacterial and 24% of the 27 yeast...

  20. Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria

    NARCIS (Netherlands)

    Mars, Astrid E.; Prins, Gjalt T.; Wietzes, Pieter; Koning, Wim de; Janssen, Dick B.

    The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a

  1. In vitro degradation behaviour of biodegradable soy plastics : effects of crosslinking with glyoxal and thermal treatment

    NARCIS (Netherlands)

    Vaz, C.M.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2003-01-01

    In-vitro degradation of soy-derived protein materials, non-crosslinked (SItp), crosslinked with glyoxal (X-SItp) or submitted to heat treatment (24TT-SItp), was studied with either an isotonic saline solution without enzymatic activity or containing bacterial collagenase. The changes in weight of

  2. Degraded Crater Rim

    Science.gov (United States)

    2002-01-01

    (Released 3 May 2002) The Science The eastern rim of this unnamed crater in Southern Arabia Terra is very degraded (beaten up). This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance. The Story When you think of Arabia, you probably think of hot deserts and a lot of profitable oil reserves. On Mars, however, Southern Arabia Terra is a cold place of cratered terrain. This almost frothy-looking image is the badly battered edge of an ancient crater, which has suffered both erosion and bombardment from asteroids, comets, or other impacting bodies over the long course of its existence. A blanket of dust has also settled over the region, which gives the otherwise rugged landscape a soft and more subdued appearance. The small, round crater (upper left) seems almost gemlike in its setting against the larger crater ring. But this companionship is no easy romance. Whatever formed the small crater clearly whammed into the larger crater rim at some point, obliterating part of its edge. You can tell the small crater was formed after the first and more devastating impact, because it is laid over the other larger crater. How much younger is the small one? Well, its rim is also much sharper and more intact, which gives a sense that it is probably far more youthful than the very degraded, ancient crater.

  3. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  4. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective

    Directory of Open Access Journals (Sweden)

    Benjamin Rémy

    2018-03-01

    Full Text Available Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs, as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs to block the action of AIs and quorum quenching (QQ enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria.

  5. Exploring anti-bacterial compounds against intracellular Legionella.

    Directory of Open Access Journals (Sweden)

    Christopher F Harrison

    Full Text Available Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.

  6. Exploring Anti-Bacterial Compounds against Intracellular Legionella

    Science.gov (United States)

    Harrison, Christopher F.; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an ‘accidental’ human pathogen and cause a severe pneumonia known as Legionnaires’ disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoeba castellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target. PMID:24058631

  7. Ordered bulk degradation via autophagy

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Kristensen, Anders Riis; Andersen, Jens S

    2008-01-01

    During amino acid starvation, cells undergo macroautophagy which is regarded as an unspecific bulk degradation process. Lately, more and more organelle-specific autophagy subtypes such as reticulophagy, mitophagy and ribophagy have been described and it could be shown, depending on the experimental...... at proteasomal and lysosomal degradation ample cross-talk between the two degradation pathways became evident. Degradation via autophagy appeared to be ordered and regulated at the protein complex/organelle level. This raises several important questions such as: can macroautophagy itself be specific and what...

  8. Degradation of thiram in soil

    International Nuclear Information System (INIS)

    Raghu, K.; Murthy, N.B.K.; Kumarsamy, R.

    1975-01-01

    Determination of the residual 35 S labelled tetramethylthiuram disulfide showed that the fungicide persisted longer in sterilized than in unsterilized soil, while the chloroform extractable radioactivity decreased, the water extractable radioactivity increased with increase in time. However, in sterilized soil the water extractable radioactivity remained more or less constant. Degradation of the fungicide was further demonstrated by the release of C 35 S 2 from soil treated with labelled thiram. Dimethylamine was found to be one of the degradation products. A bacterium isolated from thiram-enriched soil could degrade the fungicide in shake culture. The degradation pathways of thiram in sterilized and unsterilized soils are discussed. (author)

  9. In vitro degradation of ribosomes.

    Science.gov (United States)

    Mora, G; Rivas, A

    1976-12-01

    The cytoplasmic ribosomes from Euglena gracilis var. bacillaris are found to be of two types taking into consideration their stability "in vitro". In the group of unstable ribosomes the large subunit is degraded. The other group apparently does not suffer any degradation under the conditions described. However the RNAs extracted from both types of ribosomes are degraded during sucrose density gradients. The degradation of the largest RNA species has been reported previously, but no comment has been made about the stability of the ribosome itself.

  10. The radiation degradation of polypropylene

    International Nuclear Information System (INIS)

    De Hollain, G.

    1977-04-01

    Polypropylene is used extensively in the manufacture of disposable medical devices because of its superior properties. Unfortunately this polymer does not lend itself well to radiation sterilization, undergoing serious degradation which affects the mechanical properties of the polymer. In this paper the effects of radiation on the mechanical and physical properties of polypropylene are discussed. A programme of research to minimize the radiation degradation of this polymer through the addition of crosslinking agents to counteract the radiation degradation is proposed. It is furthermore proposed that a process of annealing of the irradiated polymer be investigated in order to minimize the post-irradiation degradation of the polypropylene [af

  11. Neurological sequelae of bacterial meningitis

    NARCIS (Netherlands)

    Lucas, Marjolein J.; Brouwer, Matthijs C.; van de Beek, Diederik

    2016-01-01

    We reported on occurrence and impact of neurological sequelae after bacterial meningitis. We reviewed occurrence of neurological sequelae in children and adults after pneumococcal and meningococcal meningitis. Most frequently reported sequelae are focal neurological deficits, hearing loss, cognitive

  12. Bacterial tracheitis in Down's syndrome.

    OpenAIRE

    Cant, A J; Gibson, P J; West, R J

    1987-01-01

    Four children with Down's syndrome and bacterial tracheitis are described. In three the infection was due to Haemophilus influenza. In patients with Down's syndrome presenting with stridor tracheitis should be considered and appropriate treatment started.

  13. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  14. Bacterial flora of sturgeon fingerling

    International Nuclear Information System (INIS)

    Arani, A.S.; Mosahab, R.

    2008-01-01

    The study on microbial populations is a suitable tool to understand and apply control methods to improve the sanitary level of production in fish breeding and rearing centers, ensure health of sturgeon fingerlings at the time of their release into the rivers and also in the conversation and restoration of these valuable stocks in the Caspian Sea, Iran. A laboratory research based on Austin methods (Austin, B., Austin, D.A. 1993) was conducted for bacterial study on 3 sturgeon species naming A. persicus, A. stellatus and A. nudiventris during different growth stages. Bacterial flora of Acinetobacter, Moraxella, Aeromonas, Vibrio, Edwardsiella, Staphylococcus, Proteus, Yersinia, Pseudomonas and Plesiomonas were determined. The factors which may induce changes in bacterial populations during different stages of fife are the followings: quality of water in rearing ponds, different conditions for growth stages, suitable time for colonization of bacterial flora in rearing pond, water temperature increase in fingerlings size and feeding condition. (author)

  15. Bacterial pathogenesis of plants: future challenges from a microbial perspective: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Pfeilmeier, Sebastian; Caly, Delphine L; Malone, Jacob G

    2016-10-01

    Plant infection is a complicated process. On encountering a plant, pathogenic microorganisms must first adapt to life on the epiphytic surface, and survive long enough to initiate an infection. Responsiveness to the environment is critical throughout infection, with intracellular and community-level signal transduction pathways integrating environmental signals and triggering appropriate responses in the bacterial population. Ultimately, phytopathogens must migrate from the epiphytic surface into the plant tissue using motility and chemotaxis pathways. This migration is coupled with overcoming the physical and chemical barriers to entry into the plant apoplast. Once inside the plant, bacteria use an array of secretion systems to release phytotoxins and protein effectors that fulfil diverse pathogenic functions (Fig. ) (Melotto and Kunkel, ; Phan Tran et al., ). As our understanding of the pathways and mechanisms underpinning plant pathogenicity increases, a number of central research challenges are emerging that will profoundly shape the direction of research in the future. We need to understand the bacterial phenotypes that promote epiphytic survival and surface adaptation in pathogenic bacteria. How do these pathways function in the context of the plant-associated microbiome, and what impact does this complex microbial community have on the onset and severity of plant infections? The huge importance of bacterial signal transduction to every stage of plant infection is becoming increasingly clear. However, there is a great deal to learn about how these signalling pathways function in phytopathogenic bacteria, and the contribution they make to various aspects of plant pathogenicity. We are increasingly able to explore the structural and functional diversity of small-molecule natural products from plant pathogens. We need to acquire a much better understanding of the production, deployment, functional redundancy and physiological roles of these molecules. Type III

  16. Bacterial laccase: recent update on production, properties and industrial applications.

    Science.gov (United States)

    Chauhan, Prakram Singh; Goradia, Bindi; Saxena, Arunika

    2017-10-01

    Laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) are multi-copper enzymes which catalyze the oxidation of a wide range of phenolic and non-phenolic aromatic compounds in the presence or absence of a mediator. Till date, laccases have mostly been isolated from fungi and plants, whereas laccase from bacteria has not been well studied. Bacterial laccases have several unique properties that are not characteristics of fungal laccases such as stability at high temperature and high pH. Bacteria produce these enzymes either extracellularly or intracellularly and their activity is in a wide range of temperature and pH. It has application in pulp biobleaching, bioremediation, textile dye decolorization, pollutant degradation, biosensors, etc. Hence, comprehensive information including sources, production conditions, characterization, cloning and biotechnological applications is needed for the effective understanding and application of these enzymes at the industrial level. The present review provides exhaustive information of bacterial laccases reported till date.

  17. Biological treatment of aqueous effluents in a bacterial bed

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-14

    Biological treatment of aqueous effluents in a bacterial bed is carried out effectively for refinery waters having a low five-day BOD by using a plastic packing to support the bacteria in place of the less reliable pozzolana (volcanic ash) formerly employed. Such biofilters, developed by Lurgi S.A., are more sensitive to BOD overloading than activated sludge beds, so that very stable operating conditions are required. In these bacterial beds, the water trickles over the plastic packing and becomes oxygenated, which leads to degradation of undesirable substances in the water. In the refinery, this process can give excellent results when properly carried out, but the biofilter may generate suspended matter under unsatisfactory operating conditions, and is therefore usually placed upstream from the flocculation and filtration units. To date, all installations have remained below the required standard limit of 30 mg/l. of suspended matter.

  18. Bacterial translocation: impact of probiotics

    OpenAIRE

    Jeppsson, Bengt; Mangell, Peter; Adawi, Diya; Molin, Göran

    2004-01-01

    There is a considerable amount of data in humans showing that patients who cannot take in nutrients enterally have more organ failure in the intensive care unit, a less favourable prognosis, and a higher frequency of septicaemia, in particular involving bacterial species from the intestinal tract. However, there is little evidence that this is connected with translocation of bacterial species in humans. Animal data more uniformly imply the existence of such a connection. The main focus of thi...

  19. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L.; Caiut, Jose Mauricio A.

    2011-01-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  20. Isolation, Screening and Development of Local Bacterial Consortia With Azo Dyes Decolourising Capability

    Directory of Open Access Journals (Sweden)

    Khadijah, O.

    2009-01-01

    Full Text Available A total of 1540 bacterial isolates were isolated and screened for their ability to degrade selected azo dyes. Of these, nine isolates were chosen for further studies based on their ability to degrade a wide spectrum of dyes efficiently and rapidly. Several microbial consortia were developed and tested for their effectiveness. Overall the consortia were able to degrade 70 - 100% colour within 72 hours compared to 60 – 97% colour removed by individual isolates. A microbial consortium labelled C15 showed good growth in agitation culture but the colour removal was best in static culture with 80 - 100% colour removed in less than 72 hours. Based on the 16S rRNA sequencing, two of the bacterial isolates in C15 belong to the Chryseobacterium genus while the other one belongs to Flavobacterium genus.

  1. Continuous exposure of pesticides in an aquifer changes microbial biomass, diversity and degradation potential

    DEFF Research Database (Denmark)

    de Lipthay, J. R.; Johnsen, K.; Aamand, J.

    2000-01-01

    We studied in situ effects of pesticide exposure on microbial degradation potential and community structure of aquifer sediments. Sediment samples pre-exposed to pesticides were significantly different to non-exposed control samples. Pre-exposed sediment showed an increased degradation potential ...... towards phenoxyalcanoic acid herbicides as well as impact on microbial diversity was observed. Furthermore, bacterial biomass was changed, e.g. increased numbers of phenoxyalcanoic acid degraders in pesticide exposed sediment.......We studied in situ effects of pesticide exposure on microbial degradation potential and community structure of aquifer sediments. Sediment samples pre-exposed to pesticides were significantly different to non-exposed control samples. Pre-exposed sediment showed an increased degradation potential...

  2. Dynamic changes in functional gene copy numbers and microbial communities during degradation of pyrene in soils

    International Nuclear Information System (INIS)

    Peng Jingjing; Cai Chao; Qiao Min; Li Hong; Zhu Yongguan

    2010-01-01

    This study investigates the dynamics of pyrene degradation rates, microbial communities, and functional gene copy numbers during the incubation of pyrene-spiked soils. Spiking pyrene to the soil was found to have negligible effects on the bacterial community present. Our results demonstrated that there was a significant difference in nidA gene copy numbers between sampling dates in QZ soil. Mycobacterium 16S rDNA clone libraries showed that more than 90% mycobacteria detected were closely related to fast-growing PAH-degrading Mycobacterium in pyrene-spiked soil, while other sequences related to slow-growing Mycobacterium were only detected in the control soil. It is suggested that nidA gene copy number and fast-growing PAH-degrading Mycobacterium could be used as indicators to predict pyrene contamination and its degradation activity in soils. - nidA gene and fast-growing PAH-degrading Mycobacterium can serve as indicators for pyrene contamination.

  3. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions

    International Nuclear Information System (INIS)

    Dou Junfeng; Liu Xiang; Ding Aizhong

    2009-01-01

    Mixed bacteria were enriched from soil samples contaminated with polycyclic aromatic hydrocarbons (PAHs). The anaerobic degradation characteristics by the enriched bacteria with different initial naphthalene concentrations were investigated under nitrate reducing conditions. The results showed that the mixed bacteria could degrade nearly all the naphthalene over the incubations of 25 days when the initial naphthalene concentration was below 30 mg/L. The degradation rates of naphthalene increased with increasing initial concentrations. A high naphthalene concentration of 30 mg/L did not inhibit neither on the bacterial growth nor on the naphthalene degradation ability. The accumulation of nitrite was occurred during the reduction of nitrate, and a nitrite concentration of 50 mg/L had no inhibition effect on the degradation of naphthalene. The calculation of electron balances revealed that most of the naphthalene was oxidized whereas a small proportion was used for cell synthesis.

  4. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  5. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  6. Use of mycelia as paths for the isolation of contaminant‐degrading bacteria from soil

    Science.gov (United States)

    Furuno, Shoko; Remer, Rita; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2012-01-01

    Summary Mycelia of fungi and soil oomycetes have recently been found to act as effective paths boosting bacterial mobility and bioaccessibility of contaminants in vadose environments. In this study, we demonstrate that mycelia can be used for targeted separation and isolation of contaminant‐degrading bacteria from soil. In a ‘proof of concept’ study we developed a novel approach to isolate bacteria from contaminated soil using mycelia of the soil oomycete Pythium ultimum as translocation networks for bacteria and the polycyclic aromatic hydrocarbon naphthalene (NAPH) as selective carbon source. NAPH‐degrading bacterial isolates were affiliated with the genera Xanthomonas, Rhodococcus and Pseudomonas. Except for Rhodococcus the NAPH‐degrading isolates exhibited significant motility as observed in standard swarming and swimming motility assays. All steps of the isolation procedures were followed by cultivation‐independent terminal 16S rRNA gene terminal fragment length polymorphism (T‐RFLP) analysis. Interestingly, a high similarity (63%) between both the cultivable NAPH‐degrading migrant and the cultivable parent soil bacterial community profiles was observed. This suggests that mycelial networks generally confer mobility to native, contaminant‐degrading soil bacteria. Targeted, mycelia‐based dispersal hence may have high potential for the isolation of bacteria with biotechnologically useful properties. PMID:22014110

  7. Degradation of corn stalk by the composite microbial system of MC1

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The composite microbial system of MC1 was used to degrade corn stalk in order to determine properties of the degraded products as well as bacterial composition of MC1. Results indicated that the pH of the fermentation broth was typical of lignocellulose degradatioin by MC1, decreasing in the early phase and increasing in later stages of the degradation. The microbial biomass peaked on the day 3 after degradation. The MC1 effeciently degraded the corn stalk by nearly 70% during which its cellulose content decreased by 71.2%, hemicellulose by 76.5% and lignin by 24.6%. The content of water-soluble carbohydrates (WSC) in the fermentation broth increased progressively during the first three days, and decreased thereafter, suggesting an accumulation of WSC in the early phase of the degradation process. Total levels of various volatile products peaked in the third day after degradation , and 7 types of volatile products were detected in the fermentation broth. These were ethanol, acetic acid, 1,2-ethanediol, propanoic acid, butanoic acid, 3-methyl-butanoic acid and glycerine. Six major compounds were quantitatively analysed and the contents of each compound were ethanol (0.584 g/L), acetic acid (0.735 g/L), 1,2-ethanediol (0.772 g/L), propanoic acid (0.026 g/L), butanoic acid (0.018 g/L) and glycerine (4.203 g/L). Characterization of bacterial cells collected from the culture solution, based on 16S rDNA PCR-DGGE analysis of DNAs, showed that the composition of bacterial community in MC1 coincided basically with observations from previous studies. This indicated that the structure of MC1 is very stable during degradation of different lignocellulose materials.

  8. Metagenomes Reveal Global Distribution of Bacterial Steroid Catabolism in Natural, Engineered, and Host Environments

    Directory of Open Access Journals (Sweden)

    Johannes Holert

    2018-01-01

    Full Text Available Steroids are abundant growth substrates for bacteria in natural, engineered, and host-associated environments. This study analyzed the distribution of the aerobic 9,10-seco steroid degradation pathway in 346 publically available metagenomes from diverse environments. Our results show that steroid-degrading bacteria are globally distributed and prevalent in particular environments, such as wastewater treatment plants, soil, plant rhizospheres, and the marine environment, including marine sponges. Genomic signature-based sequence binning recovered 45 metagenome-assembled genomes containing a majority of 9,10-seco pathway genes. Only Actinobacteria and Proteobacteria were identified as steroid degraders, but we identified several alpha- and gammaproteobacterial lineages not previously known to degrade steroids. Actino- and proteobacterial steroid degraders coexisted in wastewater, while soil and rhizosphere samples contained mostly actinobacterial ones. Actinobacterial steroid degraders were found in deep ocean samples, while mostly alpha- and gammaproteobacterial ones were found in other marine samples, including sponges. Isolation of steroid-degrading bacteria from sponges confirmed their presence. Phylogenetic analysis of key steroid degradation proteins suggested their biochemical novelty in genomes from sponges and other environments. This study shows that the ecological significance as well as taxonomic and biochemical diversity of bacterial steroid degradation has so far been largely underestimated, especially in the marine environment.

  9. Genome Sequence of Pseudomonas sp. Strain Chol1, a Model Organism for the Degradation of Bile Salts and Other Steroid Compounds

    KAUST Repository

    Holert, Johannes; Alam, Intikhab; Larsen, Michael; Antunes, Andre; Bajic, Vladimir B.; Stingl, Ulrich; Philipp, Bodo

    2013-01-01

    Bacterial degradation of steroid compounds is of high ecological and biotechnological relevance. Pseudomonas sp. strain Chol1 is a model organism for studying the degradation of the steroid compound cholate. Its draft genome sequence is presented and reveals one gene cluster responsible for the metabolism of steroid compounds.

  10. Genome Sequence of Pseudomonas sp. Strain Chol1, a Model Organism for the Degradation of Bile Salts and Other Steroid Compounds

    KAUST Repository

    Holert, Johannes

    2013-01-15

    Bacterial degradation of steroid compounds is of high ecological and biotechnological relevance. Pseudomonas sp. strain Chol1 is a model organism for studying the degradation of the steroid compound cholate. Its draft genome sequence is presented and reveals one gene cluster responsible for the metabolism of steroid compounds.

  11. Plant-associated fluorescent Pseudomonas from red lateritic soil: Beneficial characteristics and their impact on lettuce growth.

    Science.gov (United States)

    Maroniche, Guillermo A; Rubio, Esteban J; Consiglio, Adrián; Perticari, Alejandro

    2016-11-25

    Fluorescent Pseudomonas are ubiquitous soil bacteria that usually establish mutualistic associations with plants, promoting their growth and health by several mechanisms. This makes them interesting candidates for the development of crop bio-inoculants. In this work, we isolated phosphate-solubilizing fluorescent Pseudomonas from the rhizosphere and inner tissues of different plant species growing in red soil from Misiones, Argentina. Seven isolates displaying strong phosphate solubilization were selected for further studies. Molecular identification by rpoD genotyping indicated that they belong to different species within the P. fluorescens and P. putida phylogenetic groups. Screening for in vitro traits such as phosphate solubilization, growth regulators synthesis or degradation, motility and antagonism against phytopathogens or other bacteria, revealed a unique profile of characteristics for each strain. Their plant growth-promoting potential was assayed using lettuce as a model for inoculation under controlled and greenhouse conditions. Five of the strains increased the growth of lettuce plants. Overall, the strongest lettuce growth promoter under both conditions was strain ZME4, isolated from inner tissues of maize. No clear association between lettuce growth promotion and in vitro beneficial traits was detected. In conclusion, several phosphate solubilizing pseudomonads from red soil were isolated that display a rich array of plant growth promotion traits, thus showing a potential for the development of new inoculants.

  12. Characterization of a Pyrethroid-Degrading Pseudomonas fulva Strain P31 and Biochemical Degradation Pathway of D-Phenothrin

    Directory of Open Access Journals (Sweden)

    Jingjing Yang

    2018-05-01

    Full Text Available D-phenothrin is one of the most popular pyrethroid insecticides for its broad spectrum and high insecticidal activity. However, continuous use of D-phenothrin has resulted in serious environmental contamination and raised public concern about its impact on human health. Biodegradation of D-phenothrin has never been investigated and its metabolic behaviors remain unknown. Here, a novel bacterial strain P31 was isolated from active sludge, which completely degraded (100% D-phenothrin at 50 mg⋅L-1 in 72 h. Based on the morphology, 16S rRNA gene and Biolog tests, the strain was identified as Pseudomonas fulva. Biodegradation conditions were optimized as 29.5°C and pH 7.3 by utilizing response surface methodology. Strain P31 depicted high tolerance and strong D-phenothrin degradation ability through hydrolysis pathway. Strain P31 degraded D-phenothrin at inhibition constant (Ki of 482.1673 mg⋅L-1 and maximum specific degradation constant (qmax of 0.0455 h-1 whereas critical inhibitor concentration remained as 41.1189 mg⋅L-1. The 3-Phenoxybenzaldehyde and 1,2-benzenedicarboxylic butyl dacyl ester were identified as the major intermediate metabolites of D-phenothrin degradation pathway through high-performance liquid chromatography and gas chromatography-mass spectrometry. Bioaugmentation of D-phenothrin-contaminated soils with strain P31 dramatically enhanced its degradation, and over 75% of D-phenothrin was removed from soils within 10 days. Moreover, the strain illustrated a remarkable capacity to degrade other synthetic pyrethroids, including permethrin, cyhalothrin, β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin, exhibiting great potential in bioremediation of pyrethroid-contaminated environment.

  13. Bacterial formation of phosphatic laminites off Peru.

    Science.gov (United States)

    Arning, E T; Birgel, D; Brunner, B; Peckmann, J

    2009-06-01

    Authigenic phosphatic laminites enclosed in phosphorite crusts from the shelf off Peru (10 degrees 01' S and 10 degrees 24' S) consist of carbonate fluorapatite layers, which contain abundant sulfide minerals including pyrite (FeS(2)) and sphalerite (ZnS). Low delta(34)S(pyrite) values (average -28.8 per thousand) agree with bacterial sulfate reduction and subsequent pyrite formation. Stable sulfur isotopic compositions of sulfate bound in carbonate fluorapatite are lower than that of sulfate from ambient sea water, suggesting bacterial reoxidation of sulfide by sulfide-oxidizing bacteria. The release of phosphorus and subsequent formation of the autochthonous phosphatic laminites are apparently caused by the activity of sulfate-reducing bacteria and associated sulfide-oxidizing bacteria. Following an extraction-phosphorite dissolution-extraction procedure, molecular fossils of sulfate-reducing bacteria (mono-O-alkyl glycerol ethers, di-O-alkyl glycerol ethers, as well as the short-chain branched fatty acids i/ai-C(15:0), i/ai-C(17:0) and 10MeC(16:0)) are found to be among the most abundant compounds. The fact that these molecular fossils of sulfate-reducing bacteria are distinctly more abundant after dissolution of the phosphatic laminite reveals that the lipids are tightly bound to the mineral lattice of carbonate fluorapatite. Moreover, compared with the autochthonous laminite, molecular fossils of sulfate-reducing bacteria are: (1) significantly less abundant and (2) not as tightly bound to the mineral lattice in the other, allochthonous facies of the Peruvian crusts consisting of phosphatic coated grains. These observations confirm the importance of sulfate-reducing bacteria in the formation of the phosphatic laminite. Model calculations highlight that organic matter degradation by sulfate-reducing bacteria has the potential to liberate sufficient phosphorus for phosphogenesis.

  14. Polycarbonate radiolytic degradation and stabilization

    International Nuclear Information System (INIS)

    Araujo, E.S. de

    1994-01-01

    Polycarbonate Durolon, useful for medical supplies fabrication, is submitted to gamma radiation for sterilization purposes. Scissions in main chain occur, in carbonyl groups, producing molecular degradations and yellowness. The radiolytic stabilization is obtained through additive to the polymer. In this work some degradation and stabilization aspects are presented. (L.C.J.A.). 7 refs, 7 figs, 2 tabs

  15. Degradation of copepod fecal pellets

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Iversen, Morten

    2008-01-01

    amount of fecal pellets. The total degradation rate of pellets by the natural plankton community of Oresund followed the phytoplankton biomass, with maximum degradation rate during the spring bloom (2.5 +/- 0.49 d(-1)) and minimum (0.52 +/- 0.14 d(-1)) during late winter. Total pellet removal rate ranged...

  16. Degradable polymers for tissue engineering

    NARCIS (Netherlands)

    van Dijkhuizen-Radersma, Riemke; Moroni, Lorenzo; van Apeldoorn, Aart A.; Zhang, Zheng; Grijpma, Dirk W.; van Blitterswijk, Clemens A.

    2008-01-01

    This chapter elaborates the degradable polymers for tissue engineering and their required scaffold material in tissue engineering. It recognizes the examples of degradable polymers broadly used in tissue engineering. Tissue engineering is the persuasion of the body to heal itself through the

  17. MOSFET Degradation Under RF Stress

    NARCIS (Netherlands)

    Sasse, G.T.; Kuper, F.G.; Schmitz, Jurriaan

    2008-01-01

    We report on the degradation of MOS transistors under RF stress. Hot-carrier degradation, negative-bias temperature instability, and gate dielectric breakdown are investigated. The findings are compared to established voltage- and field-driven models. The experimental results indicate that the

  18. Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan.

    Science.gov (United States)

    Bacosa, Hernando P; Suto, Koichi; Inoue, Chihiro

    2013-01-01

    Mangroves constitute valuable coastal resources that are vulnerable to oil pollution. One of the major processes to remove oil from contaminated mangrove sediment is microbial degradation. A study on heavy oil- and hydrocarbon-degrading bacterial consortia from mangrove sediments in Okinawa, Japan was performed to evaluate their capacity to biodegrade and their microbial community composition. Surface sediment samples were obtained from mangrove sites in Okinawa (Teima, Oura, and Okukubi) and enriched with heavy oil as the sole carbon and energy source. The results revealed that all enriched microbial consortia degraded more than 20% of heavy oil in 21 days. The K1 consortium from Okukubi site showed the most extensive degradative capacity after 7 and 21 days. All consortia degraded more than 50% of hexadecane but had little ability to degrade polycyclic aromatic hydrocarbons (PAHs). The consortia were dominated by Pseudomonas or Burkholderia. When incubated in the presence of hydrocarbon compounds, the active bacterial community shifted to favor the dominance of Pseudomonas. The K1 consortium was a superior degrader, demonstrating the highest ability to degrade aliphatic and aromatic hydrocarbon compounds; it was even able to degrade heavy oil at a concentration of 15%(w/v). The dominance and turn-over of Pseudomonas and Burkholderia in the consortia suggest an important ecological role for and relationship between these two genera in the mangrove sediments of Okinawa.

  19. Bacterial Prostatitis: Bacterial Virulence, Clinical Outcomes, and New Directions.

    Science.gov (United States)

    Krieger, John N; Thumbikat, Praveen

    2016-02-01

    Four prostatitis syndromes are recognized clinically: acute bacterial prostatitis, chronic bacterial prostatitis, chronic prostatitis/chronic pelvic pain syndrome, and asymptomatic prostatitis. Because Escherichia coli represents the most common cause of bacterial prostatitis, we investigated the importance of bacterial virulence factors and antimicrobial resistance in E. coli strains causing prostatitis and the potential association of these characteristics with clinical outcomes. A structured literature review revealed that we have limited understanding of the virulence-associated characteristics of E. coli causing acute prostatitis. Therefore, we completed a comprehensive microbiological and molecular investigation of a unique strain collection isolated from healthy young men. We also considered new data from an animal model system suggesting certain E. coli might prove important in the etiology of chronic prostatitis/chronic pelvic pain syndrome. Our human data suggest that E. coli needs multiple pathogenicity-associated traits to overcome anatomic and immune responses in healthy young men without urological risk factors. The phylogenetic background and accumulation of an exceptional repertoire of extraintestinal pathogenic virulence-associated genes indicate that these E. coli strains belong to a highly virulent subset of uropathogenic variants. In contrast, antibiotic resistance confers little added advantage to E. coli strains in these healthy outpatients. Our animal model data also suggest that certain pathogenic E. coli may be important in the etiology of chronic prostatitis/chronic pelvic pain syndrome through mechanisms that are dependent on the host genetic background and the virulence of the bacterial strain.

  20. Designs for degraded Trbovlje

    Directory of Open Access Journals (Sweden)

    Naja Marot

    2005-01-01

    Full Text Available As an introduction, two degraded urban areas are presented. The first, planning unit seven, is situated in the southeastern part of Trbovlje town. The other, called Speke, lies to the south of Liverpool. The basis for the concept and context of urban renewal model are given by comparison between the newest Slovene and British spatial planning legislation, analyses of the Design management plan Nasipi and Supplementary Planning Document Edge Lane West, and review of different approaches to local communities’ involvement. Based on all the thus far collected data, a questionnaire about quality of living, knowledge of planning system and area perception was produced. Initially, it was used in a pilot residential area Žabjek, and afterwards, a shortened version was carried out in units lying in other parts of the town. Other stakeholders also expressed their ideas about how to develop planning unit seven. Speke Garston as another example of successful urban renewal is given. In conclusion guidelines for method and context development of urban renewal are given for planning unit seven, with emphasis on the Žabjek estate.

  1. Lysosomal degradation of membrane lipids.

    Science.gov (United States)

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    Directory of Open Access Journals (Sweden)

    Justin Wright

    2017-11-01

    Full Text Available The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM, has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26 with DCM contamination ranging from 0.89 to 9,800,000 μg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration

  3. Marine microbe with potential to adhere and degrade plastic structures

    Directory of Open Access Journals (Sweden)

    Alka Kumari

    2017-10-01

    Full Text Available Extensive usages of plastics have led to their accumulation as a contaminant in natural environment worldwide. Plastic is an inert and non-biodegradable material, due to its complex structure and hydrophobic backbone [1]. Conventional methods for reduction of plastic waste such as burning, land-filling release unwanted toxic chemicals to the environment and harming living organism of land as well as the ocean. There is growing interest in development of strategies for the degradation of plastic wastes to clean the environment [2]. Marine bacteria have evolved with the capability to adapt and grow in the diverse environmental conditions [3]. We studied the ability of marine bacteria for destabilization and utilization of different plastic films (LDPE, HDPE, PVC and PET as a sole source of carbon. An active bacterial strain AIIW2 was selected based on the triphenyl tetrazolium chloride reduction assay, and it was identified as Bacillus species based on 16S rRNA gene sequence. The viability of the strain over the plastic surface was studied and confirmed by bacLight assay with fluorescent probes. Scanning Electron Microscope and Atomic Force Microscope images suggested that bacterial interaction over the plastic surface is causing deterioration and roughness with increasing bacterial incubation time. In Fourier transform infrared spectra of treated plastic film evidenced stretching of the (-CH alkane rock chain and (-CO carbonyl region, suggested the oxidative activities of the bacteria. The results revealed that ability of bacterial strain for instigating their colonization over plastic films and deteriorating the polymeric structure in the absence of other carbon sources [4]. Moreover, production of extracellular enzymes such as esterase, laccase, and dehalogenase which are reported to support utilization of plastics was confirmed by plate assays. In concise, our results suggested that the marine bacterial strain AIIW2 have the ability to utilize

  4. Simplified and representative bacterial community of maize roots.

    Science.gov (United States)

    Niu, Ben; Paulson, Joseph Nathaniel; Zheng, Xiaoqi; Kolter, Roberto

    2017-03-21

    Plant-associated microbes are important for the growth and health of their hosts. As a result of numerous prior studies, we know that host genotypes and abiotic factors influence the composition of plant microbiomes. However, the high complexity of these communities challenges detailed studies to define experimentally the mechanisms underlying the dynamics of community assembly and the beneficial effects of such microbiomes on plant hosts. In this work, from the distinctive microbiota assembled by maize roots, through host-mediated selection, we obtained a greatly simplified synthetic bacterial community consisting of seven strains ( Enterobacter cloacae , Stenotrophomonas maltophilia, Ochrobactrum pituitosum, Herbaspirillum frisingense, Pseudomonas putida, Curtobacterium pusillum , and Chryseobacterium indologenes ) representing three of the four most dominant phyla found in maize roots. By using a selective culture-dependent method to track the abundance of each strain, we investigated the role that each plays in community assembly on roots of axenic maize seedlings. Only the removal of E. cloacae led to the complete loss of the community, and C. pusillum took over. This result suggests that E. cloacae plays the role of keystone species in this model ecosystem. In planta and in vitro, this model community inhibited the phytopathogenic fungus Fusarium verticillioides , indicating a clear benefit to the host. Thus, combined with the selective culture-dependent quantification method, our synthetic seven-species community representing the root microbiome has the potential to serve as a useful system to explore how bacterial interspecies interactions affect root microbiome assembly and to dissect the beneficial effects of the root microbiota on hosts under laboratory conditions in the future.

  5. Biodegradation of the anionic surfactant sodium dodecyl sulfate by local bacterial isolate

    International Nuclear Information System (INIS)

    Ibrahim, H.M.M.; NoorEl-Din, M.R.

    2011-01-01

    Anionic surfactants, e.g., sodium dodecyl sulfate (SDS), as a main components in the detergent and cosmetic industries, contribute significantly to the pollution profile of sewage and wastewaters of all kinds. The purpose of this study was to isolate local SDS degrading bacteria. Screening was carried out by the conventional enrichment culture technique. One bacterial isolate was obtained; this isolate was primarily defined as gram-negative rods . It was capable of degrading 100% of 1000 and 2000 mg/l of SDS after 6 days of incubation. The isolate exhibited maximum growth at SDS concentration 4000 mg/I, but it was significantly decreased at higher concentration (16000 mg/I).All the carbon sources being tested repressed the degradation ability. Sodium nitrate at concentration of 2.0 g/I was the best nitrogen source for growth and SDS biodegradation, it enhanced the degradation of 3000 mg/I SDS by 95%,i.e., by 32% upon the control (broth medium containing NH 4 Cl). SDS degradation by the bacterium was optimum at initial ph 8.5, incubation temperature 35 degree C, and inoculum size 2% (v/v). Under the optimized conditions, almost 98% of initial SDS concentration (4000 mg/l) was degraded after 120 h of incubation. Gamma irradiation did not improve the biodegradation ability of this bacterial isolate.

  6. Bacterial synergism in lignocellulose biomass degradation : Complementary roles of degraders as influenced by complexity of the carbon source

    NARCIS (Netherlands)

    Cortes Tolalpa, Larisa; Falcao Salles, Joana; van Elsas, Jan

    2017-01-01

    Lignocellulosic biomass (LCB) is an attractive source of carbon for the production of sugars and other chemicals. Due to its inherent complexity and heterogeneity, efficient biodegradation requires the actions of different types of hydrolytic enzymes. In nature, complex microbial communities that

  7. Streptococcus pyogenes degrades extracellular matrix in chondrocytes via MMP-13

    International Nuclear Information System (INIS)

    Sakurai, Atsuo; Okahashi, Nobuo; Maruyama, Fumito; Ooshima, Takashi; Hamada, Shigeyuki; Nakagawa, Ichiro

    2008-01-01

    Group A streptococcus (GAS) causes a wide range of human diseases, including bacterial arthritis. The pathogenesis of arthritis is characterized by synovial proliferation and the destruction of cartilage and subchondral bone in joints. We report here that GAS strain JRS4 invaded a chondrogenic cell line ATDC5 and induced the degradation of the extracellular matrix (ECM), whereas an isogenic mutant of JRS4 lacking a fibronectin-binding protein, SAM1, failed to invade the chondrocytes or degrade the ECM. Reverse transcription-PCR and Western blot analysis revealed that the expression of matrix metalloproteinase (MMP)-13 was strongly elevated during the infection with GAS. A reporter assay revealed that the activation of the AP-1 transcription factor and the phosphorylation of c-Jun terminal kinase participated in MMP-13 expression. These results suggest that MMP-13 plays an important role in the destruction of infected joints during the development of septic arthritis

  8. Dynamic changes of bacterial community under bioremediation with Sphingobium sp. LY-6 in buprofezin-contaminated soil.

    Science.gov (United States)

    Liu, Yuan; Hou, Qianqian; Liu, Wanru; Meng, Yawen; Wang, Guangli

    2015-08-01

    Buprofezin is a commonly used chemical with satisfactory biological activity against sucking insect pests, but its disposal can cause serious environmental problems. To study the feasibility of remedying contamination by buprofezin, microcosm experiments were carried out to study the effects of various concentrations of buprofezin and Sphingobium sp. LY-6 on soil bacterial communities in soils collected from vegetable fields. In this experiment, the results showed that buprofezin was effectively degraded by Sphingobium sp. LY-6 in incubation soils. Comparing to non-incubated soils, the cumulative degradation ratio of buprofezin was significantly increased, up to the extent of 85 and 51%, in the initial concentration of 10 and 100 mg kg(-1). The abundance and community structure of the bacterial communities were analysed by real-time PCR (qPCR) and terminal-restriction fragment length polymorphism (T-RFLP). The findings suggest that buprofezin had a negative effect on soil bacterial community, and decreases in bacterial abundance were observed in the later part of the incubation period. The bacterial community structure and diversity shifted significantly at each sampling time. In conclusion, the buprofezin-degrading strain LY-6 played a major role in the bioremediation of the buprofezin-contaminated soil and influenced the dynamics and structure of the bacterial community, demonstrating the great potential of exogenous microorganisms for soil remediation.

  9. Drift Degradation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dwayne C. Kicker

    2001-09-28

    A statistical description of the probable block sizes formed by fractures around the emplacement drifts has been developed for each of the lithologic units of the repository host horizon. A range of drift orientations with the drift azimuth varied in 15{sup o} increments has been considered in the static analysis. For the quasi-static seismic analysis, and the time-dependent and thermal effects analysis, two drift orientations have been considered: a drift azimuth of 105{sup o} and the current emplacement drift azimuth of 75{sup o}. The change in drift profile resulting from progressive deterioration of the emplacement drifts has been assessed both with and without backfill. Drift profiles have been determined for four different time increments, including static (i.e., upon excavation), 200 years, 2,000 years, and 10,000 years. The effect of seismic events on rock fall has been analyzed. Block size distributions and drift profiles have been determined for three seismic levels, including a 1,000-year event, a 5,000-year event, and a 10,000-year event. Data developed in this modeling and analysis activity have been entered into the TDMS (DTN: MO0109RDDAAMRR.003). The following conclusions have resulted from this drift degradation analysis: (1) The available fracture data are suitable for supporting a detailed key block analysis of the repository host horizon rock mass. The available data from the north-south Main Drift and the east-west Cross Drift provide a sufficient representative fracture sample of the repository emplacement drift horizon. However, the Tptpln fracture data are only available from a relatively small section of the Cross Drift, resulting in a smaller fracture sample size compared to the other lithologic units. This results in a lower degree of confidence that the key block data based on the Tptpln data set is actually representative of the overall Tptpln key block population. (2) The seismic effect on the rock fall size distribution for all events

  10. A microcosm approach to evaluate the degradation of tributyltin (TBT) by Aeromonas molluscorum Av27 in estuarine sediments.

    Science.gov (United States)

    Cruz, Andreia; Henriques, Isabel; Sousa, Ana C A; Baptista, Inês; Almeida, Adelaide; Takahashi, Shin; Tanabe, Shinsuke; Correia, António; Suzuki, Satoru; Anselmo, Ana Maria; Mendo, Sónia

    2014-07-01

    Tributyltin (TBT) is a biocide extremely toxic to a wide range of organisms, which has been used for decades in antifouling paints. Despite its global ban in 2008, TBT is still a problem of great concern due to the high levels trapped in sediments. Aeromonas molluscorum Av27 is a TBT degrading bacterium that was isolated from an estuarine system. We investigated the ability and the role of this bacterium on TBT degradation in this estuarine system, using a microcosm approach in order to mimic environmental conditions. The experiment was established and followed for 150 days. Simultaneously, changes in the indigenous bacterial community structure were also investigated. The results revealed a maximum TBT degradation rate of 28% accompanied by the detection of the degradation products over time. Additionally, it was observed that TBT degradation was significantly enhanced by the presence of Av27. In addition a significantly higher TBT degradation occurred when the concentration of Av27 was higher. TBT degradation affected the bacterial community composition as revealed by the changes in the prevalence of Proteobacteria subdivisions, namely the increase of Deltaproteobacteria and the onset of Epsilonproteobacteria. However, the addition of Av27 strain did not affect the dominant phylotypes. Total bacterial number, bacterial biomass productivity, 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE) analyses also indicated alterations on the bacterial community structure over time, with bacteria non-tolerant to pollutants increasing their representativeness, as, for instance, the increase of the number of Alphaproteobacteria clones from 6% in the beginning to 12% at the end of the experiment. The work herein presented confirms the potential of Av27 strain to be used in the decontamination of TBT-polluted environments. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Aerobic degradation of methyl tert-butyl ether in a closed symbiotic system containing a mixed culture of Chlorella ellipsoidea and Methylibium petroleiphilum PM1.

    Science.gov (United States)

    Zhong, Weihong; Li, Yixiao; Sun, Kedan; Jin, Jing; Li, Xuanzhen; Zhang, Fuming; Chen, Jianmeng

    2011-01-30

    The contamination of groundwater by methyl tert-butyl ether (MTBE) is one of the most serious environmental problems around the world. MTBE degradation in a closed algal-bacterial symbiotic system, containing a mixed culture of Methylibium petroleiphilum PM1 and Chlorella ellipsoidea, was investigated. The algal-bacterial symbiotic system showed increased MTBE degradation. The MTBE-degradation rate in the mixed culture (8.808 ± 0.007 mg l(-1) d(-1)) was higher than that in the pure bacterial culture (5.664 ± 0.017 mg l(-1) d(-1)). The level of dissolved oxygen was also higher in the mixed culture than that in the pure bacterial culture. However, the improved efficiency of MTBE degradation was not in proportional to the biomass of the alga. The optimal ratio of initial cell population of bacteria to algae was 100:1. An immobilized culture of mixed bacteria and algae also showed higher MTBE degradation rate than the immobilized pure bacterial culture. A mixed culture with algae and PM1 immobilized separately in different gel beads showed higher degradation rate (8.496 ± 0.636 mg l(-1) d(-1)) than that obtained with algae and PM1 immobilized in the same gel beads (5.424 ± 0.010 mg l(-1) d(-1)). Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Draft Genome Sequence of MCPA-Degrading Sphingomonas sp. Strain ERG5, Isolated from a Groundwater Aquifer in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Tue Kjærgaard; Kot, Witold; Sørensen, Sebastian R

    2015-01-01

    Sphingomonas sp. strain ERG5 was isolated from a bacterial community, originating from a groundwater aquifer polluted with low pesticide concentrations. This bacterium degrades 2-methyl-4-chlorophenoxyacetic acid (MCPA) in a wide spectrum of concentrations and has been shown to function in bioaug......Sphingomonas sp. strain ERG5 was isolated from a bacterial community, originating from a groundwater aquifer polluted with low pesticide concentrations. This bacterium degrades 2-methyl-4-chlorophenoxyacetic acid (MCPA) in a wide spectrum of concentrations and has been shown to function...

  13. Can we estimate bacterial growth rates from ribosomal RNA content?

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, P.F.

    1995-12-31

    Several studies have demonstrated a strong relationship between the quantity of RNA in bacterial cells and their growth rate under laboratory conditions. It may be possible to use this relationship to provide information on the activity of natural bacterial communities, and in particular on growth rate. However, if this approach is to provide reliably interpretable information, the relationship between RNA content and growth rate must be well-understood. In particular, a requisite of such applications is that the relationship must be universal among bacteria, or alternately that the relationship can be determined and measured for specific bacterial taxa. The RNA-growth rate relationship has not been used to evaluate bacterial growth in field studies, although RNA content has been measured in single cells and in bulk extracts of field samples taken from coastal environments. These measurements have been treated as probable indicators of bacterial activity, but have not yet been interpreted as estimators of growth rate. The primary obstacle to such interpretations is a lack of information on biological and environmental factors that affect the RNA-growth rate relationship. In this paper, the available data on the RNA-growth rate relationship in bacteria will be reviewed, including hypotheses regarding the regulation of RNA synthesis and degradation as a function of growth rate and environmental factors; i.e. the basic mechanisms for maintaining RNA content in proportion to growth rate. An assessment of the published laboratory and field data, the current status of this research area, and some of the remaining questions will be presented.

  14. Quantitative proteomic analyses of the microbial degradation of estrone under various background nitrogen and carbon conditions.

    Science.gov (United States)

    Du, Zhe; Chen, Yinguang; Li, Xu

    2017-10-15

    Microbial degradation of estrogenic compounds can be affected by the nitrogen source and background carbon in the environment. However, the underlying mechanisms are not well understood. The objective of this study was to elucidate the molecular mechanisms of estrone (E1) biodegradation at the protein level under various background nitrogen (nitrate or ammonium) and carbon conditions (no background carbon, acetic acid, or humic acid as background carbon) by a newly isolated bacterial strain. The E1 degrading bacterial strain, Hydrogenophaga atypica ZD1, was isolated from river sediments and its proteome was characterized under various experimental conditions using quantitative proteomics. Results show that the E1 degradation rate was faster when ammonium was used as the nitrogen source than with nitrate. The degradation rate was also faster when either acetic acid or humic acid was present in the background. Proteomics analyses suggested that the E1 biodegradation products enter the tyrosine metabolism pathway. Compared to nitrate, ammonium likely promoted E1 degradation by increasing the activities of the branched-chain-amino-acid aminotransferase (IlvE) and enzymes involved in the glutamine synthetase-glutamine oxoglutarate aminotransferase (GS-GOGAT) pathway. The increased E1 degradation rate with acetic acid or humic acid in the background can also be attributed to the up-regulation of IlvE. Results from this study can help predict and explain E1 biodegradation kinetics under various environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Identification of Anaerobic Aniline-Degrading Bacteria at a Contaminated Industrial Site.

    Science.gov (United States)

    Sun, Weimin; Li, Yun; McGuinness, Lora R; Luo, Shuai; Huang, Weilin; Kerkhof, Lee J; Mack, E Erin; Häggblom, Max M; Fennell, Donna E

    2015-09-15

    Anaerobic aniline biodegradation was investigated under different electron-accepting conditions using contaminated canal and groundwater aquifer sediments from an industrial site. Aniline loss was observed in nitrate- and sulfate-amended microcosms and in microcosms established to promote methanogenic conditions. Lag times of 37 days (sulfate amended) to more than 100 days (methanogenic) were observed prior to activity. Time-series DNA-stable isotope probing (SIP) was used to identify bacteria that incorporated (13)C-labeled aniline in the microcosms established to promote methanogenic conditions. In microcosms from heavily contaminated aquifer sediments, a phylotype with 92.7% sequence similarity to Ignavibacterium album was identified as a dominant aniline degrader as indicated by incorporation of (13)C-aniline into its DNA. In microcosms from contaminated canal sediments, a bacterial phylotype within the family Anaerolineaceae, but without a match to any known genus, demonstrated the assimilation of (13)C-aniline. Acidovorax spp. were also identified as putative aniline degraders in both of these two treatments, indicating that these species were present and active in both the canal and aquifer sediments. There were multiple bacterial phylotypes associated with anaerobic degradation of aniline at this complex industrial site, which suggests that anaerobic transformation of aniline is an important process at the site. Furthermore, the aniline degrading phylotypes identified in the current study are not related to any known aniline-degrading bacteria. The identification of novel putative aniline degraders expands current knowledge regarding the potential fate of aniline under anaerobic conditions.

  16. Bacterial Endophytes Isolated from Plants in Natural Oil Seep Soils with Chronic Hydrocarbon Contamination.

    Science.gov (United States)

    Lumactud, Rhea; Shen, Shu Yi; Lau, Mimas; Fulthorpe, Roberta

    2016-01-01

    The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum, and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except S. canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene, or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons (PHCs) substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  17. Laboratory scale bioremediation of diesel hydrocarbon in soil by indigenous bacterial consortium.

    Science.gov (United States)

    Sharma, Anjana; Rehman, Meenal Budholia

    2009-09-01

    In vitro experiment was performed by taking petrol pump soils and diesel in flasks with the micronutrients and macronutrients supplements. Cemented bioreactors having sterilized soil and diesel was used for in vivo analysis of diesel hydrocarbon degradation. There were two sets of experiments, first having three bioreactors (1) inoculated by KI. pneumoniae subsp. aerogenes with soil and diesel; (2) with addition of NH4NO3; and (3) served as control. In second set, one bioreactor was inoculated by bacterial consortium containing Moraxella saccharolytica, Alteromonas putrefaciens, KI. pneumoniae subsp. aerogenes and Pseudomonas fragi along with soil and diesel. The remaining two bioreactors (having NH4NO3 and control) were similar to the first set. The experiments were incubated for 30 days. Ability of bacterial inoculum to degrade diesel was analyzed through GC-MS. Smaller chain compounds were obtained after experimental period of 30 days. Rate of diesel degradation was better with the present bacterial consortium than individual bacteria. Present bacterial consortium can be a better choice for faster and complete remediation of contaminated hydrocarbon soils.

  18. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination

    Directory of Open Access Journals (Sweden)

    Rhea eLumactud

    2016-05-01

    Full Text Available The bacterial endophytic communities of four plants growing abundantly in soils highly contaminated by hydrocarbons were analyzed through culturable and and culture-independent means. Given their tolerance to the high levels of petroleum contamination at our study site, we sought evidence that Achillea millefolium, Solidago canadensis, Trifolium aureum and Dactylis glomerata support high levels of hydrocarbon degrading endophytes. A total of 190 isolates were isolated from four plant species. The isolates were identified by partial 16S rDNA sequence analysis, with class Actinobacteria as the dominant group in all species except Solidago canadensis, which was dominated by Gammaproteobacteria. Microbacterium foliorum and Plantibacter flavus were present in all the plants, with M. foliorum showing predominance in D. glomerata and both endophytic bacterial species dominated T. aureum. More than 50% of the isolates demonstrated degradative capabilities for octanol, toluene, naphthalene, kerosene or motor oil based on sole carbon source growth screens involving the reduction of tetrazolium dye. P. flavus isolates from all the sampled plants showed growth on all the petroleum hydrocarbons substrates tested. Mineralization of toluene and naphthalene was confirmed using gas-chromatography. 16S based terminal restriction fragment length polymorphism analysis revealed significant differences between the endophytic bacterial communities showing them to be plant host specific at this site. To our knowledge, this is the first account of the degradation potential of bacterial endophytes in these commonly occurring pioneer plants that were not previously known as phytoremediating plants.

  19. Evolution of bacterial community during bioremediation of PAHs in a coal tar contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lors, C.; Ryngaert, A.; Perie, F.; Diels, L.; Damidot, D. [University of Lille, Lille (France)

    2010-11-15

    The monitoring of a windrow treatment applied to soil contaminated by mostly 2, 3- and 4-ring PAHs produced by coal tar distillation was performed by following the evolution of both PAH concentration and the bacterial community. Total and PAH-degrading bacterial community structures were followed by 165 rRNA PCR-DGGE in parallel with quantification by bacterial counts and 16 PAH measurements. Six months of biological treatment led to a strong decrease in 2-, 3- and 4-ring PAH concentrations (98, 97 and 82%, respectively). This result was associated with the activity of bacterial PAH-degraders belonging mainly to the Gamma proteobacteria, in particular the Enterobacteria and Pseudomonas genera which were detected over the course of the treatment. This group was considered to be a good bioindicator to determine the potential PAH biodegradation of contaminated soil. Conversely other species like the Beta proteobacteria were detected after 3 months when 2-, 3- and 4-ring PAHs were almost completely degraded. Thus presence of the Beta proteobacteria group could be considered a good candidate indicator to estimate the endpoint of biotreatment of this type of PAH contaminated soil.

  20. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media

    International Nuclear Information System (INIS)

    Wu, Manli; Chen, Liming; Tian, Yongqiang; Ding, Yi; Dick, Warren A.

    2013-01-01

    A consortium composed of many different bacterial species is required to efficiently degrade polycyclic aromatic hydrocarbons (PAH) in oil-contaminated soil. We obtained six PAH-degrading microbial consortia from three oil-contaminated soils using two different isolation culture media. Denaturing gradient gel electrophoresis (DGGE) and sequence analyses of amplified 16s rRNA genes confirmed the bacterial community was greatly affected by both the culture medium and the soil from which the consortia were enriched. Three bacterial consortia enriched using malt yeast extract (MYE) medium showed higher degradation rates of PAHs than consortia enriched using Luria broth (LB) medium. Consortia obtained from a soil and then added back to that same soil was more effective in degrading PAHs than adding, to the same soil, consortia isolated from other, unrelated soils. This suggests that inoculum used for bioremediation should be from the same, or very similar nearby soils, as the soil that is actually being bioremediated. -- Highlights: •Six PAH-degrading microbial consortia were isolated from three oil-contaminated soils. •The bacterial community by 16s rRNA genes was affected by culture media and source soil. •Inoculum should be from the same or similar soil as the soil being bioremediated. -- Bioremediation of oil-contaminated soils was most effective when using inoculum of microbial consortia from the same or similar soil as the soil being bioremediated

  1. Degradation of polynuclear aromatic hydrocarbons by two strains of Pseudomonas.

    Science.gov (United States)

    Nwinyi, Obinna C; Ajayi, Oluseyi O; Amund, Olukayode O

    2016-01-01

    The goal of this investigation was to isolate competent polynuclear aromatic hydrocarbons degraders that can utilize polynuclear aromatic hydrocarbons of former industrial sites at McDoel Switchyard in Bloomington, Indiana. Using conventional enrichment method based on soil slurry, we isolated, screened and purified two bacterial species strains PB1 and PB2. Applying the ribotyping technique using the 16S rRNA gene analysis, the strains were assigned to the genus Pseudomonas (Pseudomonas plecoglossicida strain PB1 and Pseudomonas sp. PB2). Both isolates showed promising metabolic capacity on pyrene sprayed MS agar plates during the preliminary investigations. Using time course studies in the liquid cultures at calculated concentrations 123, 64, 97 and 94ppm for naphthalene, chrysene, fluroanthene and pyrene, P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 showed partial utilization of the polynuclear aromatic hydrocarbons. Naphthalene was degraded between 26% and 40%, chrysene 14% and 16%, fluroanthene 5% and 7%; pyrene 8% and 13% by P. plecoglossicida strain PB1 and Pseudomonas sp. PB2 respectively. Based on their growth profile, we developed a model R(2)=1 to predict the degradation rate of slow polynuclear aromatic hydrocarbon-degraders where all the necessary parameters are constant. From this investigation, we confirm that the former industrial site soil microbial communities may be explored for the biorestoration of the industrial site. Copyright © 2016. Published by Elsevier Editora Ltda.

  2. Isolation of naphthalene-degrading bacteria from tropical marine sediments

    International Nuclear Information System (INIS)

    Zhuang, W.-Q.; Tay, J.-H.; Maszenan, A.M.; Tay, S.T.-L.

    2003-01-01

    Oil pollution is a major environmental concern in many countries, and this has led to a concerted effort in studying the feasibility of using oil-degrading bacteria for bioremediation. Although many oil-degrading bacteria have been isolated from different environments, environmental conditions can impose a selection pressure on the types of bacteria that can reside in a particular environment. This study reports the successful isolation of two indigenous naphthalene-degrading bacteria from oil-contaminated tropical marine sediments by enrichment culture. Strains MN-005 and MN-006 were characterized using an extensive range of biochemical tests. The 16S ribosomal deoxyribonucleic acid (rDNA) sequence analysis was also performed for the two strains. Their naphthalene degradation capabilities were determined using gas chromatography and DAPI counting of bacterial cells. Strains MN-005 and MN-006 are phenotypically and phylogenetically different from each other, and belong to the genera Staphylococcus and Micrococcus, respectively. Strains MN-005 and MN-006 has maximal specific growth rates (μ max ) of 0.082±0.008 and 0.30±0.02 per hour, respectively, and half-saturation constants (K s ) of 0.79±0.10 and 2.52±0.32 mg per litre, respectively. These physiological and growth studies are useful in assessing the potential of these indigenous isolates for in situ or ex situ naphthalene pollutant bioremediation in tropical marine environments. (author)

  3. Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps.

    Science.gov (United States)

    Doke, M; Fukamachi, H; Morisaki, H; Arimoto, T; Kataoka, H; Kuwata, H

    2017-08-01

    Periodontitis is an inflammatory disease caused by periodontal bacteria in subgingival plaque. These bacteria are able to colonize the periodontal region by evading the host immune response. Neutrophils, the host's first line of defense against infection, use various strategies to kill invading pathogens, including neutrophil extracellular traps (NETs). These are extracellular net-like fibers comprising DNA and antimicrobial components such as histones, LL-37, defensins, myeloperoxidase, and neutrophil elastase from neutrophils that disarm and kill bacteria extracellularly. Bacterial nuclease degrades the NETs to escape NET killing. It has now been shown that extracellular nucleases enable bacteria to evade this host antimicrobial mechanism, leading to increased pathogenicity. Here, we compared the DNA degradation activity of major Gram-negative periodontopathogenic bacteria, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We found that Pr. intermedia showed the highest DNA degradation activity. A genome search of Pr. intermedia revealed the presence of two genes, nucA and nucD, putatively encoding secreted nucleases, although their enzymatic and biological activities are unknown. We cloned nucA- and nucD-encoding nucleases from Pr. intermedia ATCC 25611 and characterized their gene products. Recombinant NucA and NucD digested DNA and RNA, which required both Mg 2+ and Ca 2+ for optimal activity. In addition, NucA and NucD were able to degrade the DNA matrix comprising NETs. © 2016 The Authors Molecular Oral Microbiology Published by John Wiley & Sons Ltd.

  4. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation.

    Science.gov (United States)

    Andorko, James I; Hess, Krystina L; Pineault, Kevin G; Jewell, Christopher M

    2016-03-01

    Recent studies reveal many biomaterial vaccine carriers are able to activate immunostimulatory pathways, even in the absence of other immune signals. How the changing properties of polymers during biodegradation impact this intrinsic immunogenicity is not well studied, yet this information could contribute to rational design of degradable vaccine carriers that help direct immune response. We use degradable poly(beta-amino esters) (PBAEs) to explore intrinsic immunogenicity as a function of the degree of polymer degradation and polymer form (e.g., soluble, particles). PBAE particles condensed by electrostatic interaction to mimic a common vaccine approach strongly activate dendritic cells, drive antigen presentation, and enhance T cell proliferation in the presence of antigen. Polymer molecular weight strongly influences these effects, with maximum stimulation at short degradation times--corresponding to high molecular weight--and waning levels as degradation continues. In contrast, free polymer is immunologically inert. In mice, PBAE particles increase the numbers and activation state of cells in lymph nodes. Mechanistic studies reveal that this evolving immunogenicity occurs as the physicochemical properties and concentration of particles change during polymer degradation. This work confirms the immunological profile of degradable, synthetic polymers can evolve over time and creates an opportunity to leverage this feature in new vaccines. Degradable polymers are increasingly important in vaccination, but how the inherent immunogenicity of polymers changes during degradation is poorly understood. Using common rapidly-degradable vaccine carriers, we show that the activation of immune cells--even in the absence of other adjuvants--depends on polymer form (e.g., free, particulate) and the extent of degradation. These changing characteristics alter the physicochemical properties (e.g., charge, size, molecular weight) of polymer particles, driving changes in

  5. Abdominal radiation causes bacterial translocation

    International Nuclear Information System (INIS)

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-01-01

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa

  6. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  7. Operationalizing measurement of forest degradation

    DEFF Research Database (Denmark)

    Dons, Klaus; Smith-Hall, Carsten; Meilby, Henrik

    2015-01-01

    . In Tanzania, charcoal production is considered a major cause of forest degradation, but is challenging to quantify due to sub-canopy biomass loss, remote production sites and illegal trade. We studied two charcoal production sites in dry Miombo woodland representing open woodland conditions near human......Quantification of forest degradation in monitoring and reporting as well as in historic baselines is among the most challenging tasks in national REDD+ strategies. However, a recently introduced option is to base monitoring systems on subnational conditions such as prevalent degradation activities...

  8. Bacterial computing with engineered populations.

    Science.gov (United States)

    Amos, Martyn; Axmann, Ilka Maria; Blüthgen, Nils; de la Cruz, Fernando; Jaramillo, Alfonso; Rodriguez-Paton, Alfonso; Simmel, Friedrich

    2015-07-28

    We describe strategies for the construction of bacterial computing platforms by describing a number of results from the recently completed bacterial computing with engineered populations project. In general, the implementation of such systems requires a framework containing various components such as intracellular circuits, single cell input/output and cell-cell interfacing, as well as extensive analysis. In this overview paper, we describe our approach to each of these, and suggest possible areas for future research. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture.

    Science.gov (United States)

    Takenaka, Shoji; Oda, Masataka; Domon, Hisanori; Ohsumi, Tatsuya; Suzuki, Yuki; Ohshima, Hayato; Yamamoto, Hirofumi; Terao, Yutaka; Noiri, Yuichiro

    2016-11-11

    An ideal antibiofilm strategy is to control both in the quality and quantity of biofilm while maintaining the benefits derived from resident microflora. Vizantin, a recently developed immunostimulating compound, has also been found to have antibiofilm property. This study evaluated the influence on biofilm formation of Streptococcus mutans in the presence of sulfated vizantin and biofilm development following bacterial adhesion on a hydroxyapatite disc coated with sulfated vizantin. Supplementation with sulfated vizantin up to 50 μM did not affect either bacterial growth or biofilm formation, whereas 50 μM sulfated vizantin caused the biofilm to readily detach from the surface. Sulfated vizantin at the concentration of 50 μM upregulated the expression of the gtfB and gtfC genes, but downregulated the expression of the gtfD gene, suggesting altered architecture in the biofilm. Biofilm development on the surface coated with sulfated vizantin was inhibited depending on the concentration, suggesting prevention from bacterial adhesion. Among eight genes related to bacterial adherence in S. mutans, expression of gtfB and gtfC was significantly upregulated, whereas the expression of gtfD, GbpA and GbpC was downregulated according to the concentration of vizantin, especially with 50 μM vizantin by 0.8-, 0.4-, and 0.4-fold, respectively. These findings suggest that sulfated vizantin may cause structural degradation as a result of changing gene regulation related to bacterial adhesion and glucan production of S. mutans. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. In-Field Spatial Variability in the Degradation of the Phenyl-Urea Herbicide Isoproturon Is the Result of Interactions between Degradative Sphingomonas spp. and Soil pH

    Science.gov (United States)

    Bending, Gary D.; Lincoln, Suzanne D.; Sørensen, Sebastian R.; Morgan, J. Alun W.; Aamand, Jens; Walker, Allan

    2003-01-01

    Substantial spatial variability in the degradation rate of the phenyl-urea herbicide isoproturon (IPU) [3-(4-isopropylphenyl)-1,1-dimethylurea] has been shown to occur within agricultural fields, with implications for the longevity of the compound in the soil, and its movement to ground- and surface water. The microbial mechanisms underlying such spatial variability in degradation rate were investigated at Deep Slade field in Warwickshire, United Kingdom. Most-probable-number analysis showed that rapid degradation of IPU was associated with proliferation of IPU-degrading organisms. Slow degradation of IPU was linked to either a delay in the proliferation of IPU-degrading organisms or apparent cometabolic degradation. Using enrichment techniques, an IPU-degrading bacterial culture (designated strain F35) was isolated from fast-degrading soil, and partial 16S rRNA sequencing placed it within the Sphingomonas group. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified bacterial community 16S rRNA revealed two bands that increased in intensity in soil during growth-linked metabolism of IPU, and sequencing of the excised bands showed high sequence homology to the Sphingomonas group. However, while F35 was not closely related to either DGGE band, one of the DGGE bands showed 100% partial 16S rRNA sequence homology to an IPU-degrading Sphingomonas sp. (strain SRS2) isolated from Deep Slade field in an earlier study. Experiments with strains SRS2 and F35 in soil and liquid culture showed that the isolates had a narrow pH optimum (7 to 7.5) for metabolism of IPU. The pH requirements of IPU-degrading strains of Sphingomonas spp. could largely account for the spatial variation of IPU degradation rates across the field. PMID:12571001

  11. In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold.

    Science.gov (United States)

    Yadav, Vikas; Sun, Lin; Panilaitis, Bruce; Kaplan, David L

    2015-12-01

    A current focus of tissue engineering is the use of adult human mesenchymal stem cells (hMSCs) as an alternative to autologous chondrocytes for cartilage repair. Several natural and synthetic polymers (including cellulose) have been explored as a biomaterial scaffold for cartilage tissue engineering. While bacterial cellulose (BC) has been used in tissue engineering, its lack of degradability in vivo and high crystallinity restricts widespread applications in the field. Recently we reported the formation of a novel bacterial cellulose that is lysozyme-susceptible and -degradable in vivo from metabolically engineered Gluconacetobacter xylinus. Here we report the use of this modified bacterial cellulose (MBC) for cartilage tissue engineering using hMSCs. MBC's glucosaminoglycan-like chemistry, combined with in vivo degradability, suggested opportunities to exploit this novel polymer in cartilage tissue engineering. We have observed that, like BC, MBC scaffolds support cell attachment and proliferation. Chondrogenesis of hMSCs in the MBC scaffolds was demonstrated by real-time RT-PCR analysis for cartilage-specific extracellular matrix (ECM) markers (collagen type II, aggrecan and SOX9) as well as histological and immunohistochemical evaluations of cartilage-specific ECM markers. Further, the attachment, proliferation, and differentiation of hMSCs in MBC showed unique characteristics. For example, after 4 weeks of cultivation, the spatial cell arrangement and collagen type-II and ACAN distribution resembled those in native articular cartilage tissue, suggesting promise for these novel in vivo degradable scaffolds for chondrogenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Critical evaluation of post-consumption food waste composting employing thermophilic bacterial consortium.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Selvam, Ammaiyappan; Lai, Ka Man; Wong, Jonathan W C

    2017-12-01

    Effect of single-function (oil degrading) and multi-functional bacterial consortium with zeolite as additive for post-consumption food waste (PCFW) composting was investigated through assessing the oil content reduction in a computer controlled 20-L composter. Three treatments of PCFWs combined with 10% zeolite were developed: Treatment-2 and Treatment-3 were inoculated with multi-functional (BC-1) and oil degrading bacterial consortium (BC-2), respectively, while T-1 was without bacterial inoculation and served as control. Results revealed that BC-2 inoculated treatment (T-3) was superior to control treatment and marginally better than T-2 in terms of oil degradation. The reduction of oil content was >97.8% in T-3 and 92.27% in T-2, while total organic matter degradation was marginally higher in T-2 (42.95%) than T-3 (41.67%). Other parameters of compost maturity including germination test indicated that T-2 was marginally better than T-3 and significantly enhanced the oily PCFW decomposition and shortened the composting period by 20days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Identification of Pectin Degrading Enzymes Secreted by Xanthomonas oryzae pv. oryzae and Determination of Their Role in Virulence on Rice

    OpenAIRE

    Tayi, Lavanya; Maku, Roshan V.; Patel, Hitendra Kumar; Sonti, Ramesh V.

    2016-01-01

    Xanthomonas oryzae pv.oryzae (Xoo) causes the serious bacterial blight disease of rice. Xoo secretes a repertoire of plant cell wall degrading enzymes (CWDEs) like cellulases, xylanases, esterases etc., which act on various components of the rice cell wall. The major cellulases and xylanases secreted by Xoo have been identified and their role in virulence has been determined. In this study, we have identified some of the pectin degrading enzymes of Xoo and assessed their role in virulence. Bi...

  14. Enhancement of aerobic biodegradability potential of municipal waste activated sludge by ultrasonic aided bacterial disintegration.

    Science.gov (United States)

    Kavitha, S; Jessin Brindha, G M; Sally Gloriana, A; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2016-01-01

    An investigation was performed to study the influence of ultrasonic aided bacterial disintegration on the aerobic degradability of sludge. In first phase of the study, effective floc disruption was achieved at an ultrasonic specific energy input of 2.45kJ/kg TS with 44.5mg/L of Extracellular Polymeric Substance (EPS) release including 0.035U/mL and 0.025U/mL protease and amylase activity respectively. In second phase, experimental outcomes revealed bacterial disintegration of floc disrupted-sludge showing a maximum solubilization of about 23% and was observed to be superior to bacterially disintegrated (11%) and control (6%), respectively. The result of aerobic biodegradability of ultrasonic aided bacterially pretreated sludge showed volatile solids (VS) degradation of about 40.2%. The kinetic study of aerobic biodegradability through non linear regression modelling reveals that floc disrupted sludge showed better biodegradability with decay constant of about 0.19d(-1) relatively higher than the control (0.14d(-1)) and bacterially disintegrated (0.17d(-1)) sludges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. From Rare to Dominant: a Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation.

    Science.gov (United States)

    Fuentes, Sebastián; Barra, Bárbara; Caporaso, J Gregory; Seeger, Michael

    2016-02-01

    Hydrocarbons are worldwide-distributed pollutants that disturb various ecosystems. The aim of this study was to characterize the short-lapse dynamics of soil microbial communities in response to hydrocarbon pollution and different bioremediation treatments. Replicate diesel-spiked soil microcosms were inoculated with either a defined bacterial consortium or a hydrocarbonoclastic bacterial enrichment and incubated for 12 weeks. The microbial community dynamics was followed weekly in microcosms using Illumina 16S rRNA gene sequencing. Both the bacterial consortium and enrichment enhanced hydrocarbon degradation in diesel-polluted soils. A pronounced and rapid bloom of a native gammaproteobacterium was observed in all diesel-polluted soils. A unique operational taxonomic unit (OTU) related to the Alkanindiges genus represented ∼ 0.1% of the sequences in the original community but surprisingly reached >60% after 6 weeks. Despite this Alkanindiges-related bloom, inoculated strains were maintained in the community and may explain the differences in hydrocarbon degradation. This study shows the detailed dynamics of a soil bacterial bloom in response to hydrocarbon pollution, resembling microbial blooms observed in marine environments. Rare community members presumably act as a reservoir of ecological functions in high-diversity environments, such as soils. This rare-to-dominant bacterial shift illustrates the potential role of a rare biosphere facing drastic environmental disturbances. Additionally, it supports the concept of "conditionally rare taxa," in which rareness is a temporary state conditioned by environmental constraints. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Development of an Efficient Bacterial Consortium for the Potential Remediation of Hydrocarbons from Contaminated Sites.

    Science.gov (United States)

    Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C; Deka, Suresh

    2016-01-01

    The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  17. Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites

    Directory of Open Access Journals (Sweden)

    Kaustuvmani Patowary

    2016-07-01

    Full Text Available The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia towards total petroleum hydrocarbons (TPH with special emphasis to poly aromatic hydrocarbons (PAHs were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples 5 isolates, namely KS2, PG1, PG5, R1 and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1 and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and Bacillus cereus R2 (identified by 16s rRNA sequencing has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of total petroleum hydrocarbon (TPH after five weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared and GCMS (Gas chromatography-mass spectrometer analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons.

  18. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome.

    Science.gov (United States)

    Beckers, Bram; Op De Beeck, Michiel; Weyens, Nele; Van Acker, Rebecca; Van Montagu, Marc; Boerjan, Wout; Vangronsveld, Jaco

    2016-02-23

    Cinnamoyl-CoA reductase (CCR), an enzyme central to the lignin biosynthetic pathway, represents a promising biotechnological target to reduce lignin levels and to improve the commercial viability of lignocellulosic biomass. However, silencing of the CCR gene results in considerable flux changes of the general and monolignol-specific lignin pathways, ultimately leading to the accumulation of various extractable phenolic compounds in the xylem. Here, we evaluated host genotype-dependent effects of field-grown, CCR-down-regulated poplar trees (Populus tremula × Populus alba) on the bacterial rhizosphere microbiome and the endosphere microbiome, namely the microbiota present in roots, stems, and leaves. Plant-associated bacteria were isolated from all plant compartments by selective isolation and enrichment techniques with specific phenolic carbon sources (such as ferulic acid) that are up-regulated in CCR-deficient poplar trees. The bacterial microbiomes present in the endosphere were highly responsive to the CCR-deficient poplar genotype with remarkably different metabolic capacities and associated community structures compared with the WT trees. In contrast, the rhizosphere microbiome of CCR-deficient and WT poplar trees featured highly overlapping bacterial community structures and metabolic capacities. We demonstrate the host genotype modulation of the plant microbiome by minute genetic variations in the plant genome. Hence, these interactions need to be taken into consideration to understand the full consequences of plant metabolic pathway engineering and its relation with the environment and the intended genetic improvement.

  19. Ecosystemic approaches to land degradation

    Energy Technology Data Exchange (ETDEWEB)

    Puigdefabregas, J.; Barrio, G. del; Hill, J.

    2009-07-01

    Land degradation is recognized as the main outcome of desertification. However available procedures for its assessment are still unsatisfactory because are often too costly for surveying large areas and rely on specific components of the degradation process without being able to integrate them in a unique process. One of the objectives of De Survey project is designing and implementing operational procedures for desertification surveillance, including land degradation. A strategic report was compiled and reproduced here for selecting the most appropriate approaches to the project conditions. The report focuses on using attributes of ecosystem maturity as a natural way to integrate the different drivers of land degradation in simple indices. The review surveys different families of attributes concerned with water and energy fluxes through the ecosystem, its capacity to sustain biomass and net primary productivity, and its capacity to structure the space. Finally, some conclusions are presented about the choice criteria of the different approaches in the framne of operational applications. (Author) 20 refs.

  20. Ecosystemic approaches to land degradation

    International Nuclear Information System (INIS)

    Puigdefabregas, J.; Barrio, G. del; Hill, J.

    2009-01-01

    Land degradation is recognized as the main outcome of desertification. However available procedures for its assessment are still unsatisfactory because are often too costly for surveying large areas and rely on specific components of the degradation process without being able to