WorldWideScience

Sample records for plant viral genome

  1. Targeted viral-mediated plant genome editing using crispr/cas9

    KAUST Repository

    Mahfouz, Magdy M.

    2015-12-17

    The present disclosure provides a viral-mediated genome-editing platform that facilitates multiplexing, obviates stable transformation, and is applicable across plant species. The RNA2 genome of the tobacco rattle virus (TRV) was engineered to carry and systemically deliver a guide RNA molecules into plants overexpressing Cas9 endonuclease. High genomic modification frequencies were observed in inoculated as well as systemic leaves including the plant growing points. This system facilitates multiplexing and can lead to germinal transmission of the genomic modifications in the progeny, thereby obviating the requirements of repeated transformations and tissue culture. The editing platform of the disclosure is useful in plant genome engineering and applicable across plant species amenable to viral infections for agricultural biotechnology applications.

  2. NCBI viral genomes resource.

    Science.gov (United States)

    Brister, J Rodney; Ako-Adjei, Danso; Bao, Yiming; Blinkova, Olga

    2015-01-01

    Recent technological innovations have ignited an explosion in virus genome sequencing that promises to fundamentally alter our understanding of viral biology and profoundly impact public health policy. Yet, any potential benefits from the billowing cloud of next generation sequence data hinge upon well implemented reference resources that facilitate the identification of sequences, aid in the assembly of sequence reads and provide reference annotation sources. The NCBI Viral Genomes Resource is a reference resource designed to bring order to this sequence shockwave and improve usability of viral sequence data. The resource can be accessed at http://www.ncbi.nlm.nih.gov/genome/viruses/ and catalogs all publicly available virus genome sequences and curates reference genome sequences. As the number of genome sequences has grown, so too have the difficulties in annotating and maintaining reference sequences. The rapid expansion of the viral sequence universe has forced a recalibration of the data model to better provide extant sequence representation and enhanced reference sequence products to serve the needs of the various viral communities. This, in turn, has placed increased emphasis on leveraging the knowledge of individual scientific communities to identify important viral sequences and develop well annotated reference virus genome sets.

  3. From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes.

    Science.gov (United States)

    Marton, Ira; Honig, Arik; Omid, Ayelet; De Costa, Noam; Marhevka, Elena; Cohen, Barry; Zuker, Amir; Vainstein, Alexander

    2013-01-01

    Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species.

  4. RNA silencing and plant viral diseases.

    Science.gov (United States)

    Wang, Ming-Bo; Masuta, Chikara; Smith, Neil A; Shimura, Hanako

    2012-10-01

    RNA silencing plays a critical role in plant resistance against viruses, with multiple silencing factors participating in antiviral defense. Both RNA and DNA viruses are targeted by the small RNA-directed RNA degradation pathway, with DNA viruses being also targeted by RNA-directed DNA methylation. To evade RNA silencing, plant viruses have evolved a variety of counter-defense mechanisms such as expressing RNA-silencing suppressors or adopting silencing-resistant RNA structures. This constant defense-counter defense arms race is likely to have played a major role in defining viral host specificity and in shaping viral and possibly host genomes. Recent studies have provided evidence that RNA silencing also plays a direct role in viral disease induction in plants, with viral RNA-silencing suppressors and viral siRNAs as potentially the dominant players in viral pathogenicity. However, questions remain as to whether RNA silencing is the principal mediator of viral pathogenicity or if other RNA-silencing-independent mechanisms also account for viral disease induction. RNA silencing has been exploited as a powerful tool for engineering virus resistance in plants as well as in animals. Further understanding of the role of RNA silencing in plant-virus interactions and viral symptom induction is likely to result in novel anti-viral strategies in both plants and animals.

  5. Mechanisms of inhibition of viral replication in plants

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    We have made a number of interesting observations of importance to the fields of virology and plant molecular biology. Topics include the genome of cucumber mosaic virus (CMV), recombination of the CMV genome, transgenic plants and viral movement genes, mapping resistance breakage sequences in the tomato mosaic virus (TMV) genome, and mapping pathogeneticity domains and viral RNA heterogeneity. 1 fig., 1 tab.

  6. Endogenous viral elements in algal genomes

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; YU Jun; WU Shuangxiu; LIU Tao; SUN Jing; CHI Shan; LIU Cui; LI Xingang; YIN Jinlong; WANG Xumin

    2014-01-01

    Endogenous viral elements (EVEs) are host-genomic fragments originated from viral genomes. They have been found universally in animal and plant genomes. Here we carried out a systematic screening and analy-sis of EVEs in algal genomes and found that EVEs commonly exist in algal genomes. We classified the EVE fragments into three categories according to the length of EVE fragments. Due to the probability of sequence similarity by chance, we ignored the potential function of medium-length EVE fragments. However, long-length EVE fragments probably had capability to encode protein domains or even entire proteins, and some short-length EVE fragments had high similarity with host's siRNA sequences and possibly served functions of small RNAs. Therefore, short and long EVE fragments might provide regulomic and proteomic novelty to the host's metabolism and adaptation. We also found several EVE fragments shared by more than 3 algal genomes. By phylogenetic analysis of the shared EVEs and their corresponding species, we found that the integration of viral fragments into host genomes was an ancient event, possibly before the divergence of Chlorophytes and Ochrophytes. Our findings show that there is a frequent genetic flow from viruses to algal genomes. Moreover, study on algal EVEs shed light on the virus-host interaction in large timescale and could also help us understand the balance of marine ecosystems.

  7. Assembly of viral genomes from metagenomes

    NARCIS (Netherlands)

    S.L. Smits (Saskia); R. Bodewes (Rogier); A. Ruiz-Gonzalez (Aritz); V. Baumgärtner (Volkmar); M.P.G. Koopmans D.V.M. (Marion); A.D.M.E. Osterhaus (Albert); A. Schürch (Anita)

    2014-01-01

    textabstractViral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow r

  8. V-GAP: Viral genome assembly pipeline

    KAUST Repository

    Nakamura, Yoji

    2015-10-22

    Next-generation sequencing technologies have allowed the rapid determination of the complete genomes of many organisms. Although shotgun sequences from large genome organisms are still difficult to reconstruct perfect contigs each of which represents a full chromosome, those from small genomes have been assembled successfully into a very small number of contigs. In this study, we show that shotgun reads from phage genomes can be reconstructed into a single contig by controlling the number of read sequences used in de novo assembly. We have developed a pipeline to assemble small viral genomes with good reliability using a resampling method from shotgun data. This pipeline, named V-GAP (Viral Genome Assembly Pipeline), will contribute to the rapid genome typing of viruses, which are highly divergent, and thus will meet the increasing need for viral genome comparisons in metagenomic studies.

  9. Assembly of viral genomes from metagenomes

    Directory of Open Access Journals (Sweden)

    Saskia L Smits

    2014-12-01

    Full Text Available Viral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow rapid phylogenetic characterization of these new viruses. Often, however, complete viral genomes are not recovered, but rather several distinct contigs derived from a single entity, some of which have no sequence homology to any known proteins. De novo assembly of single viruses from a metagenome is challenging, not only because of the lack of a reference genome, but also because of intrapopulation variation and uneven or insufficient coverage. Here we explored different assembly algorithms, remote homology searches, genome-specific sequence motifs, k-mer frequency ranking, and coverage profile binning to detect and obtain viral target genomes from metagenomes. All methods were tested on 454-generated sequencing datasets containing three recently described RNA viruses with a relatively large genome which were divergent to previously known viruses from the viral families Rhabdoviridae and Coronaviridae. Depending on specific characteristics of the target virus and the metagenomic community, different assembly and in silico gap closure strategies were successful in obtaining near complete viral genomes.

  10. Plant Genome Duplication Database.

    Science.gov (United States)

    Lee, Tae-Ho; Kim, Junah; Robertson, Jon S; Paterson, Andrew H

    2017-01-01

    Genome duplication, widespread in flowering plants, is a driving force in evolution. Genome alignments between/within genomes facilitate identification of homologous regions and individual genes to investigate evolutionary consequences of genome duplication. PGDD (the Plant Genome Duplication Database), a public web service database, provides intra- or interplant genome alignment information. At present, PGDD contains information for 47 plants whose genome sequences have been released. Here, we describe methods for identification and estimation of dates of genome duplication and speciation by functions of PGDD.The database is freely available at http://chibba.agtec.uga.edu/duplication/.

  11. VirSorter: mining viral signal from microbial genomic data

    Directory of Open Access Journals (Sweden)

    Simon Roux

    2015-05-01

    Full Text Available Viruses of microbes impact all ecosystems where microbes drive key energy and substrate transformations including the oceans, humans and industrial fermenters. However, despite this recognized importance, our understanding of viral diversity and impacts remains limited by too few model systems and reference genomes. One way to fill these gaps in our knowledge of viral diversity is through the detection of viral signal in microbial genomic data. While multiple approaches have been developed and applied for the detection of prophages (viral genomes integrated in a microbial genome, new types of microbial genomic data are emerging that are more fragmented and larger scale, such as Single-cell Amplified Genomes (SAGs of uncultivated organisms or genomic fragments assembled from metagenomic sequencing. Here, we present VirSorter, a tool designed to detect viral signal in these different types of microbial sequence data in both a reference-dependent and reference-independent manner, leveraging probabilistic models and extensive virome data to maximize detection of novel viruses. Performance testing shows that VirSorter’s prophage prediction capability compares to that of available prophage predictors for complete genomes, but is superior in predicting viral sequences outside of a host genome (i.e., from extrachromosomal prophages, lytic infections, or partially assembled prophages. Furthermore, VirSorter outperforms existing tools for fragmented genomic and metagenomic datasets, and can identify viral signal in assembled sequence (contigs as short as 3kb, while providing near-perfect identification (>95% Recall and 100% Precision on contigs of at least 10kb. Because VirSorter scales to large datasets, it can also be used in “reverse” to more confidently identify viral sequence in viral metagenomes by sorting away cellular DNA whether derived from gene transfer agents, generalized transduction or contamination. Finally, VirSorter is made

  12. Bioinformatics tools for analysing viral genomic data.

    Science.gov (United States)

    Orton, R J; Gu, Q; Hughes, J; Maabar, M; Modha, S; Vattipally, S B; Wilkie, G S; Davison, A J

    2016-04-01

    The field of viral genomics and bioinformatics is experiencing a strong resurgence due to high-throughput sequencing (HTS) technology, which enables the rapid and cost-effective sequencing and subsequent assembly of large numbers of viral genomes. In addition, the unprecedented power of HTS technologies has enabled the analysis of intra-host viral diversity and quasispecies dynamics in relation to important biological questions on viral transmission, vaccine resistance and host jumping. HTS also enables the rapid identification of both known and potentially new viruses from field and clinical samples, thus adding new tools to the fields of viral discovery and metagenomics. Bioinformatics has been central to the rise of HTS applications because new algorithms and software tools are continually needed to process and analyse the large, complex datasets generated in this rapidly evolving area. In this paper, the authors give a brief overview of the main bioinformatics tools available for viral genomic research, with a particular emphasis on HTS technologies and their main applications. They summarise the major steps in various HTS analyses, starting with quality control of raw reads and encompassing activities ranging from consensus and de novo genome assembly to variant calling and metagenomics, as well as RNA sequencing.

  13. Viral genome sequencing by random priming methods

    Directory of Open Access Journals (Sweden)

    Zhang Xinsheng

    2008-01-01

    Full Text Available Abstract Background Most emerging health threats are of zoonotic origin. For the overwhelming majority, their causative agents are RNA viruses which include but are not limited to HIV, Influenza, SARS, Ebola, Dengue, and Hantavirus. Of increasing importance therefore is a better understanding of global viral diversity to enable better surveillance and prediction of pandemic threats; this will require rapid and flexible methods for complete viral genome sequencing. Results We have adapted the SISPA methodology 123 to genome sequencing of RNA and DNA viruses. We have demonstrated the utility of the method on various types and sources of viruses, obtaining near complete genome sequence of viruses ranging in size from 3,000–15,000 kb with a median depth of coverage of 14.33. We used this technique to generate full viral genome sequence in the presence of host contaminants, using viral preparations from cell culture supernatant, allantoic fluid and fecal matter. Conclusion The method described is of great utility in generating whole genome assemblies for viruses with little or no available sequence information, viruses from greatly divergent families, previously uncharacterized viruses, or to more fully describe mixed viral infections.

  14. Extracting viral RNAs from plant protoplasts.

    Science.gov (United States)

    Fabian, Marc R; Andrew White, K

    2007-08-01

    The analysis of viral RNA is a fundamental aspect of plant RNA virus research. Studies that focus on viral RNAs often involve virus infections of plant protoplasts (see UNITS 16D.1-16D.4). Protoplast offer the advantage of simultaneous initiation of infections, which allows for superior temporal and quantitative analyses of viral RNAs. The efficient isolation of intact viral RNA is key to any such investigations. This unit describes two basic protocols for extracting viral RNAs from plant protoplasts. An approach for preparing double-stranded viral RNA from total RNA pools is also provided. The viral RNA prepared by using these techniques can be used for further analyses such as primer extension, reverse transcription-PCR, and northern blotting.

  15. Structure, sequence and expression of the hepatitis delta (δ) viral genome

    Science.gov (United States)

    Wang, Kang-Sheng; Choo, Qui-Lim; Weiner, Amy J.; Ou, Jing-Hsiung; Najarian, Richard C.; Thayer, Richard M.; Mullenbach, Guy T.; Denniston, Katherine J.; Gerin, John L.; Houghton, Michael

    1986-10-01

    Biochemical and electron microscopic data indicate that the human hepatitis δ viral agent contains a covalently closed circular and single-stranded RNA genome that has certain similarities with viroid-like agents from plants. The sequence of the viral genome (1,678 nucleotides) has been determined and an open reading frame within the complementary strand has been shown to encode an antigen that binds specifically to antisera from patients with chronic hepatitis δ viral infections.

  16. Annotation of selection strengths in viral genomes

    DEFF Research Database (Denmark)

    McCauley, Stephen; de Groot, Saskia; Mailund, Thomas

    2007-01-01

    Motivation: Viral genomes tend to code in overlapping reading frames to maximize information content. This may result in atypical codon bias and particular evolutionary constraints. Due to the fast mutation rate of viruses, there is additional strong evidence for varying selection between intra......- and intergenomic regions. The presence of multiple coding regions complicates the concept of Ka/Ks ratio, and thus begs for an alternative approach when investigating selection strengths. Building on the paper by McCauley & Hein (2006), we develop a method for annotating a viral genome coding in overlapping...... may thus achieve an annotation both of coding regions as well as selection strengths, allowing us to investigate different selection patterns and hypotheses. Results: We illustrate our method by applying it to a multiple alignment of four HIV2 sequences, as well as four Hepatitis B sequences. We...

  17. Domestication and plant genomes.

    Science.gov (United States)

    Tang, Haibao; Sezen, Uzay; Paterson, Andrew H

    2010-04-01

    The techniques of plant improvement have been evolving with the advancement of technology, progressing from crop domestication by Neolithic humans to scientific plant breeding, and now including DNA-based genotyping and genetic engineering. Archeological findings have shown that early human ancestors often unintentionally selected for and finally fixed a few major domestication traits over time. Recent advancement of molecular and genomic tools has enabled scientists to pinpoint changes to specific chromosomal regions and genetic loci that are responsible for dramatic morphological and other transitions that distinguish crops from their wild progenitors. Extensive studies in a multitude of additional crop species, facilitated by rapid progress in sequencing and resequencing(s) of crop genomes, will further our understanding of the genomic impact from both the unusual population history of cultivated plants and millennia of human selection.

  18. Phytozome Comparative Plant Genomics Portal

    Energy Technology Data Exchange (ETDEWEB)

    Goodstein, David; Batra, Sajeev; Carlson, Joseph; Hayes, Richard; Phillips, Jeremy; Shu, Shengqiang; Schmutz, Jeremy; Rokhsar, Daniel

    2014-09-09

    The Dept. of Energy Joint Genome Institute is a genomics user facility supporting DOE mission science in the areas of Bioenergy, Carbon Cycling, and Biogeochemistry. The Plant Program at the JGI applies genomic, analytical, computational and informatics platforms and methods to: 1. Understand and accelerate the improvement (domestication) of bioenergy crops 2. Characterize and moderate plant response to climate change 3. Use comparative genomics to identify constrained elements and infer gene function 4. Build high quality genomic resource platforms of JGI Plant Flagship genomes for functional and experimental work 5. Expand functional genomic resources for Plant Flagship genomes

  19. CRISPR/Cas9-mediated viral interference in plants

    KAUST Repository

    Ali, Zahir

    2015-11-11

    Background The CRISPR/Cas9 system provides bacteria and archaea with molecular immunity against invading phages and conjugative plasmids. Recently, CRISPR/Cas9 has been used for targeted genome editing in diverse eukaryotic species. Results In this study, we investigate whether the CRISPR/Cas9 system could be used in plants to confer molecular immunity against DNA viruses. We deliver sgRNAs specific for coding and non-coding sequences of tomato yellow leaf curl virus (TYLCV) into Nicotiana benthamiana plants stably overexpressing the Cas9 endonuclease, and subsequently challenge these plants with TYLCV. Our data demonstrate that the CRISPR/Cas9 system targeted TYLCV for degradation and introduced mutations at the target sequences. All tested sgRNAs exhibit interference activity, but those targeting the stem-loop sequence within the TYLCV origin of replication in the intergenic region (IR) are the most effective. N. benthamiana plants expressing CRISPR/Cas9 exhibit delayed or reduced accumulation of viral DNA, abolishing or significantly attenuating symptoms of infection. Moreover, this system could simultaneously target multiple DNA viruses. Conclusions These data establish the efficacy of the CRISPR/Cas9 system for viral interference in plants, thereby extending the utility of this technology and opening the possibility of producing plants resistant to multiple viral infections.

  20. MIPS plant genome information resources.

    Science.gov (United States)

    Spannagl, Manuel; Haberer, Georg; Ernst, Rebecca; Schoof, Heiko; Mayer, Klaus F X

    2007-01-01

    The Munich Institute for Protein Sequences (MIPS) has been involved in maintaining plant genome databases since the Arabidopsis thaliana genome project. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable data sets for model plant genomes as a backbone against which experimental data, for example from high-throughput functional genomics, can be organized and evaluated. In addition, model genomes also form a scaffold for comparative genomics, and much can be learned from genome-wide evolutionary studies.

  1. APOBEC3 Interference during Replication of Viral Genomes

    Directory of Open Access Journals (Sweden)

    Luc Willems

    2015-06-01

    Full Text Available Co-evolution of viruses and their hosts has reached a fragile and dynamic equilibrium that allows viral persistence, replication and transmission. In response, infected hosts have developed strategies of defense that counteract the deleterious effects of viral infections. In particular, single-strand DNA editing by Apolipoprotein B Editing Catalytic subunits proteins 3 (APOBEC3s is a well-conserved mechanism of mammalian innate immunity that mutates and inactivates viral genomes. In this review, we describe the mechanisms of APOBEC3 editing during viral replication, the viral strategies that prevent APOBEC3 activity and the consequences of APOBEC3 modulation on viral fitness and host genome integrity. Understanding the mechanisms involved reveals new prospects for therapeutic intervention.

  2. Genome Mapping in Plant Comparative Genomics.

    Science.gov (United States)

    Chaney, Lindsay; Sharp, Aaron R; Evans, Carrie R; Udall, Joshua A

    2016-09-01

    Genome mapping produces fingerprints of DNA sequences to construct a physical map of the whole genome. It provides contiguous, long-range information that complements and, in some cases, replaces sequencing data. Recent advances in genome-mapping technology will better allow researchers to detect large (>1kbp) structural variations between plant genomes. Some molecular and informatics complications need to be overcome for this novel technology to achieve its full utility. This technology will be useful for understanding phenotype responses due to DNA rearrangements and will yield insights into genome evolution, particularly in polyploids. In this review, we outline recent advances in genome-mapping technology, including the processes required for data collection and analysis, and applications in plant comparative genomics.

  3. Coordinated function of cellular DEAD-box helicases in suppression of viral RNA recombination and maintenance of viral genome integrity.

    Directory of Open Access Journals (Sweden)

    Chingkai Chuang

    2015-02-01

    Full Text Available The intricate interactions between viruses and hosts include an evolutionary arms race and adaptation that is facilitated by the ability of RNA viruses to evolve rapidly due to high frequency mutations and genetic RNA recombination. In this paper, we show evidence that the co-opted cellular DDX3-like Ded1 DEAD-box helicase suppresses tombusviral RNA recombination in yeast model host, and the orthologous RH20 helicase functions in a similar way in plants. In vitro replication and recombination assays confirm the direct role of the ATPase function of Ded1p in suppression of viral recombination. We also present data supporting a role for Ded1 in facilitating the switch from minus- to plus-strand synthesis. Interestingly, another co-opted cellular helicase, the eIF4AIII-like AtRH2, enhances TBSV recombination in the absence of Ded1/RH20, suggesting that the coordinated actions of these helicases control viral RNA recombination events. Altogether, these helicases are the first co-opted cellular factors in the viral replicase complex that directly affect viral RNA recombination. Ded1 helicase seems to be a key factor maintaining viral genome integrity by promoting the replication of viral RNAs with correct termini, but inhibiting the replication of defective RNAs lacking correct 5' end sequences. Altogether, a co-opted cellular DEAD-box helicase facilitates the maintenance of full-length viral genome and suppresses viral recombination, thus limiting the appearance of defective viral RNAs during replication.

  4. viruSITE—integrated database for viral genomics

    Science.gov (United States)

    Stano, Matej; Beke, Gabor; Klucar, Lubos

    2016-01-01

    Viruses are the most abundant biological entities and the reservoir of most of the genetic diversity in the Earth's biosphere. Viral genomes are very diverse, generally short in length and compared to other organisms carry only few genes. viruSITE is a novel database which brings together high-value information compiled from various resources. viruSITE covers the whole universe of viruses and focuses on viral genomes, genes and proteins. The database contains information on virus taxonomy, host range, genome features, sequential relatedness as well as the properties and functions of viral genes and proteins. All entries in the database are linked to numerous information resources. The above-mentioned features make viruSITE a comprehensive knowledge hub in the field of viral genomics. The web interface of the database was designed so as to offer an easy-to-navigate, intuitive and user-friendly environment. It provides sophisticated text searching and a taxonomy-based browsing system. viruSITE also allows for an alternative approach based on sequence search. A proprietary genome browser generates a graphical representation of viral genomes. In addition to retrieving and visualising data, users can perform comparative genomics analyses using a variety of tools. Database URL: http://www.virusite.org/ PMID:28025349

  5. VIGOR, an annotation program for small viral genomes

    Directory of Open Access Journals (Sweden)

    Wang Shiliang

    2010-09-01

    Full Text Available Abstract Background The decrease in cost for sequencing and improvement in technologies has made it easier and more common for the re-sequencing of large genomes as well as parallel sequencing of small genomes. It is possible to completely sequence a small genome within days and this increases the number of publicly available genomes. Among the types of genomes being rapidly sequenced are those of microbial and viral genomes responsible for infectious diseases. However, accurate gene prediction is a challenge that persists for decoding a newly sequenced genome. Therefore, accurate and efficient gene prediction programs are highly desired for rapid and cost effective surveillance of RNA viruses through full genome sequencing. Results We have developed VIGOR (Viral Genome ORF Reader, a web application tool for gene prediction in influenza virus, rotavirus, rhinovirus and coronavirus subtypes. VIGOR detects protein coding regions based on sequence similarity searches and can accurately detect genome specific features such as frame shifts, overlapping genes, embedded genes, and can predict mature peptides within the context of a single polypeptide open reading frame. Genotyping capability for influenza and rotavirus is built into the program. We compared VIGOR to previously described gene prediction programs, ZCURVE_V, GeneMarkS and FLAN. The specificity and sensitivity of VIGOR are greater than 99% for the RNA viral genomes tested. Conclusions VIGOR is a user friendly web-based genome annotation program for five different viral agents, influenza, rotavirus, rhinovirus, coronavirus and SARS coronavirus. This is the first gene prediction program for rotavirus and rhinovirus for public access. VIGOR is able to accurately predict protein coding genes for the above five viral types and has the capability to assign function to the predicted open reading frames and genotype influenza virus. The prediction software was designed for performing high

  6. Curation of viral genomes: challenges, applications and the way forward

    Directory of Open Access Journals (Sweden)

    Joshi Manali

    2006-12-01

    Full Text Available Abstract Background Whole genome sequence data is a step towards generating the 'parts list' of life to understand the underlying principles of Biocomplexity. Genome sequencing initiatives of human and model organisms are targeted efforts towards understanding principles of evolution with an application envisaged to improve human health. These efforts culminated in the development of dedicated resources. Whereas a large number of viral genomes have been sequenced by groups or individuals with an interest to study antigenic variation amongst strains and species. These independent efforts enabled viruses to attain the status of 'best-represented taxa' with the highest number of genomes. However, due to lack of concerted efforts, viral genomic sequences merely remained as entries in the public repositories until recently. Results VirGen is a curated resource of viral genomes and their analyses. Since its first release, it has grown both in terms of coverage of viral families and development of new modules for annotation and analysis. The current release (2.0 includes data for twenty-five families with broad host range as against eight in the first release. The taxonomic description of viruses in VirGen is in accordance with the ICTV nomenclature. A well-characterised strain is identified as a 'representative entry' for every viral species. This non-redundant dataset is used for subsequent annotation and analyses using sequenced-based Bioinformatics approaches. VirGen archives precomputed data on genome and proteome comparisons. A new data module that provides structures of viral proteins available in PDB has been incorporated recently. One of the unique features of VirGen is predicted conformational and sequential epitopes of known antigenic proteins using in-house developed algorithms, a step towards reverse vaccinology. Conclusion Structured organization of genomic data facilitates use of data mining tools, which provides opportunities for

  7. Genome Annotation Transfer Utility (GATU: rapid annotation of viral genomes using a closely related reference genome

    Directory of Open Access Journals (Sweden)

    Upton Chris

    2006-06-01

    Full Text Available Abstract Background Since DNA sequencing has become easier and cheaper, an increasing number of closely related viral genomes have been sequenced. However, many of these have been deposited in GenBank without annotations, severely limiting their value to researchers. While maintaining comprehensive genomic databases for a set of virus families at the Viral Bioinformatics Resource Center http://www.biovirus.org and Viral Bioinformatics – Canada http://www.virology.ca, we found that researchers were unnecessarily spending time annotating viral genomes that were close relatives of already annotated viruses. We have therefore designed and implemented a novel tool, Genome Annotation Transfer Utility (GATU, to transfer annotations from a previously annotated reference genome to a new target genome, thereby greatly reducing this laborious task. Results GATU transfers annotations from a reference genome to a closely related target genome, while still giving the user final control over which annotations should be included. GATU also detects open reading frames present in the target but not the reference genome and provides the user with a variety of bioinformatics tools to quickly determine if these ORFs should also be included in the annotation. After this process is complete, GATU saves the newly annotated genome as a GenBank, EMBL or XML-format file. The software is coded in Java and runs on a variety of computer platforms. Its user-friendly Graphical User Interface is specifically designed for users trained in the biological sciences. Conclusion GATU greatly simplifies the initial stages of genome annotation by using a closely related genome as a reference. It is not intended to be a gene prediction tool or a "complete" annotation system, but we have found that it significantly reduces the time required for annotation of genes and mature peptides as well as helping to standardize gene names between related organisms by transferring reference genome

  8. Genome Annotation Transfer Utility (GATU): rapid annotation of viral genomes using a closely related reference genome.

    Science.gov (United States)

    Tcherepanov, Vasily; Ehlers, Angelika; Upton, Chris

    2006-06-13

    Since DNA sequencing has become easier and cheaper, an increasing number of closely related viral genomes have been sequenced. However, many of these have been deposited in GenBank without annotations, severely limiting their value to researchers. While maintaining comprehensive genomic databases for a set of virus families at the Viral Bioinformatics Resource Center http://www.biovirus.org and Viral Bioinformatics - Canada http://www.virology.ca, we found that researchers were unnecessarily spending time annotating viral genomes that were close relatives of already annotated viruses. We have therefore designed and implemented a novel tool, Genome Annotation Transfer Utility (GATU), to transfer annotations from a previously annotated reference genome to a new target genome, thereby greatly reducing this laborious task. GATU transfers annotations from a reference genome to a closely related target genome, while still giving the user final control over which annotations should be included. GATU also detects open reading frames present in the target but not the reference genome and provides the user with a variety of bioinformatics tools to quickly determine if these ORFs should also be included in the annotation. After this process is complete, GATU saves the newly annotated genome as a GenBank, EMBL or XML-format file. The software is coded in Java and runs on a variety of computer platforms. Its user-friendly Graphical User Interface is specifically designed for users trained in the biological sciences. GATU greatly simplifies the initial stages of genome annotation by using a closely related genome as a reference. It is not intended to be a gene prediction tool or a "complete" annotation system, but we have found that it significantly reduces the time required for annotation of genes and mature peptides as well as helping to standardize gene names between related organisms by transferring reference genome annotations to the target genome. The program is freely

  9. Strongly correlated electrostatics of viral genome packaging.

    Science.gov (United States)

    Nguyen, Toan T

    2013-03-01

    The problem of viral packaging (condensation) and ejection from viral capsid in the presence of multivalent counterions is considered. Experiments show divalent counterions strongly influence the amount of DNA ejected from bacteriophage. In this paper, the strong electrostatic interactions between DNA molecules in the presence of multivalent counterions is investigated. It is shown that experiment results agree reasonably well with the phenomenon of DNA reentrant condensation. This phenomenon is known to cause DNA condensation in the presence of tri- or tetra-valent counterions. For divalent counterions, the viral capsid confinement strongly suppresses DNA configurational entropy, therefore the correlation between divalent counterions is strongly enhanced causing similar effect. Computational studies also agree well with theoretical calculations.

  10. Viral genome sequencing bt random priming methods

    Science.gov (United States)

    Most emerging health threats are of zoonotic origin. For the overwhelming majority, their causative agents are viruses which include but are not limited to HIV, Influenza, SARS, Ebola, Dengue, and Hantavirus. Of increasing importance therefore is an understanding of the viral diversity to enable b...

  11. Viral capsids: Mechanical characteristics, genome packaging and delivery mechanisms

    NARCIS (Netherlands)

    Roos, W.H.; Ivanovska, I.L.; Evilevitch, A.; Wuite, G.J.L.

    2007-01-01

    The main functions of viral capsids are to protect, transport and deliver their genome. The mechanical properties of capsids are supposed to be adapted to these tasks. Bacteriophage capsids also need to withstand the high pressures the DNA is exerting onto it as a result of the DNA packaging and its

  12. Mechanism of membranous tunnelling nanotube formation in viral genome delivery.

    Directory of Open Access Journals (Sweden)

    Bibiana Peralta

    2013-09-01

    Full Text Available In internal membrane-containing viruses, a lipid vesicle enclosed by the icosahedral capsid protects the genome. It has been postulated that this internal membrane is the genome delivery device of the virus. Viruses built with this architectural principle infect hosts in all three domains of cellular life. Here, using a combination of electron microscopy techniques, we investigate bacteriophage PRD1, the best understood model for such viruses, to unveil the mechanism behind the genome translocation across the cell envelope. To deliver its double-stranded DNA, the icosahedral protein-rich virus membrane transforms into a tubular structure protruding from one of the 12 vertices of the capsid. We suggest that this viral nanotube exits from the same vertex used for DNA packaging, which is biochemically distinct from the other 11. The tube crosses the capsid through an aperture corresponding to the loss of the peripentonal P3 major capsid protein trimers, penton protein P31 and membrane protein P16. The remodeling of the internal viral membrane is nucleated by changes in osmolarity and loss of capsid-membrane interactions as consequence of the de-capping of the vertices. This engages the polymerization of the tail tube, which is structured by membrane-associated proteins. We have observed that the proteo-lipidic tube in vivo can pierce the gram-negative bacterial cell envelope allowing the viral genome to be shuttled to the host cell. The internal diameter of the tube allows one double-stranded DNA chain to be translocated. We conclude that the assembly principles of the viral tunneling nanotube take advantage of proteo-lipid interactions that confer to the tail tube elastic, mechanical and functional properties employed also in other protein-membrane systems.

  13. Viral Genome Sequencing Proves Nosocomial Transmission of Fatal Varicella

    Science.gov (United States)

    Depledge, Daniel P.; Brown, Julianne; Macanovic, Jasna; Underhill, Gill; Breuer, Judith

    2016-01-01

    We report the first use of whole viral genome sequencing to identify nosocomial transmission of varicella-zoster virus with fatal outcome. The index case patient, nursed in source isolation, developed disseminated zoster with rash present for 1 day before being transferred to the intensive care unit (ICU). Two patients who had received renal transplants while inpatients in an adjacent ward developed chickenpox and 1 died; neither patient had direct contact with the index patient. PMID:27571904

  14. Translational genomics for plant breeding with the genome sequence explosion.

    Science.gov (United States)

    Kang, Yang Jae; Lee, Taeyoung; Lee, Jayern; Shim, Sangrea; Jeong, Haneul; Satyawan, Dani; Kim, Moon Young; Lee, Suk-Ha

    2016-04-01

    The use of next-generation sequencers and advanced genotyping technologies has propelled the field of plant genomics in model crops and plants and enhanced the discovery of hidden bridges between genotypes and phenotypes. The newly generated reference sequences of unstudied minor plants can be annotated by the knowledge of model plants via translational genomics approaches. Here, we reviewed the strategies of translational genomics and suggested perspectives on the current databases of genomic resources and the database structures of translated information on the new genome. As a draft picture of phenotypic annotation, translational genomics on newly sequenced plants will provide valuable assistance for breeders and researchers who are interested in genetic studies.

  15. Genomic Aspects of Research Involving Polyploid Plants

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaohan [ORNL; Ye, Chuyu [ORNL; Tschaplinski, Timothy J [ORNL; Wullschleger, Stan D [ORNL; Tuskan, Gerald A [ORNL

    2011-01-01

    Almost all extant plant species have spontaneously doubled their genomes at least once in their evolutionary histories, resulting in polyploidy which provided a rich genomic resource for evolutionary processes. Moreover, superior polyploid clones have been created during the process of crop domestication. Polyploid plants generated by evolutionary processes and/or crop domestication have been the intentional or serendipitous focus of research dealing with the dynamics and consequences of genome evolution. One of the new trends in genomics research is to create synthetic polyploid plants which provide materials for studying the initial genomic changes/responses immediately after polyploid formation. Polyploid plants are also used in functional genomics research to study gene expression in a complex genomic background. In this review, we summarize the recent progress in genomics research involving ancient, young, and synthetic polyploid plants, with a focus on genome size evolution, genomics diversity, genomic rearrangement, genetic and epigenetic changes in duplicated genes, gene discovery, and comparative genomics. Implications on plant sciences including evolution, functional genomics, and plant breeding are presented. It is anticipated that polyploids will be a regular subject of genomics research in the foreseeable future as the rapid advances in DNA sequencing technology create unprecedented opportunities for discovering and monitoring genomic and transcriptomic changes in polyploid plants. The fast accumulation of knowledge on polyploid formation, maintenance, and divergence at whole-genome and subgenome levels will not only help plant biologists understand how plants have evolved and diversified, but also assist plant breeders in designing new strategies for crop improvement.

  16. [RNA silencing and viral disease induction in plants].

    Science.gov (United States)

    Shimura, Hanako; Masuta, Chikara

    2012-06-01

    RNA silencing plays an important role in plant resistance against viruses. As a counter-defense against RNA silencing, plant viruses have evolved RNA silencing suppressors (RSSs). RNA silencing is likely to play a major role in disease development. For example, RSSs have been found to disturb the gene expression controlled by miRNAs in plant tissue and organ development, resulting in plant malformation. Mosaic symptoms, which are typical in virus-infected plants, are actually a consequence of local arms race between host RNA silencing and viral RSSs. In addition, recent studies revealed that viral siRNAs could induce RNA silencing even against a certain host gene and thus a disease symptom through a complementary (homologous) sequence coincidentally found between virus and host gene. RNA silencing is the principal mediator of viral pathogenicity and disease induction and therefore should be exploited as a powerful tool for engineering virus resistance in plants as well as in animals.

  17. Gramene database: navigating plant comparative genomics resources

    Science.gov (United States)

    Gramene (http://www.gramene.org) is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationship...

  18. Towards Viral Genome Annotation Standards, Report from the 2010 NCBI Annotation Workshop.

    Science.gov (United States)

    Brister, James Rodney; Bao, Yiming; Kuiken, Carla; Lefkowitz, Elliot J; Le Mercier, Philippe; Leplae, Raphael; Madupu, Ramana; Scheuermann, Richard H; Schobel, Seth; Seto, Donald; Shrivastava, Susmita; Sterk, Peter; Zeng, Qiandong; Klimke, William; Tatusova, Tatiana

    2010-10-01

    Improvements in DNA sequencing technologies portend a new era in virology and could possibly lead to a giant leap in our understanding of viral evolution and ecology. Yet, as viral genome sequences begin to fill the world's biological databases, it is critically important to recognize that the scientific promise of this era is dependent on consistent and comprehensive genome annotation. With this in mind, the NCBI Genome Annotation Workshop recently hosted a study group tasked with developing sequence, function, and metadata annotation standards for viral genomes. This report describes the issues involved in viral genome annotation and reviews policy recommendations presented at the NCBI Annotation Workshop.

  19. Exploring Viral Genomics at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kilpatrick, K; Hiddessen, A

    2007-08-22

    This summer I had the privilege of working at Lawrence Livermore National Laboratory under the Nonproliferation, Homeland and International Security Directorate in the Chemical and Biological Countermeasures Division. I worked exclusively on the Viral Identification and Characterization Initiative (VICI) project focusing on the development of multiplexed polymerase chain reaction (PCR) assays. The goal of VICI is to combine several disciplines such as molecular biology, microfluidics, and bioinformatics in order to detect viruses and identify them in order to effectively and quickly counter infectious disease, natural or engineered. The difficulty in such a countermeasure is that little is known about viral diversity due to the ever changing nature of these organisms. In response, VICI is developing a new microfluidic bioanalytical platform to detect known and unknown viruses by analyzing every virus in a sample by isolating them into picoliter sized droplets on a microchip and individually analyzing them. The sample will be injected into a channel of oil to form droplets that will contain viral nucleic acids that will be amplified using PCR. The multiplexed PCR assay will produce a series of amplicons for a particular virus genome that provides an identifying signature. A device will then detect whether or not DNA is present in the droplet and will sort the empty droplets from the rest. From this point, the amplified DNA is released from the droplets and analyzed using capillary gel electrophoresis in order to read out the series of amplicons and thereby determine the identity of each virus. The following figure depicts the microfluidic process. For the abovementioned microfluidic process to work, a method for detecting amplification of target viral nucleic acids that does not interfere with the multiplexed biochemical reaction is required for downstream sorting and analysis. In this report, the successful development of a multiplexed PCR assay using SYBR Green I

  20. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome

    Science.gov (United States)

    Lu, Rui; Folimonov, Alexey; Shintaku, Michael; Li, Wan-Xiang; Falk, Bryce W.; Dawson, William O.; Ding, Shou-Wei

    2004-11-01

    Viral infection in both plant and invertebrate hosts requires a virus-encoded function to block the RNA silencing antiviral defense. Here, we report the identification and characterization of three distinct suppressors of RNA silencing encoded by the 20-kb plus-strand RNA genome of citrus tristeza virus (CTV). When introduced by genetic crosses into plants carrying a silencing transgene, both p20 and p23, but not coat protein (CP), restored expression of the transgene. Although none of the CTV proteins prevented DNA methylation of the transgene, export of the silencing signal (capable of mediating intercellular silencing spread) was detected only from the F1 plants expressing p23 and not from the CP- or p20-expressing F1 plants, demonstrating suppression of intercellular silencing by CP and p20 but not by p23. Thus, intracellular and intercellular silencing are each targeted by a CTV protein, whereas the third, p20, inhibits silencing at both levels. Notably, CP suppresses intercellular silencing without interfering with intracellular silencing. The novel property of CP suggests a mechanism distinct to p20 and all of the other viral suppressors known to interfere with intercellular silencing and that this class of viral suppressors may not be consistently identified by Agrobacterium coinfiltration because it also induces RNA silencing against the infiltrated suppressor transgene. Our analyses reveal a sophisticated viral counter-defense strategy that targets the silencing antiviral pathway at multiple steps and may be essential for protecting CTV with such a large RNA genome from antiviral silencing in the perennial tree host. RNA interference | citrus tristeza virus | virus synergy | antiviral immunity

  1. Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life

    DEFF Research Database (Denmark)

    Prangishvili, D.; Garrett, R. A.; Koonin, E.

    2006-01-01

    . In accord with this distinction, the sequenced genomes of euryarchaeal viruses encode many proteins homologous to bacteriophage capsid proteins. In contrast, initial analysis of the crenarchaeal viral genomes revealed no relationships with bacteriophages and, generally, very few proteins with detectable...... the proteins of crenarchaeal viruses and between viral proteins and those from cellular life forms and allowed functional predictions for some of these conserved genes. A small pool of genes is shared by overlapping subsets of crenarchaeal viruses, in a general analogy with the metagenome structure...... of bacteriophages. The proteins encoded by the genes belonging to this pool include predicted transcription regulators, ATPases implicated in viral DNA replication and packaging, enzymes of DNA precursor metabolism, RNA modification enzymes, and glycosylases. In addition, each of the crenarchaeal viruses encodes...

  2. Silencing and Innate Immunity in Plant Defense Against Viral and Non-Viral Pathogens

    Directory of Open Access Journals (Sweden)

    Anna S. Zvereva

    2012-10-01

    Full Text Available The frontline of plant defense against non-viral pathogens such as bacteria, fungi and oomycetes is provided by transmembrane pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs, leading to pattern-triggered immunity (PTI. To counteract this innate defense, pathogens deploy effector proteins with a primary function to suppress PTI. In specific cases, plants have evolved intracellular resistance (R proteins detecting isolate-specific pathogen effectors, leading to effector-triggered immunity (ETI, an amplified version of PTI, often associated with hypersensitive response (HR and programmed cell death (PCD. In the case of plant viruses, no conserved PAMP was identified so far and the primary plant defense is thought to be based mainly on RNA silencing, an evolutionary conserved, sequence-specific mechanism that regulates gene expression and chromatin states and represses invasive nucleic acids such as transposons. Endogenous silencing pathways generate 21-24 nt small (sRNAs, miRNAs and short interfering (siRNAs, that repress genes post-transcriptionally and/or transcriptionally. Four distinct Dicer-like (DCL proteins, which normally produce endogenous miRNAs and siRNAs, all contribute to the biogenesis of viral siRNAs in infected plants. Growing evidence indicates that RNA silencing also contributes to plant defense against non-viral pathogens. Conversely, PTI-based innate responses may contribute to antiviral defense. Intracellular R proteins of the same NB-LRR family are able to recognize both non-viral effectors and avirulence (Avr proteins of RNA viruses, and, as a result, trigger HR and PCD in virus-resistant hosts. In some cases, viral Avr proteins also function as silencing suppressors. We hypothesize that RNA silencing and innate immunity (PTI and ETI function in concert to fight plant viruses. Viruses counteract this dual defense by effectors that suppress both PTI-/ETI-based innate responses

  3. Engineering large viral DNA genomes using the CRISPR-Cas9 system.

    Science.gov (United States)

    Suenaga, Tadahiro; Kohyama, Masako; Hirayasu, Kouyuki; Arase, Hisashi

    2014-09-01

    Manipulation of viral genomes is essential for studying viral gene function and utilizing viruses for therapy. Several techniques for viral genome engineering have been developed. Homologous recombination in virus-infected cells has traditionally been used to edit viral genomes; however, the frequency of the expected recombination is quite low. Alternatively, large viral genomes have been edited using a bacterial artificial chromosome (BAC) plasmid system. However, cloning of large viral genomes into BAC plasmids is both laborious and time-consuming. In addition, because it is possible for insertion into the viral genome of drug selection markers or parts of BAC plasmids to affect viral function, artificial genes sometimes need to be removed from edited viruses. Herpes simplex virus (HSV), a common DNA virus with a genome length of 152 kbp, causes labialis, genital herpes and encephalitis. Mutant HSV is a candidate for oncotherapy, in which HSV is used to kill tumor cells. In this study, the clustered regularly interspaced short palindromic repeat-Cas9 system was used to very efficiently engineer HSV without inserting artificial genes into viral genomes. Not only gene-ablated HSV but also gene knock-in HSV were generated using this method. Furthermore, selection with phenotypes of edited genes promotes the isolation efficiencies of expectedly mutated viral clones. Because our method can be applied to other DNA viruses such as Epstein-Barr virus, cytomegaloviruses, vaccinia virus and baculovirus, our system will be useful for studying various types of viruses, including clinical isolates.

  4. Silicon control of bacterial and viral diseases in plants

    Directory of Open Access Journals (Sweden)

    Sakr Nachaat

    2016-12-01

    Full Text Available Silicon plays an important role in providing tolerance to various abiotic stresses and augmenting plant resistance against diseases. However, there is a paucity of reports about the effect of silicon on bacterial and viral pathogens of plants. In general, the effect of silicon on plant resistance against bacterial diseases is considered to be due to either physical defense or increased biochemical defense. In this study, the interaction between silicon foliar or soil-treatments and reduced bacterial and viral severity was reviewed. The current review explains the agricultural importance of silicon in plants, refers to the control of bacterial pathogens in different crop plants by silicon application, and underlines the different mechanisms of silicon-enhanced resistance. A section about the effect of silicon in decreasing viral disease intensity was highlighted. By combining the data presented in this study, a better comprehension of the complex interaction between silicon foliar- or soil-applications and bacterial and viral plant diseases could be achieved.

  5. Polyploidy and genome evolution in plants.

    Science.gov (United States)

    Soltis, Pamela S; Marchant, D Blaine; Van de Peer, Yves; Soltis, Douglas E

    2015-12-01

    Plant genomes vary in size and complexity, fueled in part by processes of whole-genome duplication (WGD; polyploidy) and subsequent genome evolution. Despite repeated episodes of WGD throughout the evolutionary history of angiosperms in particular, the genomes are not uniformly large, and even plants with very small genomes carry the signatures of ancient duplication events. The processes governing the evolution of plant genomes following these ancient events are largely unknown. Here, we consider mechanisms of diploidization, evidence of genome reorganization in recently formed polyploid species, and macroevolutionary patterns of WGD in plant genomes and propose that the ongoing genomic changes observed in recent polyploids may illustrate the diploidization processes that result in ancient signatures of WGD over geological timescales. Copyright © 2015. Published by Elsevier Ltd.

  6. Plant viral vectors based on tobamoviruses.

    Science.gov (United States)

    Yusibov, V; Shivprasad, S; Turpen, T H; Dawson, W; Koprowski, H

    1999-01-01

    The potential of plant virus-based transient expression vectors is substantial. One objective is the production of large quantities of foreign peptides or proteins. At least one commercial group (Biosource Technologies) is producing large quantities of product in the field, has built factories to process truck-loads of material and soon expects to market virus-generated products. In the laboratory, large amounts of protein have been produced for structural or biochemical analyses. An important aspect of producing large amounts of a protein or peptide is to make the product easily purifiable. This has been done by attaching peptides or proteins to easily purified units such as virion particles or by exporting proteins to the apoplast so that purification begins with a highly enriched product. For plant molecular biology, virus-based vectors have been useful in identifying previously unknown genes by overexpression or silencing or by expression in different genotypes. Also, foreign peptides fused to virions are being used as immunogens for development of antisera for experimental use or as injected or edible vaccines for medical use. As with liposomes and microcapsules, plant cells and plant viruses are also expected to provide natural protection for the passage of antigen through the gastrointestinal tract. Perhaps the greatest advantage of plant virus-based transient expression vectors is their host, plants. For the production of large amounts of commercial products, plants are one of the most economical and productive sources of biomass. They also present the advantages of lack of contamination with animal pathogens, relative ease of genetic manipulation and the presence eukaryotic protein modification machinery.

  7. A genome-to-genome analysis of associations between human genetic variation, HIV-1 sequence diversity, and viral control.

    Science.gov (United States)

    Bartha, István; Carlson, Jonathan M; Brumme, Chanson J; McLaren, Paul J; Brumme, Zabrina L; John, Mina; Haas, David W; Martinez-Picado, Javier; Dalmau, Judith; López-Galíndez, Cecilio; Casado, Concepción; Rauch, Andri; Günthard, Huldrych F; Bernasconi, Enos; Vernazza, Pietro; Klimkait, Thomas; Yerly, Sabine; O'Brien, Stephen J; Listgarten, Jennifer; Pfeifer, Nico; Lippert, Christoph; Fusi, Nicolo; Kutalik, Zoltán; Allen, Todd M; Müller, Viktor; Harrigan, P Richard; Heckerman, David; Telenti, Amalio; Fellay, Jacques

    2013-10-29

    HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (pgenome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host-pathogen interaction. DOI:http://dx.doi.org/10.7554/eLife.01123.001.

  8. Viral genome size distribution does not correlate with the antiquity of the host lineages

    Directory of Open Access Journals (Sweden)

    José Alberto Campillo-Balderas

    2015-12-01

    Full Text Available It has been suggested that RNA viruses and other subcellular entities endowed with RNA genomes are relicts from an ancient RNA/protein World which is believed to have preceded extant DNA/RNA/protein-based cells. According to their proponents, this possibility is supported by the small-genome sizes of RNA viruses and their manifold replication strategies, which have been interpreted as the result of an evolutionary exploration of different alternative genome organizations and replication strategies during early evolutionary stages. At the other extreme are the giant DNA viruses, whose genome sizes can be as large as those of some prokaryotes, and which have been grouped by some authors into a fourth domain of life. As argued here, the comparative analysis of the chemical nature and sizes of the viral genomes reported in GenBank does not reveal any obvious correlation with the phylogenetic history of their hosts. Accordingly, it is somewhat difficult to reconcile the proposal of the putative pre-DNA antiquity of RNA viruses, with their extraordinary diversity in plant hosts and their apparent absence among the Archaea. Other issues related to the genome size of all known viruses and subviral agents and the relationship with their hosts are discussed.

  9. Intrinsic disorder in Viral Proteins Genome-Linked: experimental and predictive analyses

    Directory of Open Access Journals (Sweden)

    Van Dorsselaer Alain

    2009-02-01

    Full Text Available Abstract Background VPgs are viral proteins linked to the 5' end of some viral genomes. Interactions between several VPgs and eukaryotic translation initiation factors eIF4Es are critical for plant infection. However, VPgs are not restricted to phytoviruses, being also involved in genome replication and protein translation of several animal viruses. To date, structural data are still limited to small picornaviral VPgs. Recently three phytoviral VPgs were shown to be natively unfolded proteins. Results In this paper, we report the bacterial expression, purification and biochemical characterization of two phytoviral VPgs, namely the VPgs of Rice yellow mottle virus (RYMV, genus Sobemovirus and Lettuce mosaic virus (LMV, genus Potyvirus. Using far-UV circular dichroism and size exclusion chromatography, we show that RYMV and LMV VPgs are predominantly or partly unstructured in solution, respectively. Using several disorder predictors, we show that both proteins are predicted to possess disordered regions. We next extend theses results to 14 VPgs representative of the viral diversity. Disordered regions were predicted in all VPg sequences whatever the genus and the family. Conclusion Based on these results, we propose that intrinsic disorder is a common feature of VPgs. The functional role of intrinsic disorder is discussed in light of the biological roles of VPgs.

  10. Liposomal nanocontainers as models for viral infection: monitoring viral genomic RNA transfer through lipid membranes.

    Science.gov (United States)

    Bilek, Gerhard; Matscheko, Nena M; Pickl-Herk, Angela; Weiss, Victor U; Subirats, Xavier; Kenndler, Ernst; Blaas, Dieter

    2011-08-01

    After uptake into target cells, many nonenveloped viruses undergo conformational changes in the low-pH environment of the endocytic compartment. This results in exposure of amphipathic viral peptides and/or hydrophobic protein domains that are inserted into and either disrupt or perforate the vesicular membranes. The viral nucleic acids thereby gain access to the cytosol and initiate replication. We here demonstrate the in vitro transfer of the single-stranded positive-sense RNA genome of human rhinovirus 2 into liposomes decorated with recombinant very-low-density lipoprotein receptor fragments. Membrane-attached virions were exposed to pH 5.4, mimicking the in vivo pH environment of late endosomes. This triggered the release of the RNA whose arrival in the liposomal lumen was detected via in situ cDNA synthesis by encapsulated reverse transcriptase. Subsequently, cDNA was PCR amplified. At a low ratio between virions and lipids, RNA transfer was positively correlated with virus concentration. However, membranes became leaky at higher virus concentrations, which resulted in decreased cDNA synthesis. In accordance with earlier in vivo data, the RNA passes through the lipid membrane without causing gross damage to vesicles at physiologically relevant virus concentrations.

  11. Supplementary Material for: CRISPR/Cas9-mediated viral interference in plants

    KAUST Repository

    Ali, Zahir

    2015-01-01

    Abstract Background The CRISPR/Cas9 system provides bacteria and archaea with molecular immunity against invading phages and conjugative plasmids. Recently, CRISPR/Cas9 has been used for targeted genome editing in diverse eukaryotic species. Results In this study, we investigate whether the CRISPR/Cas9 system could be used in plants to confer molecular immunity against DNA viruses. We deliver sgRNAs specific for coding and non-coding sequences of tomato yellow leaf curl virus (TYLCV) into Nicotiana benthamiana plants stably overexpressing the Cas9 endonuclease, and subsequently challenge these plants with TYLCV. Our data demonstrate that the CRISPR/Cas9 system targeted TYLCV for degradation and introduced mutations at the target sequences. All tested sgRNAs exhibit interference activity, but those targeting the stem-loop sequence within the TYLCV origin of replication in the intergenic region (IR) are the most effective. N. benthamiana plants expressing CRISPR/Cas9 exhibit delayed or reduced accumulation of viral DNA, abolishing or significantly attenuating symptoms of infection. Moreover, this system could simultaneously target multiple DNA viruses. Conclusions These data establish the efficacy of the CRISPR/Cas9 system for viral interference in plants, thereby extending the utility of this technology and opening the possibility of producing plants resistant to multiple viral infections.

  12. SearchSmallRNA: a graphical interface tool for the assemblage of viral genomes using small RNA libraries data.

    Science.gov (United States)

    de Andrade, Roberto R S; Vaslin, Maite F S

    2014-03-07

    Next-generation parallel sequencing (NGS) allows the identification of viral pathogens by sequencing the small RNAs of infected hosts. Thus, viral genomes may be assembled from host immune response products without prior virus enrichment, amplification or purification. However, mapping of the vast information obtained presents a bioinformatics challenge. In order to by pass the need of line command and basic bioinformatics knowledge, we develop a mapping software with a graphical interface to the assemblage of viral genomes from small RNA dataset obtained by NGS. SearchSmallRNA was developed in JAVA language version 7 using NetBeans IDE 7.1 software. The program also allows the analysis of the viral small interfering RNAs (vsRNAs) profile; providing an overview of the size distribution and other features of the vsRNAs produced in infected cells. The program performs comparisons between each read sequenced present in a library and a chosen reference genome. Reads showing Hamming distances smaller or equal to an allowed mismatched will be selected as positives and used to the assemblage of a long nucleotide genome sequence. In order to validate the software, distinct analysis using NGS dataset obtained from HIV and two plant viruses were used to reconstruct viral whole genomes. SearchSmallRNA program was able to reconstructed viral genomes using NGS of small RNA dataset with high degree of reliability so it will be a valuable tool for viruses sequencing and discovery. It is accessible and free to all research communities and has the advantage to have an easy-to-use graphical interface. SearchSmallRNA was written in Java and is freely available at http://www.microbiologia.ufrj.br/ssrna/.

  13. Anti-viral RNA silencing: do we look like plants ?

    Directory of Open Access Journals (Sweden)

    Lecellier Charles-Henri

    2006-01-01

    Full Text Available Abstract The anti-viral function of RNA silencing was first discovered in plants as a natural manifestation of the artificial 'co-suppression', which refers to the extinction of endogenous gene induced by homologous transgene. Because silencing components are conserved among most, if not all, eukaryotes, the question rapidly arose as to determine whether this process fulfils anti-viral functions in animals, such as insects and mammals. It appears that, whereas the anti-viral process seems to be similarly conserved from plants to insects, even in worms, RNA silencing does influence the replication of mammalian viruses but in a particular mode: micro(miRNAs, endogenous small RNAs naturally implicated in translational control, rather than virus-derived small interfering (siRNAs like in other organisms, are involved. In fact, these recent studies even suggest that RNA silencing may be beneficial for viral replication. Accordingly, several large DNA mammalian viruses have been shown to encode their own miRNAs. Here, we summarize the seminal studies that have implicated RNA silencing in viral infection and compare the different eukaryotic responses.

  14. A metagenomic assessment of viral contamination on fresh parsley plants irrigated with fecally tainted river water.

    Science.gov (United States)

    Fernandez-Cassi, X; Timoneda, N; Gonzales-Gustavson, E; Abril, J F; Bofill-Mas, S; Girones, R

    2017-09-18

    Microbial food-borne diseases are still frequently reported despite the implementation of microbial quality legislation to improve food safety. Among all the microbial agents, viruses are the most important causative agents of food-borne outbreaks. The development and application of a new generation of sequencing techniques to test for viral contaminants in fresh produce is an unexplored field that allows for the study of the viral populations that might be transmitted by the fecal-oral route through the consumption of contaminated food. To advance this promising field, parsley was planted and grown under controlled conditions and irrigated using contaminated river water. Viruses polluting the irrigation water and the parsley leaves were studied by using metagenomics. To address possible contamination due to sample manipulation, library preparation, and other sources, parsley plants irrigated with nutritive solution were used as a negative control. In parallel, viruses present in the river water used for plant irrigation were analyzed using the same methodology. It was possible to assign viral taxons from 2.4 to 74.88% of the total reads sequenced depending on the sample. Most of the viral reads detected in the river water were related to the plant viral families Tymoviridae (66.13%) and Virgaviridae (14.45%) and the phage viral families Myoviridae (5.70%), Siphoviridae (5.06%), and Microviridae (2.89%). Less than 1% of the viral reads were related to viral families that infect humans, including members of the Adenoviridae, Reoviridae, Picornaviridae and Astroviridae families. On the surface of the parsley plants, most of the viral reads that were detected were assigned to the Dicistroviridae family (41.52%). Sequences related to important viral pathogens, such as the hepatitis E virus, several picornaviruses from species A and B as well as human sapoviruses and GIV noroviruses were detected. The high diversity of viral sequences found in the parsley plants

  15. Next-Generation Sequencing and Genome Editing in Plant Virology

    Directory of Open Access Journals (Sweden)

    Ahmed Hadidi

    2016-08-01

    Full Text Available Next-generation sequencing (NGS has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus; beet curly top virus and beet severe curly top virus (curtovirus; and bean yellow dwarf virus (mastrevirus. The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus and cucumber vein yellowing virus (ipomovirus, family, Potyviridae by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.Keywords: Next-generation sequencing, NGS, plant virology, plant viruses, viroids, resistance to plant viruses by CRISPR-Cas9

  16. Rewiring carotenoid biosynthesis in plants using a viral vector

    Science.gov (United States)

    Majer, Eszter; Llorente, Briardo; Rodríguez-Concepción, Manuel; Daròs, José-Antonio

    2017-01-01

    Plants can be engineered to sustainably produce compounds of nutritional, industrial or pharmaceutical relevance. This is, however, a challenging task as extensive regulation of biosynthetic pathways often hampers major metabolic changes. Here we describe the use of a viral vector derived from Tobacco etch virus to express a whole heterologous metabolic pathway that produces the health-promoting carotenoid lycopene in tobacco tissues. The pathway consisted in three enzymes from the soil bacteria Pantoea ananatis. Lycopene is present at undetectable levels in chloroplasts of non-infected leaves. In tissues infected with the viral vector, however, lycopene comprised approximately 10% of the total carotenoid content. Our research further showed that plant viruses that express P. ananatis phytoene synthase (crtB), one of the three enzymes of the heterologous pathway, trigger an accumulation of endogenous carotenoids, which together with a reduction in chlorophylls eventually result in a bright yellow pigmentation of infected tissues in various host-virus combinations. So, besides illustrating the potential of viral vectors for engineering complex metabolic pathways, we also show a yellow carotenoid-based reporter that can be used to visually track infection dynamics of plant viruses either alone or in combination with other visual markers. PMID:28139696

  17. (Mechanisms of inhibition of viral replication in plants)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    During the last year we have made a number of important observations in the fields of virology and plant molecular biology. By directly sequencing Tomato Mosaic Virus (ToMV) movement genes, previously undetected sequence alterations common to specific viral strains were found. The difficulty in regenerating transgenic tomato plants containing the Tm-2 gene was overcome. Tobacco plants transformed with Cucumber Mosaic Virus (CMV) are being characterized. Analysis of transgenic tobacco plants expressing CMV coat protein have shown no correlation between coat protein expression and level of resistance. Specific amino acid changes have been found to correlate with CMV resistance breaking and degree of pathogenicity. Satellite RNAs are shown to be too unstable for use as a biological control agent. The aphid transmission domain CMV has been localized to one (or more) of three amino acids; constructs have been made to determine the exact amino acids involved. 15 refs.

  18. Exploration of sequence space as the basis of viral RNA genome segmentation.

    Science.gov (United States)

    Moreno, Elena; Ojosnegros, Samuel; García-Arriaza, Juan; Escarmís, Cristina; Domingo, Esteban; Perales, Celia

    2014-05-06

    The mechanisms of viral RNA genome segmentation are unknown. On extensive passage of foot-and-mouth disease virus in baby hamster kidney-21 cells, the virus accumulated multiple point mutations and underwent a transition akin to genome segmentation. The standard single RNA genome molecule was replaced by genomes harboring internal in-frame deletions affecting the L- or capsid-coding region. These genomes were infectious and killed cells by complementation. Here we show that the point mutations in the nonstructural protein-coding region (P2, P3) that accumulated in the standard genome before segmentation increased the relative fitness of the segmented version relative to the standard genome. Fitness increase was documented by intracellular expression of virus-coded proteins and infectious progeny production by RNAs with the internal deletions placed in the sequence context of the parental and evolved genome. The complementation activity involved several viral proteins, one of them being the leader proteinase L. Thus, a history of genetic drift with accumulation of point mutations was needed to allow a major variation in the structure of a viral genome. Thus, exploration of sequence space by a viral genome (in this case an unsegmented RNA) can reach a point of the space in which a totally different genome structure (in this case, a segmented RNA) is favored over the form that performed the exploration.

  19. Enabling plant synthetic biology through genome engineering.

    Science.gov (United States)

    Baltes, Nicholas J; Voytas, Daniel F

    2015-02-01

    Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology.

  20. EFFECT OF SALINITY ON VIRAL DISEASE SPREAD IN PLANTS

    Directory of Open Access Journals (Sweden)

    Moldakimova N.A.

    2012-08-01

    Full Text Available Salt stress is an important factor affecting the quality and quantity of crop yields. The total area of the world’s land exposed salinity increased to 15% in 2011 compared to 7% in 2001. In addition, crops are susceptible to disease, which strongly affects the yield. Thus, viral diseases reduce crop yield, sometimes up to 80-100%, for example Eggplant mottled crinkle virus (EMCV can infect up to 100% yield of eggplant. Taken together, these two stress factors can cause enormous economic damage to agriculture. Despite of the importance, the effect of salinity on plant virus disease has not been well studied.In our study, we investigated the effect of high concentrations of salt (150mM NaCl on the systemic viral disease caused by EMCV. The virus causes the systemic necrosis in Nicotiana benthamiana. Systemic accumulation of virus at high concentrations of NaCl was drastically reduced. In the plants exposed to salt stress (100mM and 150mM NaCl for 21 days before infection systemic symptoms were significantly delayed. The relationship between plant responses to biotic and abiotic stress factors may indicate the existence of universal defensive pathways of plant adaptation to unfavorable conditions.

  1. Gramene database: Navigating plant comparative genomics resources

    Directory of Open Access Journals (Sweden)

    Parul Gupta

    2016-11-01

    Full Text Available Gramene (http://www.gramene.org is an online, open source, curated resource for plant comparative genomics and pathway analysis designed to support researchers working in plant genomics, breeding, evolutionary biology, system biology, and metabolic engineering. It exploits phylogenetic relationships to enrich the annotation of genomic data and provides tools to perform powerful comparative analyses across a wide spectrum of plant species. It consists of an integrated portal for querying, visualizing and analyzing data for 44 plant reference genomes, genetic variation data sets for 12 species, expression data for 16 species, curated rice pathways and orthology-based pathway projections for 66 plant species including various crops. Here we briefly describe the functions and uses of the Gramene database.

  2. Genomics and the Instrinsic Value of Plants

    NARCIS (Netherlands)

    Gremmen, H.G.J.

    2005-01-01

    In discussions on genetic engineering and plant breeding, the intrinsic value of plants and crops is used as an argument against this technology. This paper focuses on the new field of plant genomics, which, according to some, is almost the same as genetic engineering. This raises the question wheth

  3. Genomics and the Instrinsic Value of Plants

    NARCIS (Netherlands)

    Gremmen, H.G.J.

    2005-01-01

    In discussions on genetic engineering and plant breeding, the intrinsic value of plants and crops is used as an argument against this technology. This paper focuses on the new field of plant genomics, which, according to some, is almost the same as genetic engineering. This raises the question wheth

  4. Genomics and the Instrinsic Value of Plants

    NARCIS (Netherlands)

    Gremmen, H.G.J.

    2005-01-01

    In discussions on genetic engineering and plant breeding, the intrinsic value of plants and crops is used as an argument against this technology. This paper focuses on the new field of plant genomics, which, according to some, is almost the same as genetic engineering. This raises the question

  5. Viral genome segmentation can result from a trade-off between genetic content and particle stability.

    Science.gov (United States)

    Ojosnegros, Samuel; García-Arriaza, Juan; Escarmís, Cristina; Manrubia, Susanna C; Perales, Celia; Arias, Armando; Mateu, Mauricio García; Domingo, Esteban

    2011-03-01

    The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length.

  6. Viral genome segmentation can result from a trade-off between genetic content and particle stability.

    Directory of Open Access Journals (Sweden)

    Samuel Ojosnegros

    2011-03-01

    Full Text Available The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length.

  7. Viral Genome Segmentation Can Result from a Trade-Off between Genetic Content and Particle Stability

    Science.gov (United States)

    Ojosnegros, Samuel; García-Arriaza, Juan; Escarmís, Cristina; Manrubia, Susanna C.; Perales, Celia; Arias, Armando; Mateu, Mauricio García; Domingo, Esteban

    2011-01-01

    The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length. PMID:21437265

  8. Generation of Recombinant Viral Hemorrhagic Septicemia Virus (rVHSV) Expressing Two Foreign Proteins and Effect of Lengthened Viral Genome on Viral Growth and In Vivo Virulence.

    Science.gov (United States)

    Kim, Min Sun; Lee, Su Jin; Kim, Dong Soo; Kim, Ki Hong

    2016-04-01

    In this study, a new recombinant VHSV (rVHSV-Arfp-Bgfp) was generated by insertion of a red fluorescent protein (RFP) gene between N and P genes, a green fluorescent protein (GFP) gene between P and M genes of VHSV genome, the expression of each heterologous gene in infected cells, and effects of the lengthened recombinant VHSV's genome on the replication ability and in vivo virulence to olive flounder (Paralichthys olivaceus) fingerlings were compared with previously generated rVHSVs (rVHSV-wild, rVHSV-Arfp, and rVHSV-Brfp). The expression of RFP and GFP in cells infected with rVHSV-Arfp-Bgfp was verified through fluorescent microscopy and FACS analysis. In the viral growth analysis, rVHSV-Arfp and rVHSV-Brfp showed significantly lower viral titers than rVHSV-wild, and the replication of rVHSV-Arfp-Bgfp was significantly decreased compared to that of even rVHSV-Arfp or rVHSV-Brfp. These results suggest that the genome length is a critical factor for the determination of rVHSVs replication efficiency. In the in vivo virulence experiment, the cumulative mortalities of olive flounder fingerlings infected with each rVHSV were inversely proportional to the length of the viral genome, suggesting that decreased viral growth rate due to the lengthened viral genome is accompanied with the decrease of in vivo virulence of rVHSVs. Recombinant viruses expressing multiple foreign antigens can be used for the development of combined vaccines. However, as the present rVHSV-Arfp-Bgfp still possesses an ability to kill hosts (although very weakened), researches on the producing more attenuated viruses or propagation-deficient replicon particles are needed to solve safety-related problems.

  9. Gene enrichment in plant genomic shotgun libraries.

    Science.gov (United States)

    Rabinowicz, Pablo D; McCombie, W Richard; Martienssen, Robert A

    2003-04-01

    The Arabidopsis genome (about 130 Mbp) has been completely sequenced; whereas a draft sequence of the rice genome (about 430 Mbp) is now available and the sequencing of this genome will be completed in the near future. The much larger genomes of several important crop species, such as wheat (about 16,000 Mbp) or maize (about 2500 Mbp), may not be fully sequenced with current technology. Instead, sequencing-analysis strategies are being developed to obtain sequencing and mapping information selectively for the genic fraction (gene space) of complex plant genomes.

  10. Viral symbiosis and the holobiontic nature of the human genome.

    Science.gov (United States)

    Ryan, Francis Patrick

    2016-01-01

    The human genome is a holobiontic union of the mammalian nuclear genome, the mitochondrial genome and large numbers of endogenized retroviral genomes. This article defines and explores this symbiogenetic pattern of evolution, looking at the implications for human genetics, epigenetics, embryogenesis, physiology and the pathogenesis of inborn errors of metabolism and many other diseases.

  11. Combining genomic sequencing methods to explore viral diversity and reveal potential virus-host interactions

    Directory of Open Access Journals (Sweden)

    Cheryl-Emiliane Tien Chow

    2015-04-01

    Full Text Available Viral diversity and virus-host interactions in oxygen-starved regions of the ocean, also known as oxygen minimum zones (OMZs, remain relatively unexplored. Microbial community metabolism in OMZs alters nutrient and energy flow through marine food webs, resulting in biological nitrogen loss and greenhouse gas production. Thus, viruses infecting OMZ microbes have the potential to modulate community metabolism with resulting feedback on ecosystem function. Here, we describe viral communities inhabiting oxic surface (10m and oxygen-starved basin (200m waters of Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island, British Columbia using viral metagenomics and complete viral fosmid sequencing on samples collected between April 2007 and April 2010. Of 6459 open reading frames (ORFs predicted across all 34 viral fosmids, 77.6% (n=5010 had no homology to reference viral genomes. These fosmids recruited a higher proportion of viral metagenomic sequences from Saanich Inlet than from nearby northeastern subarctic Pacific Ocean (Line P waters, indicating differences in the viral communities between coastal and open ocean locations. While functional annotations of fosmid ORFs were limited, recruitment to NCBI’s non-redundant ‘nr’ database and publicly available single-cell genomes identified putative viruses infecting marine thaumarchaeal and SUP05 proteobacteria to provide potential host linkages with relevance to coupled biogeochemical cycling processes in OMZ waters. Taken together, these results highlight the power of coupled analyses of multiple sequence data types, such as viral metagenomic and fosmid sequence data with prokaryotic single cell genomes, to chart viral diversity, elucidate genomic and ecological contexts for previously unclassifiable viral sequences, and identify novel host interactions in natural and engineered ecosystems.

  12. Next-Generation Sequencing and Genome Editing in Plant Virology.

    Science.gov (United States)

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21-24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology.

  13. Next-Generation Sequencing and Genome Editing in Plant Virology

    Science.gov (United States)

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21–24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant virology including, but not limited to, discovery of novel viruses and viroids as well as detection and identification of those pathogens already known, analysis of genome diversity and evolution, and study of pathogen epidemiology. The genome engineering editing method, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system has been successfully used recently to engineer resistance to DNA geminiviruses (family, Geminiviridae) by targeting different viral genome sequences in infected Nicotiana benthamiana or Arabidopsis plants. The DNA viruses targeted include tomato yellow leaf curl virus and merremia mosaic virus (begomovirus); beet curly top virus and beet severe curly top virus (curtovirus); and bean yellow dwarf virus (mastrevirus). The technique has also been used against the RNA viruses zucchini yellow mosaic virus, papaya ringspot virus and turnip mosaic virus (potyvirus) and cucumber vein yellowing virus (ipomovirus, family, Potyviridae) by targeting the translation initiation genes eIF4E in cucumber or Arabidopsis plants. From these recent advances of major importance, it is expected that NGS and CRISPR-Cas technologies will play a significant role in the very near future in advancing the field of plant virology and connecting it with other related fields of biology. PMID:27617007

  14. Viral small RNAs reveal the genomic variations of three grapevine vein clearing virus quasispecies populations.

    Science.gov (United States)

    Howard, Susanne; Qiu, Wenping

    2017-02-02

    Viral small RNAs (vsRNAs) include viral small interfering RNAs (vsiRNAs) that are initiators and products of RNA silencing, and small RNAs that are derived from viral RNAs with function still unknown. Sequencing of vsRNAs allows assembling of viral genomes and revelation of viral population variations at genomic levels. Grapevine vein clearing virus (GVCV) is a new member of the family Caulimoviridae whose DNA genome is replicated by reverse transcription of pre-genomic RNA molecules. In this short report, three genomic sequences of GVCV were assembled from vsRNAs that were isolated and sequenced from three individual grapevines in commercial vineyards and compared to the GVCV-CHA reference genome. Profiles of single nucleotide polymorphism among three viral populations indicated a closer relatedness between two populations in different grape cultivars at the same location than those in the same grape cultivar at different locations, suggesting the spread of GVCV populations among vineyards of close proximity. Classic types of vsiRNAs (21-nt, 22-nt, and 24-nt) were found in the three GVCV vsiRNA populations, but these did not produce alignment hotspots on the GVCV-CHA reference genome. The number of 36-nt reads is the highest among vsRNAs, the role of these vsRNAs remains unclear. The analysis of vsRNAs provides a first holistic picture of genomic variations among GVCV viral quasispecies populations that help monitor epidemics and evolution of GVCV populations, an emerging virus that is becoming a threat to grape production in the Midwest region of the USA.

  15. Bioinformatics for plant genome annotation

    NARCIS (Netherlands)

    Fiers, M.W.E.J.

    2006-01-01

    Large amounts of genome sequence data are available and much more will become available in the near future. A DNA sequence alone has, however, limited use. Genome annotation is required to assign biological interpretation to the DNA sequence. This thesis describ

  16. Plant cytogenetics in genome databases

    Science.gov (United States)

    Cytogenetic maps provide an integrated representation of genetic and cytological information that can be used to enhance genome and chromosome research. As genome analysis technologies become more affordable, the density of markers on cytogenetic maps increases, making these resources more useful a...

  17. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    Directory of Open Access Journals (Sweden)

    Shea N. Gardner

    2014-01-01

    Full Text Available Background. Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results. A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus. Each group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions. This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.

  18. Complete Genome Sequence of a Bovine Viral Diarrhea Virus Subgenotype 1h Strain Isolated in Italy

    Science.gov (United States)

    Bazzucchi, Moira; Bertolotti, Luigi; Casciari, Cristina; Rossi, Elisabetta; Rosati, Sergio; De Mia, Gian Mario

    2017-01-01

    ABSTRACT We sequenced the complete genome of bovine viral diarrhea virus (BVDV) strain UM/126/07. It belongs to subgenotype 1h. The complete genome is composed of 12,196 nucleotides organized as one open reading frame encoding 3,898 amino acids. This is the first report of a full-length sequence of BVDV-1h. PMID:28232427

  19. Complete Genome Sequence of a Bovine Viral Diarrhea Virus Subgenotype 1h Strain Isolated in Italy.

    Science.gov (United States)

    Bazzucchi, Moira; Bertolotti, Luigi; Giammarioli, Monica; Casciari, Cristina; Rossi, Elisabetta; Rosati, Sergio; De Mia, Gian Mario

    2017-02-23

    We sequenced the complete genome of bovine viral diarrhea virus (BVDV) strain UM/126/07. It belongs to subgenotype 1h. The complete genome is composed of 12,196 nucleotides organized as one open reading frame encoding 3,898 amino acids. This is the first report of a full-length sequence of BVDV-1h.

  20. Synonymous Virus Genome Recoding as a Tool to Impact Viral Fitness.

    Science.gov (United States)

    Martínez, Miguel Angel; Jordan-Paiz, Ana; Franco, Sandra; Nevot, Maria

    2016-02-01

    Synthetic genome recoding is a novel method of generating viruses with altered phenotypes, whereby many synonymous mutations are introduced into the protein coding region of the virus genome without altering the encoded proteins. Virus genome recoding with large numbers of slightly deleterious mutations has produced attenuated forms of several RNA viruses. Virus genome recoding can also aid in investigating virus interactions with innate immune responses, identifying functional virus genome structures, strategically ameliorating cis-inhibitory signaling sequences related to complex viral functions, to unravel the relevance of codon usage for the temporal regulation of viral gene expression and improving our knowledge of virus mutational robustness and adaptability. The present review discusses the impacts of synonymous genome recoding with regard to expanding our comprehension of virus biology, and the development of new and better therapeutic strategies.

  1. Herpesvirus telomeric repeats facilitate genomic integration into host telomeres and mobilization of viral DNA during reactivation.

    Science.gov (United States)

    Kaufer, Benedikt B; Jarosinski, Keith W; Osterrieder, Nikolaus

    2011-03-14

    Some herpesviruses, particularly lymphotropic viruses such as Marek's disease virus (MDV) and human herpesvirus 6 (HHV-6), integrate their DNA into host chromosomes. MDV and HHV-6, among other herpesviruses, harbor telomeric repeats (TMRs) identical to host telomeres at either end of their linear genomes. Using MDV as a natural virus-host model, we show that herpesvirus TMRs facilitate viral genome integration into host telomeres and that integration is important for establishment of latency and lymphoma formation. Integration into host telomeres also aids in reactivation from the quiescent state of infection. Our results and the presence of TMRs in many herpesviruses suggest that integration mediated by viral TMRs is a conserved mechanism, which ensures faithful virus genome maintenance in host cells during cell division and allows efficient mobilization of dormant viral genomes. This finding is of particular importance as reactivation is critical for virus spread between susceptible individuals and is necessary for continued herpesvirus evolution and survival.

  2. Why Assembling Plant Genome Sequences Is So Challenging

    Directory of Open Access Journals (Sweden)

    Pedro Seoane

    2012-09-01

    Full Text Available In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed.

  3. Why Assembling Plant Genome Sequences Is So Challenging

    Science.gov (United States)

    Claros, Manuel Gonzalo; Bautista, Rocío; Guerrero-Fernández, Darío; Benzerki, Hicham; Seoane, Pedro; Fernández-Pozo, Noé

    2012-01-01

    In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233

  4. Complete Genome Sequencing of Bovine Viral Diarrhea Virus 1, Subgenotypes 1n and 1o.

    Science.gov (United States)

    Sato, Asuka; Tateishi, Kentaro; Shinohara, Minami; Naoi, Yuki; Shiokawa, Mai; Aoki, Hiroshi; Ohmori, Keitaro; Mizutani, Tetsuya; Shirai, Junsuke; Nagai, Makoto

    2016-02-18

    To gain further insight into the genomic features of bovine viral diarrhea virus 1 (BVDV-1) subgenotypes, we sequenced the complete genome of BVDV-1n Shitara/02/06 and BVDV-1o IS26NCP/01. The complete genome of Shitara/02/06 and IS26NCP/01 shared 77.7 to 79.3% and 78.0 to 85.7% sequence identities with other BVDV-1 subgenotype strains, respectively.

  5. 77 FR 75425 - Interagency Working Group on Plant Genomics (IWGPG): The National Plant Genome Initiative-What's...

    Science.gov (United States)

    2012-12-20

    ... Interagency Working Group on Plant Genomics (IWGPG): The National Plant Genome Initiative--What's Next? AGENCY... Group on Plant Genomics (IWGPG). DATES: Saturday, January 12, 2013, 1:30 p.m. to 3:40 p.m. ADDRESSES... production, with a specific focus on the management of plant genomics data, metadata, and...

  6. CTCF interacts with the lytic HSV-1 genome to promote viral transcription

    Science.gov (United States)

    Lang, Fengchao; Li, Xin; Vladimirova, Olga; Hu, Benxia; Chen, Guijun; Xiao, Yu; Singh, Vikrant; Lu, Danfeng; Li, Lihong; Han, Hongbo; Wickramasinghe, J. M. A. S. P.; Smith, Sheryl T.; Zheng, Chunfu; Li, Qihan; Lieberman, Paul M.; Fraser, Nigel W.; Zhou, Jumin

    2017-01-01

    CTCF is an essential chromatin regulator implicated in important nuclear processes including in nuclear organization and transcription. Herpes Simplex Virus-1 (HSV-1) is a ubiquitous human pathogen, which enters productive infection in human epithelial and many other cell types. CTCF is known to bind several sites in the HSV-1 genome during latency and reactivation, but its function has not been defined. Here, we report that CTCF interacts extensively with the HSV-1 DNA during lytic infection by ChIP-seq, and its knockdown results in the reduction of viral transcription, viral genome copy number and virus yield. CTCF knockdown led to increased H3K9me3 and H3K27me3, and a reduction of RNA pol II occupancy on viral genes. Importantly, ChIP-seq analysis revealed that there is a higher level of CTD Ser2P modified RNA Pol II near CTCF peaks relative to the Ser5P form in the viral genome. Consistent with this, CTCF knockdown reduced the Ser2P but increased Ser5P modified forms of RNA Pol II on viral genes. These results suggest that CTCF promotes HSV-1 lytic transcription by facilitating the elongation of RNA Pol II and preventing silenced chromatin on the viral genome. PMID:28045091

  7. Plant MITEs: Useful Tools for Plant Genetics and Genomics

    Institute of Scientific and Technical Information of China (English)

    Ying Feng

    2003-01-01

    MITEs (Miniature inverted-repeat transposable elements) are reminiscence of non-autonomous DNA (class Ⅱ) elements, which are distinguished from other transpos-able elements by their small size, short terminal inverted repeats (TIRs), high copynumbers, genic preference, and DNA sequence identity among family members. Al-though MITEs were first discovered in plants and still actively reshaping genomes,they have been isolated from a wide range of eukaryotic organisms. MITEs canbe divided into Tourist-like, Stowaway-like, and pogo-like groups, according tosimilarities of their TIRs and TSDs (target site duplications). In despite of sev-eral models to explain the origin and amplification of MITEs, their mechanisms oftransposition and accumulation in eukaryotic genomes remain poorly understoodowing to insufficient experimental data. The unique properties of MITEs have beenexploited as useful genetic tools for plant genome analysis. Utilization of MITEsas effective and informative genomic markers and potential application of MITEsin plants systematic, phylogenetic, and genetic studies are discussed.

  8. JGI Plant Genomics Gene Annotation Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Shengqiang; Rokhsar, Dan; Goodstein, David; Hayes, David; Mitros, Therese

    2014-07-14

    Plant genomes vary in size and are highly complex with a high amount of repeats, genome duplication and tandem duplication. Gene encodes a wealth of information useful in studying organism and it is critical to have high quality and stable gene annotation. Thanks to advancement of sequencing technology, many plant species genomes have been sequenced and transcriptomes are also sequenced. To use these vastly large amounts of sequence data to make gene annotation or re-annotation in a timely fashion, an automatic pipeline is needed. JGI plant genomics gene annotation pipeline, called integrated gene call (IGC), is our effort toward this aim with aid of a RNA-seq transcriptome assembly pipeline. It utilizes several gene predictors based on homolog peptides and transcript ORFs. See Methods for detail. Here we present genome annotation of JGI flagship green plants produced by this pipeline plus Arabidopsis and rice except for chlamy which is done by a third party. The genome annotations of these species and others are used in our gene family build pipeline and accessible via JGI Phytozome portal whose URL and front page snapshot are shown below.

  9. Genome editing with engineered nucleases in plants.

    Science.gov (United States)

    Osakabe, Yuriko; Osakabe, Keishi

    2015-03-01

    Numerous examples of successful 'genome editing' now exist. Genome editing uses engineered nucleases as powerful tools to target specific DNA sequences to edit genes precisely in the genomes of both model and crop plants, as well as a variety of other organisms. The DNA-binding domains of zinc finger (ZF) proteins were the first to be used as genome editing tools, in the form of designed ZF nucleases (ZFNs). More recently, transcription activator-like effector nucleases (TALENs), as well as the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, which utilizes RNA-DNA interactions, have proved useful. A key step in genome editing is the generation of a double-stranded DNA break that is specific to the target gene. This is achieved by custom-designed endonucleases, which enable site-directed mutagenesis via a non-homologous end-joining (NHEJ) repair pathway and/or gene targeting via homologous recombination (HR) to occur efficiently at specific sites in the genome. This review provides an overview of recent advances in genome editing technologies in plants, and discusses how these can provide insights into current plant molecular biology research and molecular breeding technology.

  10. Plantagora: modeling whole genome sequencing and assembly of plant genomes.

    Directory of Open Access Journals (Sweden)

    Roger Barthelson

    Full Text Available BACKGROUND: Genomics studies are being revolutionized by the next generation sequencing technologies, which have made whole genome sequencing much more accessible to the average researcher. Whole genome sequencing with the new technologies is a developing art that, despite the large volumes of data that can be produced, may still fail to provide a clear and thorough map of a genome. The Plantagora project was conceived to address specifically the gap between having the technical tools for genome sequencing and knowing precisely the best way to use them. METHODOLOGY/PRINCIPAL FINDINGS: For Plantagora, a platform was created for generating simulated reads from several different plant genomes of different sizes. The resulting read files mimicked either 454 or Illumina reads, with varying paired end spacing. Thousands of datasets of reads were created, most derived from our primary model genome, rice chromosome one. All reads were assembled with different software assemblers, including Newbler, Abyss, and SOAPdenovo, and the resulting assemblies were evaluated by an extensive battery of metrics chosen for these studies. The metrics included both statistics of the assembly sequences and fidelity-related measures derived by alignment of the assemblies to the original genome source for the reads. The results were presented in a website, which includes a data graphing tool, all created to help the user compare rapidly the feasibility and effectiveness of different sequencing and assembly strategies prior to testing an approach in the lab. Some of our own conclusions regarding the different strategies were also recorded on the website. CONCLUSIONS/SIGNIFICANCE: Plantagora provides a substantial body of information for comparing different approaches to sequencing a plant genome, and some conclusions regarding some of the specific approaches. Plantagora also provides a platform of metrics and tools for studying the process of sequencing and assembly

  11. Genome-enabled plant metabolomics.

    Science.gov (United States)

    Tohge, Takayuki; de Souza, Leonardo Perez; Fernie, Alisdair R

    2014-09-01

    The grand challenge currently facing metabolomics is that of comprehensitivity whilst next generation sequencing and advanced proteomics methods now allow almost complete and at least 50% coverage of their respective target molecules, metabolomics platforms at best offer coverage of just 10% of the small molecule complement of the cell. Here we discuss the use of genome sequence information as an enabling tool for peak identity and for translational metabolomics. Whilst we argue that genome information is not sufficient to compute the size of a species metabolome it is highly useful in predicting the occurrence of a wide range of common metabolites. Furthermore, we describe how via gene functional analysis in model species the identity of unknown metabolite peaks can be resolved. Taken together these examples suggest that genome sequence information is current (and likely will remain), a highly effective tool in peak elucidation in mass spectral metabolomics strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Recovering full-length viral genomes from metagenomes

    NARCIS (Netherlands)

    S.L. Smits (Saskia); R. Bodewes (Rogier); A. Ruiz-Gonzalez (Aritz); V. Baumgärtner (Volkmar); M.P.G. Koopmans D.V.M. (Marion); A.D.M.E. Osterhaus (Albert); A. Schürch (Anita)

    2015-01-01

    textabstractInfectious disease metagenomics is driven by the question: "what is causing the disease?" in contrast to classical metagenome studies which are guided by "what is out there?" In case of a novel virus, a first step to eventually establishing etiology can be to recover a full-length viral

  13. Non-viral delivery of genome-editing nucleases for gene therapy.

    Science.gov (United States)

    Wang, M; Glass, Z A; Xu, Q

    2016-12-01

    Manipulating the genetic makeup of mammalian cells using programmable nuclease-based genome-editing technology has recently evolved into a powerful avenue that holds great potential for treating genetic disorders. There are four types of genome-editing nucleases, including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and clustered, regularly interspaced, short palindromic repeat-associated nucleases such as Cas9. These nucleases have been harnessed to introduce precise and specific changes of the genome sequence at virtually any genome locus of interest. The therapeutic relevance of these genome-editing technologies, however, is challenged by the safe and efficient delivery of nuclease into targeted cells. Herein, we summarize recent advances that have been made on non-viral delivery of genome-editing nucleases. In particular, we focus on non-viral delivery of Cas9/sgRNA ribonucleoproteins for genome editing. In addition, the future direction for developing non-viral delivery of programmable nucleases for genome editing is discussed.Gene Therapy advance online publication, 1 December 2016; doi:10.1038/gt.2016.72.

  14. Herbal plants and plant preparations as remedial approach for viral diseases.

    Science.gov (United States)

    Ganjhu, Rajesh Kumar; Mudgal, Piya Paul; Maity, Hindol; Dowarha, Deepu; Devadiga, Santhosha; Nag, Snehlata; Arunkumar, Govindakarnavar

    2015-12-01

    Herbal plants, plant preparations and phytoconstituents have proved useful in attenuating infectious conditions and were the only remedies available, till the advent of antibiotics (many being of plant origin themselves). Among infectious diseases, viral diseases in particular, remain the leading cause of death in humans globally. A variety of phytoconstituents derived from medicinal herbs have been extensively studied for antiviral activity. Based on this rationale, an online search was performed, which helped to identify a large number of plant species harboring antiviral molecules. These herbal sources have been reported individually or in combinations across a large number of citations studied. Activities against rabies virus, Human immunodeficiency virus, Chandipura virus, Japanese Encephalitis Virus, Enterovirus, Influenza A/H1N1 and other influenza viruses were discovered during the literature search. This review includes all such plant species exhibiting antiviral properties. The review also encompasses composition and methodologies of preparing various antiviral formulations around the globe. An elaborate section on the formulations filed for patent registration, along with non-patented formulations, has also been included in this article. To conclude, herbal sources provide researchers enormous scope to explore and bring out viable alternatives against viral diseases, considering non-availability of suitable drug candidates and increasing resistance to existing drug molecules for many emerging and re-emerging viral diseases.

  15. Extraction of nuclei from sonchus yellow net rhabdovirus-infected plants yields a polymerase that synthesizes viral mRNAs and polyadenylated plus-strand leader RNA.

    OpenAIRE

    Wagner, J D; Choi, T. J.; Jackson, A O

    1996-01-01

    Although the primary sequence of the genome of the plant rhabdovirus sonchus yellow net virus (SYNV) has been determined, little is known about the composition of the viral polymerase or the mechanics of viral transcription and replication. In this paper, we report the partial isolation and characterization of an active SYNV polymerase from nuclei of SYNV-infected leaf tissue. A salt extraction procedure is shown to be an effective purification step for recovery of the polymerase from the nuc...

  16. Identification of viral and phytoplasmal agents responsible for diseases affecting plants of Gaillardia Foug. in Lithuania

    Science.gov (United States)

    Gaillardia plants exhibiting symptoms characteristic of viral and phytoplasmal diseases were collected at botanical gardens and floriculture farms in Lithuania. Cucumber mosaic virus was isolated from diseased plants exhibiting symptoms characterized stunting, color breaking and malformation of flo...

  17. Localization of viral antigens in leaf protoplasts and plants by immunogold labelling

    NARCIS (Netherlands)

    Lent, van J.W.M.

    1988-01-01

    This thesis describes the application of an immunocytochemical technique, immunogold labelling, new in the light and electron microscopic study of the plant viral infection. In Chapter 1 the present state of knowledge of the plant viral infection process, as revealed by in

  18. Localization of viral antigens in leaf protoplasts and plants by immunogold labelling.

    NARCIS (Netherlands)

    Lent, van J.W.M.

    1988-01-01

    This thesis describes the application of an immunocytochemical technique, immunogold labelling, new in the light and electron microscopic study of the plant viral infection. In Chapter 1 the present state of knowledge of the plant viral infection process, as revealed by insitu studies

  19. Localization of viral antigens in leaf protoplasts and plants by immunogold labelling

    NARCIS (Netherlands)

    Lent, van J.W.M.

    1988-01-01

    This thesis describes the application of an immunocytochemical technique, immunogold labelling, new in the light and electron microscopic study of the plant viral infection. In Chapter 1 the present state of knowledge of the plant viral infection process, as revealed by

  20. Antiviral Defenses in Plants through Genome Editing

    Science.gov (United States)

    Romay, Gustavo; Bragard, Claude

    2017-01-01

    Plant–virus interactions based-studies have contributed to increase our understanding on plant resistance mechanisms, providing new tools for crop improvement. In the last two decades, RNA interference, a post-transcriptional gene silencing approach, has been used to induce antiviral defenses in plants with the help of genetic engineering technologies. More recently, the new genome editing systems (GES) are revolutionizing the scope of tools available to confer virus resistance in plants. The most explored GES are zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats/Cas9 endonuclease. GES are engineered to target and introduce mutations, which can be deleterious, via double-strand breaks at specific DNA sequences by the error-prone non-homologous recombination end-joining pathway. Although GES have been engineered to target DNA, recent discoveries of GES targeting ssRNA molecules, including virus genomes, pave the way for further studies programming plant defense against RNA viruses. Most of plant virus species have an RNA genome and at least 784 species have positive ssRNA. Here, we provide a summary of the latest progress in plant antiviral defenses mediated by GES. In addition, we also discuss briefly the GES perspectives in light of the rebooted debate on genetic modified organisms (GMOs) and the current regulatory frame for agricultural products involving the use of such engineering technologies. PMID:28167937

  1. Genomic analyses of the CAM plant pineapple.

    Science.gov (United States)

    Zhang, Jisen; Liu, Juan; Ming, Ray

    2014-07-01

    The innovation of crassulacean acid metabolism (CAM) photosynthesis in arid and/or low CO2 conditions is a remarkable case of adaptation in flowering plants. As the most important crop that utilizes CAM photosynthesis, the genetic and genomic resources of pineapple have been developed over many years. Genetic diversity studies using various types of DNA markers led to the reclassification of the two genera Ananas and Pseudananas and nine species into one genus Ananas and two species, A. comosus and A. macrodontes with five botanical varieties in A. comosus. Five genetic maps have been constructed using F1 or F2 populations, and high-density genetic maps generated by genotype sequencing are essential resources for sequencing and assembling the pineapple genome and for marker-assisted selection. There are abundant expression sequence tag resources but limited genomic sequences in pineapple. Genes involved in the CAM pathway has been analysed in several CAM plants but only a few of them are from pineapple. A reference genome of pineapple is being generated and will accelerate genetic and genomic research in this major CAM crop. This reference genome of pineapple provides the foundation for studying the origin and regulatory mechanism of CAM photosynthesis, and the opportunity to evaluate the classification of Ananas species and botanical cultivars.

  2. MISIS-2: A bioinformatics tool for in-depth analysis of small RNAs and representation of consensus master genome in viral quasispecies.

    Science.gov (United States)

    Seguin, Jonathan; Otten, Patricia; Baerlocher, Loïc; Farinelli, Laurent; Pooggin, Mikhail M

    2016-07-01

    In most eukaryotes, small RNA (sRNA) molecules such as miRNAs, siRNAs and piRNAs regulate gene expression and repress transposons and viruses. AGO/PIWI family proteins sort functional sRNAs based on size, 5'-nucleotide and other sequence features. In plants and some animals, viral sRNAs are extremely diverse and cover the entire viral genome sequences, which allows for de novo reconstruction of a complete viral genome by deep sequencing and bioinformatics analysis of viral sRNAs. Previously, we have developed a tool MISIS to view and analyze sRNA maps of viruses and cellular genome regions which spawn multiple sRNAs. Here we describe a new release of MISIS, MISIS-2, which enables to determine and visualize a consensus sequence and count sRNAs of any chosen sizes and 5'-terminal nucleotide identities. Furthermore we demonstrate the utility of MISIS-2 for identification of single nucleotide polymorphisms (SNPs) at each position of a reference sequence and reconstruction of a consensus master genome in evolving viral quasispecies. MISIS-2 is a Java standalone program. It is freely available along with the source code at the website http://www.fasteris.com/apps.

  3. Evolution of endogenous non-retroviral genes integrated into plant genomes

    Directory of Open Access Journals (Sweden)

    Hyosub Chu

    2014-08-01

    Full Text Available Numerous comparative genome analyses have revealed the wide extent of horizontal gene transfer (HGT in living organisms, which contributes to their evolution and genetic diversity. Viruses play important roles in HGT. Endogenous viral elements (EVEs are defined as viral DNA sequences present within the genomes of non-viral organisms. In eukaryotic cells, the majority of EVEs are derived from RNA viruses using reverse transcription. In contrast, endogenous non-retroviral elements (ENREs are poorly studied. However, the increasing availability of genomic data and the rapid development of bioinformatics tools have enabled the identification of several ENREs in various eukaryotic organisms. To date, a small number of ENREs integrated into plant genomes have been identified. Of the known non-retroviruses, most identified ENREs are derived from double-strand (ds RNA viruses, followed by single-strand (ss DNA and ssRNA viruses. At least eight virus families have been identified. Of these, viruses in the family Partitiviridae are dominant, followed by viruses of the families Chrysoviridae and Geminiviridae. The identified ENREs have been primarily identified in eudicots, followed by monocots. In this review, we briefly discuss the current view on non-retroviral sequences integrated into plant genomes that are associated with plant-virus evolution and their possible roles in antiviral resistance.

  4. Phytozome: a comparative platform for green plant genomics

    OpenAIRE

    Goodstein, David M.; Shu, Shengqiang; Howson, Russell; Neupane, Rochak; Hayes, Richard D.; Fazo, Joni; Mitros, Therese; Dirks, William; Hellsten, Uffe; Putnam, Nicholas ; Rokhsar, Daniel S.

    2011-01-01

    The number of sequenced plant genomes and associated genomic resources is growing rapidly with the advent of both an increased focus on plant genomics from funding agencies, and the application of inexpensive next generation sequencing. To interact with this increasing body of data, we have developed Phytozome (http://www.phytozome.net), a comparative hub for plant genome and gene family data and analysis. Phytozome provides a view of the evolutionary history of every plant gene at the level ...

  5. Atypical Epstein-Barr viral genomic structure in lymphoma tissue and lymphoid cell lines.

    Science.gov (United States)

    Tang, Weihua; Fan, Hongxin; Schroeder, Jane; Dunphy, Cherie H; Bryant, Ronald J; Fedoriw, Yuri; Gulley, Margaret L

    2013-06-01

    Epstein-Barr virus (EBV) DNA is found within the malignant cells of some subtypes of lymphoma, and viral presence is being exploited for improved diagnosis, monitoring, and management of affected patients. Recent work suggests that viral genomic polymorphism, such as partial deletion of the viral genome, could interfere with virus detection in tumor tissues. To test for atypical forms of the EBV genome, 98 lymphomas and 6 infected cell lines were studied using a battery of 6 quantitative polymerase chain reaction assays targeting disparate sections of EBV DNA. Fifty of the lymphomas (51%) had no amplifiable EBV DNA, and 38 lymphomas (39%) had low-level EBV infection that was deemed incidental based on EBV-encoded RNA (EBER) in situ hybridization results. The remaining 10 lymphomas (10%) had high EBV loads and EBER localization to malignant cells by EBER in situ hybridization. All 10 represented lymphoma subtypes were previously associated with EBV (Burkitt, diffuse large B-cell, or T-cell type), whereas no remnants of EBV were detected in other lymphoma subtypes (follicular, small lymphocytic, mantle cell, or marginal zone type). Interestingly, 4 of the 10 infected lymphomas had evidence of atypical viral genomes, including 3 of 4 infected T-cell lymphomas with aberrant loss of LMP2 amplicons, and a single diffuse large B-cell lymphoma lacking the central part of the viral genome spanning BamH1W, BZLF1, and EBNA1 gene segments. A reasonable screening strategy for infected malignancy involves applying EBER1 and LMP1 quantitative polymerase chain reaction assays and confirming that values exceeding 2000 copies of EBV per 100,000 cells have EBER localization to malignant cells.

  6. Plant DNA barcoding: from gene to genome.

    Science.gov (United States)

    Li, Xiwen; Yang, Yang; Henry, Robert J; Rossetto, Maurizio; Wang, Yitao; Chen, Shilin

    2015-02-01

    DNA barcoding is currently a widely used and effective tool that enables rapid and accurate identification of plant species; however, none of the available loci work across all species. Because single-locus DNA barcodes lack adequate variations in closely related taxa, recent barcoding studies have placed high emphasis on the use of whole-chloroplast genome sequences which are now more readily available as a consequence of improving sequencing technologies. While chloroplast genome sequencing can already deliver a reliable barcode for accurate plant identification it is not yet resource-effective and does not yet offer the speed of analysis provided by single-locus barcodes to unspecialized laboratory facilities. Here, we review the development of candidate barcodes and discuss the feasibility of using the chloroplast genome as a super-barcode. We advocate a new approach for DNA barcoding that, for selected groups of taxa, combines the best use of single-locus barcodes and super-barcodes for efficient plant identification. Specific barcodes might enhance our ability to distinguish closely related plants at the species and population levels.

  7. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.

    Science.gov (United States)

    Bibby, Kyle

    2014-02-01

    The recent rise in "omics"-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases-currently, only 0.001% of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.

  8. Plant MITEs: useful tools for plant genetics and genomics.

    Science.gov (United States)

    Feng, Ying

    2003-05-01

    MITEs (Miniature inverted-repeat transposable elements) are reminiscence of non-autonomous DNA (class II) elements, which are distinguished from other transposable elements by their small size, short terminal inverted repeats (TIRs), high copy numbers, genic preference, and DNA sequence identity among family members. Although MITEs were first discovered in plants and still actively reshaping genomes, they have been isolated from a wide range of eukaryotic organisms. MITEs can be divided into Tourist-like, Stowaway-like, and pogo-like groups, according to similarities of their TIRs and TSDs (target site duplications). In despite of several models to explain the origin and amplification of MITEs, their mechanisms of transposition and accumulation in eukaryotic genomes remain poorly understood owing to insufficient experimental data. The unique properties of MITEs have been exploited as useful genetic tools for plant genome analysis. Utilization of MITEs as effective and informative genomic markers and potential application of MITEs in plants systematic, phylogenetic, and genetic studies are discussed.

  9. Effects of the Number of Genome Segments on Primary and Systemic Infections with a Multipartite Plant RNA Virus

    OpenAIRE

    Sánchez-Navarro, Jesús A.; Zwart, Mark P.; Elena, Santiago F

    2013-01-01

    Multipartite plant viruses were discovered because of discrepancies between the observed dose response and predictions of the independent-action hypothesis (IAH) model. Theory suggests that the number of genome segments predicts the shape of the dose-response curve, but a rigorous test of this hypothesis has not been reported. Here, Alfalfa mosaic virus (AMV), a tripartite Alfamovirus, and transgenic Nicotianatabacum plants expressing no (wild type), one (P2), or two (P12) viral genome seg...

  10. HIV-1 Vpr N-terminal tagging affects alternative splicing of the viral genome

    Science.gov (United States)

    Baeyens, Ann; Naessens, Evelien; Van Nuffel, Anouk; Weening, Karin E.; Reilly, Anne-Marie; Claeys, Eva; Trypsteen, Wim; Vandekerckhove, Linos; Eyckerman, Sven; Gevaert, Kris; Verhasselt, Bruno

    2016-01-01

    To facilitate studies on Vpr function in replicating HIV-1, we aimed to tag the protein in an infectious virus. First we showed that N-, but not C-terminal HA/FLAG tagging of Vpr protein preserves Vpr cytopathicity. Cloning the tags into proviral DNA however ablated viral production and replication. By construction of additional viral variants we could show this defect was not protein- but RNA-dependent and sequence specific, and characterized by oversplicing of the genomic RNA. Simulation of genomic RNA folding suggested that introduction of the tag sequence induced an alternative folding structure in a region enriched in splice sites and splicing regulatory sequences. In silico predictions identified the HA/His6-Vpr tagging in HIV-1 to affect mRNA folding less than HA/FLAG-Vpr tagging. In vitro infectivity and mRNA splice pattern improved but did not reach wild-type values. Thus, sequence-specific insertions may interfere with mRNA splicing, possibly due to altered RNA folding. Our results point to the complexity of viral RNA genome sequence interactions. This should be taken into consideration when designing viral manipulation strategies, for both research as for biological interventions. PMID:27721439

  11. Genomics-based plant germplasm research (GPGR

    Directory of Open Access Journals (Sweden)

    Jizeng Jia

    2017-04-01

    Full Text Available Plant germplasm underpins much of crop genetic improvement. Millions of germplasm accessions have been collected and conserved ex situ and/or in situ, and the major challenge is now how to exploit and utilize this abundant resource. Genomics-based plant germplasm research (GPGR or “Genoplasmics” is a novel cross-disciplinary research field that seeks to apply the principles and techniques of genomics to germplasm research. We describe in this paper the concept, strategy, and approach behind GPGR, and summarize current progress in the areas of the definition and construction of core collections, enhancement of germplasm with core collections, and gene discovery from core collections. GPGR is opening a new era in germplasm research. The contribution, progress and achievements of GPGR in the future are predicted.

  12. [Detection of viral infection pathogens in medicinal plants grown in Ukraine].

    Science.gov (United States)

    Mishchenko, L T; Korenieva, A A; Molchanets', O V; Boĭko, A L

    2009-01-01

    Monitoring of viral infection on medicinal plant plantations is carried out. Panax ginseng C.A. Meyer, Valeriana officinalis L., Plantago major L. with symptoms of viral infection were revealed. Viral nature of symptoms was proved with biotesting method. Morphology and sizes of virus particles, detected in Panax ginseng method. Morphology and sizes of virus particles, detected in Panax ginseng C.A. Meyer, Valeriana officinalis L., Plantago major L., were determined with electron microscopy method. The paper is presented in Ukrainian.

  13. Viral small interfering RNAs target host genes to mediate disease symptoms in plants.

    Directory of Open Access Journals (Sweden)

    Neil A Smith

    2011-05-01

    Full Text Available The Cucumber mosaic virus (CMV Y-satellite RNA (Y-Sat has a small non-protein-coding RNA genome that induces yellowing symptoms in infected Nicotiana tabacum (tobacco. How this RNA pathogen induces such symptoms has been a longstanding question. We show that the yellowing symptoms are a result of small interfering RNA (siRNA-directed RNA silencing of the chlorophyll biosynthetic gene, CHLI. The CHLI mRNA contains a 22-nucleotide (nt complementary sequence to the Y-Sat genome, and in Y-Sat-infected plants, CHLI expression is dramatically down-regulated. Small RNA sequencing and 5' RACE analyses confirmed that this 22-nt sequence was targeted for mRNA cleavage by Y-Sat-derived siRNAs. Transformation of tobacco with a RNA interference (RNAi vector targeting CHLI induced Y-Sat-like symptoms. In addition, the symptoms of Y-Sat infection can be completely prevented by transforming tobacco with a silencing-resistant variant of the CHLI gene. These results suggest that siRNA-directed silencing of CHLI is solely responsible for the Y-Sat-induced symptoms. Furthermore, we demonstrate that two Nicotiana species, which do not develop yellowing symptoms upon Y-Sat infection, contain a single nucleotide polymorphism within the siRNA-targeted CHLI sequence. This suggests that the previously observed species specificity of Y-Sat-induced symptoms is due to natural sequence variation in the CHLI gene, preventing CHLI silencing in species with a mismatch to the Y-Sat siRNA. Taken together, these findings provide the first demonstration of small RNA-mediated viral disease symptom production and offer an explanation of the species specificity of the viral disease.

  14. Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs.

    Science.gov (United States)

    Gudbergsdóttir, Sóley Ruth; Menzel, Peter; Krogh, Anders; Young, Mark; Peng, Xu

    2016-03-01

    Limited by culture-dependent methods the number of viruses identified from thermophilic Archaea and Bacteria is still very small. In this study we retrieved viral sequences from six hot spring metagenomes isolated worldwide, revealing a wide distribution of four archaeal viral families, Ampullaviridae, Bicaudaviridae, Lipothrixviridae and Rudiviridae. Importantly, we identified 10 complete or near complete viral genomes allowing, for the first time, an assessment of genome conservation and evolution of the Ampullaviridae family as well as Sulfolobus Monocaudavirus 1 (SMV1)-related viruses. Among the novel genomes, one belongs to a putative thermophilic virus infecting the bacterium Hydrogenobaculum, for which no virus has been reported in the literature. Moreover, a high viral diversity was observed in the metagenomes, especially among the Lipothrixviridae, as indicated by the large number of unique contigs and the lack of a completely assembled genome for this family. This is further supported by the large number of novel genes in the complete and partial genomes showing no sequence similarities to public databases. CRISPR analysis revealed hundreds of novel CRISPR loci and thousands of novel CRISPR spacers from each metagenome, reinforcing the notion of high viral diversity in the thermal environment.

  15. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene

    OpenAIRE

    Cui, Hongguang; Wang, Aiming

    2016-01-01

    Summary RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus?induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile pe...

  16. Maize Elongin C interacts with the viral genome-linked protein, VPg, of Sugarcane mosaic virus and facilitates virus infection.

    Science.gov (United States)

    Zhu, Min; Chen, Yuting; Ding, Xin Shun; Webb, Stephen L; Zhou, Tao; Nelson, Richard S; Fan, Zaifeng

    2014-09-01

    The viral genome-linked protein, VPg, of potyviruses is involved in viral genome replication and translation. To determine host proteins that interact with Sugarcane mosaic virus (SCMV) VPg, a yeast two-hybrid screen was used and a maize (Zea mays) Elongin C (ZmElc) protein was identified. ZmELC transcript was observed in all maize organs, but most highly in leaves and pistil extracts, and ZmElc was present in the cytoplasm and nucleus of maize cells in the presence or absence of SCMV. ZmELC expression was increased in maize tissue at 4 and 6 d post SCMV inoculation. When ZmELC was transiently overexpressed in maize protoplasts the accumulation of SCMV RNA was approximately doubled compared with the amount of virus in control protoplasts. Silencing ZmELC expression using a Brome mosaic virus-based gene silencing vector (virus-induced gene silencing) did not influence maize plant growth and development, but did decrease RNA accumulation of two isolates of SCMV and host transcript encoding ZmeIF4E during SCMV infection. Interestingly, Maize chlorotic mottle virus, from outside the Potyviridae, was increased in accumulation after silencing ZmELC expression. Our results describe both the location of ZmElc expression in maize and a new activity associated with an Elc: support of potyvirus accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  17. Comprehensive analysis of LANA interacting proteins essential for viral genome tethering and persistence.

    Directory of Open Access Journals (Sweden)

    Subhash C Verma

    Full Text Available Kaposi's sarcoma associated herpesvirus is tightly linked to multiple human malignancies including Kaposi's sarcoma (KS, Primary Effusion Lymphoma (PEL and Multicentric Castleman's Disease (MCD. KSHV like other herpesviruses establishes life-long latency in the infected host by persisting as chromatin and tethering to host chromatin through the virally encoded protein Latency Associated Nuclear Antigen (LANA. LANA, a multifunctional protein, is capable of binding to a large number of cellular proteins responsible for transcriptional regulation of various cellular and viral pathways involved in blocking cell death and promoting cell proliferation. This leads to enhanced cell division and replication of the viral genome, which segregates faithfully in the dividing tumor cells. The mechanism of genome segregation is well known and the binding of LANA to nucleosomal proteins, throughout the cell cycle, suggests that these interactions play an important role in efficient segregation. Various biochemical methods have identified a large number of LANA binding proteins, including histone H2A/H2B, histone H1, MeCP2, DEK, CENP-F, NuMA, Bub1, HP-1, and Brd4. These nucleosomal proteins may have various functions in tethering of the viral genome during specific phases of the viral life cycle. Therefore, we performed a comprehensive analysis of their interaction with LANA using a number of different assays. We show that LANA binds to core nucleosomal histones and also associates with other host chromatin proteins including histone H1 and high mobility group proteins (HMGs. We used various biochemical assays including co-immunoprecipitation and in-vivo localization by split GFP and fluorescence resonance energy transfer (FRET to demonstrate their association.

  18. Targeted Genome Regulation and Editing in Plants

    KAUST Repository

    Piatek, Agnieszka

    2016-03-01

    The ability to precisely regulate gene expression patterns and to modify genome sequence in a site-specific manner holds much promise in determining gene function and linking genotype to phenotype. DNA-binding modules have been harnessed to generate customizable and programmable chimeric proteins capable of binding to site-specific DNA sequences and regulating the genome and epigenome. Modular DNA-binding domains from zinc fingers (ZFs) and transcriptional activator-like effectors (TALEs) are amenable to engineering to bind any DNA target sequence of interest. Deciphering the code of TALE repeat binding to DNA has helped to engineer customizable TALE proteins capable of binding to any sequence of interest. Therefore TALE repeats provide a rich resource for bioengineering applications. However, the TALE system is limited by the requirement to re-engineer one or two proteins for each new target sequence. Recently, the clustered regularly interspaced palindromic repeats (CRISPR)/ CRISPR associated 9 (Cas9) has been used as a versatile genome editing tool. This machinery has been also repurposed for targeted transcriptional regulation. Due to the facile engineering, simplicity and precision, the CRISPR/Cas9 system is poised to revolutionize the functional genomics studies across diverse eukaryotic species. In this dissertation I employed transcription activator-like effectors and CRISPR/Cas9 systems for targeted genome regulation and editing and my achievements include: 1) I deciphered and extended the DNA-binding code of Ralstonia TAL effectors providing new opportunities for bioengineering of customizable proteins; 2) I repurposed the CRISPR/Cas9 system for site-specific regulation of genes in plant genome; 3) I harnessed the power of CRISPR/Cas9 gene editing tool to study the function of the serine/arginine-rich (SR) proteins.

  19. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    Motivation: Detecting genes in viral genomes is a complex task. Due to the biological necessity of them being constrained in length, RNA viruses in particular tend to code in overlapping reading frames. Since one amino acid is encoded by a triplet of nucleic acids, up to three genes may be coded...... allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  20. Parvovirus-derived endogenous viral elements in two South American rodent genomes.

    Science.gov (United States)

    Arriagada, Gloria; Gifford, Robert J

    2014-10-01

    We describe endogenous viral elements (EVEs) derived from parvoviruses (family Parvoviridae) in the genomes of the long-tailed chinchilla (Chinchilla lanigera) and the degu (Octodon degus). The novel EVEs include dependovirus-related elements and representatives of a clearly distinct parvovirus lineage that also has endogenous representatives in marsupial genomes. In the degu, one dependovirus-derived EVE was found to carry an intact reading frame and was differentially expressed in vivo, with increased expression in the liver. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Peptides derived from HIV-1 integrase that bind Rev stimulate viral genome integration.

    Directory of Open Access Journals (Sweden)

    Aviad Levin

    Full Text Available BACKGROUND: The human immunodeficiency virus type 1 (HIV-1 integrase protein (IN, catalyzes the integration of viral DNA into the host cell genome. IN catalyzes the first step of the integration process, namely the 3'-end processing in which IN removes a pGT dinucleotide from the 3' end of each viral long terminal repeat (LTR. Following nuclear import of the viral preintegration complex, the host chromosomal DNA becomes accessible to the viral cDNA and the second step of the integration process, namely the strand-transfer step takes place. This ordered sequence of events, centered on integration, is mandatory for HIV replication. METHODOLOGY/PRINCIPAL FINDINGS: Using an integrase peptide library, we selected two peptides, designated INr-1 and INr-2, which interact with the Rev protein and probably mediate the Rev-integrase interaction. Using an in-vitro assay system, we show that INr-1 and INr-2 are able to abrogate the inhibitory effects exerted by Rev and Rev-derived peptides on integrase activity. Both INr-1 and INr-2 were found to be cell-permeable and nontoxic, allowing a study of their effect in HIV-1-infected cultured cells. Interestingly, both INr peptides stimulated virus infectivity as estimated by production of the viral P24 protein, as well as by determination of the appearance of newly formed virus particles. Furthermore, kinetics studies revealed that the cell-permeable INr peptides enhance the integration process, as was indeed confirmed by direct determination of viral DNA integration by real-time PCR. CONCLUSIONS/SIGNIFICANCE: The results of the present study raise the possibility that in HIV-infected cells, the Rev protein may be involved in the integration of proviral DNA by controlling/regulating the activity of the integrase. Release from such inhibition leads to stimulation of IN activity and multiple viral DNA integration events.

  2. Viral recombination blurs taxonomic lines: examination of single-stranded DNA viruses in a wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Victoria M. Pearson

    2016-10-01

    Full Text Available Understanding the structure and dynamics of microbial communities, especially those of economic concern, is of paramount importance to maintaining healthy and efficient microbial communities at agricultural sites and large industrial cultures, including bioprocessors. Wastewater treatment plants are large bioprocessors which receive water from multiple sources, becoming reservoirs for the collection of many viral families that infect a broad range of hosts. To examine this complex collection of viruses, full-length genomes of circular ssDNA viruses were isolated from a wastewater treatment facility using a combination of sucrose-gradient size selection and rolling-circle amplification and sequenced on an Illumina MiSeq. Single-stranded DNA viruses are among the least understood groups of microbial pathogens due to genomic biases and culturing difficulties, particularly compared to the larger, more often studied dsDNA viruses. However, the group contains several notable well-studied examples, including agricultural pathogens which infect both livestock and crops (Circoviridae and Geminiviridae, and model organisms for genetics and evolution studies (Microviridae. Examination of the collected viral DNA provided evidence for 83 unique genotypic groupings, which were genetically dissimilar to known viral types and exhibited broad diversity within the community. Furthermore, although these genomes express similarities to known viral families, such as Circoviridae, Geminiviridae, and Microviridae, many are so divergent that they may represent new taxonomic groups. This study demonstrated the efficacy of the protocol for separating bacteria and large viruses from the sought after ssDNA viruses and the ability to use this protocol to obtain an in-depth analysis of the diversity within this group.

  3. Risk Assessment of Synergism and Recombination on the Transgenic Plants Containing Viral Movement Protein and Replicase Genes

    Institute of Scientific and Technical Information of China (English)

    NIU Yan-bing; LI Gui-xin; WEN Rui; ZHOU Xue-ping

    2003-01-01

    The transgenic tobacco plants transformed with movement protein gene of Tomato mosaic virus (ToMV) or Tobacco mosaic virus (TMV) and partial replicase gene of Cucumber mosaic virus (CMV) P1 isolate (CMV-P1), were inoculated with Potato virus X, Potato virus Y, TMV and CMV isolate RB (CMVRB), respectively. Symptom observation showed there were no symptom differences in transgenic tobacco plants as compared with those in non-transgenic tobacco plants. ELISA also illustrated that the virus concentrations in the transgenic plants were similar to those in non-transgenic plants, indicating that no synergism is found in these plants. The transgenic tobacco plants expressing movement protein gene of ToMV or partial replicase gene of CMV-P1 were inoculated with TMV and CMV-RB, respectively. The local or systemic infected leaves were then used for elucidation of the possible virus recombination in transgenic plants with biological infectivity test, ELISA and immuno-capture RT-PCR. Within 16 months, no recombination was found between transformed genes and inoculated virus genomes. The research provides fundamental data for understanding of the possible risk of the transgenic plants expressing viral sequences.

  4. Thermodynamic Interrogation of the Assembly of a Viral Genome Packaging Motor Complex.

    Science.gov (United States)

    Yang, Teng-Chieh; Ortiz, David; Nosaka, Lyn'Al; Lander, Gabriel C; Catalano, Carlos Enrique

    2015-10-20

    Viral terminase enzymes serve as genome packaging motors in many complex double-stranded DNA viruses. The functional motors are multiprotein complexes that translocate viral DNA into a capsid shell, powered by a packaging ATPase, and are among the most powerful molecular motors in nature. Given their essential role in virus development, the structure and function of these biological motors is of considerable interest. Bacteriophage λ-terminase, which serves as a prototypical genome packaging motor, is composed of one large catalytic subunit tightly associated with two DNA recognition subunits. This protomer assembles into a functional higher-order complex that excises a unit length genome from a concatemeric DNA precursor (genome maturation) and concomitantly translocates the duplex into a preformed procapsid shell (genome packaging). While the enzymology of λ-terminase has been well described, the nature of the catalytically competent nucleoprotein intermediates, and the mechanism describing their assembly and activation, is less clear. Here we utilize analytical ultracentrifugation to determine the thermodynamic parameters describing motor assembly and define a minimal thermodynamic linkage model that describes the effects of salt on protomer assembly into a tetrameric complex. Negative stain electron microscopy images reveal a symmetric ring-like complex with a compact stem and four extended arms that exhibit a range of conformational states. Finally, kinetic studies demonstrate that assembly of the ring tetramer is directly linked to activation of the packaging ATPase activity of the motor, thus providing a direct link between structure and function. The implications of these results with respect to the assembly and activation of the functional packaging motor during a productive viral infection are discussed.

  5. Micro satellite mapping of plant genomes

    Directory of Open Access Journals (Sweden)

    Prodanović Slaven

    2001-01-01

    Full Text Available Micro satellites are DNA markers, based on the repeated nucleotide sequences number polymorphism. They belong to a group of PCR markers and are mainly used as an addition to other types of markers. Their characteristics and technical aspects of their application are discussed in the present study. Furthermore, some results obtained by the use of the micro satellite DNA in genetic mapping of plant genomes are also presented. Although micro satellites provide the identification of genotypes within a species, inadequacy of comparative mapping of different species is their serious blemish. .

  6. Evolutionary genomics of archaeal viruses: unique viral genomes in the third domain of life

    DEFF Research Database (Denmark)

    Prangishvili, D.; Garrett, R. A.; Koonin, E.

    2006-01-01

    of bacteriophages. The proteins encoded by the genes belonging to this pool include predicted transcription regulators, ATPases implicated in viral DNA replication and packaging, enzymes of DNA precursor metabolism, RNA modification enzymes, and glycosylases. In addition, each of the crenarchaeal viruses encodes...... several proteins with prokaryotic but not viral homologs, some of which, predictably, seem to have been scavenged from the crenarchaeal hosts, but others might have been acquired from bacteria. We conclude that crenarchaeal viruses are, in general, evolutionarily unrelated to other known viruses and......, probably, evolved via independent accretion of genes derived from the hosts and, through more complex routes of horizontal gene transfer, from other prokaryotes....

  7. Plant database resources at The Institute for Genomic Research.

    Science.gov (United States)

    Chan, Agnes P; Rabinowicz, Pablo D; Quackenbush, John; Buell, C Robin; Town, Chris D

    2007-01-01

    With the completion of the genome sequences of the model plants Arabidopsis and rice, and the continuing sequencing efforts of other economically important crop plants, an unprecedented amount of genome sequence data is now available for large-scale genomics studies and analyses, such as the identification and discovery of novel genes, comparative genomics, and functional genomics. Efficient utilization of these large data sets is critically dependent on the ease of access and organization of the data. The plant databases at The Institute for Genomic Research (TIGR) have been set up to maintain various data types including genomic sequence, annotation and analyses, expressed transcript assemblies and analyses, and gene expression profiles from microarray studies. We present here an overview of the TIGR database resources for plant genomics and describe methods to access the data.

  8. Draft Genome Sequences of Klebsiella variicola Plant Isolates.

    Science.gov (United States)

    Martínez-Romero, Esperanza; Silva-Sanchez, Jesús; Barrios, Humberto; Rodríguez-Medina, Nadia; Martínez-Barnetche, Jesús; Téllez-Sosa, Juan; Gómez-Barreto, Rosa Elena; Garza-Ramos, Ulises

    2015-09-10

    Three endophytic Klebsiella variicola isolates-T29A, 3, and 6A2, obtained from sugar cane stem, maize shoots, and banana leaves, respectively-were used for whole-genome sequencing. Here, we report the draft genome sequences of circular chromosomes and plasmids. The genomes contain plant colonization and cellulases genes. This study will help toward understanding the genomic basis of K. variicola interaction with plant hosts.

  9. Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs

    DEFF Research Database (Denmark)

    Islin, Sóley Ruth; Menzel, Peter; Krogh, Anders

    2016-01-01

    number of unique contigs and the lack of a completely assembled genome for this family. This is further supported by the large number of novel genes in the complete and partial genomes showing no sequence similarities to public databases. CRISPR analysis revealed hundreds of novel CRISPR loci...... and thousands of novel CRISPR spacers from each metagenome, reinforcing the notion of high viral diversity in the thermal environment....

  10. Experimental infection of Newcastle disease virus in pigeons (Columba livia): humoral antibody response, contact transmission and viral genome shedding.

    Science.gov (United States)

    de Oliveira Torres Carrasco, Adriano; Seki, Meire Christina; de Freitas Raso, Tânia; Paulillo, Antônio Carlos; Pinto, Aramis Augusto

    2008-05-25

    The aim of this study was to evaluate the humoral antibody response, the genome viral excretion and the contact transmission of pathogenic chicken origin Newcastle disease virus (NDV) from experimentally infected pigeons (Columba livia) to in-contact pigeon. The antibody response to infection was assessed by the hemagglutination inhibition (HI) test and the genome viral excretion was detected by RT-PCR. Viral strain induced high antibody levels, both in inoculated and in sentinel birds. The pathogenic viral strain for chickens was unable to produce clinical signs of the disease in experimentally infected pigeons, although it induced the humoral antibody response and produced NDV genome shedding. NDV genome was detected intermittently throughout the experimental period, from 5 days post-infection (dpi) to 24 dpi. Therefore, viral genome shedding occurred for 20 days. The viral genome was detected in all birds, between 11 and 13 dpi. Furthermore, the high infectivity of the virus was confirmed, as all non-inoculated sentinel pigeons showed antibody levels as high as those of inoculated birds.

  11. The genomics of plant sex chromosomes.

    Science.gov (United States)

    Vyskot, Boris; Hobza, Roman

    2015-07-01

    Around six percent of flowering species are dioecious, with separate female and male individuals. Sex determination is mostly based on genetics, but morphologically distinct sex chromosomes have only evolved in a few species. Of these, heteromorphic sex chromosomes have been most clearly described in the two model species - Silene latifolia and Rumex acetosa. In both species, the sex chromosomes are the largest chromosomes in the genome. They are hence easily distinguished, can be physically separated and analyzed. This review discusses some recent experimental data on selected model dioecious species, with a focus on S. latifolia. Phylogenetic analyses show that dioecy in plants originated independently and repeatedly even within individual genera. A cogent question is whether there is genetic degeneration of the non-recombining part of the plant Y chromosome, as in mammals, and, if so, whether reduced levels of gene expression in the heterogametic sex are equalized by dosage compensation. Current data provide no clear conclusion. We speculate that although some transcriptome analyses indicate the first signs of degeneration, especially in S. latifolia, the evolutionary processes forming plant sex chromosomes in plants may, to some extent, differ from those in animals.

  12. Dual interaction of a geminivirus replication accessory factor with a viral replication protein and a plant cell cycle regulator.

    Science.gov (United States)

    Settlage, S B; Miller, A B; Gruissem, W; Hanley-Bowdoin, L

    2001-01-20

    Geminiviruses replicate their small, single-stranded DNA genomes through double-stranded DNA intermediates in plant nuclei using host replication machinery. Like most dicot-infecting geminiviruses, tomato golden mosaic virus encodes a protein, AL3 or C3, that greatly enhances viral DNA accumulation through an unknown mechanism. Earlier studies showed that AL3 forms oligomers and interacts with the viral replication initiator AL1. Experiments reported here established that AL3 also interacts with a plant homolog of the mammalian tumor suppressor protein, retinoblastoma (pRb). Analysis of truncated AL3 proteins indicated that pRb and AL1 bind to similar regions of AL3, whereas AL3 oligomerization is dependent on a different region of the protein. Analysis of truncated AL1 proteins located the AL3-binding domain between AL1 amino acids 101 and 180 to a region that also includes the AL1 oligomerization domain and the catalytic site for initiation of viral DNA replication. Interestingly, the AL3-binding domain was fully contiguous with the domain that mediates AL1/pRb interactions. The potential significance of AL3/pRb binding and the coincidence of the domains responsible for AL3, AL1, and pRb interactions are discussed.

  13. Phytozome: a comparative platform for green plant genomics.

    Science.gov (United States)

    Goodstein, David M; Shu, Shengqiang; Howson, Russell; Neupane, Rochak; Hayes, Richard D; Fazo, Joni; Mitros, Therese; Dirks, William; Hellsten, Uffe; Putnam, Nicholas; Rokhsar, Daniel S

    2012-01-01

    The number of sequenced plant genomes and associated genomic resources is growing rapidly with the advent of both an increased focus on plant genomics from funding agencies, and the application of inexpensive next generation sequencing. To interact with this increasing body of data, we have developed Phytozome (http://www.phytozome.net), a comparative hub for plant genome and gene family data and analysis. Phytozome provides a view of the evolutionary history of every plant gene at the level of sequence, gene structure, gene family and genome organization, while at the same time providing access to the sequences and functional annotations of a growing number (currently 25) of complete plant genomes, including all the land plants and selected algae sequenced at the Joint Genome Institute, as well as selected species sequenced elsewhere. Through a comprehensive plant genome database and web portal, these data and analyses are available to the broader plant science research community, providing powerful comparative genomics tools that help to link model systems with other plants of economic and ecological importance.

  14. A conserved influenza A virus nucleoprotein code controls specific viral genome packaging

    Science.gov (United States)

    Moreira, Étori Aguiar; Weber, Anna; Bolte, Hardin; Kolesnikova, Larissa; Giese, Sebastian; Lakdawala, Seema; Beer, Martin; Zimmer, Gert; García-Sastre, Adolfo; Schwemmle, Martin; Juozapaitis, Mindaugas

    2016-01-01

    Packaging of the eight genomic RNA segments of influenza A viruses (IAV) into viral particles is coordinated by segment-specific packaging sequences. How the packaging signals regulate the specific incorporation of each RNA segment into virions and whether other viral or host factors are involved in this process is unknown. Here, we show that distinct amino acids of the viral nucleoprotein (NP) are required for packaging of specific RNA segments. This was determined by studying the NP of a bat influenza A-like virus, HL17NL10, in the context of a conventional IAV (SC35M). Replacement of conserved SC35M NP residues by those of HL17NL10 NP resulted in RNA packaging defective IAV. Surprisingly, substitution of these conserved SC35M amino acids with HL17NL10 NP residues led to IAV with altered packaging efficiencies for specific subsets of RNA segments. This suggests that NP harbours an amino acid code that dictates genome packaging into infectious virions. PMID:27650413

  15. Architecture and evolution of a minute plant genome

    Science.gov (United States)

    Ibarra-Laclette, Enrique; Lyons, Eric; Hernández-Guzmán, Gustavo; Pérez-Torres, Claudia Anahí; Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Lan, Tianying; Welch, Andreanna J.; Juárez, María Jazmín Abraham; Simpson, June; Fernández-Cortés, Araceli; Arteaga-Vázquez, Mario; Góngora-Castillo, Elsa; Acevedo-Hernández, Gustavo; Schuster, Stephan C.; Himmelbauer, Heinz; Minoche, André E.; Xu, Sen; Lynch, Michael; Oropeza-Aburto, Araceli; Cervantes-Pérez, Sergio Alan; de Jesús Ortega-Estrada, María; Cervantes-Luevano, Jacob Israel; Michael, Todd P.; Mockler, Todd; Bryant, Douglas; Herrera-Estrella, Alfredo; Albert, Victor A.; Herrera-Estrella, Luis

    2016-01-01

    It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation1. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism. PMID:23665961

  16. Sputnik: a database platform for comparative plant genomics.

    Science.gov (United States)

    Rudd, Stephen; Mewes, Hans-Werner; Mayer, Klaus F X

    2003-01-01

    Two million plant ESTs, from 20 different plant species, and totalling more than one 1000 Mbp of DNA sequence, represents a formidable transcriptomic resource. Sputnik uses the potential of this sequence resource to fill some of the information gap in the un-sequenced plant genomes and to serve as the foundation for in silicio comparative plant genomics. The complexity of the individual EST collections has been reduced using optimised EST clustering techniques. Annotation of cluster sequences is performed by exploiting and transferring information from the comprehensive knowledgebase already produced for the completed model plant genome (Arabidopsis thaliana) and by performing additional state of-the-art sequence analyses relevant to today's plant biologist. Functional predictions, comparative analyses and associative annotations for 500 000 plant EST derived peptides make Sputnik (http://mips.gsf.de/proj/sputnik/) a valid platform for contemporary plant genomics.

  17. Small terminase couples viral DNA binding to genome-packaging ATPase activity.

    Science.gov (United States)

    Roy, Ankoor; Bhardwaj, Anshul; Datta, Pinaki; Lander, Gabriel C; Cingolani, Gino

    2012-08-08

    Packaging of viral genomes into empty procapsids is powered by a large DNA-packaging motor. In most viruses, this machine is composed of a large (L) and a small (S) terminase subunit complexed with a dodecamer of portal protein. Here we describe the 1.75 Å crystal structure of the bacteriophage P22 S-terminase in a nonameric conformation. The structure presents a central channel ∼23 Å in diameter, sufficiently large to accommodate hydrated B-DNA. The last 23 residues of S-terminase are essential for binding to DNA and assembly to L-terminase. Upon binding to its own DNA, S-terminase functions as a specific activator of L-terminase ATPase activity. The DNA-dependent stimulation of ATPase activity thus rationalizes the exclusive specificity of genome-packaging motors for viral DNA in the crowd of host DNA, ensuring fidelity of packaging and avoiding wasteful ATP hydrolysis. This posits a model for DNA-dependent activation of genome-packaging motors of general interest in virology.

  18. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    Directory of Open Access Journals (Sweden)

    Jessica eLabonté

    2015-04-01

    Full Text Available A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a three km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32 % of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment.

  19. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases.

    Directory of Open Access Journals (Sweden)

    Yanwei Bi

    2014-05-01

    Full Text Available A facile and efficient method for the precise editing of large viral genomes is required for the selection of attenuated vaccine strains and the construction of gene therapy vectors. The type II prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats (CRISPR-associated (Cas RNA-guided nuclease system can be introduced into host cells during viral replication. The CRISPR-Cas9 system robustly stimulates targeted double-stranded breaks in the genomes of DNA viruses, where the non-homologous end joining (NHEJ and homology-directed repair (HDR pathways can be exploited to introduce site-specific indels or insert heterologous genes with high frequency. Furthermore, CRISPR-Cas9 can specifically inhibit the replication of the original virus, thereby significantly increasing the abundance of the recombinant virus among progeny virus. As a result, purified recombinant virus can be obtained with only a single round of selection. In this study, we used recombinant adenovirus and type I herpes simplex virus as examples to demonstrate that the CRISPR-Cas9 system is a valuable tool for editing the genomes of large DNA viruses.

  20. Base-By-Base: Single nucleotide-level analysis of whole viral genome alignments

    Directory of Open Access Journals (Sweden)

    Tcherepanov Vasily

    2004-07-01

    Full Text Available Abstract Background With ever increasing numbers of closely related virus genomes being sequenced, it has become desirable to be able to compare two genomes at a level more detailed than gene content because two strains of an organism may share the same set of predicted genes but still differ in their pathogenicity profiles. For example, detailed comparison of multiple isolates of the smallpox virus genome (each approximately 200 kb, with 200 genes is not feasible without new bioinformatics tools. Results A software package, Base-By-Base, has been developed that provides visualization tools to enable researchers to 1 rapidly identify and correct alignment errors in large, multiple genome alignments; and 2 generate tabular and graphical output of differences between the genomes at the nucleotide level. Base-By-Base uses detailed annotation information about the aligned genomes and can list each predicted gene with nucleotide differences, display whether variations occur within promoter regions or coding regions and whether these changes result in amino acid substitutions. Base-By-Base can connect to our mySQL database (Virus Orthologous Clusters; VOCs to retrieve detailed annotation information about the aligned genomes or use information from text files. Conclusion Base-By-Base enables users to quickly and easily compare large viral genomes; it highlights small differences that may be responsible for important phenotypic differences such as virulence. It is available via the Internet using Java Web Start and runs on Macintosh, PC and Linux operating systems with the Java 1.4 virtual machine.

  1. Impact of genomics approaches on plant genetics and physiology.

    Science.gov (United States)

    Tabata, Satoshi

    2002-08-01

    Comprehensive analysis of genetic information in higher plants is under way for several plants of biological and agronomical importance. Among them, Arabidopsis thaliana, a member of Brassica family, and Oryza sativa(rice) have been chosen as model plants most suitable for genome analysis. Sequencing of the genome of A. thaliana was completed in December 2000, and rice genome sequencing is in progress. The accumulated genome sequences, together with the hundreds of thousands of ESTs from several tens of plant species, have drastically changed the strategy of plant genetics. By utilizing the information on the genome and gene structures, comprehensive approaches for genome-wide functional analysis of the genes, including transcriptome analysis using microarray systems and a comprehensive analysis of a large number of insertion mutant lines, have been widely adopted. As a consequence, a large quantity of information on both the structure and function of genes in these model plants has been accumulated. However, other plant species may have their own characteristics and advantages to study individual phenomena. Application of knowledge from the model plants to other plant species and vice versa through the common language, namely the genome information, should facilitate understanding of the genetic systems underlying a variety of biological phenomena. Introduction of this common language may not be very simple, especially in the case of complex pathways such as a process of cell-covering formation. Nevertheless, it should be emphasized that genomics approaches are the most promising way to understand these processes.

  2. Genomic characterization of three bovine viral diarrhea virus isolates from cattle.

    Science.gov (United States)

    Cai, Dongjie; Song, Quanjiang; Wang, Jiufeng; Zhu, Yaohong

    2016-12-01

    Three strains of the bovine viral diarrhea virus (BVDV) were isolated from cattle in Beijing, China. To investigate their genomic features, we sequenced and characterized the complete genome of each of the isolates. Each of the three virus genomes is about 12,220 bp in length, containing a 5' untranslated region (UTR), one open reading frame (ORF) encoding a 3897-amino-acid polypeptide, and a 3' UTR. The nucleotide sequence of the three isolates were 99.0 % identical to each and other shared nucleotide sequence identities of 73.4 % to 98.3 % with other BVDV-1 strains, about 70.0 % with BVDV-2 strains, about 67.0 % with BVDV-3, and less than 67.0 % with other pestiviruses. Phylogenetic analysis of the full-length genome, 3' UTR, and the N(pro) gene demonstrated that the three viruses were BVDV-1 isolates. This is the first report of complete genome sequences of BVDV 1d isolates from China and might have implications for vaccine development.

  3. PGSB/MIPS Plant Genome Information Resources and Concepts for the Analysis of Complex Grass Genomes.

    Science.gov (United States)

    Spannagl, Manuel; Bader, Kai; Pfeifer, Matthias; Nussbaumer, Thomas; Mayer, Klaus F X

    2016-01-01

    PGSB (Plant Genome and Systems Biology; formerly MIPS-Munich Institute for Protein Sequences) has been involved in developing, implementing and maintaining plant genome databases for more than a decade. Genome databases and analysis resources have focused on individual genomes and aim to provide flexible and maintainable datasets for model plant genomes as a backbone against which experimental data, e.g., from high-throughput functional genomics, can be organized and analyzed. In addition, genomes from both model and crop plants form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny) between related species on macro- and micro-levels.The genomes of many economically important Triticeae plants such as wheat, barley, and rye present a great challenge for sequence assembly and bioinformatic analysis due to their enormous complexity and large genome size. Novel concepts and strategies have been developed to deal with these difficulties and have been applied to the genomes of wheat, barley, rye, and other cereals. This includes the GenomeZipper concept, reference-guided exome assembly, and "chromosome genomics" based on flow cytometry sorted chromosomes.

  4. Small terminase couples viral DNA-binding to genome-packaging ATPase activity

    OpenAIRE

    Roy, Ankoor; Bhardwaj, Anshul; Datta, Pinaki; Lander, Gabriel C.; Cingolani, Gino

    2012-01-01

    Packaging of viral genomes into empty procapsids is powered by a large DNA-packaging motor. In most viruses, this machine is composed of a large (L) and a small (S) terminase subunit complexed with a dodecamer of portal protein. Here, we describe the 1.75 Å crystal structure of the bacteriophage P22 S-terminase in a nonameric conformation. The structure presents a central channel ~23 Å in diameter, sufficiently large to accommodate hydrated B-DNA. The last 23 residues of S-terminase are essen...

  5. Replication-Coupled Recruitment of Viral and Cellular Factors to Herpes Simplex Virus Type 1 Replication Forks for the Maintenance and Expression of Viral Genomes

    Science.gov (United States)

    Dembowski, Jill A.

    2017-01-01

    Herpes simplex virus type 1 (HSV-1) infects over half the human population. Much of the infectious cycle occurs in the nucleus of cells where the virus has evolved mechanisms to manipulate host processes for the production of virus. The genome of HSV-1 is coordinately expressed, maintained, and replicated such that progeny virions are produced within 4–6 hours post infection. In this study, we selectively purify HSV-1 replication forks and associated proteins from virus-infected cells and identify select viral and cellular replication, repair, and transcription factors that associate with viral replication forks. Pulse chase analyses and imaging studies reveal temporal and spatial dynamics between viral replication forks and associated proteins and demonstrate that several DNA repair complexes and key transcription factors are recruited to or near replication forks. Consistent with these observations we show that the initiation of viral DNA replication is sufficient to license late gene transcription. These data provide insight into mechanisms that couple HSV-1 DNA replication with transcription and repair for the coordinated expression and maintenance of the viral genome. PMID:28095497

  6. Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P2.

    Science.gov (United States)

    Kakisaka, Michinori; Yamada, Kazunori; Yamaji-Hasegawa, Akiko; Kobayashi, Toshihide; Aida, Yoko

    2016-09-01

    To be incorporated into progeny virions, the viral genome must be transported to the inner leaflet of the plasma membrane (PM) and accumulate there. Some viruses utilize lipid components to assemble at the PM. For example, simian virus 40 (SV40) targets the ganglioside GM1 and human immunodeficiency virus type 1 (HIV-1) utilizes phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2]. Recent studies clearly indicate that Rab11-mediated recycling endosomes are required for influenza A virus (IAV) trafficking of vRNPs to the PM but it remains unclear how IAV vRNP localized or accumulate underneath the PM for viral genome incorporation into progeny virions. In this study, we found that the second intrinsically disordered region (IDR2) of NP regulates two binding steps involved in viral genome packaging. First, IDR2 facilitates NP oligomer binding to viral RNA to form vRNP. Secondly, vRNP assemble by interacting with PI(4,5)P2 at the PM via IDR2. These findings suggest that PI(4,5)P2 functions as the determinant of vRNP accumulation at the PM.

  7. Genome variations associated with viral susceptibility and calcification in Emiliania huxleyi.

    Directory of Open Access Journals (Sweden)

    Jessica U Kegel

    Full Text Available Emiliania huxleyi, a key player in the global carbon cycle is one of the best studied coccolithophores with respect to biogeochemical cycles, climatology, and host-virus interactions. Strains of E. huxleyi show phenotypic plasticity regarding growth behaviour, light-response, calcification, acidification, and virus susceptibility. This phenomenon is likely a consequence of genomic differences, or transcriptomic responses, to environmental conditions or threats such as viral infections. We used an E. huxleyi genome microarray based on the sequenced strain CCMP1516 (reference strain to perform comparative genomic hybridizations (CGH of 16 E. huxleyi strains of different geographic origin. We investigated the genomic diversity and plasticity and focused on the identification of genes related to virus susceptibility and coccolith production (calcification. Among the tested 31940 gene models a core genome of 14628 genes was identified by hybridization among 16 E. huxleyi strains. 224 probes were characterized as specific for the reference strain CCMP1516. Compared to the sequenced E. huxleyi strain CCMP1516 variation in gene content of up to 30 percent among strains was observed. Comparison of core and non-core transcripts sets in terms of annotated functions reveals a broad, almost equal functional coverage over all KOG-categories of both transcript sets within the whole annotated genome. Within the variable (non-core genome we identified genes associated with virus susceptibility and calcification. Genes associated with virus susceptibility include a Bax inhibitor-1 protein, three LRR receptor-like protein kinases, and mitogen-activated protein kinase. Our list of transcripts associated with coccolith production will stimulate further research, e.g. by genetic manipulation. In particular, the V-type proton ATPase 16 kDa proteolipid subunit is proposed to be a plausible target gene for further calcification studies.

  8. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results......: We apply our method to 15 pairwise alignments of six different HIV2 genomes. Given sufficient evolutionary distance between the two sequences, we achieve sensitivity of about 84% and specificity of about 97%. We additionally annotate three pairwise alignments of the more distantly related HIV1...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  9. Flow cytogenetics and plant genome mapping.

    Science.gov (United States)

    Dolezel, Jaroslav; Kubaláková, Marie; Bartos, Jan; Macas, Jirí

    2004-01-01

    The application of flow cytometry and sorting (flow cytogenetics) to plant chromosomes did not begin until the mid-1980s, having been delayed by difficulties in preparation of suspensions of intact chromosomes and discrimination of individual chromosome types. These problems have been overcome during the last ten years. So far, chromosome analysis and sorting has been reported in 17 species, including major legume and cereal crops. While chromosome classification by flow cytometry (flow karyotyping) may be used for quantitative detection of structural and numerical chromosome changes, chromosomes purified by flow sorting were found to be invaluable in a broad range of applications. These included physical mapping using PCR, high-resolution cytogenetic mapping using FISH and PRINS, production of recombinant DNA libraries, targeted isolation of markers, and protein analysis. A great potential is foreseen for the use of sorted chromosomes for construction of chromosome and chromosome-arm-specific BAC libraries, targeted isolation of low-copy (genic) sequences, high-throughput physical mapping of ESTs and other DNA sequences by hybridization to DNA arrays, and global characterization of chromosomal proteins using approaches of proteomics. This paper provides a comprehensive review of the methodology and application of flow cytogenetics, and assesses its potential for plant genome analysis.

  10. GENETICS AND GENOMICS OF PLANT GENETIC RESOURCES

    Directory of Open Access Journals (Sweden)

    Börner A.

    2012-08-01

    Full Text Available Plant genetic resources play a major role for global food security. The most significant and widespread mean of conserving plant genetic resources is ex situ conservation. Most conserved accessions are kept in specialized facilities known as genebanks maintained by public or private institutions. World-wide 7.4 million accessions are stored in about 1,500 ex situ genebanks.In addition, series of genetic stocks including chromosome substitution lines, alloplasmic lines, single chromosome recombinant lines, introgression lines, etc. have been created. Analysing these genetic stocks many qualitative and quantitative inherited traits were associated to certain chromosomes, chromosome arms or introgressed segments. Today, genetic stocks are supplemented by a huge number of genotyped mapping populations. Beside progenies of bi-parental crosses (doubled haploid lines, recombinant inbred lines, etc. panels for association mapping were created recently.In our presentation we give examples for the successful utilisation of genebank accessions and genetic stocks for genetic and genomic studies. Using both segregation and association mapping approaches, data on mapping of loci/marker trait associations for a range of different traits are presented.

  11. The Complete Mitochondrial Genome of Gossypium hirsutum and Evolutionary Analysis of Higher Plant Mitochondrial Genomes

    Science.gov (United States)

    Su, Aiguo; Geng, Jianing; Grover, Corrinne E.; Hu, Songnian; Hua, Jinping

    2013-01-01

    Background Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. Methodology/Principal Findings We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. Conclusion The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species. PMID:23940520

  12. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Directory of Open Access Journals (Sweden)

    Guozheng Liu

    Full Text Available BACKGROUND: Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L. is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt genome could be helpful for the evolution research of plant mt genomes. METHODOLOGY/PRINCIPAL FINDINGS: We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. CONCLUSION: The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.

  13. Preliminary Evaluation of the Effect of Investigational Ebola Virus Disease Treatments on Viral Genome Sequences.

    Science.gov (United States)

    Whitmer, Shannon L M; Albariño, César; Shepard, Samuel S; Dudas, Gytis; Sheth, Mili; Brown, Shelley C; Cannon, Deborah; Erickson, Bobbie R; Gibbons, Aridth; Schuh, Amy; Sealy, Tara; Ervin, Elizabeth; Frace, Mike; Uyeki, Timothy M; Nichol, Stuart T; Ströher, Ute

    2016-10-15

     Several patients with Ebola virus disease (EVD) managed in the United States have received ZMapp monoclonal antibodies, TKM-Ebola small interfering RNA, brincidofovir, and/or convalescent plasma as investigational therapeutics.  To investigate whether treatment selected for Ebola virus (EBOV) mutations conferring resistance, viral sequencing was performed on RNA extracted from clinical blood specimens from patients with EVD following treatment, and putative viral targets were analyzed.  We observed no major or minor EBOV mutations within regions targeted by therapeutics.  This small subset of patients and clinical specimens suggests that evolution of resistance is not a direct consequence of antiviral treatment. As EVD antiviral treatments are introduced into wider use, it is essential that continuous viral full-genome surveillance is performed, to monitor for the emergence of escape mutations. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. Endogenous avian leukosis viral loci in the Red Jungle Fowl genome assembly.

    Science.gov (United States)

    Benkel, Bernhard; Rutherford, Katherine

    2014-12-01

    The current build (galGal4) of the genome of the ancestor of the modern chicken, the Red Jungle Fowl, contains a single endogenous avian leukosis viral element (ALVE) on chromosome 1 (designated RSV-LTR; family ERVK). The assembly shows the ALVE provirus juxtaposed with a member of a second family of avian endogenous retroviruses (designated GGERV20; family ERVL); however, the status of the 3' end of the ALVE element as well as its flanking region remain unclear due to a gap in the reference genome sequence. In this study, we filled the gap in the assembly using a combination of long-range PCR (LR-PCR) and a short contig present in the unassembled portion of the reference genome database. Our results demonstrate that the ALVE element (ALVE-JFevB) is inserted into the putative envelope region of a GGERV20 element, roughly 1 kbp from its 3' end, and that ALVE-JFevB is complete, and depending on its expression status, potentially capable of directing the production of virus. Moreover, the unassembled portion of the genome database contains junction fragments for a second, previously characterized endogenous proviral element, ALVE-6.

  15. Recovery of known T-cell epitopes by computational scanning of a viral genome

    Science.gov (United States)

    Logean, Antoine; Rognan, Didier

    2002-04-01

    A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.

  16. Hepatitis A virus-encoded miRNAs attenuate the accumulation of viral genomic RNAs in infected cells.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wu, Meini; Hu, Ningzhu; Hu, Yunzhang

    2016-06-01

    The establishment of persistent infection with hepatitis A virus (HAV) is the common result of most HAV/cell culture systems. Previous observations show that the synthesis of viral RNAs is reduced during infection. However, the underlying mechanism is poorly understood. We characterized three HAV-encoded miRNAs in our previous study. In this study, we aim to investigate the impact of these miRNAs on the accumulation of viral RNAs. The results indicated that the synthesis of viral genomic RNAs was dramatically reduced (more than 75 % reduction, P viral miRNA mimics. Conversely, they were significantly increased (more than 3.3-fold addition, P viral miRNA inhibitors. The luciferase reporter assay of miRNA targets showed that viral miRNAs were fully complementary to specific sites of the viral plus or minus strand RNA and strongly inhibited their expressions. Further data showed that the relative abundance of viral genomic RNA fragments that contain miRNA targets was also dramatically reduced (more than 80 % reduction, P viral miRNAs were overexpressed with miRNA mimics. In contrast, they were significantly increased (approximately 2-fold addition, P viral miRNAs were inhibited with miRNA inhibitors. In conclusion, these data suggest a possible mechanism for the reduction of viral RNA synthesis during HAV infection. Thus, we propose that it is likely that RNA virus-derived miRNA could serve as a self-mediated feedback regulator during infection.

  17. Visualization of plant viral suppressor silencing activity in intact leaf lamina by quantitative fluorescent imaging

    Directory of Open Access Journals (Sweden)

    Francis Kevin P

    2011-08-01

    Full Text Available Abstract Background Transient expression of proteins in plants has become a favoured method over the production of stably transformed plants because, in addition to enabling high protein yields, it is both fast and easy to apply. An enhancement of transient protein expression can be achieved by plant virus-encoded RNA silencing suppressor proteins. Since viral suppressor proteins differ in their efficiency to enhance transient protein expression in plants, we developed a whole-leaf green fluorescent protein (GFP-based imaging assay to quantitatively assess suppressor protein activity. Results In a transient GFP-expression assay using wild-type and GFP-transgenic N. benthamiana, addition of the plant viral suppressors Beet mild yellowing virus (BMYV-IPP P0 or Plum pox virus (PPV HC-Pro was shown to increase fluorescent protein expression 3-4-fold, 7 days post inoculation (dpi when compared to control plants. In contrast, in agroinfiltrated patches without suppressor activity, near complete silencing of the GFP transgene was observed in the transgenic N. benthamiana at 21 dpi. Both co-infiltrated suppressors significantly enhanced GFP expression over time, with HC-Pro co-infiltrations leading to higher short term GFP fluorescence (at 7 dpi and P0 giving higher long term GFP fluorescence (at 21 dpi. Additionally, in contrast to HC-Pro co-infiltrations, an area of complete GFP silencing was observed at the edge of P0 co-infiltrated areas. Conclusions Fluorescence imaging of whole intact leaves proved to be an easy and effective method for spatially and quantitatively observing viral suppressor efficiency in plants. This suppressor assay demonstrates that plant viral suppressors greatly enhanced transient GFP expression, with P0 showing a more prolonged suppressor activity over time than HC-Pro. Both suppressors could prove to be ideal candidates for enhancing target protein expression in plants.

  18. Comparative genomic paleontology across plant kingdom reveals the dynamics of TE-driven genome evolution.

    Science.gov (United States)

    El Baidouri, Moaine; Panaud, Olivier

    2013-01-01

    Long terminal repeat-retrotransposons (LTR-RTs) are the most abundant class of transposable elements (TEs) in plants. They strongly impact the structure, function, and evolution of their host genome, and, in particular, their role in genome size variation has been clearly established. However, the dynamics of the process through which LTR-RTs have differentially shaped plant genomes is still poorly understood because of a lack of comparative studies. Using a new robust and automated family classification procedure, we exhaustively characterized the LTR-RTs in eight plant genomes for which a high-quality sequence is available (i.e., Arabidopsis thaliana, A. lyrata, grapevine, soybean, rice, Brachypodium dystachion, sorghum, and maize). This allowed us to perform a comparative genome-wide study of the retrotranspositional landscape in these eight plant lineages from both monocots and dicots. We show that retrotransposition has recurrently occurred in all plant genomes investigated, regardless their size, and through bursts, rather than a continuous process. Moreover, in each genome, only one or few LTR-RT families have been active in the recent past, and the difference in genome size among the species studied could thus mostly be accounted for by the extent of the latest transpositional burst(s). Following these bursts, LTR-RTs are efficiently eliminated from their host genomes through recombination and deletion, but we show that the removal rate is not lineage specific. These new findings lead us to propose a new model of TE-driven genome evolution in plants.

  19. Antiviral RNA silencing viral counter defense in plants

    NARCIS (Netherlands)

    Bucher, E.C.

    2006-01-01

    The research described in this thesis centres around the mechanism of RNA silencing in relation to virus-host interaction, an area of increasing importance. It shows how this recently disclosed mechanism can be used to produce virus-resistant plants. Based on the activity of the RNA silencing machin

  20. Antiviral RNA silencing viral counter defense in plants

    NARCIS (Netherlands)

    Bucher, E.C.

    2006-01-01

    The research described in this thesis centres around the mechanism of RNA silencing in relation to virus-host interaction, an area of increasing importance. It shows how this recently disclosed mechanism can be used to produce virus-resistant plants. Based on the activity of the RNA silencing

  1. Antiviral RNA silencing viral counter defense in plants

    NARCIS (Netherlands)

    Bucher, E.C.

    2006-01-01

    The research described in this thesis centres around the mechanism of RNA silencing in relation to virus-host interaction, an area of increasing importance. It shows how this recently disclosed mechanism can be used to produce virus-resistant plants. Based on the activity of the RNA silencing machin

  2. Evolution and genome architecture in fungal plant pathogens.

    Science.gov (United States)

    Möller, Mareike; Stukenbrock, Eva H

    2017-08-07

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  3. Control of meiotic recombination frequency in plant genomes.

    Science.gov (United States)

    Henderson, Ian R

    2012-11-01

    Sexual eukaryotes reproduce via the meiotic cell division, where ploidy is halved and homologous chromosomes undergo reciprocal genetic exchange, termed crossover (CO). CO frequency has a profound effect on patterns of genetic variation and species evolution. Relative CO rates vary extensively both within and between plant genomes. Plant genome size varies by over 1000-fold, largely due to differential expansion of repetitive sequences, and increased genome size is associated with reduced CO frequency. Gene versus repeat sequences associate with distinct chromatin modifications, and evidence from plant genomes indicates that this epigenetic information influences CO patterns. This is consistent with data from diverse eukaryotes that demonstrate the importance of chromatin structure for control of meiotic recombination. In this review I will discuss CO frequency patterns in plant genomes and recent advances in understanding recombination distributions.

  4. Exploration of plant genomes in the FLAGdb++ environment

    Directory of Open Access Journals (Sweden)

    Leplé Jean-Charles

    2011-03-01

    Full Text Available Abstract Background In the contexts of genomics, post-genomics and systems biology approaches, data integration presents a major concern. Databases provide crucial solutions: they store, organize and allow information to be queried, they enhance the visibility of newly produced data by comparing them with previously published results, and facilitate the exploration and development of both existing hypotheses and new ideas. Results The FLAGdb++ information system was developed with the aim of using whole plant genomes as physical references in order to gather and merge available genomic data from in silico or experimental approaches. Available through a JAVA application, original interfaces and tools assist the functional study of plant genes by considering them in their specific context: chromosome, gene family, orthology group, co-expression cluster and functional network. FLAGdb++ is mainly dedicated to the exploration of large gene groups in order to decipher functional connections, to highlight shared or specific structural or functional features, and to facilitate translational tasks between plant species (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera. Conclusion Combining original data with the output of experts and graphical displays that differ from classical plant genome browsers, FLAGdb++ presents a powerful complementary tool for exploring plant genomes and exploiting structural and functional resources, without the need for computer programming knowledge. First launched in 2002, a 15th version of FLAGdb++ is now available and comprises four model plant genomes and over eight million genomic features.

  5. An efficient viral vector for functional genomic studies of Prunus fruit trees and its induced resistance to Plum pox virus via silencing of a host factor gene.

    Science.gov (United States)

    Cui, Hongguang; Wang, Aiming

    2017-03-01

    RNA silencing is a powerful technology for molecular characterization of gene functions in plants. A commonly used approach to the induction of RNA silencing is through genetic transformation. A potent alternative is to use a modified viral vector for virus-induced gene silencing (VIGS) to degrade RNA molecules sharing similar nucleotide sequence. Unfortunately, genomic studies in many allogamous woody perennials such as peach are severely hindered because they have a long juvenile period and are recalcitrant to genetic transformation. Here, we report the development of a viral vector derived from Prunus necrotic ringspot virus (PNRSV), a widespread fruit tree virus that is endemic in all Prunus fruit production countries and regions in the world. We show that the modified PNRSV vector, harbouring the sense-orientated target gene sequence of 100-200 bp in length in genomic RNA3, could efficiently trigger the silencing of a transgene or an endogenous gene in the model plant Nicotiana benthamiana. We further demonstrate that the PNRSV-based vector could be manipulated to silence endogenous genes in peach such as eukaryotic translation initiation factor 4E isoform (eIF(iso)4E), a host factor of many potyviruses including Plum pox virus (PPV). Moreover, the eIF(iso)4E-knocked down peach plants were resistant to PPV. This work opens a potential avenue for the control of virus diseases in perennial trees via viral vector-mediated silencing of host factors, and the PNRSV vector may serve as a powerful molecular tool for functional genomic studies of Prunus fruit trees.

  6. Plant-based raw material: Improved food quality for better nutrition via plant genomics

    NARCIS (Netherlands)

    Meer, van der I.M.; Bovy, A.G.; Bosch, H.J.

    2001-01-01

    Plants form the basis of the human food chain. Characteristics of plants are therefore crucial to the quantity and quality of human food. In this review, it is discussed how technological developments in the area of plant genomics and plant genetics help to mobilise the potential of plants to improv

  7. SIRT1 inhibits EV71 genome replication and RNA translation by interfering with the viral polymerase and 5'UTR RNA.

    Science.gov (United States)

    Han, Yang; Wang, Lvyin; Cui, Jin; Song, Yu; Luo, Zhen; Chen, Junbo; Xiong, Ying; Zhang, Qi; Liu, Fang; Ho, Wenzhe; Liu, Yingle; Wu, Kailang; Wu, Jianguo

    2016-12-15

    Enterovirus 71 (EV71) possesses a single-stranded positive RNA genome that contains a single open reading frame (ORF) flanked by a 5' untranslated region (5'UTR) and a polyadenylated 3'UTR. Here, we demonstrated that EV71 activates the production of silent mating type information regulation 2 homolog 1 (SIRT1), a histone deacetylase (HDAC). EV71 further stimulates SIRT1 sumoylation and deacetylase activity, and enhances SIRT1 translocation from the nucleus to the cytoplasm. More interestingly, activated SIRT1 subsequently binds with the EV71 3D(pol) protein (a viral RNA-dependent RNA polymerase, RdRp) to repress the acetylation and RdRp activity of 3D(pol), resulting in the attenuation of viral genome replication. Moreover, SIRT1 interacts with the cloverleaf structure of the EV71 RNA 5'UTR to inhibit viral RNA transcription, and binds to the internal ribosome entry site (IRES) of the EV71 5'UTR to attenuate viral RNA translation. Thus, EV71 stimulates SIRT1 production and activity, which in turn represses EV71 genome replication by inhibiting viral polymerase, and attenuates EV71 RNA transcription and translation by interfering with viral RNA. These results uncover a new function of SIRT1 and reveal a new mechanism underlying the regulation of EV71 replication. © 2016. Published by The Company of Biologists Ltd.

  8. Human papillomavirus major capsid protein L1 remains associated with the incoming viral genome throughout the entry process.

    Science.gov (United States)

    DiGiuseppe, Stephen; Bienkowska-Haba, Malgorzata; Guion, Lucile G M; Keiffer, Timothy R; Sapp, Martin

    2017-05-31

    During infectious entry, acidification within the endosome triggers uncoating of the HPV capsid whereupon host cyclophilins facilitate the release of most of the major capsid protein, L1, from the minor capsid protein L2 and the viral genome. The L2/DNA complex traffics to the trans-Golgi network (TGN). Following the onset of mitosis, HPV-harboring transport vesicles bud from the TGN followed by association with mitotic chromosomes. During this time, the HPV genome remains in a vesicular compartment until the nucleus has completely reformed. Recent data suggests that while most of L1 protein dissociates and is degraded in the endosome, some L1 protein remains associated with the viral genome. The L1 protein has DNA binding activity and L2 protein has multiple domains capable of interacting with L1 capsomeres. In this study, we report that some L1 protein traffics with L2 and viral genome to the nucleus. The accompanying L1 protein is mostly full-length and retains conformation-dependent epitopes, which are recognized by neutralizing antibodies. Since more than one L1 molecule contributes to these epitopes and require assembly into capsomeres, we propose that L1 protein is present in form of pentamers. Furthermore, we provide evidence that L1 protein interacts directly with viral DNA within the capsid. Based on our findings, we propose that the L1 protein, likely arranged as capsomeres, stabilizes the viral genome within the subviral complex during intracellular trafficking.IMPORTANCE After internalization, the non-enveloped human papillomavirus virion uncoats in the endosome whereupon conformational changes result in a dissociation of a subset of the major capsid protein L1 from the minor capsid protein L2, which remains in complex with the viral DNA. Recent data suggests that some L1 protein may accompany the viral genome beyond the endosomal compartment. Herein, we demonstrate that conformationally intact L1 protein, likely still arranged as capsomeres, remains

  9. Acute hepatitis C in a chronically HIV-infected patient: Evolution of different viral genomic regions

    Institute of Scientific and Technical Information of China (English)

    Diego Flichman; Veronica Kott; Silvia Sookoian; Rodolfo Campos

    2003-01-01

    AIM: To analyze the molecular evolution of different viral genomic regions of HCV in an acute HCV infected patient chronically infected with HIV through a 42-month follow-up.METHODS: Serum samples of a chronically HIV infected patient that seroconverted to anti HCV antibodies were sequenced, from the event of superinfection through a period of 17 months and in a late sample (42nd month). Hypervariable genomic regions of HIV (V3 loop of the gp120) and HCV (HVR-1 on the E2 glycoprotein gene) were studied. In order to analyze genomic regions involved in different biological functions and with the cellular immune response, HCV core and NS5A were also chosen to be sequenced. Amplification of the different regions was done by RT-PCR and directly sequenced. Confirmation of sequences was done on reamplified material. Nucleotide sequences of the different time points were aligned with CLUSTAL W 1.5, and the corresponding amino acid ones were deduced.RESULTS: Hypervariable genomic regions of both viruses (HVR1 and gp120 V3 loop) presented several nonsynonymous changes but, while in the gp120 V3 loop mutations were detected in the sample obtained right after HCV superinfection and maintained throughout, they occurred following a sequential and cumulative pattern in the HVR1. In the NS5A region of HCV, two amino acid changes were detected during the follow-up period, whereas the core region presented several amino acid replacements, once the HCV chronic infection had been established.CONCLUSION: During the HIV-HCV superinfection, each genomic region analyzed shows a different evolutionary pattem.Most of the nucleotide substitutions observed are nonsynonymous and clustered in previously described epitopes,thus suggesting an immune-driven evolutionary process.

  10. Genomics of adaptation to host-plants in herbivorous insects.

    Science.gov (United States)

    Simon, Jean-Christophe; d'Alençon, Emmanuelle; Guy, Endrick; Jacquin-Joly, Emmanuelle; Jaquiéry, Julie; Nouhaud, Pierre; Peccoud, Jean; Sugio, Akiko; Streiff, Réjane

    2015-11-01

    Herbivorous insects represent the most species-rich lineages of metazoans. The high rate of diversification in herbivorous insects is thought to result from their specialization to distinct host-plants, which creates conditions favorable for the build-up of reproductive isolation and speciation. These conditions rely on constraints against the optimal use of a wide range of plant species, as each must constitute a viable food resource, oviposition site and mating site for an insect. Utilization of plants involves many essential traits of herbivorous insects, as they locate and select their hosts, overcome their defenses and acquire nutrients while avoiding intoxication. Although advances in understanding insect-plant molecular interactions have been limited by the complexity of insect traits involved in host use and the lack of genomic resources and functional tools, recent studies at the molecular level, combined with large-scale genomics studies at population and species levels, are revealing the genetic underpinning of plant specialization and adaptive divergence in non-model insect herbivores. Here, we review the recent advances in the genomics of plant adaptation in hemipterans and lepidopterans, two major insect orders, each of which includes a large number of crop pests. We focus on how genomics and post-genomics have improved our understanding of the mechanisms involved in insect-plant interactions by reviewing recent molecular discoveries in sensing, feeding, digesting and detoxifying strategies. We also present the outcomes of large-scale genomics approaches aimed at identifying loci potentially involved in plant adaptation in these insects.

  11. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    Science.gov (United States)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  12. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes.

    Science.gov (United States)

    Angly, Florent E; Willner, Dana; Prieto-Davó, Alejandra; Edwards, Robert A; Schmieder, Robert; Vega-Thurber, Rebecca; Antonopoulos, Dionysios A; Barott, Katie; Cottrell, Matthew T; Desnues, Christelle; Dinsdale, Elizabeth A; Furlan, Mike; Haynes, Matthew; Henn, Matthew R; Hu, Yongfei; Kirchman, David L; McDole, Tracey; McPherson, John D; Meyer, Folker; Miller, R Michael; Mundt, Egbert; Naviaux, Robert K; Rodriguez-Mueller, Beltran; Stevens, Rick; Wegley, Linda; Zhang, Lixin; Zhu, Baoli; Rohwer, Forest

    2009-12-01

    Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions.

  13. The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes.

    Directory of Open Access Journals (Sweden)

    Florent E Angly

    2009-12-01

    Full Text Available Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS, a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and

  14. Genomic resources in fruit plants: an assessment of current status.

    Science.gov (United States)

    Rai, Manoj K; Shekhawat, N S

    2015-01-01

    The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants.

  15. A viral genome landscape of RNA polyadenylation from KSHV latent to lytic infection.

    Directory of Open Access Journals (Sweden)

    Vladimir Majerciak

    Full Text Available RNA polyadenylation (pA is one of the major steps in regulation of gene expression at the posttranscriptional level. In this report, a genome landscape of pA sites of viral transcripts in B lymphocytes with Kaposi sarcoma-associated herpesvirus (KSHV infection was constructed using a modified PA-seq strategy. We identified 67 unique pA sites, of which 55 could be assigned for expression of annotated ~90 KSHV genes. Among the assigned pA sites, twenty are for expression of individual single genes and the rest for multiple genes (average 2.7 genes per pA site in cluster-gene loci of the genome. A few novel viral pA sites that could not be assigned to any known KSHV genes are often positioned in the antisense strand to ORF8, ORF21, ORF34, K8 and ORF50, and their associated antisense mRNAs to ORF21, ORF34 and K8 could be verified by 3'RACE. The usage of each mapped pA site correlates to its peak size, the larger (broad and wide peak size, the more usage and thus, the higher expression of the pA site-associated gene(s. Similar to mammalian transcripts, KSHV RNA polyadenylation employs two major poly(A signals, AAUAAA and AUUAAA, and is regulated by conservation of cis-elements flanking the mapped pA sites. Moreover, we found two or more alternative pA sites downstream of ORF54, K2 (vIL6, K9 (vIRF1, K10.5 (vIRF3, K11 (vIRF2, K12 (Kaposin A, T1.5, and PAN genes and experimentally validated the alternative polyadenylation for the expression of KSHV ORF54, K11, and T1.5 transcripts. Together, our data provide not only a comprehensive pA site landscape for understanding KSHV genome structure and gene expression, but also the first evidence of alternative polyadenylation as another layer of posttranscriptional regulation in viral gene expression.

  16. Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method

    Directory of Open Access Journals (Sweden)

    Dan Dou

    2017-07-01

    Full Text Available Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections.

  17. The latent origin of replication of Epstein-Barr virus directs viral genomes to active regions of the nucleus.

    Science.gov (United States)

    Deutsch, Manuel J; Ott, Elisabeth; Papior, Peer; Schepers, Aloys

    2010-03-01

    The Epstein-Barr virus efficiently infects human B cells. The EBV genome is maintained extrachromosomally and replicates synchronously with the host's chromosomes. The latent origin of replication (oriP) guarantees plasmid stability by mediating two basic functions: replication and segregation of the viral genome. While the segregation process of EBV genomes is well understood, little is known about its chromatin association and nuclear distribution during interphase. Here, we analyzed the nuclear localization of EBV genomes and the role of functional oriP domains FR and DS for basic functions such as the transformation of primary cells, their role in targeting EBV genomes to distinct nuclear regions, and their association with epigenetic domains. Fluorescence in situ hybridization visualized the localization of extrachromosomal EBV genomes in the regions adjacent to chromatin-dense territories called the perichromatin. Further, immunofluorescence experiments demonstrated a preference of the viral genome for histone 3 lysine 4-trimethylated (H3K4me3) and histone 3 lysine 9-acetylated (H3K9ac) nuclear regions. To determine the role of FR and DS for establishment and subnuclear localization of EBV genomes, we transformed primary human B lymphocytes with recombinant mini-EBV genomes containing different oriP mutants. The loss of DS results in a slightly increased association in H3K27me3 domains. This study demonstrates that EBV genomes or oriP-based extrachromosomal vector systems are integrated into the higher order nuclear organization. We found that viral genomes are not randomly distributed in the nucleus. FR but not DS is crucial for the localization of EBV in perichromatic regions that are enriched for H3K4me3 and H3K9ac, which are hallmarks of transcriptionally active regions.

  18. Evolution and function of genomic imprinting in plants.

    Science.gov (United States)

    Rodrigues, Jessica A; Zilberman, Daniel

    2015-12-15

    Genomic imprinting, an inherently epigenetic phenomenon defined by parent of origin-dependent gene expression, is observed in mammals and flowering plants. Genome-scale surveys of imprinted expression and the underlying differential epigenetic marks have led to the discovery of hundreds of imprinted plant genes and confirmed DNA and histone methylation as key regulators of plant imprinting. However, the biological roles of the vast majority of imprinted plant genes are unknown, and the evolutionary forces shaping plant imprinting remain rather opaque. Here, we review the mechanisms of plant genomic imprinting and discuss theories of imprinting evolution and biological significance in light of recent findings. © 2015 Rodrigues and Zilberman; Published by Cold Spring Harbor Laboratory Press.

  19. Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes.

    Directory of Open Access Journals (Sweden)

    John F Heidelberg

    Full Text Available CRISPR arrays and associated cas genes are widespread in bacteria and archaea and confer acquired resistance to viruses. To examine viral immunity in the context of naturally evolving microbial populations we analyzed genomic data from two thermophilic Synechococcus isolates (Syn OS-A and Syn OS-B' as well as a prokaryotic metagenome and viral metagenome derived from microbial mats in hotsprings at Yellowstone National Park. Two distinct CRISPR types, distinguished by the repeat sequence, are found in both the Syn OS-A and Syn OS-B' genomes. The genome of Syn OS-A contains a third CRISPR type with a distinct repeat sequence, which is not found in Syn OS-B', but appears to be shared with other microorganisms that inhabit the mat. The CRISPR repeats identified in the microbial metagenome are highly conserved, while the spacer sequences (hereafter referred to as "viritopes" to emphasize their critical role in viral immunity were mostly unique and had no high identity matches when searched against GenBank. Searching the viritopes against the viral metagenome, however, yielded several matches with high similarity some of which were within a gene identified as a likely viral lysozyme/lysin protein. Analysis of viral metagenome sequences corresponding to this lysozyme/lysin protein revealed several mutations all of which translate into silent or conservative mutations which are unlikely to affect protein function, but may help the virus evade the host CRISPR resistance mechanism. These results demonstrate the varied challenges presented by a natural virus population, and support the notion that the CRISPR/viritope system must be able to adapt quickly to provide host immunity. The ability of metagenomics to track population-level variation in viritope sequences allows for a culture-independent method for evaluating the fast co-evolution of host and viral genomes and its consequence on the structuring of complex microbial communities.

  20. Possible involvement of maize Rop1 in the defence responses of plants to viral infection.

    Science.gov (United States)

    Cao, Yanyong; Shi, Yan; Li, Yongqiang; Cheng, Yuqin; Zhou, Tao; Fan, Zaifeng

    2012-09-01

    The expression of host genes can be altered during the process of viral infection. To investigate the viral infection-induced up-regulated gene expression changes of maize at different time intervals post-inoculation with Sugarcane mosaic virus (SCMV), a suppression subtractive hybridization cDNA library was constructed. A total of 454 cDNA clones were identified to be viral infection-induced up-regulated genes. The influence of Rop1 on the infection of maize by SCMV was investigated. The results showed that transient silencing of the ZmRop1 gene through virus-induced gene silencing enhanced the accumulation and systemic infection of SCMV and another potyvirus (Pennisetum mosaic virus) in maize plants, whereas transient over-expression of ZmRop1 in maize protoplasts reduced SCMV accumulation. Furthermore, it was demonstrated that the heterologous expression of ZmRop1 impaired Potato virus X infection in Nicotiana benthamiana plants. These data suggest that ZmRop1 may play a role in plant defence responses to viral infection.

  1. Simulated microgravity effects on the resistance of potato plants to viral infection

    Science.gov (United States)

    Mishchenko, L. T.; Gordyeichik, O. I.; Taran, O. P.

    Our earlier research results showed that prolonged clinostating impeded the reproduction of the wheat streak mosaic virus WSMV in artificially infected Apogee wheat plants The WSMW reproduction reduction leads to the formation of yield at the expense of the various physiologo-biochemical mechanisms of adaptation The results of our research activities open up the possibilities for the creation of new biotechnologies for both orbital and terrestrial conditions There arises a need to verify this phenomenon on potato plants which reproduce by tubers and in which viral infection unlike the WSMV is easily spread with planting material The initial parental potato plants were cultivated in a universal clinostat Cycle-2 and horizontal clinostat KG-8 on artificial substrate employing a balanced nutrient mixture of macro and microelements Viral antigens were detected in the organs of infected plants by a solid-phase immunoenzymatic analysis in its indirect das-ELISA variant sandwich variant A test system manufactured by the Bioreba firm Switzerland was employed for diagnostics The reader of the Termo Labsystems Opsis MR firm was employed for the measurements of optical density of the immunoenzymatic reaction product with a software of the Dynex Revelation Quicklik USA at wavelength of 405 630 nm Virion identification was carried out using the electron microscopy negative contrasting procedure Statistical data processing was performed using Excel AGROSTAT program We investigated the effects of clinostating on the development of viral

  2. Influence of planting date on incidence and severity of viral disease on cucurbits under field condition

    Directory of Open Access Journals (Sweden)

    Nahoua Kone

    2017-06-01

    Full Text Available Three field experiments were conducted to assess the effect of planting date on the incidence of viral diseases and the severity and the susceptibility of the cultivars. Two cultivars of cucumber (Hybrid Tokyo F1 and Poinsett and one local variety of zucchini (Bolle were used for the evaluation in May-July 2014, September-November 2014, and February-April 2015. A randomized complete block design with three replications was used for the experiments. Data were collected on disease incidence, severity, and time until first symptoms occurred. Area under severity index progress curve (AUSIPC and area under disease progress curve (AUDPC were calculated respectively for disease severity as well as the incidence on each cultivar. The results demonstrate the susceptibility of all cultivars to the tested viral diseases. The effect of planting dates on cultivars was significantly different (P  0.05 in planting date-variety interaction.

  3. Azolla - A Model Organism for Plant Genomic Studies

    Institute of Scientific and Technical Information of China (English)

    Yin-Long Qiu; Jun Yu

    2003-01-01

    The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation. Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture, its unique position in plant evolution, its symbiotic relationship with the N2-fixing cyanobacterium, Anabaena azollae, and its moderate-sized genome. The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes. Together with the strategic and technical improvement as well as cost reduction of DNA sequencing, the deciphering of their genetic code is imminent.

  4. Azolla—A Model Organism for Plant Genomic Studies

    Institute of Scientific and Technical Information of China (English)

    Yin-LongQiu; JunYu

    2003-01-01

    The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation.Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture,its unique position in plant evolution,its symbiotic relationship with the N2-fixing cyanobacterium,Anabaena azollae,and its moderate-sized genome.The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes.Together with the strategic and technical improvement as well as cost reduction of DNA sequencing,the deciphering of their genetic code is imminent.

  5. Genome editing in plant cells by zinc finger nucleases.

    Science.gov (United States)

    Weinthal, Dan; Tovkach, Andriy; Zeevi, Vardit; Tzfira, Tzvi

    2010-06-01

    Gene targeting is a powerful tool for functional gene studies. However, only a handful of reports have been published describing the successful targeting of genome sequences in model and crop plants. Gene targeting can be stimulated by induction of double-strand breaks at specific genomic sites. The expression of zinc finger nucleases (ZFNs) can induce genomic double-strand breaks. Indeed, ZFNs have been used to drive the replacement of native DNA sequences with foreign DNA molecules, to mediate the integration of the targeted transgene into native genome sequences, to stimulate the repair of defective transgenes, and as site-specific mutagens in model and crop plant species. This review introduces the principles underlying the use of ZFNs for genome editing, with an emphasis on their recent use for plant research and biotechnology.

  6. Possible consequences of the overlap between the CaMV 35S promoter regions in plant transformation vectors used and the viral gene VI in transgenic plants.

    Science.gov (United States)

    Podevin, Nancy; du Jardin, Patrick

    2012-01-01

    Multiple variants of the Cauliflower mosaic virus 35S promoter (P35S) are used to drive the expression of transgenes in genetically modified plants, for both research purposes and commercial applications. The genetic organization of the densely packed genome of this virus results in sequence overlap between P35S and viral gene VI, encoding the multifunctional P6 protein. The present paper investigates whether introduction of P35S variants by genetic transformation is likely to result in the expression of functional domains of the P6 protein and in potential impacts in transgenic plants. A bioinformatic analysis was performed to assess the safety for human and animal health of putative translation products of gene VI overlapping P35S. No relevant similarity was identified between the putative peptides and known allergens and toxins, using different databases. From a literature study it became clear that long variants of the P35S do contain an open reading frame, when expressed, might result in unintended phenotypic changes. A flowchart is proposed to evaluate possible unintended effects in plant transformants, based on the DNA sequence actually introduced and on the plant phenotype, taking into account the known effects of ectopically expressed P6 domains in model plants.

  7. GenomicusPlants: a web resource to study genome evolution in flowering plants.

    Science.gov (United States)

    Louis, Alexandra; Murat, Florent; Salse, Jérôme; Crollius, Hugues Roest

    2015-01-01

    Comparative genomics combined with phylogenetic reconstructions are powerful approaches to study the evolution of genes and genomes. However, the current rapid expansion of the volume of genomic information makes it increasingly difficult to interrogate, integrate and synthesize comparative genome data while taking into account the maximum breadth of information available. GenomicusPlants (http://www.genomicus.biologie.ens.fr/genomicus-plants) is an extension of the Genomicus webserver that addresses this issue by allowing users to explore flowering plant genomes in an intuitive way, across the broadest evolutionary scales. Extant genomes of 26 flowering plants can be analyzed, as well as 23 ancestral reconstructed genomes. Ancestral gene order provides a long-term chronological view of gene order evolution, greatly facilitating comparative genomics and evolutionary studies. Four main interfaces ('views') are available where: (i) PhyloView combines phylogenetic trees with comparisons of genomic loci across any number of genomes; (ii) AlignView projects loci of interest against all other genomes to visualize its topological conservation; (iii) MatrixView compares two genomes in a classical dotplot representation; and (iv) Karyoview visualizes chromosome karyotypes 'painted' with colours of another genome of interest. All four views are interconnected and benefit from many customizable features.

  8. Genomic profile of the plants with pharmaceutical value

    OpenAIRE

    Gantait, Saikat; Debnath, Sandip; Nasim Ali, Md.

    2014-01-01

    There is an ample genetic diversity of plants with medicinal importance around the globe and this pool of genetic variation serves as the base for selection as well as for plant improvement. Thus, identification, characterization and documentation of the gene pool of medicinal plants are essential for this purpose. Genomic information of many a medicinal plant species has increased rapidly since the past decade and genetic resources available for domestication and improvement programs include...

  9. Hyperspectral remote sensing applications for monitoring and stress detection in cultural plants: viral infections in tobacco plants

    Science.gov (United States)

    Krezhova, Dora; Petrov, Nikolai; Maneva, Svetla

    2012-09-01

    The objectives of this study were to reveal the presence of viral infections in two varieties of tobacco plants (Nicotiana tabacum L.) as well as to discriminate the levels of the disease using hyperspectral leaf reflectance. Data sets were collected from two tobacco cultivars, Xanthi and Rustica, known as most widespread in Bulgaria. Experimental plants were grown in a greenhouse under controlled conditions. At growth stage 4-6 expanded leaf plants of cultivar Xanthi were inoculated with Potato virus Y (PVY) while the Rustica plants were inoculated with Tomato spotted wilt virus (TSWV). These two viruses are worldwide distributed and cause significant yield losses in many economically important crops. In the course of time after inoculation the concentration of the viruses in plant leaves was assessed by erological analysis via DAS-ELISA and RT-PCR techniques. Hyperspectral reflectance data were collected by a portable fibreoptics spectrometer in the visible and near-infrared spectral ranges (450-850 nm). As control plants healthy untreated tobacco plants were used. The significance of the differences between reflectance spectra of control and infected leaves was analyzed by means of Student's t-criterion at pred (640-680 nm), red edge (690-720 nm) and near infrared (720-780 nm) spectral ranges. Changes in SRC were found for both viral treatments and comparative analysis showed that the influence of PVY was stronger. The discrimination of disease intensity was achieved by derivative analysis of the red edge position.

  10. Genomic analysis of plant chromosomes based on meiotic pairing

    Directory of Open Access Journals (Sweden)

    Lisete Chamma Davide

    2007-12-01

    Full Text Available This review presents the principles and applications of classical genomic analysis, with emphasis on plant breeding. The main mathematical models used to estimate the preferential chromosome pairing in diploid or polyploid, interspecific or intergenera hybrids are presented and discussed, with special reference to the applications and studies for the definition of genome relationships among species of the Poaceae family.

  11. Recent updates and developments to plant genome size databases

    Science.gov (United States)

    Garcia, Sònia; Leitch, Ilia J.; Anadon-Rosell, Alba; Canela, Miguel Á.; Gálvez, Francisco; Garnatje, Teresa; Gras, Airy; Hidalgo, Oriane; Johnston, Emmeline; Mas de Xaxars, Gemma; Pellicer, Jaume; Siljak-Yakovlev, Sonja; Vallès, Joan; Vitales, Daniel; Bennett, Michael D.

    2014-01-01

    Two plant genome size databases have been recently updated and/or extended: the Plant DNA C-values database (http://data.kew.org/cvalues), and GSAD, the Genome Size in Asteraceae database (http://www.asteraceaegenomesize.com). While the first provides information on nuclear DNA contents across land plants and some algal groups, the second is focused on one of the largest and most economically important angiosperm families, Asteraceae. Genome size data have numerous applications: they can be used in comparative studies on genome evolution, or as a tool to appraise the cost of whole-genome sequencing programs. The growing interest in genome size and increasing rate of data accumulation has necessitated the continued update of these databases. Currently, the Plant DNA C-values database (Release 6.0, Dec. 2012) contains data for 8510 species, while GSAD has 1219 species (Release 2.0, June 2013), representing increases of 17 and 51%, respectively, in the number of species with genome size data, compared with previous releases. Here we provide overviews of the most recent releases of each database, and outline new features of GSAD. The latter include (i) a tool to visually compare genome size data between species, (ii) the option to export data and (iii) a webpage containing information about flow cytometry protocols. PMID:24288377

  12. Hepatitis B and hepatitis C viruses: a review of viral genomes, viral induced host immune responses, genotypic distributions and worldwide epidemiology

    Directory of Open Access Journals (Sweden)

    Umar Saeed

    2014-04-01

    Full Text Available Hepatitis B and hepatitis C viruses (HCV are frequently propagating blood borne pathogens in global community. Viral hepatitis is primarily associated with severe health complications, such as liver cirrhosis, hepatocellular carcinoma, hepatic fibrosis and steatosis. A literature review was conducted on hepatitis B virus (HBV, HBV genome, genotypic distribution and global epidemiology of HBV, HCV, HCV genome, HCV and host immune responses, HCV genotypic distribution and global epidemiology. The valued information was subjected for review. HBV has strict tissue tropism to liver. The virus infecting hepatocytes produces large amount of hepatitis B surface antigen particles which lack the DNA. It has capability to integrate into host genome. It has been found that genotype C is most emerging genotype associated with more severe liver diseases (cirrhosis. The approximate prevalence rate of genotype C is 27.7% which represents a major threat to future generations. Approximately 8% of population is chronic carrier of HBV in developing countries. The chronic carrier rate of HBV is 2%-7% in Middle East, Eastern and Southern Europe, South America and Japan. Among HCV infected individuals, 15% usually have natural tendency to overcome acute viral infection, where as 85% of individuals were unable to control HCV infection. The internal ribosomal entry site contains highly conserved structures important for binding and appropriate positioning of viral genome inside the host cell. HCV infects only in 1%-10% of hepatocytes, but production of tumor necrosis factor alpha (from CD8+ cells and interferon-gamma cause destruction of both infected cells and non-infected surrounding cells. Almost 11 genotypes and above 100 subtypes of HCV exists worldwide with different geographical distribution. Many efforts are still needed to minimize global burden of these infections. For the complete eradication of HBV (just like small pox and polio via vaccination strategies

  13. Genomics 4.0 : syntenic gene and genome duplication drives diversification of plant secondary metabolism and innate immunity in flowering plants : advanced pattern analytics in duplicate genomes

    NARCIS (Netherlands)

    Hofberger, J.A.

    2015-01-01

    Genomics 4.0 - Syntenic Gene and Genome Duplication Drives Diversification of Plant Secondary Metabolism and Innate Immunity in Flowering Plants   Johannes A. Hofberger1, 2, 3 1 Biosystematics Group, Wageningen University & Research Center, Droevendaalsesteeg 1, 6708 PB Wageningen, The Neth

  14. Pathogenicity of diatraea saccharalis Densovirus to Host Insets and Characterization of its Viral Genome

    Institute of Scientific and Technical Information of China (English)

    Nazaire Kouassi; Jian-xin PENG; Yi LI; Cristina Cavallaro; Jean-Claude Veyrunes; Max Bergoin

    2007-01-01

    Pathogenicity of the Diatraea saccharalis densovirus (DsDNV) was tested on its host larvae.The results showed that up to 4 days after inoculation,no larvae mortality was observed and the infected larvae started to exhibit the infection symptoms from the fourth day.After 5 days of infection,the cumulative mortality of infected larvae increased significantly and reached 60% after 12 days and 100% after 21 days of infection,whereas that of the control group was only 10% and 20%,respectively,after same periods of infection,suggesting that the high mortality of infected larvae groups was due to the high pathogenicity of DsDNV.The size of the DsDNA was determined by Electron microscopy visualization of viral DNA molecules and gel electrophoresis of both native and endonuclease digested DNA fragments.The total length of the native DsDNA was about 5.95 kb.The DsDNV DNA was digested with 16 restriction enzymes and a restriction map of those enzymes was constructed with 41 restriction sites.Comparison of the restriction map of the DsDNV genome with those of the genomes ofJunonia coenia densovirus (JcDNV) and Galleria mellonella densovirus (GmDNV) indicated that the three densovirus genomes were found to share many identical restriction sites.Thus,most of the restriction sites of the following endonucleases Bam H Ⅰ,Hha Ⅰ,Xba Ⅰ,Cla Ⅰ,Asp 700,Spe Ⅰ,Nco Ⅰ and Bcl Ⅰ,were found to be conserved among the three densovirus genomes.Symmetrical cleavage sites mapped at the both ends of the genome suggested the presence of inverted terminal repeats (ITRs) whose size was estimated to be about 500 bp.The similar genome size,almost identical restriction sites and presence of an ITR of about 500 bp for these three densoviruses suggested that they belong to the same group of ambisense densoviruses.

  15. A genome-wide association study for the incidence of persistent bovine viral diarrhea virus infection in cattle

    Science.gov (United States)

    Bovine Viral Diarrhea Viruses (BVDV) comprises a diverse group of viruses that causes disease in cattle. BVDV may establish both, transient and persistent infections depending on the developmental stage of the animal at exposure. The objective was to determine if genomic regions harboring single nuc...

  16. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors

    OpenAIRE

    Giritch, Anatoli; Marillonnet, Sylvestre; Engler, Carola; van Eldik, Gerben; Botterman, Johan; Klimyuk, Victor; Gleba, Yuri

    2006-01-01

    Plant viral vectors allow expression of heterologous proteins at high yields, but so far, they have been unable to express heterooligomeric proteins efficiently. We describe here a rapid and indefinitely scalable process for high-level expression of functional full-size mAbs of the IgG class in plants. The process relies on synchronous coinfection and coreplication of two viral vectors, each expressing a separate antibody chain. The two vectors are derived from two different plant viruses tha...

  17. Plastid endosymbiosis, genome evolution and the origin of green plants.

    Science.gov (United States)

    Stiller, John W

    2007-09-01

    Evolutionary relationships among complex, multicellular eukaryotes are generally interpreted within the framework of molecular sequence-based phylogenies that suggest green plants and animals are only distantly related on the eukaryotic tree. However, important anomalies have been reported in phylogenomic analyses, including several that relate specifically to green plant evolution. In addition, plants and animals share molecular, biochemical and genome-level features that suggest a relatively close relationship between the two groups. This article explores the impacts of plastid endosymbioses on nuclear genomes, how they can explain incongruent phylogenetic signals in molecular data sets and reconcile conflicts among different sources of comparative data. Specifically, I argue that the large influx of plastid DNA into plant and algal nuclear genomes has resulted in tree-building artifacts that obscure a relatively close evolutionary relationship between green plants and animals.

  18. The plant ontology as a tool for comparative plant anatomy and genomic analyses

    Science.gov (United States)

    Plant science is now a major player in the fields of genomics, gene expression analysis, phenomics and metabolomics. Recent advances in sequencing technologies have led to a windfall of data, with new species being added rapidly to the list of species whose genomes have been decoded. The Plant Ontol...

  19. Viral genome imaging of hepatitis C virus to probe heterogeneous viral infection and responses to antiviral therapies

    NARCIS (Netherlands)

    Ramanan, Vyas; Trehan, Kartik; Ong, Mei-Lyn; Luna, Joseph M; Hoffmann, Hans-Heinrich; Espiritu, Christine; Sheahan, Timothy P; Chandrasekar, Hamsika; Schwartz, Robert E; Christine, Kathleen S; Rice, Charles M; van Oudenaarden, Alexander; Bhatia, Sangeeta N

    Hepatitis C virus (HCV) is a positive single-stranded RNA virus of enormous global health importance, with direct-acting antiviral therapies replacing an immunostimulatory interferon-based regimen. The dynamics of HCV positive and negative-strand viral RNAs (vRNAs) under antiviral perturbations have

  20. Genomic determinants of the efficiency of internal ribosomal entry sites of viral and cellular origin.

    Science.gov (United States)

    Kazadi, Kayole; Loeuillet, Corinne; Deutsch, Samuel; Ciuffi, Angela; Muñoz, Miguel; Beckmann, Jacques S; Moradpour, Darius; Antonarakis, Stylianos E; Telenti, Amalio

    2008-12-01

    Variation in cellular gene expression levels has been shown to be inherited. Expression is controlled at transcriptional and post-transcriptional levels. Internal ribosome entry sites (IRES) are used by viruses to bypass inhibition of cap-dependent translation, and by eukaryotic cells to control translation under conditions when protein synthesis is inhibited. We aimed at identifying genomic determinants of variability in IRES-mediated translation of viral [Encephalomyocarditis virus (EMCV)] and cellular IRES [X-linked inhibitor-of-apoptosis (XIAP) and c-myc]. Bicistronic lentiviral constructs expressing two fluorescent reporters were used to transduce laboratory and B lymphoblastoid cell lines [15 CEPH pedigrees (n = 205) and 50 unrelated individuals]. IRES efficiency varied according to cell type and among individuals. Control of IRES activity has a significant genetic component (h(2) of 0.47 and 0.36 for EMCV and XIAP, respectively). Quantitative linkage analysis identified a suggestive locus (LOD 2.35) on chromosome 18q21.2, and genome-wide association analysis revealed of a cluster of SNPs on chromosome 3, intronic to the FHIT gene, marginally associated (P = 5.9E-7) with XIAP IRES function. This study illustrates the in vitro generation of intermediate phenotypes by using cell lines for the evaluation of genetic determinants of control of elements such as IRES.

  1. LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Task 1.4.2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Borucki, M; Lam, M; Lenhoff, R; Vitalis, E

    2010-01-26

    Good progress has been made on both bacterial and viral sequencing by the TMTI centers. While access to appropriate samples is a limiting factor to throughput, excellent progress has been made with respect to getting agreements in place with key sources of relevant materials. Sharing of sequenced genomes funded by TMTI has been extremely limited to date. The April 2010 exercise should force a resolution to this, but additional managerial pressures may be needed to ensure that rapid sharing of TMTI-funded sequencing occurs, regardless of collaborator constraints concerning ultimate publication(s). Policies to permit TMTI-internal rapid sharing of sequenced genomes should be written into all TMTI agreements with collaborators now being negotiated. TMTI needs to establish a Web-based system for tracking samples destined for sequencing. This includes metadata on sample origins and contributor, information on sample shipment/receipt, prioritization by TMTI, assignment to one or more sequencing centers (including possible TMTI-sponsored sequencing at a contributor site), and status history of the sample sequencing effort. While this system could be a component of the AFRL system, it is not part of any current development effort. Policy and standardized procedures are needed to ensure appropriate verification of all TMTI samples prior to the investment in sequencing. PCR, arrays, and classical biochemical tests are examples of potential verification methods. Verification is needed to detect miss-labeled, degraded, mixed or contaminated samples. Regular QC exercises are needed to ensure that the TMTI-funded centers are meeting all standards for producing quality genomic sequence data.

  2. Integrative functional genomics of hepatitis C virus infection identifies host dependencies in complete viral replication cycle.

    Science.gov (United States)

    Li, Qisheng; Zhang, Yong-Yuan; Chiu, Stephan; Hu, Zongyi; Lan, Keng-Hsin; Cha, Helen; Sodroski, Catherine; Zhang, Fang; Hsu, Ching-Sheng; Thomas, Emmanuel; Liang, T Jake

    2014-05-01

    Recent functional genomics studies including genome-wide small interfering RNA (siRNA) screens demonstrated that hepatitis C virus (HCV) exploits an extensive network of host factors for productive infection and propagation. How these co-opted host functions interact with various steps of HCV replication cycle and exert pro- or antiviral effects on HCV infection remains largely undefined. Here we present an unbiased and systematic strategy to functionally interrogate HCV host dependencies uncovered from our previous infectious HCV (HCVcc) siRNA screen. Applying functional genomics approaches and various in vitro HCV model systems, including HCV pseudoparticles (HCVpp), single-cycle infectious particles (HCVsc), subgenomic replicons, and HCV cell culture systems (HCVcc), we identified and characterized novel host factors or pathways required for each individual step of the HCV replication cycle. Particularly, we uncovered multiple HCV entry factors, including E-cadherin, choline kinase α, NADPH oxidase CYBA, Rho GTPase RAC1 and SMAD family member 6. We also demonstrated that guanine nucleotide binding protein GNB2L1, E2 ubiquitin-conjugating enzyme UBE2J1, and 39 other host factors are required for HCV RNA replication, while the deubiquitinating enzyme USP11 and multiple other cellular genes are specifically involved in HCV IRES-mediated translation. Families of antiviral factors that target HCV replication or translation were also identified. In addition, various virologic assays validated that 66 host factors are involved in HCV assembly or secretion. These genes included insulin-degrading enzyme (IDE), a proviral factor, and N-Myc down regulated Gene 1 (NDRG1), an antiviral factor. Bioinformatics meta-analyses of our results integrated with literature mining of previously published HCV host factors allows the construction of an extensive roadmap of cellular networks and pathways involved in the complete HCV replication cycle. This comprehensive study of HCV host

  3. Integrative functional genomics of hepatitis C virus infection identifies host dependencies in complete viral replication cycle.

    Directory of Open Access Journals (Sweden)

    Qisheng Li

    2014-05-01

    Full Text Available Recent functional genomics studies including genome-wide small interfering RNA (siRNA screens demonstrated that hepatitis C virus (HCV exploits an extensive network of host factors for productive infection and propagation. How these co-opted host functions interact with various steps of HCV replication cycle and exert pro- or antiviral effects on HCV infection remains largely undefined. Here we present an unbiased and systematic strategy to functionally interrogate HCV host dependencies uncovered from our previous infectious HCV (HCVcc siRNA screen. Applying functional genomics approaches and various in vitro HCV model systems, including HCV pseudoparticles (HCVpp, single-cycle infectious particles (HCVsc, subgenomic replicons, and HCV cell culture systems (HCVcc, we identified and characterized novel host factors or pathways required for each individual step of the HCV replication cycle. Particularly, we uncovered multiple HCV entry factors, including E-cadherin, choline kinase α, NADPH oxidase CYBA, Rho GTPase RAC1 and SMAD family member 6. We also demonstrated that guanine nucleotide binding protein GNB2L1, E2 ubiquitin-conjugating enzyme UBE2J1, and 39 other host factors are required for HCV RNA replication, while the deubiquitinating enzyme USP11 and multiple other cellular genes are specifically involved in HCV IRES-mediated translation. Families of antiviral factors that target HCV replication or translation were also identified. In addition, various virologic assays validated that 66 host factors are involved in HCV assembly or secretion. These genes included insulin-degrading enzyme (IDE, a proviral factor, and N-Myc down regulated Gene 1 (NDRG1, an antiviral factor. Bioinformatics meta-analyses of our results integrated with literature mining of previously published HCV host factors allows the construction of an extensive roadmap of cellular networks and pathways involved in the complete HCV replication cycle. This comprehensive study

  4. PLANT GENETICS:From Genome to Functional Genomics.

    Science.gov (United States)

    Kaiser, J

    2000-06-09

    Even before the first genetic sequence of a flowering plant, a wild mustard called Arabidopsis thaliana, is completed, a group of plant scientists has hatched an ambitious plan for the next phase: figuring out the functions of all 25,000 genes. Announced last week, the plan, which has the blessing of the National Science Foundation, came with another bit of good news for the Arabidopsis community: the unexpected release of a set of molecular markers for finding those genes.

  5. Plant microbe interactions in post genomic era: perspectives and applications

    Directory of Open Access Journals (Sweden)

    Jahangir Imam

    2016-09-01

    Full Text Available Deciphering plant-microbe interactions is a promising aspect to understand the benefits and the pathogenic effect of microbes and crop improvement. The advancement in sequencing technologies and various ‘omics’ tool has impressively accelerated the research in biological sciences in this area. The recent and ongoing developments provide a unique approach to describing these intricate interactions and test hypotheses. In the present review, we discuss the role of plant-pathogen interaction in crop improvement. The plant innate immunity has always been an important aspect of research and leads to some interesting information like the adaptation of unique immune mechanisms of plants against pathogens. The development of new techniques in the post - genomic era has greatly enhanced our understanding of the regulation of plant defense mechanisms against pathogens. The present review also provides an overview of beneficial plant-microbe interactions with special reference to Agrobacterium tumefaciens-plant interactions where plant derived signal molecules and plant immune responses are important in pathogenicity and transformation efficiency. The construction of various Genome-scale metabolic models of microorganisms and plants presented a better understanding of all metabolic interactions activated during the interactions. This review also lists the emerging repertoire of phytopathogens and its impact on plant disease resistance. Outline of different aspects of plant-pathogen interactions is presented in this review to bridge the gap between plant microbial ecology and their immune responses.

  6. Plant Microbe Interactions in Post Genomic Era: Perspectives and Applications.

    Science.gov (United States)

    Imam, Jahangir; Singh, Puneet K; Shukla, Pratyoosh

    2016-01-01

    Deciphering plant-microbe interactions is a promising aspect to understand the benefits and the pathogenic effect of microbes and crop improvement. The advancement in sequencing technologies and various 'omics' tool has impressively accelerated the research in biological sciences in this area. The recent and ongoing developments provide a unique approach to describing these intricate interactions and test hypotheses. In the present review, we discuss the role of plant-pathogen interaction in crop improvement. The plant innate immunity has always been an important aspect of research and leads to some interesting information like the adaptation of unique immune mechanisms of plants against pathogens. The development of new techniques in the post - genomic era has greatly enhanced our understanding of the regulation of plant defense mechanisms against pathogens. The present review also provides an overview of beneficial plant-microbe interactions with special reference to Agrobacterium tumefaciens-plant interactions where plant derived signal molecules and plant immune responses are important in pathogenicity and transformation efficiency. The construction of various Genome-scale metabolic models of microorganisms and plants presented a better understanding of all metabolic interactions activated during the interactions. This review also lists the emerging repertoire of phytopathogens and its impact on plant disease resistance. Outline of different aspects of plant-pathogen interactions is presented in this review to bridge the gap between plant microbial ecology and their immune responses.

  7. Genome-Editing Technologies for Enhancing Plant Disease Resistance

    Science.gov (United States)

    Andolfo, Giuseppe; Iovieno, Paolo; Frusciante, Luigi; Ercolano, Maria R.

    2016-01-01

    One of the greatest challenges for agricultural science in the 21st century is to improve yield stability through the progressive development of superior cultivars. The increasing numbers of infectious plant diseases that are caused by plant-pathogens make it ever more necessary to develop new strategies for plant disease resistance breeding. Targeted genome engineering allows the introduction of precise modifications directly into a commercial variety, offering a viable alternative to traditional breeding methods. Genome editing is a powerful tool for modifying crucial players in the plant immunity system. In this work, we propose and discuss genome-editing strategies and targets for improving resistance to phytopathogens. First of all, we present the opportunities to rewrite the effector-target sequence for avoiding effector-target molecular interaction and also to modify effector-target promoters for increasing the expression of target genes involved in the resistance process. In addition, we describe potential approaches for obtaining synthetic R-genes through genome-editing technologies (GETs). Finally, we illustrate a genome editing flowchart to modify the pathogen recognition sites and engineer an R-gene that mounts resistance to some phylogenetically divergent pathogens. GETs potentially mark the beginning of a new era, in which synthetic biology affords a basis for obtaining a reinforced plant defense system. Nowadays it is conceivable that by modulating the function of the major plant immunity players, we will be able to improve crop performance for a sustainable agriculture. PMID:27990151

  8. Next-Generation Sequencing and Genome Editing in Plant Virology

    OpenAIRE

    Hadidi, Ahmed; Flores, Ricardo; Candresse, Thierry; Barba, Marina

    2016-01-01

    Next-generation sequencing (NGS) has been applied to plant virology since 2009. NGS provides highly efficient, rapid, low cost DNA, or RNA high-throughput sequencing of the genomes of plant viruses and viroids and of the specific small RNAs generated during the infection process. These small RNAs, which cover frequently the whole genome of the infectious agent, are 21–24 nt long and are known as vsRNAs for viruses and vd-sRNAs for viroids. NGS has been used in a number of studies in plant vir...

  9. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency

    Directory of Open Access Journals (Sweden)

    Fan Qiuling

    2012-05-01

    Full Text Available Abstract Background Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a specific protein for pharmacological or industrial use. To maximize protein expression, translation of mRNA must be optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation enhancers. Here, we compare the effects of untranslated regions (UTRs containing translation elements from six plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells. Results The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV-like cap-independent translation elements (BTEs. The BYDV BTE conferred the most efficient translation of a luciferase reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt virus, and Crucifer-infecting tobamovirus (crTMV did not stimulate translation efficiently. mRNA with the crTMV 5′ UTR was unstable in tobacco protoplasts. Conclusions BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral expression vectors.

  10. New Viral Vector for Superproduction of Epitopes of Vaccine Proteins in Plants

    Science.gov (United States)

    Tyulkina, L.G.; Skurat, E.V.; Frolova, O.Yu.; Komarova, T.V.; Karger, E.M.; Atabekov, I.G.

    2011-01-01

    The novel viral vectors PVX-CP AltMV and PVXdt-CP AltMV are superexpressors of the capsid protein (CP). These viral vectors were constructed on the basis of the potato virus X (PVX) genome andAlternantheramosaic virus (AltMV) CP gene. The expression, based on the hybrid viral vectors, is genetically safe, since the systemic transport and formation of infective viral particles are blocked. CP AltMV can self-assemble into virus-like particles (VLPs) in the absence of genomic RNA. The vectors can be used for the presentation of foreign peptides (including epitopes of human pathogens) on the surface of the VLP. The N-terminal extracellular domain (M2e) of the influenza virus A M2 protein and its truncated variant (ΔM2e) were used as model heterologous peptides for the construction of the chimeric CP AltMV. Chimeric CP AltMV retains its ability to self-assemble into VLP. The epitopes of the M2 influenza virus protein were not eliminated during the process of accumulation, polymerization and purification of chimeric VLP AltMV, providing evidence of the stability of chimeric VLP with C-terminal heterologous epitopes. It appears that VLP produced by the vectors PVX-CP AltMV and PVXdt-CP AltMV can be used in the field of biotechnology for the presentation of the epitopes of vaccine proteins on their surfaces. The chimeric VLP AltMV with the presented foreign epitopes can be used as candidate vaccines. PMID:22649706

  11. Genome analysis methods - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us PGDBj Registered...ear Year of genome analysis Sequencing method Sequencing method Read counts Read counts Covered genome region Covered...otation method Number of predicted genes Number of predicted genes Genome database Genome database informati... License Update History of This Database Site Policy | Contact Us Genome analysis... methods - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  12. Genomic Loads and Genotypes of Respiratory Syncytial Virus: Viral Factors during Lower Respiratory Tract Infection in Chilean Hospitalized Infants

    Science.gov (United States)

    Espinosa, Yazmín; San Martín, Camila; Torres, Alejandro A.; Farfán, Mauricio J.; Torres, Juan P.; Avadhanula, Vasanthi; Piedra, Pedro A.; Tapia, Lorena I.

    2017-01-01

    The clinical impact of viral factors (types and viral loads) during respiratory syncytial virus (RSV) infection is still controversial, especially regarding newly described genotypes. In this study, infants with RSV bronchiolitis were recruited to describe the association of these viral factors with severity of infection. RSV antigenic types, genotypes, and viral loads were determined from hospitalized patients at Hospital Roberto del Río, Santiago, Chile. Cases were characterized by demographic and clinical information, including days of lower respiratory symptoms and severity. A total of 86 patients were included: 49 moderate and 37 severe cases. During 2013, RSV-A was dominant (86%). RSV-B predominated in 2014 (92%). Phylogenetic analyses revealed circulation of GA2, Buenos Aires (BA), and Ontario (ON) genotypes. No association was observed between severity of infection and RSV group (p = 0.69) or genotype (p = 0.87). After a clinical categorization of duration of illness, higher RSV genomic loads were detected in infants evaluated earlier in their disease (p < 0.001) and also in infants evaluated later, but coursing a more severe infection (p = 0.04). Although types and genotypes did not associate with severity in our children, higher RSV genomic loads and delayed viral clearance in severe patients define a group that might benefit from new antiviral therapies. PMID:28335547

  13. MIPS PlantsDB: a database framework for comparative plant genome research.

    Science.gov (United States)

    Nussbaumer, Thomas; Martis, Mihaela M; Roessner, Stephan K; Pfeifer, Matthias; Bader, Kai C; Sharma, Sapna; Gundlach, Heidrun; Spannagl, Manuel

    2013-01-01

    The rapidly increasing amount of plant genome (sequence) data enables powerful comparative analyses and integrative approaches and also requires structured and comprehensive information resources. Databases are needed for both model and crop plant organisms and both intuitive search/browse views and comparative genomics tools should communicate the data to researchers and help them interpret it. MIPS PlantsDB (http://mips.helmholtz-muenchen.de/plant/genomes.jsp) was initially described in NAR in 2007 [Spannagl,M., Noubibou,O., Haase,D., Yang,L., Gundlach,H., Hindemitt, T., Klee,K., Haberer,G., Schoof,H. and Mayer,K.F. (2007) MIPSPlantsDB-plant database resource for integrative and comparative plant genome research. Nucleic Acids Res., 35, D834-D840] and was set up from the start to provide data and information resources for individual plant species as well as a framework for integrative and comparative plant genome research. PlantsDB comprises database instances for tomato, Medicago, Arabidopsis, Brachypodium, Sorghum, maize, rice, barley and wheat. Building up on that, state-of-the-art comparative genomics tools such as CrowsNest are integrated to visualize and investigate syntenic relationships between monocot genomes. Results from novel genome analysis strategies targeting the complex and repetitive genomes of triticeae species (wheat and barley) are provided and cross-linked with model species. The MIPS Repeat Element Database (mips-REdat) and Catalog (mips-REcat) as well as tight connections to other databases, e.g. via web services, are further important components of PlantsDB.

  14. A dimeric Rep protein initiates replication of a linear archaeal virus genome: implications for the Rep mechanism and viral replication

    DEFF Research Database (Denmark)

    Oke, Muse; Kerou, Melina; Liu, Huanting

    2011-01-01

    that a protein encoded in the 34-kbp genome of the rudivirus SIRV1 is a member of the replication initiator (Rep) superfamily of proteins, which initiate rolling-circle replication (RCR) of diverse viruses and plasmids. We show that SIRV Rep nicks the viral hairpin terminus, forming a covalent adduct between...... positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral...

  15. A novel procedure for the localization of viral RNAs in protoplasts and whole plants.

    Science.gov (United States)

    Zhang, Fengli; Simon, Anne E

    2003-09-01

    Analysis of virus spread using co-expressed reporter proteins has provided important details on cell-to-cell and long-distance movement of viruses in plants. However, most viruses cannot tolerate insertion of large non-viral segments or loss of any open-reading frames, procedures required to detect viruses non-evasively. A technique used to localize mRNAs intracellularly in yeast has been modified for detection of viral RNAs in whole plants. The technique makes use of the binding of the coat protein of MS2 bacteriophage (CPMS2) to a 19 base hairpin (hp). A fusion protein, consisting of the CPMS2, green fluorescent protein (GFP), and a nuclear localization signal (NLS), was nuclear-localized upon transient expression in protoplasts. However, addition of the hp to the 3' untranslated region of Turnip crinkle virus (TCV-hp) and co-transfection of the virus and fusion protein construct into protoplasts resulted in the re-location of GFP to the cytoplasm. Neither the insertion of the hp nor the interaction with the fusion protein impaired any viral functions. Transgenic plants expressing the GFP-NLS-CPMS2 fusion protein were generated, and GFP was detected in nuclei of young plant cells. Foci of GFP cytoplasmic fluorescence were detected in TCV-hp-inoculated leaves at 2 days post-inoculation. Later, GFP was detected in young leaves near the midvein and in the base (support) cells of trichomes in the vicinity of secondary and tertiary veins. In older leaves, cytoplasmic GFP could be visualized throughout many of the leaves. This technique should be amenable for detection of any virus with a transformable plant (or animal) host and may also prove useful for localizing properly engineered host RNAs.

  16. BRAD, the genetics and genomics database for Brassica plants

    Directory of Open Access Journals (Sweden)

    Li Pingxia

    2011-10-01

    Full Text Available Abstract Background Brassica species include both vegetable and oilseed crops, which are very important to the daily life of common human beings. Meanwhile, the Brassica species represent an excellent system for studying numerous aspects of plant biology, specifically for the analysis of genome evolution following polyploidy, so it is also very important for scientific research. Now, the genome of Brassica rapa has already been assembled, it is the time to do deep mining of the genome data. Description BRAD, the Brassica database, is a web-based resource focusing on genome scale genetic and genomic data for important Brassica crops. BRAD was built based on the first whole genome sequence and on further data analysis of the Brassica A genome species, Brassica rapa (Chiifu-401-42. It provides datasets, such as the complete genome sequence of B. rapa, which was de novo assembled from Illumina GA II short reads and from BAC clone sequences, predicted genes and associated annotations, non coding RNAs, transposable elements (TE, B. rapa genes' orthologous to those in A. thaliana, as well as genetic markers and linkage maps. BRAD offers useful searching and data mining tools, including search across annotation datasets, search for syntenic or non-syntenic orthologs, and to search the flanking regions of a certain target, as well as the tools of BLAST and Gbrowse. BRAD allows users to enter almost any kind of information, such as a B. rapa or A. thaliana gene ID, physical position or genetic marker. Conclusion BRAD, a new database which focuses on the genetics and genomics of the Brassica plants has been developed, it aims at helping scientists and breeders to fully and efficiently use the information of genome data of Brassica plants. BRAD will be continuously updated and can be accessed through http://brassicadb.org.

  17. Tobacco mosaic virus infection results in an increase in recombination frequency and resistance to viral, bacterial, and fungal pathogens in the progeny of infected tobacco plants.

    Science.gov (United States)

    Kathiria, Palak; Sidler, Corinne; Golubov, Andrey; Kalischuk, Melanie; Kawchuk, Lawrence M; Kovalchuk, Igor

    2010-08-01

    Our previous experiments showed that infection of tobacco (Nicotiana tabacum) plants with Tobacco mosaic virus (TMV) leads to an increase in homologous recombination frequency (HRF). The progeny of infected plants also had an increased rate of rearrangements in resistance gene-like loci. Here, we report that tobacco plants infected with TMV exhibited an increase in HRF in two consecutive generations. Analysis of global genome methylation showed the hypermethylated genome in both generations of plants, whereas analysis of methylation via 5-methyl cytosine antibodies demonstrated both hypomethylation and hypermethylation. Analysis of the response of the progeny of infected plants to TMV, Pseudomonas syringae, or Phytophthora nicotianae revealed a significant delay in symptom development. Infection of these plants with TMV or P. syringae showed higher levels of induction of PATHOGENESIS-RELATED GENE1 gene expression and higher levels of callose deposition. Our experiments suggest that viral infection triggers specific changes in progeny that promote higher levels of HRF at the transgene and higher resistance to stress as compared with the progeny of unstressed plants. However, data reported in these studies do not establish evidence of a link between recombination frequency and stress resistance.

  18. A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins.

    Science.gov (United States)

    Amari, Khalid; Boutant, Emmanuel; Hofmann, Christina; Schmitt-Keichinger, Corinne; Fernandez-Calvino, Lourdes; Didier, Pascal; Lerich, Alexander; Mutterer, Jérome; Thomas, Carole L; Heinlein, Manfred; Mély, Yves; Maule, Andrew J; Ritzenthaler, Christophe

    2010-09-23

    Plasmodesmata (PD) are essential but poorly understood structures in plant cell walls that provide symplastic continuity and intercellular communication pathways between adjacent cells and thus play fundamental roles in development and pathogenesis. Viruses encode movement proteins (MPs) that modify these tightly regulated pores to facilitate their spread from cell to cell. The most striking of these modifications is observed for groups of viruses whose MPs form tubules that assemble in PDs and through which virions are transported to neighbouring cells. The nature of the molecular interactions between viral MPs and PD components and their role in viral movement has remained essentially unknown. Here, we show that the family of PD-located proteins (PDLPs) promotes the movement of viruses that use tubule-guided movement by interacting redundantly with tubule-forming MPs within PDs. Genetic disruption of this interaction leads to reduced tubule formation, delayed infection and attenuated symptoms. Our results implicate PDLPs as PD proteins with receptor-like properties involved the assembly of viral MPs into tubules to promote viral movement.

  19. Heat shock protein 70 is associated with replicase complex of Japanese encephalitis virus and positively regulates viral genome replication.

    Directory of Open Access Journals (Sweden)

    Jing Ye

    Full Text Available Japanese encephalitis virus (JEV is a mosquito-borne flavivirus that causes the most prevalent viral encephalitis in Asia. The NS5 protein of JEV is a key component of the viral replicase complex, which plays a crucial role in viral pathogenesis. In this study, tandem affinity purification (TAP followed by mass spectrometry analysis was performed to identify novel host proteins that interact with NS5. Heat shock protein 70 (Hsp70, eukaryotic elongation factor 1-alpha (eEF-1α and ras-related nuclear protein (Ran were demonstrated to interact with NS5. In addition to NS5, Hsp70 was also found to interact with NS3 which is another important member of the replicase complex. It was observed that the cytoplasmic Hsp70 partially colocalizes with the components of viral replicase complex including NS3, NS5 and viral dsRNA during JEV infection. Knockdown of Hsp70 resulted in a significantly reduced JEV genome replication. Further analysis reveals that Hsp70 enhances the stability of viral proteins in JEV replicase complex. These results suggest an important role for Hsp70 in regulating JEV replication, which provides a potential target for the development of anti-JEV therapies.

  20. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region

    Energy Technology Data Exchange (ETDEWEB)

    Bienz, K.; Egger, D.; Troxler, M.; Pasamontes, L. (Univ. of Basel (Switzerland))

    1990-03-01

    Transcriptionally active replication complexes bound to smooth membrane vesicles were isolated from poliovirus-infected cells. In electron microscopic, negatively stained preparations, the replication complex appeared as an irregularly shaped, oblong structure attached to several virus-induced vesicles of a rosettelike arrangement. Electron microscopic immunocytochemistry of such preparations demonstrated that the poliovirus replication complex contains the proteins coded by the P2 genomic region (P2 proteins) in a membrane-associated form. In addition, the P2 proteins are also associated with viral RNA, and they can be cross-linked to viral RNA by UV irradiation. Guanidine hydrochloride prevented the P2 proteins from becoming membrane bound but did not change their association with viral RNA. The findings allow the conclusion that the protein 2C or 2C-containing precursor(s) is responsible for the attachment of the viral RNA to the vesicular membrane and for the spatial organization of the replication complex necessary for its proper functioning in viral transcription. A model for the structure of the viral replication complex and for the function of the 2C-containing P2 protein(s) and the vesicular membranes is proposed.

  1. Complete genome sequence of a new bipartite begomovirus infecting fluted pumpkin (Telfairia occidentalis) plants in Cameroon.

    Science.gov (United States)

    Leke, Walter N; Khatabi, Behnam; Fondong, Vincent N; Brown, Judith K

    2016-08-01

    The complete genome sequence was determined and characterized for a previously unreported bipartite begomovirus from fluted pumpkin (Telfairia occidentalis, family Cucurbitaceae) plants displaying mosaic symptoms in Cameroon. The DNA-A and DNA-B components were ~2.7 kb and ~2.6 kb in size, and the arrangement of viral coding regions on the genomic components was like those characteristic of other known bipartite begomoviruses originating in the Old World. While the DNA-A component was more closely related to that of chayote yellow mosaic virus (ChaYMV), at 78 %, the DNA-B component was more closely related to that of soybean chlorotic blotch virus (SbCBV), at 64 %. This newly discovered bipartite Old World virus is herein named telfairia mosaic virus (TelMV).

  2. Advances in Genetical Genomics of Plants

    NARCIS (Netherlands)

    Joosen, R.V.L.; Ligterink, W.; Hilhorst, H.W.M.; Keurentjes, J.J.B.

    2009-01-01

    Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the cau

  3. Disruption of vector transmission by a plant-expressed viral glycoprotein.

    Science.gov (United States)

    Montero-Astúa, Mauricio; Rotenberg, Dorith; Leach-Kieffaber, Alexandria; Schneweis, Brandi A; Park, Sunghun; Park, Jungeun K; German, Thomas L; Whitfield, Anna E

    2014-03-01

    Vector-borne viruses are a threat to human, animal, and plant health worldwide, requiring the development of novel strategies for their control. Tomato spotted wilt virus (TSWV) is one of the 10 most economically significant plant viruses and, together with other tospoviruses, is a threat to global food security. TSWV is transmitted by thrips, including the western flower thrips, Frankliniella occidentalis. Previously, we demonstrated that the TSWV glycoprotein GN binds to thrips vector midguts. We report here the development of transgenic plants that interfere with TSWV acquisition and transmission by the insect vector. Tomato plants expressing GN-S protein supported virus accumulation and symptom expression comparable with nontransgenic plants. However, virus titers in larval insects exposed to the infected transgenic plants were three-log lower than insects exposed to infected nontransgenic control plants. The negative effect of the GN-S transgenics on insect virus titers persisted to adulthood, as shown by four-log lower virus titers in adults and an average reduction of 87% in transmission efficiencies. These results demonstrate that an initial reduction in virus infection of the insect can result in a significant decrease in virus titer and transmission over the lifespan of the vector, supportive of a dose-dependent relationship in the virus-vector interaction. These findings demonstrate that plant expression of a viral protein can be an effective way to block virus transmission by insect vectors.

  4. Towards social acceptance of plant breeding by genome editing.

    Science.gov (United States)

    Araki, Motoko; Ishii, Tetsuya

    2015-03-01

    Although genome-editing technologies facilitate efficient plant breeding without introducing a transgene, it is creating indistinct boundaries in the regulation of genetically modified organisms (GMOs). Rapid advances in plant breeding by genome-editing require the establishment of a new global policy for the new biotechnology, while filling the gap between process-based and product-based GMO regulations. In this Opinion article we review recent developments in producing major crops using genome-editing, and we propose a regulatory model that takes into account the various methodologies to achieve genetic modifications as well as the resulting types of mutation. Moreover, we discuss the future integration of genome-editing crops into society, specifically a possible response to the 'Right to Know' movement which demands labeling of food that contains genetically engineered ingredients.

  5. TALENs: Customizable Molecular DNA Scissors for Genome Engineering of Plants

    Institute of Scientific and Technical Information of China (English)

    Kunling Chen; Caixia Gao

    2013-01-01

    Precise genome modification with engineered nucleases is a powerful tool for studying basic biology and applied biotechnology.Transcription activator-like effector nucleases (TALENs),consisting of an engineered specific (TALE) DNA binding domain and a Fok I cleavage domain,are newly developed versatile reagents for genome engineering in different organisms.Because of the simplicity of the DNA recognition code and their modular assembly,TALENs can act as customizable molecular DNA scissors inducing double-strand breaks (DSBs) at given genomic location.Thus,they provide a valuable approach to targeted genome modifications such as mutations,insertions,replacements or chromosome rearrangements.In this article,we review the development of TALENs,and summarize the principles and tools for TALEN-mediated gene targeting in plant cells,as well as current and potential strategies for use in plant research and crop improvement.

  6. Does genomic selection have a future in plant breeding?

    Science.gov (United States)

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2013-09-01

    Plant breeding largely depends on phenotypic selection in plots and only for some, often disease-resistance-related traits, uses genetic markers. The more recently developed concept of genomic selection, using a black box approach with no need of prior knowledge about the effect or function of individual markers, has also been proposed as a great opportunity for plant breeding. Several empirical and theoretical studies have focused on the possibility to implement this as a novel molecular method across various species. Although we do not question the potential of genomic selection in general, in this Opinion, we emphasize that genomic selection approaches from dairy cattle breeding cannot be easily applied to complex plant breeding.

  7. RNAi and functional genomics in plant parasitic nematodes.

    Science.gov (United States)

    Rosso, M N; Jones, J T; Abad, P

    2009-01-01

    Plant nematology is currently undergoing a revolution with the availability of the first genome sequences as well as comprehensive expressed sequence tag (EST) libraries from a range of nematode species. Several strategies are being used to exploit this wealth of information. Comparative genomics is being used to explore the acquisition of novel genes associated with parasitic lifestyles. Functional analyses of nematode genes are moving toward larger scale studies including global transcriptome profiling. RNA interference (RNAi) has been shown to reduce expression of a range of plant parasitic nematode genes and is a powerful tool for functional analysis of nematode genes. RNAi-mediated suppression of genes essential for nematode development, survival, or parasitism is revealing new targets for nematode control. Plant nematology in the genomics era is now facing the challenge to develop RNAi screens adequate for high-throughput functional analyses.

  8. Bovine viral diarrhea virus: molecular cloning of genomic RNA and its diagnostic application

    Energy Technology Data Exchange (ETDEWEB)

    Brock, K.V.

    1987-01-01

    Molecular cloning of a field isolate of bovine viral diarrhea virus (BVDV) strain 72 RNA was done in this study. The sensitivity and specificity of cloned cDNA sequences in hybridization assays with various BVDV strains were determined. cDNA was synthesized from polyadenylated BVDV RNA templates with oligo-dT primers, reverse transcriptase, and DNA polymerase I. The newly synthesized double-stranded BVDV cDNA was C-tailed with terminal deoxytransferase and annealed into G-tailed, Pst-1-cut pUC9 plasmid. Escherichia coli was transformed with the recombinant plasmids and a library of approximately 200 BVDV specific cDNA clones varying in length from 0.5 to 2.6 kilobases were isolated. The sensitivity and specificity of hybridization between the labelled cDNA and BVDV target sequences were determined. Cloned BVDV sequences were isolated from pUC9 plasmid DNA and labelled with /sup 32/P by nick translation. The detection limit by dot blot hybridization assay was 20 pg of purified genomic BVDV RNA. cDNA hybridization probes were specific for all strains of BVDV tested, regardless of whether they were noncytopathic and cytopathic, but did not hybridize with heterologous bovine viruses tested. Probes did not hybridize with uninfected cell culture or cellular RNA. Hybridization probes were at least as sensitive as infectivity assays in detecting homologous virus.

  9. Genetics and Genomics of Cotton Leaf Curl Disease, Its Viral Causal Agents and Whitefly Vector: A Way Forward to Sustain Cotton Fiber Security

    Directory of Open Access Journals (Sweden)

    Mehboob-ur- Rahman

    2017-07-01

    Full Text Available Cotton leaf curl disease (CLCuD after its first epidemic in 1912 in Nigeria, has spread to different cotton growing countries including United States, Pakistan, India, and China. The disease is of viral origin—transmitted by the whitefly Bemisia tabaci, which is difficult to control because of the prevalence of multiple virulent viral strains or related species. The problem is further complicated as the CLCuD causing virus complex has a higher recombination rate. The availability of alternate host crops like tomato, okra, etc., and practicing mixed type farming system have further exaggerated the situation by adding synergy to the evolution of new viral strains and vectors. Efforts to control this disease using host plant resistance remained successful using two gene based-resistance that was broken by the evolution of new resistance breaking strain called Burewala virus. Development of transgenic cotton using both pathogen and non-pathogenic derived approaches are in progress. In future, screening for new forms of host resistance, use of DNA markers for the rapid incorporation of resistance into adapted cultivars overlaid with transgenics and using genome editing by CRISPR/Cas system would be instrumental in adding multiple layers of defense to control the disease—thus cotton fiber production will be sustained.

  10. Genetics and Genomics of Cotton Leaf Curl Disease, Its Viral Causal Agents and Whitefly Vector: A Way Forward to Sustain Cotton Fiber Security.

    Science.gov (United States)

    Rahman, Mehboob-Ur-; Khan, Ali Q; Rahmat, Zainab; Iqbal, Muhammad A; Zafar, Yusuf

    2017-01-01

    Cotton leaf curl disease (CLCuD) after its first epidemic in 1912 in Nigeria, has spread to different cotton growing countries including United States, Pakistan, India, and China. The disease is of viral origin-transmitted by the whitefly Bemisia tabaci, which is difficult to control because of the prevalence of multiple virulent viral strains or related species. The problem is further complicated as the CLCuD causing virus complex has a higher recombination rate. The availability of alternate host crops like tomato, okra, etc., and practicing mixed type farming system have further exaggerated the situation by adding synergy to the evolution of new viral strains and vectors. Efforts to control this disease using host plant resistance remained successful using two gene based-resistance that was broken by the evolution of new resistance breaking strain called Burewala virus. Development of transgenic cotton using both pathogen and non-pathogenic derived approaches are in progress. In future, screening for new forms of host resistance, use of DNA markers for the rapid incorporation of resistance into adapted cultivars overlaid with transgenics and using genome editing by CRISPR/Cas system would be instrumental in adding multiple layers of defense to control the disease-thus cotton fiber production will be sustained.

  11. Early genome duplications in conifers and other seed plants.

    Science.gov (United States)

    Li, Zheng; Baniaga, Anthony E; Sessa, Emily B; Scascitelli, Moira; Graham, Sean W; Rieseberg, Loren H; Barker, Michael S

    2015-11-01

    Polyploidy is a common mode of speciation and evolution in angiosperms (flowering plants). In contrast, there is little evidence to date that whole genome duplication (WGD) has played a significant role in the evolution of their putative extant sister lineage, the gymnosperms. Recent analyses of the spruce genome, the first published conifer genome, failed to detect evidence of WGDs in gene age distributions and attributed many aspects of conifer biology to a lack of WGDs. We present evidence for three ancient genome duplications during the evolution of gymnosperms, based on phylogenomic analyses of transcriptomes from 24 gymnosperms and 3 outgroups. We use a new algorithm to place these WGD events in phylogenetic context: two in the ancestry of major conifer clades (Pinaceae and cupressophyte conifers) and one in Welwitschia (Gnetales). We also confirm that a WGD hypothesized to be restricted to seed plants is indeed not shared with ferns and relatives (monilophytes), a result that was unclear in earlier studies. Contrary to previous genomic research that reported an absence of polyploidy in the ancestry of contemporary gymnosperms, our analyses indicate that polyploidy has contributed to the evolution of conifers and other gymnosperms. As in the flowering plants, the evolution of the large genome sizes of gymnosperms involved both polyploidy and repetitive element activity.

  12. Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data.

    Science.gov (United States)

    Bolser, Dan; Staines, Daniel M; Pritchard, Emily; Kersey, Paul

    2016-01-01

    Ensembl Plants ( http://plants.ensembl.org ) is an integrative resource presenting genome-scale information for a growing number of sequenced plant species (currently 33). Data provided includes genome sequence, gene models, functional annotation, and polymorphic loci. Various additional information are provided for variation data, including population structure, individual genotypes, linkage, and phenotype data. In each release, comparative analyses are performed on whole genome and protein sequences, and genome alignments and gene trees are made available that show the implied evolutionary history of each gene family. Access to the data is provided through a genome browser incorporating many specialist interfaces for different data types, and through a variety of additional methods for programmatic access and data mining. These access routes are consistent with those offered through the Ensembl interface for the genomes of non-plant species, including those of plant pathogens, pests, and pollinators.Ensembl Plants is updated 4-5 times a year and is developed in collaboration with our international partners in the Gramene ( http://www.gramene.org ) and transPLANT projects ( http://www.transplantdb.org ).

  13. Concatemeric intermediates of equine herpesvirus type 1 DNA replication contain frequent inversions of adjacent long segments of the viral genome.

    Science.gov (United States)

    Slobedman, B; Simmons, A

    1997-03-17

    In common with other alpha-herpesviruses, the genome of equine herpesvirus type-1 (EHV-1) comprises covalently linked long and short unique sequences of DNA, each flanked by inverted repeats. Equimolar amounts of two genomic isomers, generated by free inversion of the short segment, relative to the long segment, are packaged into EHV-1 virions. In contrast with herpes simplex virus (HSV), inversion of genomic long segments has not been described. In the current work, the structures of high molecular weight intermediates of EHV-1 DNA replication were studied by field inversion gel electrophoresis. It is shown that adjacent long segments of the viral genome are frequently inverted in concatemeric intermediates of EHV-1 DNA replication. Further, like HSV concatemers, high molecular weight intermediates of EHV-1 replication are flanked exclusively by the long segment of the viral genome. Hence, despite the fact that only two, rather than four, isomers of EHV-1 DNA are packaged into virions, the intermediates of EHV-1 DNA replication closely resemble those of herpes simplex virus type 1 in structure. These data have implications relating to the mechanisms involved in packaging of alpha-herpesvirus DNA.

  14. rgs-CaM Detects and Counteracts Viral RNA Silencing Suppressors in Plant Immune Priming.

    Science.gov (United States)

    Jeon, Eun Jin; Tadamura, Kazuki; Murakami, Taiki; Inaba, Jun-Ichi; Kim, Bo Min; Sato, Masako; Atsumi, Go; Kuchitsu, Kazuyuki; Masuta, Chikara; Nakahara, Kenji S

    2017-10-01

    Primary infection of a plant with a pathogen that causes high accumulation of salicylic acid in the plant typically via a hypersensitive response confers enhanced resistance against secondary infection with a broad spectrum of pathogens, including viruses. This phenomenon is called systemic acquired resistance (SAR), which is a plant priming for adaption to repeated biotic stress. However, the molecular mechanisms of SAR-mediated enhanced inhibition, especially of virus infection, remain unclear. Here, we show that SAR against cucumber mosaic virus (CMV) in tobacco plants (Nicotiana tabacum) involves a calmodulin-like protein, rgs-CaM. We previously reported the antiviral function of rgs-CaM, which binds to and directs degradation of viral RNA silencing suppressors (RSSs), including CMV 2b, via autophagy. We found that rgs-CaM-mediated immunity is ineffective against CMV infection in normally growing tobacco plants but is activated as a result of SAR induction via salicylic acid signaling. We then analyzed the effect of overexpression of rgs-CaM on salicylic acid signaling. Overexpressed and ectopically expressed rgs-CaM induced defense reactions, including cell death, generation of reactive oxygen species, and salicylic acid signaling. Further analysis using a combination of the salicylic acid analogue benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) and the Ca(2+) ionophore A23187 revealed that rgs-CaM functions as an immune receptor that induces salicylic acid signaling by simultaneously perceiving both viral RSS and Ca(2+) influx as infection cues, implying its autoactivation. Thus, secondary infection of SAR-induced tobacco plants with CMV seems to be effectively inhibited through 2b recognition and degradation by rgs-CaM, leading to reinforcement of antiviral RNA silencing and other salicylic acid-mediated antiviral responses.IMPORTANCE Even without an acquired immune system like that in vertebrates, plants show enhanced whole-plant

  15. Bioinformatics approaches for viral metagenomics in plants using short RNAs: model case of study and application to a Cicer arietinum population.

    Science.gov (United States)

    Pirovano, Walter; Miozzi, Laura; Boetzer, Marten; Pantaleo, Vitantonio

    2014-01-01

    Over the past years deep sequencing experiments have opened novel doors to reconstruct viral populations in a high-throughput and cost-effective manner. Currently a substantial number of studies have been performed which employ next generation sequencing techniques to either analyze known viruses by means of a reference-guided approach or to discover novel viruses using a de novo-based strategy. Taking advantage of the well-known Cymbidium ringspot virus we have carried out a comparison of different bioinformatics tools to reconstruct the viral genome based on 21-27 nt short (s)RNA sequencing with the aim to identify the most efficient pipeline. The same approach was applied to a population of plants constituting an ancient variety of Cicer arietinum with red seeds. Among the discovered viruses, we describe the presence of a Tobamovirus referring to the Tomato mottle mosaic virus (NC_022230), which was not yet observed on C. arietinum nor revealed in Europe and a viroid referring to Hop stunt viroid (NC_001351.1) never reported in chickpea. Notably, a reference sequence guided approach appeared the most efficient in such kind of investigation. Instead, the de novo assembly reached a non-appreciable coverage although the most prominent viral species could still be identified. Advantages and limitations of viral metagenomics analysis using sRNAs are discussed.

  16. Plant-derived vaccine protects target animals against a viral disease

    DEFF Research Database (Denmark)

    Dalsgaard, Kristian; Uttenthal, Åse; Jones, T.D.

    1997-01-01

    The successful expression of animal or human virus epitopes on the surface of plant viruses has recently been demonstrated. These chimeric virus particles (CVPs) could represent a cost-effective and safe alternative to conventional animal cell-based vaccines. We report the insertion of oligonucle....... The epitope used occurs in three different virus species-MEV, canine parvovirus, and feline panleukopenia virus-and thus the same vaccine could be used in three economically important viral hosts-mink, dogs, and cats, respectively....

  17. [Non-LTR retrotransposons: LINEs and SINEs in plant genome].

    Science.gov (United States)

    Cheng, Xu-Dong; Ling, Hong-Qing

    2006-06-01

    Retrotransposons are one of the drivers of genome evolution. They include LTR (long terminal repeat) retrotransposons, which widespread in Eukaryotagenomes, show structural similarity to retroviruses. Non-LTR retrotransposons were first discovered in animal genomes and then identified as ubiquitous components of nuclear genomes in many species across the plant kingdom. They constitute a large fraction of the repetitive DNA. Non-LTR retrotransposons are divided into LINEs (long interspersed nuclear elements) and SINEs (short interspersed nuclear elements). Transposition of non-LTR retrotransposons is rarely observed in plants indicating that most of them are inactive and/or under regulation of the host genome. Transposition is poorly understood, but experimental evidence from other genetic systems shows that LINEs are able to transpose autonomously while non-autonomous SINEs depend on the reverse transcription machinery of other retrotransposons. Phylogenic analysis shows LINEs are probably the most ancient class of retrotransposons in plant genomes, while the origin of SINEs is unknown. This review sums up the above data and wants to show readers a clear picture of non-LTR retrotransposons.

  18. The reference genome of the halophytic plant Eutrema salsugineum

    Directory of Open Access Journals (Sweden)

    Ruolin eYang

    2013-03-01

    Full Text Available A halophyte refers to a plant that can naturally tolerate high concentrations of salt in the soil, and its tolerance to salt stress may occur through various evolutionary and molecular mechanisms. Eutrema salsugineum is one of the halophytic species in the Brassicaceae family that can naturally tolerate multiple types of abiotic stresses that typically limit crop productivity, such as extreme salinity and cold. It has been widely used as a laboratorial model for stress biology research in plants. Here, we present the reference genome sequence (241 Mb of E. salsugineum at 8x coverage sequenced by traditional Sanger sequencing-based approach with comparison to its close relative Arabidopsis thaliana. The E. salsugineum genome contains 26,531 protein-coding genes and 51.4% of its genome is composed of repetitive sequences that mostly reside in pericentromeric regions. Comparative analyses of the genome structures, protein-coding genes, microRNAs, stress-related pathways and estimated translation efficiency of proteins between E. salsugineum and A. thaliana suggest adaptation of halophyte to environmental stresses may occur via a global network adjustment of multiple regulatory mechanisms. The E. salsugineum genome provides a resource to identify naturally occurring genetic alterations contributing to the adaptation of the halophyte plants to salinity might be bioengineered in related crop species.

  19. Tubular structure induced by a plant virus facilitates viral spread in its vector insect.

    Directory of Open Access Journals (Sweden)

    Qian Chen

    Full Text Available Rice dwarf virus (RDV replicates in and is transmitted by a leafhopper vector in a persistent-propagative manner. Previous cytopathologic and genetic data revealed that tubular structures, constructed by the nonstructural viral protein Pns10, contain viral particles and are directly involved in the intercellular spread of RDV among cultured leafhopper cells. Here, we demonstrated that RDV exploited these virus-containing tubules to move along actin-based microvilli of the epithelial cells and muscle fibers of visceral muscle tissues in the alimentary canal, facilitating the spread of virus in the body of its insect vector leafhoppers. In cultured leafhopper cells, the knockdown of Pns10 expression due to RNA interference (RNAi induced by synthesized dsRNA from Pns10 gene strongly inhibited tubule formation and prevented the spread of virus among insect vector cells. RNAi induced after ingestion of dsRNA from Pns10 gene strongly inhibited formation of tubules, preventing intercellular spread and transmission of the virus by the leafhopper. All these results, for the first time, show that a persistent-propagative virus exploits virus-containing tubules composed of a nonstructural viral protein to traffic along actin-based cellular protrusions, facilitating the intercellular spread of the virus in the vector insect. The RNAi strategy and the insect vector cell culture provide useful tools to investigate the molecular mechanisms enabling efficient transmission of persistent-propagative plant viruses by vector insects.

  20. Involvement of plastid, mitochondrial and nuclear genomes in plant-to-plant horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Maria Virginia Sanchez-Puerta

    2014-12-01

    Full Text Available This review focuses on plant-to-plant horizontal gene transfer (HGT involving the three DNA-containing cellular compartments. It highlights the great incidence of HGT in the mitochondrial genome (mtDNA of angiosperms, the increasing number of examples in plant nuclear genomes, and the lack of any convincing evidence for HGT in the well-studied plastid genome of land plants. Most of the foreign mitochondrial genes are non-functional, generally found as pseudogenes in the recipient plant mtDNA that maintains its functional native genes. The few exceptions involve chimeric HGT, in which foreign and native copies recombine leading to a functional and single copy of the gene. Maintenance of foreign genes in plant mitochondria is probably the result of genetic drift, but a possible evolutionary advantage may be conferred through the generation of genetic diversity by gene conversion between native and foreign copies. Conversely, a few cases of nuclear HGT in plants involve functional transfers of novel genes that resulted in adaptive evolution. Direct cell-to-cell contact between plants (e.g. host-parasite relationships or natural grafting facilitate the exchange of genetic material, in which HGT has been reported for both nuclear and mitochondrial genomes, and in the form of genomic DNA, instead of RNA. A thorough review of the literature indicates that HGT in mitochondrial and nuclear genomes of angiosperms is much more frequent than previously expected and that the evolutionary impact and mechanisms underlying plant-to-plant HGT remain to be uncovered.

  1. Plant genetics: RNA cache or genome trash?

    Science.gov (United States)

    Ray, Animesh

    2005-09-01

    According to classical mendelian genetics, individuals homozygous for an allele always breed true. Lolle et al. report a pattern of non-mendelian inheritance in the hothead (hth) mutant of Arabidopsis thaliana, in which a plant homozygous at a particular locus upon self-crossing produces progeny that are 10% heterozygous; they claim that this is the result of the emerging allele having been reintroduced into the chromosome from a cache of RNA inherited from a previous generation. Here I suggest that these results are equally compatible with a gene conversion that occurred through the use as a template of DNA fragments that were inherited from a previous generation and propagated in archival form in the meristem cells that generate the plant germ lines. This alternative model is compatible with several important observations by Lolle et al..

  2. Evolutionary genomics of LysM genes in land plants

    Directory of Open Access Journals (Sweden)

    Stacey Gary

    2009-08-01

    Full Text Available Abstract Background The ubiquitous LysM motif recognizes peptidoglycan, chitooligosaccharides (chitin and, presumably, other structurally-related oligosaccharides. LysM-containing proteins were first shown to be involved in bacterial cell wall degradation and, more recently, were implicated in perceiving chitin (one of the established pathogen-associated molecular patterns and lipo-chitin (nodulation factors in flowering plants. However, the majority of LysM genes in plants remain functionally uncharacterized and the evolutionary history of complex LysM genes remains elusive. Results We show that LysM-containing proteins display a wide range of complex domain architectures. However, only a simple core architecture is conserved across kingdoms. Each individual kingdom appears to have evolved a distinct array of domain architectures. We show that early plant lineages acquired four characteristic architectures and progressively lost several primitive architectures. We report plant LysM phylogenies and associated gene, protein and genomic features, and infer the relative timing of duplications of LYK genes. Conclusion We report a domain architecture catalogue of LysM proteins across all kingdoms. The unique pattern of LysM protein domain architectures indicates the presence of distinctive evolutionary paths in individual kingdoms. We describe a comparative and evolutionary genomics study of LysM genes in plant kingdom. One of the two groups of tandemly arrayed plant LYK genes likely resulted from an ancient genome duplication followed by local genomic rearrangement, while the origin of the other groups of tandemly arrayed LYK genes remains obscure. Given the fact that no animal LysM motif-containing genes have been functionally characterized, this study provides clues to functional characterization of plant LysM genes and is also informative with regard to evolutionary and functional studies of animal LysM genes.

  3. Evolutionary genomics of LysM genes in land plants.

    Science.gov (United States)

    Zhang, Xue-Cheng; Cannon, Steven B; Stacey, Gary

    2009-08-03

    The ubiquitous LysM motif recognizes peptidoglycan, chitooligosaccharides (chitin) and, presumably, other structurally-related oligosaccharides. LysM-containing proteins were first shown to be involved in bacterial cell wall degradation and, more recently, were implicated in perceiving chitin (one of the established pathogen-associated molecular patterns) and lipo-chitin (nodulation factors) in flowering plants. However, the majority of LysM genes in plants remain functionally uncharacterized and the evolutionary history of complex LysM genes remains elusive. We show that LysM-containing proteins display a wide range of complex domain architectures. However, only a simple core architecture is conserved across kingdoms. Each individual kingdom appears to have evolved a distinct array of domain architectures. We show that early plant lineages acquired four characteristic architectures and progressively lost several primitive architectures. We report plant LysM phylogenies and associated gene, protein and genomic features, and infer the relative timing of duplications of LYK genes. We report a domain architecture catalogue of LysM proteins across all kingdoms. The unique pattern of LysM protein domain architectures indicates the presence of distinctive evolutionary paths in individual kingdoms. We describe a comparative and evolutionary genomics study of LysM genes in plant kingdom. One of the two groups of tandemly arrayed plant LYK genes likely resulted from an ancient genome duplication followed by local genomic rearrangement, while the origin of the other groups of tandemly arrayed LYK genes remains obscure. Given the fact that no animal LysM motif-containing genes have been functionally characterized, this study provides clues to functional characterization of plant LysM genes and is also informative with regard to evolutionary and functional studies of animal LysM genes.

  4. PGP repository: a plant phenomics and genomics data publication infrastructure.

    Science.gov (United States)

    Arend, Daniel; Junker, Astrid; Scholz, Uwe; Schüler, Danuta; Wylie, Juliane; Lange, Matthias

    2016-01-01

    Plant genomics and phenomics represents the most promising tools for accelerating yield gains and overcoming emerging crop productivity bottlenecks. However, accessing this wealth of plant diversity requires the characterization of this material using state-of-the-art genomic, phenomic and molecular technologies and the release of subsequent research data via a long-term stable, open-access portal. Although several international consortia and public resource centres offer services for plant research data management, valuable digital assets remains unpublished and thus inaccessible to the scientific community. Recently, the Leibniz Institute of Plant Genetics and Crop Plant Research and the German Plant Phenotyping Network have jointly initiated the Plant Genomics and Phenomics Research Data Repository (PGP) as infrastructure to comprehensively publish plant research data. This covers in particular cross-domain datasets that are not being published in central repositories because of its volume or unsupported data scope, like image collections from plant phenotyping and microscopy, unfinished genomes, genotyping data, visualizations of morphological plant models, data from mass spectrometry as well as software and documents.The repository is hosted at Leibniz Institute of Plant Genetics and Crop Plant Research using e!DAL as software infrastructure and a Hierarchical Storage Management System as data archival backend. A novel developed data submission tool was made available for the consortium that features a high level of automation to lower the barriers of data publication. After an internal review process, data are published as citable digital object identifiers and a core set of technical metadata is registered at DataCite. The used e!DAL-embedded Web frontend generates for each dataset a landing page and supports an interactive exploration. PGP is registered as research data repository at BioSharing.org, re3data.org and OpenAIRE as valid EU Horizon 2020 open

  5. DNA methylation as a system of plant genomic immunity.

    Science.gov (United States)

    Kim, M Yvonne; Zilberman, Daniel

    2014-05-01

    Transposons are selfish genetic sequences that can increase their copy number and inflict substantial damage on their hosts. To combat these genomic parasites, plants have evolved multiple pathways to identify and silence transposons by methylating their DNA. Plants have also evolved mechanisms to limit the collateral damage from the antitransposon machinery. In this review, we examine recent developments that have elucidated many of the molecular workings of these pathways. We also highlight the evidence that the methylation and demethylation pathways interact, indicating that plants have a highly sophisticated, integrated system of transposon defense that has an important role in the regulation of gene expression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Editing plant genomes with CRISPR/Cas9.

    Science.gov (United States)

    Belhaj, Khaoula; Chaparro-Garcia, Angela; Kamoun, Sophien; Patron, Nicola J; Nekrasov, Vladimir

    2015-04-01

    CRISPR/Cas9 is a rapidly developing genome editing technology that has been successfully applied in many organisms, including model and crop plants. Cas9, an RNA-guided DNA endonuclease, can be targeted to specific genomic sequences by engineering a separately encoded guide RNA with which it forms a complex. As only a short RNA sequence must be synthesized to confer recognition of a new target, CRISPR/Cas9 is a relatively cheap and easy to implement technology that has proven to be extremely versatile. Remarkably, in some plant species, homozygous knockout mutants can be produced in a single generation. Together with other sequence-specific nucleases, CRISPR/Cas9 is a game-changing technology that is poised to revolutionise basic research and plant breeding.

  7. Hairpin RNA derived from viral NIa gene confers immunity to wheat streak mosaic virus infection in transgenic wheat plants.

    Science.gov (United States)

    Fahim, Muhammad; Ayala-Navarrete, Ligia; Millar, Anthony A; Larkin, Philip J

    2010-09-01

    Wheat streak mosaic virus (WSMV), vectored by Wheat curl mite, has been of great economic importance in the Great Plains of the United States and Canada. Recently, the virus has been identified in Australia, where it has spread quickly to all major wheat growing areas. The difficulties in finding adequate natural resistance in wheat prompted us to develop transgenic resistance based on RNA interference (RNAi). An RNAi construct was designed to target the nuclear inclusion protein 'a' (NIa) gene of WSMV. Wheat was stably cotransformed with two plasmids: pStargate-NIa expressing hairpin RNA (hpRNA) including WSMV sequence and pCMneoSTLS2 with the nptII selectable marker. When T(1) progeny were assayed against WSMV, ten of sixteen families showed complete resistance in transgenic segregants. The resistance was classified as immunity by four criteria: no disease symptoms were produced; ELISA readings were as in uninoculated plants; viral sequences could not be detected by RT-PCR from leaf extracts; and leaf extracts failed to give infections in susceptible plants when used in test-inoculation experiments. Southern blot hybridization analysis indicated hpRNA transgene integrated into the wheat genome. Moreover, accumulation of small RNAs derived from the hpRNA transgene sequence positively correlated with immunity. We also showed that the selectable marker gene nptII segregated independently of the hpRNA transgene in some transgenics, and therefore demonstrated that it is possible using these techniques, to produce marker-free WSMV immune transgenic plants. This is the first report of immunity in wheat to WSMV using a spliceable intron hpRNA strategy.

  8. Expression of IMP1 enhances production of murine leukemia virus vector by facilitating viral genomic RNA packaging.

    Directory of Open Access Journals (Sweden)

    Yun Mai

    Full Text Available Murine leukemia virus (MLV-based retroviral vector is widely used for gene transfer. Efficient packaging of the genomic RNA is critical for production of high-titer virus. Here, we report that expression of the insulin-like growth factor II mRNA binding protein 1 (IMP1 enhanced the production of infectious MLV vector. Overexpression of IMP1 increased the stability of viral genomic RNA in virus producer cells and packaging of the RNA into progeny virus in a dose-dependent manner. Downregulation of IMP1 in virus producer cells resulted in reduced production of the retroviral vector. These results indicate that IMP1 plays a role in regulating the packaging of MLV genomic RNA and can be used for improving production of retroviral vectors.

  9. Expression of IMP1 enhances production of murine leukemia virus vector by facilitating viral genomic RNA packaging.

    Science.gov (United States)

    Mai, Yun; Gao, Guangxia

    2010-12-29

    Murine leukemia virus (MLV)-based retroviral vector is widely used for gene transfer. Efficient packaging of the genomic RNA is critical for production of high-titer virus. Here, we report that expression of the insulin-like growth factor II mRNA binding protein 1 (IMP1) enhanced the production of infectious MLV vector. Overexpression of IMP1 increased the stability of viral genomic RNA in virus producer cells and packaging of the RNA into progeny virus in a dose-dependent manner. Downregulation of IMP1 in virus producer cells resulted in reduced production of the retroviral vector. These results indicate that IMP1 plays a role in regulating the packaging of MLV genomic RNA and can be used for improving production of retroviral vectors.

  10. The compact Selaginella genome identifies changes in gene content associated with the evolution of vascular plants

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.; Banks, Jo Ann; Nishiyama, Tomoaki; Hasebe, Mitsuyasu; Bowman, John L.; Gribskov, Michael; dePamphilis, Claude; Albert, Victor A.; Aono, Naoki; Aoyama, Tsuyoshi; Ambrose, Barbara A.; Ashton, Neil W.; Axtell, Michael J.; Barker, Elizabeth; Barker, Michael S.; Bennetzen, Jeffrey L.; Bonawitz, Nicholas D.; Chapple, Clint; Cheng, Chaoyang; Correa, Luiz Gustavo Guedes; Dacre, Michael; DeBarry, Jeremy; Dreyer, Ingo; Elias, Marek; Engstrom, Eric M.; Estelle, Mark; Feng, Liang; Finet, Cedric; Floyd, Sandra K.; Frommer, Wolf B.; Fujita, Tomomichi; Gramzow, Lydia; Gutensohn, Michael; Harholt, Jesper; Hattori, Mitsuru; Heyl, Alexander; Hirai, Tadayoshi; Hiwatashi, Yuji; Ishikawa, Masaki; Iwata, Mineko; Karol, Kenneth G.; Koehler, Barbara; Kolukisaoglu, Uener; Kubo, Minoru; Kurata, Tetsuya; Lalonde, Sylvie; Li, Kejie; Li, Ying; Litt, Amy; Lyons, Eric; Manning, Gerard; Maruyama, Takeshi; Michael, Todd P.; Mikami, Koji; Miyazaki, Saori; Morinaga, Shin-ichi; Murata, Takashi; Mueller-Roeber, Bernd; Nelson, David R.; Obara, Mari; Oguri, Yasuko; Olmstead, Richard G.; Onodera, Naoko; Petersen, Bent Larsen; Pils, Birgit; Prigge, Michael; Rensing, Stefan A.; Riano-Pachon, Diego Mauricio; Roberts, Alison W.; Sato, Yoshikatsu; Scheller, Henrik Vibe; Schulz, Burkhard; Schulz, Christian; Shakirov, Eugene V.; Shibagaki, Nakako; Shinohara, Naoki; Shippen, Dorothy E.; Sorensen, Iben; Sotooka, Ryo; Sugimoto, Nagisa; Sugita, Mamoru; Sumikawa, Naomi; Tanurdzic, Milos; Theilsen, Gunter; Ulvskov, Peter; Wakazuki, Sachiko; Weng, Jing-Ke; Willats, William W.G.T.; Wipf, Daniel; Wolf, Paul G.; Yang, Lixing; Zimmer, Andreas D.; Zhu, Qihui; Mitros, Therese; Hellsten, Uffe; Loque, Dominique; Otillar, Robert; Salamov, Asaf; Schmutz, Jeremy; Shapiro, Harris; Lindquist, Erika; Lucas, Susan; Rokhsar, Daniel

    2011-04-28

    We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution

  11. Climate change effects on plant disease: genomes to ecosystems.

    Science.gov (United States)

    Garrett, K A; Dendy, S P; Frank, E E; Rouse, M N; Travers, S E

    2006-01-01

    Research in the effects of climate change on plant disease continues to be limited, but some striking progress has been made. At the genomic level, advances in technologies for the high-throughput analysis of gene expression have made it possible to begin discriminating responses to different biotic and abiotic stressors and potential trade-offs in responses. At the scale of the individual plant, enough experiments have been performed to begin synthesizing the effects of climate variables on infection rates, though pathosystem-specific characteristics make synthesis challenging. Models of plant disease have now been developed to incorporate more sophisticated climate predictions. At the population level, the adaptive potential of plant and pathogen populations may prove to be one of the most important predictors of the magnitude of climate change effects. Ecosystem ecologists are now addressing the role of plant disease in ecosystem processes and the challenge of scaling up from individual infection probabilities to epidemics and broader impacts.

  12. Membrane Bioreactor-Based Wastewater Treatment Plant in Saudi Arabia: Reduction of Viral Diversity, Load, and Infectious Capacity

    KAUST Repository

    Jumat, Muhammad

    2017-07-18

    A membrane bioreactor (MBR)-based wastewater treatment plant in Saudi Arabia was assessed over a nine-month period for virus removal efficiency. Viral diversity was detected using omics-based approaches. Log reduction values (LRV) of Adenoviruses (AdV) and Enteroviruses (EV) were enumerated using digital polymerase chain reaction (dPCR) and assessed for infectivity using fluorescence-based infection assays. MBR treatment was successful in reducing viral diversity. Plant viruses remained abundant in the treated effluent. Human enteric viruses were present in lower abundance than plant viruses, and were reduced by MBR at varying LRV. AdV copy numbers were reduced by 3.7-log. Infectious AdV was not detected in the effluent. EV copy numbers were reduced by 1.7-log post MBR and infectious EV decreased by an average of 2.0-log. Infectious EV was detected in the chlorinated effluent, occasionally in concentrations that approximate to its 50% infectious dose. Overall, results indicated that a MBR-based wastewater treatment plant (WWTP) effectively reduces viral diversity, viral load, and infectious capacity by up to 4-logs. These findings suggest potential concerns associated with plant and human enteric viruses for reuse events in this country. Local guidelines for assessment of treated water quality should take into consideration both infectious viral concentration and LRV.

  13. Novel viral vectors utilizing intron splice-switching to activate genome rescue, expression and replication in targeted cells

    Directory of Open Access Journals (Sweden)

    El Andaloussi Samir

    2011-05-01

    Full Text Available Abstract Background The outcome of virus infection depends from the precise coordination of viral gene expression and genome replication. The ability to control and regulate these processes is therefore important for analysis of infection process. Viruses are also useful tools in bio- and gene technology; they can efficiently kill cancer cells and trigger immune responses to tumors. However, the methods for constructing tissue- or cell-type specific viruses typically suffer from low target-cell specificity and a high risk of reversion. Therefore novel and universal methods of regulation of viral infection are also important for therapeutic application of virus-based systems. Methods Aberrantly spliced introns were introduced into crucial gene-expression units of adenovirus vector and alphavirus DNA/RNA layered vectors and their effects on the viral gene expression, replication and/or the release of infectious genomes were studied in cell culture. Transfection of the cells with splice-switching oligonucleotides was used to correct the introduced functional defect(s. Results It was demonstrated that viral gene expression, replication and/or the release of infectious genomes can be blocked by the introduction of aberrantly spliced introns. The insertion of such an intron into an adenovirus vector reduced the expression of the targeted gene more than fifty-fold. A similar insertion into an alphavirus DNA/RNA layered vector had a less dramatic effect; here, only the release of the infectious transcript was suppressed but not the subsequent replication and spread of the virus. However the insertion of two aberrantly spliced introns resulted in an over one hundred-fold reduction in the infectivity of the DNA/RNA layered vector. Furthermore, in both systems the observed effects could be reverted by the delivery of splice-switching oligonucleotide(s, which corrected the splicing defects. Conclusions Splice-switch technology, originally developed for

  14. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.

    Directory of Open Access Journals (Sweden)

    Ji'an Pan

    Full Text Available Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12 provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins.

  15. A trio of viral proteins tunes aphid-plant interactions in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Jack H Westwood

    Full Text Available BACKGROUND: Virus-induced deterrence to aphid feeding is believed to promote plant virus transmission by encouraging migration of virus-bearing insects away from infected plants. We investigated the effects of infection by an aphid-transmitted virus, cucumber mosaic virus (CMV, on the interaction of Arabidopsis thaliana, one of the natural hosts for CMV, with Myzus persicae (common names: 'peach-potato aphid', 'green peach aphid'. METHODOLOGY/PRINCIPAL FINDINGS: Infection of Arabidopsis (ecotype Col-0 with CMV strain Fny (Fny-CMV induced biosynthesis of the aphid feeding-deterrent 4-methoxy-indol-3-yl-methylglucosinolate (4MI3M. 4MI3M inhibited phloem ingestion by aphids and consequently discouraged aphid settling. The CMV 2b protein is a suppressor of antiviral RNA silencing, which has previously been implicated in altering plant-aphid interactions. Its presence in infected hosts enhances the accumulation of CMV and the other four viral proteins. Another viral gene product, the 2a protein (an RNA-dependent RNA polymerase, triggers defensive signaling, leading to increased 4MI3M accumulation. The 2b protein can inhibit ARGONAUTE1 (AGO1, a host factor that both positively-regulates 4MI3M biosynthesis and negatively-regulates accumulation of substance(s toxic to aphids. However, the 1a replicase protein moderated 2b-mediated inhibition of AGO1, ensuring that aphids were deterred from feeding but not poisoned. The LS strain of CMV did not induce feeding deterrence in Arabidopsis ecotype Col-0. CONCLUSIONS/SIGNIFICANCE: Inhibition of AGO1 by the 2b protein could act as a booby trap since this will trigger antibiosis against aphids. However, for Fny-CMV the interplay of three viral proteins (1a, 2a and 2b appears to balance the need of the virus to inhibit antiviral silencing, while inducing a mild resistance (antixenosis that is thought to promote transmission. The strain-specific effects of CMV on Arabidopsis-aphid interactions, and differences

  16. A binary vector for transferring genomic libraries to plants.

    Science.gov (United States)

    Simoens, C; Alliotte, T; Mendel, R; Müller, A; Schiemann, J; Van Lijsebettens, M; Schell, J; Van Montagu, M; Inzé, D

    1986-10-24

    The transformation of mutant plants with a complete recombinant library derived from wild-type DNA followed by assay of transformed plants for complementation of the mutant phenotype is a promising method for the isolation of plant genes. The small genome of Arabidopsis thaliana is a good candidate for attempting this so-called shotgun transformation. We present the properties of an A. thaliana genomic library cloned in a binary vector, pC22. This vector, designed to introduce genomic libraries into plants, contains the oriV of the Ri plasmid pRiHR1 by which it replicates perfectly stably in Agrobacterium. Upon transfer of the library from E. coli to A. tumefaciens large differences in transfer efficiencies of individual recombinant clones were observed. There is a direct relation between transfer efficiency and stability of the recombinant clones both in E. coli and A. tumefaciens. The stability is independent of the insert size, but seems to be related to the nature of the insert DNA. The feasibility of shotgun transformation and problems of statistical sampling are discussed.

  17. PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data.

    Science.gov (United States)

    Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai; Gundlach, Heidrun; Mayer, Klaus F X

    2017-01-01

    Plant Genome and Systems Biology (PGSB), formerly Munich Institute for Protein Sequences (MIPS) PlantsDB, is a database framework for the integration and analysis of plant genome data, developed and maintained for more than a decade now. Major components of that framework are genome databases and analysis resources focusing on individual (reference) genomes providing flexible and intuitive access to data. Another main focus is the integration of genomes from both model and crop plants to form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny). Data exchange and integrated search functionality with/over many plant genome databases is provided within the transPLANT project.

  18. Research progress of genome editing and derivative technologies in plants.

    Science.gov (United States)

    Qiwei, Shan; Caixia, Gao

    2015-10-01

    Genome editing technologies using engineered nucleases have been widely used in many model organisms. Genome editing with sequence-specific nuclease (SSN) creates DNA double-strand breaks (DSBs) in the genomic target sites that are primarily repaired by the non-homologous end joining (NHEJ) or homologous recombination (HR) pathways, which can be employed to achieve targeted genome modifications such as gene mutations, insertions, replacements or chromosome rearrangements. There are three major SSNs─zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system. In contrast to ZFN and TALEN, which require substantial protein engineering to each DNA target, the CRISPR/Cas9 system requires only a change in the guide RNA. For this reason, the CRISPR/Cas9 system is a simple, inexpensive and versatile tool for genome engineering. Furthermore, a modified version of the CRISPR/Cas9 system has been developed to recruit heterologous domains that can regulate endogenous gene expression, such as activation, depression and epigenetic regulation. In this review, we summarize the development and applications of genome editing technologies for basic research and biotechnology, as well as highlight challenges and future directions, with particular emphasis on plants.

  19. Comparison of Next-Generation Sequencing Technologies for Comprehensive Assessment of Full-Length Hepatitis C Viral Genomes

    Science.gov (United States)

    Thomson, Emma; Ip, Camilla L. C.; Badhan, Anjna; Christiansen, Mette T.; Adamson, Walt; Ansari, M. Azim; Breuer, Judith; Brown, Anthony; Bowden, Rory; Bonsall, David; Da Silva Filipe, Ana; Hinds, Chris; Hudson, Emma; Klenerman, Paul; Lythgow, Kieren; Mbisa, Jean L.; McLauchlan, John; Myers, Richard; Piazza, Paolo; Roy, Sunando; Trebes, Amy; Sreenu, Vattipally B.; Witteveldt, Jeroen; Simmonds, Peter

    2016-01-01

    Affordable next-generation sequencing (NGS) technologies for hepatitis C virus (HCV) may potentially identify both viral genotype and resistance genetic motifs in the era of directly acting antiviral (DAA) therapies. This study compared the ability of high-throughput NGS methods to generate full-length, deep, HCV sequence data sets and evaluated their utility for diagnostics and clinical assessment. NGS methods using (i) unselected HCV RNA (metagenomics), (ii) preenrichment of HCV RNA by probe capture, and (iii) HCV preamplification by PCR implemented in four United Kingdom centers were compared. Metrics of sequence coverage and depth, quasispecies diversity, and detection of DAA resistance-associated variants (RAVs), mixed HCV genotypes, and other coinfections were compared using a panel of samples with different viral loads, genotypes, and mixed HCV genotypes/subtypes [geno(sub)types]. Each NGS method generated near-complete genome sequences from more than 90% of samples. Enrichment methods and PCR preamplification generated greater sequence depth and were more effective for samples with low viral loads. All NGS methodologies accurately identified mixed HCV genotype infections. Consensus sequences generated by different NGS methods were generally concordant, and majority RAVs were consistently detected. However, methods differed in their ability to detect minor populations of RAVs. Metagenomic methods identified human pegivirus coinfections. NGS provided a rapid, inexpensive method for generating whole HCV genomes to define infecting genotypes, RAVs, comprehensive viral strain analysis, and quasispecies diversity. Enrichment methods are particularly suited for high-throughput analysis while providing the genotype and information on potential DAA resistance. PMID:27385709

  20. Influence of spaceflight on the efficiency of tomatoes quality and plant resistance to viral infection

    Science.gov (United States)

    Dashchenko, Anna; Mishchenko, Lidiya

    Tomatoes are an important agricultural crop. The use of plants for life support in long-term space flight advances multiple problems - an adaptation to microgravity and taste. Conditions of microgravity are stressful for plants and they cause them adaptation syndrome to protect and preserve homeostasis (Kordyum, 2010, 2012;. Hasenstein, 1999). Tomatoes are also a product of the diet of astronauts, which is an important part of their life - the regeneration gas environment (photosynthesis), the relaxation factor in psychological people and a powerful antioxidant. In 2007, the tomato seeds, genetically created by scientists from the University of North Carolina, was placed on the International Space Station. But the experiment failed because the seedlings died (Khodakovskaya). Although researchers do not bind this fact with microgravity, it is clear that the study of this factor on plants is rather important. Therefore, the study of the effect of space flight conditions on plant species continues. The aim of our study was to investigate the effect of space flight on tomato plant resistance to viral infection and quality products. Seeds of tomato plants (Lycopersicon esculentum Mill., Sort Podmoskovny early) 6 years (1992-1998) were in terms of long-term space flight on the Russian space station "Mir". Then the seeds germinated in the spring of 2011 and grew up in the Earth's field on the natural infectious background. Part of the plants underwent 5 reproductive phase, resulting in 2011 investigated tomatoes from seed 1st and 5th reproduction, in 2012 - the second and sixth, respectively, and in 2013 - as the second and sixth (sow seeds obtained by us in the Ukraine in 2011.) In our research we used two controls: № 1 (stationary control) - plants of the first generation seeds which were not in outer space; № 2 - five plants from seed reproduction that exhibited in space and were grown in parallel under the same conditions of the studied plants. Defining of

  1. Interaction between viral RNA silencing suppressors and host factors in plant immunity.

    Science.gov (United States)

    Nakahara, Kenji S; Masuta, Chikara

    2014-08-01

    To elucidate events in the molecular arms race between the host and pathogen in evaluating plant immunity, a zigzag model is useful for uncovering aspects common to different host-pathogen interactions. By analogy of the steps in virus-host interactions with the steps in the standard zigzag model outlined in recent papers, we may regard RNA silencing as pattern-triggered immunity (PTI) against viruses, RNA silencing suppressors (RSSs) as effectors to overcome host RNA silencing and resistance gene (R-gene)-mediated defense as effector-triggered immunity (ETI) recognizing RSSs as avirulence proteins. However, because the standard zigzag model does not fully apply to some unique aspects in the interactions between a plant host and virus, we here defined a model especially designed for viruses. Although we simplified the phenomena involved in the virus-host interactions in the model, certain specific interactive steps can be explained by integrating additional host factors into the model. These host factors are thought to play an important role in maintaining the efficacy of the various steps in the main pathway of defense against viruses in this model for virus-plant interactions. For example, we propose candidates that may interact with viral RSSs to induce the resistance response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes.

    Directory of Open Access Journals (Sweden)

    Tongwu Zhang

    Full Text Available The complete nucleotide sequences of the chloroplast (cp and mitochondrial (mt genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147 with a 72% coding sequence, and the larger mitochondrial genome have less genes (65 with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage.

  3. The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes.

    Science.gov (United States)

    Zhang, Tongwu; Fang, Yongjun; Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage.

  4. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection.

    Science.gov (United States)

    Butterbach, Patrick; Verlaan, Maarten G; Dullemans, Annette; Lohuis, Dick; Visser, Richard G F; Bai, Yuling; Kormelink, Richard

    2014-09-02

    Tomato yellow leaf curl virus (TYLCV) and related begomoviruses are a major threat to tomato production worldwide and, to protect against these viruses, resistance genes from different wild tomato species are introgressed. Recently, the Ty-1 resistance gene was identified, shown to code for an RNA-dependent RNA polymerase and to be allelic with Ty-3. Here we show that upon TYLCV challenging of resistant lines carrying Ty-1 or Ty-3, low virus titers were detected concomitant with the production of relatively high levels of siRNAs whereas, in contrast, susceptible tomato Moneymaker (MM) revealed higher virus titers but lower amounts of siRNAs. Comparative analysis of the spatial genomic siRNA distribution showed a consistent and subtle enrichment for siRNAs derived from the V1 and C3 genes in Ty-1 and Ty-3. In plants containing Ty-2 resistance the virus was hardly detectable, but the siRNA profile resembled the one observed in TYLCV-challenged susceptible tomato (MM). Furthermore, a relative hypermethylation of the TYLCV V1 promoter region was observed in genomic DNA collected from Ty-1 compared with that from (MM). The resistance conferred by Ty-1 was also effective against the bipartite tomato severe rugose begomovirus, where a similar genome hypermethylation of the V1 promoter region was discerned. However, a mixed infection of TYLCV with cucumber mosaic virus compromised the resistance. The results indicate that Ty-1 confers resistance to geminiviruses by increasing cytosine methylation of viral genomes, suggestive of enhanced transcriptional gene silencing. The mechanism of resistance and its durability toward geminiviruses under natural field conditions is discussed.

  5. Up-regulation effect of hepatitis B virus genome A1846T mutation on viral replication and core promoter activity

    Directory of Open Access Journals (Sweden)

    Ling JIANG

    2013-01-01

    Full Text Available Objective  To evaluate the influence of hepatitis B virus (HBV genome nucleotide A1846T mutation on the viral replication capacity and the transcription activity of HBV core promoter (CP in vitro. Methods  A total of 385 patients with hepatitis B admitted to the 302 Hospital of PLA were enrolled in the study, including 116 with moderate chronic hepatitis B (CHB-M, 123 with severe chronic hepatitis B (CHB-S, and 146 with acute-on-chronic liver failure (ACLF. Serum HBV DNA was isolated and full-length HBV genome was amplified. The incidence of A1846T was analyzed. Full-length HBV genomes containing 1846T mutation were cloned into pGEM-T easy vector, and the counterpart wild-type 1846A plasmids were obtained by site-directed mutagenesis. The full-length HBV genome was released from recombinant plasmid by BspQ Ⅰ/Sca Ⅰ digestion, and then transfected into HepG2 cells. Secreted HBsAg level and intracellular HBV core particles were measured 72 hours post-transfection to analyze the replication capacity (a 1.0-fold HBV genome model. 1846 mutant and wild-type full-length HBV genomes were extracted to amplify the fragment of HBV CP region, and the dual luciferase reporter of the pGL3-CP was constructed. The luciferase activity was detected 48 hours post-transfection. Results  The incidence of A1846T mutation gradually increased with the severity of hepatitis B, reaching 31.03%, 42.27%, and 55.48% in CHB-M, CHB-S and ACLF patients respectively (P<0.01. The replication capacity of 1846T mutants, level of secreted HBsAg, and transcriptional activity of CP promoter were increased by 320%, 28% and 85% respectively, compared with 1846A wild-type strains. While the more common double mutation A1762T/G1764A in CP region was increased by 67%, 9% and 72% respectively, compared with its counterpart wild-type strains. A1846T had a greater influence on viral replication capacity in vitro. Conclusions A1846T mutation could significantly increase the

  6. Enhancement of Plant Productivity in the Post-Genomics Era.

    Science.gov (United States)

    Thao, Nguyen Phuong; Tran, Lam-Son Phan

    2016-08-01

    and larger scale. In their article, Onda and Mochida detailed how to use these technologies in fully characterizing the genetic diversity or multigenecity within a particular plant species. The authors discussed the constant innovation of sequencing platforms which has made sequencing technologies become more superior and more powerful than ever before. Additionally, the efforts result in not only further cut down of the sequencing cost and increase in the sequencing speed, but also improvement in sequencing accuracy and extended sequencing application to studies at both DNA and RNA levels. Such knowledge will help the scientists interpret, at least partially, how plants can adapt to various environmental conditions, or how different cultivars can respond differently to the same stress. Another article by Ong et al. also laid emphasis on the importance of various high-throughput sequencing platforms, thanks to which a large number of genomic databases supplied with detailed annotation and useful bioinformatics tools have been established to assist geneticists. Readers can find in this review the summary of available plant-specific genomic databases up-to-date and popular web-based resources that are relevant for comparative genomics, plant evolution and phylogenomics studies. These, along with other approaches, such as quantitative trait locus and genome-wide association study, will lay foundation for prediction and identification of genes or alleles responsible for valuable agronomic traits, contributing to the enhancement of plant productivity by genetic engineering approach. In this thematic issue, specific examples for crop improvement are also demonstrated. The first showcase is given by Nongpiur et al. who provided evidence that synergistic employment of genomics approaches and high-throughput gene expression methods have aided in dissecting the salinity-responsive signaling pathway, identifying genes involved in the stress response and selecting candidate genes

  7. Telling plant species apart with DNA: from barcodes to genomes

    Science.gov (United States)

    Li, De-Zhu; van der Bank, Michelle

    2016-01-01

    Land plants underpin a multitude of ecosystem functions, support human livelihoods and represent a critically important component of terrestrial biodiversity—yet many tens of thousands of species await discovery, and plant identification remains a substantial challenge, especially where material is juvenile, fragmented or processed. In this opinion article, we tackle two main topics. Firstly, we provide a short summary of the strengths and limitations of plant DNA barcoding for addressing these issues. Secondly, we discuss options for enhancing current plant barcodes, focusing on increasing discriminatory power via either gene capture of nuclear markers or genome skimming. The former has the advantage of establishing a defined set of target loci maximizing efficiency of sequencing effort, data storage and analysis. The challenge is developing a probe set for large numbers of nuclear markers that works over sufficient phylogenetic breadth. Genome skimming has the advantage of using existing protocols and being backward compatible with existing barcodes; and the depth of sequence coverage can be increased as sequencing costs fall. Its non-targeted nature does, however, present a major informatics challenge for upscaling to large sample sets. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481790

  8. LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Tier 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Borucki, M; Lenhoff, R; Vitalis, E

    2009-09-29

    The Lawrence Livermore National Lab Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to obtain more sequence information across a large range of pathogens, near neighbors, and across a broad geographical and host range. Our role in this project is to research available sequence data for the organisms of interest and identify critical microbial sequence and knowledge gaps that need to be filled to meet TMTI objectives. This effort includes: (1) assessing current genomic sequence for each agent including phylogenetic and geographical diversity, host range, date of isolation range, virulence, sequence availability of key near neighbors, and other characteristics; (2) identifying Subject Matter Experts (SME's) and potential holders of isolate collections, contacting appropriate SME's with known expertise and isolate collections to obtain information on isolate availability and specific recommendations; (3) identifying sequence as well as knowledge gaps (eg virulence, host range, and antibiotic resistance determinants); (4) providing specific recommendations as to the most valuable strains to be placed on the DTRA sequencing queue. We acknowledge that criteria for prioritization of isolates for sequencing falls into two categories aligning with priority queues 1 and 2 as described in the summary. (Priority queue 0 relates to DTRA operational isolates whose availability is not predictable in advance.) 1. Selection of isolates that appear to have likelihood to provide information on virulence and antibiotic resistance. This will include sequence of known virulent strains. Particularly valuable would be virulent strains that have genetically similar yet avirulent, or non human transmissible, counterparts that can be used for comparison to help

  9. LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Tier 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Borucki, M; Lenhoff, R; Vitalis, E

    2009-09-29

    The Lawrence Livermore National Lab Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to obtain more sequence information across a large range of pathogens, near neighbors, and across a broad geographical and host range. Our role in this project is to research available sequence data for the organisms of interest and identify critical microbial sequence and knowledge gaps that need to be filled to meet TMTI objectives. This effort includes: (1) assessing current genomic sequence for each agent including phylogenetic and geographical diversity, host range, date of isolation range, virulence, sequence availability of key near neighbors, and other characteristics; (2) identifying Subject Matter Experts (SME's) and potential holders of isolate collections, contacting appropriate SME's with known expertise and isolate collections to obtain information on isolate availability and specific recommendations; (3) identifying sequence as well as knowledge gaps (eg virulence, host range, and antibiotic resistance determinants); (4) providing specific recommendations as to the most valuable strains to be placed on the DTRA sequencing queue. We acknowledge that criteria for prioritization of isolates for sequencing falls into two categories aligning with priority queues 1 and 2 as described in the summary. (Priority queue 0 relates to DTRA operational isolates whose availability is not predictable in advance.) 1. Selection of isolates that appear to have likelihood to provide information on virulence and antibiotic resistance. This will include sequence of known virulent strains. Particularly valuable would be virulent strains that have genetically similar yet avirulent, or non human transmissible, counterparts that can be used for comparison to help

  10. [Genome sequencing and analysis of the bovine viral diarrhea virus-2 strain JZ05-1 isolated in China].

    Science.gov (United States)

    Li, Qing-chao; Miao, Li-guang; Li, Hai-tao; Liu, Yan-huan; Zhang, Guang-lei; Xiao, Jia-mei

    2010-05-01

    Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus, which is a widespread problem for beef and dairy herds, and has given rise to a significant loss in the livestock industry all over the world. The BVDV strain JZ05-1 isolated from cattle in Jilin, China generated cytopathic effect (CPE) in MDBK cells. Eight overlapped gene fragments were amplified by RT-PCR and sequenced, the complete genom sequence of BVDV strain JZ05-1 was assembled. According to the results, the JZ05-1 genome was composed of 12285 nucleotides in length (GenBank accession No. GQ888686), which could be divided into three regions: a 387 nt 5'-untranslated region (UTR), a 11694 nt single large open reading frame encoding a polyprotein, and a 204 nt 3'-UTR. The 5'-UTR and genome sequences were analyzed by sequence alignment and construction of phylogenetic trees. The strain JZ05-1 was classified as BVDV type 2a. The BVDV-2 strain JZ05-1 genome showed high similarity to the p11Q isolated in Canada and the XJ-04 isolated in China, with 90% and 91% identity in nucleotide sequence, respectively. Compared with the similarity within the BVDV-2 genotype (96%), the JZ05-1 had low sequence similarity to other BVDV-2 strains.

  11. DeF-GPU: Efficient and effective deletions finding in hepatitis B viral genomic DNA using a GPU architecture.

    Science.gov (United States)

    Cheng, Chun-Pei; Lan, Kuo-Lun; Liu, Wen-Chun; Chang, Ting-Tsung; Tseng, Vincent S

    2016-12-01

    Hepatitis B viral (HBV) infection is strongly associated with an increased risk of liver diseases like cirrhosis or hepatocellular carcinoma (HCC). Many lines of evidence suggest that deletions occurring in HBV genomic DNA are highly associated with the activity of HBV via the interplay between aberrant viral proteins release and human immune system. Deletions finding on the HBV whole genome sequences is thus a very important issue though there exist underlying the challenges in mining such big and complex biological data. Although some next generation sequencing (NGS) tools are recently designed for identifying structural variations such as insertions or deletions, their validity is generally committed to human sequences study. This design may not be suitable for viruses due to different species. We propose a graphics processing unit (GPU)-based data mining method called DeF-GPU to efficiently and precisely identify HBV deletions from large NGS data, which generally contain millions of reads. To fit the single instruction multiple data instructions, sequencing reads are referred to as multiple data and the deletion finding procedure is referred to as a single instruction. We use Compute Unified Device Architecture (CUDA) to parallelize the procedures, and further validate DeF-GPU on 5 synthetic and 1 real datasets. Our results suggest that DeF-GPU outperforms the existing commonly-used method Pindel and is able to exactly identify the deletions of our ground truth in few seconds. The source code and other related materials are available at https://sourceforge.net/projects/defgpu/.

  12. Distribution pattern of bovine viral diarrhoea virus type 1 genome in lymphoid tissues of experimentally infected sheep.

    Science.gov (United States)

    Karikalan, M; Rajukumar, K; Mishra, N; Kumar, M; Kalaiyarasu, S; Rajesh, K; Gavade, V; Behera, S P; Dubey, S C

    2016-06-01

    In this study, cellular localization and the distribution pattern of BVDV genome in lymphoid tissues during the course of experimental acute BVDV-1 infection of sheep was investigated. Tonsils, mesenteric lymph nodes (MLN) and spleen were collected on 3, 6, 9, 12 and 15 days post infection (dpi) from twenty 4-month-old lambs, experimentally inoculated intra-nasally with 5 × 10(5) TCID50 of a non-cytopathic (ncp) BVDV-1 isolate, Ind-17555. Tissues collected from ten mock-infected lambs served as controls. In situ hybridization (ISH) was carried out in paraformaldehyde fixed paraffin embedded tissue sections using digoxigenin labelled riboprobe targeting 5'-UTR of BVDV-1. BVDV genome was detected at all the intervals from 3 dpi to 15 dpi in the lymphoid tissues with variations between the intervals and also amongst the infected sheep. During the early phase of acute infection, presence of viral genome was more in tonsils than MLN and spleen, whereas the distribution was higher in MLN during later stages. BVDV-1 genome positive cells included lymphocytes, macrophages, plasma cells, reticular cells and sometimes crypt epithelial cells. Genome distribution was frequently observed in the lymphoid follicles of tonsils, MLN and spleen, besides the crypt epithelium in tonsils, paracortex and medullary sinus and cords of MLN. Most abundant and widespread distribution of BVDV-1 genome was observed on 6 dpi while there was a reduction in number and intensity of positive signals by 15 dpi in most of the infected animals. This is the first attempt made to study the localisation of BVDV-1 in lymphoid tissues of acutely infected sheep by in situ hybridization. The results show that the kinetics of BVDV-1 distribution in lymphoid tissues of experimentally infected non-pregnant sheep follows almost a similar pattern to that demonstrated in BVDV infected cattle.

  13. Genomic analysis of host - Peste des petits ruminants vaccine viral transcriptome uncovers transcription factors modulating immune regulatory pathways.

    Science.gov (United States)

    Manjunath, Siddappa; Kumar, Gandham Ravi; Mishra, Bishnu Prasad; Mishra, Bina; Sahoo, Aditya Prasad; Joshi, Chaitanya G; Tiwari, Ashok K; Rajak, Kaushal Kishore; Janga, Sarath Chandra

    2015-02-24

    Peste des petits ruminants (PPR), is an acute transboundary viral disease of economic importance, affecting goats and sheep. Mass vaccination programs around the world resulted in the decline of PPR outbreaks. Sungri 96 is a live attenuated vaccine, widely used in Northern India against PPR. This vaccine virus, isolated from goat works efficiently both in sheep and goat. Global gene expression changes under PPR vaccine virus infection are not yet well defined. Therefore, in this study we investigated the host-vaccine virus interactions by infecting the peripheral blood mononuclear cells isolated from goat with PPRV (Sungri 96 vaccine virus), to quantify the global changes in the transcriptomic signature by RNA-sequencing. Viral genome of Sungri 96 vaccine virus was assembled from the PPRV infected transcriptome confirming the infection and demonstrating the feasibility of building a complete non-host genome from the blood transcriptome. Comparison of infected transcriptome with control transcriptome revealed 985 differentially expressed genes. Functional analysis showed enrichment of immune regulatory pathways under PPRV infection. Key genes involved in immune system regulation, spliceosomal and apoptotic pathways were identified to be dysregulated. Network analysis revealed that the protein - protein interaction network among differentially expressed genes is significantly disrupted in infected state. Several genes encoding TFs that govern immune regulatory pathways were identified to co-regulate the differentially expressed genes. These data provide insights into the host - PPRV vaccine virus interactome for the first time. Our findings suggested dysregulation of immune regulatory pathways and genes encoding Transcription Factors (TFs) that govern these pathways in response to viral infection.

  14. Consumers & plant genomics : the positioning and acceptance of a new plant breeding practice

    NARCIS (Netherlands)

    Heuvel, van den T.

    2008-01-01

    Innovative developments in technology, such as the emergence of genomics as a plant breeding practice, hold the potential to change the supply side of the market. The success of these practices not only depends on the improved efficiency and effectiveness it brings, but also on how well they are ali

  15. Consumers & plant genomics : the positioning and acceptance of a new plant breeding practice

    NARCIS (Netherlands)

    Heuvel, van den T.

    2008-01-01

    Innovative developments in technology, such as the emergence of genomics as a plant breeding practice, hold the potential to change the supply side of the market. The success of these practices not only depends on the improved efficiency and effectiveness it brings, but also on how well they are

  16. Resolving bovine viral diarrhea virus subtypes from persistently infected US beef calves with complete genome sequence

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is classified into 2 genotypes, BVDV-1 and BVDV-2, each of which contains distinct subtypes with genetic and antigenic differences. Currently, three major subtypes circulate in the United States: BVDV-1a, 1b, and 2a. In addition, a single case of BVDV-2b infection ...

  17. The rhinovirus type 14 genome contains an internally located RNA structure that is required for viral replication.

    Science.gov (United States)

    McKnight, K L; Lemon, S M

    1998-12-01

    Cis-acting RNA signals are required for replication of positive-strand viruses such as the picornaviruses. Although these generally have been mapped to the 5' and/or 3' termini of the viral genome, RNAs derived from human rhinovirus type 14 are unable to replicate unless they contain an internal cis-acting replication element (cre) located within the genome segment encoding the capsid proteins. Here, we show that the essential cre sequence is 83-96 nt in length and located between nt 2318-2413 of the genome. Using dicistronic RNAs in which translation of the P1 and P2-P3 segments of the polyprotein were functionally dissociated, we further demonstrate that translation of the cre sequence is not required for RNA replication. Thus, although it is located within a protein-coding segment of the genome, the cre functions as an RNA entity. Computer folds suggested that cre sequences could form a stable structure in either positive- or minus-strand RNA. However, an analysis of mutant RNAs containing multiple covariant and non-covariant nucleotide substitutions within these putative structures demonstrated that only the predicted positive-strand structure is essential for efficient RNA replication. The absence of detectable minus-strand synthesis from RNAs that lack the cre suggests that the cre is required for initiation of minus-strand RNA synthesis. Since a lethal 3' noncoding region mutation could be partially rescued by a compensating mutation within the cre, the cre appears to participate in a long-range RNA-RNA interaction required for this process. These data provide novel insight into the mechanisms of replication of a positive-strand RNA virus, as they define the involvement of an internally located RNA structure in the recognition of viral RNA by the viral replicase complex. Since internally located RNA replication signals have been shown to exist in several other positive-strand RNA virus families, these observations are potentially relevant to a wide array of

  18. Single- and double-stranded viral RNAs in plants infected with the potexviruses papaya mosaic virus and foxtail mosaic virus.

    Science.gov (United States)

    Mackie, G A; Johnston, R; Bancroft, J B

    1988-01-01

    Three classes of viral RNA were recovered from polyribosomes purified from papaya leaves infected with papaya mosaic virus (PapMV) and from barley leaves infected with foxtail mosaic virus (FoMV): full-length viral RNAs [6.8 and 6.2 kilobases (kb), respectively]; less abundant intermediate subgenomic RNAs (2.2 and 1.9 kb), and abundant, small subgenomic RNAs (1 and 0.9 kb). Small amounts of the PapMV-specified 1.0-kb subgenomic RNA were encapsidated, whereas no encapsidated subgenomic RNAs could be found in preparations of FoMV. Immunoprecipitation of the products of in vitro translation of the small subgenomic RNA of both viruses showed that it codes for the corresponding viral coat protein. FoMV genomic RNA isolated from polyribosomes also directed the efficient synthesis of a 37- to 38-kilodalton protein which was immunoprecipitated by an antiserum raised against the coat protein. We presume this product to be a readthrough protein initiated to the 5' side of and in the same reading frame as the coat protein-coding sequences in FoMV RNA. The predominant double-stranded viral-specified RNAs in tissues infected with PapMV, FoMV, and clover yellow mosaic virus were genome sized (6.8, 6.2, and 7.0 kb pairs, respectively). If double-stranded RNAs corresponding to coat protein subgenomic RNAs exist, they must be present in much lower relative abundances.

  19. SIRT1 inhibits EV71 genome replication and RNA translation by interfering with the viral polymerase and 5′UTR RNA

    Science.gov (United States)

    Han, Yang; Wang, Lvyin; Cui, Jin; Song, Yu; Luo, Zhen; Chen, Junbo; Xiong, Ying; Zhang, Qi; Liu, Fang; Ho, Wenzhe; Liu, Yingle; Wu, Jianguo

    2016-01-01

    ABSTRACT Enterovirus 71 (EV71) possesses a single-stranded positive RNA genome that contains a single open reading frame (ORF) flanked by a 5′ untranslated region (5′UTR) and a polyadenylated 3′UTR. Here, we demonstrated that EV71 activates the production of silent mating type information regulation 2 homolog 1 (SIRT1), a histone deacetylase (HDAC). EV71 further stimulates SIRT1 sumoylation and deacetylase activity, and enhances SIRT1 translocation from the nucleus to the cytoplasm. More interestingly, activated SIRT1 subsequently binds with the EV71 3Dpol protein (a viral RNA-dependent RNA polymerase, RdRp) to repress the acetylation and RdRp activity of 3Dpol, resulting in the attenuation of viral genome replication. Moreover, SIRT1 interacts with the cloverleaf structure of the EV71 RNA 5′UTR to inhibit viral RNA transcription, and binds to the internal ribosome entry site (IRES) of the EV71 5′UTR to attenuate viral RNA translation. Thus, EV71 stimulates SIRT1 production and activity, which in turn represses EV71 genome replication by inhibiting viral polymerase, and attenuates EV71 RNA transcription and translation by interfering with viral RNA. These results uncover a new function of SIRT1 and reveal a new mechanism underlying the regulation of EV71 replication. PMID:27875274

  20. An efficient procedure for plant organellar genome assembly, based on whole genome data from the 454 GS FLX sequencing platform

    Directory of Open Access Journals (Sweden)

    Zhang Tongwu

    2011-11-01

    Full Text Available Abstract Motivation Complete organellar genome sequences (chloroplasts and mitochondria provide valuable resources and information for studying plant molecular ecology and evolution. As high-throughput sequencing technology advances, it becomes the norm that a shotgun approach is used to obtain complete genome sequences. Therefore, to assemble organellar sequences from the whole genome, shotgun reads are inevitable. However, associated techniques are often cumbersome, time-consuming, and difficult, because true organellar DNA is difficult to separate efficiently from nuclear copies, which have been transferred to the nucleus through the course of evolution. Results We report a new, rapid procedure for plant chloroplast and mitochondrial genome sequencing and assembly using the Roche/454 GS FLX platform. Plant cells can contain multiple copies of the organellar genomes, and there is a significant correlation between the depth of sequence reads in contigs and the number of copies of the genome. Without isolating organellar DNA from the mixture of nuclear and organellar DNA for sequencing, we retrospectively extracted assembled contigs of either chloroplast or mitochondrial sequences from the whole genome shotgun data. Moreover, the contig connection graph property of Newbler (a platform-specific sequence assembler ensures an efficient final assembly. Using this procedure, we assembled both chloroplast and mitochondrial genomes of a resurrection plant, Boea hygrometrica, with high fidelity. We also present information and a minimal sequence dataset as a reference for the assembly of other plant organellar genomes.

  1. Plant mitochondrial genome peculiarities evolving in the earliest vascular plant lineages

    Institute of Scientific and Technical Information of China (English)

    Volker KNOOP

    2013-01-01

    In plants,the mitochondrial DNA has evolved in peculiar ways.Simple circular mitochondrial genomes found in most other eukaryotic lineages have expanded tremendously in size.Mitochondrial DNAs in some flowering plants may in fact be larger than genomes of free-living bacteria.Introns,retrotransposons,pseudogene fragments,and promiscuous DNA copied from the chloroplast or nuclear genome contribute to the size expansion but most intergenic DNA remains unaccounted for so far.Additionally,frequent recombination results in heterogeneous pools of coexisting,subgenomic mtDNA molecules in angiosperms.In contrast,the mitochondrial DNAs of bryophytes,the extant representatives of very early splits in plant phylogeny,are more conservative in structural evolution and seem to be devoid of active recombination.However,whereas mitochondrial introns are highly conserved among seed plants (spermatophytes),not a single one of more than 80 different introns in bryophyte mtDNAs is conserved among the three divisions,liverworts,mosses,and hornworts.Lycophytes are now unequivocally identified as living representatives of the earliest vascular plant branch in a crucial phylogenetic position between bryophytes and later diversifying tracheophytes including spermatophytes.Very recently,mtDNAs have become available for the three orders of extant lycophytes-Isoetales,Selaginellales,and Lycopodiales.As I will discuss here,the lycophyte mtDNAs not only show a surprising diversity of features but also previously unseen novelties of plant mitochondrial DNA evolution.The transition from a gametophyte-dominated bryophyte lifestyle to a sporophytedominated vascular plant lifestyle apparently gave rise to several peculiar independent changes in plant chondrome evolution.

  2. Three-dimensional Structure of a Viral Genome-delivery Portal Vertex

    Energy Technology Data Exchange (ETDEWEB)

    A Olia; P Prevelige Jr.; J Johnson; G Cingolani

    2011-12-31

    DNA viruses such as bacteriophages and herpesviruses deliver their genome into and out of the capsid through large proteinaceous assemblies, known as portal proteins. Here, we report two snapshots of the dodecameric portal protein of bacteriophage P22. The 3.25-{angstrom}-resolution structure of the portal-protein core bound to 12 copies of gene product 4 (gp4) reveals a {approx}1.1-MDa assembly formed by 24 proteins. Unexpectedly, a lower-resolution structure of the full-length portal protein unveils the unique topology of the C-terminal domain, which forms a {approx}200-{angstrom}-long {alpha}-helical barrel. This domain inserts deeply into the virion and is highly conserved in the Podoviridae family. We propose that the barrel domain facilitates genome spooling onto the interior surface of the capsid during genome packaging and, in analogy to a rifle barrel, increases the accuracy of genome ejection into the host cell.

  3. Integrative Functional Genomics of Hepatitis C Virus Infection Identifies Host Dependencies in Complete Viral Replication Cycle

    OpenAIRE

    Qisheng Li; Yong-Yuan Zhang; Stephan Chiu; Zongyi Hu; Keng-Hsin Lan; Helen Cha; Catherine Sodroski; Fang Zhang; Ching-Sheng Hsu; Emmanuel Thomas; T Jake Liang

    2014-01-01

    Recent functional genomics studies including genome-wide small interfering RNA (siRNA) screens demonstrated that hepatitis C virus (HCV) exploits an extensive network of host factors for productive infection and propagation. How these co-opted host functions interact with various steps of HCV replication cycle and exert pro- or antiviral effects on HCV infection remains largely undefined. Here we present an unbiased and systematic strategy to functionally interrogate HCV host dependencies unc...

  4. The pp24 phosphoprotein of Mason-Pfizer monkey virus contributes to viral genome packaging

    Directory of Open Access Journals (Sweden)

    Weldon Robert A

    2005-11-01

    Full Text Available Abstract Background The Gag protein of Mason-Pfizer monkey virus, a betaretrovirus, contains a phosphoprotein that is cleaved into the Np24 protein and the phosphoprotein pp16/18 during virus maturation. Previous studies by Yasuda and Hunter (J. Virology. 1998. 72:4095–4103 have demonstrated that pp16/18 contains a viral late domain required for budding and that the Np24 protein plays a role during the virus life cycle since deletion of this N-terminal domain blocked virus replication. The function of the Np24 domain, however, is not known. Results Here we identify a region of basic residues (KKPKR within the Np24 domain that is highly conserved among the phosphoproteins of various betaretroviruses. We show that this KKPKR motif is required for virus replication yet dispensable for procapsid assembly, membrane targeting, budding and release, particle maturation, or viral glycoprotein packaging. Additional experiments indicated that deletion of this motif reduced viral RNA packaging 6–8 fold and affected the transient association of Gag with nuclear pores. Conclusion These results demonstrate that the Np24 domain plays an important role in RNA packaging and is in agreement with evidence that suggests that correct intracellular targeting of Gag to the nuclear compartment is an fundamental step in the retroviral life cycle.

  5. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens PS006.

    Science.gov (United States)

    Gamez, Rocío M; Rodríguez, Fernando; Ramírez, Sandra; Gómez, Yolanda; Agarwala, Richa; Landsman, David; Mariño-Ramírez, Leonardo

    2016-05-05

    Pseudomonas fluorescens is a well-known plant growth-promoting rhizobacterium (PGPR). We report here the first whole-genome sequence of PGPR P. fluorescens evaluated in Colombian banana plants. The genome sequences contains genes involved in plant growth and defense, including bacteriocins, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and genes that provide resistance to toxic compounds.

  6. A collection of plant-specific genomic data and resources at NCBI.

    Science.gov (United States)

    Tatusova, Tatiana; Smith-White, Brian; Ostell, James

    2007-01-01

    The National Center for Biotechnology Information (NCBI) provides a data-rich environment in support of genomic research by collecting the biological data for genomes, genes, gene expressions, gene variation, gene families, proteins, and protein domains and integrating the data with analytical, search, and retrieval resources through the NCBI Web site. Entrez, an integrated search and retrieval system, enables text searches across various diverse biological databases maintained at NCBI. Map Viewer, the genome browser developed at NCBI, displays aligned genetic, physical, and sequence maps for eukaryotic genomes including those of many plants. A specialized plant query page allows maps from all plant genomes available in the Map Viewer to be searched to produce a display of aligned maps from several species. Customized Plant Basic Local Alignment Search Tool (PlantBLAST) allows the user to perform sequence similarity searches in a special collection of mapped plant sequence data and to view the resulting alignments within a genomic context using Map Viewer. In addition, pre-computed sequence similarities, such as those for proteins offered by BLAST Link (BLink), enable fluid navigation from un-annotated to annotated sequences, quickening the pace of discovery. Plant Genome Central (PGC) is a Web portal that provides centralized access to all NCBI plant genome resources. Also, there are links to plant-specific Web resources external to NCBI such as organism-specific databases, genome-sequencing project Web pages, and homepages of genomic bioinformatics organizations.

  7. Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics.

    Science.gov (United States)

    Hanikenne, Marc; Nouet, Cécile

    2011-06-01

    In the course of evolution, plants adapted to widely differing metal availabilities in soils and therefore represent an important source of natural variation of metal homeostasis networks. Research on plant metal homeostasis can thus provide insights into the functioning, regulation and adaptation of biological networks. Here, we describe major recent breakthroughs in the understanding of the genetic and molecular basis of metal hyperaccumulation and associated hypertolerance, a naturally selected complex trait which represents an extreme adaptation of the metal homeostasis network. Investigations in this field reveal further the molecular alterations underlying the evolution of natural phenotypic diversity and provide a highly relevant framework for comparative genomics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Microarray comparative genomic hybridisation analysis incorporating genomic organisation, and application to enterobacterial plant pathogens.

    Directory of Open Access Journals (Sweden)

    Leighton Pritchard

    2009-08-01

    Full Text Available Microarray comparative genomic hybridisation (aCGH provides an estimate of the relative abundance of genomic DNA (gDNA taken from comparator and reference organisms by hybridisation to a microarray containing probes that represent sequences from the reference organism. The experimental method is used in a number of biological applications, including the detection of human chromosomal aberrations, and in comparative genomic analysis of bacterial strains, but optimisation of the analysis is desirable in each problem domain.We present a method for analysis of bacterial aCGH data that encodes spatial information from the reference genome in a hidden Markov model. This technique is the first such method to be validated in comparisons of sequenced bacteria that diverge at the strain and at the genus level: Pectobacterium atrosepticum SCRI1043 (Pba1043 and Dickeya dadantii 3937 (Dda3937; and Lactococcus lactis subsp. lactis IL1403 and L. lactis subsp. cremoris MG1363. In all cases our method is found to outperform common and widely used aCGH analysis methods that do not incorporate spatial information. This analysis is applied to comparisons between commercially important plant pathogenic soft-rotting enterobacteria (SRE Pba1043, P. atrosepticum SCRI1039, P. carotovorum 193, and Dda3937.Our analysis indicates that it should not be assumed that hybridisation strength is a reliable proxy for sequence identity in aCGH experiments, and robustly extends the applicability of aCGH to bacterial comparisons at the genus level. Our results in the SRE further provide evidence for a dynamic, plastic 'accessory' genome, revealing major genomic islands encoding gene products that provide insight into, and may play a direct role in determining, variation amongst the SRE in terms of their environmental survival, host range and aetiology, such as phytotoxin synthesis, multidrug resistance, and nitrogen fixation.

  9. The Plant Ontology as a Tool for Comparative Plant Anatomy and Genomic Analyses

    Science.gov (United States)

    Cooper, Laurel; Walls, Ramona L.; Elser, Justin; Gandolfo, Maria A.; Stevenson, Dennis W.; Smith, Barry; Preece, Justin; Athreya, Balaji; Mungall, Christopher J.; Rensing, Stefan; Hiss, Manuel; Lang, Daniel; Reski, Ralf; Berardini, Tanya Z.; Li, Donghui; Huala, Eva; Schaeffer, Mary; Menda, Naama; Arnaud, Elizabeth; Shrestha, Rosemary; Yamazaki, Yukiko; Jaiswal, Pankaj

    2013-01-01

    The Plant Ontology (PO; http://www.plantontology.org/) is a publicly available, collaborative effort to develop and maintain a controlled, structured vocabulary (‘ontology’) of terms to describe plant anatomy, morphology and the stages of plant development. The goals of the PO are to link (annotate) gene expression and phenotype data to plant structures and stages of plant development, using the data model adopted by the Gene Ontology. From its original design covering only rice, maize and Arabidopsis, the scope of the PO has been expanded to include all green plants. The PO was the first multispecies anatomy ontology developed for the annotation of genes and phenotypes. Also, to our knowledge, it was one of the first biological ontologies that provides translations (via synonyms) in non-English languages such as Japanese and Spanish. As of Release #18 (July 2012), there are about 2.2 million annotations linking PO terms to >110,000 unique data objects representing genes or gene models, proteins, RNAs, germplasm and quantitative trait loci (QTLs) from 22 plant species. In this paper, we focus on the plant anatomical entity branch of the PO, describing the organizing principles, resources available to users and examples of how the PO is integrated into other plant genomics databases and web portals. We also provide two examples of comparative analyses, demonstrating how the ontology structure and PO-annotated data can be used to discover the patterns of expression of the LEAFY (LFY) and terpene synthase (TPS) gene homologs. PMID:23220694

  10. The plant ontology as a tool for comparative plant anatomy and genomic analyses.

    Science.gov (United States)

    Cooper, Laurel; Walls, Ramona L; Elser, Justin; Gandolfo, Maria A; Stevenson, Dennis W; Smith, Barry; Preece, Justin; Athreya, Balaji; Mungall, Christopher J; Rensing, Stefan; Hiss, Manuel; Lang, Daniel; Reski, Ralf; Berardini, Tanya Z; Li, Donghui; Huala, Eva; Schaeffer, Mary; Menda, Naama; Arnaud, Elizabeth; Shrestha, Rosemary; Yamazaki, Yukiko; Jaiswal, Pankaj

    2013-02-01

    The Plant Ontology (PO; http://www.plantontology.org/) is a publicly available, collaborative effort to develop and maintain a controlled, structured vocabulary ('ontology') of terms to describe plant anatomy, morphology and the stages of plant development. The goals of the PO are to link (annotate) gene expression and phenotype data to plant structures and stages of plant development, using the data model adopted by the Gene Ontology. From its original design covering only rice, maize and Arabidopsis, the scope of the PO has been expanded to include all green plants. The PO was the first multispecies anatomy ontology developed for the annotation of genes and phenotypes. Also, to our knowledge, it was one of the first biological ontologies that provides translations (via synonyms) in non-English languages such as Japanese and Spanish. As of Release #18 (July 2012), there are about 2.2 million annotations linking PO terms to >110,000 unique data objects representing genes or gene models, proteins, RNAs, germplasm and quantitative trait loci (QTLs) from 22 plant species. In this paper, we focus on the plant anatomical entity branch of the PO, describing the organizing principles, resources available to users and examples of how the PO is integrated into other plant genomics databases and web portals. We also provide two examples of comparative analyses, demonstrating how the ontology structure and PO-annotated data can be used to discover the patterns of expression of the LEAFY (LFY) and terpene synthase (TPS) gene homologs.

  11. The Revolution in Viral Genomics as Exemplified by the Bioinformatic Analysis of Human Adenoviruses

    Directory of Open Access Journals (Sweden)

    Sarah Torres

    2010-06-01

    Full Text Available Over the past 30 years, genomic and bioinformatic analysis of human adenoviruses has been achieved using a variety of DNA sequencing methods; initially with the use of restriction enzymes and more currently with the use of the GS FLX pyrosequencing technology. Following the conception of DNA sequencing in the 1970s, analysis of adenoviruses has evolved from 100 base pair mRNA fragments to entire genomes. Comparative genomics of adenoviruses made its debut in 1984 when nucleotides and amino acids of coding sequences within the hexon genes of two human adenoviruses (HAdV, HAdV–C2 and HAdV–C5, were compared and analyzed. It was determined that there were three different zones (1-393, 394-1410, 1411-2910 within the hexon gene, of which HAdV–C2 and HAdV–C5 shared zones 1 and 3 with 95% and 89.5% nucleotide identity, respectively. In 1992, HAdV-C5 became the first adenovirus genome to be fully sequenced using the Sanger method. Over the next seven years, whole genome analysis and characterization was completed using bioinformatic tools such as blastn, tblastx, ClustalV and FASTA, in order to determine key proteins in species HAdV-A through HAdV-F. The bioinformatic revolution was initiated with the introduction of a novel species, HAdV-G, that was typed and named by the use of whole genome sequencing and phylogenetics as opposed to traditional serology. HAdV bioinformatics will continue to advance as the latest sequencing technology enables scientists to add to and expand the resource databases. As a result of these advancements, how novel HAdVs are typed has changed. Bioinformatic analysis has become the revolutionary tool that has significantly accelerated the in-depth study of HAdV microevolution through comparative genomics.

  12. The integrated web service and genome database for agricultural plants with biotechnology information

    Science.gov (United States)

    Kim, ChangKug; Park, DongSuk; Seol, YoungJoo; Hahn, JangHo

    2011-01-01

    The National Agricultural Biotechnology Information Center (NABIC) constructed an agricultural biology-based infrastructure and developed a Web based relational database for agricultural plants with biotechnology information. The NABIC has concentrated on functional genomics of major agricultural plants, building an integrated biotechnology database for agro-biotech information that focuses on genomics of major agricultural resources. This genome database provides annotated genome information from 1,039,823 records mapped to rice, Arabidopsis, and Chinese cabbage. PMID:21887015

  13. Tailorable Release of Small Molecules Utilizing Plant Viral Nanoparticles and Fibrous Matrix

    Science.gov (United States)

    Cao, Jing

    We have engineered Red clover necrotic mosaic virus (RCNMV) derived plant viral nanoparticles (PVNs) within a fibrous matrix to optimize its application for delivery and controlled release of active ingredients. RCNMV's structure and unique response to divalent cation depletion and re-addition enables the infusion of small molecules into its viral capsid through a pore formation mechanism. While this PVN technology shows a potential use in nano-scale therapeutic drug delivery, its inherent molecular dynamics to environmental stimuli places a constraint on its application and functionality as a vehicle for tailorable release of loading cargo. In this study, we enhance the understanding of the PVN technology by elucidating its mechanism for loading and triggered release of doxorubicin (Dox), a chemotherapeutic drug for breast cancer. Of critical importance is the methodology for manipulation of Dox's loading capacity and its binding location on either the exterior or interior of the virion capsid. The ability to control the active ingredient binding location provides an additional approach of tunable release from the PVN delivery vehicle besides its inherent pH- and ion- responsive release of loading cargo. The efficacious and controlled release strategy for agricultural active ingredients, such as nematicides, is also a large social need right now. Crop infestation of plant parasite nematodes causes in excess of 157 billion in worldwide crop damage annually. If an effective control strategy for these pests could be developed, it is estimated that the current market for effective nematicides is between 700 million and $1 billion each year worldwide. In this study, we report on the utilization of PVN technology to encapsulate the biological nematicide, abamectin (Abm), within the PVN's interior capsid (PVNAbm). Creating PVNAbm addresses Abm's issues of soil immobility while rendering a controlled release strategy for its bioavailability to root knot nematodes (RKNs

  14. The AT-hook DNA binding ability of the Epstein Barr virus EBNA1 protein is necessary for the maintenance of viral genomes in latently infected cells.

    Science.gov (United States)

    Chakravorty, Adityarup; Sugden, Bill

    2015-10-01

    Epstein Barr Virus (EBV) is a human tumor virus that is causally linked to malignancies such as Burkitt׳s lymphoma, and gastric and nasopharyngeal carcinomas. Tethering of EBV genomes to cellular chromosomes is required for the synthesis and persistence of viral plasmids in tumor cells. However, it is not established how EBV genomes are tethered to cellular chromosomes. We test the hypothesis that the viral protein EBNA1 tethers EBV genomes to chromosomes specifically through its N-terminal AT-hook DNA-binding domains by using a small molecule, netropsin, that has been shown to inhibit the AT-hook DNA-binding of EBNA1 in vitro. We show that netropsin forces the loss of EBV genomes from epithelial and lymphoid cells in an AT-hook dependent manner and that EBV-positive lymphoma cells are significantly more inhibited in their growth by netropsin than are corresponding EBV-negative cells.

  15. Progress in Genome Editing Technology and Its Application in Plants

    Science.gov (United States)

    Zhang, Kai; Raboanatahiry, Nadia; Zhu, Bin; Li, Maoteng

    2017-01-01

    Genome editing technology (GET) is a versatile approach that has progressed rapidly as a mechanism to alter the genotype and phenotype of organisms. However, conventional genome modification using GET cannot satisfy current demand for high-efficiency and site-directed mutagenesis, retrofitting of artificial nucleases has developed into a new avenue within this field. Based on mechanisms to recognize target genes, newly-developed GETs can generally be subdivided into three cleavage systems, protein-dependent DNA cleavage systems (i.e., zinc-finger nucleases, ZFN, and transcription activator-like effector nucleases, TALEN), RNA-dependent DNA cleavage systems (i.e., clustered regularly interspaced short palindromic repeats-CRISPR associated proteins, CRISPR-Cas9, CRISPR-Cpf1, and CRISPR-C2c1), and RNA-dependent RNA cleavage systems (i.e., RNA interference, RNAi, and CRISPR-C2c2). All these techniques can lead to double-stranded (DSB) or single-stranded breaks (SSB), and result in either random mutations via non-homologous end-joining (NHEJ) or targeted mutation via homologous recombination (HR). Thus, site-directed mutagenesis can be induced via targeted gene knock-out, knock-in, or replacement to modify specific characteristics including morphology-modification, resistance-enhancement, and physiological mechanism-improvement along with plant growth and development. In this paper, an non-comprehensive review on the development of different GETs as applied to plants is presented. PMID:28261237

  16. Progress in Genome Editing Technology and Its Application in Plants.

    Science.gov (United States)

    Zhang, Kai; Raboanatahiry, Nadia; Zhu, Bin; Li, Maoteng

    2017-01-01

    Genome editing technology (GET) is a versatile approach that has progressed rapidly as a mechanism to alter the genotype and phenotype of organisms. However, conventional genome modification using GET cannot satisfy current demand for high-efficiency and site-directed mutagenesis, retrofitting of artificial nucleases has developed into a new avenue within this field. Based on mechanisms to recognize target genes, newly-developed GETs can generally be subdivided into three cleavage systems, protein-dependent DNA cleavage systems (i.e., zinc-finger nucleases, ZFN, and transcription activator-like effector nucleases, TALEN), RNA-dependent DNA cleavage systems (i.e., clustered regularly interspaced short palindromic repeats-CRISPR associated proteins, CRISPR-Cas9, CRISPR-Cpf1, and CRISPR-C2c1), and RNA-dependent RNA cleavage systems (i.e., RNA interference, RNAi, and CRISPR-C2c2). All these techniques can lead to double-stranded (DSB) or single-stranded breaks (SSB), and result in either random mutations via non-homologous end-joining (NHEJ) or targeted mutation via homologous recombination (HR). Thus, site-directed mutagenesis can be induced via targeted gene knock-out, knock-in, or replacement to modify specific characteristics including morphology-modification, resistance-enhancement, and physiological mechanism-improvement along with plant growth and development. In this paper, an non-comprehensive review on the development of different GETs as applied to plants is presented.

  17. Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection.

    Science.gov (United States)

    Gillespie, Alyssa Lundgren; Teoh, Jeffrey; Lee, Heather; Prince, Jessica; Stadnisky, Michael D; Anderson, Monique; Nash, William; Rival, Claudia; Wei, Hairong; Gamache, Awndre; Farber, Charles R; Tung, Kenneth; Brown, Michael G

    2016-02-01

    The MHC class I D(k) molecule supplies vital host resistance during murine cytomegalovirus (MCMV) infection. Natural killer (NK) cells expressing the Ly49G2 inhibitory receptor, which specifically binds D(k), are required to control viral spread. The extent of D(k)-dependent host resistance, however, differs significantly amongst related strains of mice, C57L and MA/My. As a result, we predicted that relatively small-effect modifier genetic loci might together shape immune cell features, NK cell reactivity, and the host immune response to MCMV. A robust D(k)-dependent genetic effect, however, has so far hindered attempts to identify additional host resistance factors. Thus, we applied genomic mapping strategies and multicolor flow cytometric analysis of immune cells in naive and virus-infected hosts to identify genetic modifiers of the host immune response to MCMV. We discovered and validated many quantitative trait loci (QTL); these were mapped to at least 19 positions on 16 chromosomes. Intriguingly, one newly discovered non-MHC locus (Cmv5) controlled splenic NK cell accrual, secondary lymphoid organ structure, and lymphoid follicle development during MCMV infection. We infer that Cmv5 aids host resistance to MCMV infection by expanding NK cells needed to preserve and protect essential tissue structural elements, to enhance lymphoid remodeling and to increase viral clearance in spleen.

  18. Identification and Genome Characterization of the First Sicinivirus Isolate from Chickens in Mainland China by Using Viral Metagenomics.

    Science.gov (United States)

    Zhou, Hongzhuan; Zhu, Shanshan; Quan, Rong; Wang, Jing; Wei, Li; Yang, Bing; Xu, Fuzhou; Wang, Jinluo; Chen, Fuyong; Liu, Jue

    2015-01-01

    Unlike traditional virus isolation and sequencing approaches, sequence-independent amplification based viral metagenomics technique allows one to discover unexpected or novel viruses efficiently while bypassing culturing step. Here we report the discovery of the first Sicinivirus isolate (designated as strain JSY) of picornaviruses from commercial layer chickens in mainland China by using a viral metagenomics technique. This Sicinivirus isolate, which contains a whole genome of 9,797 nucleotides (nt) excluding the poly(A) tail, possesses one of the largest picornavirus genome so far reported, but only shares 88.83% and 82.78% of amino acid sequence identity to that of ChPV1 100C (KF979332) and Sicinivirus 1 strain UCC001 (NC_023861), respectively. The complete 939 nt 5'UTR of the isolate strain contains at least twelve stem-loop domains (A-L), representing the highest set of loops reported within Sicinivirus genus. The conserved 'barbell-like' structure was also present in the 272 nt 3'UTR of the isolate as that in the 3' UTR of Sicinivirus 1 strain UCC001. The 8,586 nt large open reading frame encodes a 2,862 amino acids polyprotein precursor. Moreover, Sicinivirus infection might be widely present in commercial chicken farms in Yancheng region of the Jiangsu Province as evidenced by all the tested stool samples from three different farms being positive (17/17) for Sicinivirus detection. This is the first report on identification of Sicinivirus in commercial layer chickens with a severe clinical disease in mainland China, however, further studies are needed to evaluate the pathogenic potential of this picornavirus in chickens.

  19. The pathogenicity determinant of Citrus tristeza virus causing the seedling yellows syndrome maps at the 3'-terminal region of the viral genome.

    Science.gov (United States)

    Albiach-Marti, Maria R; Robertson, Cecile; Gowda, Siddarame; Tatineni, Satyanarayana; Belliure, Belén; Garnsey, Stephen M; Folimonova, Svetlana Y; Moreno, Pedro; Dawson, William O

    2010-01-01

    Citrus tristeza virus (CTV) (genus Closterovirus, family Closteroviridae) causes some of the more important viral diseases of citrus worldwide. The ability to map disease-inducing determinants of CTV is needed to develop better diagnostic and disease control procedures. A distinctive phenotype of some isolates of CTV is the ability to induce seedling yellows (SY) in sour orange, lemon and grapefruit seedlings. In Florida, the decline isolate of CTV, T36, induces SY, whereas a widely distributed mild isolate, T30, does not. To delimit the viral sequences associated with the SY syndrome, we created a number of T36/T30 hybrids by substituting T30 sequences into different regions of the 3' half of the genome of an infectious cDNA of T36. Eleven T36/T30 hybrids replicated in Nicotiana benthamiana protoplasts. Five of these hybrids formed viable virions that were mechanically transmitted to Citrus macrophylla, a permissive host for CTV. All induced systemic infections, similar to that of the parental T36 clone. Tissues from these C. macrophylla source plants were then used to graft inoculate sour orange and grapefruit seedlings. Inoculation with three of the T30/T36 hybrid constructs induced SY symptoms identical to those of T36; however, two hybrids with T30 substitutions in the p23-3' nontranslated region (NTR) (nucleotides 18 394-19 296) failed to induce SY. Sour orange seedlings infected with a recombinant non-SY p23-3' NTR hybrid also remained symptomless when challenged with the parental virus (T36), demonstrating the potential feasibility of using engineered constructs of CTV to mitigate disease.

  20. Extraction of nuclei from sonchus yellow net rhabdovirus-infected plants yields a polymerase that synthesizes viral mRNAs and polyadenylated plus-strand leader RNA.

    Science.gov (United States)

    Wagner, J D; Choi, T J; Jackson, A O

    1996-01-01

    Although the primary sequence of the genome of the plant rhabdovirus sonchus yellow net virus (SYNV) has been determined, little is known about the composition of the viral polymerase or the mechanics of viral transcription and replication. In this paper, we report the partial isolation and characterization of an active SYNV polymerase from nuclei of SYNV-infected leaf tissue. A salt extraction procedure is shown to be an effective purification step for recovery of the polymerase from the nuclei. Full-length, polyadenylated SYNV N and M2 mRNAs and plus-strand leader RNA are among the products of the in vitro polymerase reactions. Polyadenylation of the plus-strand leader RNA in vitro is shown with RNase H and specific oligonucleotides. This is the first report of a polyadenylated plus-strand leader RNA for a minus-strand RNA virus, a feature that may reflect adaptation of SYNV to replication in the nucleus. Analysis of the SYNV proteins present in the polymerase extract suggests that the N, M2, and L proteins are components of the transcription complex. Overall, the system we developed promises to be useful for an in-depth characterization of the mechanics of SYNV RNA synthesis.

  1. Lifestyles of the effector-rich: genome-enabled characterization of bacterial plant pathogens

    Science.gov (United States)

    Genome sequencing of bacterial plant pathogens is providing transformative insights into the complex network of molecular plant-microbe interactions mediated by extracellular effectors during pathogenesis. Bacterial pathogens sequenced to completion are phylogenetically diverse and vary significant...

  2. The Brucella suis Genome Reveals Fundamental Similarities between Animal and Plant Pathogens and Symbionts

    National Research Council Canada - National Science Library

    Ian T. Paulsen; Rekha Seshadri; Karen E. Nelson; Jonathan A. Eisen; John F. Heidelberg; Timothy D. Read; Robert J. Dodson; Lowell Umayam; Lauren M. Brinkac; Maureen J. Beanan; Sean C. Daugherty; Robert T. Deboy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; William C. Nelson; Bola Ayodeji; Margaret Kraul; Jyoti Shetty; Joel Malek; Susan E. van Aken; Steven Riedmuller; Herve Tettelin; Steven R. Gill; Owen White; Steven L. Salzberg; David L. Hoover; Luther E. Lindler; Shirley M. Halling; Stephen M. Boyle; Claire M. Fraser

    2002-01-01

    .... Extensive gene synteny between B. suis chromosome 1 and the genome of the plant symbiont Mesorhizobium loti emphasizes the similarity between this animal pathogen and plant pathogens and symbionts...

  3. Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome.

    Science.gov (United States)

    Nawtaisong, Pruksa; Keith, James; Fraser, Tresa; Balaraman, Velmurugan; Kolokoltsov, Andrey; Davey, Robert A; Higgs, Stephen; Mohammed, Ahmed; Rongsriyam, Yupha; Komalamisra, Narumon; Fraser, Malcolm J

    2009-06-04

    Outbreaks of Dengue impose a heavy economic burden on developing countries in terms of vector control and human morbidity. Effective vaccines against all four serotypes of Dengue are in development, but population replacement with transgenic vectors unable to transmit the virus might ultimately prove to be an effective approach to disease suppression, or even eradication. A key element of the refractory transgenic vector approach is the development of transgenes that effectively prohibit viral transmission. In this report we test the effectiveness of several hammerhead ribozymes for suppressing DENV in lentivirus-transduced mosquito cells in an attempt to mimic the transgenic use of these effector molecules in mosquitoes. A lentivirus vector that expresses these ribozymes as a fusion RNA molecule using an Ae. aegypti tRNA(val) promoter and terminating with a 60A tail insures optimal expression, localization, and activity of the hammerhead ribozyme against the DENV genome. Among the 14 hammerhead ribozymes we designed to attack the DENV-2 NGC genome, several appear to be relatively effective in reducing virus production from transduced cells by as much as 2 logs. Among the sequences targeted are 10 that are conserved among all DENV serotype 2 strains. Our results confirm that hammerhead ribozymes can be effective in suppressing DENV in a transgenic approach, and provide an alternative or supplementary approach to proposed siRNA strategies for DENV suppression in transgenic mosquitoes.

  4. Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome

    Directory of Open Access Journals (Sweden)

    Mohammed Ahmed

    2009-06-01

    Full Text Available Abstract Outbreaks of Dengue impose a heavy economic burden on developing countries in terms of vector control and human morbidity. Effective vaccines against all four serotypes of Dengue are in development, but population replacement with transgenic vectors unable to transmit the virus might ultimately prove to be an effective approach to disease suppression, or even eradication. A key element of the refractory transgenic vector approach is the development of transgenes that effectively prohibit viral transmission. In this report we test the effectiveness of several hammerhead ribozymes for suppressing DENV in lentivirus-transduced mosquito cells in an attempt to mimic the transgenic use of these effector molecules in mosquitoes. A lentivirus vector that expresses these ribozymes as a fusion RNA molecule using an Ae. aegypti tRNAval promoter and terminating with a 60A tail insures optimal expression, localization, and activity of the hammerhead ribozyme against the DENV genome. Among the 14 hammerhead ribozymes we designed to attack the DENV-2 NGC genome, several appear to be relatively effective in reducing virus production from transduced cells by as much as 2 logs. Among the sequences targeted are 10 that are conserved among all DENV serotype 2 strains. Our results confirm that hammerhead ribozymes can be effective in suppressing DENV in a transgenic approach, and provide an alternative or supplementary approach to proposed siRNA strategies for DENV suppression in transgenic mosquitoes.

  5. CRISPR-Cas9: tool for qualitative and quantitative plant genome editing

    Directory of Open Access Journals (Sweden)

    Ali Noman

    2016-11-01

    Full Text Available Genome editing advancements have made many unachievable ideas practical. Increased adoption of genome editing has been geared by swiftly developing CRISPR-Cas9 technology. This technique is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR mediated genome editing is being used for rapid, easy and efficient alteration of indigenous genes among diverse plant species. With approximate completion of conceptual work about CRISPR/Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of CRISPR-Cas9 systems for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but also in crop plants. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with GM Plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR/Cas9 technology in plants has been summarized and discussed. We review potential of CRISPR/Cas9 for different aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques e.g. ZFNs and TALENs and potential challenges in coming decades have been described.

  6. Methodologies for in vitro cloning of small RNAs and application for plant genome(s).

    Science.gov (United States)

    Devor, Eric J; Huang, Lingyan; Abdukarimov, Abdusattor; Abdurakhmonov, Ibrokhim Y

    2009-01-01

    The "RNA revolution" that started at the end of the 20th century with the discovery of post-transcriptional gene silencing and its mechanism via RNA interference (RNAi) placed tiny 21-24 nucleotide long noncoding RNAs (ncRNAs) in the forefront of biology as one of the most important regulatory elements in a host of physiologic processes. The discovery of new classes of ncRNAs including endogenous small interfering RNAs, microRNAs, and PIWI-interacting RNAs is a hallmark in the understanding of RNA-dependent gene regulation. New generation high-throughput sequencing technologies further accelerated the studies of this "tiny world" and provided their global characterization and validation in many biological systems with sequenced genomes. Nevertheless, for the many "yet-unsequenced" plant genomes, the discovery of small RNA world requires in vitro cloning from purified cellular RNAs. Thus, reproducible methods for in vitro small RNA cloning are of paramount importance and will remain so into the foreseeable future. In this paper, we present a description of existing small RNA cloning methods as well as next-generation sequencing methods that have accelerated this research along with a description of the application of one in vitro cloning method in an initial small RNA survey in the "still unsequenced" allotetraploid cotton genome.

  7. Whole-Genome Sequencing of Measles Virus Genotypes H1 and D8 During Outbreaks of Infection Following the 2010 Olympic Winter Games Reveals Viral Transmission Routes.

    Science.gov (United States)

    Gardy, Jennifer L; Naus, Monika; Amlani, Ashraf; Chung, Walter; Kim, Hochan; Tan, Malcolm; Severini, Alberto; Krajden, Mel; Puddicombe, David; Sahni, Vanita; Hayden, Althea S; Gustafson, Reka; Henry, Bonnie; Tang, Patrick

    2015-11-15

    We used whole-genome sequencing to investigate a dual-genotype outbreak of measles occurring after the XXI Olympic Winter Games in Vancouver, Canada. By sequencing 27 complete genomes from H1 and D8 genotype measles viruses isolated from outbreak cases, we estimated the virus mutation rate, determined that person-to-person transmission is typically associated with 0 mutations between isolates, and established that a single introduction of H1 virus led to the expansion of the outbreak beyond Vancouver. This is the largest measles genomics project to date, revealing novel aspects of measles virus genetics and providing new insights into transmission of this reemerging viral pathogen.

  8. A strategy for screening an inhibitor of viral silencing suppressors, which attenuates symptom development of plant viruses.

    Science.gov (United States)

    Shimura, Hanako; Fukagawa, Takako; Meguro, Ayano; Yamada, Hirokazu; Oh-Hira, Mahito; Sano, Shinsuke; Masuta, Chikara

    2008-12-10

    To find out whether we can control plant virus diseases by blocking viral RNA silencing suppressors (RSSs), we developed a strategy to screen inhibitors that block the association of RSSs with siRNAs using a surface plasmon resonance assay. The screened chemicals were tested in competition with RSSs for binding to siRNAs using a mobility shift assay. We then confirmed that tested chemicals actually inhibited the RSS activity in vivo using a protoplast assay which was developed for this purpose. This entire system can be adapted to screening inhibitors of not only plant viruses but also some animal viruses possessing RSSs.

  9. Replication protein of tobacco mosaic virus cotranslationally binds the 5′ untranslated region of genomic RNA to enable viral replication

    Science.gov (United States)

    Kawamura-Nagaya, Kazue; Ishibashi, Kazuhiro; Huang, Ying-Ping; Miyashita, Shuhei; Ishikawa, Masayuki

    2014-01-01

    Genomic RNA of positive-strand RNA viruses replicate via complementary (i.e., negative-strand) RNA in membrane-bound replication complexes. Before replication complex formation, virus-encoded replication proteins specifically recognize genomic RNA molecules and recruit them to sites of replication. Moreover, in many of these viruses, selection of replication templates by the replication proteins occurs preferentially in cis. This property is advantageous to the viruses in several aspects of viral replication and evolution, but the underlying molecular mechanisms have not been characterized. Here, we used an in vitro translation system to show that a 126-kDa replication protein of tobacco mosaic virus (TMV), a positive-strand RNA virus, binds a 5′-terminal ∼70-nucleotide region of TMV RNA cotranslationally, but not posttranslationally. TMV mutants that carried nucleotide changes in the 5′-terminal region and showed a defect in the binding were unable to synthesize negative-strand RNA, indicating that this binding is essential for template selection. A C-terminally truncated 126-kDa protein, but not the full-length 126-kDa protein, was able to posttranslationally bind TMV RNA in vitro, suggesting that binding of the 126-kDa protein to the 70-nucleotide region occurs during translation and before synthesis of the C-terminal inhibitory domain. We also show that binding of the 126-kDa protein prevents further translation of the bound TMV RNA. These data provide a mechanistic explanation of how the 126-kDa protein selects replication templates in cis and how fatal collision between translating ribosomes and negative-strand RNA-synthesizing polymerases on the genomic RNA is avoided. PMID:24711385

  10. Research progress of plant population genomics based on high-throughput sequencing.

    Science.gov (United States)

    Yunsheng, Wang

    2016-08-01

    Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.

  11. Genome sequence of the plant growth-promoting rhizobacterium Pseudomonas putida S11.

    Science.gov (United States)

    Ponraj, Paramasivan; Shankar, Manoharan; Ilakkiam, Devaraj; Rajendhran, Jeyaprakash; Gunasekaran, Paramasamy

    2012-11-01

    Here we report the genome sequence of a plant growth-promoting rhizobacterium, Pseudomonas putida S11. The length of the draft genome sequence is approximately 5,970,799 bp, with a G+C content of 62.4%. The genome contains 6,076 protein-coding sequences.

  12. Genome-wide analysis of tandem repeats in plants and green algae

    Science.gov (United States)

    Zhixin Zhao; Cheng Guo; Sreeskandarajan Sutharzan; Pei Li; Craig Echt; Jie Zhang; Chun Liang

    2014-01-01

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among...

  13. A Guide to the PLAZA 3.0 Plant Comparative Genomic Database.

    Science.gov (United States)

    Vandepoele, Klaas

    2017-01-01

    PLAZA 3.0 is an online resource for comparative genomics and offers a versatile platform to study gene functions and gene families or to analyze genome organization and evolution in the green plant lineage. Starting from genome sequence information for over 35 plant species, precomputed comparative genomic data sets cover homologous gene families, multiple sequence alignments, phylogenetic trees, and genomic colinearity information within and between species. Complementary functional data sets, a Workbench, and interactive visualization tools are available through a user-friendly web interface, making PLAZA an excellent starting point to translate sequence or omics data sets into biological knowledge. PLAZA is available at http://bioinformatics.psb.ugent.be/plaza/ .

  14. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium

    Science.gov (United States)

    Ho, Ying-Ning

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  15. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium.

    Science.gov (United States)

    Ho, Ying-Ning; Huang, Chieh-Chen

    2015-11-12

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia.

  16. [The application of genome editing in identification of plant gene function and crop breeding].

    Science.gov (United States)

    Xiangchun, Zhou; Yongzhong, Xing

    2016-03-01

    Plant genome can be modified via current biotechnology with high specificity and excellent efficiency. Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system are the key engineered nucleases used in the genome editing. Genome editing techniques enable gene targeted mutagenesis, gene knock-out, gene insertion or replacement at the target sites during the endogenous DNA repair process, including non-homologous end joining (NHEJ) and homologous recombination (HR), triggered by the induction of DNA double-strand break (DSB). Genome editing has been successfully applied in the genome modification of diverse plant species, such as Arabidopsis thaliana, Oryza sativa, and Nicotiana tabacum. In this review, we summarize the application of genome editing in identification of plant gene function and crop breeding. Moreover, we also discuss the improving points of genome editing in crop precision genetic improvement for further study.

  17. Research Advances. Image Pinpoints All 5 Million Atoms in Viral Coat; Bilirubin, "Animals-Only" Pigment, Found in Plants; New Evidence Shows Humans Make Salicylic Acid

    Science.gov (United States)

    King, Angela G.

    2009-08-01

    Recent "firsts" in chemical research: image of a viral capsid pinpointing 5 million atoms; isolation and identification of an "animal" pigment, bilirubin, from a plant source; evidence that humans make salicylic acid.

  18. dsRNA sensing during viral infection: lessons from plants, worms, insects, and mammals.

    Science.gov (United States)

    de Faria, Isaque João da Silva; Olmo, Roenick Proveti; Silva, Emanuele Guimarães; Marques, João Trindade

    2013-05-01

    Host defense systems often rely on direct and indirect pattern recognition to sense the presence of invading pathogens. Patterns can be molecules directly produced by the pathogen or indirectly generated by changes in host parameters as a consequence of infection. Viruses are intracellular pathogens that hijack the cellular machinery to synthesize their own molecules making direct recognition of viral molecules a great challenge. Antiviral systems in prokaryotes and eukaryotes commonly exploit aberrant nucleic acid sensing to recognize virus infection as host and viral nucleic acid metabolism can greatly differ. Indeed, the generation of dsRNA is often associated with viral infection. In this review, we discuss current knowledge on the mechanisms of viral dsRNA sensing utilized by 2 important antiviral defense systems, RNA interference (RNAi) and the vertebrate immune system. The major viral sensors of the vertebrate immune systems are RIG-like receptors, while RNAi pathways depend on Dicer proteins. These 2 families of sensors share a similar helicase domain with high specificity for dsRNA, which is necessary, but not sufficient for efficient recognition by these receptors. Additional intrinsic features to the dsRNA molecule are also necessary for activation of antiviral systems. Studies utilizing synthetic ligands, in vitro biochemistry and reporter systems have greatly helped increase our knowledge on intrinsic features of dsRNA recognition. However, characteristics such as subcellular localization are extrinsic to the dsRNA itself, but certainly influence the recognition in vivo. Thus, mechanisms of viral dsRNA recognition must address how cellular sensors are recruited to nucleic acids or vice versa. Accessory proteins are likely important for in vivo recognition of extrinsic features of viral RNA, but have mostly remained undiscovered due to the limitations of previous strategies. Hence, the identification of novel components of antiviral systems must take

  19. An Endogenous Foamy-like Viral Element in the Coelacanth Genome

    Science.gov (United States)

    Han, Guan-Zhu; Worobey, Michael

    2012-01-01

    Little is known about the origin and long-term evolutionary mode of retroviruses. Retroviruses can integrate into their hosts' genomes, providing a molecular fossil record for studying their deep history. Here we report the discovery of an endogenous foamy virus-like element, which we designate ‘coelacanth endogenous foamy-like virus’ (CoeEFV), within the genome of the coelacanth (Latimeria chalumnae). Phylogenetic analyses place CoeEFV basal to all known foamy viruses, strongly suggesting an ancient ocean origin of this major retroviral lineage, which had previously been known to infect only land mammals. The discovery of CoeEFV reveals the presence of foamy-like viruses in species outside the Mammalia. We show that foamy-like viruses have likely codiverged with their vertebrate hosts for more than 407 million years and underwent an evolutionary transition from water to land with their vertebrate hosts. These findings suggest an ancient marine origin of retroviruses and have important implications in understanding foamy virus biology. PMID:22761578

  20. An endogenous foamy-like viral element in the coelacanth genome.

    Science.gov (United States)

    Han, Guan-Zhu; Worobey, Michael

    2012-01-01

    Little is known about the origin and long-term evolutionary mode of retroviruses. Retroviruses can integrate into their hosts' genomes, providing a molecular fossil record for studying their deep history. Here we report the discovery of an endogenous foamy virus-like element, which we designate 'coelacanth endogenous foamy-like virus' (CoeEFV), within the genome of the coelacanth (Latimeria chalumnae). Phylogenetic analyses place CoeEFV basal to all known foamy viruses, strongly suggesting an ancient ocean origin of this major retroviral lineage, which had previously been known to infect only land mammals. The discovery of CoeEFV reveals the presence of foamy-like viruses in species outside the Mammalia. We show that foamy-like viruses have likely codiverged with their vertebrate hosts for more than 407 million years and underwent an evolutionary transition from water to land with their vertebrate hosts. These findings suggest an ancient marine origin of retroviruses and have important implications in understanding foamy virus biology.

  1. An endogenous foamy-like viral element in the coelacanth genome.

    Directory of Open Access Journals (Sweden)

    Guan-Zhu Han

    Full Text Available Little is known about the origin and long-term evolutionary mode of retroviruses. Retroviruses can integrate into their hosts' genomes, providing a molecular fossil record for studying their deep history. Here we report the discovery of an endogenous foamy virus-like element, which we designate 'coelacanth endogenous foamy-like virus' (CoeEFV, within the genome of the coelacanth (Latimeria chalumnae. Phylogenetic analyses place CoeEFV basal to all known foamy viruses, strongly suggesting an ancient ocean origin of this major retroviral lineage, which had previously been known to infect only land mammals. The discovery of CoeEFV reveals the presence of foamy-like viruses in species outside the Mammalia. We show that foamy-like viruses have likely codiverged with their vertebrate hosts for more than 407 million years and underwent an evolutionary transition from water to land with their vertebrate hosts. These findings suggest an ancient marine origin of retroviruses and have important implications in understanding foamy virus biology.

  2. The two-speed genomes of filamentous pathogens: waltz with plants.

    Science.gov (United States)

    Dong, Suomeng; Raffaele, Sylvain; Kamoun, Sophien

    2015-12-01

    Fungi and oomycetes include deep and diverse lineages of eukaryotic plant pathogens. The last 10 years have seen the sequencing of the genomes of a multitude of species of these so-called filamentous plant pathogens. Already, fundamental concepts have emerged. Filamentous plant pathogen genomes tend to harbor large repertoires of genes encoding virulence effectors that modulate host plant processes. Effector genes are not randomly distributed across the genomes but tend to be associated with compartments enriched in repetitive sequences and transposable elements. These findings have led to the 'two-speed genome' model in which filamentous pathogen genomes have a bipartite architecture with gene sparse, repeat rich compartments serving as a cradle for adaptive evolution. Here, we review this concept and discuss how plant pathogens are great model systems to study evolutionary adaptations at multiple time scales. We will also introduce the next phase of research on this topic.

  3. Combined Antiviral Therapy Using Designed Molecular Scaffolds Targeting Two Distinct Viral Functions, HIV-1 Genome Integration and Capsid Assembly.

    Science.gov (United States)

    Khamaikawin, Wannisa; Saoin, Somphot; Nangola, Sawitree; Chupradit, Koollawat; Sakkhachornphop, Supachai; Hadpech, Sudarat; Onlamoon, Nattawat; Ansari, Aftab A; Byrareddy, Siddappa N; Boulanger, Pierre; Hong, Saw-See; Torbett, Bruce E; Tayapiwatana, Chatchai

    2015-08-25

    Designed molecular scaffolds have been proposed as alternative therapeutic agents against HIV-1. The ankyrin repeat protein (Ank(GAG)1D4) and the zinc finger protein (2LTRZFP) have recently been characterized as intracellular antivirals, but these molecules, used individually, do not completely block HIV-1 replication and propagation. The capsid-binder Ank(GAG)1D4, which inhibits HIV-1 assembly, does not prevent the genome integration of newly incoming viruses. 2LTRZFP, designed to target the 2-LTR-circle junction of HIV-1 cDNA and block HIV-1 integration, would have no antiviral effect on HIV-1-infected cells. However, simultaneous expression of these two molecules should combine the advantage of preventive and curative treatments. To test this hypothesis, the genes encoding the N-myristoylated Myr(+)Ank(GAG)1D4 protein and the 2LTRZFP were introduced into human T-cells, using a third-generation lentiviral vector. SupT1 cells stably expressing 2LTRZFP alone or with Myr(+)Ank(GAG)1D4 showed a complete resistance to HIV-1 in viral challenge. Administration of the Myr(+)Ank(GAG)1D4 vector to HIV-1-preinfected SupT1 cells resulted in a significant antiviral effect. Resistance to viral infection was also observed in primary human CD4+ T-cells stably expressing Myr(+)Ank(GAG)1D4, and challenged with HIV-1, SIVmac, or SHIV. Our data suggest that our two anti-HIV-1 molecular scaffold prototypes are promising antiviral agents for anti-HIV-1 gene therapy.

  4. HIV-1 and M-PMV RNA Nuclear Export Elements Program Viral Genomes for Distinct Cytoplasmic Trafficking Behaviors.

    Science.gov (United States)

    Pocock, Ginger M; Becker, Jordan T; Swanson, Chad M; Ahlquist, Paul; Sherer, Nathan M

    2016-04-01

    Retroviruses encode cis-acting RNA nuclear export elements that override nuclear retention of intron-containing viral mRNAs including the full-length, unspliced genomic RNAs (gRNAs) packaged into assembling virions. The HIV-1 Rev-response element (RRE) recruits the cellular nuclear export receptor CRM1 (also known as exportin-1/XPO1) using the viral protein Rev, while simple retroviruses encode constitutive transport elements (CTEs) that directly recruit components of the NXF1(Tap)/NXT1(p15) mRNA nuclear export machinery. How gRNA nuclear export is linked to trafficking machineries in the cytoplasm upstream of virus particle assembly is unknown. Here we used long-term (>24 h), multicolor live cell imaging to directly visualize HIV-1 gRNA nuclear export, translation, cytoplasmic trafficking, and virus particle production in single cells. We show that the HIV-1 RRE regulates unique, en masse, Rev- and CRM1-dependent "burst-like" transitions of mRNAs from the nucleus to flood the cytoplasm in a non-localized fashion. By contrast, the CTE derived from Mason-Pfizer monkey virus (M-PMV) links gRNAs to microtubules in the cytoplasm, driving them to cluster markedly to the centrosome that forms the pericentriolar core of the microtubule-organizing center (MTOC). Adding each export element to selected heterologous mRNAs was sufficient to confer each distinct export behavior, as was directing Rev/CRM1 or NXF1/NXT1 transport modules to mRNAs using a site-specific RNA tethering strategy. Moreover, multiple CTEs per transcript enhanced MTOC targeting, suggesting that a cooperative mechanism links NXF1/NXT1 to microtubules. Combined, these results reveal striking, unexpected features of retroviral gRNA nucleocytoplasmic transport and demonstrate roles for mRNA export elements that extend beyond nuclear pores to impact gRNA distribution in the cytoplasm.

  5. Reduced representation sequencing: a success in maize and a promise for other plant genomes.

    Science.gov (United States)

    Barbazuk, W Brad; Bedell, Joseph A; Rabinowicz, Pablo D

    2005-08-01

    Plant, and particularly cereal genomes, are challenging to sequence due to their large size and high repetitive DNA content. Gene-enrichment strategies are alternative or complementary approaches to complete genome sequencing that yield, rapidly and inexpensively, useful sequence data from large and complex genomes. The maize genome is large (2.7 Gbp) and contains large amounts of conserved repetitive elements. Furthermore, the high allelic diversity found between maize inbred lines may necessitate sequencing several inbred lines in order to recover the maize "gene pool". Two gene-enrichment approaches, methylation filtration (MF) and high C(o)t (HC) sequencing have been tested in maize and their ability to sample the gene space has been examined. Combined with other genomic sequencing strategies, gene-enriched genomic sequencing is a practical way to examine the maize gene pool, to order and orient the genic sequences on the genome, and to enable investigation of gene content of other complex plant genomes.

  6. Complete genome sequence of the plant-associated Serratia plymuthica strain AS13

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Saraswoti [Uppsala University, Uppsala, Sweden; Finlay, Roger D. [Uppsala University, Uppsala, Sweden; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Alstrom, Sadhna [Uppsala University, Uppsala, Sweden; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Han, James [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Held, Brittany [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J C [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Hogberg, Nils [Uppsala University, Uppsala, Sweden

    2012-01-01

    Serratia plymuthica AS13 is a plant-associated Gammaproteobacteria, isolated from rapeseed roots. It is of special interest because of its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The complete genome of S. plymuthica AS13 consists of a 5,442,549 bp circular chromosome. The chromosome contains 4,951 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome was sequenced as part of the project enti- tled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens within the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  7. Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors.

    Science.gov (United States)

    Giritch, Anatoli; Marillonnet, Sylvestre; Engler, Carola; van Eldik, Gerben; Botterman, Johan; Klimyuk, Victor; Gleba, Yuri

    2006-10-03

    Plant viral vectors allow expression of heterologous proteins at high yields, but so far, they have been unable to express heterooligomeric proteins efficiently. We describe here a rapid and indefinitely scalable process for high-level expression of functional full-size mAbs of the IgG class in plants. The process relies on synchronous coinfection and coreplication of two viral vectors, each expressing a separate antibody chain. The two vectors are derived from two different plant viruses that were found to be noncompeting. Unlike vectors derived from the same virus, noncompeting vectors effectively coexpress the heavy and light chains in the same cell throughout the plant body, resulting in yields of up to 0.5 g of assembled mAbs per kg of fresh-leaf biomass. This technology allows production of gram quantities of mAbs for research purposes in just several days, and the same protocol can be used on an industrial scale in situations requiring rapid response, such as pandemic or terrorism events.

  8. Comparative genetics. Systematic discovery of cap-independent translation sequences in human and viral genomes.

    Science.gov (United States)

    Weingarten-Gabbay, Shira; Elias-Kirma, Shani; Nir, Ronit; Gritsenko, Alexey A; Stern-Ginossar, Noam; Yakhini, Zohar; Weinberger, Adina; Segal, Eran

    2016-01-15

    To investigate gene specificity at the level of translation in both the human genome and viruses, we devised a high-throughput bicistronic assay to quantify cap-independent translation. We uncovered thousands of novel cap-independent translation sequences, and we provide insights on the landscape of translational regulation in both humans and viruses. We find extensive translational elements in the 3' untranslated region of human transcripts and the polyprotein region of uncapped RNA viruses. Through the characterization of regulatory elements underlying cap-independent translation activity, we identify potential mechanisms of secondary structure, short sequence motif, and base pairing with the 18S ribosomal RNA (rRNA). Furthermore, we systematically map the 18S rRNA regions for which reverse complementarity enhances translation. Thus, we make available insights into the mechanisms of translational control in humans and viruses.

  9. Insights into specific DNA recognition during the assembly of a viral genome packaging machine.

    Science.gov (United States)

    de Beer, Tonny; Fang, Jenny; Ortega, Marcos; Yang, Qin; Maes, Levi; Duffy, Carol; Berton, Nancy; Sippy, Jean; Overduin, Michael; Feiss, Michael; Catalano, Carlos Enrique

    2002-05-01

    Terminase enzymes mediate genome "packaging" during the reproduction of DNA viruses. In lambda, the gpNu1 subunit guides site-specific assembly of terminase onto DNA. The structure of the dimeric DNA binding domain of gpNu1 was solved using nuclear magnetic resonance spectroscopy. Its fold contains a unique winged helix-turn-helix (wHTH) motif within a novel scaffold. Surprisingly, a predicted P loop ATP binding motif is in fact the wing of the DNA binding motif. Structural and genetic analysis has identified determinants of DNA recognition specificity within the wHTH motif and the DNA recognition sequence. The structure reveals an unexpected DNA binding mode and provides a mechanistic basis for the concerted action of gpNu1 and Escherichia coli integration host factor during assembly of the packaging machinery.

  10. Suppression of infectious TMV genomes expressed in young transgenic tobacco plants.

    Science.gov (United States)

    Siddiqui, S A; Sarmiento, C; Valkonen, S; Truve, E; Lehto, K

    2007-12-01

    Full-length cDNAs of the wild-type (wt) Tobacco mosaic virus (TMV) and of the coat protein gene-deleted (DeltaCP) derivative of wt-TMV, under control of the 35S promoter and downstream ribozyme sequence to produce accurate viral transcripts, were transformed to tobacco plants to analyze plant-virus interactions through different stages of plant development. Surprisingly, young wt-TMV transgenics accumulated only very low levels of viral RNA, remained free of symptoms, and were moderately resistant against exogenous inoculations. This early resistance caused significant stress to the plants, as indicated by reduced growth. Approximately 7 to 8 weeks after germination, the resistance was broken and plants developed typical wt-TMV symptoms, with high accumulation of the viral RNAs and proteins. The DeltaCP-TMV plants likewise were initially resistant to the endogenous inoculum and were stunted, although to a lesser extent than the wt-TMV plants. The resistance was broken at the same time as in the wt-TMV plants, but the mutant replicated to much lower levels and produced much milder symptoms than the wt virus. TMV-specific small interfering RNAs as well as increased transgene methylation were detected in the plants only after the resistance break, indicating that the resistance in the young plants was not due to RNA silencing.

  11. Rhabdovirus-like endogenous viral elements in the genome of Spodoptera frugiperda insect cells are actively transcribed: Implications for adventitious virus detection.

    Science.gov (United States)

    Geisler, Christoph; Jarvis, Donald L

    2016-07-01

    Spodoptera frugiperda (Sf) cell lines are used to produce several biologicals for human and veterinary use. Recently, it was discovered that all tested Sf cell lines are persistently infected with Sf-rhabdovirus, a novel rhabdovirus. As part of an effort to search for other adventitious viruses, we searched the Sf cell genome and transcriptome for sequences related to Sf-rhabdovirus. To our surprise, we found intact Sf-rhabdovirus N- and P-like ORFs, and partial Sf-rhabdovirus G- and L-like ORFs. The transcribed and genomic sequences matched, indicating the transcripts were derived from the genomic sequences. These appear to be endogenous viral elements (EVEs), which result from the integration of partial viral genetic material into the host cell genome. It is theoretically impossible for the Sf-rhabdovirus-like EVEs to produce infectious virus particles as 1) they are disseminated across 4 genomic loci, 2) the G and L ORFs are incomplete, and 3) the M ORF is missing. Our finding of transcribed virus-like sequences in Sf cells underscores that MPS-based searches for adventitious viruses in cell substrates used to manufacture biologics should take into account both genomic and transcribed sequences to facilitate the identification of transcribed EVE's, and to avoid false positive detection of replication-competent adventitious viruses.

  12. Human telomeres that carry an integrated copy of human herpesvirus 6 are often short and unstable, facilitating release of the viral genome from the chromosome.

    Science.gov (United States)

    Huang, Yan; Hidalgo-Bravo, Alberto; Zhang, Enjie; Cotton, Victoria E; Mendez-Bermudez, Aaron; Wig, Gunjan; Medina-Calzada, Zahara; Neumann, Rita; Jeffreys, Alec J; Winney, Bruce; Wilson, James F; Clark, Duncan A; Dyer, Martin J; Royle, Nicola J

    2014-01-01

    Linear chromosomes are stabilized by telomeres, but the presence of short dysfunctional telomeres triggers cellular senescence in human somatic tissues, thus contributing to ageing. Approximately 1% of the population inherits a chromosomally integrated copy of human herpesvirus 6 (CI-HHV-6), but the consequences of integration for the virus and for the telomere with the insertion are unknown. Here we show that the telomere on the distal end of the integrated virus is frequently the shortest measured in somatic cells but not the germline. The telomere carrying the CI-HHV-6 is also prone to truncations that result in the formation of a short telomere at a novel location within the viral genome. We detected extra-chromosomal circular HHV-6 molecules, some surprisingly comprising the entire viral genome with a single fully reconstituted direct repeat region (DR) with both terminal cleavage and packaging elements (PAC1 and PAC2). Truncated CI-HHV-6 and extra-chromosomal circular molecules are likely reciprocal products that arise through excision of a telomere-loop (t-loop) formed within the CI-HHV-6 genome. In summary, we show that the CI-HHV-6 genome disrupts stability of the associated telomere and this facilitates the release of viral sequences as circular molecules, some of which have the potential to become fully functioning viruses.

  13. Draft Genome Sequence of Plant Growth-Promoting Rhizobacterium Pantoea sp. Strain AS-PWVM4

    OpenAIRE

    Khatri, Indu; Kaur, Sukhvir; Devi, Usha; Kumar, Navinder; Sharma,Deepak; Subramanian, Srikrishna; Saini, Adesh K.

    2013-01-01

    Nonpathogenic Pantoea spp. have been shown to confer biofertilizer and biocontrol activities, indicating their potential for increasing crop yield. Herein, we provide the high-quality genome sequence of Pantoea sp. strain AS-PWVM4, a Gram-negative motile plant growth-promoting rhizobacterium isolated from a pomegranate plant. The 4.9-Mb genome contains genes related to plant growth promotion and the synthesis of siderophores.

  14. Draft Genome Sequence of Plant Growth-Promoting Rhizobacterium Pantoea sp. Strain AS-PWVM4.

    Science.gov (United States)

    Khatri, Indu; Kaur, Sukhvir; Devi, Usha; Kumar, Navinder; Sharma, Deepak; Subramanian, Srikrishna; Saini, Adesh K

    2013-12-05

    Nonpathogenic Pantoea spp. have been shown to confer biofertilizer and biocontrol activities, indicating their potential for increasing crop yield. Herein, we provide the high-quality genome sequence of Pantoea sp. strain AS-PWVM4, a Gram-negative motile plant growth-promoting rhizobacterium isolated from a pomegranate plant. The 4.9-Mb genome contains genes related to plant growth promotion and the synthesis of siderophores.

  15. Olive Tree in the Genomic Era: Focus on Plant Architecture

    Directory of Open Access Journals (Sweden)

    Juan José González Plaza

    2016-05-01

    Full Text Available For centuries olive tree is an important crop in many Mediterranean countries because it provides appreciated oil with healthy properties. The lack of genomic tools, such as molecular markers or sequence information, has hindered the development of new cultivars adapted to the challenges that this species faces due to the change in modern cultivation practices, such as the increase in the number of trees per hectare. This tree has an excessive vigour that can be a serious economic limitation for intensive or super-intensive orchards. These and other issues have been recently addressed by a number of scientific efforts. This review will give a broad view over the recent genomic developments in olive tree, and the plant architecture as a complex trait. Normal 0 21 false false false HR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

  16. The role of DNA twist in the packaging of viral genomes.

    Science.gov (United States)

    Rollins, Geoffrey C; Petrov, Anton S; Harvey, Stephen C

    2008-03-01

    We performed molecular dynamics simulations of the genome packaging of bacteriophage P4 using two coarse-grained models of DNA. The first model, 1DNA6 (one pseudo-atom per six DNA basepairs), represents DNA as a string of beads, for which DNA torsions are undefined. The second model, 3DNA6 (three pseudo-atoms per six DNA basepairs), represents DNA as a series of base planes with torsions defined by the angles between successive planes. Bacteriophage P4 was packaged with 1DNA6, 3DNA6 in a torsionally relaxed state, and 3DNA6 in a torsionally strained state. We observed good agreement between the packed conformation of 1DNA6 and the packed conformations of 3DNA6. The free energies of packaging were in agreement, as well. Our results suggest that DNA torsions can be omitted from coarse-grained bacteriophage packaging simulations without significantly altering the DNA conformations or free energies of packaging that the simulations predict.

  17. Visualising a viral RNA genome poised for release from its receptor complex.

    Science.gov (United States)

    Toropova, Katerina; Stockley, Peter G; Ranson, Neil A

    2011-05-06

    We describe the cryo-electron microscopy structure of bacteriophage MS2 bound to its receptor, the bacterial F-pilus. The virus contacts the pilus at a capsid 5-fold vertex, thus locating the surface-accessible portion of the single copy of the pilin-binding maturation protein present in virions. This arrangement allows a 5-fold averaged map to be calculated, showing for the first time in any virus-receptor complex the nonuniform distribution of RNA within the capsid. Strikingly, at the vertex that contacts the pilus, a rod of density that may include contributions from both genome and maturation protein sits above a channel that goes through the capsid to the outside. This density is reminiscent of the DNA density observed in the exit channel of double-stranded DNA phages, suggesting that the RNA-maturation protein complex is poised to leave the capsid as the first step of the infection process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Viral Genome-Linked Protein (VPg) Is Essential for Translation Initiation of Rabbit Hemorrhagic Disease Virus (RHDV).

    Science.gov (United States)

    Zhu, Jie; Wang, Binbin; Miao, Qiuhong; Tan, Yonggui; Li, Chuanfeng; Chen, Zongyan; Guo, Huimin; Liu, Guangqing

    2015-01-01

    Rabbit hemorrhagic disease virus (RHDV), the causative agent of rabbit hemorrhagic disease, is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, limiting the study of the pathogenesis of RHDV. In addition, the mechanisms underlying RHDV translation and replication are largely unknown compared with other caliciviridae viruses. The RHDV replicon recently constructed in our laboratory provides an appropriate model to study the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon, we demonstrated that the viral genome-linked protein (VPg) is essential for RHDV translation in RK-13 cells for the first time. In addition, we showed that VPg interacts with eukaryotic initiation factor 4E (eIF4E) in vivo and in vitro and that eIF4E silencing inhibits RHDV translation, suggesting the interaction between VPg and eIF4E is involved in RHDV translation. Our results support the hypothesis that VPg serves as a novel cap substitute during the initiation of RHDV translation.

  19. Characterization of cytopathic factors through genome-wide analysis of the Zika viral proteins in fission yeast

    Science.gov (United States)

    Li, Ge; Poulsen, Melissa; Fenyvuesvolgyi, Csaba; Yashiroda, Yoko; Yoshida, Minoru; Simard, J. Marc; Gallo, Robert C.; Zhao, Richard Y.

    2017-01-01

    The Zika virus (ZIKV) causes microcephaly and the Guillain-Barré syndrome. Little is known about how ZIKV causes these conditions or which ZIKV viral protein(s) is responsible for the associated ZIKV-induced cytopathic effects, including cell hypertrophy, growth restriction, cell-cycle dysregulation, and cell death. We used fission yeast for the rapid, global functional analysis of the ZIKV genome. All 14 proteins or small peptides were produced under an inducible promoter, and we measured the intracellular localization and the specific effects on ZIKV-associated cytopathic activities of each protein. The subcellular localization of each ZIKV protein was in overall agreement with its predicted protein structure. Five structural and two nonstructural ZIKV proteins showed various levels of cytopathic effects. The expression of these ZIKV proteins restricted cell proliferation, induced hypertrophy, or triggered cellular oxidative stress leading to cell death. The expression of premembrane protein (prM) resulted in cell-cycle G1 accumulation, whereas membrane-anchored capsid (anaC), membrane protein (M), envelope protein (E), and nonstructural protein 4A (NS4A) caused cell-cycle G2/M accumulation. A mechanistic study revealed that NS4A-induced cellular hypertrophy and growth restriction were mediated specifically through the target of rapamycin (TOR) cellular stress pathway involving Tor1 and type 2A phosphatase activator Tip41. These findings should provide a reference for future research on the prevention and treatment of ZIKV diseases. PMID:28049830

  20. Viral Genome-Linked Protein (VPg Is Essential for Translation Initiation of Rabbit Hemorrhagic Disease Virus (RHDV.

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    Full Text Available Rabbit hemorrhagic disease virus (RHDV, the causative agent of rabbit hemorrhagic disease, is an important member of the caliciviridae family. Currently, no suitable tissue culture system is available for proliferating RHDV, limiting the study of the pathogenesis of RHDV. In addition, the mechanisms underlying RHDV translation and replication are largely unknown compared with other caliciviridae viruses. The RHDV replicon recently constructed in our laboratory provides an appropriate model to study the pathogenesis of RHDV without in vitro RHDV propagation and culture. Using this RHDV replicon, we demonstrated that the viral genome-linked protein (VPg is essential for RHDV translation in RK-13 cells for the first time. In addition, we showed that VPg interacts with eukaryotic initiation factor 4E (eIF4E in vivo and in vitro and that eIF4E silencing inhibits RHDV translation, suggesting the interaction between VPg and eIF4E is involved in RHDV translation. Our results support the hypothesis that VPg serves as a novel cap substitute during the initiation of RHDV translation.

  1. Targeted plant genome editing via the CRISPR/Cas9 technology.

    Science.gov (United States)

    Li, Jian-Feng; Zhang, Dandan; Sheen, Jen

    2015-01-01

    Targeted modification of plant genome is key for elucidating and manipulating gene functions in basic and applied plant research. The CRISPR (clustered regularly interspaced short palindromic repeats)/CRISPR-associated protein (Cas) technology is emerging as a powerful genome editing tool in diverse organisms. This technology utilizes an easily reprogrammable guide RNA (gRNA) to guide Streptococcus pyogenes Cas9 endonuclease to generate a DNA double-strand break (DSB) within an intended genomic sequence and subsequently stimulate chromosomal mutagenesis or homologous recombination near the DSB site through cellular DNA repair machineries. In this chapter, we describe the detailed procedure to design, construct, and evaluate dual gRNAs for plant codon-optimized Cas9 (pcoCas9)-mediated genome editing using Arabidopsis thaliana and Nicotiana benthamiana protoplasts as model cellular systems. We also discuss strategies to apply the CRISPR/Cas9 system to generating targeted genome modifications in whole plants.

  2. GENOMIC ANALYSIS OF PLANT-ASSOCIATED BACTERIA AND THEIR POTENTIAL IN ENHANCING PHYTOREMEDIATION EFFICIENCY

    OpenAIRE

    Artur Piński; Katarzyna Hupert-Kocurek

    2017-01-01

    Phytoremediation is an emerging technology that uses plants in order to cleanup pollutants including xenobiotics and heavy metals from soil, water and air. Inoculation of plants with plant growth promoting endophytic and rhizospheric bacteria can enhance efficiency of phytoremediation. Genomic analysis of four plant-associated strains belonging to the Stenotrophomonas maltophilia species revealed the presence of genes encoding proteins involved in plant growth promotion, biocontrol of phytopa...

  3. Hijack it, Change it: How do Plant Viruses Utilize the Host Secretory Pathway for Efficient Viral Replication and Spread?

    Directory of Open Access Journals (Sweden)

    Camilo ePatarroyo

    2013-01-01

    Full Text Available The secretory pathway of eukaryotic cells has an elaborated set of endomembrane compartments involved in the synthesis, modification and sorting of proteins and lipids. The secretory pathway in plant cells shares many features with that in other eukaryotic cells but also has distinct characteristics important for fundamental cell and developmental processes and for proper immune responses. Recently, there has been evidence that the remodeling of this pathway, and often the formation of viral induced organelles, play an important role in viral replication and spread. The modification of the host secretory pathway seems to be a common feature among most single-stranded positive ss(+RNA and even some DNA viruses. In this review, we will present the recent advances in the organization and dynamics of the plant secretory pathway and the molecular regulation of membrane trafficking in the pathway. We will also discuss how different plant viruses may interact with the host secretory pathway for their efficient replication and spread, with a focus on Tobacco mosaic virus (TMV and Turnip mosaic virus (TuMV.

  4. From Viral genome to specific peptide epitopes - Methods for identifying porcine T cell epitopes based on in silico predictions, in vitro identification and ex vivo verification

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Rasmussen, Michael; Harndahl, Mikkel

    immunity during viral infections and disease. Here we combine the ability of complete nonamer peptide based binding matrices for three different SLA proteins to predict good candidates for peptide-SLA (pSLA) binding with that of an online available algorithm, NetMHCpan. Further we analyze the correlation......The affinity for and stability of peptides bound by major histocompatibility complex (MHC) class I molecules are instrumental factors in presentation of viral epitopes to cytotoxic T lymphocytes (CTLs). In swine, such peptide presentations by swine leukocyte antigens (SLA) are crucial for swine...... can be identified within a given viral genome, along with the elimination of hundreds, or even thousands, of peptide sequences, which are not likely to be bound. Applying these methods can save enormous amounts of time and costs of epitope discovery studies and MHC binding analysis not only in swine...

  5. The C Terminus of the Herpes Simplex Virus UL25 Protein Is Required for Release of Viral Genomes from Capsids Bound to Nuclear Pores.

    Science.gov (United States)

    Huffman, Jamie B; Daniel, Gina R; Falck-Pedersen, Erik; Huet, Alexis; Smith, Greg A; Conway, James F; Homa, Fred L

    2017-08-01

    The herpes simplex virus (HSV) capsid is released into the cytoplasm after fusion of viral and host membranes, whereupon dynein-dependent trafficking along microtubules targets it to the nuclear envelope. Binding of the capsid to the nuclear pore complex (NPC) is mediated by the capsid protein pUL25 and the capsid-tethered tegument protein pUL36. Temperature-sensitive mutants in both pUL25 and pUL36 dock at the NPC but fail to release DNA. The uncoating reaction has been difficult to study due to the rapid release of the genome once the capsid interacts with the nuclear pore. In this study, we describe the isolation and characterization of a truncation mutant of pUL25. Live-cell imaging and immunofluorescence studies demonstrated that the mutant was not impaired in penetration of the host cell or in trafficking of the capsid to the nuclear membrane. However, expression of viral proteins was absent or significantly delayed in cells infected with the pUL25 mutant virus. Transmission electron microscopy revealed capsids accumulated at nuclear pores that retained the viral genome for at least 4 h postinfection. In addition, cryoelectron microscopy (cryo-EM) reconstructions of virion capsids did not detect any obvious differences in the location or structural organization for the pUL25 or pUL36 proteins on the pUL25 mutant capsids. Further, in contrast to wild-type virus, the antiviral response mediated by the viral DNA-sensing cyclic guanine adenine synthase (cGAS) was severely compromised for the pUL25 mutant. These results demonstrate that the pUL25 capsid protein has a critical role in releasing viral DNA from NPC-bound capsids.IMPORTANCE Herpes simplex virus 1 (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. Early steps in infection include release of the capsid into the cytoplasm, docking of the capsid at a nuclear pore, and release of the viral genome into the nucleus

  6. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58.

    Science.gov (United States)

    Goodner, B; Hinkle, G; Gattung, S; Miller, N; Blanchard, M; Qurollo, B; Goldman, B S; Cao, Y; Askenazi, M; Halling, C; Mullin, L; Houmiel, K; Gordon, J; Vaudin, M; Iartchouk, O; Epp, A; Liu, F; Wollam, C; Allinger, M; Doughty, D; Scott, C; Lappas, C; Markelz, B; Flanagan, C; Crowell, C; Gurson, J; Lomo, C; Sear, C; Strub, G; Cielo, C; Slater, S

    2001-12-14

    Agrobacterium tumefaciens is a plant pathogen capable of transferring a defined segment of DNA to a host plant, generating a gall tumor. Replacing the transferred tumor-inducing genes with exogenous DNA allows the introduction of any desired gene into the plant. Thus, A. tumefaciens has been critical for the development of modern plant genetics and agricultural biotechnology. Here we describe the genome of A. tumefaciens strain C58, which has an unusual structure consisting of one circular and one linear chromosome. We discuss genome architecture and evolution and additional genes potentially involved in virulence and metabolic parasitism of host plants.

  7. Plant Metabolomics : the missiong link in functional genomics strategies

    NARCIS (Netherlands)

    Hall, R.D.; Beale, M.; Fiehn, O.; Hardy, N.; Summer, L.; Bino, R.

    2002-01-01

    After the establishment of technologies for high-throughput DNA sequencing (genomics), gene expression analysis (transcriptomics), and protein analysis (proteomics), the remaining functional genomics challenge is that of metabolomics. Metabolomics is the term coined for essentially comprehensive, no

  8. Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8¿ T cells in early viral evolution

    DEFF Research Database (Denmark)

    Callendret, Benoît; Bukh, Jens; Eccleston, Heather B;

    2011-01-01

    The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid...... occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic...... replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered...

  9. From genetics to genomics in plants and animals

    Directory of Open Access Journals (Sweden)

    Todorovska Elena

    2010-01-01

    Full Text Available The classical concepts in plant and livestock selection for economically important quantitative traits traditionally are based on phenotypic records, aiming at improvement of the traits by obtaining better genetic gain. The increase in genetic variation together with shortening of the generation interval is the major target of long term improvement of methods and tools for selection activities. The discoveries and implementations of biotechnology and molecular biology for selection purposes provide a stable background for generating of new knowledge and practical use in agricultural research and practice as well as to meet the growing demand for more and with better quality food and feed. The innovations in molecular knowledge related to practical selection aside with the quick quantification in breeding schemes allowed to reconsider the opportunities for sustainable development of selection methods for improvement of the traits of interest in agriculture, the quick invention and practical application of new high-throughput technologies for studying of the genomic variation, evolution, translation of proteins and metabolite determination altogether put in an open and communicative environment of information technologies provide a new holistic platform for better research and more knowledge for practical application of selection decisions.

  10. Physical mapping resources for large plant genomes: radiation hybrids for wheat D-genome progenitor Aegilops tauschii

    Directory of Open Access Journals (Sweden)

    Kumar Ajay

    2012-11-01

    Full Text Available Abstract Background Development of a high quality reference sequence is a daunting task in crops like wheat with large (~17Gb, highly repetitive (>80% and polyploid genome. To achieve complete sequence assembly of such genomes, development of a high quality physical map is a necessary first step. However, due to the lack of recombination in certain regions of the chromosomes, genetic mapping, which uses recombination frequency to map marker loci, alone is not sufficient to develop high quality marker scaffolds for a sequence ready physical map. Radiation hybrid (RH mapping, which uses radiation induced chromosomal breaks, has proven to be a successful approach for developing marker scaffolds for sequence assembly in animal systems. Here, the development and characterization of a RH panel for the mapping of D-genome of wheat progenitor Aegilops tauschii is reported. Results Radiation dosages of 350 and 450 Gy were optimized for seed irradiation of a synthetic hexaploid (AABBDD wheat with the D-genome of Ae. tauschii accession AL8/78. The surviving plants after irradiation were crossed to durum wheat (AABB, to produce pentaploid RH1s (AABBD, which allows the simultaneous mapping of the whole D-genome. A panel of 1,510 RH1 plants was obtained, of which 592 plants were generated from the mature RH1 seeds, and 918 plants were rescued through embryo culture due to poor germination (1 seeds. This panel showed a homogenous marker loss (2.1% after screening with SSR markers uniformly covering all the D-genome chromosomes. Different marker systems mostly detected different lines with deletions. Using markers covering known distances, the mapping resolution of this RH panel was estimated to be cM/cR ratio of 1:5.2 and 15 distinct bins. Additionally, with this small set of lines, almost all the tested ESTs could be mapped. A set of 399 most informative RH lines with an average deletion frequency of ~10% were identified for developing high density marker

  11. Genetics and Molecular Biology of Epstein-Barr Virus-Encoded BART MicroRNA: A Paradigm for Viral Modulation of Host Immune Response Genes and Genome Stability

    Directory of Open Access Journals (Sweden)

    David H. Dreyfus

    2017-01-01

    Full Text Available Epstein-Barr virus, a ubiquitous human herpesvirus, is associated through epidemiologic evidence with common autoimmune syndromes and cancers. However, specific genetic mechanisms of pathogenesis have been difficult to identify. In this review, the author summarizes evidence that recently discovered noncoding RNAs termed microRNA encoded by Epstein-Barr virus BARF (BamHI A right frame termed BART (BamHI A right transcripts are modulators of human immune response genes and genome stability in infected and bystander cells. BART expression is apparently regulated by complex feedback loops with the host immune response regulatory NF-κB transcription factors. EBV-encoded BZLF-1 (ZEBRA protein could also regulate BART since ZEBRA contains a terminal region similar to ankyrin proteins such as IκBα that regulate host NF-κB. BALF-2 (BamHI A left frame transcript, a viral homologue of the immunoglobulin and T cell receptor gene recombinase RAG-1 (recombination-activating gene-1, may also be coregulated with BART since BALF-2 regulatory sequences are located near the BART locus. Viral-encoded microRNA and viral mRNA transferred to bystander cells through vesicles, defective viral particles, or other mechanisms suggest a new paradigm in which bystander or hit-and-run mechanisms enable the virus to transiently or chronically alter human immune response genes as well as the stability of the human genome.

  12. CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing

    Science.gov (United States)

    Noman, Ali; Aqeel, Muhammad; He, Shuilin

    2016-01-01

    Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR-Cas9 mediated genome editing is being used for rapid, easy and efficient alteration of genes among diverse plant species. With approximate completion of conceptual work about CRISPR-Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of this system for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but in crop and ornamental plants as well. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with genetically modified plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR-Cas9 technology in plants has been summarized and discussed. We reviewed significance of CRISPR-Cas9 for specific and non-traditional aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques, e.g., Zinc finger nucleases, Transcription activator-like effector nucleases and potential challenges in coming decades have been described. PMID:27917188

  13. CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing.

    Science.gov (United States)

    Noman, Ali; Aqeel, Muhammad; He, Shuilin

    2016-01-01

    Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant biology. CRISPR-Cas9 mediated genome editing is being used for rapid, easy and efficient alteration of genes among diverse plant species. With approximate completion of conceptual work about CRISPR-Cas9, plant scientists are applying this genome editing tool for crop attributes enhancement. The capability of this system for performing targeted and efficient modifications in genome sequence as well as gene expression will certainly spur novel developments not only in model plants but in crop and ornamental plants as well. Additionally, due to non-involvement of foreign DNA, this technique may help alleviating regulatory issues associated with genetically modified plants. We expect that prevailing challenges in plant science like genomic region manipulation, crop specific vectors etc. will be addressed along with sustained growth of this genome editing tool. In this review, recent progress of CRISPR-Cas9 technology in plants has been summarized and discussed. We reviewed significance of CRISPR-Cas9 for specific and non-traditional aspects of plant life. It also covers strengths of this technique in comparison with other genome editing techniques, e.g., Zinc finger nucleases, Transcription activator-like effector nucleases and potential challenges in coming decades have been described.

  14. Snf2 family gene distribution in higher plant genomes reveals DRD1 expansion and diversification in the tomato genome.

    Directory of Open Access Journals (Sweden)

    Joachim W Bargsten

    Full Text Available As part of large protein complexes, Snf2 family ATPases are responsible for energy supply during chromatin remodeling, but the precise mechanism of action of many of these proteins is largely unknown. They influence many processes in plants, such as the response to environmental stress. This analysis is the first comprehensive study of Snf2 family ATPases in plants. We here present a comparative analysis of 1159 candidate plant Snf2 genes in 33 complete and annotated plant genomes, including two green algae. The number of Snf2 ATPases shows considerable variation across plant genomes (17-63 genes. The DRD1, Rad5/16 and Snf2 subfamily members occur most often. Detailed analysis of the plant-specific DRD1 subfamily in related plant genomes shows the occurrence of a complex series of evolutionary events. Notably tomato carries unexpected gene expansions of DRD1 gene members. Most of these genes are expressed in tomato, although at low levels and with distinct tissue or organ specificity. In contrast, the Snf2 subfamily genes tend to be expressed constitutively in tomato. The results underpin and extend the Snf2 subfamily classification, which could help to determine the various functional roles of Snf2 ATPases and to target environmental stress tolerance and yield in future breeding.

  15. Comparison of genome size and synthesis of structural proteins of Hirame Rhabdovirus, infectious hematopoietic necrosis virus, and viral hemorrhagic Septicemia virus

    Science.gov (United States)

    Nishizawa, Toyohiko; Yoshimizu, Mamoru; Winton, James R.; Kimura, Takahisa

    1991-01-01

    Genomic RNA was extracted from purified virions of hirame rhabdovirus (HRV), infectious hematopoietic necrosis virus (IHNV), and viral hemorrhagic septicemia virus (VHSV). The full-length RNA was analyzed using formaldehyde agarose gel electrophoresis followed by ethidium bromide staining. Compared with an internal RNA size standard, all three viral genomic RNAs appeared to have identical relative mobilities and were estimated to be approximately 10.7 kilobases in length or about 3.7 megadaltons in molecular mass. Structural protein synthesis of HRV, IHNV, and VHSV was studied using cell cultures treated with actinomycin D. At 2 h intervals, proteins were labeled with 35S-methionine, extracted, and analyzed by SDS-polyacrylamide gel electrophoresis and autoradiography. The five structural proteins of each of the three viruses appeared in the following order : nucleoprotein (N), matrix protein 1 (M1), matrix protein 2 (M2), glycoprotein (G), and polymerase (L) reflecting both the approximate relative abundance of each protein within infected cells and the gene order within the viral genome.

  16. Molecular cloning, sequence analysis and expression of genome segment 7 (S7) of Antheraea mylitta cypovirus (AmCPV) that encodes a viral structural protein.

    Science.gov (United States)

    Chavali, Venkata Ramana Murthy; Ghosh, Ananta K

    2007-10-01

    The Genome segment 7 (S7) of the 11 double stranded RNA genomes from Antheraea mylitta cypovirus (AmCPV) was converted to cDNA, cloned and sequenced. The nucleotide sequence showed that segment 7 consisted of 1789 nucleotides with an ORF of 530 amino acids and could encode a protein of approximately 61 kDa, termed P61. The 5' terminal sequence, AGTAAT and the 3' terminal sequence, AGAGC of the plus strand was found to be the same as genome segment 10 of AmCPV encoding polyhedrin. No sequence similarity was found by searching nucleic acid and protein sequence databases using BLAST. The secondary structure prediction showed the presence of 17 alpha-helices, 18 extended beta-sheets along the entire length of P61. The ORF of segment 7 was expressed in E. coli as His-tagged fusion protein, purified through Ni-NTA chromatography, and polyclonal antibody was raised in rabbit indicating that P61 is immunogenic. Immunoblot analysis using this antibody on viral infected cells as well as purified polyhedra showed that P61 is a viral structural protein. Motif scan search showed some similarity of P61 with Inosine monophosphate dehydrogenase (IMPDH) cystathionine-beta-synthase (CBS) domain at the C-terminus and it was hypothesized that by binding to single stranded viral RNA through its CBS domain P61 may help in virus replication or transcription.

  17. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system.

    Science.gov (United States)

    Belhaj, Khaoula; Chaparro-Garcia, Angela; Kamoun, Sophien; Nekrasov, Vladimir

    2013-10-11

    Targeted genome engineering (also known as genome editing) has emerged as an alternative to classical plant breeding and transgenic (GMO) methods to improve crop plants. Until recently, available tools for introducing site-specific double strand DNA breaks were restricted to zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs). However, these technologies have not been widely adopted by the plant research community due to complicated design and laborious assembly of specific DNA binding proteins for each target gene. Recently, an easier method has emerged based on the bacterial type II CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) immune system. The CRISPR/Cas system allows targeted cleavage of genomic DNA guided by a customizable small noncoding RNA, resulting in gene modifications by both non-homologous end joining (NHEJ) and homology-directed repair (HDR) mechanisms. In this review we summarize and discuss recent applications of the CRISPR/Cas technology in plants.

  18. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants

    Directory of Open Access Journals (Sweden)

    Aleksandra eObrępalska-Stęplowska

    2015-10-01

    Full Text Available Temperature is an important environmental factor influencing plant development in natural and diseased conditions. The growth rate of plants grown at 27°C is more rapid than for plants grown at 21°C. Thus, temperature affects the rate of pathogenesis progression in individual plants. We have analyzed the effect of temperature conditions (either 21°C or 27°C during the day on the accumulation rate of the virus and satellite RNA (satRNA in Nicotiana benthamiana plants infected by peanut stunt virus (PSV with and without its satRNA, at four time points. In addition, we extracted proteins from PSV and PSV+satRNA-infected plants harvested at 21 dpi, when disease symptoms began to appear on plants grown at 21°C and were well developed on those grown at 27°C, to assess the proteome profile in infected plants compared to mock-inoculated plants grown at these two temperatures, using 2D-gel electrophoresis and mass spectrometry approaches. The accumulation rate of the viral RNAs and satRNA was more rapid at 27°C at the beginning of the infection and then rapidly decreased in PSV-infected plants. At 21 dpi, PSV and satRNA accumulation was higher at 21°C and had a tendency to increase further. In all studied plants grown at 27°C, we observed a significant drop in the identified proteins participating in photosynthesis and carbohydrate metabolism at the proteome level, in comparison to plants maintained at 21°C. On the other hand, the proteins involved in protein metabolic processes were all more abundant in plants grown at 27°C. This was especially evident when PSV-infected plants were analyzed, where increase in abundance of proteins involved in protein synthesis, degradation, and folding was revealed. In mock-inoculated and PSV-infected plants we found an increase in abundance of the majority of stress-related differently-regulated proteins and those associated with protein metabolism. In contrast, in PSV+satRNA-infected plants the shift in the

  19. Development of a full-genome cDNA clone of Citrus leaf blotch virus and infection of citrus plants.

    Science.gov (United States)

    Vives, María Carmen; Martín, Susana; Ambrós, Silvia; Renovell, Agueda; Navarro, Luis; Pina, Jose Antonio; Moreno, Pedro; Guerri, José

    2008-11-01

    Citrus leaf blotch virus (CLBV), a member of the family Flexiviridae, has a ~9-kb single-stranded, positive-sense genomic RNA encapsidated by a 41-kDa coat protein. CLBV isolates are associated with symptom production in citrus including leaf blotching of Dweet tangor and stem pitting in Etrog citron (Dweet mottle disease), and some isolates are associated with bud union crease on trifoliate rootstocks, but Koch's postulates for this virus were not fulfilled. A full-genome cDNA of CLBV isolate SRA-153, which induces bud union crease, was placed under the T7 promoter (clone T7-CLBV), or between the 35S promoter and the Nos-t terminator, with or without a ribozyme sequence downstream of the CLBV sequence (clones 35SRbz-CLBV and 35S-CLBV). RNA transcripts from T7-CLBV failed to infect Etrog citron and Nicotiana occidentalis and N. benthamiana plants, whereas agro-inoculation with binary vectors carrying 35SRbz-CLBV or 35S-CLBV, and the p19 silencing suppressor, caused systemic infection and production of normal CLBV virions. Virus accumulation was similar in citron plants directly agro-infiltrated, or mechanically inoculated with wild-type or 35SRbz-CLBV-derived virions from Nicotiana, and the three sources incited the symptoms characteristic of Dweet mottle disease, but not bud union crease. Our results show that (1) virions derived from an infectious clone show the same replication, movement and pathogenicity characteristics as the wild-type CLBV; (2) CLBV is the causal agent of Dweet mottle disease but not of the bud union crease syndrome; and (3) for the first time an RNA virus could be successfully agro-inoculated on citrus plants. This infectious clone may become a useful viral vector for citrus genomic studies.

  20. Constructing gene-enriched plant genomic libraries using methylation filtration technology.

    Science.gov (United States)

    Rabinowicz, Pablo D

    2003-01-01

    Full genome sequencing in higher plants is a very difficult task, because their genomes are often very large and repetitive. For this reason, gene targeted partial genomic sequencing becomes a realistic option. The method reported here is a simple approach to generate gene-enriched plant genomic libraries called methylation filtration. This technique takes advantage of the fact that repetitive DNA is heavily methylated and genes are hypomethylated. Then, by simply using an Escherichia coli host strain harboring a wild-type modified cytosine restriction (McrBC) system, which cuts DNA containing methylcytosine, repetitive DNA is eliminated from these genomic libraries, while low copy DNA (i.e., genes) is recovered. To prevent cloning significant proportions of organelle DNA, a crude nuclear preparation must be performed prior to purifying genomic DNA. Adaptor-mediated cloning and DNA size fractionation are necessary for optimal results.

  1. Simplified extraction of good quality genomic DNA from a variety of plant materials: 1

    National Research Council Canada - National Science Library

    Vijay Kumari; Anshu Bansal; Raghavendra Aminedi; Dhakshi Taneja; Niranjan Das

    2012-01-01

      Depending on the nature and complexity of plant material, proper method needs to be employed for extraction of genomic DNA, along with its performance evaluation by different molecular techniques...

  2. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

    NARCIS (Netherlands)

    O'Connell, R.J.; Thon, M.R.; Hacquard, S.; Amyotte, S.G.; Kleemann, J.; Torres, M.F.; Damm, U.; Buiate, E.A.; Epstein, L.; Alkan, N.; Altmuller, J.; Alvarado-Balderrama, L.; Bauser, C.A.; Becker, C.; Birren, B.W.; Chen, Z.; Choi, J.; Crouch, J.A.; Duvick, J.P.; Farman, M.A.; Gan, P.; Heiman, D.; Henrissat, B.; Howard, R.J.; Kabbage, M.; Koch, C.; Kracher, B.; Kubo, Y.; Law, A.D.; Lebrun, M.-H.; Lee, Y.-H.; Miyara, I.; Moore, N.; Neumann, U.; Nordstrom, K.; Panaccione, D.G.; Panstruga, R.; Place, M.; Proctor, R.H.; Prusky, D.; Rech, G.; Reinhardt, R.; Rollins, J.A.; Rounsley, S.; Schardl, C.L.; Schwartz, D.C.; Shenoy, N.; Shirasu, K.; Sikhakolli, U.R.; Stuber, K.; Sukno, S.A.; Sweigard, J.A.; Takano, Y.; Takahara, H.; Trail, F.; Does, H.C.; Voll, L.M.; Will, I.; Young, S.; Zeng, Q.; Zhang, Jingze; Zhou, S.; Dickman, M.B.; Schulze-Lefert, P.; Verloren van Themaat, E.; Ma, L.-J.; Vaillancourt, L.J.

    2012-01-01

    Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and

  3. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

    NARCIS (Netherlands)

    O'Connell, R.J.; Thon, M.R.; Hacquard, S.; Amyotte, S.G.; Kleemann, J.; Torres, M.F.; Damm, U.; Buiate, E.A.; Epstein, L.; Alkan, N.; Altmuller, J.; Alvarado-Balderrama, L.; Bauser, C.A.; Becker, C.; Birren, B.W.; Chen, Z.; Choi, J.; Crouch, J.A.; Duvick, J.P.; Farman, M.A.; Gan, P.; Heiman, D.; Henrissat, B.; Howard, R.J.; Kabbage, M.; Koch, C.; Kracher, B.; Kubo, Y.; Law, A.D.; Lebrun, M.-H.; Lee, Y.-H.; Miyara, I.; Moore, N.; Neumann, U.; Nordstrom, K.; Panaccione, D.G.; Panstruga, R.; Place, M.; Proctor, R.H.; Prusky, D.; Rech, G.; Reinhardt, R.; Rollins, J.A.; Rounsley, S.; Schardl, C.L.; Schwartz, D.C.; Shenoy, N.; Shirasu, K.; Sikhakolli, U.R.; Stuber, K.; Sukno, S.A.; Sweigard, J.A.; Takano, Y.; Takahara, H.; Trail, F.; Does, H.C.; Voll, L.M.; Will, I.; Young, S.; Zeng, Q.; Zhang, Jingze; Zhou, S.; Dickman, M.B.; Schulze-Lefert, P.; Verloren van Themaat, E.; Ma, L.-J.; Vaillancourt, L.J.

    2012-01-01

    Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and tr

  4. The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding

    Directory of Open Access Journals (Sweden)

    Hieu X. Cao

    2016-01-01

    Full Text Available Genome editing with engineered nucleases enabling site-directed sequence modifications bears a great potential for advanced plant breeding and crop protection. Remarkably, the RNA-guided endonuclease technology (RGEN based on the clustered regularly interspaced short palindromic repeats (CRISPR and CRISPR-associated protein 9 (Cas9 is an extremely powerful and easy tool that revolutionizes both basic research and plant breeding. Here, we review the major technical advances and recent applications of the CRISPR-Cas9 system for manipulation of model and crop plant genomes. We also discuss the future prospects of this technology in molecular plant breeding.

  5. The Power of CRISPR-Cas9-Induced Genome Editing to Speed Up Plant Breeding

    Science.gov (United States)

    Wang, Wenqin; Le, Hien T. T.

    2016-01-01

    Genome editing with engineered nucleases enabling site-directed sequence modifications bears a great potential for advanced plant breeding and crop protection. Remarkably, the RNA-guided endonuclease technology (RGEN) based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) is an extremely powerful and easy tool that revolutionizes both basic research and plant breeding. Here, we review the major technical advances and recent applications of the CRISPR-Cas9 system for manipulation of model and crop plant genomes. We also discuss the future prospects of this technology in molecular plant breeding. PMID:28097123

  6. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins.

    Science.gov (United States)

    Woo, Je Wook; Kim, Jungeun; Kwon, Soon Il; Corvalán, Claudia; Cho, Seung Woo; Kim, Hyeran; Kim, Sang-Gyu; Kim, Sang-Tae; Choe, Sunghwa; Kim, Jin-Soo

    2015-11-01

    Editing plant genomes without introducing foreign DNA into cells may alleviate regulatory concerns related to genetically modified plants. We transfected preassembled complexes of purified Cas9 protein and guide RNA into plant protoplasts of Arabidopsis thaliana, tobacco, lettuce and rice and achieved targeted mutagenesis in regenerated plants at frequencies of up to 46%. The targeted sites contained germline-transmissible small insertions or deletions that are indistinguishable from naturally occurring genetic variation.

  7. Plum pox virus (PPV) genome expression in genetically engineered RNAi plants

    Science.gov (United States)

    An important approach to controlling sharka disease caused by Plum pox virus (PPV) is the development of PPV resistant plants using small interfering RNAs (siRNA) technology. In order to evaluate siRNA induced gene silencing, we studied, based on knowledge of the PPV genome sequence, virus genome t...

  8. An Innovative Plant Genomics and Gene Annotation Program for High School, Community College, and University Faculty

    Science.gov (United States)

    Hacisalihoglu, Gokhan; Hilgert, Uwe; Nash, E. Bruce; Micklos, David A.

    2008-01-01

    Today's biology educators face the challenge of training their students in modern molecular biology techniques including genomics and bioinformatics. The Dolan DNA Learning Center (DNALC) of Cold Spring Harbor Laboratory has developed and disseminated a bench- and computer-based plant genomics curriculum for biology faculty. In 2007, a five-day…

  9. Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946

    Science.gov (United States)

    Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related...

  10. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots

    Science.gov (United States)

    Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the compu...

  11. CRISPR-Cas9: tool for qualitative and quantitative plant genome editing

    OpenAIRE

    Ali Noman; Muhammad Aqeel; Shuilin He

    2016-01-01

    Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant bi...

  12. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Doethideomycetes Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabien; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2012-03-13

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related species can have very diverse host plants. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  13. CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing

    OpenAIRE

    Ali Noman; Muhammad Aqeel; Shuilin He

    2016-01-01

    Recent developments in genome editing techniques have aroused substantial excitement among agricultural scientists. These techniques offer new opportunities for developing improved plant lines with addition of important traits or removal of undesirable traits. Increased adoption of genome editing has been geared by swiftly developing Clustered regularly interspaced short palindromic repeats (CRISPR). This is appearing as driving force for innovative utilization in diverse branches of plant bi...

  14. CRISPR-Cpf1: A New Tool for Plant Genome Editing

    KAUST Repository

    Zaidi, Syed Shan-e-Ali

    2017-05-19

    Clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated proteins (CRISPR-Cas), a groundbreaking genome-engineering tool, has facilitated targeted trait improvement in plants. Recently, CRISPR-CRISPR from Prevotella and Francisella 1 (Cpf1) has emerged as a new tool for efficient genome editing, including DNA-free editing in plants, with higher efficiency, specificity, and potentially wider applications than CRISPR-Cas9.

  15. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabian; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.

    2013-03-05

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops that are grown for biofuel, food or feed. Most Dothideomycetes have only a single host plant, and related species can have very diverse hosts. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  16. Complete genome of Planococcus rifietoensis M8(T), a halotolerant and potentially plant growth promoting bacterium.

    Science.gov (United States)

    See-Too, Wah-Seng; Convey, Peter; Pearce, David A; Lim, Yan Lue; Ee, Robson; Yin, Wai-Fong; Chan, Kok-Gan

    2016-03-10

    Planococcus rifietoensis M8(T) (=DSM 15069(T)=ATCC BAA-790(T)) is a halotolerant bacterium with potential plant growth promoting properties isolated from an algal mat collected from a sulfurous spring in Campania (Italy). This paper presents the first complete genome of P. rifietoensis M8(T). Genes coding for various potentially plant growth promoting properties were identified within its genome. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Genome of the Actinomycete Plant Pathogen Clavibacter michiganensis subsp. sepedonicus Suggests Recent Niche Adaptation▿ †

    Science.gov (United States)

    Bentley, Stephen D.; Corton, Craig; Brown, Susan E.; Barron, Andrew; Clark, Louise; Doggett, Jon; Harris, Barbara; Ormond, Doug; Quail, Michael A.; May, Georgiana; Francis, David; Knudson, Dennis; Parkhill, Julian; Ishimaru, Carol A.

    2008-01-01

    Clavibacter michiganensis subsp. sepedonicus is a plant-pathogenic bacterium and the causative agent of bacterial ring rot, a devastating agricultural disease under strict quarantine control and zero tolerance in the seed potato industry. This organism appears to be largely restricted to an endophytic lifestyle, proliferating within plant tissues and unable to persist in the absence of plant material. Analysis of the genome sequence of C. michiganensis subsp. sepedonicus and comparison with the genome sequences of related plant pathogens revealed a dramatic recent evolutionary history. The genome contains 106 insertion sequence elements, which appear to have been active in extensive rearrangement of the chromosome compared to that of Clavibacter michiganensis subsp. michiganensis. There are 110 pseudogenes with overrepresentation in functions associated with carbohydrate metabolism, transcriptional regulation, and pathogenicity. Genome comparisons also indicated that there is substantial gene content diversity within the species, probably due to differential gene acquisition and loss. These genomic features and evolutionary dating suggest that there was recent adaptation for life in a restricted niche where nutrient diversity and perhaps competition are low, correlated with a reduced ability to exploit previously occupied complex niches outside the plant. Toleration of factors such as multiplication and integration of insertion sequence elements, genome rearrangements, and functional disruption of many genes and operons seems to indicate that there has been general relaxation of selective pressure on a large proportion of the genome. PMID:18192393

  18. Genome of the actinomycete plant pathogen Clavibacter michiganensis subsp. sepedonicus suggests recent niche adaptation.

    Science.gov (United States)

    Bentley, Stephen D; Corton, Craig; Brown, Susan E; Barron, Andrew; Clark, Louise; Doggett, Jon; Harris, Barbara; Ormond, Doug; Quail, Michael A; May, Georgiana; Francis, David; Knudson, Dennis; Parkhill, Julian; Ishimaru, Carol A

    2008-03-01

    Clavibacter michiganensis subsp. sepedonicus is a plant-pathogenic bacterium and the causative agent of bacterial ring rot, a devastating agricultural disease under strict quarantine control and zero tolerance in the seed potato industry. This organism appears to be largely restricted to an endophytic lifestyle, proliferating within plant tissues and unable to persist in the absence of plant material. Analysis of the genome sequence of C. michiganensis subsp. sepedonicus and comparison with the genome sequences of related plant pathogens revealed a dramatic recent evolutionary history. The genome contains 106 insertion sequence elements, which appear to have been active in extensive rearrangement of the chromosome compared to that of Clavibacter michiganensis subsp. michiganensis. There are 110 pseudogenes with overrepresentation in functions associated with carbohydrate metabolism, transcriptional regulation, and pathogenicity. Genome comparisons also indicated that there is substantial gene content diversity within the species, probably due to differential gene acquisition and loss. These genomic features and evolutionary dating suggest that there was recent adaptation for life in a restricted niche where nutrient diversity and perhaps competition are low, correlated with a reduced ability to exploit previously occupied complex niches outside the plant. Toleration of factors such as multiplication and integration of insertion sequence elements, genome rearrangements, and functional disruption of many genes and operons seems to indicate that there has been general relaxation of selective pressure on a large proportion of the genome.

  19. PLAZA 3.0: an access point for plant comparative genomics.

    Science.gov (United States)

    Proost, Sebastian; Van Bel, Michiel; Vaneechoutte, Dries; Van de Peer, Yves; Inzé, Dirk; Mueller-Roeber, Bernd; Vandepoele, Klaas

    2015-01-01

    Comparative sequence analysis has significantly altered our view on the complexity of genome organization and gene functions in different kingdoms. PLAZA 3.0 is designed to make comparative genomics data for plants available through a user-friendly web interface. Structural and functional annotation, gene families, protein domains, phylogenetic trees and detailed information about genome organization can easily be queried and visualized. Compared with the first version released in 2009, which featured nine organisms, the number of integrated genomes is more than four times higher, and now covers 37 plant species. The new species provide a wider phylogenetic range as well as a more in-depth sampling of specific clades, and genomes of additional crop species are present. The functional annotation has been expanded and now comprises data from Gene Ontology, MapMan, UniProtKB/Swiss-Prot, PlnTFDB and PlantTFDB. Furthermore, we improved the algorithms to transfer functional annotation from well-characterized plant genomes to other species. The additional data and new features make PLAZA 3.0 (http://bioinformatics.psb.ugent.be/plaza/) a versatile and comprehensible resource for users wanting to explore genome information to study different aspects of plant biology, both in model and non-model organisms.

  20. High definition viral vaccine strain identity and stability testing using full-genome population data--The next generation of vaccine quality control.

    Science.gov (United States)

    Höper, Dirk; Freuling, Conrad M; Müller, Thomas; Hanke, Dennis; von Messling, Veronika; Duchow, Karin; Beer, Martin; Mettenleiter, Thomas C

    2015-10-26

    Vaccines are the most effective prophylactic public health tools. With the help of vaccines, prevention of infectious disease spread and, in concert with other measures, even eradication has become possible. Until now, licensing and quality control require the determination of consensus genome sequences of replication competent infectious agents contained in vaccines. Recent improvements in sequencing technologies now enable the sequencing of complete genomes and the genetic analysis of populations with high reliability and resolution. The latter is particularly important for RNA viruses, which consist of fluctuating heterogeneous populations rather than genetically stable entities. This information now has to be integrated into the existing regulatory framework, challenging both licensing authorities and vaccine producers to develop new quality control criteria. Commercially available modified-live oral rabies vaccines and their precursor strains were deep-sequenced to assess strain identity and relations between strains based on population diversity. Strain relations were inferred based on the Manhattan distances calculated between the compositions of the viral populations of the strains. We provide a novel approach to assess viral strain relations with high resolution and reliability by deep sequencing with subsequent analysis of the overall genetic diversity within the viral populations. A comparison of our novel approach of inferring strain relations based on population data with consensus sequence analysis clearly shows that consensus sequence analysis of diverse viral populations can be misleading. Therefore, for quality control of viral vaccines deep sequencing analysis is to be preferred over consensus sequence analysis. The presented methodology allows for routine integration of deep sequencing data in vaccine quality control and licensing for highly reliable assessment of strain identity and stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Quantitative analysis of viral load per haploid genome revealed the different biological features of Merkel cell polyomavirus infection in skin tumor.

    Directory of Open Access Journals (Sweden)

    Satoshi Ota

    Full Text Available Merkel cell polyomavirus (MCPyV has recently been identified in Merkel cell carcinoma (MCC, an aggressive cancer that occurs in sun-exposed skin. Conventional technologies, such as polymerase chain reaction (PCR and immunohistochemistry, have produced conflicting results for MCPyV infections in non-MCC tumors. Therefore, we performed quantitative analyses of the MCPyV copy number in various skin tumor tissues, including MCC (n = 9 and other sun exposure-related skin tumors (basal cell carcinoma [BCC, n = 45], actinic keratosis [AK, n = 52], Bowen's disease [n = 34], seborrheic keratosis [n = 5], primary cutaneous anaplastic large-cell lymphoma [n = 5], malignant melanoma [n = 5], and melanocytic nevus [n = 6]. In a conventional PCR analysis, MCPyV DNA was detected in MCC (9 cases; 100%, BCC (1 case; 2%, and AK (3 cases; 6%. We then used digital PCR technology to estimate the absolute viral copy number per haploid human genome in these tissues. The viral copy number per haploid genome was estimated to be around 1 in most MCC tissues, and there were marked differences between the MCC (0.119-42.8 and AK (0.02-0.07 groups. PCR-positive BCC tissue showed a similar viral load as MCC tissue (0.662. Immunohistochemistry with a monoclonal antibody against the MCPyV T antigen (CM2B4 demonstrated positive nuclear localization in most of the high-viral-load tumor groups (8 of 9 MCC and 1 BCC, but not in the low-viral-load or PCR-negative tumor groups. These results demonstrated that MCPyV infection is possibly involved in a minority of sun-exposed skin tumors, including BCC and AK, and that these tumors display different modes of infection.

  2. Patterns of synonymous codon usage bias in chloroplast genomes of seed plants

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Codon usage in chloroplast genome of six seed plants (Arabidopsis thaliana, Populus alba, Zea mays, Triticum aestivum,Pinus koraiensis and Cycas taitungensis) was analyzed to find general patterns of codon usage in chloroplast genomes of seed plants.The results show that chloroplast genomes of the six seed plants had similar codon usage patterns, with a strong bias towards a high representation of NNA and NNT codons. In chloroplast genomes of the six seed plants, the effective number of codons (ENC) for most genes was similar to that of the expected ENC based on the GC content at the third codon position, but several genes with low ENC values were laying below the expected curve. All of these data indicate that codon usage was dominated by a mutational bias in chloroplast genomes of seed plants and that selection appeared to be limited to a subset of genes and to only subtly affect codon us-age. Meantime, four, six, eight, nine, ten and 12 codons were defined as the optimal codons in chloroplast genomes of the six seed plants.

  3. Reduction of viral load in whitefly (Bemisia tabaci Gen.) feeding on RNAi-mediated bean golden mosaic virus resistant transgenic bean plants.

    Science.gov (United States)

    de Paula, Nayhanne T; de Faria, Josias C; Aragão, Francisco J L

    2015-12-02

    The RNAi concept was explored to silence the rep gene from the bean golden mosaic virus (BGMV) and a genetically modified (GM) bean immune to the virus was previously generated. We investigated if BGMV-viruliferous whiteflies would reduce viral amount after feeding on GM plants. BGMV DNA amount was significantly reduced in whiteflies feeding in GM-plants (compared with insects feeding on non-GM plants) for a period of 4 and 8 days in 52% and 84% respectively.

  4. Complete genome sequence of the rapeseed plant-growth promoting Serratia plymuthica strain AS9

    Energy Technology Data Exchange (ETDEWEB)

    Neupane, Saraswoti [Uppsala University, Uppsala, Sweden; Hogberg, Nils [Uppsala University, Uppsala, Sweden; Alstrom, Sadhna [Uppsala University, Uppsala, Sweden; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Han, James [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Lu, Megan [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Fiebig, Anne [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Finlay, Roger D. [Uppsala University, Uppsala, Sweden

    2012-01-01

    Serratia plymuthica are plant-associated, plant beneficial species belonging to the family Enterobacteriaceae. The members of the genus Serratia are ubiquitous in nature and their life style varies from endophytic to free-living. S. plymuthica AS9 is of special interest for its ability to inhibit fungal pathogens of rapeseed and to promote plant growth. The genome of S. plymuthica AS9 comprises a 5,442,880 bp long circular chromosome that consists of 4,952 protein-coding genes, 87 tRNA genes and 7 rRNA operons. This genome is part of the project entitled Genomics of four rapeseed plant growth promoting bacteria with antagonistic effect on plant pathogens awarded through the 2010 DOE-JGI Community Sequencing Program (CSP2010).

  5. Genome editing: intellectual property and product development in plant biotechnology.

    Science.gov (United States)

    Schinkel, Helga; Schillberg, Stefan

    2016-07-01

    Genome editing is a revolutionary technology in molecular biology. While scientists are fascinated with the unlimited possibilities provided by directed and controlled changes in DNA in eukaryotes and have eagerly adopted such tools for their own experiments, an understanding of the intellectual property (IP) implications involved in bringing genome editing-derived products to market is often lacking. Due to the ingenuity of genome editing, the time between new product conception and its actual existence can be relatively short; therefore knowledge about IP of the various genome editing methods is relevant. This point must be regarded in a national framework as patents are instituted nationally. Therefore, when designing scientific work that could lead to a product, it is worthwhile to consider the different methods used for genome editing not only for their scientific merits but also for their compatibility with a speedy and reliable launch into the desired market.

  6. Genome-wide profiling of genetic variation in Agrobacterium-transformed rice plants*#

    Science.gov (United States)

    Li, Wen-xu; Wu, San-ling; Liu, Yan-hua; Jin, Gu-lei; Zhao, Hai-jun; Fan, Long-jiang; Shu, Qing-yao

    2016-01-01

    Agrobacterium-mediated transformation has been widely used in producing transgenic plants, and was recently used to generate “transgene-clean” targeted genomic modifications coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system. Although tremendous variation in morphological and agronomic traits, such as plant height, seed fertility, and grain size, was observed in transgenic plants, the underlying mechanisms are not yet well understood, and the types and frequency of genetic variation in transformed plants have not been fully disclosed. To reveal the genome-wide variation in transformed plants, we sequenced the genomes of five independent T0 rice plants using next-generation sequencing (NGS) techniques. Bioinformatics analyses followed by experimental validation revealed the following: (1) in addition to transfer-DNA (T-DNA) insertions, three transformed plants carried heritable plasmid backbone DNA of variable sizes (855–5216 bp) and in different configurations with the T-DNA insertions (linked or apart); (2) each transgenic plant contained an estimated 338–1774 independent genetic variations (single nucleotide variations (SNVs) or small insertion/deletions); and (3) 2–6 new Tos17 insertions were detected in each transformed plant, but no other transposable elements or bacterial genomic DNA. PMID:27921404

  7. GENOMIC ANALYSIS OF PLANT-ASSOCIATED BACTERIA AND THEIR POTENTIAL IN ENHANCING PHYTOREMEDIATION EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Artur Piński

    2017-07-01

    Full Text Available Phytoremediation is an emerging technology that uses plants in order to cleanup pollutants including xenobiotics and heavy metals from soil, water and air. Inoculation of plants with plant growth promoting endophytic and rhizospheric bacteria can enhance efficiency of phytoremediation. Genomic analysis of four plant-associated strains belonging to the Stenotrophomonas maltophilia species revealed the presence of genes encoding proteins involved in plant growth promotion, biocontrol of phytopathogens, biodegradation of xenobiotics, heavy metals resistance and plant-bacteria-environment interaction. The results of this analysis suggest great potential of bacteria belonging to Stenotrophomonas maltophilia species in enhancing phytoremediation efficiency.

  8. The fecal viral flora of wild rodents.

    Directory of Open Access Journals (Sweden)

    Tung G Phan

    2011-09-01

    Full Text Available The frequent interactions of rodents with humans make them a common source of zoonotic infections. To obtain an initial unbiased measure of the viral diversity in the enteric tract of wild rodents we sequenced partially purified, randomly amplified viral RNA and DNA in the feces of 105 wild rodents (mouse, vole, and rat collected in California and Virginia. We identified in decreasing frequency sequences related to the mammalian viruses families Circoviridae, Picobirnaviridae, Picornaviridae, Astroviridae, Parvoviridae, Papillomaviridae, Adenoviridae, and Coronaviridae. Seventeen small circular DNA genomes containing one or two replicase genes distantly related to the Circoviridae representing several potentially new viral families were characterized. In the Picornaviridae family two new candidate genera as well as a close genetic relative of the human pathogen Aichi virus were characterized. Fragments of the first mouse sapelovirus and picobirnaviruses were identified and the first murine astrovirus genome was characterized. A mouse papillomavirus genome and fragments of a novel adenovirus and adenovirus-associated virus were also sequenced. The next largest fraction of the rodent fecal virome was related to insect viruses of the Densoviridae, Iridoviridae, Polydnaviridae, Dicistroviriade, Bromoviridae, and Virgaviridae families followed by plant virus-related sequences in the Nanoviridae, Geminiviridae, Phycodnaviridae, Secoviridae, Partitiviridae, Tymoviridae, Alphaflexiviridae, and Tombusviridae families reflecting the largely insect and plant rodent diet. Phylogenetic analyses of full and partial viral genomes therefore revealed many previously unreported viral species, genera, and families. The close genetic similarities noted between some rodent and human viruses might reflect past zoonoses. This study increases our understanding of the viral diversity in wild rodents and highlights the large number of still uncharacterized viruses in

  9. Complete genome sequence and integrated protein localization and interaction map for alfalfa dwarf virus, which combines properties of both cytoplasmic and nuclear plant rhabdoviruses

    Energy Technology Data Exchange (ETDEWEB)

    Bejerman, Nicolás, E-mail: n.bejerman@uq.edu.au [Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria INTA, Camino a 60 Cuadras k 5,5, Córdoba X5020ICA (Argentina); Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072 (Australia); Giolitti, Fabián; Breuil, Soledad de; Trucco, Verónica; Nome, Claudia; Lenardon, Sergio [Instituto de Patología Vegetal (IPAVE), Centro de Investigaciones Agropecuarias (CIAP), Instituto Nacional de Tecnología Agropecuaria INTA, Camino a 60 Cuadras k 5,5, Córdoba X5020ICA (Argentina); Dietzgen, Ralf G. [Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072 (Australia)

    2015-09-15

    Summary: We have determined the full-length 14,491-nucleotide genome sequence of a new plant rhabdovirus, alfalfa dwarf virus (ADV). Seven open reading frames (ORFs) were identified in the antigenomic orientation of the negative-sense, single-stranded viral RNA, in the order 3′-N-P-P3-M-G-P6-L-5′. The ORFs are separated by conserved intergenic regions and the genome coding region is flanked by complementary 3′ leader and 5′ trailer sequences. Phylogenetic analysis of the nucleoprotein amino acid sequence indicated that this alfalfa-infecting rhabdovirus is related to viruses in the genus Cytorhabdovirus. When transiently expressed as GFP fusions in Nicotiana benthamiana leaves, most ADV proteins accumulated in the cell periphery, but unexpectedly P protein was localized exclusively in the nucleus. ADV P protein was shown to have a homotypic, and heterotypic nuclear interactions with N, P3 and M proteins by bimolecular fluorescence complementation. ADV appears unique in that it combines properties of both cytoplasmic and nuclear plant rhabdoviruses. - Highlights: • The complete genome of alfalfa dwarf virus is obtained. • An integrated localization and interaction map for ADV is determined. • ADV has a genome sequence similarity and evolutionary links with cytorhabdoviruses. • ADV protein localization and interaction data show an association with the nucleus. • ADV combines properties of both cytoplasmic and nuclear plant rhabdoviruses.

  10. The mitochondrial genome of the lycophyte Huperzia squarrosa: the most archaic form in vascular plants.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available Mitochondrial genomes have maintained some bacterial features despite their residence within eukaryotic cells for approximately two billion years. One of these features is the frequent presence of polycistronic operons. In land plants, however, it has been shown that all sequenced vascular plant chondromes lack large polycistronic operons while bryophyte chondromes have many of them. In this study, we provide the completely sequenced mitochondrial genome of a lycophyte, from Huperzia squarrosa, which is a member of the sister group to all other vascular plants. The genome, at a size of 413,530 base pairs, contains 66 genes and 32 group II introns. In addition, it has 69 pseudogene fragments for 24 of the 40 protein- and rRNA-coding genes. It represents the most archaic form of mitochondrial genomes of all vascular plants. In particular, it has one large conserved gene cluster containing up to 10 ribosomal protein genes, which likely represents a polycistronic operon but has been disrupted and greatly reduced in the chondromes of other vascular plants. It also has the least rearranged gene order in comparison to the chondromes of other vascular plants. The genome is ancestral in vascular plants in several other aspects: the gene content resembling those of charophytes and most bryophytes, all introns being cis-spliced, a low level of RNA editing, and lack of foreign DNA of chloroplast or nuclear origin.

  11. Database Description - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available d and funding Name: Database Integration Coordination Program (FY2011-FY2013) Integration of plant databases...ency (JST) Reference(s) Article title: Plant Genome DataBase Japan (PGDBj): A Portal Website for the Integ...ration of Plant Genome-Related Databases Author name(s): Erika Asamizu, Hisako Ichi

  12. Multiple-integrations of HPV16 genome and altered transcription of viral oncogenes and cellular genes are associated with the development of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Xulian Lu

    Full Text Available The constitutive expression of the high-risk HPV E6 and E7 viral oncogenes is the major cause of cervical cancer. To comprehensively explore the composition of HPV16 early transcripts and their genomic annotation, cervical squamous epithelial tissues from 40 HPV16-infected patients were collected for analysis of papillomavirus oncogene transcripts (APOT. We observed different transcription patterns of HPV16 oncogenes in progression of cervical lesions to cervical cancer and identified one novel transcript. Multiple-integration events in the tissues of cervical carcinoma (CxCa are significantly more often than those of low-grade squamous intraepithelial lesions (LSIL and high-grade squamous intraepithelial lesions (HSIL. Moreover, most cellular genes within or near these integration sites are cancer-associated genes. Taken together, this study suggests that the multiple-integrations of HPV genome during persistent viral infection, which thereby alters the expression patterns of viral oncogenes and integration-related cellular genes, play a crucial role in progression of cervical lesions to cervix cancer.

  13. Development of a plant viral-vector-based gene expression assay for the screening of yeast cytochrome p450 monooxygenases.

    Science.gov (United States)

    Hanley, Kathleen; Nguyen, Long V; Khan, Faizah; Pogue, Gregory P; Vojdani, Fakhrieh; Panda, Sanjay; Pinot, Franck; Oriedo, Vincent B; Rasochova, Lada; Subramanian, Mani; Miller, Barbara; White, Earl L

    2003-02-01

    Development of a gene discovery tool for heterologously expressed cytochrome P450 monooxygenases has been inherently difficult. The activity assays are labor-intensive and not amenable to parallel screening. Additionally, biochemical confirmation requires coexpression of a homologous P450 reductase or complementary heterologous activity. Plant virus gene expression systems have been utilized for a diverse group of organisms. In this study we describe a method using an RNA vector expression system to phenotypically screen for cytochrome P450-dependent fatty acid omega-hydroxylase activity. Yarrowia lipolytica CYP52 gene family members involved in n-alkane assimilation were amplified from genomic DNA, cloned into a plant virus gene expression vector, and used as a model system for determining heterologous expression. Plants infected with virus vectors expressing the yeast CYP52 genes (YlALK1-YlALK7) showed a distinct necrotic lesion phenotype on inoculated plant leaves. No phenotype was detected on negative control constructs. YlALK3-, YlALK5-, and YlALK7-inoculated plants all catalyzed the terminal hydroxylation of lauric acid as confirmed using thin-layer and gas chromatography/mass spectrometry methods. The plant-based cytochrome P450 phenotypic screen was tested on an n-alkane-induced Yarrowia lipolytica plant virus expression library. A subset of 1,025 random library clones, including YlALK1-YlALK7 constructs, were tested on plants. All YlALK gene constructs scored positive in the randomized screen. Following nucleotide sequencing of the clones that scored positive using a phenotypic screen, approximately 5% were deemed appropriate for further biochemical analysis. This report illustrates the utility of a plant-based system for expression of heterologous cytochrome P450 monooxygenases and for the assignment of gene function.

  14. Climate change effects on plant disease: Genomes to ecosystems

    OpenAIRE

    Garrett, Karen A.; Dendy, S.P.; Frank, E.E.; Rouse, M. N.; Travers, S.E.

    2006-01-01

    We have reviewed the potential effects of climate change on plant disease, considering processes within plants as well as larger scale processes. LTRA-4 (Practices and Strategies for Vulnerable Agro-Ecosystems)

  15. Climate change effects on plant disease: Genomes to ecosystems

    OpenAIRE

    Garrett, Karen A.; Dendy, S.P.; Frank, E.E.; Rouse, M. N.; Travers, S.E.

    2006-01-01

    We have reviewed the potential effects of climate change on plant disease, considering processes within plants as well as larger scale processes. LTRA-4 (Practices and Strategies for Vulnerable Agro-Ecosystems)

  16. RAPD-based detection of genomic instability in cucumber plants ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... ferent properties inherent in each marker system influen- ce their effectiveness ... detect somaclonal variation in somatic embryo-derived plants from two ... plant of cultivar Profito are represented in lanes 2 and 3 in. OPG-14.

  17. Nitrogen limitation as a driver of genome size evolution in a group of karst plants

    Science.gov (United States)

    Kang, Ming; Wang, Jing; Huang, Hongwen

    2015-06-01

    Genome size is of fundamental biological importance with significance in predicting structural and functional attributes of organisms. Although abundant evidence has shown that the genome size can be largely explained by differential proliferation and removal of non-coding DNA of the genome, the evolutionary and ecological basis of genome size variation remains poorly understood. Nitrogen (N) and phosphorus (P) are essential elements of DNA and protein building blocks, yet often subject to environmental limitation in natural ecosystems. Using phylogenetic comparative methods, we test this hypothesis by determining whether leaf N and P availability affects genome sizes in 99 species of Primulina (Gesneriaceae), a group of soil specialists adapted to limestone karst environment in south China. We find that genome sizes in Primulina are strongly positively correlated with plant N content, but the correlation with plant P content is not significant when phylogeny history was taken into account. This study shows for the first time that N limitation might have been a plausible driver of genome size variation in a group of plants. We propose that competition for nitrogen nutrient between DNA synthesis and cellular functions is a possible mechanism for genome size evolution in Primulina under N-limitation.

  18. CRISPR/Cas9: an advanced tool for editing plant genomes.

    Science.gov (United States)

    Samanta, Milan Kumar; Dey, Avishek; Gayen, Srimonta

    2016-10-01

    To meet current challenges in agriculture, genome editing using sequence-specific nucleases (SSNs) is a powerful tool for basic and applied plant biology research. Here, we describe the principle and application of available genome editing tools, including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat associated CRISPR/Cas9 system. Among these SSNs, CRISPR/Cas9 is the most recently characterized and rapidly developing genome editing technology, and has been successfully utilized in a wide variety of organisms. This review specifically illustrates the power of CRISPR/Cas9 as a tool for plant genome engineering, and describes the strengths and weaknesses of the CRISPR/Cas9 technology compared to two well-established genome editing tools, ZFNs and TALENs.

  19. A and D genomes spatial separation at somatic metaphase in tetraploid cotton: evidence for genomic disposition in a polyploid plant.

    Science.gov (United States)

    Han, Jinlei; Zhou, Baoliang; Shan, Wenbo; Yu, Liying; Wu, Weiren; Wang, Kai

    2015-12-01

    Chromosomal dispositions were analyzed on the metaphase plate of tetraploid cotton (AADD). At metaphase, the two subgenomes, A and D, were separated in a radial pattern in which the small D subgenome chromosomes tended to concentrate at the center and the large A subgenome chromosomes were scattered about the periphery on the metaphase plate. Although the ordered chromosome arrangement was disturbed in an artificial hexaploid (AADDGG), the separation pattern could be recovered after the majority of the additional genome (GG) chromosomes were removed by backcrossing the artificial hexaploid with the tetraploid cotton (AADD). A similar genome separation phenomenon was also found in synthesized tetraploid cotton (AAGG). These results indicate that the genome separation pattern could be established immediately after tetraploid cotton formation and could be stably inherited in tetraploid cotton. Given the evidence of parental genome separation in other plants and animals, we speculated that genome separation might be a normal phenomenon in diploid and polyploid species. These finding will shed light on the chromosome conformation in plant cells.

  20. [CRISPR/Cas9-based genome editing systems and the analysis of targeted genome mutations in plants].

    Science.gov (United States)

    Xingliang, Ma; Yaoguang, Liu

    2016-02-01

    Targeted genomic editing technologies use programmable DNA nucleases to cleave genomic target sites, thus inducing targeted mutations in the genomes. The newly prevailed clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system that consists of the Cas9 nuclease and single guide RNA (sgRNA) has the advantages of simplicity and high efficiency as compared to other programmable DNA nuclease systems such as zinc finger nucleases (ZFNs) and transcription activator like effector nucleases (TALENs). Currently, a number of cases have been reported on the application of the CRISPR/Cas9 genomic editing technology in plants. In this review, we summarize the strategies for preparing the Cas9 and sgRNA expression constructs, the transformation method for obtaining targeted mutations, the efficiency and features of the resulting mutations and the methods for detecting or genotyping of the mutation sites. We also discuss the existing problems and perspectives of CRISPR/Cas9-based genomic editing in plants.

  1. Plastid genomics in horticultural species: importance and applications for plant population genetics, evolution, and biotechnology

    Science.gov (United States)

    Rogalski, Marcelo; do Nascimento Vieira, Leila; Fraga, Hugo P.; Guerra, Miguel P.

    2015-01-01

    During the evolution of the eukaryotic cell, plastids, and mitochondria arose from an endosymbiotic process, which determined the presence of three genetic compartments into the incipient plant cell. After that, these three genetic materials from host and symbiont suffered several rearrangements, bringing on a complex interaction between nuclear and organellar gene products. Nowadays, plastids harbor a small genome with ∼130 genes in a 100–220 kb sequence in higher plants. Plastid genes are mostly highly conserved between plant species, being useful for phylogenetic analysis in higher taxa. However, intergenic spacers have a relatively higher mutation rate and are important markers to phylogeographical and plant population genetics analyses. The predominant uniparental inheritance of plastids is like a highly desirable feature for phylogeny studies. Moreover, the gene content and genome rearrangements are efficient tools to capture and understand evolutionary events between different plant species. Currently, genetic engineering of the plastid genome (plastome) offers a number of attractive advantages as high-level of foreign protein expression, marker gene excision, gene expression in operon and transgene containment because of maternal inheritance of plastid genome in most crops. Therefore, plastid genome can be used for adding new characteristics related to synthesis of metabolic compounds, biopharmaceutical, and tolerance to biotic and abiotic stresses. Here, we describe the importance and applications of plastid genome as tools for genetic and evolutionary studies, and plastid transformation focusing on increasing the performance of horticultural species in the field. PMID:26284102

  2. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants.

    Science.gov (United States)

    George, Biju; Bhatt, Bhavin S; Awasthi, Mayur; George, Binu; Singh, Achuit K

    2015-11-01

    Microsatellites, or simple sequence repeats (SSRs), contain repetitive DNA sequence where tandem repeats of one to six base pairs are present number of times. Chloroplast genome sequences have been  shown to possess extensive variations in the length, number and distribution of SSRs. However, a comparative analysis of chloroplast microsatellites is not available. Considering their potential importance in generating genomic diversity, we have systematically analysed the abundance and distribution of simple and compound microsatellites in 164 sequenced chloroplast genomes from wide range of plants. The key findings of these studies are (1) a large number of mononucleotide repeats as compared to SSR(2-6)(di-, tri-, tetra-, penta-, hexanucleotide repeats) are present in all chloroplast genomes investigated, (2) lower plants such as algae show wide variation in relative abundance, density and distribution of microsatellite repeats as compared to flowering plants, (3) longer SSRs are excluded from coding regions of most chloroplast genomes, (4) GC content has a weak influence on number, relative abundance and relative density of mononucleotide as well as SSR(2-6). However, GC content strongly showed negative correlation with relative density (R (2) = 0.5, P plants possesses relatively more genomic diversity compared to higher plants.

  3. Give-and-take: interactions between DNA transposons and their host plant genomes.

    Science.gov (United States)

    Dooner, Hugo K; Weil, Clifford F

    2007-12-01

    Recent genome sequencing efforts have revealed how extensively transposable elements (TEs) have contributed to the shaping of present day plant genomes. DNA transposons associate preferentially with the euchromatic or genic component of plant genomes and have had the opportunity to interact intimately with the genes of the plant host. These interactions have resulted in TEs acquiring host sequences, forming chimeric genes through exon shuffling, replacing regulatory sequences, mobilizing genes around the genome, and contributing genes to the host. The close interaction of transposons with genes has also led to the evolution of intricate cellular mechanisms for silencing transposon activity. Transposons have thus become important subjects of study in understanding epigenetic regulation and, in cases where transposons have amplified to high numbers, how to escape that regulation.

  4. Non-contiguous finished genome sequence of plant-growth promoting Serratia proteamaculans S4.

    Science.gov (United States)

    Neupane, Saraswoti; Goodwin, Lynne A; Högberg, Nils; Kyrpides, Nikos C; Alström, Sadhna; Bruce, David; Quintana, Beverly; Munk, Christine; Daligault, Hajnalka; Teshima, Hazuki; Davenport, Karen; Reitenga, Krista; Green, Lance; Chain, Patrick; Erkkila, Tracy; Gu, Wei; Zhang, Xiaojing; Xu, Yan; Kunde, Yulia; Chertkov, Olga; Han, James; Han, Cliff; Detter, John C; Ivanova, Natalia; Pati, Amrita; Chen, Amy; Szeto, Ernest; Mavromatis, Kostas; Huntemann, Marcel; Nolan, Matt; Pitluck, Sam; Deshpande, Shweta; Markowitz, Victor; Pagani, Ioanna; Klenk, Hans-Peter; Woyke, Tanja; Finlay, Roger D

    2013-07-30

    Serratia proteamaculans S4 (previously Serratia sp. S4), isolated from the rhizosphere of wild Equisetum sp., has the ability to stimulate plant growth and to suppress the growth of several soil-borne fungal pathogens of economically important crops. Here we present the non-contiguous, finished genome sequence of S. proteamaculans S4, which consists of a 5,324,944 bp circular chromosome and a 129,797 bp circular plasmid. The chromosome contains 5,008 predicted genes while the plasmid comprises 134 predicted genes. In total, 4,993 genes are assigned as protein-coding genes. The genome consists of 22 rRNA genes, 82 tRNA genes and 58 pseudogenes. This genome is a part of the project "Genomics of four rapeseed plant growth-promoting bacteria with antagonistic effect on plant pathogens" awarded through the 2010 DOE-JGI's Community Sequencing Program.

  5. Comparative analysis of the functional genome architecture of animal and plant cell nuclei.

    Science.gov (United States)

    Mayr, Christoph; Jasencakova, Zuzana; Meister, Armin; Schubert, Ingo; Zink, Daniele

    2003-01-01

    Many studies have shown that the functional architecture of eukaryotic genomes displays striking similarities in evolutionarily distant organisms. For example, late-replicating and transcriptionally inactive chromatin is associated with the nuclear periphery in organisms as different as budding yeast and man. These findings suggest that eukaryotic genomes are organized in cell nuclei according to conserved principles. In order to investigate this, we examined nuclei of different animal and plant species by comparing replicational pulse-labelling patterns and their topological relationship to markers for heterochromatin and euchromatin. The data show great similarities in the nuclear genome organization of the investigated animal and plant species, supporting the idea that eukaryotic genomes are organized according to conserved principles. There are, however, differences between animals and plants with regard to histone acetylation patterns and the nuclear distribution of late-replicating chromatin.

  6. Draft Genome Sequence of Ochrobactrum intermedium Strain SA148, a Plant Growth-Promoting Desert Rhizobacterium

    KAUST Repository

    Lafi, Feras Fawzi

    2017-03-03

    Ochrobactrum intermedium strain SA148 is a plant growth-promoting bacterium isolated from sandy soil in the Jizan area of Saudi Arabia. Here, we report the 4.9-Mb draft genome sequence of this strain, highlighting different pathways characteristic of plant growth promotion activity and environmental adaptation of SA148.

  7. Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants

    Directory of Open Access Journals (Sweden)

    Yang Moon-Sik

    2004-09-01

    Full Text Available Abstract Background DNA extraction methods for PCR-quality DNA from calluses and plants are not time efficient, since they require that the tissues be ground in liquid nitrogen, followed by precipitation of the DNA pellet in ethanol, washing and drying the pellet, etc. The need for a rapid and simple procedure is urgent, especially when hundreds of samples need to be analyzed. Here, we describe a simple and efficient method of isolating high-quality genomic DNA for PCR amplification and enzyme digestion from calluses, various wild-type and transgenic plants. Results We developed new rapid and reliable genomic DNA extraction method. With our developed method, plant genomic DNA extraction could be performed within 30 min. The method was as follows. Plant tissue was homogenized with salt DNA extraction buffer using hand-operated homogenizer and extracted by phenol:chloroform:isoamyl alcohol (25:24:1. After centrifugation, the supernatant was directly used for DNA template for PCR, resulting in successful amplification for RAPD from various sources of plants and specific foreign genes from transgenic plants. After precipitating the supernatant, the DNA was completely digested by restriction enzymes. Conclusion This DNA extraction procedure promises simplicity, speed, and efficiency, both in terms of time and the amount of plant sample required. In addition, this method does not require expensive facilities for plant genomic DNA extraction.

  8. Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants.

    Science.gov (United States)

    Kang, Tae-Jin; Yang, Moon-Sik

    2004-09-02

    DNA extraction methods for PCR-quality DNA from calluses and plants are not time efficient, since they require that the tissues be ground in liquid nitrogen, followed by precipitation of the DNA pellet in ethanol, washing and drying the pellet, etc. The need for a rapid and simple procedure is urgent, especially when hundreds of samples need to be analyzed. Here, we describe a simple and efficient method of isolating high-quality genomic DNA for PCR amplification and enzyme digestion from calluses, various wild-type and transgenic plants. We developed new rapid and reliable genomic DNA extraction method. With our developed method, plant genomic DNA extraction could be performed within 30 min. The method was as follows. Plant tissue was homogenized with salt DNA extraction buffer using hand-operated homogenizer and extracted by phenol:chloroform:isoamyl alcohol (25:24:1). After centrifugation, the supernatant was directly used for DNA template for PCR, resulting in successful amplification for RAPD from various sources of plants and specific foreign genes from transgenic plants. After precipitating the supernatant, the DNA was completely digested by restriction enzymes. This DNA extraction procedure promises simplicity, speed, and efficiency, both in terms of time and the amount of plant sample required. In addition, this method does not require expensive facilities for plant genomic DNA extraction.

  9. A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation.

    Science.gov (United States)

    Lowder, Levi G; Zhang, Dengwei; Baltes, Nicholas J; Paul, Joseph W; Tang, Xu; Zheng, Xuelian; Voytas, Daniel F; Hsieh, Tzung-Fu; Zhang, Yong; Qi, Yiping

    2015-10-01

    The relative ease, speed, and biological scope of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Protein9 (Cas9)-based reagents for genomic manipulations are revolutionizing virtually all areas of molecular biosciences, including functional genomics, genetics, applied biomedical research, and agricultural biotechnology. In plant systems, however, a number of hurdles currently exist that limit this technology from reaching its full potential. For example, significant plant molecular biology expertise and effort is still required to generate functional expression constructs that allow simultaneous editing, and especially transcriptional regulation, of multiple different genomic loci or multiplexing, which is a significant advantage of CRISPR/Cas9 versus other genome-editing systems. To streamline and facilitate rapid and wide-scale use of CRISPR/Cas9-based technologies for plant research, we developed and implemented a comprehensive molecular toolbox for multifaceted CRISPR/Cas9 applications in plants. This toolbox provides researchers with a protocol and reagents to quickly and efficiently assemble functional CRISPR/Cas9 transfer DNA constructs for monocots and dicots using Golden Gate and Gateway cloning methods. It comes with a full suite of capabilities, including multiplexed gene editing and transcriptional activation or repression of plant endogenous genes. We report the functionality and effectiveness of this toolbox in model plants such as tobacco (Nicotiana benthamiana), Arabidopsis (Arabidopsis thaliana), and rice (Oryza sativa), demonstrating its utility for basic and applied plant research. © 2015 American Society of Plant Biologists. All Rights Reserved.

  10. From Nehemiah Grew to Genomics: the emerging field of evo-devo research for woody plants

    Science.gov (United States)

    Andrew Groover; Quentin Cronk

    2013-01-01

    Wood has played a primary role in the evolution of land plants (Spicer and Groover 2010), but our understanding of the genes and mechanisms underlying wood evolution and development has been limited until recently. Importantly, many of the fundamental questions of woody plant evolution and development are now tractable using genomics and high-capacity sequencing...

  11. Progress in Genome Editing Technology and Its Application in Plants

    OpenAIRE

    Zhang, Kai; Raboanatahiry, Nadia; Zhu, Bin; Li, Maoteng

    2017-01-01

    Genome editing technology (GET) is a versatile approach that has progressed rapidly as a mechanism to alter the genotype and phenotype of organisms. However, conventional genome modification using GET cannot satisfy current demand for high-efficiency and site-directed mutagenesis, retrofitting of artificial nucleases has developed into a new avenue within this field. Based on mechanisms to recognize target genes, newly-developed GETs can generally be subdivided into three cleavage systems, pr...

  12. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5.

    Science.gov (United States)

    Paulsen, Ian T; Press, Caroline M; Ravel, Jacques; Kobayashi, Donald Y; Myers, Garry S A; Mavrodi, Dmitri V; DeBoy, Robert T; Seshadri, Rekha; Ren, Qinghu; Madupu, Ramana; Dodson, Robert J; Durkin, A Scott; Brinkac, Lauren M; Daugherty, Sean C; Sullivan, Stephen A; Rosovitz, Mary J; Gwinn, Michelle L; Zhou, Liwei; Schneider, Davd J; Cartinhour, Samuel W; Nelson, William C; Weidman, Janice; Watkins, Kisha; Tran, Kevin; Khouri, Hoda; Pierson, Elizabeth A; Pierson, Leland S; Thomashow, Linda S; Loper, Joyce E

    2005-07-01

    Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.

  13. Viral vectors for gene modification of plants as chem/bio sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Manginell, Monica; Harper, Jason C.; Arango, Dulce C.; Brozik, Susan Marie; Dolan, Patricia L.

    2006-11-01

    Chemical or biological sensors that are specific, sensitive, and robust allowing intelligence gathering for verification of nuclear non-proliferation treaty compliance and detouring production of weapons of mass destruction are sorely needed. Although much progress has been made in the area of biosensors, improvements in sensor lifetime, robustness, and device packaging are required before these devices become widely used. Current chemical and biological detection and identification techniques require less-than-covert sample collection followed by transport to a laboratory for analysis. In addition to being expensive and time consuming, results can often be inconclusive due to compromised sample integrity during collection and transport. We report here a demonstration of a plant based sensor technology which utilizes mature and seedling plants as chemical sensors. One can envision genetically modifying native plants at a site of interest that can report the presence of specific toxins or chemicals. In this one year project we used a developed inducible expression system to show the feasibility of plant sensors. The vector was designed as a safe, non-infectious vector which could be used to invade, replicate, and introduce foreign genes into mature host plants that then allow the plant to sense chem/bio agents. The genes introduced through the vector included a reporter gene that encodes for green fluorescent protein (GFP) and a gene that encodes for a mammalian receptor that recognizes a chemical agent. Specifically, GFP was induced by the presence of 17-{beta}-Estradiol (estrogen). Detection of fluorescence indicated the presence of the target chemical agent. Since the sensor is a plant, costly device packaging development or manufacturing of the sensor were not required. Additionally, the biological recognition and reporting elements are maintained in a living, natural environment and therefore do not suffer from lifetime disadvantages typical of most biosensing

  14. Viral epigenetics.

    Science.gov (United States)

    Milavetz, Barry I; Balakrishnan, Lata

    2015-01-01

    DNA tumor viruses including members of the polyomavirus, adenovirus, papillomavirus, and herpes virus families are presently the subject of intense interest with respect to the role that epigenetics plays in control of the virus life cycle and the transformation of a normal cell to a cancer cell. To date, these studies have primarily focused on the role of histone modification, nucleosome location, and DNA methylation in regulating the biological consequences of infection. Using a wide variety of strategies and techniques ranging from simple ChIP to ChIP-chip and ChIP-seq to identify histone modifications, nuclease digestion to genome wide next generation sequencing to identify nucleosome location, and bisulfite treatment to MeDIP to identify DNA methylation sites, the epigenetic regulation of these viruses is slowly becoming better understood. While the viruses may differ in significant ways from each other and cellular chromatin, the role of epigenetics appears to be relatively similar. Within the viral genome nucleosomes are organized for the expression of appropriate genes with relevant histone modifications particularly histone acetylation. DNA methylation occurs as part of the typical gene silencing during latent infection by herpesviruses. In the simple tumor viruses like the polyomaviruses, adenoviruses, and papillomaviruses, transformation of the cell occurs via integration of the virus genome such that the virus's normal regulation is disrupted. This results in the unregulated expression of critical viral genes capable of redirecting cellular gene expression. The redirected cellular expression is a consequence of either indirect epigenetic regulation where cellular signaling or transcriptional dysregulation occurs or direct epigenetic regulation where epigenetic cofactors such as histone deacetylases are targeted. In the more complex herpersviruses transformation is a consequence of the expression of the viral latency proteins and RNAs which again can

  15. Complete genome sequence of the fire blight pathogen Erwinia pyrifoliae DSM 12163T and comparative genomic insights into plant pathogenicity

    Directory of Open Access Journals (Sweden)

    Frey Jürg E

    2010-01-01

    Full Text Available Abstract Background Erwinia pyrifoliae is a newly described necrotrophic pathogen, which causes fire blight on Asian (Nashi pear and is geographically restricted to Eastern Asia. Relatively little is known about its genetics compared to the closely related main fire blight pathogen E. amylovora. Results The genome of the type strain of E. pyrifoliae strain DSM 12163T, was sequenced using both 454 and Solexa pyrosequencing and annotated. The genome contains a circular chromosome of 4.026 Mb and four small plasmids. Based on their respective role in virulence in E. amylovora or related organisms, we identified several putative virulence factors, including type III and type VI secretion systems and their effectors, flagellar genes, sorbitol metabolism, iron uptake determinants, and quorum-sensing components. A deletion in the rpoS gene covering the most conserved region of the protein was identified which may contribute to the difference in virulence/host-range compared to E. amylovora. Comparative genomics with the pome fruit epiphyte Erwinia tasmaniensis Et1/99 showed that both species are overall highly similar, although specific differences were identified, for example the presence of some phage gene-containing regions and a high number of putative genomic islands containing transposases in the E. pyrifoliae DSM 12163T genome. Conclusions The E. pyrifoliae genome is an important addition to the published genome of E. tasmaniensis and the unfinished genome of E. amylovora providing a foundation for re-sequencing additional strains that may shed light on the evolution of the host-range and virulence/pathogenicity of this important group of plant-associated bacteria.

  16. Plant genotype and induced defenses affect the productivity of an insect-killing obligate viral pathogen.

    Science.gov (United States)

    Shikano, Ikkei; McCarthy, Elizabeth M; Elderd, Bret D; Hoover, Kelli

    2017-09-01

    Plant-mediated variations in the outcomes of host-pathogen interactions can strongly affect epizootics and the population dynamics of numerous species, including devastating agricultural pests such as the fall armyworm. Most studies of plant-mediated effects on insect pathogens focus on host mortality, but few have measured pathogen yield, which can affect whether or not an epizootic outbreak occurs. Insects challenged with baculoviruses on different plant species and parts can vary in levels of mortality and yield of infectious stages (occlusion bodies; OBs). We previously demonstrated that soybean genotypes and induced anti-herbivore defenses influence baculovirus infectivity. Here, we used a soybean genotype that strongly reduced baculovirus infectivity when virus was ingested on induced plants (Braxton) and another that did not reduce infectivity (Gasoy), to determine how soybean genotype and induced defenses influence OB yield and speed of kill. These are key fitness measures because baculoviruses are obligate-killing pathogens. We challenged fall armyworm, Spodoptera frugiperda, with the baculovirus S. frugiperda multi-nucleocapsid nucleopolyhedrovirus (SfMNPV) during short or long-term exposure to plant treatments (i.e., induced or non-induced genotypes). Caterpillars were either fed plant treatments only during virus ingestion (short-term exposure to foliage) or from the point of virus ingestion until death (long-term exposure). We found trade-offs of increasing OB yield with slower speed of kill and decreasing virus dose. OB yield increased more with longer time to death and decreased more with increasing virus dose after short-term feeding on Braxton compared with Gasoy. OB yield increased significantly more with time to death in larvae that fed until death on non-induced foliage than induced foliage. Moreover, fewer OBs per unit of host tissue were produced when larvae were fed induced foliage than non-induced foliage. These findings highlight the

  17. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng.

    Science.gov (United States)

    Chen, Jinhui; Hao, Zhaodong; Xu, Haibin; Yang, Liming; Liu, Guangxin; Sheng, Yu; Zheng, Chen; Zheng, Weiwei; Cheng, Tielong; Shi, Jisen

    2015-01-01

    Metasequoia glyptostroboides Hu et Cheng is the only species in the genus Metasequoia Miki ex Hu et Cheng, which belongs to the Cupressaceae family. There were around 10 species in the Metasequoia genus, which were widely spread across the Northern Hemisphere during the Cretaceous of the Mesozoic and in the Cenozoic. M. glyptostroboides is the only remaining representative of this genus. Here, we report the complete chloroplast (cp) genome sequence and the cp genomic features of M. glyptostroboides. The M. glyptostroboides cp genome is 131,887 bp in length, with a total of 117 genes comprised of 82 protein-coding genes, 31 tRNA genes and four rRNA genes. In this genome, 11 forward repeats, nine palindromic repeats, and 15 tandem repeats were detected. A total of 188 perfect microsatellites were detected through simple sequence repeat (SSR) analysis and these were distributed unevenly within the cp genome. Comparison of the cp genome structure and gene order to those of several other land plants indicated that a copy of the inverted repeat (IR) region, which was found to be IR region A (IRA), was lost in the M. glyptostroboides cp genome. The five most divergent and five most conserved genes were determined and further phylogenetic analysis was performed among plant species, especially for related species in conifers. Finally, phylogenetic analysis demonstrated that M. glyptostroboides is a sister species to Cryptomeria japonica (L. F.) D. Don and to Taiwania cryptomerioides Hayata. The complete cp genome sequence information of M. glyptostroboides will be great helpful for further investigations of this endemic relict woody plant and for in-depth understanding of the evolutionary history of the coniferous cp genomes, especially for the position of M. glyptostroboides in plant systematics and evolution.

  18. INTEGRATIVE COMPUTER ANALYSIS OF ANTISENSE TRANSCRIPTS AND miRNA TARGETS IN PLANT GENOMES

    Directory of Open Access Journals (Sweden)

    Orlov Y.L.

    2012-08-01

    Full Text Available Non-coding RNA, including small interfering RNAs (siRNAs, are important components of gene expression in eukaryotes, forming a regulatory network. miRNAs are expressed through nucleolytic maturation of hairpin precursors transcribed by RNA Polymerase II or III. Such transcripts are involved in post-transcriptional gene regulation in plants, fungi and animals. miRNAs bind to target RNA transcripts and guide their cleavage (mostly for plants or act to prevent translation. siRNAs act via a similar mechanism of cleavage of their target genes, but they also can direct genomic DNA methylation and chromatin remodeling. It is estimated that large fraction, up to 30% of all human genes also may be post-transcriptionally regulated by miRNAs. For plant genomes numbers could be higher depending on quality of sequencing and genome annotation. Due to availability of genome and mRNA sequences genome-wide searches for sense-antisense transcripts have been reported, but few plant sense-antisense transcript pairs have been studied. Integration of these data in specialized databases is challenging problem of computer genomics. We have developed set of computer programs to define antisense transcripts and miRNA genes based on available sequencing data. We have analyzed data from PlantNATsDB (Plant Natural Antisense Transcripts DataBase which is a platform for annotating and discovering Natural Antisense Transcripts (NAT by integrating various data sources [1]. NATs can be grouped into two categories, cis-NATs and trans-NATs. Cis-NAT pairs are transcribed from opposing DNA strands at the same genomic locus and have a variety of orientations and differing lengths of overlap between the perfect sequence complementary regions, whereas trans-NAT pairs are transcribed from different loci and form partial complementarily. The database contains at the moment 69 plant species. The database provides an integrative, interactive and information-rich web graphical interface to

  19. RNA-guided genome editing in plants using a CRISPR-Cas system.

    Science.gov (United States)

    Xie, Kabin; Yang, Yinong

    2013-11-01

    Precise and straightforward methods to edit the plant genome are much needed for functional genomics and crop improvement. Recently, RNA-guided genome editing using bacterial Type II cluster regularly interspaced short palindromic repeats (CRISPR)-associated nuclease (Cas) is emerging as an efficient tool for genome editing in microbial and animal systems. Here, we report the genome editing and targeted gene mutation in plants via the CRISPR-Cas9 system. Three guide RNAs (gRNAs) with a 20-22-nt seed region were designed to pair with distinct rice genomic sites which are followed by the protospacer-adjacent motif (PAM). The engineered gRNAs were shown to direct the Cas9 nuclease for precise cleavage at the desired sites and introduce mutation (insertion or deletion) by error-prone non-homologous end joining DNA repairing. By analyzing the RNA-guided genome-editing events, the mutation efficiency at these target sites was estimated to be 3-8%. In addition, the off-target effect of an engineered gRNA-Cas9 was found on an imperfectly paired genomic site, but it had lower genome-editing efficiency than the perfectly matched site. Further analysis suggests that mismatch position between gRNA seed and target DNA is an important determinant of the gRNA-Cas9 targeting specificity, and specific gRNAs could be designed to target more than 90% of rice genes. Our results demonstrate that the CRISPR-Cas system can be exploited as a powerful tool for gene targeting and precise genome editing in plants.

  20. Gene targeting and transgene stacking using intra genomic homologous recombination in plants.

    Science.gov (United States)

    Kumar, Sandeep; Barone, Pierluigi; Smith, Michelle

    2016-01-01

    Modern agriculture has created a demand for plant biotechnology products that provide durable resistance to insect pests, tolerance of herbicide applications for weed control, and agronomic traits tailored for specific geographies. These transgenic trait products require a modular and sequential multigene stacking platform that is supported by precise genome engineering technology. Designed nucleases have emerged as potent tools for creating targeted DNA double strand breaks (DSBs). Exogenously supplied donor DNA can repair the targeted DSB by a process known as gene targeting (GT), resulting in a desired modification of the target genome. The potential of GT technology has not been fully realized for trait deployment in agriculture, mainly because of inefficient transformation and plant regeneration systems in a majority of crop plants and genotypes. This challenge of transgene stacking in plants could be overcome by Intra-Genomic Homologous Recombination (IGHR) that converts independently segregating unlinked donor and target transgenic loci into a genetically linked molecular stack. The method requires stable integration of the donor DNA into the plant genome followed by intra-genomic mobilization. IGHR complements conventional breeding with genetic transformation and designed nucleases to provide a flexible transgene stacking and trait deployment platform.

  1. Oligonucleotide-Mediated Genome Editing Provides Precision and Function to Engineered Nucleases and Antibiotics in Plants.

    Science.gov (United States)

    Sauer, Noel J; Narváez-Vásquez, Javier; Mozoruk, Jerry; Miller, Ryan B; Warburg, Zachary J; Woodward, Melody J; Mihiret, Yohannes A; Lincoln, Tracey A; Segami, Rosa E; Sanders, Steven L; Walker, Keith A; Beetham, Peter R; Schöpke, Christian R; Gocal, Greg F W

    2016-04-01

    Here, we report a form of oligonucleotide-directed mutagenesis for precision genome editing in plants that uses single-stranded oligonucleotides (ssODNs) to precisely and efficiently generate genome edits at DNA strand lesions made by DNA double strand break reagents. Employing a transgene model in Arabidopsis (Arabidopsis thaliana), we obtained a high frequency of precise targeted genome edits when ssODNs were introduced into protoplasts that were pretreated with the glycopeptide antibiotic phleomycin, a nonspecific DNA double strand breaker. Simultaneous delivery of ssODN and a site-specific DNA double strand breaker, either transcription activator-like effector nucleases (TALENs) or clustered, regularly interspaced, short palindromic repeats (CRISPR/Cas9), resulted in a much greater targeted genome-editing frequency compared with treatment with DNA double strand-breaking reagents alone. Using this site-specific approach, we applied the combination of ssODN and CRISPR/Cas9 to develop an herbicide tolerance trait in flax (Linum usitatissimum) by precisely editing the 5'-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATE SYNTHASE (EPSPS) genes. EPSPS edits occurred at sufficient frequency that we could regenerate whole plants from edited protoplasts without employing selection. These plants were subsequently determined to be tolerant to the herbicide glyphosate in greenhouse spray tests. Progeny (C1) of these plants showed the expected Mendelian segregation of EPSPS edits. Our findings show the enormous potential of using a genome-editing platform for precise, reliable trait development in crop plants.

  2. The CRISPR-Cas system for plant genome editing: advances and opportunities.

    Science.gov (United States)

    Kumar, Vinay; Jain, Mukesh

    2015-01-01

    Genome editing is an approach in which a specific target DNA sequence of the genome is altered by adding, removing, or replacing DNA bases. Artificially engineered hybrid enzymes, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), and the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated protein) system are being used for genome editing in various organisms including plants. The CRISPR-Cas system has been developed most recently and seems to be more efficient and less time-consuming compared with ZFNs or TALENs. This system employs an RNA-guided nuclease, Cas9, to induce double-strand breaks. The Cas9-mediated breaks are repaired by cellular DNA repair mechanisms and mediate gene/genome modifications. Here, we provide a detailed overview of the CRISPR-Cas system and its adoption in different organisms, especially plants, for various applications. Important considerations and future opportunities for deployment of the CRISPR-Cas system in plants for numerous applications are also discussed. Recent investigations have revealed the implications of the CRISPR-Cas system as a promising tool for targeted genetic modifications in plants. This technology is likely to be more commonly adopted in plant functional genomics studies and crop improvement in the near future.

  3. Plant-derived vaccine protects target animals against a viral disease

    NARCIS (Netherlands)

    Dalsgaard, K.; Uttenthal, A.; Jones, T.D.; Xu, F.; Merrywater, A.; Hamilton, W.D.O.; Langeveld, J.P.M.; Boshuizen, R.S.; Kamstrup, S.; Lomonos, G.P.

    1997-01-01

    The successful expression of animal or human virus epitopes on the surface of plant viruses has recently been demonstrated. These chimeric virus particles (CVPs) could represent a cost-effective and safe alternative to conventional animal cell-based vaccines. We report the insertion of oligonucleoti

  4. A Genetic Approach to the Identification of Plant Genes Involved in Viral Movement

    Science.gov (United States)

    1999-09-30

    fluorouracil ( 5FU ) (CD) when infected with RCNMV. A library of EMS mutants will be generated for Luc- and CD-expressing plant lines. Plantlets from the...lines will be infected with RCNMV and selected for resistance to 5FU . Surviving mutants will be examined for the presence of RCNMV in the inoculated

  5. Plant-derived vaccine protects target animals against a viral disease

    NARCIS (Netherlands)

    Dalsgaard, K.; Uttenthal, A.; Jones, T.D.; Xu, F.; Merrywater, A.; Hamilton, W.D.O.; Langeveld, J.P.M.; Boshuizen, R.S.; Kamstrup, S.; Lomonos, G.P.

    1997-01-01

    The successful expression of animal or human virus epitopes on the surface of plant viruses has recently been demonstrated. These chimeric virus particles (CVPs) could represent a cost-effective and safe alternative to conventional animal cell-based vaccines. We report the insertion of oligonucleoti

  6. QTL list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us PGDBj Registered...Policy | Contact Us QTL list - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  7. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective.

    Directory of Open Access Journals (Sweden)

    Gurusamy Raman

    Full Text Available Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC region (82,805 bp, with some variations in the inverted repeat region A (IRA/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19 was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA and ribosomal protein subunit L23 (rpl23 genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus.

  8. Analysis of the Complete Chloroplast Genome of a Medicinal Plant, Dianthus superbus var. longicalyncinus, from a Comparative Genomics Perspective.

    Science.gov (United States)

    Raman, Gurusamy; Park, SeonJoo

    2015-01-01

    Dianthus superbus var. longicalycinus is an economically important traditional Chinese medicinal plant that is also used for ornamental purposes. In this study, D. superbus was compared to its closely related family of Caryophyllaceae chloroplast (cp) genomes such as Lychnis chalcedonica and Spinacia oleracea. D. superbus had the longest large single copy (LSC) region (82,805 bp), with some variations in the inverted repeat region A (IRA)/LSC regions. The IRs underwent both expansion and constriction during evolution of the Caryophyllaceae family; however, intense variations were not identified. The pseudogene ribosomal protein subunit S19 (rps19) was identified at the IRA/LSC junction, but was not present in the cp genome of other Caryophyllaceae family members. The translation initiation factor IF-1 (infA) and ribosomal protein subunit L23 (rpl23) genes were absent from the Dianthus cp genome. When the cp genome of Dianthus was compared with 31 other angiosperm lineages, the infA gene was found to have been lost in most members of rosids, solanales of asterids and Lychnis of Caryophyllales, whereas rpl23 gene loss or pseudogization had occurred exclusively in Caryophyllales. Nevertheless, the cp genome of Dianthus and Spinacia has two introns in the proteolytic subunit of ATP-dependent protease (clpP) gene, but Lychnis has lost introns from the clpP gene. Furthermore, phylogenetic analysis of individual protein-coding genes infA and rpl23 revealed that gene loss or pseudogenization occurred independently in the cp genome of Dianthus. Molecular phylogenetic analysis also demonstrated a sister relationship between Dianthus and Lychnis based on 78 protein-coding sequences. The results presented herein will contribute to studies of the evolution, molecular biology and genetic engineering of the medicinal and ornamental plant, D. superbus var. longicalycinus.

  9. Plant metabolic clusters – from genetics to genomics

    National Research Council Canada - National Science Library

    Nützmann, Hans‐Wilhelm; Huang, Ancheng; Osbourn, Anne

    2016-01-01

    ..., and for evolutionary biology more widely, lies in understanding how and why different plants make different kinds of chemicals, and how new natural product pathways are formed. The discovery of new plant natural product pathways and chemistries is now being revolutionized by two key developments. First, breakthroughs in sequencing techn...

  10. License - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available f you use data from this database, please be sure attribute this database as follows: ... PGDBj Registered plan... Policy | Contact Us License - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ... ...switchLanguage; BLAST Search Image Search Home About Archive Update History Data ...List Contact us PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods

  11. The influence of the human genome on chronic viral hepatitis outcome A influência do genoma humano no curso das hepatites virais crônicas

    Directory of Open Access Journals (Sweden)

    Dahir Ramos de Andrade Júnior

    2004-06-01

    Full Text Available The mechanisms that determine viral clearance or viral persistence in chronic viral hepatitis have yet to be identified. Recent advances in molecular genetics have permitted the detection of variations in immune response, often associated with polymorphism in the human genome. Differences in host susceptibility to infectious disease and disease severity cannot be attributed solely to the virulence of microbial agents. Several recent advances concerning the influence of human genes in chronic viral hepatitis B and C are discussed in this article: a the associations between human leukocyte antigen polymorphism and viral hepatic disease susceptibility or resistance; b protective alleles influencing hepatitis B virus (HBV and hepatitis C virus (HCV evolution; c prejudicial alleles influencing HBV and HCV; d candidate genes associated with HBV and HCV evolution; d other genetic factors that may contribute to chronic hepatitis C evolution (genes influencing hepatic stellate cells, TGF-beta1 and TNF-alpha production, hepatic iron deposits and angiotensin II production, among others. Recent discoveries regarding genetic associations with chronic viral hepatitis may provide clues to understanding the development of end-stage complications such as cirrhosis or hepatocellular carcinoma. In the near future, analysis of the human genome will allow the elucidation of both the natural course of viral hepatitis and its response to therapy.Os mecanismos que determinam o clearance ou a persistência da infecção viral nas hepatites virais crônicas não estão ainda bem identificados. O progresso no conhecimento sobre as ferramentas genéticas moleculares tem permitido detectar variações na resposta imune, que freqüentemente são associadas com polimorfismos do genoma humano. As diferenças na susceptibilidade do hospedeiro para as doenças infecciosas e a intensidade das doenças não podem ser atribuídas apenas à virulência do agente microbiano. Neste

  12. Genetical Genomics of Plants: From Genotype to Phenotype

    NARCIS (Netherlands)

    Joosen, R.V.L.; Ligterink, W.; Hilhorst, H.W.M.; Keurentjes, J.J.B.

    2013-01-01

    Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the cau

  13. Plants from Chernobyl zone could shed light on genome stability in radioactive environment

    Science.gov (United States)

    Shevchenko, Galina; Talalaiev, Oleksandr; Doonan, John

    2016-07-01

    For nearly 30 years, despite of chronic radiation, flora in Chernobyl zone continue to flourish, evidencing the adaptation of plants to such an environment. Keeping in mind interplanetary missions, this phenomenon is a challenge for plant space research since it highlights the possible mechanisms of genome protection and stabilization in harmful environment. Plants are sessile organisms and, contrary to animals, could not escape the external impact. Therefore, plants should evolve the robust system allowing DNA-protection against damage, which is of special interest. Our investigations show that Arabidopsis thaliana from Chernobyl zone tolerate radiomimetics and heavy metals better than control plants from non-polluted areas. Besides, its genome is less affected by such mutagens. qPCR investigations have revealed up-regulation of some genes involved in DNA damage response. In particular, expression of ATR is increased slightly and downstream expression of CycB1:1 gene is increased significantly after bleomycin treatment suggesting role of ATR-dependent pathway in genome stabilization. Several DNA repair pathways are known to exist in plants. We continue investigations on gene expression from different DNA repair pathways as well as cell cycle regulation and investigation of PCD hallmarks in order to reveal the mechanism of plant tolerance to radiation environment. Our investigations provide unique information for space researchers working on biotechnology of radiation tolerant plants.

  14. The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes.

    Science.gov (United States)

    Zheng, Jinshui; Peng, Donghai; Chen, Ling; Liu, Hualin; Chen, Feng; Xu, Mengci; Ju, Shouyong; Ruan, Lifang; Sun, Ming

    2016-07-27

    Plant-parasitic nematodes were found in 4 of the 12 clades of phylum Nematoda. These nematodes in different clades may have originated independently from their free-living fungivorous ancestors. However, the exact evolutionary process of these parasites is unclear. Here, we sequenced the genome sequence of a migratory plant nematode, Ditylenchus destructor We performed comparative genomics among the free-living nematode, Caenorhabditis elegans and all the plant nematodes with genome sequences available. We found that, compared with C. elegans, the core developmental control processes underwent heavy reduction, though most signal transduction pathways were conserved. We also found D. destructor contained more homologies of the key genes in the above processes than the other plant nematodes. We suggest that Ditylenchus spp. may be an intermediate evolutionary history stage from free-living nematodes that feed on fungi to obligate plant-parasitic nematodes. Based on the facts that D. destructor can feed on fungi and has a relatively short life cycle, and that it has similar features to both C. elegans and sedentary plant-parasitic nematodes from clade 12, we propose it as a new model to study the biology, biocontrol of plant nematodes and the interaction between nematodes and plants.

  15. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.

    Science.gov (United States)

    Qian, Jun; Song, Jingyuan; Gao, Huanhuan; Zhu, Yingjie; Xu, Jiang; Pang, Xiaohui; Yao, Hui; Sun, Chao; Li, Xian'en; Li, Chuyuan; Liu, Juyan; Xu, Haibin; Chen, Shilin

    2013-01-01

    Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.

  16. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.

    Directory of Open Access Journals (Sweden)

    Jun Qian

    Full Text Available Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp and small (SSC, 17,555 bp single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp. It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.

  17. Genomes of three facultatively symbiotic Frankia sp. strainsreflect host plant biogeography

    Energy Technology Data Exchange (ETDEWEB)

    Normand, Philippe; Lapierre, Pascal; Tisa, Louis S.; Gogarten, J.Peter; Alloisio, Nicole; Bagnarol, Emilie; Bassi, Carla A.; Berry,Alison; Bickhart, Derek M.; Choisne, Nathalie; Couloux, Arnaud; Cournoyer, Benoit; Cruveiller, Stephane; Daubin, Vincent; Demange, Nadia; Francino, M. Pilar; Ggoltsman, Eugene; Huang, Ying; Kopp, Olga; Labarre,Laurent; Lapidus, Alla; Lavire, Celine; Marechal, Joelle; Martinez,Michele; Mastronunzio, Juliana E.; Mullin, Beth; Niemann, James; Pujic,Pierre; Rawnsley, Tania; Rouy, Zoe; Schenowitz, Chantal; Sellstedt,Anita; Tavares, Fernando; Tomkins, Jeffrey P.; Vallenet, David; Valverde,Claudio; Wall, Luis; Wang, Ying; Medigue, Claudine; Benson, David R.

    2006-02-01

    Filamentous actinobacteria from the genus Frankia anddiverse woody trees and shrubs together form N2-fixing actinorhizal rootnodule symbioses that are a major source of new soil nitrogen in widelydiverse biomes 1. Three major clades of Frankia sp. strains are defined;each clade is associated with a defined subset of plants from among theeight actinorhizal plant families 2,3. The evolution arytrajectoriesfollowed by the ancestors of both symbionts leading to current patternsof symbiont compatibility are unknown. Here we show that the competingprocesses of genome expansion and contraction have operated in differentgroups of Frankia strains in a manner that can be related to thespeciation of the plant hosts and their geographic distribution. Wesequenced and compared the genomes from three Frankia sp. strains havingdifferent host plant specificities. The sizes of their genomes variedfrom 5.38 Mbp for a narrow host range strain (HFPCcI3) to 7.50Mbp for amedium host range strain (ACN14a) to 9.08 Mbp for a broad host rangestrain (EAN1pec.) This size divergence is the largest yet reported forsuch closely related bacteria. Since the order of divergence of thestrains is known, the extent of gene deletion, duplication andacquisition could be estimated and was found to be inconcert with thebiogeographic history of the symbioses. Host plant isolation favoredgenome contraction, whereas host plant diversification favored genomeexpansion. The results support the idea that major genome reductions aswell as expansions can occur in facultatively symbiotic soil bacteria asthey respond to new environments in the context of theirsymbioses.

  18. Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography

    Science.gov (United States)

    Normand, Philippe; Lapierre, Pascal; Tisa, Louis S.; Gogarten, Johann Peter; Alloisio, Nicole; Bagnarol, Emilie; Bassi, Carla A.; Berry, Alison M.; Bickhart, Derek M.; Choisne, Nathalie; Couloux, Arnaud; Cournoyer, Benoit; Cruveiller, Stephane; Daubin, Vincent; Demange, Nadia; Francino, Maria Pilar; Goltsman, Eugene; Huang, Ying; Kopp, Olga R.; Labarre, Laurent; Lapidus, Alla; Lavire, Celine; Marechal, Joelle; Martinez, Michele; Mastronunzio, Juliana E.; Mullin, Beth C.; Niemann, James; Pujic, Pierre; Rawnsley, Tania; Rouy, Zoe; Schenowitz, Chantal; Sellstedt, Anita; Tavares, Fernando; Tomkins, Jeffrey P.; Vallenet, David; Valverde, Claudio; Wall, Luis G.; Wang, Ying; Medigue, Claudine; Benson, David R.

    2007-01-01

    Soil bacteria that also form mutualistic symbioses in plants encounter two major levels of selection. One occurs during adaptation to and survival in soil, and the other occurs in concert with host plant speciation and adaptation. Actinobacteria from the genus Frankia are facultative symbionts that form N2-fixing root nodules on diverse and globally distributed angiosperms in the “actinorhizal” symbioses. Three closely related clades of Frankia sp. strains are recognized; members of each clade infect a subset of plants from among eight angiosperm families. We sequenced the genomes from three strains; their sizes varied from 5.43 Mbp for a narrow host range strain (Frankia sp. strain HFPCcI3) to 7.50 Mbp for a medium host range strain (Frankia alni strain ACN14a) to 9.04 Mbp for a broad host range strain (Frankia sp. strain EAN1pec.) This size divergence is the largest yet reported for such closely related soil bacteria (97.8%–98.9% identity of 16S rRNA genes). The extent of gene deletion, duplication, and acquisition is in concert with the biogeographic history of the symbioses and host plant speciation. Host plant isolation favored genome contraction, whereas host plant diversification favored genome expansion. The results support the idea that major genome expansions as well as reductions can occur in facultative symbiotic soil bacteria as they respond to new environments in the context of their symbioses. PMID:17151343

  19. Reconstructing the plant mitochondrial genome for marker discovery: a case study using Pinus.

    Science.gov (United States)

    Donnelly, Kevin; Cottrell, Joan; Ennos, Richard A; Vendramin, Giovanni Guiseppe; A'Hara, Stuart; King, Sarah; Perry, Annika; Wachowiak, Witold; Cavers, Stephen

    2016-12-20

    Whole-genome-shotgun (WGS) sequencing of total genomic DNA was used to recover ~1 Mbp of novel mitochondrial (mtDNA) sequence from Pinus sylvestris (L.) and three members of the closely-related Pinus mugo species complex. DNA was extracted from megagametophyte tissue from six mother trees from locations across Europe and 100 bp paired-end sequencing was performed on the Illumina HiSeq platform. Candidate mtDNA sequences were identified by their size and coverage characteristics, and by comparison with published plant mitochondrial genomes. Novel variants were identified, and primers targeting these loci were trialled on a set of 28 individuals from across Europe. In total, 31 SNP loci were successfully resequenced, characterising 15 unique haplotypes. This approach offers a cost effective means of developing marker resources for mitochondrial genomes in other plant species where reference sequences are unavailable. This article is protected by copyright. All rights reserved.

  20. Nonlinear diffusion and viral spread through the leaf of a plant

    Science.gov (United States)

    Edwards, Maureen P.; Waterhouse, Peter M.; Munoz-Lopez, María Jesús; Anderssen, Robert S.

    2016-10-01

    The spread of a virus through the leaf of a plant is both spatially and temporally causal in that the present status depends on the past and the spatial spread is compactly supported and progresses outwards. Such spatial spread is known to occur for certain nonlinear diffusion processes. The first compactly supported solution for nonlinear diffusion equations appears to be that of Pattle published in 1959. In that paper, no explanation is given as to how the solution was derived. Here, we show how the solution can be derived using Lie symmetry analysis. This lays a foundation for exploring the behavior of other choices for nonlinear diffusion and exploring the addition of reaction terms which do not eliminate the compactly supported structure. The implications associated with using the reaction-diffusion equation to model the spatial-temporal spread of a virus through the leaf of a plant are discussed.

  1. The expression of a mountain cedar allergen comparing plant-viral apoplastic and yeast expression systems

    OpenAIRE

    Moehnke, Marcie H.; Midoro-Horiuti, Terumi; Goldblum, Randall M.; Kearney, Christopher M

    2008-01-01

    Jun a 3, a major allergenic protein in mountain cedar pollen, causes seasonal allergic rhinitis in hypersensitive individuals. Recombinant Jun a 3 was expressed in Nicotiana benthamiana interstitial fluid (300 μg/g leaf material) and Pichia pastoris (100 μg/ml media). Polyclonal anti-Jun a 3 and IgE antibodies from the sera of allergic patients both reacted with the recombinant protein. Of the two systems, recombinant protein from the plant apoplast contained fewer contaminating proteins. Thi...

  2. Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638.

    Directory of Open Access Journals (Sweden)

    Safiyh Taghavi

    2010-05-01

    Full Text Available Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpaxdeltoides cv. H11-11, a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1. Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots, root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis, colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase, plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol, and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further

  3. Whole-Genome Sequence of Endophytic Plant Growth-Promoting Escherichia coli USML2.

    Science.gov (United States)

    Tharek, Munirah; Sim, Kee-Shin; Khairuddin, Dzulaikha; Ghazali, Amir Hamzah; Najimudin, Nazalan

    2017-05-11

    Escherichia coli strain USML2 was originally isolated from the inner leaf tissues of surface-sterilized phytopathogenic-free oil palm (Elaeis guineensis Jacq.). We present here the whole-genome sequence of this plant-endophytic strain. The genome consists of a single circular chromosome of 4,502,758 bp, 4,315 predicted coding sequences, and a G+C content of 50.8%. Copyright © 2017 Tharek et al.

  4. The CRISPR/Cas9 system for plant genome editing and beyond.

    Science.gov (United States)

    Bortesi, Luisa; Fischer, Rainer

    2015-01-01

    Targeted genome editing using artificial nucleases has the potential to accelerate basic research as well as plant breeding by providing the means to modify genomes rapidly in a precise and predictable manner. Here we describe the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system, a recently developed tool for the introduction of site-specific double-stranded DNA breaks. We highlight the strengths and weaknesses of this technology compared with two well-established genome editing platforms: zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). We summarize recent results obtained in plants using CRISPR/Cas9 technology, discuss possible applications in plant breeding and consider potential future developments.

  5. The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants

    Energy Technology Data Exchange (ETDEWEB)

    Rensing, Stefan A.; Lang, Daniel; Zimmer, Andreas D.; Terry, Astrid; Salamov, Asaf; Shapiro, Harris; Nishiyama, Tomaoki; Perroud, Pierre-Francois; Lindquist, Erika A.; Kamisugi, Yasuko; Tanahashi, Takako; Sakakibara, Keiko; Fujita, Tomomichi; Oishi, Kazuko; Shin, Tadasu; Kuroki, Yoko; Toyoda, Atsushi; Suzuki, Yutaka; Hashimoto, Shin-ichi; Yamaguchi, Kazuo; Sugano, Sumio; Kohara, Yuji; Fujiyama, Asao; Anterola, Aldwin; Aoki, Setsuyuki; Ashton, Neil; Barbazuk, W. Brad; Barker, Elizabeth; Bennetzen, Jeffrey L.; Blankenship, Robert; Cho, Sung Hyun; Dutcher, Susan K.; Estelle, Mark; Fawcett, Jeffrey A.; Gundlach, Heidrum; Hanada, Kousuke; Melkozernov, Alexander; Murata, Takashi; Nelson, David R.; Pils, Birgit; Prigge, Michael; Reiss, Bernd; Renner, Tanya; Rombauts, Stephane; Rushton, Paul J.; Sanderfoot, Anton; Schween, Gabriele; Shiu, Shin-Han; Stueber, Kurt; Theodoulou, Frederica L.; Tu, Hank; Van de Peer, Yves; Verrier, Paul J.; Waters, Elizabeth; Wood, Andrew; Yang, Lixing; Cove, David; Cuming, Andrew C.; Hasebe, Mitsayasu; Lucas, Susan; Mishler, Brent D.; Reski, Ralf; Grigoriev, Igor V.; Quatrano, Rakph S.; Boore, Jeffrey L.

    2007-09-18

    We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.

  6. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis

    Science.gov (United States)

    Tisserant, Emilie; Malbreil, Mathilde; Kuo, Alan; Kohler, Annegret; Symeonidi, Aikaterini; Balestrini, Raffaella; Charron, Philippe; Duensing, Nina; Frei dit Frey, Nicolas; Gianinazzi-Pearson, Vivienne; Gilbert, Luz B.; Handa, Yoshihiro; Herr, Joshua R.; Hijri, Mohamed; Koul, Raman; Kawaguchi, Masayoshi; Krajinski, Franziska; Lammers, Peter J.; Masclaux, Frederic G.; Murat, Claude; Morin, Emmanuelle; Ndikumana, Steve; Pagni, Marco; Petitpierre, Denis; Requena, Natalia; Rosikiewicz, Pawel; Riley, Rohan; Saito, Katsuharu; San Clemente, Hélène; Shapiro, Harris; van Tuinen, Diederik; Bécard, Guillaume; Bonfante, Paola; Paszkowski, Uta; Shachar-Hill, Yair Y.; Tuskan, Gerald A.; Young, J. Peter W.; Sanders, Ian R.; Henrissat, Bernard; Rensing, Stefan A.; Grigoriev, Igor V.; Corradi, Nicolas; Roux, Christophe; Martin, Francis

    2013-01-01

    The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota. PMID:24277808

  7. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis.

    Science.gov (United States)

    Tisserant, Emilie; Malbreil, Mathilde; Kuo, Alan; Kohler, Annegret; Symeonidi, Aikaterini; Balestrini, Raffaella; Charron, Philippe; Duensing, Nina; Frei dit Frey, Nicolas; Gianinazzi-Pearson, Vivienne; Gilbert, Luz B; Handa, Yoshihiro; Herr, Joshua R; Hijri, Mohamed; Koul, Raman; Kawaguchi, Masayoshi; Krajinski, Franziska; Lammers, Peter J; Masclaux, Frederic G; Murat, Claude; Morin, Emmanuelle; Ndikumana, Steve; Pagni, Marco; Petitpierre, Denis; Requena, Natalia; Rosikiewicz, Pawel; Riley, Rohan; Saito, Katsuharu; San Clemente, Hélène; Shapiro, Harris; van Tuinen, Diederik; Bécard, Guillaume; Bonfante, Paola; Paszkowski, Uta; Shachar-Hill, Yair Y; Tuskan, Gerald A; Young, J Peter W; Young, Peter W; Sanders, Ian R; Henrissat, Bernard; Rensing, Stefan A; Grigoriev, Igor V; Corradi, Nicolas; Roux, Christophe; Martin, Francis

    2013-12-10

    The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.

  8. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    Science.gov (United States)

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J; Glick, Bernard R

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.

  9. The sacred lotus genome provides insights into the evolution of flowering plants.

    Science.gov (United States)

    Wang, Yun; Fan, Guangyi; Liu, Yiman; Sun, Fengming; Shi, Chengcheng; Liu, Xin; Peng, Jing; Chen, Wenbin; Huang, Xinfang; Cheng, Shifeng; Liu, Yuping; Liang, Xinming; Zhu, Honglian; Bian, Chao; Zhong, Lan; Lv, Tian; Dong, Hongxia; Liu, Weiqing; Zhong, Xiao; Chen, Jing; Quan, Zhiwu; Wang, Zhihong; Tan, Benzhong; Lin, Chufa; Mu, Feng; Xu, Xun; Ding, Yi; Guo, An-Yuan; Wang, Jun; Ke, Weidong

    2013-11-01

    Sacred lotus (Nelumbo nucifera) is an ornamental plant that is also used for food and medicine. This basal eudicot species is especially important from an evolutionary perspective, as it occupies a critical phylogenetic position in flowering plants. Here we report the draft genome of a wild strain of sacred lotus. The assembled genome is 792 Mb, which is approximately 85-90% of genome size estimates. We annotated 392 Mb of repeat sequences and 36,385 protein-coding genes within the genome. Using these sequence data, we constructed a phylogenetic tree and confirmed the basal location of sacred lotus within eudicots. Importantly, we found evidence for a relatively recent whole-genome duplication event; any indication of the ancient paleo-hexaploid event was, however, absent. Genomic analysis revealed evidence of positive selection within 28 embryo-defective genes and one annexin gene that may be related to the long-term viability of sacred lotus seed. We also identified a significant expansion of starch synthase genes, which probably elevated starch levels within the rhizome of sacred lotus. Sequencing this strain of sacred lotus thus provided important insights into the evolution of flowering plant and revealed genetic mechanisms that influence seed dormancy and starch synthesis.

  10. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    Directory of Open Access Journals (Sweden)

    Jin Duan

    Full Text Available The plant growth-promoting bacterium (PGPB Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.

  11. Functional genomics of bio-energy plants and related patent activities.

    Science.gov (United States)

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2013-04-01

    With dwindling fossil oil resources and increased economic growth of many developing countries due to globalization, energy driven from an alternative source such as bio-energy in a sustainable fashion is the need of the hour. However, production of energy from biological source is relatively expensive due to low starch and sugar contents of bioenergy plants leading to lower oil yield and reduced quality along with lower conversion efficiency of feedstock. In this context genetic improvement of bio-energy plants offers a viable solution. In this manuscript, we reviewed the current status of functional genomics studies and related patent activities in bio-energy plants. Currently, genomes of considerable bio-energy plants have been sequenced or are in progress and also large amount of expression sequence tags (EST) or cDNA sequences are available from them. These studies provide fundamental data for more reliable genome annotation and as a result, several genomes have been annotated in a genome-wide level. In addition to this effort, various mutagenesis tools have also been employed to develop mutant populations for characterization of genes that are involved in bioenergy quantitative traits. With the progress made on functional genomics of important bio-energy plants, more patents were filed with a significant number of them focusing on genes and DNA sequences which may involve in improvement of bio-energy traits including higher yield and quality of starch, sugar and oil. We also believe that these studies will lead to the generation of genetically altered plants with improved tolerance to various abiotic and biotic stresses.

  12. Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA.

    Directory of Open Access Journals (Sweden)

    Kouichi Kitamura

    Full Text Available The covalently closed circular DNA (cccDNA of the hepatitis B virus (HBV plays an essential role in chronic hepatitis. The cellular repair system is proposed to convert cytoplasmic nucleocapsid (NC DNA (partially double-stranded DNA into cccDNA in the nucleus. Recently, antiviral cytidine deaminases, AID/APOBEC proteins, were shown to generate uracil residues in the NC-DNA through deamination, resulting in cytidine-to-uracil (C-to-U hypermutation of the viral genome. We investigated whether uracil residues in hepadnavirus DNA were excised by uracil-DNA glycosylase (UNG, a host factor for base excision repair (BER. When UNG activity was inhibited by the expression of the UNG inhibitory protein (UGI, hypermutation of NC-DNA induced by either APOBEC3G or interferon treatment was enhanced in a human hepatocyte cell line. To assess the effect of UNG on the cccDNA viral intermediate, we used the duck HBV (DHBV replication model. Sequence analyses of DHBV DNAs showed that cccDNA accumulated G-to-A or C-to-T mutations in APOBEC3G-expressing cells, and this was extensively enhanced by UNG inhibition. The cccDNA hypermutation generated many premature stop codons in the P gene. UNG inhibition also enhanced the APOBEC3G-mediated suppression of viral replication, including reduction of NC-DNA, pre-C mRNA, and secreted viral particle-associated DNA in prolonged culture. Enhancement of APOBEC3G-mediated suppression by UNG inhibition was not observed when the catalytic site of APOBEC3G was mutated. Transfection experiments of recloned cccDNAs revealed that the combination of UNG inhibition and APOBEC3G expression reduced the replication ability of cccDNA. Taken together, these data indicate that UNG excises uracil residues from the viral genome during or after cccDNA formation in the nucleus and imply that BER pathway activities decrease the antiviral effect of APOBEC3-mediated hypermutation.

  13. Download - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us PGDBj Registered...d 1 README README_e.html - 2 Registered plant list pgdbj_dna_marker_linkage_map_plant_species_list_en.zip (2...Policy | Contact Us Download - PGDBj Registered plant list, Marker list, QTL list, Plant DB link & Genome analysis methods | LSDB Archive ...

  14. Comparative genomics reveals convergent rates of evolution in ant-plant mutualisms.

    Science.gov (United States)

    Rubin, Benjamin E R; Moreau, Corrie S

    2016-08-25

    Symbiosis-the close and often long-term interaction of species-is predicted to drive genome evolution in a variety of ways. For example, parasitic interactions have been shown to increase rates of molecular evolution, a trend generally attributed to the Red Queen Hypothesis. However, it is much less clear how mutualisms impact the genome, as both increased and reduced rates of change have been predicted. Here we sequence the genomes of seven species of ants, three that have convergently evolved obligate plant-ant mutualism and four closely related species of non-mutualists. Comparing these sequences, we investigate how genome evolution is shaped by mutualistic behaviour. We find that rates of molecular evolution are higher in the mutualists genome wide, a characteristic apparently not the result of demography. Our results suggest that the intimate relationships of obligate mutualists may lead to selective pressures similar to those seen in parasites, thereby increasing rates of evolution.

  15. Creating Order from Chaos: Epigenome Dynamics in Plants with Complex Genomes.

    Science.gov (United States)

    Springer, Nathan M; Lisch, Damon; Li, Qing

    2016-02-01

    Flowering plants have strikingly distinct genomes, although they contain a similar suite of expressed genes. The diversity of genome structures and organization is largely due to variation in transposable elements (TEs) and whole-genome duplication (WGD) events. We review evidence that chromatin modifications and epigenetic regulation are intimately associated with TEs and likely play a role in mediating the effects of WGDs. We hypothesize that the current structure of a genome is the result of various TE bursts and WGDs and it is likely that the silencing mechanisms and the chromatin structure of a genome have been shaped by these events. This suggests that the specific mechanisms targeting chromatin modifications and epigenomic patterns may vary among different species. Many crop species have likely evolved chromatin-based mechanisms to tolerate silenced TEs near actively expressed genes. These interactions of heterochromatin and euchromatin are likely to have important roles in modulating gene expression and variability within species.

  16. The Amborella Genome and the Evolution of Flowering Plants

    DEFF Research Database (Denmark)

    Palmer, Jeffrey D.; Ammiraju, Jetty S. S.; Ralph, Paula

    2013-01-01

    Amborella trichopoda is strongly supported as the single living species of the sister lineage to all other extant flowering plants, providing a unique reference for inferring the genome content and structure of the most recent common ancestor (MRCA) of living angiosperms. Sequencing the Amborella...... genome, we identified an ancient genome duplication predating angiosperm diversification, without evidence of subsequent, lineage-specific genome duplications. Comparisons between Amborella and other angiosperms facilitated reconstruction of the ancestral angiosperm gene content and gene order...... in the MRCA of core eudicots. We identify new gene families, gene duplications, and floral protein-protein interactions that first appeared in the ancestral angiosperm. Transposable elements in Amborella are ancient and highly divergent, with no recent transposon radiations. Population genomic analysis across...

  17. A Dimeric Rep Protein Initiates Replication of a Linear Archaeal Virus Genome: Implications for the Rep Mechanism and Viral Replication ▿ †

    Science.gov (United States)

    Oke, Muse; Kerou, Melina; Liu, Huanting; Peng, Xu; Garrett, Roger A.; Prangishvili, David; Naismith, James H.; White, Malcolm F.

    2011-01-01

    The Rudiviridae are a family of rod-shaped archaeal viruses with covalently closed, linear double-stranded DNA (dsDNA) genomes. Their replication mechanisms remain obscure, although parallels have been drawn to the Poxviridae and other large cytoplasmic eukaryotic viruses. Here we report that a protein encoded in the 34-kbp genome of the rudivirus SIRV1 is a member of the replication initiator (Rep) superfamily of proteins, which initiate rolling-circle replication (RCR) of diverse viruses and plasmids. We show that SIRV Rep nicks the viral hairpin terminus, forming a covalent adduct between an active-site tyrosine and the 5′ end of the DNA, releasing a 3′ DNA end as a primer for DNA synthesis. The enzyme can also catalyze the joining reaction that is necessary to reseal the DNA hairpin and terminate replication. The dimeric structure points to a simple mechanism through which two closely positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral replication are discussed. PMID:21068244

  18. A Genome Sequence of Novel SARS-CoV Isolates: the Genotype,GD-Ins29, Leads to a Hypothesis of Viral Transmission in South China

    Institute of Scientific and Technical Information of China (English)

    E'de Qin; Guohui Chang; Wuchun Cao; Zuyuan Xu; Ruifu Yang; Jing Wang; Man Yu; Yan Li; Jing Xu; Bingyin Si; Yongwu Hu; Xionglei He; Wenming Peng; Lin Tang; Tao Jiang; Jianping Shi; Jia Ji; Yu Zhang; Jia Ye; Cui'e Wang; Yujun Han; Jun Zhou; Wei Tian; Yajun Deng; Xiaoyu Li; Jianfei Hu; Caiping Wang; Chunxia Yan; Qingrun Zhang; Jingyue Bao; Guoqing Li; Weijun Chen; Lin Fang; Yong Liu; Changfeng Li; Meng Lei; Dawei Li; Wei Tong; Xiangjun Tian; Jin Wang; Bo Zhang; Haiqing Zhang; Yilin Zhang; Hui Zhao; Wei Li; Xiaowei Zhang; Shuangli Li; Xiaojie Cheng; Xiuqing Zhang; Bin Liu; Changqing Zeng; Songgang Li; Xuehai Tan; Siqi Liu; Wei Dong; Jie Wen; Jun Wang; Gane Ka-Shu Wong; Jun Yu; Jian Wang; Qingyu Zhu; Huanming Yang; Jingqiang Wang; Baochang Fan; Qingfa Wu

    2003-01-01

    We report a complete genomic sequence of rare isolates (minor genotype) of theSARS-CoV from SARS patients in Guangdong, China, where the first few casesemerged. The most striking discovery from the isolate is an extra 29-nucleotidesequence located at the nucleotide positions between 27,863 and 27,864 (referredto the complete sequence of B J01) within an overlapped region composed of BGI-PUP5 (BGI-postulated uncharacterized protein 5) and BGI-PUP6 upstream ofthe N (nucleocapsid) protein. The discovery of this minor genotype, GD-Ins29,suggests a significant genetic event and differentiates it from the previously re-ported genotype, the dominant form among all sequenced SARS-CoV isolates. A17-nt segment of this extra sequence is identical to a segment of the same size intwo human mRNA sequences that may interfere with viral genome replication andtranscription in the cytosol of the infected cells. It provides a new avenue for theexploration of the virus-host interaction in viral evolution, host pathogenesis, andvaccine development.

  19. Ecological and genetic factors linked to contrasting genome dynamics in seed plants.

    Science.gov (United States)

    Leitch, A R; Leitch, I J

    2012-05-01

    The large-scale replacement of gymnosperms by angiosperms in many ecological niches over time and the huge disparity in species numbers have led scientists to explore factors (e.g. polyploidy, developmental systems, floral evolution) that may have contributed to the astonishing rise of angiosperm diversity. Here, we explore genomic and ecological factors influencing seed plant genomes. This is timely given the recent surge in genomic data. We compare and contrast the genomic structure and evolution of angiosperms and gymnosperms and find that angiosperm genomes are more dynamic and diverse, particularly amongst the herbaceous species. Gymnosperms typically have reduced frequencies of a number of processes (e.g. polyploidy) that have shaped the genomes of other vascular plants and have alternative mechanisms to suppress genome dynamism (e.g. epigenetics and activity of transposable elements). Furthermore, the presence of several characters in angiosperms (e.g. herbaceous habit, short minimum generation time) has enabled them to exploit new niches and to be viable with small population sizes, where the power of genetic drift can outweigh that of selection. Together these processes have led to increased rates of genetic divergence and faster fixation times of variation in many angiosperms compared with gymnosperms.

  20. Comparative analysis of RNA silencing suppression activities between viral suppressors and an endogenous plant RNA-dependent RNA polymerase.

    Science.gov (United States)

    Yoon, Ju-Yeon; Han, Kyoung-Sik; Park, Han-Yong; Choi, Seung-Kook

    2012-06-01

    RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in eukaryotes, including higher plants. To counteract this, several plant viruses express silencing suppressors that inhibit RNA silencing in host plants. Here, we show that both 2b protein from peanut stunt virus (PSV) and a hairpin construct (designated hp-RDR6) that silences endogenous RNA-dependent RNA polymerase 6 (RDR6) strongly suppress RNA silencing. The Agrobacterium infiltration system was used to demonstrate that both PSV 2b and hp-RDR6 suppressed local RNA silencing as strongly as helper component (HC-Pro) from potato virus Y (PVY) and P19 from tomato bush stunt virus (TBSV). The 2b protein from PSV eliminated the small-interfering RNAs (siRNAs) associated with RNA silencing and prevented systemic silencing, similar to 2b protein from cucumber mosaic virus (CMV). On the other hand, hp-RDR6 suppressed RNA silencing by inhibiting the generation of secondary siRNAs. The small coat protein (SCP) of squash mosaic virus (SqMV) also displayed weak suppression activity of RNA silencing. Agrobacterium-mediated gene transfer was used to investigate whether viral silencing suppressors or hp-RDR6 enhanced accumulations of green fluorescence protein (GFP) and β-glucuronidase (GUS) as markers of expression in leaf tissues of Nicotina benthamiana. Expression of both GFP and GUS was significantly enhanced in the presence of PSV 2b or CMV 2b, compared to no suppression or the weak SqMV SCP suppressor. Co-expression with hp-RDR6 also significantly increased the expression of GFP and GUS to levels similar to those induced by PVY HC-Pro and TBSV P19.

  1. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris).

    Science.gov (United States)

    Dohm, Juliane C; Minoche, André E; Holtgräwe, Daniela; Capella-Gutiérrez, Salvador; Zakrzewski, Falk; Tafer, Hakim; Rupp, Oliver; Sörensen, Thomas Rosleff; Stracke, Ralf; Reinhardt, Richard; Goesmann, Alexander; Kraft, Thomas; Schulz, Britta; Stadler, Peter F; Schmidt, Thomas; Gabaldón, Toni; Lehrach, Hans; Weisshaar, Bernd; Himmelbauer, Heinz

    2014-01-23

    Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant

  2. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    Directory of Open Access Journals (Sweden)

    Stephanie M Rainey

    2016-04-01

    Full Text Available The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus. Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to

  3. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    Science.gov (United States)

    Rainey, Stephanie M; Martinez, Julien; McFarlane, Melanie; Juneja, Punita; Sarkies, Peter; Lulla, Aleksei; Schnettler, Esther; Varjak, Margus; Merits, Andres; Miska, Eric A; Jiggins, Francis M; Kohl, Alain

    2016-04-01

    The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus). Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3' open reading frame than the 5' non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs) have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to an induced

  4. Maintenance of genome stability in plants: repairing DNA double strand breaks and chromatin structure stability

    Directory of Open Access Journals (Sweden)

    Sujit eRoy

    2014-09-01

    Full Text Available Plant cells are subject to high levels of DNA damage resulting from plant’s obligatory dependence on sunlight and the associated exposure to environmental stresses like solar UV radiation, high soil salinity, drought, chilling injury and other air and soil pollutants including heavy metals and metabolic byproducts from endogenous processes. The irreversible DNA damages, generated by the environmental and genotoxic stresses affect plant growth and development, reproduction and crop productivity. Thus, for maintaining genome stability, plants have developed an extensive array of mechanisms for the detection and repair of DNA damages. This review will focus recent advances in our understanding of mechanisms regulating plant genome stability in the context of repairing of double stand breaks and chromatin structure maintenance.

  5. The expression of a mountain cedar allergen comparing plant-viral apoplastic and yeast expression systems.

    Science.gov (United States)

    Moehnke, Marcie H; Midoro-Horiuti, Terumi; Goldblum, Randall M; Kearney, Christopher M

    2008-07-01

    Jun a 3, a major allergenic protein in mountain cedar pollen, causes seasonal allergic rhinitis in hypersensitive individuals. Recombinant Jun a 3 was expressed in Nicotiana benthamiana interstitial fluid (300 microg/g leaf material) and Pichia pastoris (100 microg/ml media). Polyclonal anti-Jun a 3 and IgE antibodies from the sera of allergic patients both reacted with the recombinant protein. Of the two systems, recombinant protein from the plant apoplast contained fewer contaminating proteins. This method allows for a more convenient and inexpensive expression of the recombinant allergen, which will allow for further structural studies and may prove useful in diagnostic and/or immunotherapeutic strategies for cedar allergy.

  6. Genome-wide survey of alternative splicing in the grass Brachypodium distachyon: a emerging model biosystem for plant functional genomics.

    Science.gov (United States)

    Sablok, Gaurav; Gupta, P K; Baek, Jong-Min; Vazquez, Franck; Min, Xiang Jia

    2011-03-01

    A draft sequence of the genome of Brachypodium distachyon, the emerging grass model, was recently released. This represents a unique opportunity to determine its functional diversity compared to the genomes of other model species. Using homology mapping of assembled expressed sequence tags with chromosome scale pseudomolecules, we identified 128 alternative splicing events in B. distachyon. Our study identified that retention of introns is the major type of alternative splicing events (53%) in this plant and highlights the prevalence of splicing site recognition for definition of introns in plants. We have analyzed the compositional profiles of exon-intron junctions by base-pairing nucleotides with U1 snRNA which serves as a model for describing the possibility of sequence conservation. The alternative splicing isoforms identified in this study are novel and represent one of the potentially biologically significant means by which B. distachyon controls the function of its genes. Our observations serve as a basis to understand alternative splicing events of cereal crops with more complex genomes, like wheat or barley.

  7. A Proposal for Establishing a Free Market Basis for Plant Genome Information Exchange

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T.

    2001-09-26

    The current situation of genomics information exchange is reminiscent of some Third World cities, where residents despair they will ever get official utility service and therefore tap into power, phone, and gas sources with makeshift connections. Thus, each genomics grant spawns yet another idiosyncratic Web site, with makeshift links to whatever random Web sites the PI is most familiar with. There are few standards for semantics of data, and fewer standards for automating the interchange or integration of these autonomous Web sites. The US Plant Genome Initiative (PGI) has been enthusiastic contributor to this proliferation of chaotic Web sites, but to its credit it appears to be the first major program to attempt to find a solution. Some of us from the earliest days of the Human Genome Program have been acutely aware of the problems of genomic data integration, since long before the Web appeared and made the problem exponentially harder to resolve. We have seen large scale attempts, and subsequent failures or inadequacies, of many potential solution approaches (i.e., database federation, classical data warehousing, centralized data, etc.) and believe we know at least some of the reasons they still remain inadequate. It is our opinion that the only solution that has a chance of succeeding is one that considers the overall economics of genomics data production, sharing, and integration. We believe that attempting to create a kind of Free Market for data created under the Plant Genome Initiative will represent the most practical, powerful, and cost-effective approach to dealing with the broad range of plant genome information that has been unleashed.

  8. Complete genome sequence of a plant associated bacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5033.

    Science.gov (United States)

    Niazi, Adnan; Manzoor, Shahid; Bejai, Sarosh; Meijer, Johan; Bongcam-Rudloff, Erik

    2014-06-15

    Bacillus amyloliquefaciens subsp. plantarum UCMB5033 is of special interest for its ability to promote host plant growth through production of stimulating compounds and suppression of soil borne pathogens by synthesizing antibacterial and antifungal metabolites or priming plant defense as induced systemic resistance. The genome of B. amyloliquefaciens UCMB5033 comprises a 4,071,167 bp long circular chromosome that consists of 3,912 protein-coding genes, 86 tRNA genes and 10 rRNA operons.

  9. Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant.

    Science.gov (United States)

    Wu, Pingzhi; Zhou, Changpin; Cheng, Shifeng; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Chen, Yanbo; Chen, Yan; Ni, Peixiang; Wang, Ying; Xu, Xun; Huang, Ying; Song, Chi; Wang, Zhiwen; Shi, Nan; Zhang, Xudong; Fang, Xiaohua; Yang, Qing; Jiang, Huawu; Chen, Yaping; Li, Meiru; Wang, Ying; Chen, Fan; Wang, Jun; Wu, Guojiang

    2015-03-01

    The family Euphorbiaceae includes some of the most efficient biomass accumulators. Whole genome sequencing and the development of genetic maps of these species are important components in molecular breeding and genetic improvement. Here we report the draft genome of physic nut (Jatropha curcas L.), a biodiesel plant. The assembled genome has a total length of 320.5 Mbp and contains 27,172 putative protein-coding genes. We established a linkage map containing 1208 markers and anchored the genome assembly (81.7%) to this map to produce 11 pseudochromosomes. After gene family clustering, 15,268 families were identified, of which 13,887 existed in the castor bean genome. Analysis of the genome highlighted specific expansion and contraction of a number of gene families during the evolution of this species, including the ribosome-inactivating proteins and oil biosynthesis pathway enzymes. The genomic sequence and linkage map provide a valuable resource not only for fundamental and applied research on physic nut but also for evolutionary and comparative genomics analysis, particularly in the Euphorbiaceae.

  10. Rapid evolution of manifold CRISPR systems for plant genome editing

    Directory of Open Access Journals (Sweden)

    Yiping Qi

    2016-11-01

    Full Text Available Advanced CRISPR-Cas9 based technologies first validated in mammalian cell systems are quickly being adapted for use in plants. These new technologies increase CRISPR-Cas9’s utility and effectiveness by diversifying cellular capabilities through expression construct system evolution and enzyme orthogonality, as well as enhanced efficiency through delivery and expression mechanisms. Here, we review the current state of advanced CRISPR-Cas9 and Cpf1 capabilities in plants and cover the rapid evolution of these tools from first generation inducers of double strand breaks for basic genetic manipulations to second and third generation multiplexed systems with myriad functionalities, capabilities and specialized applications. We offer perspective on how to utilize these tools for currently untested research endeavors and analyze strengths and weaknesses of novel CRISPR systems in plants. Advanced CRISPR functionalities and delivery options demonstrated in plants are primarily reviewed but new technologies just coming to the forefront of CRISPR development, or those on the horizon, are briefly discussed. Topics covered are focused on the expansion of expression and delivery capabilities for CRISPR-Cas9 components and broadening targeting range through orthogonal Cas9 and Cpf1 proteins.

  11. Rapid Evolution of Manifold CRISPR Systems for Plant Genome Editing

    Science.gov (United States)

    Lowder, Levi; Malzahn, Aimee; Qi, Yiping

    2016-01-01

    Advanced CRISPR-Cas9 based technologies first validated in mammalian cell systems are quickly being adapted for use in plants. These new technologies increase CRISPR-Cas9's utility and effectiveness by diversifying cellular capabilities through expression construct system evolution and enzyme orthogonality, as well as enhanced efficiency through delivery and expression mechanisms. Here, we review the current state of advanced CRISPR-Cas9 and Cpf1 capabilities in plants and cover the rapid evolution of these tools from first generation inducers of double strand breaks for basic genetic manipulations to second and third generation multiplexed systems with myriad functionalities, capabilities, and specialized applications. We offer perspective on how to utilize these tools for currently untested research endeavors and analyze strengths and weaknesses of novel CRISPR systems in plants. Advanced CRISPR functionalities and delivery options demonstrated in plants are primarily reviewed but new technologies just coming to the forefront of CRISPR development, or those on the horizon, are briefly discussed. Topics covered are focused on the expansion of expression and delivery capabilities for CRISPR-Cas9 components and broadening targeting range through orthogonal Cas9 and Cpf1 proteins. PMID:27895652

  12. Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread

    Science.gov (United States)

    Dall’Ara, Mattia; Ratti, Claudio; Bouzoubaa, Salah E.; Gilmer, David

    2016-01-01

    Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the “life aspects” of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant. PMID:27548199

  13. Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread.

    Science.gov (United States)

    Dall'Ara, Mattia; Ratti, Claudio; Bouzoubaa, Salah E; Gilmer, David

    2016-08-18

    Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the "life aspects" of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant.

  14. Biotechnological application of functional genomics towards plant-parasitic nematode control.

    Science.gov (United States)

    Li, Jiarui; Todd, Timothy C; Lee, Junghoon; Trick, Harold N

    2011-12-01

    Plant-parasitic nematodes are primary biotic factors limiting the crop production. Current nematode control strategies include nematicides, crop rotation and resistant cultivars, but each has serious limitations. RNA interference (RNAi) represents a major breakthrough in the application of functional genomics for plant-parasitic nematode control. RNAi-induced suppression of numerous genes essential for nematode development, reproduction or parasitism has been demonstrated, highlighting the considerable potential for using this strategy to control damaging pest populations. In an effort to find more suitable and effective gene targets for silencing, researchers are employing functional genomics methodologies, including genome sequencing and transcriptome profiling. Microarrays have been used for studying the interactions between nematodes and plant roots and to measure both plants and nematodes transcripts. Furthermore, laser capture microdissection has been applied for the precise dissection of nematode feeding sites (syncytia) to allow the study of gene expression specifically in syncytia. In the near future, small RNA sequencing techniques will provide more direct information for elucidating small RNA regulatory mechanisms in plants and specific gene silencing using artificial microRNAs should further improve the potential of targeted gene silencing as a strategy for nematode management. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  15. Seed-borne viral dsRNA elements in three cultivated Raphanus and Brassica plants suggest three cryptoviruses.

    Science.gov (United States)

    Li, Liqiang; Liu, Jianning; Zhang, Qiong; Fu, Runying; Zhu, Xiwu; Li, Chao; Chen, Jishuang

    2016-04-01

    Since the 1970s, several dsRNA viruses, including Radish yellow edge virus, Raphanus sativus virus 1, Raphanus sativus virus 2, and Raphanus sativus virus 3, have been identified and reported as infecting radish. In the present study, in conjunction with a survey of seed-borne viruses in cultivated Brassica and Raphanus using the dsRNA diagnostic method, we discovered 3 novel cryptoviruses that infect Brassica and Raphanus: Raphanus sativus partitivirus 1, which infects radish (Raphanus sativus); Sinapis alba cryptic virus 1, which infects Sinapis alba; and Brassica rapa cryptic virus 1 (BrCV1), which infects Brassica rapa. The genomic organization of these cryptoviruses was analyzed and characterized. BrCV1 might represent the first plant partitivirus found in Gammapartitivirus. Additionally, the evolutionary relationships among all of the partitiviruses reported in Raphanus and Brassica were analyzed.

  16. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    Science.gov (United States)

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome a