WorldWideScience

Sample records for plant root tips

  1. A novel tracking tool for the analysis of plant-root tip movements

    International Nuclear Information System (INIS)

    Russino, A; Ascrizzi, A; Popova, L; Tonazzini, A; Mancuso, S; Mazzolai, B

    2013-01-01

    The growth process of roots consists of many activities, such as exploring the soil volume, mining minerals, avoiding obstacles and taking up water to fulfil the plant's primary functions, that are performed differently, depending on environmental conditions. Root movements are strictly related to a root decision strategy, which helps plants to survive under stressful conditions by optimizing energy consumption. In this work, we present a novel image-analysis tool to study the kinematics of the root tip (apex), named analyser for root tip tracks (ARTT). The software implementation combines a segmentation algorithm with additional software imaging filters in order to realize a 2D tip detection. The resulting paths, or tracks, arise from the sampled tip positions through the acquired images during the growth. ARTT allows work with no markers and deals autonomously with new emerging root tips, as well as handling a massive number of data relying on minimum user interaction. Consequently, ARTT can be used for a wide range of applications and for the study of kinematics in different plant species. In particular, the study of the root growth and behaviour could lead to the definition of novel principles for the penetration and/or control paradigms for soil exploration and monitoring tasks. The software capabilities were demonstrated by experimental trials performed with Zea mays and Oryza sativa. (paper)

  2. Root tips moving through soil

    Science.gov (United States)

    Curlango-Rivera, Gilberto

    2011-01-01

    Root elongation occurs by the generation of new cells from meristematic tissue within the apical 1–2 mm region of root tips. Therefore penetration of the soil environment is carried out by newly synthesized plant tissue, whose cells are inherently vulnerable to invasion by pathogens. This conundrum, on its face, would seem to reflect an intolerable risk to the successful establishment of root systems needed for plant life. Yet root tip regions housing the meristematic tissues repeatedly have been found to be free of microbial infection and colonization. Even when spore germination, chemotaxis, and/or growth of pathogens are stimulated by signals from the root tip, the underlying root tissue can escape invasion. Recent insights into the functions of root border cells, and the regulation of their production by transient exposure to external signals, may shed light on long-standing observations. PMID:21455030

  3. Heterologous Expression of Panax ginseng PgTIP1 Confers Enhanced Salt Tolerance of Soybean Cotyledon Hairy Roots, Composite, and Whole Plants

    Directory of Open Access Journals (Sweden)

    Jing An

    2017-07-01

    Full Text Available The Panax ginseng TIP gene PgTIP1 was previously demonstrated to have high water channel activity by its heterologous expression in Xenopus laevis oocytes and in yeast; it also plays a significant role in growth of PgTIP1-transgenic Arabidopsis plants under favorable conditions and has enhanced tolerance toward salt and drought treatment. In this work, we first investigated the physiological effects of heterologous PgTIP1 expression in soybean cotyledon hairy roots or composite plants mediated by Agrobacterium rhizogenes toward enhanced salt tolerance. The PgTIP1-transgenic soybean plants mediated by the pollen tube pathway, represented by the lines N and J11, were analyzed at the physiological and molecular levels for enhanced salt tolerance. The results showed that in terms of root-specific heterologous expression, the PgTIP1-transformed soybean cotyledon hairy roots or composite plants displayed superior salt tolerance compared to the empty vector-transformed ones according to the mitigatory effects of hairy root growth reduction, drop in leaf RWC, and rise in REL under salt stress. Additionally, declines in K+ content, increases in Na+ content and Na+/K+ ratios in the hairy roots, stems, or leaves were effectively alleviated by PgTIP1-transformation, particularly the stems and leaves of composite soybean plants. At the whole plant level, PgTIP1-trasgenic soybean lines were found to possess stronger root vigor, reduced root and leaf cell membrane damage, increased SOD, POD, CAT, and APX activities, steadily increased leaf Tr, RWC, and Pn values, and smaller declines in chlorophyll and carotenoid content when exposed to salt stress compared to wild type. Moreover, the distribution patterns of Na+, K+, and Cl- in the roots, stems, and leaves of salt-stressed transgenic plants were readjusted, in that the absorbed Na+ and Cl- were mainly restricted to the roots to reduce their transport to the shoots, and the transport of root-absorbed K+ to the

  4. Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-06-01

    Full Text Available Abscisic acid (ABA plays an essential role in root hair elongation in plants, but the regulatory mechanism remains to be elucidated. In this study, we found that exogenous ABA can promote rice root hair elongation. Transgenic rice overexpressing SAPK10 (Stress/ABA-activated protein kinase 10 had longer root hairs; rice plants overexpressing OsABIL2 (OsABI-Like 2 had attenuated ABA signaling and shorter root hairs, suggesting that the effect of ABA on root hair elongation depends on the conserved PYR/PP2C/SnRK2 ABA signaling module. Treatment of the DR5-GUS and OsPIN-GUS lines with ABA and an auxin efflux inhibitor showed that ABA-induced root hair elongation depends on polar auxin transport. To examine the transcriptional response to ABA, we divided rice root tips into three regions: short root hair, long root hair and root tip zones; and conducted RNA-seq analysis with or without ABA treatment. Examination of genes involved in auxin transport, biosynthesis and metabolism indicated that ABA promotes auxin biosynthesis and polar auxin transport in the root tip, which may lead to auxin accumulation in the long root hair zone. Our findings shed light on how ABA regulates root hair elongation through crosstalk with auxin biosynthesis and transport to orchestrate plant development.

  5. Proteomic and metabolomic analyses of soybean root tips under flooding stress.

    Science.gov (United States)

    Komatsu, Setsuko; Nakamura, Takuji; Sugimoto, Yurie; Sakamoto, Kazunori

    2014-01-01

    Flooding is one of the serious problems for soybean plants because it inhibits growth. Proteomic and metabolomic techniques were used to determine whether proteins and metabolites are altered in the root tips of soybeans under flooding stress. Two-day-old soybean plants were flooded for 2 days, and proteins and metabolites were extracted from root tips. Flooding-responsive proteins were identified using two-dimensional- or SDS-polyacrylamide gel electrophoresis- based proteomics techniques. Using both techniques, 172 proteins increased and 105 proteins decreased in abundance in the root tips of flood-stressed soybean. The abundance of methionine synthase, heat shock cognate protein, urease, and phosphoenol pyruvate carboxylase was significantly increased by flooding stress. Furthermore, 73 flooding-responsive metabolites were identified using capillary electrophoresis-mass spectrometry. The levels of gamma-aminobutyric acid, glycine, NADH2, and phosphoenol pyruvate were increased by flooding stress. Taken together, these results suggest that synthesis of phosphoenol pyruvate by way of oxaloacetate produced in the tricarboxylic acid cycle is activated in soybean root tips in response to flooding stress, and that flooding stress also leads to modulation of the urea cycle in the root tips.

  6. The Mechanism Forming the Cell Surface of Tip-Growing Rooting Cells Is Conserved among Land Plants.

    Science.gov (United States)

    Honkanen, Suvi; Jones, Victor A S; Morieri, Giulia; Champion, Clement; Hetherington, Alexander J; Kelly, Steve; Proust, Hélène; Saint-Marcoux, Denis; Prescott, Helen; Dolan, Liam

    2016-12-05

    To discover mechanisms that controlled the growth of the rooting system in the earliest land plants, we identified genes that control the development of rhizoids in the liverwort Marchantia polymorpha. 336,000 T-DNA transformed lines were screened for mutants with defects in rhizoid growth, and a de novo genome assembly was generated to identify the mutant genes. We report the identification of 33 genes required for rhizoid growth, of which 6 had not previously been functionally characterized in green plants. We demonstrate that members of the same orthogroup are active in cell wall synthesis, cell wall integrity sensing, and vesicle trafficking during M. polymorpha rhizoid and Arabidopsis thaliana root hair growth. This indicates that the mechanism for constructing the cell surface of tip-growing rooting cells is conserved among land plants and was active in the earliest land plants that existed sometime more than 470 million years ago [1, 2]. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Onion root tip cell system for biodosimetry?

    International Nuclear Information System (INIS)

    Paradiz, J; Druskovic, B.; Lovka, M.; Skrk, J.

    1996-01-01

    Methodology for radiation dose assessment based on chromosomal damage to plant cells has no yet been established, although root meristems have been the pioneer cytogenetic materials and profound analyses of irradiated meristematic cells of horse bean (Viciafaba L.) had been performed. Onion (Allium cepa L.) root tips frequently used for radiation cytogenetic studies, are recently considered to be one of the most promising plant test system for the detection of genotoxic environmental pollutants. We studied the possibility of using cytogenetic analyses of irradiated onion cells to determine the effective biological dose of ionizing radiation. The dose-effect relationships for chromosomal damages to onion meristematic cells were established after plants had been irradiated and subsequently grown in both laboratory and field conditions

  8. The tonoplast intrinsic aquaporin (TIP) subfamily of Eucalyptus grandis: Characterization of EgTIP2, a root-specific and osmotic stress-responsive gene.

    Science.gov (United States)

    Rodrigues, Marcela I; Bravo, Juliana P; Sassaki, Flávio T; Severino, Fábio E; Maia, Ivan G

    2013-12-01

    Aquaporins have important roles in various physiological processes in plants, including growth, development and adaptation to stress. In this study, a gene encoding a root-specific tonoplast intrinsic aquaporin (TIP) from Eucalyptus grandis (named EgTIP2) was investigated. The root-specific expression of EgTIP2 was validated over a panel of five eucalyptus organ/tissues. In eucalyptus roots, EgTIP2 expression was significantly induced by osmotic stress imposed by PEG treatment. Histochemical analysis of transgenic tobacco lines (Nicotiana tabacum SR1) harboring an EgTIP2 promoter:GUS reporter cassette revealed major GUS staining in the vasculature and in root tips. Consistent with its osmotic-stress inducible expression in eucalyptus, EgTIP2 promoter activity was up-regulated by mannitol treatment, but was down-regulated by abscisic acid. Taken together, these results suggest that EgTIP2 might be involved in eucalyptus response to drought. Additional searches in the eucalyptus genome revealed the presence of four additional putative TIP coding genes, which could be individually assigned to the classical TIP1-5 groups. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply

    Directory of Open Access Journals (Sweden)

    Álvarez-Fernández Ana

    2010-06-01

    Full Text Available Abstract Background Plants grown under iron deficiency show different morphological, biochemical and physiological changes. These changes include, among others, the elicitation of different strategies to improve the acquisition of Fe from the rhizosphere, the adjustment of Fe homeostasis processes and a reorganization of carbohydrate metabolism. The application of modern techniques that allow the simultaneous and untargeted analysis of multiple proteins and metabolites can provide insight into multiple processes taking place in plants under Fe deficiency. The objective of this study was to characterize the changes induced in the root tip proteome and metabolome of sugar beet plants in response to Fe deficiency and resupply. Results Root tip extract proteome maps were obtained by 2-D isoelectric focusing polyacrylamide gel electrophoresis, and approximately 140 spots were detected. Iron deficiency resulted in changes in the relative amounts of 61 polypeptides, and 22 of them were identified by mass spectrometry (MS. Metabolites in root tip extracts were analyzed by gas chromatography-MS, and more than 300 metabolites were resolved. Out of 77 identified metabolites, 26 changed significantly with Fe deficiency. Iron deficiency induced increases in the relative amounts of proteins and metabolites associated to glycolysis, tri-carboxylic acid cycle and anaerobic respiration, confirming previous studies. Furthermore, a protein not present in Fe-sufficient roots, dimethyl-8-ribityllumazine (DMRL synthase, was present in high amounts in root tips from Fe-deficient sugar beet plants and gene transcript levels were higher in Fe-deficient root tips. Also, a marked increase in the relative amounts of the raffinose family of oligosaccharides (RFOs was observed in Fe-deficient plants, and a further increase in these compounds occurred upon short term Fe resupply. Conclusions The increases in DMRL synthase and in RFO sugars were the major changes induced by Fe

  10. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode (Heterodera glycines)-infected roots.

    Science.gov (United States)

    Tucker, Mark L; Xue, Ping; Yang, Ronghui

    2010-01-01

    Colonization of plant roots by root knot and cyst nematodes requires a functional ethylene response pathway. However, ethylene plays many roles in root development and whether its role in nematode colonization is direct or indirect, for example lateral root initiation or root hair growth, is not known. The temporal requirement for ethylene and localized synthesis of ethylene during the life span of soybean cyst nematode (SCN) on soybean roots was further investigated. Although a significant increase in ethylene evolution was not detected from SCN-colonized roots, the concentration of the immediate precursor to ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), was higher in SCN-colonized root pieces and root tips than in other parts of the root. Moreover, expression analysis of 17 ACC synthase (ACS) genes indicated that a select set of ACS genes is expressed in SCN-colonized root pieces that is clearly different from the set of genes expressed in non-colonized roots or root tips. Semi-quantitative real-time PCR indicated that ACS transcript accumulation correlates with the high concentration of ACC in root tips. In addition, an ACS-like sequence was found in the public SCN nucleotide database. Acquisition of a full-length sequence for this mRNA (accession GQ389647) and alignment with transcripts for other well-characterized ACS proteins indicated that the nematode sequence is missing a key element required for ACS activity and therefore probably is not a functional ACS. Moreover, no significant amount of ACC was found in any growth stage of SCN that was tested.

  11. Effects of cloning and root-tip size on observations of fungal ITS sequences from Picea glauca roots

    Science.gov (United States)

    Daniel L. Lindner; Mark T. Banik

    2009-01-01

    To better understand the effects of cloning on observations of fungal ITS sequences from Picea glauca (white spruce) roots two techniques were compared: (i) direct sequencing of fungal ITS regions from individual root tips without cloning and (ii) cloning and sequencing of fungal ITS regions from individual root tips. Effect of root tip size was...

  12. Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips

    Science.gov (United States)

    Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.

    1987-01-01

    Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.

  13. (Allium cepa) root tip mitosis

    African Journals Online (AJOL)

    Aghomotsegin

    their chemical composition and genotoxic effects on cell reproduction. Two petrochemicals, air ... the chromosomes of the individual cells of the root tip could be a pointer to their ..... Chromosome technique: Theory and. Practice. Butterworths ...

  14. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells.

    Science.gov (United States)

    Park, Sungjin; Szumlanski, Amy L; Gu, Fangwei; Guo, Feng; Nielsen, Erik

    2011-07-17

    In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.

  15. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status.

    Science.gov (United States)

    Yang, C H; Crowley, D E

    2000-01-01

    Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status.

  16. Regulation of H+ Extrusion and Cytoplasmic pH in Maize Root Tips Acclimated to a Low-Oxygen Environment.

    Science.gov (United States)

    Xia, J. H.; Roberts, JKM.

    1996-05-01

    We tested the hypothesis that H+ extrusion contributes to cytoplasmic pH regulation and tolerance of anoxia in maize (Zea mays) root tips. We studied root tips of whole seedlings that were acclimated to a low-oxygen environment by pretreatment in 3% (v/v) O2. Acclimated root tips characteristically regulate cytoplasmic pH near neutrality and survive prolonged anoxia, whereas nonacclimated tips undergo severe cytoplasmic acidosis and die much more quickly. We show that the plasma membrane H+-ATPase can operate under anoxia and that net H+ extrusion increases when cytoplasmic pH falls. However, at an external pH near 6.0, H+ extrusion contributes little to cytoplasmic pH regulation. At more acidic external pH values, net H+ flux into root tips increases dramatically, leading to a decrease in cytoplasmic pH and reduced tolerance of anoxia. We present evidence that, under these conditions, H+ pumps are activated to partly offset acidosis due to H+ influx and, thereby, contribute to cytoplasmic pH regulation and tolerance of anoxia. The regulation of H+ extrusion under anoxia is discussed with respect to the acclimation response and mechanisms of intracellular pH regulation in aerobic plant cells.

  17. Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere.

    Science.gov (United States)

    Hennion, Nils; Durand, Mickael; Vriet, Cécile; Doidy, Joan; Maurousset, Laurence; Lemoine, Rémi; Pourtau, Nathalie

    2018-04-28

    In plants, root is a typical sink organ that relies exclusively on the import of sugar from the aerial parts. Sucrose is delivered by the phloem to the most distant root tips and, en route to the tip, is used by the different root tissues for metabolism and storage. Besides, a certain portion of this carbon is exuded in the rhizosphere, supplied to beneficial microorganisms and diverted by parasitic microbes. The transport of sugars towards these numerous sinks either occurs symplastically through cell connections (plasmodesmata) or is apoplastically mediated through membrane transporters (MST, SUT/SUC and SWEET) that control monosaccharide and sucrose fluxes. Here, we review recent progresses on carbon partitioning within and outside roots, discussing membrane transporters involved in plant responses to biotic and abiotic factors. This article is protected by copyright. All rights reserved.

  18. A novel growing device inspired by plant root soil penetration behaviors.

    Directory of Open Access Journals (Sweden)

    Ali Sadeghi

    Full Text Available Moving in an unstructured environment such as soil requires approaches that are constrained by the physics of this complex medium and can ensure energy efficiency and minimize friction while exploring and searching. Among living organisms, plants are the most efficient at soil exploration, and their roots show remarkable abilities that can be exploited in artificial systems. Energy efficiency and friction reduction are assured by a growth process wherein new cells are added at the root apex by mitosis while mature cells of the root remain stationary and in contact with the soil. We propose a new concept of root-like growing robots that is inspired by these plant root features. The device penetrates soil and develops its own structure using an additive layering technique: each layer of new material is deposited adjacent to the tip of the device. This deposition produces both a motive force at the tip and a hollow tubular structure that extends to the surface of the soil and is strongly anchored to the soil. The addition of material at the tip area facilitates soil penetration by omitting peripheral friction and thus decreasing the energy consumption down to 70% comparing with penetration by pushing into the soil from the base of the penetration system. The tubular structure provides a path for delivering materials and energy to the tip of the system and for collecting information for exploratory tasks.

  19. Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression.

    Science.gov (United States)

    Soltys, Dorota; Rudzińska-Langwald, Anna; Kurek, Wojciech; Szajko, Katarzyna; Sliwinska, Elwira; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-05-01

    Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants. The goal of this study was to investigate the effects of CA in the restriction of the root growth of maize (Zea mays), representing the monocot species. CA (3mM) reduced the number of border cells in the root tips of maize seedlings and degraded their protoplasts. However, CA did not induce any significant changes in the organelle structure of other root cells, apart from increased vacuolization. CA toxicity was also demonstrated by its effect on cell cycle activity, endoreduplication intensity, and modifications of cyclins CycA2, CycD2, and histone HisH3 gene expression. In contrast, the arrangement of microtubules was not altered by CA. Treatment of maize seedlings with CA did not completely arrest mitotic activity, although the frequency of dividing cells was reduced. Furthermore, prolonged CA treatment increased the proportion of endopolyploid cells in the root tip. Cytological malformations were accompanied by an induction of oxidative stress in root cells, which manifested as enhanced accumulation of H2O2. Exposure of maize seedlings to CA resulted in an increased concentration of auxin and stimulated ethylene emission. Taken together, these findings suggested that the inhibition of root growth by CA may be a consequence of stress-induced morphogenic responses. Copyright © 2014. Published by Elsevier GmbH.

  20. Cytogenetic effects of 48titanium (48ti) on meristematic cells of root tips of lens culinaris med

    International Nuclear Information System (INIS)

    Sepet, H.; Bozdag, B.

    2014-01-01

    Cytogenetic effects of 48Titanium (48Ti) on meristematic cells of root tips belonging to the plant (Lens culinaris Medik.) have been Investigated. Seeds of the plant, prepared were kept in 48Ti standart for different time period as control during 1/4, 1/2, 1, 2, 4, 8, 12, 16, 20, 24 hours. Seeds treated with 48Ti were made sprout and the root tips obtained were prepared for microscopic examination. At the end of the microscopic examinations, some abnormalities as chromosome breakings, chromosome dispersion, bridge chromosome, chromosome adherence, ring chromosome were observed. Abnormalities were seen at each treatment depended on the time periods. Variety and number of abnormality were usually seen to be increasing, depending on the increase of treatment time. The results obtained were evaluated statistically. (author)

  1. Changes in hormonal balance and meristematic activity in primary root tips on the slowly rotating clinostat and their effect on the development of the rapeseed root system.

    Science.gov (United States)

    Aarrouf, J; Schoevaert, D; Maldiney, R; Perbal, G

    1999-04-01

    The morphometry of the root system, the meristematic activity and the level of indole-3-acetic acid (IAA), abscisic acid (ABA) and zeatin in the primary root tips of rapeseed seedlings were analyzed as functions of time on a slowly rotating clinostat (1 rpm) or in the vertical controls (1 rpm). The fresh weight of the root system was 30% higher throughout the growth period (25 days) in clinorotated seedlings. Morphometric analysis showed that the increase in biomass on the clinostat was due to greater primary root growth, earlier initiation and greater elongation of the secondary roots, which could be observed even in 5-day-old seedlings. However, after 15 days, the growth of the primary root slowed on the clinostat, whereas secondary roots still grew faster in clinorotated plants than in the controls. At this time, the secondary roots began to be initiated closer to the root tip on the clinostat than in the control. Analysis of the meristematic activity and determination of the levels in IAA, ABA and zeatin in the primary root tips demonstrated that after 5 days on the clinostat, the increased length of the primary root could be the consequence of higher meristematic activity and coincided with an increase in both IAA and ABA concentrations. After 15 days on the clinostat, a marked increase in IAA, ABA and zeatin, which probably reached supraoptimal levels, seems to cause a progressive disturbance of the meristematic cells, during a decrease of primary root growth between 15 and 25 days. These modifications in the hormonal balance and the perturbation of the meristematic activity on the clinostat were followed by a loss of apical dominance, which was responsible for the early initiation of secondary roots, the greater elongation of the root system and the emergence of the lateral roots near the tip of the primary root.

  2. Nitrogen for growth of stock plants and production of strawberry runner tips

    Directory of Open Access Journals (Sweden)

    Djeimi Isabel Janisch

    2012-01-01

    Full Text Available The objective of this research was to determine growth and dry matter partitioning among organs of strawberry stock plants under five Nitrogen concentrations in the nutrient solution and its effects on emission and growth of runner tips. The experiment was carried out under greenhouse conditions, from September 2010 to March 2011, in a soilless system with Oso Grande and Camino Real cultivars. Nitrogen concentrations of 5.12, 7.6, 10.12 (control, 12.62 and 15.12 mmol L-1 in the nutrient solution were studied in a 5x2 factorial randomised experimental design. All runner tips bearing at least one expanded leaf (patent requested were collected weekly and counted during the growth period. The number of leaves, dry matter (DM of leaves, crown and root, specific leaf area and leaf area index (LAI was determined at the final harvest. Increasing N concentration in the nutrient solution from 5.12 to 15.12 mmol L-1 reduces growth of crown, roots and LAI of strawberry stock plants but did not affect emission and growth of runner tips. It was concluded that for the commercial production of plug plants the optimal nitrogen concentration in the nutrient solution should be 5.12 mmol L-1.

  3. Forensic DNA typing from teeth using demineralized root tips.

    Science.gov (United States)

    Corrêa, Heitor Simões Dutra; Pedro, Fabio Luis Miranda; Volpato, Luiz Evaristo Ricci; Pereira, Thiago Machado; Siebert Filho, Gilberto; Borges, Álvaro Henrique

    2017-11-01

    Teeth are widely used samples in forensic human genetic identification due to their persistence and practical sampling and processing. Their processing, however, has changed very little in the last 20 years, usually including powdering or pulverization of the tooth. The objective of this study was to present demineralized root tips as DNA sources while, at the same time, not involving powdering the samples or expensive equipment for teeth processing. One to five teeth from each of 20 unidentified human bodies recovered from midwest Brazil were analyzed. Whole teeth were demineralized in EDTA solution with daily solution change. After a maximum of approximately seven days, the final millimeters of the root tip was excised. This portion of the sample was used for DNA extraction through a conventional organic protocol. DNA quantification and STR amplification were performed using commercial kits followed by capillary electrophoresis on 3130 or 3500 genetic analyzers. For 60% of the unidentified bodies (12 of 20), a full genetic profile was obtained from the extraction of the first root tip. By the end of the analyses, full genetic profiles were obtained for 85% of the individuals studied, of which 80% were positively identified. This alternative low-tech approach for postmortem teeth processing is capable of extracting DNA in sufficient quantity and quality for forensic casework, showing that root tips are viable nuclear DNA sources even after demineralization. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Abscisic Acid Stimulates Elongation of Excised Pea Root Tips

    Science.gov (United States)

    Gaither, Douglas H.; Lutz, Donald H.; Forrence, Leonard E.

    1975-01-01

    Excised Pisum sativum L. root tips were incubated in a pH 5.2 sucrose medium containing abscisic acid. Elongation growth was inhibited by 100 μm abscisic acid. However, decreasing the abscisic acid concentration caused stimulation of elongation, the maximum response (25% to 30%) occurring at 1 μm abscisic acid. Prior to two hours, stimulation of elongation by 1 μm abscisic acid was not detectable. Increased elongation did not occur in abscisic acid-treated root tips of Lens culinaris L., Phaseolus vulgaris L., or Zea mays L. PMID:16659198

  5. Plant root and shoot dynamics during subsurface obstacle interaction

    Science.gov (United States)

    Conn, Nathaniel; Aguilar, Jeffrey; Benfey, Philip; Goldman, Daniel

    As roots grow, they must navigate complex underground environments to anchor and retrieve water and nutrients. From gravity sensing at the root tip to pressure sensing along the tip and elongation zone, the complex mechanosensory feedback system of the root allows it to bend towards greater depths and avoid obstacles of high impedance by asymmetrically suppressing cell elongation. Here we investigate the mechanical and physiological responses of roots to rigid obstacles. We grow Maize, Zea mays, plants in quasi-2D glass containers (22cm x 17cm x 1.4cm) filled with photoelastic gel and observe that, regardless of obstacle interaction, smaller roots branch off the primary root when the upward growing shoot (which contains the first leaf) reaches an average length of 40 mm, coinciding with when the first leaf emerges. However, prior to branching, contacts with obstacles result in reduced root growth rates. The growth rate of the root relative to the shoot is sensitive to the angle of the obstacle surface, whereby the relative root growth is greatest for horizontally oriented surfaces. We posit that root growth is prioritized when horizontal obstacles are encountered to ensure anchoring and access to nutrients during later stages of development. NSF Physics of Living Systems.

  6. Artificial Plant Root System Growth for Distributed Optimization: Models and Emergent Behaviors

    Directory of Open Access Journals (Sweden)

    Su Weixing

    2016-01-01

    Full Text Available Plant root foraging exhibits complex behaviors analogous to those of animals, including the adaptability to continuous changes in soil environments. In this work, we adapt the optimality principles in the study of plant root foraging behavior to create one possible bio-inspired optimization framework for solving complex engineering problems. This provides us with novel models of plant root foraging behavior and with new methods for global optimization. This framework is instantiated as a new search paradigm, which combines the root tip growth, branching, random walk, and death. We perform a comprehensive simulation to demonstrate that the proposed model accurately reflects the characteristics of natural plant root systems. In order to be able to climb the noise-filled gradients of nutrients in soil, the foraging behaviors of root systems are social and cooperative, and analogous to animal foraging behaviors.

  7. Effect of aluminum on metabolism of organic acids and chemical forms of aluminum in root tips of Eucalyptus camaldulensis Dehnh.

    Science.gov (United States)

    Ikka, Takashi; Ogawa, Tsuyoshi; Li, Donghua; Hiradate, Syuntaro; Morita, Akio

    2013-10-01

    Eucalyptus (Eucalyptus camaldulensis) has relatively high resistance to aluminum (Al) toxicity than the various herbaceous plants and model plant species. To investigate Al-tolerance mechanism, the metabolism of organic acids and the chemical forms of Al in the target site (root tips) in Eucalyptus was investigated. To do this, 2-year old rooted cuttings of E. camaldulensis were cultivated in half-strength Hoagland solution (pH 4.0) containing Al (0, 0.25, 0.5, 1.0, 2.5 and 5.0mM) salts for 5weeks; growth was not affected at concentrations up to 2.5mM even with Al concentration reaching 6000μgg(-1) DW. In roots, the citrate content also increased with increasing Al application. Concurrently, the activities of aconitase and NADP(+)-isocitrate dehydrogenase, which catalyze the decomposition of citrate, decreased. On the other hand, the activity of citrate synthase was not affected at concentrations up to 2.5mM Al. (27)Al-NMR spectroscopic analyses were carried out where it was found that Al-citrate complexes were a major chemical form present in cell sap of root tips. These findings suggested that E. camaldulensis detoxifies Al by forming Al-citrate complexes, and that this is achieved through Al-induced citrate accumulation in root tips via suppression of the citrate decomposition pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Systemic control of cell division and endoreduplication by NAA and BAP by modulating CDKs in root tip cells of Allium cepa.

    Science.gov (United States)

    Tank, Jigna G; Thaker, Vrinda S

    2014-01-01

    Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP) treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.

  9. Extracellular Trapping of Soil Contaminants by Root Border Cells: New Insights into Plant Defense

    Directory of Open Access Journals (Sweden)

    Martha C. Hawes

    2016-01-01

    Full Text Available Soil and water pollution by metals and other toxic chemicals is difficult to measure and control, and, as such, presents an ongoing global threat to sustainable agriculture and human health. Efforts to remove contaminants by plant-mediated pathways, or “phytoremediation”, though widely studied, have failed to yield consistent, predictable removal of biological and chemical contaminants. Emerging research has revealed that one major limitation to using plants to clean up the environment is that plants are programmed to protect themselves: Like white blood cells in animals, border cells released from plant root tips carry out an extracellular trapping process to neutralize threats and prevent injury to the host. Variability in border cell trapping has been found to be correlated with variation in sensitivity of roots to aluminum, and removal of border cell results in increased Al uptake into the root tip. Studies now have implicated border cells in responses of diverse plant roots to a range of heavy metals, including arsenic, copper, cadmium, lead, mercury, iron, and zinc. A better understanding of border cell extracellular traps and their role in preventing toxin uptake may facilitate efforts to use plants as a nondestructive approach to neutralize environmental threats.

  10. Soil Penetration by Earthworms and Plant Roots--Mechanical Energetics of Bioturbation of Compacted Soils.

    Directory of Open Access Journals (Sweden)

    Siul Ruiz

    Full Text Available We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip. The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities.

  11. Effects of bromine on mitosis in root-tips of Allium cepa

    Energy Technology Data Exchange (ETDEWEB)

    Chury, J; Slouka, V

    1949-01-01

    The root-tips of Allium cepa, 1.5-2 cm. long, were exposed to pure bromine vapor for five minutes. The root-tips were then washed for ten minutes in water, and kept in fresh-water at a temperature of 20-24/sup 0/C. Squash preparations were made and stained according to the method of Darlington and La Cour. Bromine acting for five minutes on the root-tips of Allium has a specific effect on the cell nucleus in the resting stage. The effects induced are shown thirty-six hours after treatment by spindle abnormalities in metaphase and anaphase, and result in polyploidy in a large number of cells. Bromine produces chromosome and chromatid fragmentation; the latter may be followed by reunion. The effect of the bromine is cumulative and depends on the time which elapses between treatment and fixation. The cytological effects induced by bromine strongly suggest that it is another specific mutafacient chemical.

  12. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.

    Science.gov (United States)

    Wang, Xin; Oh, MyeongWon; Sakata, Katsumi; Komatsu, Setsuko

    2016-01-01

    Growth in the early stage of soybean is markedly inhibited under flooding and drought stresses. To explore the responsive mechanisms of soybean, temporal protein profiles of root tip under flooding and drought stresses were analyzed using gel-free/label-free proteomic technique. Root tip was analyzed because it was the most sensitive organ against flooding, and it was beneficial to root penetration under drought. UDP glucose: glycoprotein glucosyltransferase was decreased and increased in soybean root under flooding and drought, respectively. Temporal protein profiles indicated that fermentation and protein synthesis/degradation were essential in root tip under flooding and drought, respectively. In silico protein-protein interaction analysis revealed that the inductive and suppressive interactions between S-adenosylmethionine synthetase family protein and B-S glucosidase 44 under flooding and drought, respectively, which are related to carbohydrate metabolism. Furthermore, biotin/lipoyl attachment domain containing protein and Class II aminoacyl tRNA/biotin synthetases superfamily protein were repressed in the root tip during time-course stresses. These results suggest that biotin and biotinylation might be involved in energy management to cope with flooding and drought in early stage of soybean-root tip. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Physiological effects of the form of nitrogen on corn root tips: a 31P nuclear magnetic resonance study

    International Nuclear Information System (INIS)

    Andrade, F.H.; Anderson, I.C.

    1986-01-01

    Physiological effects of different N forms (NO − 3 , NH + 4 , or a combination of both) on corn (Zea mays L.) root tips and leaves were studied by following 31 P signals with a nuclear magnetic resonance spectrometer. With root tips, both cytoplasmic and vacuolar pH could be measured, whereas with leaves, only vacuolar pH could be determined. The N treatments did not affect the cytoplasmic pH of corn root tips in contrast to proposals of previous workers. Leaf vacuolar pH was higher and root tip vacuolar pH lower with NO − 3 than with NH + 4 . Under anaerobic conditions, cytoplasmic pH was reduced because of lactic acid fermentation. Nitrate, an electron acceptor, delayed the acidification of the cytoplasm compartment because it represents an alternative way to reoxidize NADH. In conclusion, for the conditions of these experiments, the pH of the cytoplasm of corn root tips was not modified by the form of N absorbed; however, the pH of this compartment was affected by the form of N presented during development anaerobiosi. (author)

  14. Somatic embryogenesis and plant regeneration in Carica papaya L. tissue culture derived from root explants.

    Science.gov (United States)

    Chen, M H; Wang, P J; Maeda, E

    1987-10-01

    The regeneration potential of shoot tip, stem, leaf, cotyledon and root explants of two papaya cultivars (Carica papaya cv. 'Solo' and cv. 'Sunrise') were studed. Callus induction of these two cultivars of papaya showed that the shoot tips and stems are most suitable for forming callus, while leaves, cotyledons and roots are comparatively difficult to induce callus. Callus induction also varied with the varities. Somatic embryogenesis was obtained from 3-month-old root cultures. A medium containing half strength of MS inorganic salts, 160 mg/l adenine sulfate, 1.0 mg/1 NAA, 0.5 mg/1 kinetin and 1.0 mg/1 GA3 was optimal for embryogenesis. The callus maintained high regenerative capacity after two years of culture on this medium. Plants derived from somatic embryos were obtained under green-house conditions.

  15. PIXE analysis of mineral composition of alfalfa root-tip exposed to low pH or aluminum stress condition

    International Nuclear Information System (INIS)

    Yokota, Satoshi; Mae, Tadahiko; Ojima, Kunihiko; Ishii, Keizo.

    1994-01-01

    PIXE analysis was applied to study alteration of mineral composition (Al, P, K, and Cl) of alfalfa root-tip exposed to low pH or aluminum stress. These minerals were detectable using one or two pieces of root-tips. Short-term (within 4 h) decreases in K/P and Cl/P ratios were observed under low pH and aluminum stress conditions. However, degree of the decrease was not same. Differences in toxic effects of low pH and Al on the root-tip of alfalfa are discussed. (author)

  16. Cytological changes of root tip cells of alfalfa seeds after space flight

    International Nuclear Information System (INIS)

    Ren Weibo; Xu Zhu; Chen Libo; Guo Huiqin; Wang Mi; Zhao Liang

    2008-01-01

    To understand the cytological effects of space flight on alfalfa seeds, dry seeds of three lines (Line 1, Line 2 and Line 4) were selected and loaded onto 'Shijian No.8' satellite for space flight. After returning to the ground, root tips of alfalfa were clipped and chromosome aberrations were observed by microscope. Data showed that space flight had two types of effect on cell mitotic: one was positive (Line 2, Line 4) and the other was negative (Line 1). Such chromosome aberrations were observed as micronucleus, chromosome bridge, fragments, lagging and so on. The frequency of aberration varied with the different materials. Conclusion was that space flight had significant effect on root tip cells, which mainly showed as the chromosome aberrations. (authors)

  17. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation

    Science.gov (United States)

    Kaiser, Christina; Kilburn, Matt R; Clode, Peta L; Fuchslueger, Lucia; Koranda, Marianne; Cliff, John B; Solaiman, Zakaria M; Murphy, Daniel V

    2015-01-01

    Plants rapidly release photoassimilated carbon (C) to the soil via direct root exudation and associated mycorrhizal fungi, with both pathways promoting plant nutrient availability. This study aimed to explore these pathways from the root's vascular bundle to soil microbial communities. Using nanoscale secondary ion mass spectrometry (NanoSIMS) imaging and 13C-phospho- and neutral lipid fatty acids, we traced in-situ flows of recently photoassimilated C of 13CO2-exposed wheat (Triticum aestivum) through arbuscular mycorrhiza (AM) into root- and hyphae-associated soil microbial communities. Intraradical hyphae of AM fungi were significantly 13C-enriched compared to other root-cortex areas after 8 h of labelling. Immature fine root areas close to the root tip, where AM features were absent, showed signs of passive C loss and co-location of photoassimilates with nitrogen taken up from the soil solution. A significant and exclusively fresh proportion of 13C-photosynthates was delivered through the AM pathway and was utilised by different microbial groups compared to C directly released by roots. Our results indicate that a major release of recent photosynthates into soil leave plant roots via AM intraradical hyphae already upstream of passive root exudations. AM fungi may act as a rapid hub for translocating fresh plant C to soil microbes. PMID:25382456

  18. Patterns of auxin and abscisic acid movement in the tips of gravistimulated primary roots of maize

    Science.gov (United States)

    Young, L. M.; Evans, M. L.

    1996-01-01

    Because both abscisic acid (ABA) and auxin (IAA) have been suggested as possible chemical mediators of differential growth during root gravitropism, we compared with redistribution of label from applied 3H-IAA and 3H-ABA during maize root gravitropism and examined the relative basipetal movement of 3H-IAA and 3H-ABA applied to the caps of vertical roots. Lateral movement of 3H-ABA across the tips of vertical roots was non-polar and about 2-fold greater than lateral movement of 3H-IAA (also non-polar). The greater movement of ABA was not due to enhanced uptake since the uptake of 3H-IAA was greater than that of 3H-ABA. Basipetal movement of label from 3H-IAA or 3H-ABA applied to the root cap was determined by measuring radioactivity in successive 1 mm sections behind the tip 90 minutes after application. ABA remained largely in the first mm (point of application) whereas IAA was concentrated in the region 2-4 mm from the tip with substantial levels found 7-8 mm from the tip. Pretreatment with inhibitors of polar auxin transport decreased both gravicurvature and the basipetal movement of IAA. When roots were placed horizontally, the movement of 3H-IAA from top to bottom across the cap was enhanced relative to movement from bottom to top whereas the pattern of movement of label from 3H-ABA was unaffected. These results are consistent with the hypothesis that IAA plays a role in root gravitropism but contrary to the idea that gravi-induced asymmetric distribution of ABA contributes to the response.

  19. Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea.

    Science.gov (United States)

    Lux, Alexander; Vaculík, Marek; Martinka, Michal; Lisková, Desana; Kulkarni, Manoj G; Stirk, Wendy A; Van Staden, Johannes

    2011-02-01

    Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to plant organs and reaction of root tissues. Plants grown from seeds were cultivated in controlled conditions. Hydroponic cultivation is not suitable for this species as roots do not tolerate aquatic conditions, and additional stress by Cd treatment results in total root growth inhibition and death. After cultivation in perlite the plants exposed to 1 and 5 mg Cd L(-1) in half-strength Hoagland's solution were compared with control plants. Growth parameters were evaluated, Cd content was determined by inductively coupled plasma mass spectroscopy (ICP-MS) and root structure was investigated using various staining procedures, including the fluorescent stain Fluorol yellow 088 to detect suberin deposition in cell walls. The plants exposed to Cd were significantly reduced in growth. Most of the Cd taken up by plants after 4 weeks cultivation was retained in roots, and only a small amount was translocated to bulbs and leaves. In reaction to higher Cd concentrations, roots developed a hypodermal periderm close to the root tip. Cells produced by cork cambium impregnate their cell walls by suberin. It is suggested that the hypodermal periderm is developed in young root parts in reaction to Cd toxicity to protect the root from radial uptake of Cd ions. Secondary meristems are usually not present in monocotyledonous species. Another interpretation explaining formation of protective suberized layers as a result of periclinal divisions of the hypodermis is discussed. This process may represent an as yet unknown defence reaction of roots when exposed to elemental stress.

  20. Differences in U root-to-shoot translocation between plant species explained by U distribution in roots

    Energy Technology Data Exchange (ETDEWEB)

    Straczek, Anne; Duquene, Lise [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Wegrzynek, Dariusz [IAEA, Seibersdorf Laboratories, A-2444 Seibersdorf (Austria); Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Chinea-Cano, Ernesto [IAEA, Seibersdorf Laboratories, A-2444 Seibersdorf (Austria); Wannijn, Jean [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Navez, Jacques [Royal Museum of Africa, Department of Geology, Leuvensesteenweg 13, 3080 Tervuren (Belgium); Vandenhove, Hildegarde, E-mail: hvandenh@sckcen.b [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium)

    2010-03-15

    Accumulation and distribution of uranium in roots and shoots of four plants species differing in their cation exchange capacity of roots (CECR) was investigated. After exposure in hydroponics for seven days to 100 mumol U L{sup -1}, distribution of uranium in roots was investigated through chemical extraction of roots. Higher U concentrations were measured in roots of dicots which showed a higher CECR than monocot species. Chemical extractions indicated that uranium is mostly located in the apoplasm of roots of monocots but that it is predominantly located in the symplasm of roots of dicots. Translocation of U to shoot was not significantly affected by the CECR or distribution of U between symplasm and apoplasm. Distribution of uranium in roots was investigated through chemical extraction of roots for all species. Additionally, longitudinal and radial distribution of U in roots of maize and Indian mustard, respectively showing the lowest and the highest translocation, was studied following X-ray fluorescence (XRF) analysis of specific root sections. Chemical analysis and XRF analysis of roots of maize and Indian mustard clearly indicated a higher longitudinal and radial transport of uranium in roots of Indian mustard than in roots of maize, where uranium mostly accumulated in root tips. These results showed that even if CECR could partly explain U accumulation in roots, other mechanisms like radial and longitudinal transport are implied in the translocation of U to the shoot.

  1. Differences in U root-to-shoot translocation between plant species explained by U distribution in roots

    International Nuclear Information System (INIS)

    Straczek, Anne; Duquene, Lise; Wegrzynek, Dariusz; Chinea-Cano, Ernesto; Wannijn, Jean; Navez, Jacques; Vandenhove, Hildegarde

    2010-01-01

    Accumulation and distribution of uranium in roots and shoots of four plants species differing in their cation exchange capacity of roots (CECR) was investigated. After exposure in hydroponics for seven days to 100 μmol U L -1 , distribution of uranium in roots was investigated through chemical extraction of roots. Higher U concentrations were measured in roots of dicots which showed a higher CECR than monocot species. Chemical extractions indicated that uranium is mostly located in the apoplasm of roots of monocots but that it is predominantly located in the symplasm of roots of dicots. Translocation of U to shoot was not significantly affected by the CECR or distribution of U between symplasm and apoplasm. Distribution of uranium in roots was investigated through chemical extraction of roots for all species. Additionally, longitudinal and radial distribution of U in roots of maize and Indian mustard, respectively showing the lowest and the highest translocation, was studied following X-ray fluorescence (XRF) analysis of specific root sections. Chemical analysis and XRF analysis of roots of maize and Indian mustard clearly indicated a higher longitudinal and radial transport of uranium in roots of Indian mustard than in roots of maize, where uranium mostly accumulated in root tips. These results showed that even if CECR could partly explain U accumulation in roots, other mechanisms like radial and longitudinal transport are implied in the translocation of U to the shoot.

  2. Apoplastic interactions between plants and plant root intruders

    Directory of Open Access Journals (Sweden)

    Kanako eMitsumasu

    2015-08-01

    Full Text Available Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root-parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones (SLs, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  3. Apoplastic interactions between plants and plant root intruders.

    Science.gov (United States)

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  4. Influence of plant root morphology and tissue composition on phenanthrene uptake: Stepwise multiple linear regression analysis

    International Nuclear Information System (INIS)

    Zhan, Xinhua; Liang, Xiao; Xu, Guohua; Zhou, Lixiang

    2013-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are contaminants that reside mainly in surface soils. Dietary intake of plant-based foods can make a major contribution to total PAH exposure. Little information is available on the relationship between root morphology and plant uptake of PAHs. An understanding of plant root morphologic and compositional factors that affect root uptake of contaminants is important and can inform both agricultural (chemical contamination of crops) and engineering (phytoremediation) applications. Five crop plant species are grown hydroponically in solutions containing the PAH phenanthrene. Measurements are taken for 1) phenanthrene uptake, 2) root morphology – specific surface area, volume, surface area, tip number and total root length and 3) root tissue composition – water, lipid, protein and carbohydrate content. These factors are compared through Pearson's correlation and multiple linear regression analysis. The major factors which promote phenanthrene uptake are specific surface area and lipid content. -- Highlights: •There is no correlation between phenanthrene uptake and total root length, and water. •Specific surface area and lipid are the most crucial factors for phenanthrene uptake. •The contribution of specific surface area is greater than that of lipid. -- The contribution of specific surface area is greater than that of lipid in the two most important root morphological and compositional factors affecting phenanthrene uptake

  5. A maize root tip system to study DNA replication programmes in somatic and endocycling nuclei during plant development.

    Science.gov (United States)

    Bass, Hank W; Wear, Emily E; Lee, Tae-Jin; Hoffman, Gregg G; Gumber, Hardeep K; Allen, George C; Thompson, William F; Hanley-Bowdoin, Linda

    2014-06-01

    The progress of nuclear DNA replication is complex in both time and space, and may reflect several levels of chromatin structure and 3-dimensional organization within the nucleus. To understand the relationship between DNA replication and developmental programmes, it is important to examine replication and nuclear substructure in different developmental contexts including natural cell-cycle progressions in situ. Plant meristems offer an ideal opportunity to analyse such processes in the context of normal growth of an organism. Our current understanding of large-scale chromosomal DNA replication has been limited by the lack of appropriate tools to visualize DNA replication with high resolution at defined points within S phase. In this perspective, we discuss a promising new system that can be used to visualize DNA replication in isolated maize (Zea mays L.) root tip nuclei after in planta pulse labelling with the thymidine analogue, 5-ethynyl-2'-deoxyuridine (EdU). Mixed populations of EdU-labelled nuclei are then separated by flow cytometry into sequential stages of S phase and examined directly using 3-dimensional deconvolution microscopy to characterize spatial patterns of plant DNA replication. Combining spatiotemporal analyses with studies of replication and epigenetic inheritance at the molecular level enables an integrated experimental approach to problems of mitotic inheritance and cellular differentiation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Soil Penetration Rates by Earthworms and Plant Roots- Mechanical and Energetic Considerations

    Science.gov (United States)

    Ruiz, Siul; Schymanski, Stan; Or, Dani

    2016-04-01

    We analyze the implications of different soil burrowing rates by earthworms and growing plant roots using mechanical models that consider soil rheological properties. We estimate the energetic requirements for soil elasto-viscoplastic displacement at different rates for similar burrows and water contents. In the core of the mechanical model is a transient cavity expansion into viscoplastic wet soil that mimic an earthworm or root tip cone-like penetration and subsequent cavity expansion due to pressurized earthworm hydrostatic skeleton or root radial growth. Soil matrix viscoplatic considerations enable separation of the respective energetic requirements for earthworms penetrating at 2 μm/s relative to plant roots growing at 0.2 μm/s . Typical mechanical and viscous parameters are obtained inversely for soils under different fixed water contents utilizing custom miniaturized cone penetrometers at different fixed penetration rates (1 to 1000 μm/s). Experimental results determine critical water contents where soil exhibits pronounced viscoplatic behavior (close to saturation), bellow which the soil strength limits earthworms activity and fracture propagation by expanding plant roots becomes the favorable mechanical mode. The soil mechanical parameters in conjunction with earthworm and plant root physiological pressure limitations (200 kPa and 2000 kPa respectively) enable delineation of the role of soil saturation in regulating biotic penetration rates for different soil types under different moisture contents. Furthermore, this study provides a quantitative framework for estimating rates of energy expenditure for soil penetration, which allowed us to determine maximum earthworm population densities considering soil mechanical properties and the energy stored in soil organic matter.

  7. Rhodamine B induces long nucleoplasmic bridges and other nuclear anomalies in Allium cepa root tip cells.

    Science.gov (United States)

    Tan, Dehong; Bai, Bing; Jiang, Donghua; Shi, Lin; Cheng, Shunchang; Tao, Dongbing; Ji, Shujuan

    2014-03-01

    The cytogenetic toxicity of rhodamine B on root tip cells of Allium cepa was investigated. A. cepa were cultured in water (negative control), 10 ppm methyl methanesulfonate (positive control), and three concentrations of rhodamine B (200, 100, and 50 ppm) for 7 days. Rhodamine B inhibited mitotic activity; increased nuclear anomalies, including micronuclei, nuclear buds, and bridged nuclei; and induced oxidative stress in A. cepa root tissues. Furthermore, a substantial amount of long nucleoplasmic bridges were entangled together, and some nuclei were simultaneously linked to several other nuclei and to nuclear buds with nucleoplasmic bridges in rhodamine B-treated cells. In conclusion, rhodamine B induced cytogenetic effects in A. cepa root tip cells, which suggests that the A. cepa root is an ideal model system for detecting cellular interactions.

  8. Life form succession in plant communities on colliery waste tips

    Energy Technology Data Exchange (ETDEWEB)

    Down, C G

    1973-01-01

    Five disused colliery waste tips in the Somerset Coalfield, 12, 15, 21, 55 and 98 years old, respectively, were examined to determine the life forms of the naturally-occurring vascular plant species. Hemicryptophytes comprised between 68 and 79% of the number of species on each tip. Rosette hemicryptophytes comprised 31.8% of the species on the 12-year tip, declining to 11.8% on the 98-year tip. It is suggested that artificial planting of rosette hemicryptophytes may be beneficial in reclamation schemes. 3 tables.

  9. Effects of irradiation with low-energy nitrogen ion injection on root tip cells of broad bean

    International Nuclear Information System (INIS)

    Huang Yaqin; Li Jinzhe; Huang Qunce

    2012-01-01

    In order to study the cytogenetic effects of low-energy nitrogen ion irradiation, broad bean seed embryo was irradiated by different doses of nitrogen ions. Micronucleus rate, mitotic index and chromosome aberration in root-tip cells were analyzed. The results showed that the injection of ions inhibited mitosis of root tip cells, interfered the normal process of mitosis, caused aberrations of chromosome structure, behavior and number. The frequency of micronucleus and chromosomal aberrations increased with the increasing radiation dosage, while mitotic index decreased. (authors)

  10. Toward Self-Growing Soft Robots Inspired by Plant Roots and Based on Additive Manufacturing Technologies.

    Science.gov (United States)

    Sadeghi, Ali; Mondini, Alessio; Mazzolai, Barbara

    2017-09-01

    In this article, we present a novel class of robots that are able to move by growing and building their own structure. In particular, taking inspiration by the growing abilities of plant roots, we designed and developed a plant root-like robot that creates its body through an additive manufacturing process. Each robotic root includes a tubular body, a growing head, and a sensorized tip that commands the robot behaviors. The growing head is a customized three-dimensional (3D) printer-like system that builds the tubular body of the root in the format of circular layers by fusing and depositing a thermoplastic material (i.e., polylactic acid [PLA] filament) at the tip level, thus obtaining movement by growing. A differential deposition of the material can create an asymmetry that results in curvature of the built structure, providing the possibility of root bending to follow or escape from a stimulus or to reach a desired point in space. Taking advantage of these characteristics, the robotic roots are able to move inside a medium by growing their body. In this article, we describe the design of the growing robot together with the modeling of the deposition process and the description of the implemented growing movement strategy. Experiments were performed in air and in an artificial medium to verify the functionalities and to evaluate the robot performance. The results showed that the robotic root, with a diameter of 50 mm, grows with a speed of up to 4 mm/min, overcoming medium pressure of up to 37 kPa (i.e., it is able to lift up to 6 kg) and bending with a minimum radius of 100 mm.

  11. An efficient soil penetration strategy for explorative robots inspired by plant root circumnutation movements.

    Science.gov (United States)

    Del Dottore, Emanuela; Mondini, Alessio; Sadeghi, Ali; Mattoli, Virgilio; Mazzolai, Barbara

    2017-11-10

    This paper presents a comparative analysis in terms of energy required by an artificial probe to penetrate soil implementing two different strategies: a straight penetration movement; and a circumnutation, which is a peculiar root movement in plants. The role of circumnutations in plant roots is still reason of debate. We hypothesized that circumnutation movements can help roots in penetrating soil and we validated our assumption testing the probe at three distinct soil densities and using various combinations of circumnutation amplitude and period for each soil. The comparison was based on the total work done by the system while circumnutating at its tip level respect that showed by the same system in straight penetration. The total energy evaluation confirmed an improvement obtained by circumnutations up to 33%. We also proposed a fitting model for our experimental data that was used to estimate energy needed by the probe to penetrate soil at different dimensions and circumnutation amplitudes. Results show the existence of a trade-off among penetration velocity, circumnutation period and amplitude towards an energy consumption optimization, expressed by the lead angle of the helical path that should stay in the range between 46° and 65°. Moreover, circumnutations with appropriate amplitude (~10°) and period (~80 s) values are more efficient than straight penetration also at different probe tip dimensions up to a threshold diameter (from 2 mm to 55 mm). Based on the obtained results, we speculated that circumnutations can represent a strategy used by plant roots to reduce pressure and energy needed to penetrate soil. In perspective, the translation of this biological feature in robotic systems will allow improving their energetic efficiency in digging capabilities and thus opening new scenarios of use in search and rescue, environmental monitoring and soil exploration. Creative Commons Attribution license.

  12. Leaf Senescence, Root Morphology, and Seed Yield of Winter Oilseed Rape (Brassica napus L. at Varying Plant Densities

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-01-01

    Full Text Available In this study, the yield and yield components were studied using a conventional variety Zhongshuang 11 (ZS 11 and a hybrid variety Zhongyouza 12 (ZYZ 12 at varying plant densities. The increase in plant density led to an initial increase in seed yield and pod numbers per unit area, followed by a decrease. The optimal plant density was 58.5 × 104 plants ha−1 in both ZS 11 and ZYZ 12. The further researches on physiological traits showed a rapid decrease in the green leaf area index (GLAI and chlorophyll content and a remarkable increase in malondialdehyde content in high plant density (HPD population than did the low plant density (LPD population, which indicated the rapid leaf senescence. However, HPD had higher values in terms of pod area index (PAI, pod photosynthesis, and radiation use efficiency (RUE after peak anthesis. A significantly higher level of dry matter accumulation and nitrogen utilization efficiency were observed, which resulted in higher yield. HPD resulted in a rapid decrease in root morphological parameters (root length, root tips, root surface area, and root volume. These results suggested that increasing the plant density within a certain range was a promising option for high seed yield in winter rapeseed in China.

  13. Root Formation in Ethylene-Insensitive Plants1

    Science.gov (United States)

    Clark, David G.; Gubrium, Erika K.; Barrett, James E.; Nell, Terril A.; Klee, Harry J.

    1999-01-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia × hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more belowground root mass but fewer aboveground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated taproots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli. PMID:10482660

  14. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions.

    Science.gov (United States)

    Paya, Alexander M; Silverberg, Jesse L; Padgett, Jennifer; Bauerle, Taryn L

    2015-01-01

    Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D) using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen) and Picea mariana (black spruce) seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for 2 months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals) and paired seedlings (inter- or intra-specific), than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  15. Rapid in vitro propagation system through shoot tip cultures of Vitex trifolia L.-an important multipurpose plant of the Pacific traditional Medicine.

    Science.gov (United States)

    Ahmed, Rafique; Anis, Mohammad

    2014-07-01

    A rapid and efficient plant propagation system through shoot tip explants was established in Vitex trifolia L., a medicinally important plant belonging to the family Verbenaceae. Multiple shoots were induced directly on Murashige and Skoog (MS) medium consisting of different cytokinins, 6-benzyladenine (BA), kinetin (Kin) and 2-isopentenyl adenine (2-iP), BA at an optimal concentration of 5.0 μM was most effective in inducing multiple shoots where 90 % explants responded with an average shoot number (4.4±0.1) and shoot length (2.0±0.1 cm) after 6 weeks of culture. Inclusion of NAA in the culture medium along with the optimum concentration of BA promoted a higher rate of shoot multiplication and length of the shoot, where 19.2±0.3 well-grown healthy shoots with an average shoot length of 4.4±0.1 cm were obtained on completion of 12 weeks culture period. Ex vitro rooting was achieved best directly in soilrite when basal portion of the shoots were treated with 500 μM indole-3-butyric acid for 15 min which was the most effective in inducing roots, as 95 % of the microshoots produced roots. Plantlets went through a hardening phase in a controlled plant growth chamber, prior to ex-vitro transfer. Micropropagated plants grew well, attained maturity and flowered with 92 % survival rate. The results of this study provide the first report on in vitro plant regeneration of Vitex trifolia L. using shoot tip explants.

  16. Root morphology of Ni-treated plants

    International Nuclear Information System (INIS)

    Leskova, A.; Fargasova, A.; Giehl, R. F. H.; Wiren, N. von

    2015-01-01

    Plant roots are very important organs in terms of nutrient and water acquisition but they also serve as anchorages for the aboveground parts of the plants. The roots display extraordinary plasticity towards stress conditions as a result of integration of environmental cues into the developmental processes of the roots. Our aim was to investigate the root morphology of Arabidopsis thaliana plants exposed to a particular stress condition, excess Ni supply. We aimed to find out which cellular processes - cell division, elongation and differentiation are affected by Ni, thereby explaining the seen root phenotype. Our results reveal that a distinct sensitivity exists between roots of different order and interference with various cellular processes is responsible for the effects of Ni on roots. We also show that Ni-treated roots have several auxin-related phenotypes. (authors)

  17. Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Nilsson, Lars Ola; Hansen, Karin

    2012-01-01

    • Nitrogen (N) availability is known to influence ectomycorrhizal fungal components, such as fungal community composition, biomass of root tips and production of mycelia, but effects have never been demonstrated within the same forest. • We measured concurrently the abundance of ectomycorrhizal...... root tips and the production of external mycelia, and explored the changes in the ectomycorrhizal community composition, across a stand-scale N deposition gradient (from 27 to 43 kg N ha¿¹ yr¿¹) at the edge of a spruce forest. The N status was affected along the gradient as shown by a range of N...... availability indices. • Ectomycorrhizal root tip abundance and mycelial production decreased five and 10-fold, respectively, with increasing N deposition. In addition, the ectomycorrhizal fungal community changed and the species richness decreased. The changes were correlated with the measured indices of N...

  18. Complex Regulation of Prolyl-4-Hydroxylases Impacts Root Hair Expansion

    DEFF Research Database (Denmark)

    Velasquez, Silvia M; Ricardi, Martiniano M; Poulsen, Christian Peter

    2015-01-01

    Root hairs are single cells that develop by tip growth, a process shared with pollen tubes, axons, and fungal hyphae. However, structural plant cell walls impose constraints to accomplish tip growth. In addition to polysaccharides, plant cell walls are composed of hydroxyproline-rich glycoproteins......5, and to a lesser extent P4H2 and P4H13, are pivotal for root hair tip growth. Second, we demonstrate that P4H5 has in vitro preferred specificity for EXT substrates rather than for other HRGPs. Third, by P4H promoter and protein swapping approaches, we show that P4H2 and P4H13 have interchangeable...... peptidyl-proline hydroxylation on EXTs, and possibly in other HRGPs, is required for proper cell wall self-assembly and hence root hair elongation in Arabidopsis thaliana....

  19. Root Differentiation of Agricultural Plant Cultivars and Proveniences Using FTIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Nicole Legner

    2018-06-01

    Full Text Available The differentiation of roots of agricultural species is desired for a deeper understanding of the belowground root interaction which helps to understand the complex interaction in intercropping and crop-weed systems. The roots can be reliably differentiated via Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR. In two replicated greenhouse experiments, six pea cultivars, five oat cultivars as well as seven maize cultivars and five barnyard grass proveniences (n = 10 plants/cultivar or provenience were grown under controlled conditions. One root of each plant was harvested and five different root segments of each root were separated, dried and measured with FTIR-ATR spectroscopy. The results showed that, firstly, the root spectra of single pea and single oat cultivars as well as single maize and single barnyard grass cultivars/proveniences separated species-specific in cluster analyses. In the majority of cases the species separation was correct, but in a few cases, the spectra of the root tips had to be omitted to ensure the precise separation between the species. Therefore, species differentiation is possible regardless of the cultivar or provenience. Consequently, all tested cultivars of pea and oat spectra were analyzed together and separated within a cluster analysis according to their affiliated species. The same result was found in a cluster analysis with maize and barnyard grass spectra. Secondly, a cluster analysis with all species (pea, oat, maize and barnyard grass was performed. The species split up species-specific and formed a dicotyledonous pea cluster and a monocotyledonous cluster subdivided in oat, maize and barnyard grass subclusters. Thirdly, cultivar or provenience differentiations within one species were possible in one of the two replicated experiments. But these separations were less resilient.

  20. Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis.

    Science.gov (United States)

    Li, Dongqin; Shu, Zaifa; Ye, Xiaoli; Zhu, Jiaojiao; Pan, Junting; Wang, Weidong; Chang, Pinpin; Cui, Chuanlei; Shen, Jiazhi; Fang, Wanping; Zhu, Xujun; Wang, Yuhua

    2017-10-01

    Tea plant (Camellia sinensis (O.) Kuntze) can survive from high levels of aluminum (Al) in strongly acidic soils. However, the mechanism driving its tolerance to Al, the predominant factor limiting plant growth in acid condition, is still not fully understood. Here, two-year-old rooted cuttings of C. sinensis cultivar 'Longjingchangye' were used for Al resistance experiments. We found that the tea plants grew better in the presence of 0.4 mM Al than those grew under lower concentration of Al treatments (0 and 0.1 mM) as well as higher levels treatment (2 and 4 mM), confirming that appropriate Al increased tea plant growth. Hematoxylin staining assay showed that the apical region was the main accumulator in tea plant root. Subsequently, immunolocalization of pectins in the root tip cell wall showed a rise in low-methyl-ester pectin levels and a reduction of high-methyl-ester pectin content with the increasing Al concentration of treatments. Furthermore, we observed the increased expressions of C. sinensis pectin methylesterase (CsPME) genes along with the increasing de-esterified pectin levels during response to Al treatments. Additionally, the levels of organic acids increased steadily after treatment with 0.1, 0.4 or 2 mM Al, while they dropped after treatment with 4 mM Al. The organic acids secretion from root followed a similar trend. Similarly, a gradual increase in malate dehydrogenase (MDH), citrate synthase (CS) and glycolate oxidase (GO) enzyme activities and relevant metabolic genes expression were detected after the treatment of 0.1, 0.4 or 2 mM Al, while a sharp decrease was resulted from treatment with 4 mM Al. These results confirm that both pectin methylesterases and organic acids contribute to Al tolerance in C. sinensis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Functional traits and root morphology of alpine plants.

    Science.gov (United States)

    Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian

    2011-09-01

    Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level.

  2. Sites and regulation of auxin biosynthesis in Arabidopsis roots.

    Science.gov (United States)

    Ljung, Karin; Hull, Anna K; Celenza, John; Yamada, Masashi; Estelle, Mark; Normanly, Jennifer; Sandberg, Göran

    2005-04-01

    Auxin has been shown to be important for many aspects of root development, including initiation and emergence of lateral roots, patterning of the root apical meristem, gravitropism, and root elongation. Auxin biosynthesis occurs in both aerial portions of the plant and in roots; thus, the auxin required for root development could come from either source, or both. To monitor putative internal sites of auxin synthesis in the root, a method for measuring indole-3-acetic acid (IAA) biosynthesis with tissue resolution was developed. We monitored IAA synthesis in 0.5- to 2-mm sections of Arabidopsis thaliana roots and were able to identify an important auxin source in the meristematic region of the primary root tip as well as in the tips of emerged lateral roots. Lower but significant synthesis capacity was observed in tissues upward from the tip, showing that the root contains multiple auxin sources. Root-localized IAA synthesis was diminished in a cyp79B2 cyp79B3 double knockout, suggesting an important role for Trp-dependent IAA synthesis pathways in the root. We present a model for how the primary root is supplied with auxin during early seedling development.

  3. Efficient regeneration of plants from shoot tip explants of ...

    African Journals Online (AJOL)

    Dendrobium densiflorum Lindl. is one of the horticulturally important orchids of Nepal due to its beautiful yellowish flower and medicinal properties. The present study was carried out for plant regeneration from shoot tip explants of D. densiflorum by tissue culture technique. The shoot tip explants of this species, obtained ...

  4. ZIFL1.1 transporter modulates polar auxin transport by stabilizing membrane abundance of multiple PINs in Arabidopsis root tip

    Science.gov (United States)

    Remy, Estelle; Baster, Pawel; Friml, Jiří; Duque, Paula

    2013-01-01

    Cell-to-cell directional flow of the phytohormone auxin is primarily established by polar localization of the PIN auxin transporters, a process tightly regulated at multiple levels by auxin itself. We recently reported that, in the context of strong auxin flows, activity of the vacuolar ZIFL1.1 transporter is required for fine-tuning of polar auxin transport rates in the Arabidopsis root. In particular, ZIFL1.1 function protects plasma-membrane stability of the PIN2 carrier in epidermal root tip cells under conditions normally triggering PIN2 degradation. Here, we show that ZIFL1.1 activity at the root tip also promotes PIN1 plasma-membrane abundance in central cylinder cells, thus supporting the notion that ZIFL1.1 acts as a general positive modulator of polar auxin transport in roots. PMID:23857365

  5. Hydrologic regulation of plant rooting depth.

    Science.gov (United States)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G; Jackson, Robert B; Otero-Casal, Carlos

    2017-10-03

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  6. Hydrologic regulation of plant rooting depth

    Science.gov (United States)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-10-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  7. Nutrition and adventitious rooting in woody plants

    Directory of Open Access Journals (Sweden)

    Fernanda Bortolanza Pereira

    2016-09-01

    Full Text Available Vegetative propagation success of commercial genotypes via cutting techniques is related to several factors, including nutritional status of mother trees and of propagation material. The nutritional status determines the carbohydrate quantities, auxins and other compounds of plant essential metabolism for root initiation and development. Each nutrient has specific functions in plant, acting on plant structure or on plant physiology. Although the importance of mineral nutrition for success of woody plants vegetative propagation and its relation with adventitious rooting is recognized, the role of some mineral nutrients is still unknown. Due to biochemical and physiological complexity of adventitious rooting process, there are few researches to determine de role of nutrients on development of adventitious roots. This review intends to explore de state of the art about the effect of mineral nutrition on adventitious rooting of woody plants.

  8. Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis

    NARCIS (Netherlands)

    Xuan, Wei; Band, Leah R.; Kumpf, Robert P.; Rybel, De Bert

    2016-01-01

    The plant root cap, surrounding the very tip of the growing root, perceives and transmits environmental signals to the inner root tissues. In Arabidopsis thaliana, auxin released by the root cap contributes to the regular spacing of lateral organs along the primary root axis. Here, we show that

  9. A 3D digital atlas of the Nicotiana tabacum root tip and its use to investigate changes in the root apical meristem induced by the Agrobacterium 6b oncogene.

    Science.gov (United States)

    Pasternak, Taras; Haser, Thomas; Falk, Thorsten; Ronneberger, Olaf; Palme, Klaus; Otten, Léon

    2017-10-01

    Using the intrinsic Root Coordinate System (iRoCS) Toolbox, a digital atlas at cellular resolution has been constructed for Nicotiana tabacum roots. Mitotic cells and cells labeled for DNA replication with 5-ethynyl-2'-deoxyuridine (EdU) were mapped. The results demonstrate that iRoCS analysis can be applied to roots that are thicker than those of Arabidopsis thaliana without histological sectioning. A three-dimensional (3-D) analysis of the root tip showed that tobacco roots undergo several irregular periclinal and tangential divisions. Irrespective of cell type, rapid cell elongation starts at the same distance from the quiescent center, however, boundaries between cell proliferation and transition domains are cell-type specific. The data support the existence of a transition domain in tobacco roots. Cell endoreduplication starts in the transition domain and continues into the elongation zone. The tobacco root map was subsequently used to analyse root organization changes caused by the inducible expression of the Agrobacterium 6b oncogene. In tobacco roots that express the 6b gene, the root apical meristem was shorter and radial cell growth was reduced, but the mitotic and DNA replication indexes were not affected. The epidermis of 6b-expressing roots produced less files and underwent abnormal periclinal divisions. The periclinal division leading to mature endodermis and cortex3 cell files was delayed. These findings define additional targets for future studies on the mode of action of the Agrobacterium 6b oncogene. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Al-induced root cell wall chemical components differences of wheat ...

    African Journals Online (AJOL)

    Root growth is different in plants with different levels of Al-tolerance under Al stress. Cell wall chemical components of root tip cell are related to root growth. The aim of this study was to explore the relationship between root growth difference and cell wall chemical components. For this purpose, the cell wall chemical ...

  11. Water movement through plant roots - exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties

    Science.gov (United States)

    Meunier, Félicien; Couvreur, Valentin; Draye, Xavier; Zarebanadkouki, Mohsen; Vanderborght, Jan; Javaux, Mathieu

    2017-12-01

    In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic properties. These properties are root radial conductivity and axial conductance, which control, respectively, the radial water flow between the root surface and xylem and the axial flow within the xylem. From the solution for the xylem water potential, functions that describe the radial and axial flow along the root axis were derived. These solutions can also be used to derive root macroscopic parameters that are potential input parameters of hydrological and crop models. In this paper, novel analytical solutions of the water flow equation are developed for roots whose hydraulic properties vary along their axis, which is the case for most plants. We derived solutions for single roots with linear or exponential variations of hydraulic properties with distance to root tip. These solutions were subsequently combined to construct single roots with complex hydraulic property profiles. The analytical solutions allow one to verify numerical solutions and to get a generalization of the hydric behaviour with the main influencing parameters of the solutions. The resulting flow distributions in heterogeneous roots differed from those in uniform roots and simulations led to more regular, less abrupt variations of xylem suction or radial flux along root axes. The model could successfully be applied to maize effective root conductance measurements to derive radial and axial hydraulic properties. We also show that very contrasted root water uptake patterns arise when using either uniform or heterogeneous root hydraulic properties in a soil-root model. The optimal root radius that maximizes water uptake under a carbon cost constraint was also studied. The optimal radius was shown to be highly dependent on the root hydraulic properties and close to observed properties in maize roots. We finally used the obtained functions for evaluating the impact of root maturation

  12. Reliability of plant root comet assay in comparison with human leukocyte comet assay for assessment environmental genotoxic agents.

    Science.gov (United States)

    Reis, Gabriela Barreto Dos; Andrade-Vieira, Larissa Fonseca; Moraes, Isabella de Campos; César, Pedro Henrique Souza; Marcussi, Silvana; Davide, Lisete Chamma

    2017-08-01

    Comet assay is an efficient test to detect genotoxic compounds based on observation of DNA damage. The aim of this work was to compare the results obtained from the comet assay in two different type of cells extracted from the root tips from Lactuca sativa L. and human blood. For this, Spent Pot Liner (SPL), and its components (aluminum and fluoride) were applied as toxic agents. SPL is a solid waste generated in industry from the aluminum mining and processing with known toxicity. Three concentrations of all tested solutions were applied and the damages observed were compared to negative and positive controls. It was observed an increase in the frequency of DNA damage for human leukocytes and plant cells, in all treatments. On human leukocytes, SPL induced the highest percentage of damage, with an average of 87.68%. For root tips cells of L. sativa the highest percentage of damage was detected for aluminum (93.89%). Considering the arbitrary units (AU), the average of nuclei with high levels of DNA fragmentation was significant for both cells type evaluated. The tested cells demonstrated equal effectiveness for detection of the genotoxicity induced by the SPL and its chemical components, aluminum and fluoride. Further, using a unique method, the comet assay, we proved that cells from root tips of Lactuca sativa represent a reliable model to detect DNA damage induced by genotoxic pollutants is in agreement of those observed in human leukocytes as model. So far, plant cells may be suggested as important system to assess the toxicological risk of environmental agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Tip Saves Energy, Money for Pennsylvania Plant

    Science.gov (United States)

    A wastewater treatment plant in Berks County, Pennsylvania is saving nearly $45,000 a year and reducing hundreds of metric tons of greenhouse gases since employing an energy conservation tip offered by the Water Protection Division in EPA’s R3 and PADEP.

  14. Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots

    Science.gov (United States)

    Wang, Shengyin; Ren, Xiaoyan; Huang, Bingru; Wang, Ge; Zhou, Peng; An, Yuan

    2016-01-01

    The objective of this study was to investigate Al3+-induced IAA transport, distribution, and the relation of these two processes to Al3+-inhibition of root growth in alfalfa. Alfalfa seedlings with or without apical buds were exposed to 0 or 100 μM AlCl3 and were foliar sprayed with water or 6 mg L−1 IAA. Aluminium stress resulted in disordered arrangement of cells, deformed cell shapes, altered cell structure, and a shorter length of the meristematic zone in root tips. Aluminium stress significantly decreased the IAA concentration in apical buds and root tips. The distribution of IAA fluorescence signals in root tips was disturbed, and the IAA transportation from shoot base to root tip was inhibited. The highest intensity of fluorescence signals was detected in the apical meristematic zone. Exogenous application of IAA markedly alleviated the Al3+-induced inhibition of root growth by increasing IAA accumulation and recovering the damaged cell structure in root tips. In addition, Al3+ stress up-regulated expression of AUX1 and PIN2 genes. These results indicate that Al3+-induced reduction of root growth could be associated with the inhibitions of IAA synthesis in apical buds and IAA transportation in roots, as well as the imbalance of IAA distribution in root tips. PMID:27435109

  15. Root Traits and Phenotyping Strategies for Plant Improvement.

    Science.gov (United States)

    Paez-Garcia, Ana; Motes, Christy M; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B; Monteros, Maria J

    2015-06-15

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.

  16. Root Traits and Phenotyping Strategies for Plant Improvement

    Directory of Open Access Journals (Sweden)

    Ana Paez-Garcia

    2015-06-01

    Full Text Available Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.

  17. Sugar-starvation-induced changes of carbon metabolism in excised maize root tips

    International Nuclear Information System (INIS)

    Dieuaide-Noubhani, M.; Canioni, P.; Raymond, P.

    1997-01-01

    Excised maize (Zea mays L.) root tips were used to study the early metabolic effects of glucose (Glc) starvation. Root tips were prelabeled with [1-13C]Glc so that carbohydrates and metabolic intermediates were close to steady-state labeling, but lipids and proteins were scarcely labeled. They were then incubated in a sugar-deprived medium for carbon starvation. Changes in the level of soluble sugars, the respiratory quotient, and the 13C enrichment of intermediates, as measured by 13C and 1H nuclear magnetic resonance, were studied to detect changes in carbon fluxes through glycolysis and the tricarboxylic acid cycle. Labeling of glutamate carbons revealed two major changes in carbon input into the tricarboxylic acid cycle: (a) the phosphoenolpyruvate carboxylase flux stopped early after the start of Glc starvation, and (b) the contribution of glycolysis as the source of acetyl-coenzyme A for respiration decreased progressively, indicating an increasing contribution of the catabolism of protein amino acids, fatty acids, or both. The enrichment of glutamate carbons gave no evidence for proteolysis in the early steps of starvation, indicating that the catabolism of proteins was delayed compared with that of fatty acids. Labeling of carbohydrates showed that sucrose turnover continues during sugar starvation, but gave no indication for any significant flux through gluconeogenesis

  18. Synergistic and individual effect of glomus etunicatum root colonization and acetyl salicylic acid on root activity and architecture of tomato plants under moderate nacl stress

    International Nuclear Information System (INIS)

    Ghanzanfar, B.; Cheng, Z.; Ahmad, I.; Khan, A. R.; Hanqiang, L.; Haiyan, D.; Fang, C.

    2015-01-01

    A pot based experiment in plastic tunnel was conducted to investigate the changes in root morphology and root activity of the tomato plants grown under moderate NaCl stress (100 mM), pretreated with arbuscular mycorrhizal fungus AMF (Glomus etunicatum) root colonization and acetyl salicylic acid (ASA) as salinity ameliorative agents. The results revealed that both AMF and ASA treatments significantly enhanced the fresh root weight and root morphological parameters; net length, surface area, volume, mean diameter, nodal count and number of tips to different extents as compared to those of sole salinity treatment at 90 days after transplantation. Both treatments; AMF alone and in combination with ASA significantly enhanced the root activity level in terms of triphenyl tetrazolium chloride (TTC) reduction (2.37 and 2.40 mg g /sup -1/ h /sup -1/ respectively) as compared to the sole salinity treatment (0.40 mg g /sup -1/ h /sup -1/ ) as well as the salt free control (1.69 mg g /sup -1/ h /sup -1/) On the other hand, ASA treatment alone also uplifted root activity (1.53 mg g /sup -1/ h /sup -1/ ) which was significantly higher than that of sole salt treatment. It was inferred that under moderate saline conditions (100 mM NaCl), AMF (Glomus etunicatum) and ASA (individually or in combination) confer protective effect on plant growth by enhanced root activity and improved root architecture. Therefore, synergistic use of AMF (G. etunicatum) and ASA can be eco-friendly and economically feasible option for tomato production in marginally salt affected lands and suggests further investigations. (author)

  19. Root traits contributing to plant productivity under drought

    Directory of Open Access Journals (Sweden)

    Louise eComas

    2013-11-01

    Full Text Available Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length (SRL, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less ‘leaky’ and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g. functional differences between fine and coarse roots needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria and rice (Oryza show approaches to phenotyping of root traits and current understanding of root trait

  20. Water movement through plant roots – exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties

    Directory of Open Access Journals (Sweden)

    F. Meunier

    2017-12-01

    Full Text Available In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic properties. These properties are root radial conductivity and axial conductance, which control, respectively, the radial water flow between the root surface and xylem and the axial flow within the xylem. From the solution for the xylem water potential, functions that describe the radial and axial flow along the root axis were derived. These solutions can also be used to derive root macroscopic parameters that are potential input parameters of hydrological and crop models. In this paper, novel analytical solutions of the water flow equation are developed for roots whose hydraulic properties vary along their axis, which is the case for most plants. We derived solutions for single roots with linear or exponential variations of hydraulic properties with distance to root tip. These solutions were subsequently combined to construct single roots with complex hydraulic property profiles. The analytical solutions allow one to verify numerical solutions and to get a generalization of the hydric behaviour with the main influencing parameters of the solutions. The resulting flow distributions in heterogeneous roots differed from those in uniform roots and simulations led to more regular, less abrupt variations of xylem suction or radial flux along root axes. The model could successfully be applied to maize effective root conductance measurements to derive radial and axial hydraulic properties. We also show that very contrasted root water uptake patterns arise when using either uniform or heterogeneous root hydraulic properties in a soil–root model. The optimal root radius that maximizes water uptake under a carbon cost constraint was also studied. The optimal radius was shown to be highly dependent on the root hydraulic properties and close to observed properties in maize roots. We finally used the obtained functions for evaluating the impact

  1. Root bacterial endophytes alter plant phenotype, but not physiology

    DEFF Research Database (Denmark)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    2016-01-01

    (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light-Asat, and saturating CO2-Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf...... growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did......Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant...

  2. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify

  3. Magnet pole tips

    Science.gov (United States)

    Thorn, Craig E.; Chasman, Chellis; Baltz, Anthony J.

    1984-04-24

    An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  4. Effect of biweekly shoot tip harvests on the growth and yield of Georgia Jet sweet potato grown hydroponically

    Science.gov (United States)

    Ogbuehi, Cyriacus R.; Loretan, Phil A.; Bonsi, C. K.; Hill, Walter A.; Morris, Carlton E.; Biswas, P. K.; Mortley, Desmond G.

    1989-01-01

    Sweet potato shoot tips have been shown to be a nutritious green vegetable. A study was conducted to determine the effect of biweekly shoot tip harvests on the growth and yield of Georgia Jet sweet potato grown in the greenhouse using the nutrient film technique (NFT). The nutrient solution consisted of a modified half Hoagland solution. Biweekly shoot tip harvests, beginning 42 days after planting, provided substantial amounts of vegetable greens and did not affect the fresh and dry foliage weights or the storage root number and fresh and dry storage root weights at final harvest. The rates of anion and cation uptake were not affected by tip harvests.

  5. OsORC3 is required for lateral root development in rice.

    Science.gov (United States)

    Chen, Xinai; Shi, Jing; Hao, Xi; Liu, Huili; Shi, Jianghua; Wu, Yunrong; Wu, Zhongchang; Chen, Mingxiu; Wu, Ping; Mao, Chuanzao

    2013-04-01

    The origin recognition complex (ORC) is a pivotal element in DNA replication, heterochromatin assembly, checkpoint regulation and chromosome assembly. Although the functions of the ORC have been determined in yeast and model animals, they remain largely unknown in the plant kingdom. In this study, Oryza sativa Origin Recognition Complex subunit 3 (OsORC3) was cloned using map-based cloning procedures, and functionally characterized using a rice (Oryza sativa) orc3 mutant. The mutant showed a temperature-dependent defect in lateral root (LR) development. Map-based cloning showed that a G→A mutation in the 9th exon of OsORC3 was responsible for the mutant phenotype. OsORC3 was strongly expressed in regions of active cell proliferation, including the primary root tip, stem base, lateral root primordium, emerged lateral root primordium, lateral root tip, young shoot, anther and ovary. OsORC3 knockdown plants lacked lateral roots and had a dwarf phenotype. The root meristematic zone of ORC3 knockdown plants exhibited increased cell death and reduced vital activity compared to the wild-type. CYCB1;1::GUS activity and methylene blue staining showed that lateral root primordia initiated normally in the orc3 mutant, but stopped growing before formation of the stele and ground tissue. Our results indicate that OsORC3 plays a crucial role in the emergence of lateral root primordia. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  6. Plant responsiveness to root-root communication of stress cues.

    Science.gov (United States)

    Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel

    2012-07-01

    Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3-24 h after the beginning of stress induction. The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.

  7. Cytogenetic effects of the gaseous phase of cigarette smoke on root-tip cells of Allium sativum L

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K.N.; Benner, J.F.; Sabharwal, P.S.

    1978-02-01

    Chromosomal and mitotic abnormalities induced by the gaseous phase of cigarette smoke on the root-tips of garlic, Allium sativum L., were investigated. Chromosomal abnormalities in the form of breakages, bridges, lags, stickiness, and differential condensation were observed. In addition, multinucleate cells, polyploid cells, and multipolar mitotic divisions were observed. In general the results indicate that the percentage of abnormalities increased when root-tips were exposed to higher numbers of smoke puffs. The effect of the gaseous phase of cigarette smoke on the mitotic index is striking. It shows a slight increase at a low number of puffs and a decrease at high numbers, particularly at the 10, 15 and 20 puff levels. The results indicate that the gaseous phase of cigarette smoke induces significant effects on chromosome structure and number.

  8. Diversity and distribution patterns of root-associated fungi on herbaceous plants in alpine meadows of southwestern China.

    Science.gov (United States)

    Gao, Qian; Yang, Zhu L

    2016-01-01

    The diversity of root-associated fungi associated with four ectomycorrhizal herbaceous species, Kobresia capillifolia, Carex parva, Polygonum macrophyllum and Potentilla fallens, collected in three sites of alpine meadows in southwestern China, was estimated based on internal transcribed spacer (ITS) rDNA sequence analysis of root tips. Three hundred seventy-seven fungal sequences sorted to 154 operational taxonomical units (sequence similarity of ≥ 97% across the ITS) were obtained from the four plant species across all three sites. Similar taxa (in GenBank with ≥ 97% similarity) were not found in GenBank and/or UNITE for most of the OTUs. Ectomycorrhiz a made up 64% of the fungi operational taxonomic units (OTUs), endophytes constituted 4% and the other 33% were unidentified root-associated fungi. Fungal OTUs were represented by 57% basidiomycetes and 43% ascomycetes. Inocybe, Tomentella/Thelophora, Sebacina, Hebeloma, Pezizomycotina, Cenococcum geophilum complex, Cortinarius, Lactarius and Helotiales were OTU-rich fungal lineages. Across the sites and host species the root-associated fungal communities generally exhibited low host and site specificity but high host and sampling site preference. Collectively our study revealed noteworthy diversity and endemism of root-associated fungi of alpine plants in this global biodiversity hotspot. © 2016 by The Mycological Society of America.

  9. Root Traits and Phenotyping Strategies for Plant Improvement

    OpenAIRE

    Ana Paez-Garcia; Christy M. Motes; Wolf-Rüdiger Scheible; Rujin Chen; Elison B. Blancaflor; Maria J. Monteros

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, wa...

  10. [Influence of Four Kinds of PPCPs on Micronucleus Rate of the Root-Tip Cells of Vicia-faba and Garlic].

    Science.gov (United States)

    Wang, Lan-jun; Wang, Jin-hua; Zhu, Lu-sheng; Wang, Jun; Zhao, Xiang

    2016-04-15

    In order to determine the degree of biological genetic injury induced by PPCPs, the genotoxic effects of the doxycycline (DOX), ciprofloxacin (CIP), triclocarban (TCC) and carbamazepine (CBZ) in the concentration range of 12.5-100 mg · L⁻¹ were studied using micronucleus rate and micronucleus index of Vicia-fabe and garlic. The results showed that: (1) When the Vicia-faba root- tip cells were exposed to DOX, CIP, TCC and CBZ, micronucleus rates were higher than 1.67 ‰ (CK₁), it was significantly different from that of the control group (P garlic root tip cells were exposed to DOX, CIP, TCC and CBZ respectively, the micronucleus rates were less than those of the Vicia-faba, while in most treatments significantly higher than that of the control group (0.67‰). The micronucleus index was higher than 3.5 in the groups exposed to CIP with concentrations of 25, 50, 100 mg · L⁻¹ and TCC and CBZ with concentrations of 25 mg · L⁻¹; With the increase of exposure concentrations, the micronucleus rate showed a trend of first increasing and then decreasing as well. (3) Under the same experimental conditions, the cells micronucleus rates of the garlic cells caused by the four tested compounds were significantly lower than those of Vicia-faba. (4) The micronucleus index of the root tip cells of Vicia-faba and garlic treated with the four kinds of compounds followed the order of CIP > CBZ > TCC > DOX. These results demonstrated that the four compounds caused biological genetic injury to root-tip cells of Vicia-faba and garlic, and the genetic damage caused to garlic was significantly lower than that to Vicia-faba. The damages caused by the four kinds of different compounds were also different.

  11. Root profile in Multi-layered Dehesas: an approach to plant-to-plant Interaction

    Science.gov (United States)

    Rolo, V.; Moreno, G.

    2009-04-01

    Assessing plant-to-plant relationship is a key issue in agroforestry systems. Due to the sessile feature of plants most of these interactions take place within a restricted space, so characterizing the zone where the plant alters its environment is important to find overlapping areas where the facilitation or competition could occur. Main part of plan-to-plant interactions in the dehesa are located at belowground level, thus the main limited resources in Mediterranean ecosystems are soil nutrient and water. Hence a better knowledge of rooting plant profile can be useful to understand the functioning of the dehesa. The Iberian dehesa has always been considered as a silvopastoral system where, at least, two strata of vegetation coexist: native grasses and trees. However the dehesa is also a diverse system where cropland and encroached territories have been systematically combined, more or less periodically, with native pasture in order to obtain agricultural, pastoral and forestry outputs. These multipurpose mosaic-type systems generate several scenarios where the plant influence zone may be overlapped and the interaction, competition or facilitation, between plants can play an important role in the ecosystem functioning in terms of productivity and stability. In the present study our aim was to characterize the rooting profile of multi-layered dehesas in order to understand the competitive, and/or facilitative, relationships within the different plant strata. The root profile of Quercus ilex subsp. ballota, Cistus ladanifer, Retama spaherocarpa and natural grasses was studied. So 48 trenches, up to 2 meters deep, were excavated in 4 different environments: (i) grass; (ii) tree-grass; (iii) tree-shrub and (iv) tree-shrub-grass (12 trenches in each environment). The study was carried out in 4 dehesas, 2 encroached with C. ladanifer and 2 with R. spaherocarpa. In every trench soil samples were taken each 20 cm. Subsequently, all samples were sieved using different mesh

  12. Action of plant root exudates in bioremediations: a review

    Directory of Open Access Journals (Sweden)

    Peter Dundek

    2011-01-01

    Full Text Available This work presents a summary of literature dealing with the use of plant root exudates in bioremediations. Bioremediation using plants (phytoremediation or rhizoremediation and associate rhizosphere to decontaminate polluted soil is a method based on the catabolic potential of root-associated microorganisms, which are supported by the organic substrates released from roots. These substrates are called “root exudates”. Root exudates support metabolism of pollutants-decomposing microorganisms in the rhizosphere, and affect sorption / desorption of pollutants. Awareness of exudation rates is necessary for testing soil decontamination. Commonly, water-soluble root exudates of different plants are studied for their qualitative composition which should be related to total carbon of exuded water-soluble compounds. This paper presents the determined rate of plant root exudation and the amount of root exudates carbon used to form artificial rhizosphere.

  13. Diversification of Root Hair Development Genes in Vascular Plants.

    Science.gov (United States)

    Huang, Ling; Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui; Schiefelbein, John

    2017-07-01

    The molecular genetic program for root hair development has been studied intensively in Arabidopsis ( Arabidopsis thaliana ). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. © 2017 American Society of Plant Biologists. All Rights Reserved.

  14. Root - shoot - signaling in Chenopodium rubrum L. as studied by 15O labeled water uptake

    International Nuclear Information System (INIS)

    Ohya, T.; Hayashi, Y.; Tanoi, K.; Rai, H.; Nakanishi, T.M.; Suzuki, K.; Albrechtova, J.T.P.; Wagner, E.

    2005-01-01

    Full text: It has been demonstrated with C. rubrum that the different organ systems are transmitting surface action potentials which might be the basis for systemic signal transduction. Shoot tip respectively root generated action potentials travel along the stem axis. Shoot tip generated action potentials arriving at the basis can be reflected and travel upwards. The radioactive labeling technique was established at the NIRS in Inage, Japan. About 2 GBq of 15 O labeled Hoagland's solution was supplied to the plant root or cut stem in a phytotron at 25 o C with 45 % of relative humidity and continuous light. By cutting the shoot apical bud and the apices of main side branches the uptake of 15 O labeled water was inhibited in plants with intact roots but not in plants with roots cut. Because of the short half-life of 15 O (2 min), experiments could be repeated in hourly intervals. Cutting the apex probably limits root water uptake via a hydraulic-electrochemical signal. The results are discussed with respect to the significance of a continuous communication between the root system and the shoot apical meristem(s) in the adaptation of plants to their environment. (author)

  15. Growth is required for perception of water availability to pattern root branches in plants.

    Science.gov (United States)

    Robbins, Neil E; Dinneny, José R

    2018-01-23

    Water availability is a potent regulator of plant development and induces root branching through a process termed hydropatterning. Hydropatterning enables roots to position lateral branches toward regions of high water availability, such as wet soil or agar media, while preventing their emergence where water is less available, such as in air. The mechanism by which roots perceive the spatial distribution of water during hydropatterning is unknown. Using primary roots of Zea mays (maize) we reveal that developmental competence for hydropatterning is limited to the growth zone of the root tip. Past work has shown that growth generates gradients in water potential across an organ when asymmetries exist in the distribution of available water. Using mathematical modeling, we predict that substantial growth-sustained water potential gradients are also generated in the hydropatterning competent zone and that such biophysical cues inform the patterning of lateral roots. Using diverse chemical and environmental treatments we experimentally demonstrate that growth is necessary for normal hydropatterning of lateral roots. Transcriptomic characterization of the local response of tissues to a moist surface or air revealed extensive regulation of signaling and physiological pathways, some of which we show are growth-dependent. Our work supports a "sense-by-growth" mechanism governing hydropatterning, by which water availability cues are rendered interpretable through growth-sustained water movement. Copyright © 2018 the Author(s). Published by PNAS.

  16. Plant Tissue Culture

    Indian Academy of Sciences (India)

    Admin

    Plant tissue culture is a technique of culturing plant cells, tissues and organs on ... working methods (Box 2) and discovery of the need for B vita- mins and auxins for ... Kotte (Germany) reported some success with growing isolated root tips.

  17. Root distribution pattern of Colocasia- 32P plant injection technique

    International Nuclear Information System (INIS)

    Eapen, Suja; Salam, M.A.; Wahid, P.A.

    1995-01-01

    A 32 P plant injection technique was employed to study the variation in the root production and distribution patterns of colocasia var. Cheruchempu grown in the coconut garden and in the open. Root production of colocasia was more with the plants grown in the open compared to the plants grown in the coconut garden. The root distribution pattern of colocasia differed with light environments under which the plants are grown. Colocasia grown in the coconut garden developed a compact root system while that grown in the open condition developed a spreading root system. The root zone comprising 20 cm laterally around the plant and 40 cm vertically from the surface (L 0-20 D 0-40 ) can be considered as the active root zone of colocasia. (author). 9 refs., 4 figs., 1 tab

  18. Uptake and localisation of lead in the root system of Brassica juncea

    International Nuclear Information System (INIS)

    Meyers, Donald E.R.; Auchterlonie, Graeme J.; Webb, Richard I.; Wood, Barry

    2008-01-01

    The uptake and distribution of Pb sequestered by hydroponically grown (14 days growth) Brassica juncea (3 days exposure; Pb activities 3.2, 32 and 217 μM) was investigated. Lead uptake was restricted largely to root tissue. Examination using scanning transmission electron microscopy-energy dispersive spectroscopy revealed substantial and predominantly intracellular uptake at the root tip. Endocytosis of Pb at the plasma membrane was not observed. A membrane transport protein may therefore be involved. In contrast, endocytosis of Pb into a subset of vacuoles was observed, resulting in the formation of dense Pb aggregates. Sparse and predominantly extracellular uptake occurred at some distance from the root tip. X-ray photoelectron spectroscopy confirmed that the Pb concentration was greater in root tips. Heavy metal rhizofiltration using B. juncea might therefore be improved by breeding plants with profusely branching roots. Uptake enhancement using genetic engineering techniques would benefit from investigation of plasma membrane transport mechanisms. - The sites of Pb sequestration within the root system of hydroponically grown Brassica juncea were identified

  19. High Frequency Multiple Shoot Induction of Curculigo orchioides Gaertn.: Shoot Tip V/S Rhizome Disc

    Directory of Open Access Journals (Sweden)

    K. S. Nagesh

    2008-09-01

    Full Text Available Curculigo orchioides Gaertn. is an endangered medicinal plant with anticancer properties. The rhizome and tuberous roots of the plant have been used extensively in India in indigenous medicine. Due to its multiple uses, the demand for Curculigo orchioides is constantly on the rise; however, the supply is rather erratic and inadequate. Destructive harvesting, combined with habitat destruction in the form of deforestation has aggravated the problem. The plant is now considered ‘endangered’ in its natural habitat. Therefore, the need for conservation of this plant is crucial. Here, we describe a successful protocol for multiple shoot induction of C. orchioides using shoot tip and rhizome disc. We find that proximal rhizome discs are optimal for high frequency shoot bud formation than shoot tip and distal rhizome disc. We observed a synergistic effect between 6-benzylaminopurine (BAP and kinetin (KN (each at 1 mg/L on the regeneration of shoot buds from proximal rhizome disc than shoot tip explant. Optimum root induction was achieved on half-strength MS liquid medium supplemented with 1 mg/L of indole-3-butyric acid (IBA. The in vitro raised plantlets were acclimatized in green house and successfully transplanted to natural condition with 90% survival.

  20. Effects of fluoride and 6 benzylaminopurine on growth and respiration of corn and cotton roots

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C R

    1967-01-01

    Corn and cotton plants exhibit a wide difference in their susceptibility to atmospheric fluoride. Corn shows leaf lesions when 100 ..gamma../gm on a dry weight basis are accumulated but cotton can tolerate 5000 ..gamma../gm without showing leaf necrosis. A comparison of respirational response of potted seedlings of the two species to 10 ..gamma../M/sup 3/ HF caused an increase of about 10%. Addition of 2 x 10/sup 2/M F/sup -/ to solutions for germinating the plants showed that cotton accumulated about twice as much as F/sup -/ in seedling roots. Growth was reduced about one half by 2 x 10/sup -3/M F/sup -/ in both species but respirational rates of root tips from control and fluoride treated tissues were equal. Prolonged treatment of excised root tips with fluoride reduced respiration. Because fluoride causes cellular changes in roots similar to aging and kinetin seems to act to reverse these changes, corn was germinated with 2 x 10/sup -3/M F/sup -/ and increasing levels of 6-benzylaminopurine. Root growth inhibition (63%) was reversed significantly at 0.2 - 0.8..gamma.. ml. Respirational rates of root tips grown in fluoride, fluoride plus 6-benzylaminopurine and controls were equal.

  1. Fluoroscopically Guided Extraforaminal Cervical Nerve Root Blocks: Analysis of Epidural Flow of the Injectate with Respect to Needle Tip Position

    Science.gov (United States)

    Shipley, Kyle; Riew, K. Daniel; Gilula, Louis A.

    2013-01-01

    Study Design Retrospective evaluation of consecutively performed fluoroscopically guided cervical nerve root blocks. Objective To describe the incidence of injectate central epidural flow with respect to needle tip position during fluoroscopically guided extraforaminal cervical nerve root blocks (ECNRBs). Methods Between February 19, 2003 and June 11, 2003, 132 consecutive fluoroscopically guided ECNRBs performed with contrast media in the final injected material (injectate) were reviewed on 95 patients with average of 1.3 injections per patient. Fluoroscopic spot images documenting the procedure were obtained as part of standard quality assurance. An independent observer not directly involved in the procedures retrospectively reviewed the images, and the data were placed into a database. Image review was performed to determine optimal needle tip positioning for injectate epidural flow. Results Central epidural injectate flow was obtained in only 28.9% of injections with the needle tip lateral to midline of the lateral mass (zone 2). 83.8% of injectate went into epidural space when the needle tip was medial to midline of the lateral mass (zone 3). 100% of injectate flowed epidurally when the needle tip was medial to or at the medial cortex of the lateral mass (zone 4). There was no statistically significant difference with regards to central epidural flow and the needle tip position on lateral view. Conclusion To ensure central epidural flow with ECNRBs one must be prepared to pass the needle tip medial to midplane of the lateral mass or to medial cortex of the lateral mass. Approximately 16% of ECNRBs with needle tip medial to midline of the lateral mass did not flow into epidural space. One cannot claim a nerve block is an epidural block unless epidural flow of injectate is observed. PMID:24494176

  2. Alginate-encapsulation of shoot tips of jojoba [Simmondsia chinensis (Link) Schneider] for germplasm exchange and distribution.

    Science.gov (United States)

    Kumar, Sunil; Rai, Manoj K; Singh, Narender; Mangal, Manisha

    2010-12-01

    Shoot tips excised from in vitro proliferated shoots derived from nodal explants of jojoba [Simmondsia chinensis (Link) Schneider] were encapsulated in calcium alginate beads for germplasm exchange and distribution. A gelling matrix of 3 % sodium alginate and 100 mM calcium chloride was found most suitable for formation of ideal calcium alginate beads. Best response for shoot sprouting from encapsulated shoot tips was recorded on 0.8 % agar-solidified full-strength MS medium. Rooting was induced upon transfer of sprouted shoots to 0.8 % agar-solidified MS medium containing 1 mg l(-1) IBA. About 70 % of encapsulated shoot tips were rooted and converted into plantlets. Plants regenerated from encapsulated shoot tips were acclimatized successfully. The present encapsulation approach could also be applied as an alternative method of propagation of desirable elite genotype of jojoba.

  3. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  4. Comparison of the Distances between the Maxillary Sinus Floor and Root-Tips of the First and Second Maxillary Molar Teeth Using Panoramic Radiography among Dolichocephalic and Brachycephalic and Mesocephalic Individuals

    Directory of Open Access Journals (Sweden)

    Hamidreza Arabion

    2015-06-01

    Full Text Available Introduction: Comparison of the relationships and distance between maxillary root tips and   the maxillary sinus floor using oral panoramic in the dolichocephalic and brachycephalic compared to mesocephalic individuals. Methods: Oral panoramic images from 300 individuals were analyzed and the relationships and distance between the maxillary root tips and the sinus floor was assessed by qualitative and quantitative variables. Results: The distance was significantly higher in the brachycephalic groups than that of the mesocephalic, and the mesocephalic group showed longer distance in comparison to dolichocephalic individuals. Qualitative comparison showed that type 1 relationship was the dominant position in the brachycephalic individuals while most of dolichocephalic individuals demonstrated type 2 and 3 relationships of the molar root tips and the maxillary sinus floor. Conclusion: Higher distances between the molar root tips and the maxillary sinus floor could be expected in the brachycephalic than mesocephalic and dolichocephalic individuals

  5. Colonization of Plant Growth Promoting Rhizobacteria (PGPR) on Two Different Root Systems

    International Nuclear Information System (INIS)

    Chaudhry, M. Z.; Naz, A. U.; Nawaz, A.; Nawaz, A.; Mukhtar, H.

    2016-01-01

    Phytohormones producing bacteria enhance the plants growth by positively affecting growth of the root. Plant growth promoting bacteria (PGPR) must colonize the plant roots to contribute to the plant's endogenous pool of phytohormones. Colonization of these plant growth promoting rhizobacteria isolated from rhizosplane and soil of different crops was evaluated on different root types to establish if the mechanism of host specificity exist. The bacteria were isolated from maize, wheat, rice, canola and cotton and phytohormone production was detected and quantified by HPLC. Bacteria were inoculated on surface sterilized seeds of different crops and seeds were germinated. After 7 days the bacteria were re-isolated from the roots and the effect of these bacteria was observed by measuring increase in root length. Bacteria isolated from one plant family (monocots) having fibrous root performed well on similar root system and failed to give significant results on other roots (tap root) of dicots. Some aggressive strains were able to colonize both root systems. The plant growth promoting activities of the bacteria were optimum on the same plant from whom roots they were isolated. The results suggest that bacteria adapt to the root they naturally inhabit and colonize the same plant root systems preferably. Although the observe trend indicate host specificity but some bacteria were aggressive colonizers which grew on all the plants used in experiment. (author)

  6. Low-temperature X-ray microanalysis of the differentiating vascular tissue in root tips of Lemna minor L

    Energy Technology Data Exchange (ETDEWEB)

    Echlin, P [Univ. of Cambridge, England; Lai, C E; Hayes, T L

    1982-06-01

    The fracture faces of bulk-frozen tissue offer a number of advantages for the analysis of diffusible elements. They are easy to prepare, remain uncontaminated, and, unlike most frozen-hydrated sections, can be shown to exist in a fully hydrated state throughout examination and analysis. Root tips of Lemna minor briefly treated with a polymeric cryoprotectant are quench frozen in melting nitrogen. Fractures are prepared using the AMRAY Biochamber, lightly etched if necessary to reveal surface detail and carbon coated while maintaining the specimen at 110 K. The frozen-hydrated fracture faces are analyzed at 110 K using the P/B ratio method which is less sensitive to changes in surface geometry and variations in beam current. The method has been used to investigate the distribution of seven elements (Na/sup +/, Mg/sup + +/, P, S, Cl/sup -/, K/sup +/ and Ca/sup + +/) in the developing vascular tissue of the root tip. The microprobe can measure relative elemental ratios at the cellular level and the results from this present study reveal important variations in different parts of the root. The younger, more actively dividing cells, appear to have a slightly higher concentration of diffusible ions in comparison to the somewhat older tissues which have begun to differentiate into what are presumed to be functional vascular elements.

  7. Scaling root processes based on plant functional traits (Invited)

    Science.gov (United States)

    Eissenstat, D. M.; McCormack, M. L.; Gaines, K.; Adams, T.

    2013-12-01

    There are great challenges to scaling root processes as variation across species and variation of a particular species over different spatial and temporal scales is poorly understood. We have examined tree species variation using multispecies plantings, often referred to by ecologists as 'common gardens'. Choosing species with wide variation in growth rate, root morphology (diameter, branching intensity) and root chemistry (root N and Ca concentration), we found that variation in root lifespan was well correlated with plant functional traits across 12 species. There was also evidence that localized liquid N addition could increase root lifespan and localized water addition diminished root lifespan over untreated controls, with effects strongest in the species of finest root diameter. In an adjacent forest, we have also seen tree species variation in apparent depth of rooting using water isotopes. In particular species of wood anatomy that was ring porous (e.g. oaks) typically had the deepest rooting depth, whereas those that had either diffuse-porous sapwood (maples) or tracheid sapwood (pines) were shallower rooted. These differences in rooting depth were related to sap flux of trees during and immediately after periods of drought. The extent that the patterns observed in central Pennsylvania are modulated by environment or indicative of other plant species will be discussed.

  8. GROWTH PROCESS OF ORGANIC VETIVER ROOT WITH POTATO AS INTERCROPPING PLANT

    Directory of Open Access Journals (Sweden)

    Asep Kadarohman

    2012-02-01

    Full Text Available Vetiver oil (Vetiveria zizanoides is one of Indonesia main export commodities. Vetiver root is perennial plant and generally planted with vegetables as intercropping plant. Increasing the selling price of vetiver oil can be done by transferring the production of conventional vetiver oil (non-organic to organic vetiver oil. Demonstration of land used was one hectare, which 2,000 m2 for planting vetiver root with potato (Solanum tuberosum as inter-cropping plant and 8,000 m2 for vetiver root without intercropping, in Sukakarya-Samarang, Garut. The planting used goat and cow dung as manure, distillate water of vetiver oil and liquid bio-pesticide as pesticide. Variables studied included plant height, number of leaf and crotch. In the first quarter of the years, the number of leaf and crotch of vetiver root with intercropping was better than vetiver root without inter-cropping. However, there was not significant difference for plant height of vetiver root, both with and without intercropping. Products of organic potato as intercropping plant of vetiver root were less than those of non-organic potato, but the latter had a better texture and durability.

  9. Light as stress factor to plant roots - case of root halotropism.

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  10. Effects of aluminum on nucleoli in root tip cells and selected physiological and biochemical characters in Allium cepa var. agrogarum L.

    Science.gov (United States)

    Qin, Rong; Jiao, Yunqiu; Zhang, Shanshan; Jiang, Wusheng; Liu, Donghua

    2010-10-21

    Increased Al concentration causes reduction of mitotic activity, induction of nucleolar alteration, increase of the production of ROS and alteration of several antioxidant enzyme activities in plant cells. Allium cepa is an excellent plant and a useful biomarker for environmental monitoring. Limited information is available about the effects of Al on nucleoli, antioxidant enzyme system, contents of MDA and soluble protein in A. cepa. Therefore, we carried out the investigation in order to better understand the effects of Al on the growth, nucleoli in root tip cells and selected physiological and biochemical characters. The results showed that the root growth exposed to 50 μM Al was inhibited significantly. 50 μM Al could induce some particles of argyrophilic proteins scattered in the nuclei and extruded from the nucleoli into the cytoplasm. The nucleolus did not disaggregate normally and still remained its characteristic structure during metaphase. Nucleolar reconstruction was inhibited. 50 μM Al induced high activities of SOD and POD in leaves and roots significantly (P nucleoli and the alterations of antioxidant enzyme activities, MDA and soluble protein contents in Allium cepa can serve as useful biomarkers, which can provide valuable information for monitoring and forecasting effects of exposure to Al in real scenarios conditions. Among the antioxidant enzymes SOD and POD appear to play a key role in the antioxidant defense mechanism under Al toxicity condition. Data from MDA concentration show that Al indirectly produces superoxide radicals, resulting in increased lipid peroxidative products and oxidative stress.

  11. Random River Fluctuations Shape the Root Profile of Riparian Plants

    Science.gov (United States)

    Perona, P.; Tron, S.; Gorla, L.; Schwarz, M.; Laio, F.; Ridolfi, L.

    2015-12-01

    Plant roots are recognized to play a key role in the riparian ecosystems: they contribute to the plant as well as to the streambank and bedforms stability, help to enhance the water quality of the river, and sustain the belowground biodiversity. The complexity of the root-system architecture recalls their remarkable ability to respond to environmental conditions, notably including soil heterogeneity, resource availability, and climate. In fluvial environments where nutrient availability is not a limiting factor for plant to grow, the root growth of phreatophytic plants is strongly influenced by water and oxygen availability in the soil. In this work, we demonstrate that the randomness of water table fluctuations, determined by streamflow stochastic variability, is likely to be the main driver for the root development strategy of riparian plants. A collection of root measurements from field and outdoor controlled experiments is used to demonstrate that the vertical root density distribution can be described by a simple analytical expression, whose parameters are linked to properties of soil, plant and water table fluctuations. This physically-based expression is able to predict riparian plant roots adaptability to different hydrological and pedologic scenarios in riverine environments. Hence, this model has great potential towards the comprehension of the effects of future climate and environmental changing conditions on plant adaptation and river ecomorphodynamic processes. Finally, we present an open access graphical user interface that we developed in order to estimate the vertical root distribution in fluvial environments and to make the model easily available to a wider scientific and professional audience.

  12. Acute Genotoxic Effects of Effluent Water of Thermo-Power Plant “Kosova” In Tradescantia Pallida

    Directory of Open Access Journals (Sweden)

    I. R. Elezaj, L.B.Millaku, R.H. Imeri-Millaku, Q.I. Selimi, and K. Rr. Letaj

    2011-09-01

    Full Text Available The aim of this study was the evaluation of acute genotoxic effect of effluent water of thermo-power plant by means of Tradescantia root tips micronucleus test (MN, mitotic index and cell aberrations.   Tradescantia, was experimentally treated (for 24 h, with effluent water of thermo-power plant in different dilution ratios (negative control – distilled water; primary untreated effluent water and 1:1; 1:2; 1:3; 1:4; 1:5; 1:6 and 1:7 respectively. Number of aberrant cells, and frequency of micronuclei (MN, in meristematic root tip cells of treated plants (Tradescantia, were significantly increased (P<0.001; P<0.001 respectively, while the mitotic index in all treated plants was progressively decreased in comparison to the negative control. The results of present study indicate that Tradescantia root-tip micronucleus assay with direct exposure of intact plants is an appropriate method which enables to detect genotoxic effects of effluent waters.

  13. Absorption behavior of technetium and rhenium through plant roots

    International Nuclear Information System (INIS)

    Tagami, K.; Uchida, S.

    2004-01-01

    The absorption behavior of technetium (Tc) and rhenium (Re) through plant roots was studied using nutrient solution culture. Radish samples, grown in culture solutions for 20-30 days in a green house, were transferred into plastic vessels containing nutrient solutions contaminated with multi-tracer solutions including Tc-95m and Re-183. The plant samples were grown individually for 1-7 days under laboratory conditions. The activities of radionuclides in nutrient solutions and oven-dried plant parts (roots, fleshy roots and leaves) were measured with Ge detecting systems. The concentrations of Tc-95m and Re-183 in the nutrient solutions after harvesting the plants were almost the same as those in the initial solution. Possibly, the radionuclides were taken up with water through plant roots. The distributions of Tc and Re in the plants showed no differences, thus, soluble Tc and Re absorption by plant samples were the same. It is suggested that Re could be used as a geochemical tracer of Tc in the soil environment. (author)

  14. Hydrologic Regulation of Plant Rooting Depth and Vice Versa

    Science.gov (United States)

    Fan, Y.; Miguez-Macho, G.

    2017-12-01

    How deep plant roots go and why may hold the answer to several questions regarding the co-evolution of terrestrial life and its environment. In this talk we explore how plant rooting depth responds to the hydrologic plumbing system in the soil/regolith/bedrocks, and vice versa. Through analyzing 2200 root observations of >1000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients, we found strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to groundwater capillary fringe. We explore the global significance of this framework using an inverse model, and the implications to the coevolution of deep roots and the CZ in the Early-Mid Devonian when plants colonized the upland environments.

  15. Wired to the roots: impact of root-beneficial microbe interactions on aboveground plant physiology and protection.

    Science.gov (United States)

    Kumar, Amutha Sampath; Bais, Harsh P

    2012-12-01

    Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don't know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses.

  16. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.

    Science.gov (United States)

    Yin, Xiaojian; Sakata, Katsumi; Komatsu, Setsuko

    2014-12-05

    Flooding has severe negative effects on soybean growth. To explore the flooding-responsive mechanisms in early-stage soybean, a phosphoproteomic approach was used. Two-day-old soybean plants were treated without or with flooding for 3, 6, 12, and 24 h, and root tip proteins were then extracted and analyzed at each time point. After 3 h of flooding exposure, the fresh weight of soybeans increased, whereas the ATP content of soybean root tips decreased. Using a gel-free proteomic technique, a total of 114 phosphoproteins were identified in the root tip samples, and 34 of the phosphoproteins were significantly changed with respect to phosphorylation status after 3 h of flooding stress. Among these phosphoproteins, eukaryotic translation initiation factors were dephosphorylated, whereas several protein synthesis-related proteins were phosphorylated. The mRNA expression levels of sucrose phosphate synthase 1F and eukaryotic translation initiation factor 4 G were down-regulated, whereas UDP-glucose 6-dehydrogenase mRNA expression was up-regulated during growth but down-regulated under flooding stress. Furthermore, bioinformatic protein interaction analysis of flooding-responsive proteins based on temporal phosphorylation patterns indicated that eukaryotic translation initiation factor 4 G was located in the center of the network during flooding. Soybean eukaryotic translation initiation factor 4 G has homology to programmed cell death 4 protein and is implicated in ethylene signaling. The weight of soybeans was increased with treatment by an ethylene-releasing agent under flooding condition, but it was decreased when plants were exposed to an ethylene receptor antagonist. These results suggest that the ethylene signaling pathway plays an important role, via the protein phosphorylation, in mechanisms of plant tolerance to the initial stages of flooding stress in soybean root tips.

  17. Use of higher plants as screens for toxicity assessment.

    Science.gov (United States)

    Kristen, U

    1997-01-01

    This review deals with the use of entire plants, seedlings, cell suspension cultures and pollen tubes for the estimation of potential toxicity in the environment, and for risk assessment of chemicals and formulations of human relevance. It is shown that the roots of onions and various crop seedlings, as well as in vitro growing pollen tubes of some mono- and dicotyledonous plants, are most frequently used to obtain toxicity data by determination of root and tube growth inhibition. Both roots and pollen tubes are chloroplast free, non-photosynthetic systems and, therefore, with regard to their cytotoxic reactions are closer to vertebrate tissues and cells than are chloroplast-containing plant organs. Root tips and anthers of flower buds are shown to be applicable to genotoxicity screening by microscopic analysis of mitotic or meiotic aberrations during cell division or microspore development, respectively. The processes of mitosis and meiosis are similar in plants and animals. Therefore, meristematic and sporogenic tissues of plants generally show patterns of cytotoxic response similar to those of embryogenic and spermatogenic tissues of vertebrates. The suitability of root tips, cell suspensions and pollen tubes for the investigation of mechanisms of toxic action and for the analysis of structure-activity relationships is also demonstrated. Two plant-based assays, the Allium test and the pollen tube growth test, both currently being evaluated alongside with established mammalian in vivo and in vitro protocols, are emphasized with regard to their potential use as alternatives to animal in vivo toxicity tests. For both assays, preliminary results indicate that the tips of growing roots and the rapidly elongating pollen tubes of certain higher plant species are as reliable as mammalian cell lines for detecting basal cytotoxicity. It is suggested that seeds and pollen grains, in particular, provide easily storable and convenient systems for inexpensive, relatively

  18. Function and regulation of plant major intrinsic proteins

    DEFF Research Database (Denmark)

    Popovic, Milan

    ;1 in Arabidopsis. That led to the discovery that tip4;1 is gametophytic lethal- gene essential for normal seed set. ICP-MS analyses of the elemental composition of tip4;1 heterozygous T-DNA insert mutant plants and 35S::TIP4;1 over-expression plants indicate that AtTIP4;1 has a role in arsenic distribution...... inorganic forms of arsenic in the environment, can be taken up by plants and thus enter the food chain. Once inside the root cells, As(V) is reduced to As(III) which is then extruded to the soil solution or bound to phytochelatins (PCs) and transported to the vacuole in an effort to accomplish...... detoxification. Plant Noduline 26-like Intrinsic Proteins (NIPs) can channel As(III) and consequently influence the detoxification process. The role of the Tonoplast Intrinsic Proteins (TIPs) in As(III) detoxification remains to be clarified, yet TIPs could have an impact on As(III) accumulation in plant cell...

  19. Composite Cucurbita pepo plants with transgenic roots as a tool to study root development.

    Science.gov (United States)

    Ilina, Elena L; Logachov, Anton A; Laplaze, Laurent; Demchenko, Nikolay P; Pawlowski, Katharina; Demchenko, Kirill N

    2012-07-01

    In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash. The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2'-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively. Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots. The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem development and root branching.

  20. A Model of Uranium Uptake by Plant Roots Allowing for Root-Induced Changes in the soil.

    Science.gov (United States)

    Boghi, Andrea; Roose, Tiina; Kirk, Guy J D

    2018-03-20

    We develop a model with which to study the poorly understood mechanisms of uranium (U) uptake by plants. The model is based on equations for transport and reaction of U and acids and bases in the rhizosphere around cylindrical plant roots. It allows for the speciation of U with hydroxyl, carbonate, and organic ligands in the soil solution; the nature and kinetics of sorption reactions with the soil solid; and the effects of root-induced changes in rhizosphere pH. A sensitivity analysis showed the importance of soil sorption and speciation parameters as influenced by pH and CO 2 pressure; and of root geometry and root-induced acid-base changes linked to the form of nitrogen taken up by the root. The root absorbing coefficient for U, relating influx to the concentration of U species in solution at the root surface, was also important. Simplified empirical models of U uptake by different plant species and soil types need to account for these effects.

  1. A review on the molecular mechanism of plants rooting modulated ...

    African Journals Online (AJOL)

    Phytohormones, especially auxin, played an essential role in regulating roots developments. This review focused on recent advances in the research of plants rooting genomics and proteomics, including auxin biosynthesis, metabolism, transport, and signaling pathway which are involved in modulating plants rooting and ...

  2. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology

    Directory of Open Access Journals (Sweden)

    Zhenzhen eQiao

    2013-11-01

    Full Text Available Plant root is an organ composed of multiple cell types with different functions. This multicellular complexity limits our understanding of root biology because –omics studies performed at the level of the entire root reflect the average responses of all cells composing the organ. To overcome this difficulty and allow a more comprehensive understanding of root cell biology, an approach is needed that would focus on one single cell type in the plant root. Because of its biological functions (i.e. uptake of water and various nutrients; primary site of infection by nitrogen-fixing bacteria in legumes, the root hair cell is an attractive single cell model to study root cell response to various stresses and treatments. To fully study their biology, we have recently optimized procedures in obtaining root hair cell samples. We culture the plants using an ultrasound aeroponic system maximizing root hair cell density on the entire root systems and allowing the homogeneous treatment of the root system. We then isolate the root hair cells in liquid nitrogen. Isolated root hair yields could be up to 800 to 1000 mg of plant cells from 60 root systems. Using soybean as a model, the purity of the root hair was assessed by comparing the expression level of genes previously identified as soybean root hair specific between preparations of isolated root hair cells and stripped roots, roots devoid in root hairs. Enlarging our tests to include other plant species, our results support the isolation of large quantities of highly purified root hair cells which is compatible with a systems biology approach.

  3. Linking root hydraulic properties to carbon allocation patterns in annual plant

    Science.gov (United States)

    Hosseini, A.; Ewers, B. E.; Adjesiwor, A. T.; Kniss, A. R.

    2017-12-01

    Incorporation of root structure and function into biophysical models is an important tool to predict plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils. Most of the models describing root water uptake (RWU) are based on semi-empirical (i.e. built on physiological hypotheses, but still combined with empirical functions) approaches and hydraulic parameters involved are hardly available. Root conductance is essential to define the interaction between soil-to-root and canopy-to-atmosphere. Also root hydraulic limitations to water flow can impact gas exchange rates and plant biomass partitioning. In this study, sugar beet (B. vulgaris) seeds under two treatments, grass (Kentucky bluegrass) and no grass (control), were planted in 19 L plastic buckets in June 2016. Photosynthetic characteristics (e.g. gas exchange and chlorophyll fluorescence), leaf morphology and anatomy, root morphology and above and below ground biomass of the plants was monitored at 15, 30, 50, 70 and 90 days after planting (DAP). Further emphasis was placed on the limits to water flow by coupling of hydraulic conductance (k) whole root-system with water relation parameters and gas exchange rates in fully established plants.

  4. Life in the dark: Roots and how they regulate plant-soil interactions

    Science.gov (United States)

    Wu, Y.; Chou, C.; Peruzzo, L.; Riley, W. J.; Hao, Z.; Petrov, P.; Newman, G. A.; Versteeg, R.; Blancaflor, E.; Ma, X.; Dafflon, B.; Brodie, E.; Hubbard, S. S.

    2017-12-01

    Roots play a key role in regulating interactions between soil and plants, an important biosphere process critical for soil development and health, global food security, carbon sequestration, and the cycling of elements (water, carbon, nutrients, and environmental contaminants). However, their underground location has hindered studies of plant roots and the role they play in regulating plant-soil interactions. Technological limitations for root phenotyping and the lack of an integrated approach capable of linking root development, its environmental adaptation/modification with subsequent impact on plant health and productivity are major challenges faced by scientists as they seek to understand the plant's hidden half. To overcome these challenges, we combine novel experimental methods with numerical simulations, and conduct controlled studies to explore the dynamic growth of crop roots. We ask how roots adapt to and change the soil environment and their subsequent impacts on plant health and productivity. Specifically, our efforts are focused on (1) developing novel geophysical approaches for non-invasive plant root and rhizosphere characterization; (2) correlating root developments with key canopy traits indicative of plant health and productivity; (3) developing numerical algorithms for novel geophysical root signal processing; (4) establishing plant growth models to explore root-soil interactions and above and below ground traits co-variabilities; and (5) exploring how root development modifies rhizosphere physical, hydrological, and geochemical environments for adaptation and survival. Our preliminary results highlight the potential of using electro-geophysical methods to quantifying key rhizosphere traits, the capability of the ecosys model for mechanistic plant growth simulation and traits correlation exploration, and the combination of multi-physics and numerical approach for a systematic understanding of root growth dynamics, impacts on soil physicochemical

  5. Tradescantia cytogenetic tests (root-tip mitosis, pollen mitosis, pollen mother-cell meiosis). A report of the US Environmental Protection Agency gene-tox program

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T H

    1982-01-01

    3 kinds of cytogenetic tests for screening of environmental mutagens were established for Tradescantia, namely, root-tip mitosis, pollen mitosis, and pollen mother-cell meiosis (commonly referred to as the Tradescantia-micronucleus (Trad-MCN) test). All these tests are technically simple, inexpensive, and can yield reliable results in a relatively short time (36 to 72 h). The root-tip mitosis test is suitable only for liquid agents, while pollen mitosis is suitable for both liquid and gaseous agents. Pollen tube mitotic chromosomes are extremely sensitive to mutagens; therefore, they are good materials for detecting very low concentrations of mutagens. Both root-tip mitosis and pollen mitosis tests use chromosome and/or chromatid aberrations as end points for scoring. The Trad-MCN test is suitable for both liquid and gaseous agents. In addition, it is especially suitable for in situ monitoring of water and air pollutants. Of the 12 chemicals tested, 5-fluorouracil and 1,2-dibromoethane indicate that they are very potent mutagens based on the effective dosages used to produce a positive response. Sulfur dioxide, ethyl methanesulfonate, sodium azide, Phosdrin, and Bladex rank next in potency.

  6. Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: linking plant performance to root functioning.

    Science.gov (United States)

    Zhang, Qian; Huber, Heidrun; Beljaars, Simone J M; Birnbaum, Diana; de Best, Sander; de Kroon, Hans; Visser, Eric J W

    2017-07-01

    Temporal flooding is a common environmental stress for terrestrial plants. Aquatic adventitious roots (aquatic roots) are commonly formed in flooding-tolerant plant species and are generally assumed to be beneficial for plant growth by supporting water and nutrient uptake during partial flooding. However, the actual contribution of these roots to plant performance under flooding has hardly been quantified. As the investment into aquatic root development in terms of carbohydrates may be costly, these costs may - depending on the specific environmental conditions - offset the beneficial effects of aquatic roots. This study tested the hypothesis that the balance between potential costs and benefits depends on the duration of flooding, as the benefits are expected to outweigh the costs in long-term but not in short-term flooding. The contribution of aquatic roots to plant performance was tested in Solanum dulcamara during 1-4 weeks of partial submergence and by experimentally manipulating root production. Nutrient uptake by aquatic roots, transpiration and photosynthesis were measured in plants differing in aquatic root development to assess the specific function of these roots. As predicted, flooded plants benefited from the presence of aquatic roots. The results showed that this was probably due to the contribution of roots to resource uptake. However, these beneficial effects were only present in long-term but not in short-term flooding. This relationship could be explained by the correlation between nutrient uptake and the flooding duration-dependent size of the aquatic root system. The results indicate that aquatic root formation is likely to be selected for in habitats characterized by long-term flooding. This study also revealed only limited costs associated with adventitious root formation, which may explain the maintenance of the ability to produce aquatic roots in habitats characterized by very rare or short flooding events. © The Author 2017. Published by

  7. Helical Root Buckling: A Transient Mechanism for Stiff Interface Penetration

    Science.gov (United States)

    Silverberg, Jesse; Noar, Roslyn; Packer, Michael; Harrison, Maria; Cohen, Itai; Henley, Chris; Gerbode, Sharon

    2011-03-01

    Tilling in agriculture is commonly used to loosen the topmost layer of soil and promote healthy plant growth. As roots navigate this mechanically heterogeneous environment, they encounter interfaces between the compliant soil and the underlying compacted soil. Inspired by this problem, we used 3D time-lapse imaging of Medicago Truncatula plants to study root growth in two-layered transparent hydrogels. The layers are mechanically distinct; the top layer is more compliant than the bottom. We observe that the roots form a transient helical structure as they attempt to penetrate the bi-layer interface. Interpreting this phenotype as a form of buckling due to root elongation, we measured the helix size as a function of the surrounding gel modulus. Our measurements show that by twisting the root tip during growth, the helical structure recruits the surrounding medium for an enhanced penetration force allowing the plants access to the lower layer of gel.

  8. Microclonal Multiplication of wild Cherry (Prunus avium L.) from Shoot Tips and Root Sucker Buds

    OpenAIRE

    Pevalek-Kozlina, Branka; Michler, Charles H.; Jelaska, Sibila

    1994-01-01

    The effects of different combinations and concentrations of the growth regulators: 6-benzylaminopurine (BA), 6-furfurylaminopurine (KIN), N6- (2-isopentenyl) adenine (2iP), indole-3-butyric acid (IBA), indole-3-acetic acid (IAA) and a-naphthaleneacetic acid (NAA) on axillary shoot multiplication rates for wild cherry (Prunus avium L.) shoot explants were determined. Apical shoot tips and axillary buds from juvenile trees (5-year old) and from root suckers of mature trees (55-year old) were us...

  9. Light as stress factor to plant roots – case of root halotropism

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives. PMID:25566292

  10. The distribution of 32P in the rice plant applied to a single root and to the whole root system

    International Nuclear Information System (INIS)

    Sisworo, E.L.; Gandanegara, S.; Sisworo, W.H.; Rasyid, H.; Sumarna, Nana

    1982-01-01

    Two greenhouse experiments to study the distribution of 32 P applied to a single root and to the whole root system have been carried out. Data from experiment 1 showed that 32 P activity in shoots rose with the progress of time; where 32 P was applied to a single root 6 hours after isotope application the 32 P activity in the shoots of plants was higher than if the isotope was applied to the whole root system. Three hours after 32 P application, plants with 50% of roots had a higher 32 P activity than plants with no root cutting. Data from experiment 2 showed that 32 P activity of plants that received 32 P through a single root only was lower than those that received 32 P through the whole root system. This was in contradiction with the data obtained in experiment 1. Experiment 2 also showed that 32 P activity increased with time. Autoradiographs of plants in experiment 1 and 2 showed that 32 P was distributed through the whole plant, although when the isotope was only applied to a single root. (author)

  11. Fluorescence Imaging of the Cytoskeleton in Plant Roots.

    Science.gov (United States)

    Dyachok, Julia; Paez-Garcia, Ana; Yoo, Cheol-Min; Palanichelvam, Karuppaiah; Blancaflor, Elison B

    2016-01-01

    During the past two decades the use of live cytoskeletal probes has increased dramatically due to the introduction of the green fluorescent protein. However, to make full use of these live cell reporters it is necessary to implement simple methods to maintain plant specimens in optimal growing conditions during imaging. To image the cytoskeleton in living Arabidopsis roots, we rely on a system involving coverslips coated with nutrient supplemented agar where the seeds are directly germinated. This coverslip system can be conveniently transferred to the stage of a confocal microscope with minimal disturbance to the growth of the seedling. For roots with a larger diameter such as Medicago truncatula, seeds are first germinated in moist paper, grown vertically in between plastic trays, and roots mounted on glass slides for confocal imaging. Parallel with our live cell imaging approaches, we routinely process fixed plant material via indirect immunofluorescence. For these methods we typically use non-embedded vibratome-sectioned and whole mount permeabilized root tissue. The clearly defined developmental regions of the root provide us with an elegant system to further understand the cytoskeletal basis of plant development.

  12. Bacteria from Wheat and Cucurbit Plant Roots Metabolize PAHs and Aromatic Root Exudates: Implications for Rhizodegradation

    DEFF Research Database (Denmark)

    Ely, Cairn S; Smets, Barth F.

    2017-01-01

    The chemical interaction between plants and bacteria in the root zone can lead to soil decontamination. Bacteria which degrade PAHs have been isolated from the rhizospheres of plant species with varied biological traits, however, it is not known what phytochemicals promote contaminant degradation....... One monocot and two dicotyledon plants were grown in PAH-contaminated soil from a manufactured gas plant (MGP) site. A phytotoxicity assay confirmed greater soil decontamination in rhizospheres when compared to bulk soil controls. Bacteria were isolated from plant roots (rhizobacteria) and selected...

  13. Fate of polycyclic aromatic hydrocarbons in plant-soil systems: Plant responses to a chemical stress in the root zone

    Energy Technology Data Exchange (ETDEWEB)

    Hoylman, Anne M. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    Under laboratory conditions selected to maximize root uptake, plant tissue distribution of PAH-derived 14C was largely limited to root tissue of Malilotus alba. These results suggest that plant uptake of PAHs from contaminated soil via roots, and translocation to aboveground plant tissues (stems and leaves), is a limited mechanism for transport into terrestrial food chains. However, these data also indicate that root surface sorption of PAHs may be important for plants grown in soils containing elevated concentration PAHs. Root surface sorption of PAHs may be an important route of exposure for plants in soils containing elevated concentrations of PAHS. Consequently, the root-soil interface may be the site of plant-microbial interactions in response to a chemical stress. In this study, evidence of a shift in carbon allocation to the root zone of plants exposed to phenanthrene and corresponding increases in soil respiration and heterotrophic plate counts provide evidence of a plant-microbial response to a chemical stress. The results of this study establish the importance of the root-soil interface for plants growing in PAH contaminated soil and indicate the existence of plant-microbial interactions in response to a chemical stress. These results may provide new avenues of inquiry for studies of plant toxicology, plant-microbial interactions in the rhizosphere, and environmental fates of soil contaminants. In addition, the utilization of plants to enhance the biodegradation of soil contaminants may require evaluation of plant physiological changes and plant shifts in resource allocation.

  14. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    Science.gov (United States)

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  15. Mechanisms of waterlogging tolerance in wheat - a review of root and shoot physiology

    DEFF Research Database (Denmark)

    Herzog, Max; Striker, Gustavo G; Colmer, Timothy D

    2016-01-01

    :shoot ratio. Genotypes differ in seminal root anoxia tolerance, but mechanisms remain to be established; ethanol production rates do not explain anoxia tolerance. Root tip survival is short-term, and thereafter, seminal root re-growth upon re-aeration is limited. Genotypes differ in adventitious root numbers....... Although photosynthesis declines, sugars typically accumulate in shoots of waterlogged plants. Mn or Fe toxicity might occur in shoots of wheat on strongly acidic soils, but probably not more widely. Future breeding for waterlogging tolerance should focus on root internal aeration and better N...

  16. Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance.

    Directory of Open Access Journals (Sweden)

    Ilja Sonnemann

    Full Text Available Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae larvae (43% in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height, and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio. Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of

  17. Characterizing pathways by which gravitropic effectors could move from the root cap to the root of primary roots of Zea mays

    Science.gov (United States)

    Moore, R.; McClelen, C. E.

    1989-01-01

    Plasmodesmata linking the root cap and root in primary roots Zea mays are restricted to approx. 400 protodermal cells bordering approx. 110000 microns2 of the calyptrogen of the root cap. This area is less than 10% of the cross-sectional area of the root-tip at the cap junction. Therefore, gravitropic effectors moving from the root cap to the root can move symplastically only through a relatively small area in the centre of the root. Decapped roots are non-responsive to gravity. However, decapped roots whose caps are replaced immediately after decapping are strongly graviresponsive. Thus, gravicurvature occurs only when the root cap contacts the root, and symplastic continuity between the cap and root is not required for gravicurvature. Completely removing mucilage from the root tip renders the root non-responsive to gravity. Taken together, these data suggest that gravitropic effectors move apoplastically through mucilage from the cap to the root.

  18. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots.

    Science.gov (United States)

    Horn, Patricia; Santala, Johanna; Nielsen, Steen Lykke; Hühns, Maja; Broer, Inge; Valkonen, Jari P T

    2014-12-01

    Composite potato plants offer an extremely fast, effective and reliable system for studies on gene functions in roots using antisense or inverted-repeat but not sense constructs for gene inactivation. Composite plants, with transgenic roots on a non-transgenic shoot, can be obtained by shoot explant transformation with Agrobacterium rhizogenes. The aim of this study was to generate composite potato plants (Solanum tuberosum) to be used as a model system in future studies on root-pathogen interactions and gene silencing in the roots. The proportion of transgenic roots among the roots induced was high (80-100%) in the four potato cultivars tested (Albatros, Desirée, Sabina and Saturna). No wild-type adventitious roots were formed at mock inoculation site. All strains of A. rhizogenes tested induced phenotypically normal roots which, however, showed a reduced response to cytokinin as compared with non-transgenic roots. Nevertheless, both types of roots were infected to a similar high rate with the zoospores of Spongospora subterranea, a soilborne potato pathogen. The transgenic roots of composite potato plants expressed significantly higher amounts of β-glucuronidase (GUS) than the roots of a GUS-transgenic potato line event. Silencing of the uidA transgene (GUS) was tested by inducing roots on the GUS-transgenic cv. Albatros event with strains of A. rhizogenes over-expressing either the uidA sense or antisense transcripts, or inverted-repeat or hairpin uidA RNA. The three last mentioned constructs caused 2.5-4.0 fold reduction in the uidA mRNA expression. In contrast, over-expression of uidA resulted in over 3-fold increase in the uidA mRNA and GUS expression, indicating that sense-mediated silencing (co-suppression) was not functional in roots. The results suggest that composite plants offer a useful experimental system for potato research, which has gained little previous attention.

  19. Morphological change of plant root revealed by neutron radiography

    International Nuclear Information System (INIS)

    Makino-Nakanishi, Tomoko; Matsumoto, Satoshi; Kobayashi, Hisao.

    1992-01-01

    Morphological change with soybean root development was investigated non-destructively by neutron radiography. Not only the main root but also the side roots were shown as an clear image on both X-ray and dry films. In the case of dry film, the resolution of the image obtained was about the same as that by X-ray film and the thermal neutron flux was reduced to be about one fifteenth. The image of the root was much clearly obtained in the sand than in the soil where the soil aggregates were randomly shown. In order to know to which degree the root can be shown in the image, the aluminum containers with various thickness were tested. Even when the thickness of the container was increased up to 1.7 cm, the image of the main root was clearly observed through the soil. It was shown that by neutron radiography the morphology of the plant root could be traced non-destructively during the development of the plant. (author)

  20. How genetic modification of roots affects rhizosphere processes and plant performance

    NARCIS (Netherlands)

    Kabouw, P.; Van Dam, N.M.; Van der Putten, W.H.; Biere, A.

    2012-01-01

    Genetic modification of plants has become common practice. However, root-specific genetic modifications have only recently been advocated. Here, a review is presented regarding how root-specific modifications can have both plant internal and rhizosphere-mediated effects on aboveground plant

  1. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    Science.gov (United States)

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Encapsulation of nodal cuttings and shoot tips for storage and exchange of cassava germplasm.

    Science.gov (United States)

    Danso, K E; Ford-Lloyd, B V

    2003-04-01

    We report the encapsulation of in vitro-derived nodal cuttings or shoot tips of cassava in 3% calcium alginate for storage and germplasm exchange purposes. Shoot regrowth was not significantly affected by the concentration of sucrose in the alginate matrix while root formation was. In contrast, increasing the sucrose concentration in the calcium chloride polymerisation medium significantly reduced regrowth from encapsulated nodal cuttings of accession TME 60444. Supplementing the alginate matrix with increased concentrations of 6-benzylaminopurine and alpha-naphthaleneacetic acid enhanced complete plant regrowth within 2 weeks. Furthermore, plant regrowth by encapsulated nodal cuttings and shoot tips was significantly affected by the duration of the storage period as shoot recovery decreased from almost 100% to 73.3% for encapsulated nodal cuttings and 94.4% to 60% for shoot tips after 28 days of storage. The high frequency of plant regrowth from alginate-coated micropropagules coupled with high viability percentage after 28 days of storage is highly encouraging for the exchange of cassava genetic resources. Such encapsulated micropropagules could be used as an alternative to synthetic seeds derived from somatic embryos.

  3. A review of the influence of root-associating fungi and root exudates on the success of invasive plants

    Directory of Open Access Journals (Sweden)

    Cindy Bongard

    2012-08-01

    Full Text Available Plant-fungal interactions are essential for understanding the distribution and abundance of plants species. Recently, arbuscular mycorrhizal fungal (AMF partners of non-indigenous invasive plants have been hypothesized to be a critical factor influencing the invasion processes. AMF are known to improve nutrient and moisture uptake, as well as disrupt parasitic and pathogenic microbes in the host plant. Such benefits may enable invaders to establish significant and persistent populations in environments previously dominated by natives. Coupling these findings with studies on invader pathogen-disrupting root exudates is not well documented in the literature describing plant invasion strategies. The interaction effects of altered AMF associations and the impact of invader root exudates would be more relevant than understanding the AMF dynamics or the phytochemistry of successful invaders in isolation, particularly given that AMF and root exudates can have a similar role in pathogen control but function quite differently. One means to achieve this goal is to assess these strategies concurrently by characterizing both the general (mostly pathogens or commensals and AM-specific fungal colonization patterns found in field collected root samples of successful invaders, native plants growing within dense patches of invaders, and native plants growing separately from invaders. In this review I examine the emerging evidence of the ways in which AMF-plant interactions and the production of defensive root exudates provide pathways to invasive plant establishment and expansion, and conclude that interaction studies must be pursued to achieve a more comprehensive understanding of successful plant invasion.

  4. Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: Implications for rhizodegradation.

    Science.gov (United States)

    Ely, Cairn S; Smets, Barth F

    2017-10-03

    The chemical interaction between plants and bacteria in the root zone can lead to soil decontamination. Bacteria that degrade polycyclic aromatic hydrocarbons (PAHs) have been isolated from the rhizospheres of plant species with varied biological traits; however, it is not known what phytochemicals promote contaminant degradation. One monocot and two dicotyledon plants were grown in PAH-contaminated soil from a manufactured gas plant (MGP) site. A phytotoxicity assay confirmed greater soil decontamination in rhizospheres when compared to bulk soil controls. Bacteria were isolated from plant roots (rhizobacteria) and selected for growth on anthracene and chrysene on PAH-amended plates. Rhizosphere isolates metabolized 3- and 4-ring PAHs and PAH catabolic intermediates in liquid incubations. Aromatic root exudate compounds, namely flavonoids and simple phenols, were also substrates for isolated rhizobacteria. In particular, the phenolic compounds-morin, caffeic acid, and protocatechuic acid-appear to be linked to bacterial degradation of 3- and 4-ring PAHs in the rhizosphere.

  5. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    Directory of Open Access Journals (Sweden)

    Lesley A. Judd

    2015-07-01

    Full Text Available The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  6. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants.

    Science.gov (United States)

    Judd, Lesley A; Jackson, Brian E; Fonteno, William C

    2015-07-03

    The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics) has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  7. Mapping soil deformation around plant roots using in vivo 4D X-ray Computed Tomography and Digital Volume Correlation.

    Science.gov (United States)

    Keyes, S D; Gillard, F; Soper, N; Mavrogordato, M N; Sinclair, I; Roose, T

    2016-06-14

    The mechanical impedance of soils inhibits the growth of plant roots, often being the most significant physical limitation to root system development. Non-invasive imaging techniques have recently been used to investigate the development of root system architecture over time, but the relationship with soil deformation is usually neglected. Correlative mapping approaches parameterised using 2D and 3D image data have recently gained prominence for quantifying physical deformation in composite materials including fibre-reinforced polymers and trabecular bone. Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) are computational techniques which use the inherent material texture of surfaces and volumes, captured using imaging techniques, to map full-field deformation components in samples during physical loading. Here we develop an experimental assay and methodology for four-dimensional, in vivo X-ray Computed Tomography (XCT) and apply a Digital Volume Correlation (DVC) approach to the data to quantify deformation. The method is validated for a field-derived soil under conditions of uniaxial compression, and a calibration study is used to quantify thresholds of displacement and strain measurement. The validated and calibrated approach is then demonstrated for an in vivo test case in which an extending maize root in field-derived soil was imaged hourly using XCT over a growth period of 19h. This allowed full-field soil deformation data and 3D root tip dynamics to be quantified in parallel for the first time. This fusion of methods paves the way for comparative studies of contrasting soils and plant genotypes, improving our understanding of the fundamental mechanical processes which influence root system development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Swarms, swarming and entanglements of fungal hyphae and of plant roots

    Science.gov (United States)

    Barlow, Peter W.; Fisahn, Joachim

    2013-01-01

    There has been recent interest in the possibility that plant roots can show oriented collective motion, or swarming behavior. We examine the evidence supportive of root swarming and we also present new observations on this topic. Seven criteria are proposed for the definition of a swarm, whose application can help identify putative swarming behavior in plants. Examples where these criteria are fulfilled, at many levels of organization, are presented in relation to plant roots and root systems, as well as to the root-like mycelial cords (rhizomorphs) of fungi. The ideas of both an “active” swarming, directed by a signal which imposes a common vector on swarm element aggregation, and a “passive” swarming, where aggregation results from external constraint, are introduced. Active swarming is a pattern of cooperative behavior peculiar to the sporophyte generation of vascular plants and is the antithesis of the competitive behavior shown by the gametophyte generation of such plants, where passive swarming may be found. Fungal mycelial cords could serve as a model example of swarming in a multi-cellular, non-animal system. PMID:24255743

  9. Comparison of Stevia plants grown from seeds, cuttings and stem-tip cultures for growth and sweet diterpene glucosides.

    Science.gov (United States)

    Tamura, Y; Nakamura, S; Fukui, H; Tabata, M

    1984-10-01

    The growth and sweet diterpene glucosides of Stevia plants propagated by stem-tip cultures were compared with those of the control plants propagated by seeds. There was no significant difference between the two groups both in growth and in chemical composition. As for the contents of sweet diterpene glucosides, however, the clonal plants showed significantly smaller variations than the sexually propagated plants; they were almost as homogeneous as the plants propagated by cuttings. These results suggest that the clonal propagation by stem-tip culture is an effective method of obtaining a population of uniform plants for the production of sweet diterpene glucosides.

  10. Transcriptional Responses in the Hemiparasitic Plant Triphysaria versicolor to Host Plant Signals1[w

    Science.gov (United States)

    Matvienko, Marta; Torres, Manuel J.; Yoder, John I.

    2001-01-01

    Parasitic plants in the Scrophulariaceae use chemicals released by host plant roots to signal developmental processes critical for heterotrophy. Haustoria, parasitic plant structures that attach to and invade host roots, develop on roots of the hemiparasitic plant Triphysaria versicolor within a few hours of exposure to either maize (Zea mays) root exudate or purified haustoria-inducing factors. We prepared a normalized, subtractive cDNA library enriched for transcripts differentially abundant in T. versicolor root tips treated with the allelopathic quinone 2,6-dimethoxybenzoquinone (DMBQ). Northern analyses estimated that about 10% of the cDNAs represent transcripts strongly up-regulated in roots exposed to DMBQ. Northern and reverse northern analyses demonstrated that most DMBQ-responsive messages were similarly up-regulated in T. versicolor roots exposed to maize root exudates. From the cDNA sequences we assembled a unigene set of 137 distinct transcripts and assigned functions by homology comparisons. Many of the proteins encoded by the transcripts are predicted to function in quinone detoxification, whereas others are more likely associated with haustorium development. The identification of genes transcriptionally regulated by haustorium-inducing factors provides a framework for dissecting genetic pathways recruited by parasitic plants during the transition to heterotrophic growth. PMID:11553755

  11. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress.

    Science.gov (United States)

    Hu, Longxing; Li, Huiying; Chen, Liang; Lou, Yanhong; Amombo, Erick; Fu, Jinmin

    2015-08-04

    Soil salinity is one of the most significant abiotic stresses affecting plant shoots and roots growth. The adjustment of root architecture to spatio-temporal heterogeneity in salinity is particularly critical for plant growth and survival. Bermudagrass (Cynodon dactylon) is a widely used turf and forage perennial grass with a high degree of salinity tolerance. Salinity appears to stimulate the growth of roots and decrease their mortality in tolerant bermudagrass. To estimate a broad spectrum of genes related to root elongation affected by salt stress and the molecular mechanisms that control the positive response of root architecture to salinity, we analyzed the transcriptome of bermudagrass root tips in response to salinity. RNA-sequencing was performed in root tips of two bermudagrass genotypes contrasting in salt tolerance. A total of 237,850,130 high quality clean reads were generated and 250,359 transcripts were assembled with an average length of 1115 bp. Totally, 103,324 unigenes obtained with 53,765 unigenes (52 %) successfully annotated in databases. Bioinformatics analysis indicated that major transcription factor (TF) families linked to stress responses and growth regulation (MYB, bHLH, WRKY) were differentially expressed in root tips of bermudagrass under salinity. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases) were identified. RNA-seq analysis identified candidate genes encoding TFs involved in the regulation of lignin synthesis, reactive oxygen species (ROS) homeostasis controlled by peroxidases, and the regulation of phytohormone signaling that promote cell wall loosening and therefore root growth under salinity.

  12. Volatile oils from the plant and hairy root cultures of Ageratum conyzoides L.

    Science.gov (United States)

    Abdelkader, Mohamed Salaheldin A; Lockwood, George B

    2011-05-01

    Two lines of hairy root culture of Ageratum conyzoides L. induced by Agrobacterium rhizogenes ATCC 15834 were established under either complete darkness or 16 h light/8 h dark photoperiod conditions. The volatile oil yields from aerial parts and roots of the parent plant, the hairy root culture photoperiod line and the hairy root culture dark line were 0.2%, 0.08%, 0.03% and 0.02%, (w/w), respectively. The compositions of the volatiles from the hairy roots, plant roots and aerial parts were analysed by GC and GC-MS. The main components of the volatiles from the hairy root cultures were β-farnesene, precocene I and β-caryophyllene, in different amounts, depending on light conditions and also on the age of cultures. Precocene I, β-farnesene, precocene II and β-caryophyllene were the main constituents of the volatile oils from the parent plant roots, whereas precocene I, germacrene D, β-caryophyllene and precocene II were the main constituents of the aerial parts of the parent plant. Growth and time-course studies of volatile constituents of the two hairy root lines were compared. Qualitative and quantitative differences were found between the volatile oils from the roots of the parent plant and those from the hairy roots.

  13. A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa.

    Science.gov (United States)

    Santos, Franciele; Peñaflor, Maria Fernanda G V; Paré, Paul W; Sanches, Patrícia A; Kamiya, Aline C; Tonelli, Mateus; Nardi, Cristiane; Bento, José Mauricio S

    2014-01-01

    A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E)-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM) program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.

  14. A novel life cycle arising from leaf segments in plants regenerated from horseradish hairy roots.

    Science.gov (United States)

    Mano, Y; Matsuhashi, M

    1995-03-01

    Horseradish (Armoracia rusticana) hairy root clones were established from hairy roots which were transformed with the Ri plasmid in Agrobacterium rhizogenes 15834. The transformed plants, which were regenerated from hairy root clones, had thicker roots with extensive lateral branches and thicker stems, and grew faster compared with non-transformed horseradish plants. Small sections of leaves of the transformed plants generated adventitious roots in phytohormone-free G (modified Gamborg's) medium. Root proliferation was followed by adventitious shoot formation and plant regeneration. Approximately twenty plants were regenerated per square centimeter of leaf. The transformed plants were easily transferable from sterile conditions to soil. When leaf segments of the transformed plants were cultured in a liquid fertilizer under non-sterile conditions, adventitious roots were generated at the cut ends of the leaves. Adventitious shoots were generated at the boundary between the leaf and the adventitious roots and developed into complete plants. This novel life cycle arising from leaf segments is a unique property of the transformed plants derived from hairy root clones.

  15. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion.

    Directory of Open Access Journals (Sweden)

    Swarnalee Dutta

    Full Text Available The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs. We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430. There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE, compared to those exposed to groundnut-root exudates (GRE. In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2, in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.

  16. Inhibiting Cadmium Transport Process in Root Cells of Plants: A Review

    Directory of Open Access Journals (Sweden)

    ZHAO Yan-ling

    2016-05-01

    Full Text Available Cadmium(Cd is the most common element found in the heavy-metal contaminated soils in China. Roots of rice and vegetables can concentrate Cd from acid soils, and then transport Cd to above-ground parts. Cd in edible part of plants directly influences the food safety. Cellwall, plasma membrane and organells of root cells in plant can discriminate Cd from other elements. A lot of Cd can be fixed in root cells by precipitation, complexation, compartmentation, and so on, to inhibit its transport from roots to shoot and guarantee the physiological activities in above-ground parts carrying out normally. This paper summarized recent advance on inhibiting Cd transport process in subcellular fractions of root cells of plants, which is in advantage of exploring excellent germplasms and gene resources in the future.

  17. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  18. Thermal effects from modified endodontic laser tips used in the apical third of root canals with erbium-doped yttrium aluminium garnet and erbium, chromium-doped yttrium scandium gallium garnet lasers.

    Science.gov (United States)

    George, Roy; Walsh, Laurence J

    2010-04-01

    To evaluate the temperature changes occurring on the apical third of root surfaces when erbium-doped yttrium aluminium garnet (Er:YAG) and erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) laser energy was delivered with a tube etched, laterally emitting conical tip and a conventional bare design optical fiber tip. Thermal effects of root canal laser treatments on periodontal ligament cells and alveolar bone are of concern in terms of safety. A total of 64 single-rooted extracted teeth were prepared 1 mm short of the working length using rotary nickel-titanium Pro-Taper files to an apical size corresponding to a F5 Pro-Taper instrument. A thermocouple located 2 mm from the apex was used to record temperature changes arising from delivery of laser energy through laterally emitting conical tips or plain tips, using an Er:YAG or Er,Cr:YSGG laser. For the Er:YAG and Er,Cr:YSGG systems, conical fibers showed greater lateral emissions (452 + 69% and 443 + 64%) and corresponding lower forward emissions (48 + 5% and 49 + 5%) than conventional plain-fiber tips. All four combinations of laser system and fiber design elicited temperature increases less than 2.5 degrees C during lasing. The use of water irrigation attenuated completely the thermal effects of individual lasing cycles. Laterally emitting conical fiber tips can be used safely under defined conditions for intracanal irradiation without harmful thermal effects on the periodontal apparatus.

  19. Determination of the physiological root activity of fruit trees using the radioisotopes 131I

    International Nuclear Information System (INIS)

    Reckruehm, I.

    1979-01-01

    Using the radioisotope 131 I, the author made a study of the physiological root activity in a volume of soil and the activity of the individual root tips. The results show that the root activity is affected both by the size of the branch system of the crown and by the number of root tips in the given soil volume. The greater the number of branches supplied with iodine, the higher the activity of the root tips. The greater the number of root tips in a given soil volume, the lower the physiological activity of the individual root tips. (author)

  20. Effects of wastewater discharge on formation of Fe plaque on root surface and radial oxygen loss of mangrove roots

    Energy Technology Data Exchange (ETDEWEB)

    Pi, N. [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Tam, N.F.Y., E-mail: bhntam@cityu.edu.h [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon (Hong Kong); Wong, M.H. [Croucher Institute for Environmental Sciences, Baptist University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong)

    2010-02-15

    Effects of wastewater discharge on radial oxygen loss (ROL), formation of iron (Fe) plaque on root surface, and their correlations in Bruguiera gymnorrhiza (L.) Poir and Excoecaria agallocha L. were investigated. ROL along a lateral root increased more rapidly in control than that in strong wastewater (with pollutant concentrations ten times of that in municipal sewage, 10NW) treatment, but less Fe plaque was formed in control for both plants. For B. gymnorrhiza receiving 10NW, Fe plaque formation was more at basal and mature zones than at root tip, while opposite trend was shown in E. agallocha. At day 0, the correlation between ROL and Fe plaque was insignificant, but negative and positive correlations were found in 10NW and control, respectively, at day 105, suggesting that more ROL was induced leading to more Fe plaque. However, excess Fe plaque also served as a 'barrier' to prevent excessive ROL in 10NW plants. - Correlation between Fe plaque formation and ROL.

  1. Three major nucleolar proteins migrate from nucleolus to nucleoplasm and cytoplasm in root tip cells of Vicia faba L. exposed to aluminum.

    Science.gov (United States)

    Qin, Rong; Zhang, Huaning; Li, Shaoshan; Jiang, Wusheng; Liu, Donghua

    2014-09-01

    Results from our previous investigation indicated that Al could affect the nucleolus and induce extrusion of silver-staining nucleolar particles containing argyrophilic proteins from the nucleolus into the cytoplasm in root tip cells of Vicia faba L. So far, the nucleolar proteins involved have not been identified. It is well known that nucleophosmin (B23), nucleolin (C23), and fibrillarin are three major and multifunctional nucleolar proteins. Therefore, effects of Al on B23, C23, and fibrillarin in root tip cells of V. faba exposed to 100 μM Al for 48 h were observed and analyzed using indirect immunofluorescence microscopy and Western blotting. The results from this work demonstrated that after 100 μM of Al treatment for 48 h, B23 and C23 migrated from the nucleolus to the cytoplasm and fibrillarin from the nucleolus to the nucleoplasm. In some cells, fibrillarin was present only in the cytoplasm. Western blotting data revealed higher expression of the three major nucleolar proteins in Al-treated roots compared with the control and that the B23 content increased markedly. These findings confirmed our previous observations.

  2. Genotoxicity evaluation of the insecticide ethion in root of Allium ...

    African Journals Online (AJOL)

    USER

    2010-07-05

    Jul 5, 2010 ... In this study, the genotoxic effects of ethion were investigated in the mitotic cell division of Allium ... The use of plant root tips, particularly those of A. cepa and Vicia faba, as a bioassay test system for the genotoxicity of pesticides has shown extremely ..... the long run, even below the recommended dose.

  3. Evaluation of allelopathic impact of aqueous extract of root and aerial root of Tinospora cordifolia (Willd. miers on some weed plants

    Directory of Open Access Journals (Sweden)

    K. M. Abdul RAOOF

    2012-05-01

    Full Text Available The present laboratory experimental study was conducted to evaluate the allelopathic potential of Tinospora cordifolia (Willd. Miers on seed germination and seedling growth of weed plants (Chenopodium album L. Chenopodium murale L., Cassia tora L. and Cassia sophera L.. Root and aerial root aqueous extracts of Tinospora at 0.5, 1.0, 2.0 and 4.0% concentrations were applied to determine their effect on seed germination and seedling growth of test plants under laboratory conditions. Germination was observed for 15 days after that the root length and shoot length was measured. Dry weight was measured after oven drying the seedlings. The aqueous extracts from root and aerial root had inhibitory effect on seed germination of test plants. Aqueous extracts from root and aerial root significantly inhibited not only germination and seedling growth but also reduced dry weight of the seedlings. Root length, shoot length of weed species decreased progressively when plants were exposed to increasing concentration (0.5, 1, 2 and 4%. Aqueous extract of aerial root shows the least inhibition. The pH of aqueous extracts of different parts of T. cordifolia does not show any major change when the concentration increases.

  4. Dispersion of near-infrared laser energy through radicular dentine when using plain or conical tips.

    Science.gov (United States)

    Teo, Christine Yi Jia; George, Roy; Walsh, Laurence J

    2018-02-01

    The aim of this study was to investigate the influence of tip design on patterns of laser energy dispersion through the dentine of tooth roots when using near-infrared diode lasers. Diode laser emissions of 810 or 940 nm were used in combination with optical fiber tips with either conventional plain ends or conical ends, to irradiate tooth roots of oval or round cross-sectional shapes. The lasers were operated in continuous wave mode at 0.5 W for 5 s with the distal end of the fiber tip placed in the apical or coronal third of the root canal at preset positions. Laser light exiting through the roots and apical foramen was imaged, and the extent of lateral spread calculated. There was a significant difference in infrared light exiting the root canal apex between plain and conical fiber tips for both laser wavelengths, with more forward transmission of laser energy through the apex for plain tips. For both laser wavelengths, there were no significant differences in emission patterns when the variable of canal shape was used and all other variables were kept the same (plain vs conical tip, tip position). To ensure optimal treatment effect and to prevent the risks of inadvertent laser effects on the adjacent periapical tissues, it is important to have a good understanding of laser transmission characteristics of the root canal and root dentine. Importantly, it is also essential to understand transmission characteristics of plain and conical fibers tips.

  5. Timelapse scanning reveals spatial variation in tomato (Solanum lycopersicum L.) root elongation rates during partial waterlogging

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian; McKenzie, Blair M.

    2013-01-01

    Background and aims Root systems show considerable plasticity in their morphology and physiology in response to variability within their environment. Root elongation below a water-table was expected to slow due to hypoxia, whilst roots above the waterlogged zone were expected to compensate...... for 24 h or 5 days. Root elongation rates were calculated from the displacement of randomly selected root tips between successive scans. Oxygen content was determined in the waterlogged layer and plant and root parameters were determined at cessation of the experiment. Results Root elongation rates...

  6. Methods of plant root exudates analysis: a review

    Directory of Open Access Journals (Sweden)

    Peter Dundek

    2011-01-01

    Full Text Available The aim of this review is to summarise current knowledge on methods being used to determine individual compounds and properties of water-soluble plant root exudates. These compounds include amino acids, organic acids and simple sugars, as well as polysaccharides, proteins and organic substances. Qualitative composition of water-soluble root exudates and exudation rate are commonly measured with the aim of consequent synthetic preparation of plant root exudates to be supplied to soil to create artificial rhizosphere for different experimental purposes. Root exudates collection usually requires consequent filtration or centrifugation to remove solids, root detritus and microbial cell debris, and consequent concentration using an evaporator, lyophilizator or ultrafiltration. Methods used for analysis of total groups of compounds (total proteins and total carbohydrates and total organic carbon are simple. On the other hand, HPLC or GS/MS are commonly used to analyse individual low molecular weight organic molecules (sugars, organic acids and amino acids with separation using different columns. Other properties such as pH, conductivity or activity of different enzymes as well as gel electrophoresis of proteins are sometimes assessed. All of these methods are discussed in this work.

  7. A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa.

    Directory of Open Access Journals (Sweden)

    Franciele Santos

    Full Text Available A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.

  8. Rooting depths of plants relative to biological and environmental factors

    International Nuclear Information System (INIS)

    Foxx, T.S.; Tierney, G.D.; Williams, J.M.

    1984-11-01

    In 1981 to 1982 an extensive bibliographic study was completed to document rooting depths of native plants in the United States. The data base presently contains 1034 citations with approximately 12,000 data elements. In this paper the data were analyzed for rooting depths as related to life form, soil type, geographical region, root type, family, root depth to shoot height ratios, and root depth to root lateral ratios. Average rooting depth and rooting frequencies were determined and related to present low-level waste site maintenance

  9. A Novel Plant Root Foraging Algorithm for Image Segmentation Problems

    Directory of Open Access Journals (Sweden)

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a new type of biologically-inspired global optimization methodology for image segmentation based on plant root foraging behavior, namely, artificial root foraging algorithm (ARFO. The essential motive of ARFO is to imitate the significant characteristics of plant root foraging behavior including branching, regrowing, and tropisms for constructing a heuristic algorithm for multidimensional and multimodal problems. A mathematical model is firstly designed to abstract various plant root foraging patterns. Then, the basic process of ARFO algorithm derived in the model is described in details. When tested against ten benchmark functions, ARFO shows the superiority to other state-of-the-art algorithms on several benchmark functions. Further, we employed the ARFO algorithm to deal with multilevel threshold image segmentation problem. Experimental results of the new algorithm on a variety of images demonstrated the suitability of the proposed method for solving such problem.

  10. Root chemistry and soil fauna, but not soil abiotic conditions explain the effects of plant diversity on root decomposition

    NARCIS (Netherlands)

    Chen, Hongmei; Oram, Natalie J.; Barry, Kathryn E.; Mommer, Liesje; Ruijven, van Jasper; Kroon, de Hans; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Gleixner, Gerd; Gessler, Arthur; González Macé, Odette; Hacker, Nina; Hildebrandt, Anke; Lange, Markus; Scherer-lorenzen, Michael; Scheu, Stefan; Oelmann, Yvonne; Wagg, Cameron; Wilcke, Wolfgang; Wirth, Christian; Weigelt, Alexandra

    2017-01-01

    Plant diversity influences many ecosystem functions including root decomposition. However, due to the presence of multiple pathways via which plant diversity may affect root decomposition, our mechanistic understanding of their relationships is limited. In a grassland biodiversity experiment, we

  11. Root hairs aid soil penetration by anchoring the root surface to pore walls.

    Science.gov (United States)

    Bengough, A Glyn; Loades, Kenneth; McKenzie, Blair M

    2016-02-01

    The physical role of root hairs in anchoring the root tip during soil penetration was examined. Experiments using a hairless maize mutant (Zea mays: rth3-3) and its wild-type counterpart measured the anchorage force between the primary root of maize and the soil to determine whether root hairs enabled seedling roots in artificial biopores to penetrate sandy loam soil (dry bulk density 1.0-1.5g cm(-3)). Time-lapse imaging was used to analyse root and seedling displacements in soil adjacent to a transparent Perspex interface. Peak anchorage forces were up to five times greater (2.5N cf. 0.5N) for wild-type roots than for hairless mutants in 1.2g cm(-3) soil. Root hair anchorage enabled better soil penetration for 1.0 or 1.2g cm(-3) soil, but there was no significant advantage of root hairs in the densest soil (1.5g cm(-3)). The anchorage force was insufficient to allow root penetration of the denser soil, probably because of less root hair penetration into pore walls and, consequently, poorer adhesion between the root hairs and the pore walls. Hairless seedlings took 33h to anchor themselves compared with 16h for wild-type roots in 1.2g cm(-3) soil. Caryopses were often pushed several millimetres out of the soil before the roots became anchored and hairless roots often never became anchored securely.The physical role of root hairs in anchoring the root tip may be important in loose seed beds above more compact soil layers and may also assist root tips to emerge from biopores and penetrate the bulk soil. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Spatial root distribution of plants growing in vertical media for use in living walls

    DEFF Research Database (Denmark)

    Jørgensen, Lars; Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    Background and Aims: For plants growing in living walls, the growth potential is correlated to the roots ability to utilize resources in all parts of the growing medium and thereby to the spatial root distribution. The aim of the study was to test how spatial root distribution was affected...... root growth was limited for plants in the middle or lower parts of the medium and 15N measurements confirmed that only plants in the bottom of the box had active roots in the bottom of the medium. The species differed in root architecture and spatial root distribution. Conclusions: The choice...... by growing medium, planting position and competition from other plants. Methods: Five species (Campanula poscharskyana cv. 'Stella', Fragaria vesca cv. 'Småland', Geranium sanguineum cv. 'Max Frei', Sesleria heufleriana and Veronica officinalis cv. 'Allgrün') were grown in three growing media (coir and two...

  13. Pectins, ROS homeostasis and UV-B responses in plant roots.

    Science.gov (United States)

    Yokawa, Ken; Baluška, František

    2015-04-01

    Light from the sun contains far-red, visible and ultra violet (UV) wavelength regions. Almost all plant species have been evolved under the light environment. Interestingly, several photoreceptors, expressing both in shoots and roots, process the light information during the plant life cycle. Surprisingly, Arabidopsis root apices express besides the UVR8 UV-B receptor, also root-specific UV-B sensing proteins RUS1 and RUS2 linked to the polar cell-cell transport of auxin. In this mini-review, we focus on reactive oxygen species (ROS) signaling and possible roles of pectins internalized via endocytic vesicle recycling system in the root-specific UV-B perception and ROS homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Metabolic analysis of the increased adventitious rooting mutant of Artemisia annua reveals a role for the plant monoterpene borneol in adventitious root formation.

    Science.gov (United States)

    Tian, Na; Liu, Shuoqian; Li, Juan; Xu, Wenwen; Yuan, Lin; Huang, Jianan; Liu, Zhonghua

    2014-08-01

    Adventitious root (AR) formation is a critical process for plant clonal propagation. The role of plant secondary metabolites in AR formation is still poorly understood. Chemical and physical mutagenesis in combination with somatic variation were performed on Artemisia annua in order to obtain a mutant with changes in adventitious rooting and composition of plant secondary metabolites. Metabolic and morphological analyses of the iar (increased adventitious rooting) mutant coupled with in vitro assays were used to elucidate the relationship between plant secondary metabolites and AR formation. The only detected differences between the iar mutant and wild-type were rooting capacity and borneol/camphor content. Consistent with this, treatment with borneol in vitro promoted adventitious rooting in wild-type. The enhanced rooting did not continue upon removal of borneol. The iar mutant displayed no significant differences in AR formation upon treatment with camphor. Together, our results suggest that borneol promotes adventitious rooting whereas camphor has no effect on AR formation. © 2013 Scandinavian Plant Physiology Society.

  15. Sensitivity of greenhouse summer dryness to changes in plant rooting characteristics

    Science.gov (United States)

    Milly, P.C.D.

    1997-01-01

    A possible consequence of increased concentrations of greenhouse gases in Earth's atmosphere is "summer dryness," a decrease of summer plant-available soil water in middle latitudes, caused by increased availability of energy to drive evapotranspiration. Results from a numerical climate model indicate that summer dryness and related changes of land-surface water balances are highly sensitive to possible concomitant changes of plant-available water-holding capacity of soil, which depends on plant rooting depth and density. The model suggests that a 14% decrease of the soil volume whose water is accessible to plant roots would generate the same summer dryness, by one measure, as an equilibrium doubling of atmospheric carbon dioxide. Conversely, a 14% increase of that soil volume would be sufficient to offset the summer dryness associated with carbon-dioxide doubling. Global and regional changes in rooting depth and density may result from (1) plant and plant-community responses to greenhouse warming, to carbon-dioxide fertilization, and to associated changes in the water balance and (2) anthropogenic deforestation and desertification. Given their apparently critical role, heretofore ignored, in global hydroclimatic change, such changes of rooting characteristics should be carefully evaluated using ecosystem observations, theory, and models.

  16. Three-dimensional reconstruction of root shape in the moth orchid Phalaenopsis sp.: a biomimicry methodology for robotic applications.

    Science.gov (United States)

    Mishra, Anand Kumar; Degl'Innocenti, Andrea; Mazzolai, Barbara

    2018-04-25

    Within the field of biorobotics, an emerging branch is plant-inspired robotics. Some effort exists in particular towards the production of digging robots that mimic roots; for these, a deeper comprehension of the role of root tip geometry in excavation would be highly desirable. Here we demonstrate a photogrammetry-based pipeline for the production of computer and manufactured replicas of moth orchid root apexes. Our methods yields faithful root reproductions. This can be used either for quantitative studies aimed at comparing different root morphologies, or directly to implement a particular root shape in a biorobot.

  17. Effects of Lead on the Morphology and Structure of the Nucleolus in the Root Tip Meristematic Cells of Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Ze Jiang

    2014-07-01

    Full Text Available To study the toxic mechanisms of lead (Pb in plants, the effects of Pb on the morphology and structure of the nucleolus in root tip meristematic cells of Allium cepa var. agrogarum L. were investigated. Fluorescence labeling, silver-stained indirect immunofluorescent microscopy and western blotting were used. Fluorescence labeling showed that Pb ions were localized in the meristematic cells and the uptake and accumulation of Pb increased with treatment time. At low concentrations of Pb (1–10 μM there were persistent nucleoli in some cells during mitosis, and at high concentration (100 μM many of the nucleolar organizing regions were localized on sticky chromosomes in metaphase and anaphase cells. Pb induced the release of particles containing argyrophilic proteins to be released from the nucleus into the cytoplasm. These proteins contained nucleophosmin and nucleolin. Pb also caused the extrusion of fibrillarin from the nucleus into the cytoplasm. Western blotting demonstrated the increased expression of these three major nucleolar proteins under Pb stress.

  18. Estimating plant root water uptake using a neural network approach

    DEFF Research Database (Denmark)

    Qiao, D M; Shi, H B; Pang, H B

    2010-01-01

    but has not yet been addressed. This paper presents and tests such an approach. The method is based on a neural network model, estimating the water uptake using different types of data that are easy to measure in the field. Sunflower grown in a sandy loam subjected to water stress and salinity was taken......Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil...... and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root...

  19. Competition between Plant-Populations with Different Rooting Depths. 2. Pot Experiments

    NARCIS (Netherlands)

    Berendse, F.

    1981-01-01

    In a previous paper in this series a model was proposed lor the competition between plant populations with different rooting depths. This model predicts that in mixtures of plant populations with different rooting depths the Relative Yield Total will exceed unity. Secondly it predicts that in these

  20. Competition between Plant-Populations with Different Rooting Depths. 1. Theoretical Considerations

    NARCIS (Netherlands)

    Berendse, F.

    1979-01-01

    As an extension of De Wit's competition theory a theoretical description has been developed of competition between plant populations with different rooting depths. This model shows that in mixtures of plants with different rooting depths the value of the Relative Yield Total can be expected to

  1. Competition Between Plant Populations with Different Rooting Depths I. Theoretical Considerations

    NARCIS (Netherlands)

    Berendse, Frank

    1979-01-01

    As an extension of De Wit’s competition theory a theoretical description has been developed of competition between plant populations with different rooting depths. This model shows that in mixtures of plants with different rooting depths the value of the Relative Yield Total can be expected to

  2. Effects of plant growth regulators on callus, shoot and root formation ...

    African Journals Online (AJOL)

    Root and stem explants of fluted pumpkin were cultured in medium containing different types and concentrations of plant growth regulators (PGRs). The explants were observed for callus, root and shoot formation parameters after four months. Differences among explants, plant growth regulators and their interaction were ...

  3. Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize

    DEFF Research Database (Denmark)

    Rich, Sarah Meghan; Ludwig, Martha; Pedersen, Ole

    2011-01-01

    • Many wetland plants produce aquatic adventitious roots from submerged stems. Aquatic roots can form chloroplasts, potentially producing endogenous carbon and oxygen. Here, aquatic root photosynthesis was evaluated in the wetland plant Meionectes brownii, which grows extensive stem-borne aquatic...... roots during submergence. • Underwater photosynthetic light and CO(2) response curves were determined for aquatic-adapted leaves, stems and aquatic roots of M. brownii. Oxygen microelectrode and (14)CO(2)-uptake experiments determined shoot inputs of O(2) and photosynthate into aquatic roots. • Aquatic...... adventitious roots contain a complete photosynthetic pathway. Underwater photosynthetic rates are similar to those of stems, with a maximum net photosynthetic rate (P(max)) of 0.38 µmol O(2) m(-2) s(-1); however, this is c. 30-fold lower than that of aquatic-adapted leaves. Under saturating light with 300 mmol...

  4. The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants.

    Science.gov (United States)

    Angel, Roey; Conrad, Ralf; Dvorsky, Miroslav; Kopecky, Martin; Kotilínek, Milan; Hiiesalu, Inga; Schweingruber, Fritz; Doležal, Jiří

    2016-08-01

    Upward migration of plants to barren subnival areas is occurring worldwide due to raising ambient temperatures and glacial recession. In summer 2012, the presence of six vascular plants, growing in a single patch, was recorded at an unprecedented elevation of 6150 m.a.s.l. close to the summit of Mount Shukule II in the Western Himalayas (Ladakh, India). Whilst showing multiple signs of stress, all plants have managed to establish stable growth and persist for several years. To learn about the role of microbes in the process of plant upward migration, we analysed the root-associated microbial community of the plants (three individuals from each) using microscopy and tagged amplicon sequencing. No mycorrhizae were found on the roots, implying they are of little importance to the establishment and early growth of the plants. However, all roots were associated with a complex bacterial community, with richness and diversity estimates similar or even higher than the surrounding bare soil. Both soil and root-associated communities were dominated by members of the orders Sphingomonadales and Sphingobacteriales, which are typical for hot desert soils, but were different from communities of temperate subnival soils and typical rhizosphere communities. Despite taxonomic similarity on the order level, the plants harboured a unique set of highly dominant operational taxonomic units which were not found in the bare soil. These bacteria have been likely transported with the dispersing seeds and became part of the root-associated community following germination. The results indicate that developing soils act not only as a source of inoculation to plant roots but also possibly as a sink for plant-associated bacteria.

  5. [Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance: a research review].

    Science.gov (United States)

    Xiong, Yan-Mei; Xia, Han-Ping; Li, Zhi-An; Cai, Xi-An

    2007-04-01

    Plant roots play an important role in resisting the shallow landslip and topsoil erosion of slopes by raising soil shear strength. Among the models in interpreting the mechanisms of slope reinforcement by plant roots, Wu-Waldron model is a widely accepted one. In this model, the reinforced soil strength by plant roots is positively proportional to average root tensile strength and root area ratio, the two most important factors in evaluating slope reinforcement effect of plant roots. It was found that soil erosion resistance increased with the number of plant roots, though no consistent quantitative functional relationship was observed between them. The increase of soil erosion resistance by plant roots was mainly through the actions of fiber roots less than 1 mm in diameter, while fiber roots enhanced the soil stability to resist water dispersion via increasing the number and diameter of soil water-stable aggregates. Fine roots could also improve soil permeability effectively to decrease runoff and weaken soil erosion.

  6. Correspondence analysis evaluation of linear nutrient distribution in root tips of the tropical forage Brachiaria brizantha

    International Nuclear Information System (INIS)

    Pineda-Vargas, C.A.; Prozesky, V.M.; Przybylowicz, W.J.; Mayer, J.E.

    2001-01-01

    The technique of correspondence analysis was applied to a set of data obtained from X-ray elemental analysis by nuclear microscopy. Hydroponic experiments simulating tropical acid soil conditions were carried out to determine possible mechanisms of Al-toxicity stress on specific varieties of the genus Brachiaria. In particular the species Brachiaria brizantha was tested for gradient variation along the central cylinder of selected root tips. Single-point irradiations by nuclear microscopy gave some indication of a possible trace element profile gradient along the root axis. To be able to extrapolate the possible correlation and trace elemental concentrations gradients to a more confident level, this nuclear microscopy data obtained was analysed by correspondence analysis. A clear gradient on the plot of the first two axes of the correspondence analysis was found. The correlation of Ca and Cu as well as that of K and Cl were established

  7. Helical growth trajectories in plant roots interacting with stiff barriers

    Science.gov (United States)

    Gerbode, Sharon; Noar, Roslyn; Harrison, Maria

    2009-03-01

    Plant roots successfully navigate heterogeneous soil environments with varying nutrient and water concentrations, as well as a variety of stiff obstacles. While it is thought that the ability of roots to penetrate into a stiff lower soil layer is important for soil erosion, little is known about how a root actually responds to a rigid interface. We have developed a laser sheet imaging technique for recording the 3D growth dynamics of plant roots interacting with stiff barriers. We find that a root encountering an angled interface does not grow in a straight line along the surface, but instead follows a helical trajectory. These experiments build on the pioneering studies of roots grown on a tilted 2D surface, which reported ``root waving,'' a similar curved pattern thought to be caused by the root's sensitivity to both gravity and the rigid surface on which it is grown. Our measurements extend these results to the more physiologically relevant case of 3D growth, where the spiral trajectory can be altered by tuning the relative strengths of the gravity and touch stimuli, providing some intuition for the physical mechanism driving it.

  8. Analysis of growth patterns during gravitropic curvature in roots of Zea mays by use of a computer-based video digitizer

    Science.gov (United States)

    Nelson, A. J.; Evans, M. L.

    1986-01-01

    A computer-based video digitizer system is described which allows automated tracking of markers placed on a plant surface. The system uses customized software to calculate relative growth rates at selected positions along the plant surface and to determine rates of gravitropic curvature based on the changing pattern of distribution of the surface markers. The system was used to study the time course of gravitropic curvature and changes in relative growth rate along the upper and lower surface of horizontally-oriented roots of maize (Zea mays L.). The growing region of the root was found to extend from about 1 mm behind the tip to approximately 6 mm behind the tip. In vertically-oriented roots the relative growth rate was maximal at about 2.5 mm behind the tip and declined smoothly on either side of the maximum. Curvature was initiated approximately 30 min after horizontal orientation with maximal (50 degrees) curvature being attained in 3 h. Analysis of surface extension patterns during the response indicated that curvature results from a reduction in growth rate along both the upper and lower surfaces with stronger reduction along the lower surface.

  9. Plant-plant interactions influence developmental phase transitions, grain productivity and root system architecture in Arabidopsis via auxin and PFT1/MED25 signalling.

    Science.gov (United States)

    Muñoz-Parra, Edith; Pelagio-Flores, Ramón; Raya-González, Javier; Salmerón-Barrera, Guadalupe; Ruiz-Herrera, León Francisco; Valencia-Cantero, Eduardo; López-Bucio, José

    2017-09-01

    Transcriptional regulation of gene expression influences plant growth, environmental interactions and plant-plant communication. Here, we report that population density is a key factor for plant productivity and a major root architectural determinant in Arabidopsis thaliana. When grown in soil at varied densities from 1 to 32 plants, high number of individuals decreased stem growth and accelerated senescence, which negatively correlated with total plant biomass and seed production at the completion of the life cycle. Root morphogenesis was also a major trait modulated by plant density, because an increasing number of individuals grown in vitro showed repression of primary root growth, lateral root formation and root hair development while affecting auxin-regulated gene expression and the levels of auxin transporters PIN1 and PIN2. We also found that mutation of the Mediator complex subunit PFT1/MED25 renders plants insensitive to high density-modulated root traits. Our results suggest that plant density is critical for phase transitions, productivity and root system architecture and reveal a role of Mediator in self-plant recognition. © 2017 John Wiley & Sons Ltd.

  10. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance.

    Science.gov (United States)

    Eapen, Delfeena; Martínez-Guadarrama, Jesús; Hernández-Bruno, Oralia; Flores, Leonardo; Nieto-Sotelo, Jorge; Cassab, Gladys I

    2017-12-01

    Roots of higher plants change their growth direction in response to moisture, avoiding drought and gaining maximum advantage for development. This response is termed hydrotropism. There have been few studies of root hydrotropism in grasses, particularly in maize. Our goal was to test whether an enhanced hydrotropic response of maize roots correlates with a better adaptation to drought and partial/lateral irrigation in field studies. We developed a laboratory bioassay for testing hydrotropic response in primary roots of 47 maize elite DTMA (Drought Tolerant Maize for Africa) hybrids. After phenotyping these hybrids in the laboratory, selected lines were tested in the field. Three robust and three weak hybrids were evaluated employing three irrigation procedures: normal irrigation, partial lateral irrigation and drought. Hybrids with a robust hydrotropic response showed growth and developmental patterns, under drought and partial lateral irrigation, that differed from weak hydrotropic responders. A correlation between root crown biomass and grain yield in hybrids with robust hydrotropic response was detected. Hybrids with robust hydrotropic response showed earlier female flowering whereas several root system traits, such as projected root area, median width, maximum width, skeleton width, skeleton nodes, average tip diameter, rooting depth skeleton, thinner aboveground crown roots, as well as stem diameter, were considerably higher than in weak hydrotropic responders in the three irrigation procedures utilized. These results demonstrate the benefit of intensive phenotyping of hydrotropism in primary roots since maize plants that display a robust hydrotropic response grew better under drought and partial lateral irrigation, indicating that a selection for robust hydrotropism might be a promising breeding strategy to improve drought avoidance in maize. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Interspecies Interactions in Relation to Root Distribution Across the Rooting Profile in Wheat-Maize Intercropping Under Different Plant Densities

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2018-04-01

    Full Text Available In wheat-maize intercropping systems, the maize is often disadvantageous over the wheat during the co-growth period. It is unknown whether the impaired growth of maize can be recovered through the enhancement of the belowground interspecies interactions. In this study, we (i determined the mechanism of the belowground interaction in relation to root growth and distribution under different maize plant densities, and (ii quantified the “recovery effect” of maize after wheat harvest. The three-year (2014–2016 field experiment was conducted at the Oasis Agriculture Research Station of Gansu Agricultural University, Wuwei, Northwest China. Root weight density (RWD, root length density (RLD, and root surface area density (RSAD, were measured in single-cropped maize (M, single-cropped wheat (W, and three intercropping systems (i wheat-maize intercropping with no root barrier (i.e., complete belowground interaction, IC, (ii nylon mesh root barrier (partial belowground interaction, IC-PRI, and (iii plastic sheet root barrier (no belowground interaction, IC-NRI. The intercropped maize was planted at low (45,000 plants ha−1 and high (52,000 plants ha−1 densities. During the wheat/maize co-growth period, the IC treatment increased the RWD, RLD, and RSAD of the intercropped wheat in the 20–100 cm soil depth compared to the IC-PRI and IC-NRI systems; intercropped maize had 53% lower RWD, 81% lower RLD, and 70% lower RSAD than single-cropped maize. After wheat harvest, the intercropped maize recovered the growth with the increase of RWD by 40%, RLD by 44% and RSAD by 11%, compared to the single-cropped maize. Comparisons among the three intercropping systems revealed that the “recovery effect” of the intercropped maize was attributable to complete belowground interspecies interaction by 143%, the compensational effect due to root overlap by 35%, and the compensational effect due to water and nutrient exchange (CWN by 80%. The higher maize plant

  12. Genetic Control of Plant Root Colonization by the Biocontrol agent, Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Benjamin J.; Fletcher, Meghan; Waters, Jordan; Wetmore, Kelly; Blow, Matthew J.; Deutschbauer, Adam M.; Dangl, Jeffry L.; Visel, Axel

    2015-03-19

    Plant growth promoting rhizobacteria (PGPR) are a critical component of plant root ecosystems. PGPR promote plant growth by solubilizing inaccessible minerals, suppressing pathogenic microorganisms in the soil, and directly stimulating growth through hormone synthesis. Pseudomonas fluorescens is a well-established PGPR isolated from wheat roots that can also colonize the root system of the model plant, Arabidopsis thaliana. We have created barcoded transposon insertion mutant libraries suitable for genome-wide transposon-mediated mutagenesis followed by sequencing (TnSeq). These libraries consist of over 105 independent insertions, collectively providing loss-of-function mutants for nearly all genes in the P.fluorescens genome. Each insertion mutant can be unambiguously identified by a randomized 20 nucleotide sequence (barcode) engineered into the transposon sequence. We used these libraries in a gnotobiotic assay to examine the colonization ability of P.fluorescens on A.thaliana roots. Taking advantage of the ability to distinguish individual colonization events using barcode sequences, we assessed the timing and microbial concentration dependence of colonization of the rhizoplane niche. These data provide direct insight into the dynamics of plant root colonization in an in vivo system and define baseline parameters for the systematic identification of the bacterial genes and molecular pathways using TnSeq assays. Having determined parameters that facilitate potential colonization of roots by thousands of independent insertion mutants in a single assay, we are currently establishing a genome-wide functional map of genes required for root colonization in P.fluorescens. Importantly, the approach developed and optimized here for P.fluorescens>A.thaliana colonization will be applicable to a wide range of plant-microbe interactions, including biofuel feedstock plants and microbes known or hypothesized to impact on biofuel-relevant traits including biomass productivity

  13. A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture

    Science.gov (United States)

    Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.

    2017-12-01

    This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.

  14. Deciphering composition and function of the root microbiome of a legume plant

    NARCIS (Netherlands)

    Hartman, Kyle; van der Heijden, Marcel G A|info:eu-repo/dai/nl/240923901; Roussely-Provent, Valexia; Walser, Jean-Claude; Schlaeppi, Klaus

    2017-01-01

    BACKGROUND: Diverse assemblages of microbes colonize plant roots and collectively function as a microbiome. Earlier work has characterized the root microbiomes of numerous plant species, but little information is available for legumes despite their key role in numerous ecosystems including

  15. The roots of defense: plant resistance and tolerance to belowground herbivory.

    Directory of Open Access Journals (Sweden)

    Sean M Watts

    2011-04-01

    Full Text Available There is conclusive evidence that there are fitness costs of plant defense and that herbivores can drive selection for defense. However, most work has focused on above-ground interactions, even though belowground herbivory may have greater impacts on individual plants than above-ground herbivory. Given the role of belowground plant structures in resource acquisition and storage, research on belowground herbivores has much to contribute to theories on the evolution of plant defense. Pocket gophers (Geomyidae provide an excellent opportunity to study root herbivory. These subterranean rodents spend their entire lives belowground and specialize on consuming belowground plant parts.We compared the root defenses of native forbs from mainland populations (with a history of gopher herbivory to island populations (free from gophers for up to 500,000 years. Defense includes both resistance against herbivores and tolerance of herbivore damage. We used three approaches to compare these traits in island and mainland populations of two native California forbs: 1 Eschscholzia californica populations were assayed to compare alkaloid deterrents, 2 captive gophers were used to test the palatability of E. californica roots and 3 simulated root herbivory assessed tolerance to root damage in Deinandra fasciculata and E. californica. Mainland forms of E. californica contained 2.5 times greater concentration of alkaloids and were less palatable to gophers than island forms. Mainland forms of D. fasciculata and, to a lesser extent, E. californica were also more tolerant of root damage than island conspecifics. Interestingly, undamaged island individuals of D. fasciculata produced significantly more fruit than either damaged or undamaged mainland individuals.These results suggest that mainland plants are effective at deterring and tolerating pocket gopher herbivory. Results also suggest that both forms of defense are costly to fitness and thus reduced in the absence of

  16. Improvement of date palm plant lets during rooting stage by silver ion

    International Nuclear Information System (INIS)

    Sharaf, M.M.; Khamis, M.A.; El Bana, A.; Abd El Galeil, L.M.; Zaid, Z.E.

    2012-01-01

    This study aim to promote growth plant lets of date palm cv. Zaghlool by decreasing ethylene production inside the containers during rooting stage. Data obtained declared that three silver thiosulphate (STS) levels added to one half strength MS rooting medium improved significantly three rooting measurements (rooting percentage; number and length of developed root lets). However, the lightest STS level (0.25 ml/L of 4 mM STS solution) was the superior, while highest one (1.0 ml/L) was the inferior from statistical point of view. Data obtained displayed that providing MS rooting medium with silver nitrate improved 3 rooting measurements (rooting %; number of root lets and their length) for Zaghloul date palm shoot lets proliferated from somatic embryos. However, the 0.50 mg/L AgNO 3 provided MS medium was the most preferable in this concern. Plant lets were transferred to capped tubes contained 1/4 liquid MS medium through 3 weeks in the growth chamber (under aseptic condition). Ventilation was allowed gradually by punching holes in aluminum foil caps during first five days of 2 nd week. After then, the plant lets were transplanted in acclimatization green house on mixture from (peat moss + perlite + vermiculite at 1:1:1) and survival percentage was 75% after three months.

  17. Maize root culture as a model system for studying azoxystrobin biotransformation in plants

    DEFF Research Database (Denmark)

    Gautam, Maheswor; Elhiti, Mohamed Abdelsamad A; Fomsgaard, Inge S.

    2018-01-01

    Hairy roots induced by Agrobacterium rhizogenes are well established models to study the metabolism of xenobiotics in plants for phytoremediation purposes. However, the model requires special skills and resources for growing and is a time-consuming process. The roots induction process alters...... the genetic construct of a plant and is known to express genes that are normally absent from the non-transgenic plants. In this study, we propose and establish a non-transgenic maize root model to study xenobiotic metabolism in plants for phytoremediation purpose using azoxystrobin as a xenobiotic compound...

  18. Plant iodine-131 uptake in relation to root concentration as measured in minirhizotron by video camera:

    International Nuclear Information System (INIS)

    Moss, K.J.

    1990-09-01

    Glass viewing tubes (minirhizotrons) were placed in the soil beneath native perennial bunchgrass (Agropyron spicatum). The tubes provided access for observing and quantifying plant roots with a miniature video camera and soil moisture estimates by neutron hydroprobe. The radiotracer I-131 was delivered to the root zone at three depths with differing root concentrations. The plant was subsequently sampled and analyzed for I-131. Plant uptake was greater when I-131 was applied at soil depths with higher root concentrations. When I-131 was applied at soil depths with lower root concentrations, plant uptake was less. However, the relationship between root concentration and plant uptake was not a direct one. When I-131 was delivered to deeper soil depths with low root concentrations, the quantity of roots there appeared to be less effective in uptake than the same quantity of roots at shallow soil depths with high root concentration. 29 refs., 6 figs., 11 tabs

  19. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings

    Science.gov (United States)

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2014-01-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings. PMID:25009362

  20. Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Takayuki, Tohge; Fernie, Alisdair R.; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-01-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity

  1. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil.

    Science.gov (United States)

    Sun, Tian-Ran; Cang, Long; Wang, Quan-Ying; Zhou, Dong-Mei; Cheng, Jie-Min; Xu, Hui

    2010-04-15

    Phytoremediation is an emerging technology for the remediation of polycyclic aromatic hydrocarbons (PAHs). In this study, pot experiments were conducted to evaluate the efficacy of phytoremediation of phenanthrene and pyrene in a typical low organic matter soil (3.75 g kg(-1)), and the contribution proportions of abiotic losses, microbes, plant roots, and root exudates were ascertained during the PAHs dissipation. The results indicated that contribution of abiotic losses from this soil was high both for phenanthrene (83.4%) and pyrene (57.2%). The contributions of root-exudates-enhanced biodegradation of phenanthrene (15.5%) and pyrene (21.3%) were higher than those of indigenous microbial degradation. The role of root exudates on dissipation of phenanthrene and pyrene was evident in this experiment. By the way, with the increasing of ring numbers in PAHs structures, the root-exudates-enhanced degradation became more and more important. BIOLOG-ECO plate analysis indicated that microbial community structure of the soil receiving root exudates had changed. The removal efficiency and substrate utilization rate in the treatment with plant roots were lower than the treatment only with root exudates, which suggested that possible competition between roots and microbes for nutrients had occurred in a low organic matter soil. 2009. Published by Elsevier B.V.

  2. Auxin-cytokinin synergism in vitro for producing genetically stable plants of Ruta graveolens using shoot tip meristems

    Directory of Open Access Journals (Sweden)

    Mohammad Faisal

    2018-02-01

    Full Text Available An efficient micropropagation protocol was developed for Ruta graveolens Linn. using shoot tip meristems derived from a 4-month-old field grown plant. In vitro shoot regeneration and proliferation was accomplished on Murashige and Skoogs (MS semi-solid medium in addition to different doses of cytokinins viz.6- benzyl adenine (BA, Kinetin (Kn or 2-isopetynyl adenine (2iP, singly or in combination with auxins viz. indole-3-acetic acid (IAA, indole-3-butyric acid (IBA or α-naphthalene acetic acid (NAA. Highest regeneration frequency (27.6% was obtained on (MS medium composed of BA (10 µM with maximum number (9.4 of shoots and 4.3 cm shoot length after 4 weeks of incubation. Among various combinations tried best regeneration frequency (71% of multiple shoot formation with highest number (12.6 of shoots per shoot tip explants were achieved in MS medium augmented with a combination BA (10.0 µM and NAA (2.5 µM after 4 weeks of incubation. The optimum frequency (97% of rhizogenesis was achieved on half-strength MS medium having 0.5 µM IBA after 4 weeks of incubation. Tissue culture raised plantlets with 5–7 fully opened leaves with healthy root system were successfully acclimatized off in Soilrite™ with 80% survival rate followed by transportation to normal soil under natural light. Genetic stability among in vitro raised progeny was evaluated by ISSR and RAPD markers. The entire banding pattern revealed from in vitro regenerated plants was monomorphic to the donor. The present protocol provides an alternative option for commercial propagation and fruitful setting up of genetically uniform progeny for sustainable utilization and germplasm preservation.

  3. Phenotypic plasticity of fine root growth increases plant productivity in pine seedlings

    Directory of Open Access Journals (Sweden)

    Grissom James E

    2004-09-01

    Full Text Available Abstract Background The plastic response of fine roots to a changing environment is suggested to affect the growth and form of a plant. Here we show that the plasticity of fine root growth may increase plant productivity based on an experiment using young seedlings (14-week old of loblolly pine. We use two contrasting pine ecotypes, "mesic" and "xeric", to investigate the adaptive significance of such a plastic response. Results The partitioning of biomass to fine roots is observed to reduce with increased nutrient availability. For the "mesic" ecotype, increased stem biomass as a consequence of more nutrients may be primarily due to reduced fine-root biomass partitioning. For the "xeric" ecotype, the favorable influence of the plasticity of fine root growth on stem growth results from increased allocation of biomass to foliage and decreased allocation to fine roots. An evolutionary genetic analysis indicates that the plasticity of fine root growth is inducible, whereas the plasticity of foliage is constitutive. Conclusions Results promise to enhance a fundamental understanding of evolutionary changes of tree architecture under domestication and to design sound silvicultural and breeding measures for improving plant productivity.

  4. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling.

    Science.gov (United States)

    Cosme, Marco; Lu, Jing; Erb, Matthias; Stout, Michael Joseph; Franken, Philipp; Wurst, Susanne

    2016-08-01

    Plant-microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Root phosphatase activity, plant growth and phosphorus accumulation of maize genotypes

    Directory of Open Access Journals (Sweden)

    Machado Cynthia Torres de Toledo

    2004-01-01

    Full Text Available The activity of the enzyme phosphatase (P-ase is a physiological characteristic related to plant efficiency in relation to P acquisition and utilization, and is genetically variable. As part of a study on maize genotype characterization in relation to phosphorus (P uptake and utilization efficiency, two experiments were set up to measure phosphatase (P-ase activity in intact roots of six local and improved maize varieties and two sub-populations. Plants were grown at one P level in nutrient solution (4 mg L-1 and the P-ase activity assay was run using 17-day-old plants for varieties and 24-day-old plants for subpopulations. Shoot and root dry matter yields and P concentrations and contents in plant parts were determined, as well as P-efficiency indexes. Root P-ase activity differed among varieties, and highest enzimatic activities were observed in two local varieties -'Catetão' and 'Caiano' -and three improved varieties -'Sol da Manhã', 'Nitrodente' and 'BR 106'. 'Carioca', a local variety, had the lowest activity. Between subpopulations, 'ND2', with low yielding and poorly P-efficient plants, presented higher root P-ase activity as compared to 'ND10', high yielding and highly P-efficient plants. In general, subpopulations presented lower P-ase activities as compared to varieties. Positive and/or negative correlations were obtained between P-ase activity and P-efficiency characteristics, specific for the genotypes, not allowing inference on a general and clear association between root-secreted phosphatase and dry matter production or P acquisition. Genotypic variability must be known and considered before using P-ase activity as an indicator of P nutritional status, or P tolerance, adaptation and efficiency under low P conditions.

  6. Developing a method of fabricating microchannels using plant root structure

    Science.gov (United States)

    Nakashima, Shota; Tokumaru, Kazuki; Tsumori, Fujio

    2018-06-01

    Complicated three-dimensional (3D) microchannels are expected to be applied to a lab-on-a-chip, especially an organ-on-a-chip. There are fine microchannel networks such as blood vessels in a living organ. However, it is difficult to recreate the complicated 3D microchannels of real living structures. Plant roots have a similar structure to blood vessels. They spread radially and three-dimensionally, and become thinner as they branch. In this research, we propose a method of fabricating microchannels using a live plant root as a template to mimic a blood vessel structure. We grew a plant in ceramic slurry instead of soil. The slurry consists of ceramic powder, binder and water, so it plays a similar role to soil consisting of fine particles in water. After growing the plant, the roots inside the slurry were burned and a sintered ceramic body with channel structures was obtained by heating. We used two types of slurry with different composition ratios, and compared the internal channel structures before and after sintering.

  7. Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants.

    Science.gov (United States)

    Peng, Yanhui; Lin, Wuling; Cai, Weiming; Arora, Rajeev

    2007-08-01

    Water movement across cellular membranes is regulated largely by a family of water channel proteins called aquaporins (AQPs). Since several abiotic stresses such as, drought, salinity and freezing, manifest themselves via altering water status of plant cells and are linked by the fact that they all result in cellular dehydration, we overexpressed an AQP (tonoplast intrinsic protein) from Panax ginseng, PgTIP1, in transgenic Arabidopsis thaliana plants to test its role in plant's response to drought, salinity and cold acclimation (induced freezing tolerance). Under favorable conditions, PgTIP1 overexpression significantly increased plant growth as determined by the biomass production, and leaf and root morphology. PgTIP1 overexpression had beneficial effect on salt-stress tolerance as indicated by superior growth status and seed germination of transgenic plants under salt stress; shoots of salt-stressed transgenic plants also accumulated greater amounts of Na(+) compared to wild-type plants. Whereas PgTIP1 overexpression diminished the water-deficit tolerance of plants grown in shallow (10 cm deep) pots, the transgenic plants were significantly more tolerant to water stress when grown in 45 cm deep pots. The rationale for this contrasting response, apparently, comes from the differences in the root morphology and leaf water channel activity (speed of dehydration/rehydration) between the transgenic and wild-type plants. Plants overexpressed with PgTIP1 exhibited lower (relative to wild-type control) cold acclimation ability; however, this response was independent of cold-regulated gene expression. Our results demonstrate a significant function of PgTIP1 in growth and development of plant cells, and suggest that the water movement across tonoplast (via AQP) represents a rate-limiting factor for plant vigor under favorable growth conditions and also significantly affect responses of plant to drought, salt and cold stresses.

  8. Regulation of Arabidopsis root development by nitrate availability.

    Science.gov (United States)

    Zhang, H; Forde, B G

    2000-01-01

    When the root systems of many plant species are exposed to a localized source of nitrate (NO3- they respond by proliferating their lateral roots to colonize the nutrient-rich zone. This study reviews recent work with Arabidopsis thaliana in which molecular genetic approaches are being used to try to understand the physiological and genetic basis for this response. These studies have led to the conclusion that there are two distinct pathways by which NO3- modulates root branching in Arabidopsis. On the one hand, meristematic activity in lateral root tips is stimulated by direct contact with an enriched source of NO3- (the localized stimulatory effect). On the other, a critical stage in the development of the lateral root (just after its emergence from the primary root) is highly susceptible to inhibition by a systemic signal that is related to the amount of NO3- absorbed by the plant (the systemic inhibitory effect). Evidence has been obtained that the localized stimulatory effect is a direct effect of the NO3- ion itself rather than a nutritional effect. A NO3(-)-inducible MADS-box gene (ANR1) has been identified which encodes a component of the signal transduction pathway linking the external NO3- supply to the increased rate of lateral root elongation. Experiments using auxin-resistant mutants have provided evidence for an overlap between the auxin and NO3- response pathways in the control of lateral root elongation. The systemic inhibitory effect, which does not affect lateral root initiation but delays the activation of the lateral root meristem, appears to be positively correlated with the N status of the plant and is postulated to involve a phloem-mediated signal from the shoot.

  9. Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is not always accompanied with enhancement of ROS production.

    Science.gov (United States)

    Soltys, Dorota; Gniazdowska, Agnieszka; Bogatek, Renata

    2013-05-01

    Mode of action of allelochemicals in target plants is currently widely studied. Cyanamide is one of the newly discovered allelochemical, biosynthesized in hairy vetch. Recently, it has been recognized that cyanamide is plant growth inhibitor, which affects mitosis in root tip cells and causes,e.g., disorder in phytohormonal balance. We also demonstrated that CA may act as oxidative stress agent but it strictly depends on plant species, exposure time and doses. Roots of tomato seedling treated with water solution of 1.2 mM cyanamide did not exhibit elevated reactive oxygen species concentration during the whole culture period.

  10. Physiological conditions and uptake of inorganic carbon-14 by plant roots

    International Nuclear Information System (INIS)

    Amiro, B.D.; Ewing, L.L.

    1992-01-01

    The uptake of inorganic 14 C by bean plant roots was measured. The plants were grown in a nutrient solution culture at pH 6 and a NaH 14 CO 3 tracer was added to the growth medium. Photosynthesis and transpiration were varied by exposing the aerial portions of the plants to different atmospheric CO 2 concentrations, humidities and light levels in a cuvette system. Leaf concentrations of 14 C were measured at the end of the experiments using liquid scintillation counting. Plant uptake of 14 C via the roots was independent of the photosynthetic rate and, in most cases, could be predicted by knowing the transpiration rate and the nutrient solution concentration. However, when a less efficient root-medium aeration system was used, 14 C uptake was greater than that predicted using transpiration, a phenomenon observed by other researchers. This contrasted to results of another experiment where the measured uptake of iodine was much slower than that predicted using transpiration. Knowledge of transpiration rates is useful in predicting inorganic carbon uptake via the roots and in estimating 14 C transport from contaminated soils to biota. Also, the independence of the uptake from photosynthesis and ambient CO 2 concentrations suggests that future increases in atmospheric CO 2 concentrations may not have a direct effect on root uptake of soil carbon. (author)

  11. Bilaterally symmetric axes with rhizoids composed the rooting structure of the common ancestor of vascular plants.

    Science.gov (United States)

    Hetherington, Alexander J; Dolan, Liam

    2018-02-05

    There are two general types of rooting systems in extant land plants: gametophyte rhizoids and sporophyte root axes. These structures carry out the rooting function in the free-living stage of almost all land plant gametophytes and sporophytes, respectively. Extant vascular plants develop a dominant, free-living sporophyte on which roots form, with the exception of a small number of taxa that have secondarily lost roots. However, fossil evidence indicates that early vascular plants did not develop sporophyte roots. We propose that the common ancestor of vascular plants developed a unique rooting system-rhizoidal sporophyte axes. Here we present a synthesis and reinterpretation of the rootless sporophytes of Horneophyton lignieri , Aglaophyton majus , Rhynia gwynne-vaughanii and Nothia aphylla preserved in the Rhynie chert. We show that the sporophyte rooting structures of all four plants comprised regions of plagiotropic (horizontal) axes that developed unicellular rhizoids on their underside. These regions of axes with rhizoids developed bilateral symmetry making them distinct from the other regions which were radially symmetrical. We hypothesize that rhizoidal sporophyte axes constituted the rooting structures in the common ancestor of vascular plants because the phylogenetic positions of these plants span the origin of the vascular lineage.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'. © 2017 The Authors.

  12. Competition between Plant-Populations with Different Rooting Depths. 3. Field Experiments

    NARCIS (Netherlands)

    Berendse, F.

    1982-01-01

    The model proposed in the first paper in this series predicts that in mixtures of plant species with different rooting depths there will be an inverse correlation between the relative crowding coefficient of the deep rooting species with respect to the shallow rooting one and the frequency of the

  13. Plant root absorption and metabolic fate of technetium in plants

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Garland, T.R.; Wildung, R.E.

    1984-10-01

    Root absorption characteristics for the pertechnetate ion (TcO 4 - ) were determined using hydroponically grown soybean seedlings (Glycine max, cv. Williams). Absorption of TcO 4 - was found to be linear with time, sensitive to metabolic inhibitors, and exhibit multiple absorption isotherms over the concentration range 0.02 to 10 μM. The isotherms had calculated K/sub s/ values of 0.09, 8.9, and 54 μM for intact seedlings. The uptake of TcO 4 - (0.25 μM) was inhibited by a fourfold concentration excess of sulfate, phosphate, and selenate, but not by borate, nitrate, tungstate, perrhenate, iodate or vanadate. Kinetic studies demonstrated that sulfate, phosphate, and selenate were competitive inhibitors of TcO 4 - absorption. Once absorbed, Tc was readily transported as TcO 4 - to shoot tissues of soybean and subsequently associated with protein constituents. The chemical fate of Tc in plants varies with plant species. Plants high in nonprotein sulfhydryl compounds (Allium species) exhibited markedly different root/shoot distribution and protein incorporation patterns from species with low sulfur requirements (soybean, alfalfa, mustard). Based on these differences, Tc/S/Se tracer studies were employed to resolve the comparative fate of these probable analogs. 20 references, 5 figures, 5 tables

  14. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations.

    Science.gov (United States)

    Yıldırım, Kubilay; Yağcı, Adem; Sucu, Seda; Tunç, Sümeyye

    2018-06-01

    Roots are the major interface between the plant and various stress factors in the soil environment. Alteration of root system architecture (RSA) (root length, spread, number and length of lateral roots) in response to environmental changes is known to be an important strategy for plant adaptation and productivity. In light of ongoing climate changes and global warming predictions, the breeding of drought-tolerant grapevine cultivars is becoming a crucial factor for developing a sustainable viticulture. Root-trait modeling of grapevine rootstock for drought stress scenarios, together with high-throughput phenotyping and genotyping techniques, may provide a valuable background for breeding studies in viticulture. Here, tree grafted grapevine rootstocks (110R, 5BB and 41B) having differential RSA regulations and drought tolerance were investigated to define their drought dependent root characteristics. Root area, root length, ramification and number of root tips reduced less in 110R grafted grapevines compared to 5BB and 41B grafted ones during drought treatment. Root relative water content as well as total carbohydrate and nitrogen content were found to be much higher in the roots of 110R than it was in the roots of other rootstocks under drought. Microarray-based root transcriptome profiling was also conducted on the roots of these rootstocks to identify their gene regulation network behind drought-dependent RSA alterations. Transcriptome analysis revealed totally 2795, 1196 and 1612 differentially expressed transcripts at the severe drought for the roots of 110R, 5BB and 41B, respectively. According to this transcriptomic data, effective root elongation and enlargement performance of 110R were suggested to depend on three transcriptomic regulations. First one is the drought-dependent induction in sugar and protein transporters genes (SWEET and NRT1/PTR) in the roots of 110R to facilitate carbohydrate and nitrogen accumulation. In the roots of the same rootstock

  15. A bell pepper cultivar tolerant to chilling enhanced nitrogen allocation and stress-related metabolite accumulation in the roots in response to low root-zone temperature.

    Science.gov (United States)

    Aidoo, Moses Kwame; Sherman, Tal; Lazarovitch, Naftali; Fait, Aaron; Rachmilevitch, Shimon

    2017-10-01

    Two bell pepper (Capsicum annuum) cultivars, differing in their response to chilling, were exposed to three levels of root-zone temperatures. Gas exchange, shoot and root phenology, and the pattern of change of the central metabolites and secondary metabolites caffeate and benzoate in the leaves and roots were profiled. Low root-zone temperature significantly inhibited gaseous exchange, with a greater effect on the sensitive commercial pepper hybrid (Canon) than on the new hybrid bred to enhance abiotic stress tolerance (S103). The latter was less affected by the treatment with respect to plant height, shoot dry mass, root maximum length, root projected area, number of root tips and root dry mass. More carbon was allocated to the leaves of S103 than nitrogen at 17°C, while in the roots at 17°C, more nitrogen was allocated and the ratio between C/N decreased. Metabolite profiling showed greater increase in the root than in the leaves. Leaf response between the two cultivars differed significantly. The roots accumulated stress-related metabolites including γ-aminobutyric acid (GABA), proline, galactinol and raffinose and at chilling (7°C) resulted in an increase of sugars in both cultivars. Our results suggest that the enhanced tolerance of S103 to root cold stress, reflected in the relative maintenance of shoot and root growth, is likely linked to a more effective regulation of photosynthesis facilitated by the induction of stress-related metabolism. © 2017 Scandinavian Plant Physiology Society.

  16. Woody plant roots fail to penetrate a clay-lined landfill: Managment implications

    Science.gov (United States)

    Robinson, George R.; Handel, Steven N.

    1995-01-01

    In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.

  17. Ethylene sensitivity and relative air humidity regulate root hydraulic properties in tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Ibort, Pablo; Molina, Sonia; Ruiz-Lozano, Juan Manuel; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2017-11-01

    The effect of ethylene and its precursor ACC on root hydraulic properties, including aquaporin expression and abundance, is modulated by relative air humidity and plant sensitivity to ethylene. Relative air humidity (RH) is a main factor contributing to water balance in plants. Ethylene (ET) is known to be involved in the regulation of root water uptake and stomatal opening although its role on plant water balance under different RH is not very well understood. We studied, at the physiological, hormonal and molecular levels (aquaporins expression, abundance and phosphorylation state), the plant responses to exogenous 1-aminocyclopropane-1-carboxylic acid (ACC; precursor of ET) and 2-aminoisobutyric acid (AIB; inhibitor of ET biosynthesis), after 24 h of application to the roots of tomato wild type (WT) plants and its ET-insensitive never ripe (nr) mutant, at two RH levels: regular (50%) and close to saturation RH. Highest RH induced an increase of root hydraulic conductivity (Lp o ) of non-treated WT plants, and the opposite effect in nr mutants. The treatment with ACC reduced Lp o in WT plants at low RH and in nr plants at high RH. The application of AIB increased Lp o only in nr plants at high RH. In untreated plants, the RH treatment changed the abundance and phosphorylation of aquaporins that affected differently both genotypes according to their ET sensitivity. We show that RH is critical in regulating root hydraulic properties, and that Lp o is affected by the plant sensitivity to ET, and possibly to ACC, by regulating aquaporins expression and their phosphorylation status. These results incorporate the relationship between RH and ET in the response of Lp o to environmental changes.

  18. Use of sediment CO2 by submersed rooted plants

    DEFF Research Database (Denmark)

    Winkel, Anders; Borum, Jens

    2009-01-01

    freshwater plants with different morphology and growth characteristics (Lobelia dortmanna, Lilaeopsis macloviana, Ludwigia repens, Vallisneria americana and Hydrocotyle verticillata) are able to support photosynthesis supplied by uptake of CO2 from the sediment. Methods: Gross photosynthesis was measured......Background and Aims: Submersed plants have different strategies to overcome inorganic carbon limitation. It is generally assumed that only small rosette species (isoetids) are able to utilize the high sediment CO2 availability. The present study examined to what extent five species of submersed......, the shoot to root ratio on an areal basis was the single factor best explaining variability in the importance of sediment CO2. For Ludwigia, diffusion barriers limited uptake or transport from roots to stems and transport from stems to leaves. Conclusions: Submersed plants other than isoetids can utilize...

  19. Bacteria from Wheat and Cucurbit Plant Roots Metabolize PAHs and Aromatic Root Exudates: Implications for Rhizodegradation

    DEFF Research Database (Denmark)

    Ely, Cairn S; Smets, Barth F.

    2017-01-01

    The chemical interaction between plants and bacteria in the root zone can lead to soil decontamination. Bacteria which degrade PAHs have been isolated from the rhizospheres of plant species with varied biological traits, however, it is not known what phytochemicals promote contaminant degradation...

  20. Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities

    Directory of Open Access Journals (Sweden)

    Kristin Aleklett

    2015-02-01

    Full Text Available Plant roots are known to harbor large and diverse communities of bacteria. It has been suggested that plant identity can structure these root-associated communities, but few studies have specifically assessed how the composition of root microbiota varies within and between plant species growing under natural conditions. We assessed the community composition of endophytic and epiphytic bacteria through high throughput sequencing using 16S rDNA derived from root tissues collected from a population of a wild, clonal plant (Orange hawkweed–Pilosella aurantiaca as well as two neighboring plant species (Oxeye daisy–Leucanthemum vulgare and Alsike clover–Trifolium hybridum. Our first goal was to determine if plant species growing in close proximity, under similar environmental conditions, still hosted unique root microbiota. Our results showed that plants of different species host distinct bacterial communities in their roots. In terms of community composition, Betaproteobacteria (especially the family Oxalobacteraceae were found to dominate in the root microbiota of L. vulgare and T. hybridum samples, whereas the root microbiota of P. aurantiaca had a more heterogeneous distribution of bacterial abundances where Gammaproteobacteria and Acidobacteria occupied a larger portion of the community. We also explored the extent of individual variance within each plant species investigated, and found that in the plant species thought to have the least genetic variance among individuals (P. aurantiaca still hosted just as diverse microbial communities. Whether all plant species host their own distinct root microbiota and plants more closely related to each other share more similar bacterial communities still remains to be fully explored, but among the plants examined in this experiment there was no trend that the two species belonging to the same family shared more similarities in terms of bacterial community composition.

  1. Trichoderma-Induced Acidification Is an Early Trigger for Changes in Arabidopsis Root Growth and Determines Fungal Phytostimulation

    Science.gov (United States)

    Pelagio-Flores, Ramón; Esparza-Reynoso, Saraí; Garnica-Vergara, Amira; López-Bucio, José; Herrera-Estrella, Alfredo

    2017-01-01

    Trichoderma spp. are common rhizosphere inhabitants widely used as biological control agents and their role as plant growth promoting fungi has been established. Although soil pH influences several fungal and plant functional traits such as growth and nutrition, little is known about its influence in rhizospheric or mutualistic interactions. The role of pH in the Trichoderma–Arabidopsis interaction was studied by determining primary root growth and lateral root formation, root meristem status and cell viability, quiescent center (QC) integrity, and auxin inducible gene expression. Primary root growth phenotypes in wild type seedlings and STOP1 mutants allowed identification of a putative root pH sensing pathway likely operating in plant–fungus recognition. Acidification by Trichoderma induced auxin redistribution within Arabidopsis columella root cap cells, causing root tip bending and growth inhibition. Root growth stoppage correlated with decreased cell division and with the loss of QC integrity and cell viability, which were reversed by buffering the medium. In addition, stop1, an Arabidopsis mutant sensitive to low pH, was oversensitive to T. atroviride primary root growth repression, providing genetic evidence that a pH root sensing mechanism reprograms root architecture during the interaction. Our results indicate that root sensing of pH mediates the interaction of Trichoderma with plants. PMID:28567051

  2. GiA Roots: software for the high throughput analysis of plant root system architecture

    Science.gov (United States)

    2012-01-01

    Background Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. Results We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. Conclusions We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis. PMID:22834569

  3. Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions

    Directory of Open Access Journals (Sweden)

    Runo Steven

    2012-06-01

    Full Text Available Abstract Background Striga species are noxious root hemi-parasitic weeds that debilitate cereal production in sub-Saharan Africa (SSA. Control options for Striga are limited and developing Striga resistant crop germplasm is regarded as the best and most sustainable control measure. Efforts to improve germplasm for Striga resistance by a non-Genetic Modification (GM approach, for example by exploiting natural resistance, or by a GM approach are constrained by limited information on the biological processes underpinning host-parasite associations. Additionaly, a GM approach is stymied by lack of availability of candidate resistance genes for introduction into hosts and robust transformation methods to validate gene functions. Indeed, a majority of Striga hosts, the world’s most cultivated cereals, are recalcitrant to genetic transformation. In maize, the existing protocols for transformation and regeneration are tedious, lengthy, and highly genotype-specific with low efficiency of transformation. Results We used Agrobacterium rhizogenes strain K599 carrying a reporter gene construct, Green Fluorescent Protein (GFP, to generate transgenic composite maize plants that were challenged with the parasitic plant Striga hermonthica. Eighty five percent of maize plants produced transgenic hairy roots expressing GFP. Consistent with most hairy roots produced in other species, transformed maize roots exhibited a hairy root phenotype, the hallmark of A. rhizogenes mediated transformation. Transgenic hairy roots resulting from A. rhizogenes transformation were readily infected by S. hermonthica. There were no significant differences in the number and size of S. hermonthica individuals recovered from either transgenic or wild type roots. Conclusions This rapid, high throughput, transformation technique will advance our understanding of gene function in parasitic plant-host interactions.

  4. How Plant Root Exudates Shape the Nitrogen Cycle.

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T; Shi, Weiming; Kronzucker, Herbert J

    2017-08-01

    Although the global nitrogen (N) cycle is largely driven by soil microbes, plant root exudates can profoundly modify soil microbial communities and influence their N transformations. A detailed understanding is now beginning to emerge regarding the control that root exudates exert over two major soil N processes - nitrification and N 2 fixation. We discuss recent breakthroughs in this area, including the identification of root exudates as nitrification inhibitors and as signaling compounds facilitating N-acquisition symbioses. We indicate gaps in current knowledge, including questions of how root exudates affect newly discovered microbial players and N-cycle components. A better understanding of these processes is urgent given the widespread inefficiencies in agricultural N use and their links to N pollution and climate change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Mat rush (juncus effusus l.) trounces manganese toxicity through ultra-morphological modifications and manganese restriction in roots

    International Nuclear Information System (INIS)

    Najeeb, U.; Ali, S.

    2015-01-01

    This study appraised phyto-remediation efficiency and tolerance mechanism of Juncus effusus as was evidenced by ultrastructural modification in its roots under manganese (Mn) toxicity. Three-week-old J. effusus plants were treated with different concentrations of Mn (50, 100 and 500 M) in hydroponics. Although higher Mn levels caused modifications in growth, biomass, height and root morphological traits, J. effusus tolerated Mn toxicity without showing any obvious phyto-toxic symptoms even under the highest level of Mn (500 M). With incremental Mn levels in the growth media, the plants showed a steady increase in Mn uptake, while translocation factor (TF) for Mn declined. This illustrated the tendency of J. effusus plants to avoid Mn-induced stress by restricting maximum Mn in root tissues. Electron microscopy of root tip cells elucidated plant tolerance mechanism to Mn toxicity. Modification in cellular shape and size, and increased number of vacuoles and mitochondria appeared to play a major role in induction of tolerance against Mn toxicity, and ultimate survival of plant. (author)

  6. The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Molina, Sonia; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2014-05-01

    It is known that the presence of arbuscular mycorrhizal fungi within the plant roots enhances the tolerance of the host plant to different environmental stresses, although the positive effect of the fungi in plants under waterlogged conditions has not been well studied. Tolerance of plants to flooding can be achieved through different molecular, physiological and anatomical adaptations, which will affect their water uptake capacity and therefore their root hydraulic properties. Here, we investigated the root hydraulic properties under non-flooded and flooded conditions in non-mycorrhizal tomato plants and plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. Only flooded mycorrhizal plants increased their root hydraulic conductivity, and this effect was correlated with a higher expression of the plant aquaporin SlPIP1;7 and the fungal aquaporin GintAQP1. There was also a higher abundance of the PIP2 protein phoshorylated at Ser280 in mycorrhizal flooded plants. The role of plant hormones (ethylene, ABA and IAA) in root hydraulic properties was also taken into consideration, and it was concluded that, in mycorrhizal flooded plants, ethylene has a secondary role regulating root hydraulic conductivity whereas IAA may be the key hormone that allows the enhancement of root hydraulic conductivity in mycorrhizal plants under low oxygen conditions.

  7. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin

    2015-02-01

    L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth. © 2014 Institute of Botany, Chinese Academy of Sciences.

  8. Analysis of peptide uptake and location of root hair-promoting peptide accumulation in plant roots.

    Science.gov (United States)

    Matsumiya, Yoshiki; Taniguchi, Rikiya; Kubo, Motoki

    2012-03-01

    Peptide uptake by plant roots from degraded soybean-meal products was analyzed in Brassica rapa and Solanum lycopersicum. B. rapa absorbed about 40% of the initial water volume, whereas peptide concentration was decreased by 75% after 24 h. Analysis by reversed-phase HPLC showed that number of peptides was absorbed by the roots during soaking in degraded soybean-meal products for 24 h. Carboxyfluorescein-labeled root hair-promoting peptide was synthesized, and its localization, movement, and accumulation in roots were investigated. The peptide appeared to be absorbed by root hairs and then moved to trichoblasts. Furthermore, the peptide was moved from trichoblasts to atrichoblasts after 24 h. The peptide was accumulated in epidermal cells, suggesting that the peptide may have a function in both trichoblasts and atrichoblasts. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.

  9. Plant root proliferation in nitrogen-rich patches confers competitive advantage

    Science.gov (United States)

    Robinson, D.; Hodge, A.; Griffiths, B. S.; Fitter, A. H.

    1999-01-01

    Plants respond strongly to environmental heterogeneity, particularly below ground, where spectacular root proliferations in nutrient-rich patches may occur. Such 'foraging' responses apparently maximize nutrient uptake and are now prominent in plant ecological theory. Proliferations in nitrogen-rich patches are difficult to explain adaptively, however. The high mobility of soil nitrate should limit the contribution of proliferation to N capture. Many experiments on isolated plants show only a weak relation between proliferation and N uptake. We show that N capture is associated strongly with proliferation during interspecific competition for finite, locally available, mixed N sources, precisely the conditions under which N becomes available to plants on generally infertile soils. This explains why N-induced root proliferation is an important resource-capture mechanism in N-limited plant communities and suggests that increasing proliferation by crop breeding or genetic manipulation will have a limited impact on N capture by well-fertilized monocultures.

  10. Efficient regeneration of sorghum, Sorghum bicolor (L.) Moench, from shoot-tip explant.

    Science.gov (United States)

    Syamala, D; Devi, Prathibha

    2003-12-01

    Novel protocols for production of multiple shoot-tip clumps and somatic embryos of Sorghum bicolor (L.) Moench were developed with long-term goal of crop improvement through genetic transformation. Multiple shoot-tip clumps were developed in vitro from shoot-tip explant of one-week old seedling, cultured on MS medium containing only BA (0.5, 1 or 2 mg/l) or both BA (1 or 2 mg/l) and 2,4-D (0.5 mg/l) with bi-weekly subculture. Somatic embryos were directly produced on the enlarged dome shaped growing structures that developed from the shoot-tips of one-week old seedling explants (without any callus formation) when cultured on MS medium supplemented with both 2,4-D (0.5 mg/l) and BA (0.5 mg/l). However, the supplementation of MS medium with only 2,4-D (0.5 mg/l) induced compact callus without any plantlet regeneration. Each multiple shoot-clump was capable of regenerating more than 80 shoots via an intensive differentiation of both axillary and adventitious shoot buds, the somatic embryos were capable of 90% germination, plant conversion and regeneration. The regenerated shoots could be efficiently rooted on MS medium containing indole-3-butyric acid (IBA 1 mg/l). The plants were successfully transplanted to glasshouse and grown to maturity with a survival rate of 98%. Morphogenetic response of the explants was found to be genotypically independent.

  11. Interplays between soil-borne plant viruses and RNA silencing-mediated antiviral defense in roots

    Directory of Open Access Journals (Sweden)

    Ida Bagus Andika

    2016-09-01

    Full Text Available Although the majority of plant viruses are transmitted by arthropod vectors and invade the host plants through the aerial parts, there is a considerable number of plant viruses that infect roots via soil-inhabiting vectors such as plasmodiophorids, chytrids, and nematodes. These soil-borne viruses belong to diverse families, and many of them cause serious diseases in major crop plants. Thus, roots are important organs for the life cycle of many viruses. Compared to shoots, roots have a distinct metabolism and particular physiological characteristics due to the differences in development, cell composition, gene expression patterns, and surrounding environmental conditions. RNA silencing is an important innate defense mechanism to combat virus infection in plants, but the specific information on the activities and molecular mechanism of RNA silencing-mediated viral defense in root tissue is still limited. In this review, we summarize and discuss the current knowledge regarding RNA silencing aspects of the interactions between soil-borne viruses and host plants. Overall, research evidence suggests that soil-borne viruses have evolved to adapt to the distinct mechanism of antiviral RNA silencing in roots.

  12. Effect of planting density on root lodging resistance and its relationship to nodal root growth characteristics in maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Liu, Shengqun; Song, Fengbin; Liu, Fulai

    2012-01-01

    Increase of planting density has been widely used to increase grain yield in maize. However, it may lead to higher risk of root lodging hence causing significant yield loss of the crop. The objective of this study was to investigate the effect of planting density on maize nodal root growth...

  13. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    NARCIS (Netherlands)

    Eisenhauer, Nico; Lanoue, Arnaud; Strecker, Tanja; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, Liesje

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity

  14. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Directory of Open Access Journals (Sweden)

    Meret Huber

    2016-01-01

    Full Text Available Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg. decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha, and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  15. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Science.gov (United States)

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A M; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  16. Gamma ray irradiation to roots of tea-plants and induced mutant system

    International Nuclear Information System (INIS)

    Takeda, Yoshiyuki; Nekaku, Koji; Wada, Mitsumasa

    1990-01-01

    In order to utilize the useful mutation which is induced by irradiation for the breeding of tea-plants, the gamma-ray irradiation to the roots of tea-plants was carried out. The samples were the roots of tea-plants of four varieties dug up in February, 1984, and were adjusted to about 20 cm, then, put in the cold storage at 5degC for 9 months till the time of irradiation in November, 1984. However, a part of them was taken out in August, and planted in a field for 76 days to germinate, thereafter, used as the samples. The gamma-ray from a Co-60 source was irradiated in the radiation breeding laboratory of Agriculture Bioresources Research Institute at the total dose of 1, 2 and 3 kR and the dose rate of 500 R/h. The irradiated roots were planted as they are or in the state of being cut, and the rate of germination, the number of buds and the induced mutation were examined. Clear difference was not observed in the rate of germination and the number of buds between the irradiated samples and those without irradiation. The long roots were superior to the short roots regarding these items. The types of the induced mutation were mostly thin leaves, and also yellowing, mottling, fascination and so on occurred. The mutant system lacking trichomes on the back of new leaves is considered to be strong against tea anthracnose, and is valuable. (K.I.)

  17. Gamma ray irradiation to roots of tea-plants and induced mutant system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yoshiyuki; Nekaku, Koji; Wada, Mitsumasa (National Research Inst. of Vegetables, Ornamental Plants and Tea, Ano, Mie (Japan))

    1990-11-01

    In order to utilize the useful mutation which is induced by irradiation for the breeding of tea-plants, the gamma-ray irradiation to the roots of tea-plants was carried out. The samples were the roots of tea-plants of four varieties dug up in February, 1984, and were adjusted to about 20 cm, then, put in the cold storage at 5degC for 9 months till the time of irradiation in November, 1984. However, a part of them was taken out in August, and planted in a field for 76 days to germinate, thereafter, used as the samples. The gamma-ray from a Co-60 source was irradiated in the radiation breeding laboratory of Agriculture Bioresources Research Institute at the total dose of 1, 2 and 3 kR and the dose rate of 500 R/h. The irradiated roots were planted as they are or in the state of being cut, and the rate of germination, the number of buds and the induced mutation were examined. Clear difference was not observed in the rate of germination and the number of buds between the irradiated samples and those without irradiation. The long roots were superior to the short roots regarding these items. The types of the induced mutation were mostly thin leaves, and also yellowing, mottling, fascination and so on occurred. The mutant system lacking trichomes on the back of new leaves is considered to be strong against tea anthracnose, and is valuable. (K.I.).

  18. Iron Oxide and Titanium Dioxide Nanoparticle Effects on Plant Performance and Root Associated Microbes

    Directory of Open Access Journals (Sweden)

    David J. Burke

    2015-10-01

    Full Text Available In this study, we investigated the effect of positively and negatively charged Fe3O4 and TiO2 nanoparticles (NPs on the growth of soybean plants (Glycine max. and their root associated soil microbes. Soybean plants were grown in a greenhouse for six weeks after application of different amounts of NPs, and plant growth and nutrient content were examined. Roots were analyzed for colonization by arbuscular mycorrhizal (AM fungi and nodule-forming nitrogen fixing bacteria using DNA-based techniques. We found that plant growth was significantly lower with the application of TiO2 as compared to Fe3O4 NPs. The leaf carbon was also marginally significant lower in plants treated with TiO2 NPs; however, leaf phosphorus was reduced in plants treated with Fe3O4. We found no effects of NP type, concentration, or charge on the community structure of either rhizobia or AM fungi colonizing plant roots. However, the charge of the Fe3O4 NPs affected both colonization of the root system by rhizobia as well as leaf phosphorus content. Our results indicate that the type of NP can affect plant growth and nutrient content in an agriculturally important crop species, and that the charge of these particles influences the colonization of the root system by nitrogen-fixing bacteria.

  19. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology.

    Science.gov (United States)

    Iversen, Colleen M; McCormack, M Luke; Powell, A Shafer; Blackwood, Christopher B; Freschet, Grégoire T; Kattge, Jens; Roumet, Catherine; Stover, Daniel B; Soudzilovskaia, Nadejda A; Valverde-Barrantes, Oscar J; van Bodegom, Peter M; Violle, Cyrille

    2017-07-01

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.

  20. Plant regeneration via somatic embryogenesis from root explants of ...

    African Journals Online (AJOL)

    A system for induction of callus and plant regeneration via somatic embryogenesis from root explants of Hevea brasiliensis Muell. Arg. clone Reyan 87-6-62 was evaluated. The influence of plant growth regulators (PGRs) including 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (6-BA) and kinetin (KT) on ...

  1. Influence of plant roots on electrical resistivity measurements of cultivated soil columns

    Science.gov (United States)

    Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah

    2016-04-01

    Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed

  2. Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources

    International Nuclear Information System (INIS)

    Hadži-Tašković Šukalović V; Vuletić, M.; Marković, K.; Željko, Vučinić; Kravić, N.

    2016-01-01

    Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roots. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.

  3. Modification of antioxidant systems in cell walls of maize roots by different nitrogen sources

    Energy Technology Data Exchange (ETDEWEB)

    Hadži-Tašković Šukalović V; Vuletić, M.; Marković, K.; Željko, Vučinić; Kravić, N.

    2016-07-01

    Antioxidant systems of maize root cell walls grown on different nitrogen sources were evaluated. Plants were grown on a medium containing only NO3- or the mixture of NO3-+NH4+, in a 2:1 ratio. Eleven-day old plants, two days after the initiation of lateral roots, were used for the experiments. Cell walls were isolated from lateral roots and primary root segments, 2-7 cm from tip to base, representing zones of intense or decreased growth rates, respectively. Protein content and the activity of enzymes peroxidase, malate dehydrogenase and ascorbate oxidase ionically or covalently bound to the walls, as well as cell wall phenolic content and antioxidant capacity, were determined. Cell walls of plants grown on mixed N possess more developed enzymatic antioxidant systems and lower non-enzymatic antioxidant defenses than cell walls grown on NO3-. Irrespective of N treatment, the activities of all studied enzymes and protein content were higher in cell walls of lateral compared to primary roots. Phenolic content of cell walls isolated from lateral roots was higher in NO3--grown than in mixed N grown plants. No significant differences could be observed in the isozyme patterns of cell wall peroxidases isolated from plants grown on different nutrient solution. Our results indicate that different N treatments modify the antioxidant systems of root cell walls. Treatment with NO3- resulted in an increase of constitutive phenolic content, while the combination of NO3-+NH4+ elevated the redox enzyme activities in root cell walls.

  4. Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production

    DEFF Research Database (Denmark)

    Leppälammi-Kujansuu, J.; Ostonen, I.; Strömgren, M.

    2013-01-01

    Aims and methods The effects of changing climate on ectomycorrhizal (EcM) fine roots were studied in northern Sweden by manipulating soil temperature for 14 years and/or by fertilizing for 22 years. Fine root biomass, necromass, EcM root tip biomass, morphology and number as well as mycelia...... production were determined from soil cores and mesh bags. Results and conclusions The fine root biomass and necromass were highest in the fertilized plots, following similar trends in the above-ground biomass, whereas the EcM root tip biomass per basal area decreased by 22 % in the fertilized plots compared...... to the control. Warming increased the fine root biomass, live/dead-ratio and the number of EcM root tips in the mineral soil and tended to increase the production of EcM mycelia. Greater fine root biomass meant more EcM root tips, although the tip frequency was not affected by fertilization or warming...

  5. Endophytic colonization of plant roots by nitrogen-fixing bacteria

    International Nuclear Information System (INIS)

    Cocking, Edward C.

    2001-01-01

    Nitrogen-fixing bacteria are able to enter into roots from the rhizosphere, particularly at the base of emerging lateral roots, between epidermal cells and through root hairs. In the rhizosphere growing root hairs play an important role in symbiotic recognition in legume crops. Nodulated legumes in endosymbiosis with rhizobia are amongst the most prominent nitrogen-fixing systems in agriculture. The inoculation of non-legumes, especially cereals, with various non-rhizobial diazotrophic bacteria has been undertaken with the expectation that they would establish themselves intercellularly within the root system, fixing nitrogen endophytic ally and providing combined nitrogen for enhanced crop production. However, in most instances bacteria colonize only the surface of the roots and remain vulnerable to competition from other rhizosphere micro-organisms, even when the nitrogen-fixing bacteria are endophytic, benefits to the plant may result from better uptake of soil nutrients rather than from endophytic nitrogen fixation. Azorhizobium caulinodans is known to enter the root system of cereals, other nonlegume crops and Arabidopsis, by intercellular invasion between epidermal cells and to internally colonize the plant intercellularly, including the xylem. This raises the possibility that xylem colonization might provide a nonnodular niche for endosymbiotic nitrogen fixation in rice, wheat, maize, sorghum and other non-legume crops. A particularly interesting, naturally occurring, non-qodular xylem colonising endophytic diazotrophic interaction with evidence for endophytic nitrogen fixation is that of Gluconacetobacter diazotrophicus in sugarcane. Could this beneficial endophytic colonization of sugarcane by G. diazotrophicus be extended to other members of the Gramineae, including the major cereals, and to other major non-legume crops of the World? (author)

  6. Tonoplast aquaporins facilitate lateral root emergence

    DEFF Research Database (Denmark)

    Reinhardt, Hagen; Hachez, Charles; Bienert, Manuela Désirée

    2016-01-01

    Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report...... mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While...... lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants...

  7. In vitro ROOTING OF TENERA HYBRID OIL PALM (Elaeis guineensis Jacq. PLANTS1

    Directory of Open Access Journals (Sweden)

    Marlúcia Souza Souza Pádua

    2018-04-01

    Full Text Available ABSTRACT Oil palm is a woody monocot of economic importance due to high oil production from its fruits. Currently, the conventional method most used to propagate oil palm is seed germination, but success is limited by long time requirements and low germination percentage. An alternative for large-scale propagation of oil palm is the biotechnological technique of somatic embryogenesis. The rooting of plants germinated from somatic embryos is a difficult step, yet it is of great importance for later acclimatization and success in propagation. The aim of this study was to evaluate the effect of the auxins indole acetic acid (IAA and indole butyric acid (IBA on the rooting of somatic embryos of Tenera hybrid oil palm. Plants obtained by somatic embryogenesis were inoculated in modified MS medium with 10% sucrose and 0.6% agar and supplemented with IAA or IBA at concentrations of 5 µM, 10 µM, and 15 µM, and the absence of growth regulators. After 120 days, the presence of roots, root type, length of the longest root, number of roots, number of leaves, and shoot length were analyzed. Growth regulators were favorable to rooting; plants cultivated with IBA growth regulator at 15 µM showed higher rooting percentage (87% and better results for the parameters of number of roots (1.33 and shoot length (9.83.

  8. Operational Evaluation of the Root Modules of the Advanced Plant Habitat

    Science.gov (United States)

    Monje, O.

    2014-01-01

    Photosynthetic and growth data were collected on APH Root Module. Described Stand pipe system for active moisture control. Tested germination in wicks. Evaluated EC-5 moisture sensors. Demonstrated that Wheat plants can grow in the APH Root Module.

  9. Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase.

    Science.gov (United States)

    Nestler, Josefine; Liu, Sanzhen; Wen, Tsui-Jung; Paschold, Anja; Marcon, Caroline; Tang, Ho Man; Li, Delin; Li, Li; Meeley, Robert B; Sakai, Hajime; Bruce, Wesley; Schnable, Patrick S; Hochholdinger, Frank

    2014-09-01

    Root hairs are instrumental for nutrient uptake in monocot cereals. The maize (Zea mays L.) roothairless5 (rth5) mutant displays defects in root hair initiation and elongation manifested by a reduced density and length of root hairs. Map-based cloning revealed that the rth5 gene encodes a monocot-specific NADPH oxidase. RNA-Seq, in situ hybridization and qRT-PCR experiments demonstrated that the rth5 gene displays preferential expression in root hairs but also accumulates to low levels in other tissues. Immunolocalization detected RTH5 proteins in the epidermis of the elongation and differentiation zone of primary roots. Because superoxide and hydrogen peroxide levels are reduced in the tips of growing rth5 mutant root hairs as compared with wild-type, and Reactive oxygen species (ROS) is known to be involved in tip growth, we hypothesize that the RTH5 protein is responsible for establishing the high levels of ROS in the tips of growing root hairs required for elongation. Consistent with this hypothesis, a comparative RNA-Seq analysis of 6-day-old rth5 versus wild-type primary roots revealed significant over-representation of only two gene ontology (GO) classes related to the biological functions (i.e. oxidation/reduction and carbohydrate metabolism) among 893 differentially expressed genes (FDR <5%). Within these two classes the subgroups 'response to oxidative stress' and 'cellulose biosynthesis' were most prominently represented. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  10. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill.

    Science.gov (United States)

    Aumond, Márcio L; de Araujo, Artur T; de Oliveira Junkes, Camila F; de Almeida, Márcia R; Matsuura, Hélio N; de Costa, Fernanda; Fett-Neto, Arthur G

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus , the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1 , a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1 , suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression ( TPL , IAA12 ) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1 , showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process.

  11. Events Associated with Early Age-Related Decline in Adventitious Rooting Competence of Eucalyptus globulus Labill

    Science.gov (United States)

    Aumond, Márcio L.; de Araujo, Artur T.; de Oliveira Junkes, Camila F.; de Almeida, Márcia R.; Matsuura, Hélio N.; de Costa, Fernanda; Fett-Neto, Arthur G.

    2017-01-01

    The development of adventitious roots is affected by several factors, including the age of the cutting donor plant, which negatively affects rooting capacity. Eucalyptus globulus quickly loses rooting capacity of cuttings as the donor plant ages, although the molecular and biochemical mechanisms behind this process are still unclear. To better understand the bases of rooting competence loss in E. globulus, the time required for a significant decline in rhizogenic ability without exogenous auxin was determined in microcuttings derived from donor plants of different ages after sowing. Tip cuttings of donor plants were severed before and after loss of rooting competence of microcuttings to test the hypothesis that auxin and carbohydrate homeostasis regulate rooting competence decline. There were no significant changes in concentration of carbohydrates, flavonoids, or proteins before and after the loss of rooting capacity. Peroxidase (EC 1.11.1.7) total activity increased with loss of rooting competence. Auxin concentration showed the opposite pattern. In good agreement, TAA1, a key gene in auxin biosynthesis, had lower expression after loss of rooting capacity. The same applied to the auxin receptor gene TIR1, suggesting reduced auxin sensitivity. On the other hand, genes associated with auxin response repression (TPL, IAA12) or with the action of cytokinins, the rhizogenesis inhibitor-related ARR1, showed higher expression in plants with lower rooting competence. Taken together, data suggest that age negatively affects E. globulus rooting by a combination of factors. Decreased endogenous auxin concentration, possibly caused by less biosynthesis, lower auxin sensitivity, higher expression of genes inhibiting auxin action, as well as of genes related to the action of cytokinins, appear to play roles in this process. PMID:29067033

  12. Iron absorption by roots of fruit plants : some characteristics of the phenomena

    International Nuclear Information System (INIS)

    Bindra, A.S.

    1979-01-01

    Using young plants of peach, plum and almond growing in water culture, study was undertaken on the absorption and translocation of labelled iron. When peach plants deficient in this element were supplied with it, they tended to absorb it very rapidly, especially during the first 30 minutes. This absorption was not a superficial adsorption. Iron absorption was found to be linked to the length of non-lignified roots. Of the three species, almond absorbed more iron than peach but less than olum. No significant varietal difference was found regarding the iron absorption capacity of roots of different varieties of peach. Removal of foliage did not influence the absorption of iron by roots of peach plants in the early stages. (auth.)

  13. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants

    Science.gov (United States)

    Krak, Karol; Vosátka, Miroslav; Püschel, David; Štorchová, Helena

    2017-01-01

    Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation. PMID:28738069

  14. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants.

    Directory of Open Access Journals (Sweden)

    Martina Janoušková

    Full Text Available Inoculation with arbuscular mycorrhizal fungi (AMF may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.

  15. Effects of rare earth oxide nanoparticles on root elongation of plants.

    Science.gov (United States)

    Ma, Yuhui; Kuang, Linglin; He, Xiao; Bai, Wei; Ding, Yayun; Zhang, Zhiyong; Zhao, Yuliang; Chai, Zhifang

    2010-01-01

    The phytotoxicity of four rare earth oxide nanoparticles, nano-CeO(2), nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) on seven higher plant species (radish, rape, tomato, lettuce, wheat, cabbage, and cucumber) were investigated in the present study by means of root elongation experiments. Their effects on root growth varied greatly between different nanoparticles and plant species. A suspension of 2000 mg L(-1) nano-CeO(2) had no effect on the root elongation of six plants, except lettuce. On the contrary, 2000 mg L(-1) suspensions of nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) severely inhibited the root elongation of all the seven species. Inhibitory effects of nano-La(2)O(3), nano-Gd(2)O(3), and nano-Yb(2)O(3) also differed in the different growth process of plants. For wheat, the inhibition mainly took place during the seed incubation process, while lettuce and rape were inhibited on both seed soaking and incubation process. The fifty percent inhibitory concentrations (IC(50)) for rape were about 40 mg L(-1) of nano-La(2)O(3), 20mg L(-1) of nano-Gd(2)O(3), and 70 mg L(-1) of nano-Yb(2)O(3), respectively. In the concentration ranges used in this study, the RE(3+) ion released from the nanoparticles had negligible effects on the root elongation. These results are helpful in understanding phytotoxicity of rare earth oxide nanoparticles. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack

    NARCIS (Netherlands)

    Huber, M.; Epping, Janina; Schulze Gronover, C.; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Kollner, T.G.; Vogel, H.; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A.M.; Verhoeven, K.J.F.; Preite, V.; Gershenzon, J.; Erb, M.

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under

  17. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect.

    Science.gov (United States)

    Rostás, Michael; Cripps, Michael G; Silcock, Patrick

    2015-02-01

    Plants emit specific blends of volatile organic compounds (VOCs) that serve as multitrophic, multifunctional signals. Fungi colonizing aboveground (AG) or belowground (BG) plant structures can modify VOC patterns, thereby altering the information content for AG insects. Whether AG microbes affect the emission of root volatiles and thus influence soil insect behaviour is unknown. The endophytic fungus Neotyphodium uncinatum colonizes the aerial parts of the grass hybrid Festuca pratensis × Lolium perenne and is responsible for the presence of insect-toxic loline alkaloids in shoots and roots. We investigated whether endophyte symbiosis had an effect on the volatile emission of grass roots and if the root herbivore Costelytra zealandica was able to recognize endophyte-infected plants by olfaction. In BG olfactometer assays, larvae of C. zealandica were more strongly attracted to roots of uninfected than endophyte-harbouring grasses. Combined gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry revealed that endophyte-infected roots emitted less VOCs and more CO2. Our results demonstrate that symbiotic fungi in plants may influence soil insect distribution by changing their behaviour towards root volatiles. The well-known defensive mutualism between grasses and Neotyphodium endophytes could thus go beyond bioactive alkaloids and also confer protection by being chemically less apparent for soil herbivores.

  18. Characterizing the effects of brassinosteroids on root development in monocot plant species

    DEFF Research Database (Denmark)

    de Bang, Louise

    . With TILLING, two mutants of selected BR-related genes were identified in a Brachypodium distachyon mutant population. However, compared to the wild type, the mutants did not produce more biomass. The work with BR effects on plant root growth stimulated an interest for roots and root development, which...

  19. Response of root fungi in Pisum sativum to plant and soil environmental factors

    DEFF Research Database (Denmark)

    Yu, Lingling

    and nutritional status of the plant and soil environments. However, limited information is available about the richness and composition of most of these root-associated fungi as studies of fungal communities remain a challenge because of below-ground high taxonomic and ecological diversity. In the present study......; thus obligate biotrophic fungi and saprotrophic fungi were markedly increased with organic fertilizer dosages, while root pathogenic fungi were decreased with organic amendments. In conclusion, the present work has shown that root-associated fungal community structure relate to plant and soil...... environmental factors. The obtained knowledge from this study can provide novel information of communities of root-associated fungi; thus improving the basic understanding of plant-root fungi-environment interactions in agroecosystems....

  20. Iron and ferritin dependent ROS distribution impact Arabidopsis root system architecture.

    Science.gov (United States)

    Reyt, Guilhem; Boudouf, Soukaina; Boucherez, Jossia; Gaymard, Frédéric; Briat, Jean-Franois

    2014-11-09

    Iron (Fe) homeostasis is integrated with the production of Reactive Oxygen Species (ROS) whose distribution at the root tip participates in the control of root growth. Excess Fe increases ferritin abundance, enabling the storage of Fe which contributes to protection of plants against Fe-induced oxidative stress. AtFer1 and AtFer3 are the two ferritin genes expressed in the meristematic zone, pericycle and endodermis of the Arabidopsis thaliana (Arabidopsis) root, and it is in these regions that we observe Fe stained dots. This staining disappears in the triple fer1-3-4 ferritin mutant. Fe excess decreases primary root length in the same way in wild-type and in fer1-3-4 mutant. In contrast, the Fe mediated decrease of lateral root (LR) length and density is enhanced in fer1-3-4 plants due to a defect in LR emergence. We observe that this interaction between excess Fe, ferritin and RSA is in part mediated by the H 2 O 2 /O 2 .- balance between the root cell proliferation and differentiation zones regulated by the UPB1 transcription factor. Further, meristem size is also decreased in response to Fe excess in ferritin mutant plants, implicating cell cycle arrest mediated by the ROS-activated SMR5/SMR7 cyclin-dependent kinase inhibitors pathway in the interaction between Fe and RSA. © The Author 2014. Published by the Molecular Plant Shanghai Editorial Office in association with Oxford University Press on behalf of CSPB and IPPE, SIBS, CAS.

  1. The density and length of root hairs are enhanced in response to cadmium and arsenic by modulating gene expressions involved in fate determination and morphogenesis of root hairs in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ramin Bahmani

    2016-11-01

    Full Text Available Root hairs are tubular outgrowths that originate from epidermal cells. Exposure of Arabidopsis to cadmium (Cd and arsenic [arsenite, As(III] increases root hair density and length. To examine the underlying mechanism, we measured the expression of genes involved in fate determination and morphogenesis of root hairs. Cd and As(III downregulated TTG1 and GL2 (negative regulators of fate determination and upregulated GEM (positive regulator, suggesting that root hair fate determination is stimulated by Cd and As(III. Cd and As(III increased the transcript levels of genes involved in root hair initiation (RHD6 and AXR2 and root hair elongation (AUX1, AXR1, ETR1, and EIN2 except CTR1. DR5::GUS transgenic Arabidopsis showed a higher DR5 expression in the root tip, suggesting that Cd and As(III increased the auxin content in the root tip. Knockdown of TTG1 in Arabidopsis resulted in increased root hair density and decreased root hair length compared with the control (Col-0 on 1/2 MS media. This phenotype may be attributed to the downregulation of GL2 and CTR1 and upregulation of RHD6. By contrast, gem mutant plants displayed a decrease in root hair density and length with reduced expression of RHD6, AXR2, AUX1, AXR1, ETR1, CTR1, and EIN2. Taken together, our results indicate that fate determination, initiation, and elongation of root hairs are stimulated in response to Cd and As(III through the modulation of the expression of genes involved in these processes in Arabidopsis.

  2. Molecular mechanisms of root gravity sensing and signal transduction.

    Science.gov (United States)

    Strohm, Allison K; Baldwin, Katherine L; Masson, Patrick H

    2012-01-01

    Plants use gravity as a guide to direct their roots down into the soil to anchor themselves and to find resources needed for growth and development. In higher plants, the columella cells of the root tip form the primary site of gravity sensing, and in these cells the sedimentation of dense, starch-filled plastids (amyloplasts) triggers gravity signal transduction. This generates an auxin gradient across the root cap that is transmitted to the elongation zone where it promotes differential cell elongation, allowing the root to direct itself downward. It is still not well understood how amyloplast sedimentation leads to auxin redistribution. Models have been proposed to explain how mechanosensitive ion channels or ligand-receptor interactions could connect these events. Although their roles are still unclear, possible second messengers in this process include protons, Ca(2+), and inositol 1,4,5-triphosphate. Upon gravistimulation, the auxin efflux facilitators PIN3 and PIN7 relocalize to the lower side of the columella cells and mediate auxin redistribution. However, evidence for an auxin-independent secondary mechanism of gravity sensing and signal transduction suggests that this physiological process is quite complex. Furthermore, plants must integrate a variety of environmental cues, resulting in multifaceted relationships between gravitropism and other directional growth responses such as hydro-, photo-, and thigmotropism. Copyright © 2011 Wiley Periodicals, Inc.

  3. Elimination of PPV and PNRSV through thermotherapy and meristem-tip culture in nectarine.

    Science.gov (United States)

    Manganaris, G A; Economou, A S; Boubourakas, I N; Katis, N I

    2003-10-01

    The plum pox virus (PPV) and prunus necrotic ringspot virus (PNRSV) cause serious disease problems in stone-fruit trees. In this work, the possibility of obtaining plant material free from these viruses through thermotherapy and meristem-tip culture from infected nectarine shoots (Prunus persica var. nectarina Max, cv. 'Arm King') was studied. In addition, the detection of these viruses in in vitro cultures and young acclimatized plantlets with double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) and multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) was studied. Meristem-tip explants (0.8-1.3 mm) derived from sprouted buds of winter wood and spring shoots from field grown plants had a 2-5% regeneration response. However, application of thermotherapy to potted nectarine trees (3 weeks at a maximum temperature of 35 degrees C) facilitated excision of longer meristem tips (1.3-2.0 mm) that resulted in a significantly higher regeneration response (38%) in woody plant medium (WPM) without plant growth regulators. Such explants formed multiple shoots with the addition of 8 microM benzylaminopurine and 0.8 microM indoleacetic acid. When they were tested for the presence of PPV and PNRSV, 86% and 81% were found to be virus-free as detected by DAS-ELISA and multiplex RT-PCR, respectively. Individual shoots excised from virus-free cultures readily rooted in vitro (half-strength WPM plus 2 microM indolebutyric acid) and grew to plantlets. The combination of an efficient protocol for virus elimination and the establishment of highly sensitive diagnostics resulted in the production of nectarine plants free from PPV and PNRSV.

  4. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities.

    Science.gov (United States)

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species ( Solidago canadensis, Populus balsamifera , and Lycopus europaeus ) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the

  5. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    Directory of Open Access Journals (Sweden)

    Bachir Iffis

    2017-08-01

    Full Text Available Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate

  6. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    Science.gov (United States)

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the

  7. Analysis of initial changes in the proteins of soybean root tip under flooding stress using gel-free and gel-based proteomic techniques.

    Science.gov (United States)

    Yin, Xiaojian; Sakata, Katsumi; Nanjo, Yohei; Komatsu, Setsuko

    2014-06-25

    Flooding has a severe negative effect on soybean cultivation in the early stages of growth. To obtain a better understanding of the response mechanisms of soybean to flooding stress, initial changes in root tip proteins under flooding were analyzed using two proteomic techniques. Two-day-old soybeans were treated with flooding for 3, 6, 12, and 24h. The weight of soybeans increased during the first 3h of flooding, but root elongation was not observed. Using gel-based and gel-free proteomic techniques, 115 proteins were identified in root tips, of which 9 proteins were commonly detected by both methods. The 71 proteins identified by the gel-free proteomics were analyzed by a hierarchical clustering method based on induction levels during the flooding, and the proteins were divided into 5 clusters. Additional interaction analysis of the proteins revealed that ten proteins belonging to cluster I formed the center of a protein interaction network. mRNA expression analysis of these ten proteins showed that citrate lyase and heat shock protein 70 were down-regulated, whereas calreticulin was up-regulated in initial phase of flooding. These results suggest that flooding stress to soybean induces calcium-related signal transduction, which might play important roles in the early responses to flooding. Flooding has a severe negative effect on soybean cultivation, particularly in the early stages of growth. To better understand the response mechanisms of soybean to the early stages of flooding stress, two proteomic techniques were used. Two-day-old soybeans were treated without or with flooding for 3, 6, 12, and 24h. The fresh weight of soybeans increased during the first 3h of flooding stress, but the growth then slowed and no root elongation was observed. Using gel-based and gel-free proteomic techniques, 115 proteins were identified in root tips, of which 9 proteins were commonly detected by both methods. The 71 proteins identified by the gel-free proteomics were analyzed

  8. Effects of PEG-Induced Water Deficit in Solanum nigrum on Zn and Ni Uptake and Translocation in Split Root Systems

    Directory of Open Access Journals (Sweden)

    Urs Feller

    2015-06-01

    Full Text Available Drought strongly influences root activities in crop plants and weeds. This paper is focused on the performance of the heavy metal accumulator Solanum nigrum, a plant which might be helpful for phytoremediation. The water potential in a split root system was decreased by the addition of polyethylene glycol (PEG 6000. Rubidium, strontium and radionuclides of heavy metals were used as markers to investigate the uptake into roots, the release to the shoot via the xylem, and finally the basipetal transport via the phloem to unlabeled roots. The uptake into the roots (total contents in the plant was for most makers more severely decreased than the transport to the shoot or the export from the shoot to the unlabeled roots via the phloem. Regardless of the water potential in the labeling solution, 63Ni and 65Zn were selectively redistributed within the plant. From autoradiographs, it became evident that 65Zn accumulated in root tips, in the apical shoot meristem and in axillary buds, while 63Ni accumulated in young expanded leaves and roots but not in the meristems. Since both radionuclides are mobile in the phloem and are, therefore, well redistributed within the plant, the unequal transfer to shoot and root apical meristems is most likely caused by differences in the cell-to-cell transport in differentiation zones without functional phloem (immature sieve tubes.

  9. A gradient of endogenous calcium forms in mucilage of graviresponding roots of Zea mays

    Science.gov (United States)

    Moore, R.; Fondren, W. M.

    1988-01-01

    Agar blocks that contacted the upper sides of tips of horizontally-oriented roots of Zea mays contain significantly less calcium (Ca) than blocks that contacted the lower sides of such roots. This gravity-induced gradient of Ca forms prior to the onset of gravicurvature, and does not form across tips of vertically-oriented roots or roots of agravitropic mutants. These results indicate that (1) Ca can be collected from mucilage of graviresponding roots, (2) gravity induces a downward movement of endogenous Ca in mucilage overlying the root tip, (3) this gravity-induced gradient of Ca does not form across tips of agravitropic roots, and (4) formation of a Ca gradient is not a consequence of gravicurvature. These results are consistent with gravity-induced movement of Ca being a trigger for subsequent redistribution of growth effectors (e.g. auxin) that induce differential growth and gravicurvature.

  10. A complete system for 3D reconstruction of roots for phenotypic analysis.

    Science.gov (United States)

    Kumar, Pankaj; Cai, Jinhai; Miklavcic, Stanley J

    2015-01-01

    Here we present a complete system for 3D reconstruction of roots grown in a transparent gel medium or washed and suspended in water. The system is capable of being fully automated as it is self calibrating. The system starts with detection of root tips in root images from an image sequence generated by a turntable motion. Root tips are detected using the statistics of Zernike moments on image patches centred on high curvature points on root boundary and Bayes classification rule. The detected root tips are tracked in the image sequence using a multi-target tracking algorithm. Conics are fitted to the root tip trajectories using a novel ellipse fitting algorithm which weighs the data points by its eccentricity. The conics projected from the circular trajectory have a complex conjugate intersection which are image of the circular points. Circular points constraint the image of the absolute conics which are directly related to the internal parameters of the camera. The pose of the camera is computed from the image of the rotation axis and the horizon. The silhouettes of the roots and camera parameters are used to reconstruction the 3D voxel model of the roots. We show the results of real 3D reconstruction of roots which are detailed and realistic for phenotypic analysis.

  11. Effects of 5-fluorouracil on the mitotic activity of onion root tips apical meristem

    Directory of Open Access Journals (Sweden)

    Waldemar Lechowicz

    2015-01-01

    Full Text Available The effects of various concentrations of 5-FU on the mitotic activity of onion root tips apical meristem were investigated during 24-hour incubation in 5-FU and postincubation in water. The incubation in 5-FU caused a reversible inhibition of mitotic activity, and waves of the partially synchronised mitoses were observed during the period of postincubation. The most pronounced synchronisation of mitoses was obtained after incubation in 100 mg/l. 5-FU but the mitotic index of the resumed mitotic activity amounted to only one half of the control value. 5-FU was found to cause some cytological changes in meristematic cells such as enlargement of the nucleoli, change in the interphasic nuclei structure, appearance of subchromatid and chromatid aberrations and micronuclei. The effects of 5-FU on nucleic acids and the cell division cycle ace discussed and compared with the effects of 5-FUdR.

  12. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability

    Science.gov (United States)

    Although research has explained how plant roots mechanically stabilize soils, in this article we explore how root systems create networks of preferential flow and thus influence water pressures in soils to trigger landslides. Root systems may alter subsurface flow: Hydrological m...

  13. Root foraging increases performance of the clonal plant Potentilla reptans in heterogeneous nutrient environments.

    Science.gov (United States)

    Wang, Zhengwen; van Kleunen, Mark; During, Heinjo J; Werger, Marinus J A

    2013-01-01

    Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention. In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed). Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.

  14. CHARACTERIZATION OF CADMIUM UPTAKE BY ROOTS OF DURUM WHEAT PLANTS

    Directory of Open Access Journals (Sweden)

    Lyubka Koleva

    2009-03-01

    Full Text Available Root Cd uptake of durum wheat plants (cv. Beloslava was characterized in hydroponics conditions. The uptake experiments have been performed in Cd concentration range of 0 – 2 μM adjusted by both stable Cd and radiolabeled (109Cd tracer. Cd removal from the solution over duration of 1 hour reached 50%. The part of loosely adsorbed Cd ions on root surface accounted for about 20%. Over 30% of absorbed Cd at 0.5 μM Cd treatment was retained in root cell walls. The apparent root Cd accumulation showed concentration-dependant tendency with the highest accumulation value of 7.45 nmol Cd g FW-1.

  15. Root and leaf abscisic acid concentration impact on gas exchange in tomato (Lycopersicon esculentum Mill plants subjected to partial root-zone drying

    Directory of Open Access Journals (Sweden)

    Maria Valerio

    2017-03-01

    Full Text Available Partial root-zone drying (PRD is a deficit irrigation technique with great potential for water saving. A split-root experiment was conducted on tomato in controlled environment in order to test the response of two long-time storage cultivars to PRD. Ponderosa tomato, a cultivar with yellow fruits, was compared to Giallo tondo di Auletta, a local cultivar from southern Campania (Italy. Plants were subjected to three irrigation treatments: plants receiving an amount of water equivalent to 100% of plant evapotranspiration (V100; plants in which 50% of the amount of water given to V100 was supplied (V50; and plants where one root compartment was irrigated at 50% of water requirements and the other compartment was allowed to dry, and thereafter every side was rewetted alternatively (PRD. The highest levels of leaf abscisic acid (ABA [on average equal to 104 ng g–1 fresh weight FW] were measured in PRD and V50, at 70 days after transplantation. Root ABA concentration in both PRD and V50 reached mean values of 149 ng g–1 FW. There were differences for the irrigation regime in root ABA biosynthesis and accumulation under partial root-zone drying and conventional deficit irrigation (V50. Assimilation rate, stomatal conductance and intercellular CO2 concentration decreased in relation to the irrigation regime by 22, 36 and 12%, respectively, in PRD, V50 and V100 at 50 days after transplantation. Ponderosa variety accumulated 20% more dry matter than Auletta and significant differences were observed in leaf area. In both PRD and V50 of the two varieties, it was possible to save on average 46% of water. Our results indicate that there is still space to optimise the PRD strategy, to further improve the cumulative physiological effects of the root-sourced signaling system.

  16. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants

    International Nuclear Information System (INIS)

    Li, H.; Ye, Z.H.; Wei, Z.J.; Wong, M.H.

    2011-01-01

    The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L -1 ) and a soil pot trail (control, 60 mg As kg -1 ). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O 2 kg -1 root d.w. d -1 ), As uptake (e.g., 8.8-151 mg kg -1 in shoots in 0.8 mg As L -1 treatment), translocation factor (2.1-47% in 0.8 mg As L -1 ) and tolerance (29-106% in 0.8 mg As L -1 ). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity. - Research highlights: → There is significant correlation between the porosity of roots and rates of ROL. → The rates of ROL are significantly correlated with tolerance indices and concentrations of As, Fe, Mn on root surface. → The rates of ROL is negatively correlated with As translocation factor. - Wetland plants with high rates of ROL tended to form more Fe plaque on root surfaces and possess higher As tolerance.

  17. Electric current precedes emergence of a lateral root in higher plants.

    Science.gov (United States)

    Hamada, S; Ezaki, S; Hayashi, K; Toko, K; Yamafuji, K

    1992-10-01

    Stable electrochemical patterns appear spontaneously around roots of higher plants and are closely related to growth. An electric potential pattern accompanied by lateral root emergence was measured along the surface of the primary root of adzuki bean (Phaseolus angularis) over 21 h using a microelectrode manipulated by a newly developed apparatus. The electric potential became lower at the point where a lateral root emerged. This change preceded the emergence of the lateral root by about 10 h. A theory is presented for calculating two-dimensional patterns of electric potential and electric current density around the primary root (and a lateral root) using only data on the one-dimensional electric potential measured near the surface of the primary root. The development of the lateral root inside the primary root is associated with the influx of electric current of about 0.7 muA.cm(-2) at the surface.

  18. Effet de la bactérisation des graines sur la croissance des plants de Cedrus atlantica Manetti

    Directory of Open Access Journals (Sweden)

    Satrani B.

    2009-01-01

    Full Text Available Bacterization effect of seeds on the growth of Cedrus atlantica Manetti plants. The beneficial effect of five rhizobacterial strains on the growth of Cedrus atlantica plants was evaluated at forest nursery before out-planting. The obtained results showed a significant effect of bacterial strains on cedar seedlings growth and only Pseudomonas fluorescens A6RI and TGI252 significantly increased stem length, neck diameter, root dry weight and number of root tips. It will allow us to adapt this technology for the production of quality plants.

  19. A plant microRNA regulates the adaptation of roots to drought stress

    KAUST Repository

    Chen, Hao

    2012-06-01

    Plants tend to restrict their horizontal root proliferation in response to drought stress, an adaptive response mediated by the phytohormone abscisic acid (ABA) in antagonism with auxin through unknown mechanisms. Here, we found that stress-regulated miR393-guided cleavage of the transcripts encoding two auxin receptors, TIR1 and AFB2, was required for inhibition of lateral root growth by ABA or osmotic stress. Unlike in the control plants, the lateral root growth of seedlings expressing miR393-resistant TIR1 or AFB2 was no longer inhibited by ABA or osmotic stress. Our results indicate that miR393-mediated attenuation of auxin signaling modulates root adaptation to drought stress. © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Gravity sensing and signal transduction in vascular plant primary roots.

    Science.gov (United States)

    Baldwin, Katherine L; Strohm, Allison K; Masson, Patrick H

    2013-01-01

    During gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle. In this review, we introduce gravitropism and give an overview of what we know about gravity sensing in roots of vascular plants, with special highlight on recent papers. When plant roots are reoriented sideways, amyloplast resedimentation in the columella cells is a key initial step in gravity sensing. This process somehow leads to cytoplasmic alkalinization of these cells followed by relocalization of auxin efflux carriers (PINs). This changes auxin flow throughout the root, generating a lateral gradient of auxin across the cap that upon transmission to the elongation zone leads to differential cell elongation and gravibending. We will present the evidence for and against the following players having a role in transferring the signal from the amyloplast sedimentation into the auxin signaling cascade: mechanosensitive ion channels, actin, calcium ions, inositol trisphosphate, receptors/ligands, ARG1/ARL2, spermine, and the TOC complex. We also outline auxin transport and signaling during gravitropism.

  1. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis.

    Science.gov (United States)

    Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M

    2009-07-01

    Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane-localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gbeta subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism.

  2. In situ stimulation vs. bioaugmentation: Can microbial inoculation of plant roots enhance biodegradation of organic compounds?

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, M.T.; Metting, F.B. Jr.; Fredrickson, J.K. [Pacific Northwest Lab., Richland, WA (United States); Seidler, R.J. [Environmental Protection Agency, Corvallis, OR (United States). Environmental Research Lab.

    1993-06-01

    The use of plant roots and their associated rhizosphere bacteria for biocontainment and biorestoration offers several advantages for treating soil-dispersed contaminants and for application to large land areas. Plant roots function as effective delivery systems, since root growth transports bacteria vertically and laterally along the root in the soil column (see [ 1,2]). Movement of microbes along roots and downward in the soil column can be enhanced via irrigation [1-4]. For example, Ciafardini et al. [3] increased the nodulation and the final yield of soybeans during pod filling by including Bradyrhizobium japonicum in the irrigation water. Using rhizosphere microorganisms is advantageous for biodegradation of compounds that are degraded mainly by cometabolic processes, e.g., trichloroethylene (TCE). The energy source for bacterial growth and metabolism is supplied by the plant in the form of root exudates and other sloughed organic material. Plants are inexpensive, and by careful choice of species that possess either tap or fibrous root growth patterns, they can be used to influence mass transport of soil contaminants to the root surface via the transpiration stream [5]. Cropping of plants to remove heavy metals from contaminated soils has been proposed as a viable, low-cost, low-input treatment option [6]. The interest in use of plants as a remediation strategy has even reached the popular press [7], where the use of ragweed for the reclamation of sites contaminated with tetraethyl lead and other heavy metals was discussed.

  3. Live cell imaging of Arabidopsis root hairs

    NARCIS (Netherlands)

    Ketelaar, T.

    2014-01-01

    Root hairs are tubular extensions from the root surface that expand by tip growth. This highly focused type of cell expansion, combined with position of root hairs on the surface of the root, makes them ideal cells for microscopic observation. This chapter describes the method that is routinely used

  4. Rooting depths of plants on low-level waste disposal sites

    International Nuclear Information System (INIS)

    Foxx, T.S.; Tierney, G.D.; Williams, J.M.

    1984-11-01

    In 1981-1982 an extensive bibliographic study was done to reference rooting depths of native plants in the United States. The data base presently contains 1034 different rooting citations with approximately 12,000 data elements. For this report, data were analyzed for rooting depths related to species found on low-level waste (LLW) sites at Los Alamos National Laboratory. Average rooting depth and rooting frequencies were determined and related to present LLW maintenance. The data base was searched for information on rooting depths of 53 species found on LLW sites at Los Alamos National Laboratory. The study indicates 12 out of 13 grasses found on LLW sites root below 91 cm. June grass [Koeleria cristata (L.) Pers.] (76 cm) was the shallowest rooting grass and side-oats grama [Bouteloua curtipendula (Michx.) Torr.] was the deepest rooting grass (396 cm). Forbs were more variable in rooting depths. Indian paintbrush (Castelleja spp.) (30 cm) was the shallowest rooting forb and alfalfa (Medicago sativa L.) was the deepest (>3900 cm). Trees and shrubs commonly rooted below 457 cm. The shallowest rooting tree was elm (Ulmus pumila L.) (127 cm) and the deepest was one-seed juniper [Juniperus monosperma (Engelm) Sarg.] (>6000 cm). Apache plume [Fallugia paradoxa (D. Don) Endl.] rooted to 140 cm, whereas fourwing saltbush [Atriplex canecens (Pursh) Nutt.] rooted to 762 cm

  5. Root Canal Irrigation: Chemical Agents and Plant Extracts Against Enterococcus faecalis

    Science.gov (United States)

    Borzini, Letizia; Condò, Roberta; De Dominicis, Paolo; Casaglia, Adriano; Cerroni, Loredana

    2016-01-01

    Background: There are various microorganisms related to intra and extra-radicular infections and many of these are involved in persistent infections. Bacterial elimination from the root canal is achieved by means of the mechanical action of instruments and irrigation as well as the antibacterial effects of the irrigating solutions. Enterococcus faecalis can frequently be isolated from root canals in cases of failed root canal treatments. Antimicrobial agents have often been developed and optimized for their activity against endodontic bacteria. An ideal root canal irrigant should be biocompatible, because of its close contact with the periodontal tissues during endodontic treatment. Sodium hypoclorite (NaOCl) is one of the most widely recommended and used endodontic irrigants but it is highly toxic to periapical tissues. Objectives: To analyze the literature on the chemotherapeutic agent and plant extracts studied as root canal irrigants. In particularly, the study is focused on their effect on Enterococcus faecalis. Method: Literature search was performed electronically in PubMed (PubMed Central, MEDLINE) for articles published in English from 1982 to April 2015. The searched keywords were “endodontic irrigants” and “Enterococcus faecalis” and “essential oil” and “plant extracts”. Results: Many of the studied chemotherapeutic agents and plant extracts have shown promising results in vitro. Conclusion: Some of the considered phytotherapic substances, could be a potential alternative to NaOCl for the biomechanical treatment of the endodontic space. PMID:28217184

  6. Trans-specific gene silencing of acetyl-CoA carboxylase in a root-parasitic plant.

    Science.gov (United States)

    Bandaranayake, Pradeepa C G; Yoder, John I

    2013-05-01

    Parasitic species of the family Orobanchaceae are devastating agricultural pests in many parts of the world. The control of weedy Orobanchaceae spp. is challenging, particularly due to the highly coordinated life cycles of the parasite and host plants. Although host genetic resistance often provides the foundation of plant pathogen management, few genes that confer resistance to root parasites have been identified and incorporated into crop species. Members of the family Orobanchaceae acquire water, nutrients, macromolecules, and oligonucleotides from host plants through haustoria that connect parasite and host plant roots. We are evaluating a resistance strategy based on using interfering RNA (RNAi) that is made in the host but inhibitory in the parasite as a parasite-derived oligonucleotide toxin. Sequences from the cytosolic acetyl-CoA carboxylase (ACCase) gene from Triphysaria versicolor were cloned in hairpin conformation and introduced into Medicago truncatula roots by Agrobacterium rhizogenes transformation. Transgenic roots were recovered for four of five ACCase constructions and infected with T. versicolor against parasitic weeds. In all cases, Triphysaria root viability was reduced up to 80% when parasitizing a host root bearing the hairpin ACCase. Triphysaria root growth was recovered by exogenous application of malonate. Reverse-transcriptase polymerase chain reaction (RT-PCR) showed that ACCase transcript levels were dramatically decreased in Triphysaria spp. parasitizing transgenic Medicago roots. Northern blot analysis identified a 21-nucleotide, ACCase-specific RNA in transgenic M. truncatula and in T. versicolor attached to them. One hairpin ACCase construction was lethal to Medicago spp. unless grown in media supplemented with malonate. Quantitative RT-PCR showed that the Medicago ACCase was inhibited by the Triphysaria ACCase RNAi. This work shows that ACCase is an effective target for inactivation in parasitic plants by trans-specific gene

  7. Collection of gravitropic effectors from mucilage of electrotropically-stimulated roots of Zea mays L

    Science.gov (United States)

    Fondren, W. M.; Moore, R.

    1987-01-01

    We placed agar blocks adjacent to tips of electrotropically stimulated primary roots of Zea mays. Blocks placed adjacent to the anode-side of the roots for 3 h induced significant curvature when subsequently placed asymmetrically on tips of vertically-oriented roots. Curvature was always toward the side of the root unto which the agar block was placed. Agar blocks not contacting roots and blocks placed adjacent to the cathode-side of electrotropically stimulated roots did not induce significant curvature when placed asymmetrically on tips of vertically-oriented roots. Atomic absorption spectrophotometry indicated that blocks adjacent to the anode-side of electrotropically-stimulated roots contained significantly more calcium than (1) blocks not contacting roots, and (2) blocks contacting the cathode-side of roots. These results demonstrate the presence of a gradient of endogenous Ca in mucilage of electrotropically-stimulated roots (i.e. roots undergoing gravitropic-like curvature).

  8. Floating retained root lesion mimicking apical periodontitis.

    Science.gov (United States)

    Chung, Ming-Pang; Chen, Chih-Ping; Shieh, Yi-Shing

    2009-10-01

    A case of a retained root tip simulating apical periodontitis on radiographic examination is described. The retained root tip, originating from the left lower first molar, floated under the left lower second premolar apical region mimicking apical periodontitis. It appeared as an ill-defined periapical radiolucency containing a smaller radiodense mass on radiograph. The differential diagnosis included focal sclerosing osteomyelitis (condensing osteitis) and ossifying fibroma. Upon exicisional biopsy, a retained root associated with granulation tissue was found. After 1-year follow-up, the patient was asymptomatic and the periradicular lesion was healing. Meanwhile, the associated tooth showed a normal response to stimulation testing.

  9. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling

    NARCIS (Netherlands)

    Rebeca Cosme, M.P.

    2016-01-01

    Plant–microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water

  10. Flavonoids Promote Haustoria Formation in the Root Parasite Triphysaria versicolor1

    Science.gov (United States)

    Albrecht, Huguette; Yoder, John I.; Phillips, Donald A.

    1999-01-01

    Parasitic plants in the Scrophulariaceae develop infective root structures called haustoria in response to chemical signals released from host-plant roots. This study used a simple in vitro assay to characterize natural and synthetic molecules that induce haustoria in the facultative parasite Triphysaria versicolor. Several phenolic acids, flavonoids, and the quinone 2,6-dimethoxy-p-benzoquinone induced haustoria in T. versicolor root tips within hours after treatment. The concentration at which different molecules were active varied widely, the most active being 2,6-dimethoxy-p-benzoquinone and the anthocyanidin peonidin. Maize (Zea mays) seeds are rich sources of molecules that induce T. versicolor haustoria in vitro, and chromatographic analyses indicated that the active molecules present in maize-seed rinses include anthocyanins, other flavonoids, and simple phenolics. The presence of different classes of inducing molecules in seed rinses was substantiated by the observation that maize kernels deficient in chalcone synthase, a key enzyme in flavonoid biosynthesis, released haustoria-inducing molecules, although at reduced levels compared with wild-type kernels. We discuss these results in light of existing models for host perception in the related parasitic plant Striga. PMID:9952454

  11. Inducing somatic meiosis-like reduction at high frequency by caffeine in root-tip cells of Vicia faba.

    Science.gov (United States)

    Chen, Y; Zhang, L; Zhou, Y; Geng, Y; Chen, Z

    2000-07-20

    Germinated seeds of Vicia faba were treated in caffeine solutions of different concentration for different durations to establish the inducing system of somatic meiosis-like reduction. The highest frequency of somatic meiosis-like reduction could reach up to 54.0% by treating the root tips in 70 mmol/l caffeine solution for 2 h and restoring for 24 h. Two types of somatic meiosis-like reduction were observed. One was reductional grouping, in which the chromosomes in a cell usually separated into two groups, and the role of spindle fibers did not show. The other type was somatic meiosis, which was analogous to meiosis presenting in gametogenesis, and chromosome pairing and chiasmata were visualized.

  12. Sensitivity of root-knot nematodes to gamma irradiation, salinity and plant growth regulator, cycocel

    Energy Technology Data Exchange (ETDEWEB)

    Sweelam, M E [Econ. Entomology Dept., Fac. Agric. Menoufia University Shebin El-Kom, (Egypt)

    1995-10-01

    The experiment was carried out at the experimental station of the faculty of agriculture, Menoufia Univ. To determine the sensitivity of root-knot nematode, Meloidogyne Javanica infecting tomato plants exposed to different doses of gamma irradiation 0,20,40,60,80 Gy, salinity levels 0. 1000, 2000, 4000 ppm and the plant growth regulator cycocel 0,200 ppm. Treated seeds were planted clay pots and salinity levels and cycocel concentrations were applied. Fresh weights and nematode populations were computed 3 months after application. Results indicated that 20 Gy, 1000 ppm salinity and cycocel gave the highest fresh weight of shoots and roots. The developmental stages and egg-laying females of nematode decreased by the increasing of irradiation dose and salinity levels. Root-knot galls decreased with 40 and 60 Gy, while significant increase was observed with 0 and 80 Gy, salinity levels decreased root galls. Cycocel decreased nematode population, egg-lying females and root-knot galls.

  13. Sensitivity of root-knot nematodes to gamma irradiation, salinity and plant growth regulator, cycocel

    International Nuclear Information System (INIS)

    Sweelam, M.E.

    1995-01-01

    The experiment was carried out at the experimental station of the faculty of agriculture, Menoufia Univ. To determine the sensitivity of root-knot nematode, Meloidogyne Javanica infecting tomato plants exposed to different doses of gamma irradiation 0,20,40,60,80 Gy, salinity levels 0. 1000, 2000, 4000 ppm and the plant growth regulator cycocel 0,200 ppm. Treated seeds were planted clay pots and salinity levels and cycocel concentrations were applied. Fresh weights and nematode populations were computed 3 months after application. Results indicated that 20 Gy, 1000 ppm salinity and cycocel gave the highest fresh weight of shoots and roots. The developmental stages and egg-laying females of nematode decreased by the increasing of irradiation dose and salinity levels. Root-knot galls decreased with 40 and 60 Gy, while significant increase was observed with 0 and 80 Gy, salinity levels decreased root galls. Cycocel decreased nematode population, egg-lying females and root-knot galls

  14. Incorporation of plant materials in the control of root pathogens in muskmelon

    Directory of Open Access Journals (Sweden)

    Andréa Mirne de Macêdo Dantas

    2013-12-01

    Full Text Available The effect of plant materials[Sunn Hemp (Crotalaria juncea, Castor Bean (Ricinus communis L., Cassava (Manihot esculenta Crantz and Neem (Azadirachta indica] and the times of incorporation of these materials in regards to the incidence of root rot in melon was evaluated in Ceará state, Brazil. The experiment was conducted in a commercial area with a history of root pathogens in cucurbitaceae. The randomized block design was used, in a 5 x 3 factorial arrangement with four repetitions. The treatments consisted of a combination of four plant materials (sunn hemp, castor beans, cassava and neem and a control with no soil incorporation of plant material and three times of incorporation (28, 21, and 14 days before the transplanting of the seedlings. Lower incidence of root rot was observed in practically all of the treatments where materials were incorporated at different times, with variation between the materials, corresponding with the time of incorporation, in relation to the soil without plant material. The pathogens isolated from the symptomatic muskmelon plants were Fusarium solani, Macrophomina phaseolina, Monosporascus cannonballus and Rhizoctonia solani, F. solani being encountered most frequently.

  15. The influence of arbuscular mycorrhizae on root precision nutrient foraging of two pioneer plant species during early reclamation

    Science.gov (United States)

    Boldt-Burisch, Katja; Naeth, M. Anne

    2017-04-01

    On many post mining sites in the Lusatian Mining District (East Germany) soil heterogeneity consists of sandy soil with embedded clay-silt fragments. Those clays silt fragments might act as nutrient hotspots. Arbuscular mycorrhizal fungi in an infertile ecosystem could enhance a plant's ability to selectively forage for those nutrients and thus to improve plants nutrient supply. In our study we investigated whether silt-clay fragments within a sandy soil matrix induced preferential root growth of Lotus corniculatus and Calamagrostis epigeios, whether arbuscular mycorrhizae influenced root foraging patterns, and to what extent selective rooting in clay silt fragments influenced plant growth were addressed in this research. Soil types were sterile and non-sterile sandy soil and clay-silt fragments. Treatments were with and without arbuscular mycorrhizae, with and without soil solution, and soil solution and mycorrhizal inoculum combined. Root biomass, root density and intraradical fungal alkaline phosphatase activity and frequency were determined in fragments relative to sandy soil. Furthermore, temporal relationship of number of roots in fragments and plant height was assessed. Lotus corniculatus showed strong selective rooting into fragments especially with those plants treated with commercial cultivated arbuscular mycorrhizae; Calamagrostis epigeios did not. Without arbuscular mycorrhizae, L. corniculatus growth was significantly reduced and selective rooting did not occur. Selective rooting induced significant growth spurts of L. corniculatus. Roots in fragments had higher fungal alkaline phosphatase activity suggesting that mycorrhizal efficiency and related plants phosphorus supply is enhanced in roots in fragments. The application of cultivated arbuscular mycorrhizal fungi significantly and quickly influenced root foraging patterns, especially those of L. corniculatus, suggesting mycorrhizae may also enhance the ability of other plants to selectively forage

  16. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Ye, Z.H., E-mail: lssyzhh@mail.sysu.edu.c [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wei, Z.J. [School of Information and Technology, Guangdong University of Foreign Studies, Guangzhou 510275 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2011-01-15

    The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L{sup -1}) and a soil pot trail (control, 60 mg As kg{sup -1}). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O{sub 2} kg{sup -1} root d.w. d{sup -1}), As uptake (e.g., 8.8-151 mg kg{sup -1} in shoots in 0.8 mg As L{sup -1} treatment), translocation factor (2.1-47% in 0.8 mg As L{sup -1}) and tolerance (29-106% in 0.8 mg As L{sup -1}). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity. - Research highlights: There is significant correlation between the porosity of roots and rates of ROL. The rates of ROL are significantly correlated with tolerance indices and concentrations of As, Fe, Mn on root surface. The rates of ROL is negatively correlated with As translocation factor. - Wetland plants with high rates of ROL tended to form more Fe plaque on root surfaces and possess higher As tolerance.

  17. [Effects nutrients on the seedlings root hair development and root growth of Poncirus trifoliata under hydroponics condition].

    Science.gov (United States)

    Cao, Xiu; Xia, Ren-Xue; Zhang, De-Jian; Shu, Bo

    2013-06-01

    Ahydroponics experiment was conducted to study the effects of nutrients (N, P, K, Ca, Mg, Fe, and Mn) deficiency on the length of primary root, the number of lateral roots, and the root hair density, length, and diameter on the primary root and lateral roots of Poncirus trifoliata seedlings. Under the deficiency of each test nutrient, root hair could generate, but was mainly concentrated on the root base and fewer on the root tip. The root hair density on lateral roots was significantly larger than that on primary root, but the root hair length was in adverse. The deficiency of each test nutrient had greater effects on the growth and development of root hairs, with the root hair density on primary root varied from 55.0 to 174.3 mm(-2). As compared with the control, Ca deficiency induced the significant increase of root hair density and length on primary root, P deficiency promoted the root hair density and length on the base and middle part of primary root and on the lateral roots significantly, Fe deficiency increased the root hair density but decreased the root hair length on the tip of primary root significantly, K deficiency significantly decreased the root hair density, length, and diameter on primary root and lateral roots, whereas Mg deficiency increased the root hair length of primary root significantly. In all treatments of nutrient deficiency, the primary root had the similar growth rate, but, with the exceptions of N and Mg deficiency, the lateral roots exhibited shedding and regeneration.

  18. Inhibition of polar calcium movement and gravitropism in roots treated with auxin-transport inhibitors

    Science.gov (United States)

    Lee, J. S.; Mulkey, T. J.; Evans, M. L.

    1984-01-01

    Primary roots of maize (Zea mays L.) and pea (Pisum sativum L.) exhibit strong positive gravitropism. In both species, gravistimulation induces polar movement of calcium across the root tip from the upper side to the lower side. Roots of onion (Allium cepa L.) are not responsive to gravity and gravistimulation induces little or no polar movement of calcium across the root tip. Treatment of maize or pea roots with inhibitors of auxin transport (morphactin, naphthylphthalamic acid, 2,3,5-triiodobenzoic acid) prevents both gravitropism and gravity-induced polar movement of calcium across the root tip. The results indicate that calcium movement and auxin movement are closely linked in roots and that gravity-induced redistribution of calcium across the root cap may play an important role in the development of gravitropic curvature.

  19. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    Science.gov (United States)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  20. Translocation of nitrogen and carbon from levels to roots of different nodes in rice plants

    International Nuclear Information System (INIS)

    Tatsumi, Jiro; Kono, Yasuhiro; Okano, Kunio.

    1983-01-01

    The whole shoot of the plant at the stage of developing the 12th leaf (12L) and the 9th nodal roots (9nR) was fed with 13 C-labelled CO 2 gas for 60 minutes after bein g sprayed with 15 N-labeled urea solution, and the fate of 15 N and 13 C in the plant was followed over 12 days. 15 N and 13 C were translocated to all parts of the plant, preferentially to the expanding 12L and the root system. Among the roots, the upper roots (9nR) were the largest sink of 15 N and 13 C exported from the expanded leaves. However, not only the young upper roots, but also the old lower roots were the sinks of the nitrogenous compounds. The difference in the 13 C/ 15 N ratio among the nodal roots suggests that the C/N ratio of the foliar products imported into the roots varied with their node positions; lower roots received the products containing richer N relative to C than the upper roots. Each leaf at different node seemed to play a specific role to supply the root system with the products of variable C/N ratio; upper leaves supplied the products of higher C/N ratio mainly to upper roots, while lower leaves fed the products of lower C/N ratio to lower roots. (Kaihara, S.)

  1. The Root Hair Specific SYP123 Regulates the Localization of Cell Wall Components and Contributes to Rizhobacterial Priming of Induced Systemic Resistance

    Directory of Open Access Journals (Sweden)

    Cecilia Rodriguez-Furlán

    2016-07-01

    Full Text Available Root hairs are important for nutrient and water uptake and are also critically involved the interaction with soil inhabiting microbiota. Root hairs are tubular-shaped outgrowths that emerge from trichoblasts. This polarized elongation is maintained and regulated by a robust mechanism involving the endomembrane secretory and endocytic system. Members of the syntaxin family of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor in plants (SYP, have been implicated in regulation of the fusion of vesicles with the target membranes in both exocytic and endocytic pathways. One member of this family, SYP123, is expressed specifically in the root hairs and accumulated in the growing tip region. This study shows evidence of the SYP123 role in polarized trafficking using knockout insertional mutant plants. We were able to observe defects in the deposition of cell wall proline rich protein PRP3 and cell wall polysaccharides. In a complementary strategy, similar results were obtained using a plant expressing a dominant negative soluble version of SYP123 (SP2 fragment lacking the transmembrane domain. The evidence presented indicates that SYP123 is also regulating PRP3 protein distribution by recycling by endocytosis. We also present evidence that indicates that SYP123 is necessary for the response of roots to plant growth promoting rhizobacterium (PGPR in order to trigger trigger induced systemic response (ISR. Plants with a defective SYP123 function were unable to mount a systemic acquired resistance (SAR in response to bacterial pathogen infection and induced systemic resistance (ISR upon interaction with rhizobacteria. These results indicated that SYP123 was involved in the polarized localization of protein and polysaccharides in growing root hairs and that this activity also contributed to the establishment of effective plant defense responses. Root hairs represent very plastic structures were many biotic and abiotic factors

  2. Morphology and biomass variations in root system of young tomato plants (Solanum sp.)

    International Nuclear Information System (INIS)

    Álvarez Gil, Marta A.; Fernández, Ana Fita; Ruiz Sánchez, María del C.; Bolarín Jiménez, María del C.

    2016-01-01

    The scarce exploitation of genotypic variability present in plant roots is an attractive breeding choice with regard to abiotic stresses and supports the objective of this work, which is to identify genotypic variation in root system traits of tomato genotypes (Solanum sp.). Thus, five tomato genotypes were studied: the commercial hybrid cultivar Jaguar (S. lycopersicum), Pera, Volgogradiskij and PE-47 entry (S. pennellii), which were collected in Peru, and the interspecific hybrid PeraxPE-47. Plants were grown in hydroponics for 26 days since germination; their roots were extracted and images were digitalized on scanner to evaluate total length, average diameter, the projected area and root length, following the categories per diameter of the whole root system through software Win Rhizo Pro 2003. The dry mass of roots and aerial parts was also recorded. Results indicated that genotypes differed in morphology, length according to diameter, root system spatial configuration and biomass, mainly with respect to the wild salinity resistant species PE-47. The interspecific hybrid PxPE-47 could be used as a rootstock to increase salt tolerance of susceptible cultivars. (author)

  3. Study of binding properties of lanthanum to wheat roots by INAA

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; Li, F.L.; Xiao, H.Q.; Chai, Z.F.; Xu, L.; Liu, N.

    2004-01-01

    Chemical behavior of lanthanum in root tips excized from wheat seedlings growing at both promotional and inhibitory levels of LaCl 3 in culture solutions was investigated by a sequential leaching procedure combined with instrumental neutron activation analysis. The results indicate that most of La exists in non-exchangeable species and the binding of La 3+ to the root tips is extremely stable. The root tips during growing at the inhibitory level of LaCl 3 absorb much more La than those at the promotional level. However, the La proportion in each fraction is similar for both groups. (author)

  4. Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Chunhui Xu

    Full Text Available Aquaporins are channel proteins which transport water across cell membranes. We show that the bread wheat aquaporin gene TaTIP2;2 maps to the long arm of chromosome 7b and that its product localizes to the endomembrane system. The gene is expressed constitutively in both the root and the leaf, and is down-regulated by salinity and drought stress. Salinity stress induced an increased level of C-methylation within the CNG trinucleotides in the TaTIP2;2 promoter region. The heterologous expression of TaTIP2;2 in Arabidopsis thaliana compromised its drought and salinity tolerance, suggesting that TaTIP2;2 may be a negative regulator of abiotic stress. The proline content of transgenic A. thaliana plants fell, consistent with the down-regulation of P5CS1, while the expression of SOS1, SOS2, SOS3, CBF3 and DREB2A, which are all stress tolerance-related genes acting in an ABA-independent fashion, was also down-regulated. The supply of exogenous ABA had little effect either on TaTIP2;2 expression in wheat or on the phenotype of transgenic A. thaliana. The expression level of the ABA signalling genes ABI1, ABI2 and ABF3 remained unaltered in the transgenic A. thaliana plants. Thus TaTIP2;2 probably regulates the response to stress via an ABA-independent pathway(s.

  5. Propidium iodide competes with Ca(2+) to label pectin in pollen tubes and Arabidopsis root hairs.

    Science.gov (United States)

    Rounds, Caleb M; Lubeck, Eric; Hepler, Peter K; Winship, Lawrence J

    2011-09-01

    We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca(2+) binding. We first show that Ca(2+) is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca(2+) in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca(2+)-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca(2+) gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca(2+) in tip growth.

  6. Efflux of inorganic substances from young barley roots. II. Movement in roots and efflux of sodium in plants with divided root systems

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H; Kojima, S [Radiation Center of Osaka Prefecture, Sakai (Japan)

    1977-09-01

    The root system of young barley was almost halved, and the two portions were planted in culture grounds with different composition after severing the capillary connection between both root groups. With one portion in the acid medium solution of various compositions and the other in the /sup 22/Na-absorbing medium solution, the sodium absorbed from one root group moved to and flowed out from the other root group, and this state was observed. Also, the efflux of potassium from the root was observed. (1) The Na efflux was small in the culture ground with dilute hydrochloric acid, and larger in that with AlCl/sub 3/ or phosphate. (2) The K efflux was large under short-day condition. (3) Under short-day condition, in the culture ground with soluble Al, the K efflux was promoted by nitrogen-source addition, but the Na efflux was suppressed.

  7. GAMMA IRRADIATION OF SUGAR BEET SEEDS INDUCED PLANT RESISTANCE TO ROOT-KNOT NEMATODE MELOIDOGYNE INCOGNITA

    International Nuclear Information System (INIS)

    ABD EL FATTAH, A.I.; KAMEL, H.A.; EL-NAGDI, W.M.A.

    2008-01-01

    The main objective of this study was to investigate the effect of irradiation of sugar beet seeds on the plant resistance to root-knot nematode Meloidogyne incognita infection in addition to some morphological parameters, biochemical components and root technological characters. Relative to control (non-irradiated seeds), the obtained data showed that, all doses except 10 Gy significantly increased root length of un inoculated plants and the most effective dose was 200 Gy. All doses significantly decreased root diameter except 50 and 100 Gy. The 10 and 400 Gy significantly reduced root fresh weight while 50, 100 and 200 Gy caused non-significant increase. All doses significantly increased root fresh weight/dry weight than control. There was non-significant effect on the morphological parameters of the plants germinated from gamma irradiated seeds and inoculated with Meloidogyne incognita. Total chlorophyll of seed irradiated and un inoculated plants were significantly reduced by all doses except 200 Gy. All doses of gamma radiation caused non-significant decrease in the total chlorophyll of the infected plants. In un inoculated plants, a significant reduction in the total phenol was occurred due to all doses of gamma radiation. In contrast, in inoculated plants, 10 and 25 Gy caused significant reduction in the total phenol while 50 and 400 Gy caused significant increase in the total phenol.Significant increase in sucrose % was observed due to 10 Gy in the un inoculated plants. The 400 Gy caused significant decrease while other doses caused non-significant decrease in the sucrose %. In the inoculated plants, 50, 100 and 400 Gy caused significant increase in sucrose %. All doses significantly increased total soluble salts percent (TSS %) of either inoculated or un inoculated plants. Purity % was increased by all doses in the inoculated plants.The number of galls and egg masses were reduced gradually by increasing gamma doses and 100 Gy caused the highest reduction 89

  8. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation

    International Nuclear Information System (INIS)

    Rentz, Jeremy A.; Alvarez, Pedro J.J.; Schnoor, Jerald L.

    2005-01-01

    Benzo[a]pyrene, a high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) was removed from solution by Sphingomonas yanoikuyae JAR02 while growing on root products as a primary carbon and energy source. Plant root extracts of osage orange (Maclura pomifera), hybrid willow (Salix albaxmatsudana), or kou (Cordia subcordata), or plant root exudates of white mulberry (Morus alba) supported 15-20% benzo[a]pyrene removal over 24 h that was similar to a succinate grown culture and an unfed acetonitrile control. No differences were observed between the different root products tested. Mineralization of 14 C-7-benzo[a]pyrene by S. yanoikuyae JAR02 yielded 0.2 to 0.3% 14 CO 2 when grown with plant root products. Collectively, these observations were consistent with field observations of enhanced phytoremediation of HMW PAH and corroborated the hypothesis that co-metabolism may be a plant/microbe interaction important to rhizoremediation. However, degradation and mineralization was much less for root product-exposed cultures than salicylate-induced cultures, and suggested the rhizosphere may not be an optimal environment for HMW PAH degradation by Sphingomonas yanoikuyae JAR02. - Bacterial benzo[a]pyrene cometabolism, a plant-microbe interaction affecting polycyclic aromatic hydrocarbon phytoremediation was demonstrated with Sphingomonas yanoikuyae JAR02 that utilized plant root extracts and exudates as primary substrates

  9. Root excretions in tobacco plants and possible implications on the Iron nutrition of higher plants

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, A

    1969-01-01

    Several pieces of evidence indicate that riboflavin produced in roots and perhaps other compounds produced either in roots or in microorganisms can facilitate either or both the absorption and translocation of iron in higher plants. Riboflavin production and increased iron transport are characteristic of iron-deficient plants, both are decreased by nitrogen deficiency, both evidently can be regulated by a microorganism. When large amounts of iron was transported in the xylem exudate of tobacco, riboflavin was also. An excess of the chelating agent, EDTA, without iron seems to increase the iron uptake from an iron chelate, EDDHA. All these effects are probably related and knowledge of them may help solve iron deficiency problems in horticultural crops.

  10. Small RNA Deep Sequencing and the Effects of microRNA408 on Root Gravitropic Bending in Arabidopsis

    Science.gov (United States)

    Li, Huasheng; Lu, Jinying; Sun, Qiao; Chen, Yu; He, Dacheng; Liu, Min

    2015-11-01

    MicroRNA (miRNA) is a non-coding small RNA composed of 20 to 24 nucleotides that influences plant root development. This study analyzed the miRNA expression in Arabidopsis root tip cells using Illumina sequencing and real-time PCR before (sample 0) and 15 min after (sample 15) a 3-D clinostat rotational treatment was administered. After stimulation was performed, the expression levels of seven miRNA genes, including Arabidopsis miR160, miR161, miR394, miR402, miR403, miR408, and miR823, were significantly upregulated. Illumina sequencing results also revealed two novel miRNAsthat have not been previously reported, The target genes of these miRNAs included pentatricopeptide repeat-containing protein and diadenosine tetraphosphate hydrolase. An overexpression vector of Arabidopsis miR408 was constructed and transferred to Arabidopsis plant. The roots of plants over expressing miR408 exhibited a slower reorientation upon gravistimulation in comparison with those of wild-type. This result indicate that miR408 could play a role in root gravitropic response.

  11. Spatial distribution of root activity of Ganesh pomegranate (Punica granatum) plants

    International Nuclear Information System (INIS)

    Kotur, S.C.; Keshava Murthy, S.V.

    2003-01-01

    Information on the root activity pattern is invaluable while adopting appropriate time and method of fertilizer application, irrigation, planting distance and other cultural practices. The pattern of root activity distribution determined using the technique of soil injection of 32 P compares well with actual pattern ascertained by root excavation method. The isotopic technique is also non-destructive, quick and inexpensive. Root activity distribution pattern has been determined using this technique in citrus, grape, mango, guava and papaya. To generate the information on inbred Ganesh pomegranate seedlings, studies were undertaken and the results are reported in this paper. (author)

  12. Lateral root initiation and formation within the parental root meristem of Cucurbita pepo: is auxin a key player?

    Science.gov (United States)

    Ilina, Elena L; Kiryushkin, Alexey S; Semenova, Victoria A; Demchenko, Nikolay P; Pawlowski, Katharina; Demchenko, Kirill N

    2018-04-19

    In some plant families, including Cucurbitaceae, initiation and development of lateral roots (LRs) occur in the parental root apical meristem. The objective of this study was to identify the general mechanisms underlying LR initiation (LRI). Therefore, the first cellular events leading to LRI as well as the role of auxin in this process were studied in the Cucurbita pepo root apical meristem. Transgenic hairy roots harbouring the auxin-responsive promoter DR5 fused to different reporter genes were used for visualizing of cellular auxin response maxima (ARMs) via confocal laser scanning microscopy and 3-D imaging. The effects of exogenous auxin and auxin transport inhibitors on root branching were analysed. The earliest LRI event involved a group of symmetric anticlinal divisions in pericycle cell files at a distance of 250-350 µm from the initial cells. The visualization of the ARMs enabled the precise detection of cells involved in determining the site of LR primordium formation. A local ARM appeared in sister cells of the pericycle and endodermis files before the first division. Cortical cells contributed to LR development after the anticlinal divisions in the pericycle via the formation of an ARM. Exogenous auxins did not increase the total number of LRs and did not affect the LRI index. Although exogenous auxin transport inhibitors acted in different ways, they all reduced the number of LRs formed. Literature data, as well as results obtained in this study, suggest that the formation of a local ARM before the first anticlinal formative divisions is the common mechanism underlying LRI in flowering plants. We propose that the mechanisms of the regulation of root branching are independent of the position of the LRI site relative to the parental root tip.

  13. Accumulation of uranium in plant roots absorbed from aqueous solutions

    International Nuclear Information System (INIS)

    Dohi, Terumi; Haga, Nobuhiko; Nakashima, Satoru; Tagai, Tokuhei

    2007-01-01

    In order to study accumulation mechanisms of uranium (U) in terrestrial plants, uptake experiments for U have been carried out by using Indian mustard (Brassica juncea). This plant is edible and known as a heavy metal accumulator, especially for cadmium (Cd). About 30 rootsstocks of Indian mustard grown hydroponically in laboratory dishes were kept in uranyl (UO 2 2+ ) nitrate solutions (initially 0.5 mmol/l) at 25degC for 24, 48 and 72 hours (h). The average U concentrations in leaves increased until 48 h up to about 0.6 mg/g and then decreased slightly. Those in roots showed similar trends, but with much higher maximum U concentrations of about 30 mg/g. Backscattered electron images under SEM of the roots showed that U was accumulated on the cell edges. EPMA elemental mapping indicated that phosphorus (P) distribution had a very strong correlation with that of U. The distribution of sulfur (S) appeared to be somewhat different form these U and P distributions. These results suggest that U can be absorbed into plant roots as uranyl (UO 2 2+ ) and might be fixed at the phospholipid rich cell membranes. This U accumulation mechanism appeared to be different from that for Cd which has a close association with S. (author)

  14. Quantitative 3-dimensional imaging of auxin and cytokinin levels in transgenic soybean and medicago truncatula roots via two-photon induced fluorescence imaging

    Science.gov (United States)

    Fisher, Jon; Gaillard, Paul; Nurmalasari, Ni Putu Dewi; Fellbaum, Carl; Subramaniam, Sen; Smith, Steve

    2018-02-01

    Industrial nitrogen fertilizers account for nearly 50% of the fossil fuel costs in modern agriculture and contribute to soil and water pollution. Therefore, significant interest exists in understanding and characterizing the efficiency of nitrogen fixation, and the biochemical signaling pathways which orchestrate the plant-microbial symbiosis through which plants fix nitrogen. Legume plant species exhibit a particularly efficient nitrogen uptake mechanism, using root nodules which house nitrogen-fixing rhizobial bacteria. While nodule development has been widely studied, there remain significant gaps in understanding the regulatory hormones' role in plant development. In this work, we produce 3-dimensional maps of auxin (AX) and cytokinin (CK) hormone concentrations within model plant root tips and nodules with respect to root architecture and cell type. Soybean and Medicago plants were transfected with a two-color fluorescent vector with AXsensitive green fluorescent protein (GFP) and CK-sensitive TdTomato (TdT). 3D images of soybean root nodules were captured using two-photon induced fluorescence microscopy. The resulting images were computationally analyzed using the localization code first developed by Weeks and later adapted by Kilfoil, and analyzed in the context of the root architecture. Statistical analysis of the resulting 3D hormone level maps reproduce-well the known roles of AX and CK in developing plant roots, and are the first quantitative description of these regulatory hormones tied to specific plant architecture. The analytical methods used, and the spatial distribution of these key regulatory hormones in plant roots, nodule primordia and root nodules, and their statistical interpretation are presented.

  15. Computerized automatic tip scanning operation

    International Nuclear Information System (INIS)

    Nishikawa, K.; Fukushima, T.; Nakai, H.; Yanagisawa, A.

    1984-01-01

    In BWR nuclear power stations the Traversing Incore Probe (TIP) system is one of the most important components in reactor monitoring and control. In previous TIP systems, however, operators have suffered from the complexity of operation and long operation time required. The system presented in this paper realizes the automatic operation of the TIP system by monitoring and driving it with a process computer. This system significantly reduces the burden on customer operators and improves plant efficiency by simplifying the operating procedure, augmenting the accuracy of the measured data, and shortening operating time. The process computer is one of the PODIA (Plant Operation by Displayed Information Automation) systems. This computer transfers control signals to the TIP control panel, which in turn drives equipment by microprocessor control. The process computer contains such components as the CRT/KB unit, the printer plotter, the hard copier, and the message typers required for efficient man-machine communications. Its operation and interface properties are described

  16. A below-ground herbivore shapes root defensive chemistry in natural plant populations

    OpenAIRE

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Th?o; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root ...

  17. The impact of solarisation integrated with plant bio-fermentation on root knot nematodes

    International Nuclear Information System (INIS)

    Ibrahim, S. K.; Traboulsi, A. F.

    2009-01-01

    The impact of different freshly/dried chopped medicinal or aromatic plant materials as an organic amendment in pot cultures, as well as integrated with solarisation under greenhouse conditions on the root knot nematodes population was evaluated. Results indicated that application of solarisation alone gave good control (72%) but when integrated with different plant materials, the control level increased to 95% with Allium sativum and 90% with Mentha microphylla and slightly less with other plant materials which ranged from75 to 80%. The results of pot experiments revealed that the most significant effect on the number of nematodes was achieved with Tagetes patula followed by Pimpinella anisum, Melia azadirach and Origanium syriacum reaching 0.0, 1.2, 1.2 and 2.5/g of roots, respectively. Total control was obtained with Allium sativum. Origanium syriacum contained the highest amount of essential oil (6%). Results obtained indicated that integrated approach using solarisation combined with plant materials could be the best alternative control for the root-knot nematodes. (author)

  18. Searching for plant root traits to improve soil cohesion and resist soil erosion

    Science.gov (United States)

    De Baets, Sarah; Smyth, Kevin; Denbigh, Tom; Weldon, Laura; Higgins, Ben; Matyjaszkiewicz, Antoni; Meersmans, Jeroen; Chenchiah, Isaac; Liverpool, Tannie; Quine, Tim; Grierson, Claire

    2017-04-01

    Soil erosion poses a serious threat to future food and environmental security. Soil erosion protection measures are therefore of great importance for soil conservation and food security. Plant roots have proven to be very effective in stabilizing the soil and protecting the soil against erosion. However, no clear insights are yet obtained into the root traits that are responsible for root-soil cohesion. This is important in order to better select the best species for soil protection. Research using Arabidopsis mutants has made great progress towards explaining how root systems are generated by growth, branching, and responses to gravity, producing mutants that affect root traits. In this study, the performance of selected Arabidopsis mutants is analyzed in three root-soil cohesion assays. Measurements of detachment, uprooting force and soil detachment are here combined with the microscopic analysis of root properties, such as the presence, length and density of root hairs in this case. We found that Arabidopsis seedlings with root hairs (wild type, wer myb23, rsl4) were more difficult to detach from gel media than hairless (cpc try) or short haired (rsl4, rhd2) roots. Hairy roots (wild type, wer myb23) on mature, non-reproductive rosettes were more difficult to uproot from compost or clay soil than hairless roots (cpc try). At high root densities, erosion rates from soils with hairless roots (cpc try) were as much as 10 times those seen from soils occupied by roots with hairs (wer myb23, wild type). We find therefore root hairs play a significant role in root-soil cohesion and in minimizing erosion. This framework and associated suite of experimental assays demonstrates its ability to measure the effect of any root phenotype on the effectiveness of plant roots in binding substrates and reducing erosion.

  19. Root growth and hydraulic conductivity of southern pine seedlings in response to soil temperature and water availability after planting

    Science.gov (United States)

    Mary Anne Sword Sayer; John C. Brissette; James P. Barnett

    2005-01-01

    Comparison of the root system growth and water transport of southern pine species after planting in different root-zone environments is needed to guide decisions regarding when, and what species to plant. Evaluation of how seed source affects root system responses to soil conditions will allow seed sources to be matched to planting conditions. The root growth and...

  20. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

    Directory of Open Access Journals (Sweden)

    Richard R Rodrigues

    Full Text Available The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum, another by a shrub (Rhamnus davurica, and the third by a tree (Ailanthus altissima. The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME. Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that

  1. Soil-root Shear Strength Properties of Some Slope Plants

    International Nuclear Information System (INIS)

    Normaniza Osman; Mohamad Nordin Abdullah; Faisal Haji Ali

    2011-01-01

    Rapid development in hilly areas in Malaysia has become a trend that put a stress to the sloping area. It reduces the factor of safety by reducing the resistant force and therefore leads to slope failure. Vegetation plays a big role in reinforcement functions via anchoring the soils and forms a binding network within the soil layer that tied the soil masses together. In this research, three plant species namely Acacia mangium, Dillenia suffruticosa and Leucaena leucocaphala were assessed in term of their soil-root shear strength properties. Our results showed that Acacia mangium had the highest shear strength values, 30.4 kPa and 50.2 kPa at loads 13.3 kPa and 24.3 kPa, respectively. Leucaena leucocaphala showed the highest in cohesion factor, which was almost double the value in those of Dillenia suffruticosa and Acacia mangium. The root profile analysis indicated Dillenia suffruticosa exhibited the highest values in both root length density and root volume, whilst Leucaena leucocaphala had the highest average of root diameter. (author)

  2. Synchronous high-resolution phenotyping of leaf and root growth in Nicotiana tabacum over 24-h periods with GROWMAP-plant

    Directory of Open Access Journals (Sweden)

    Ruts Tom

    2013-01-01

    Full Text Available Abstract Background Root growth is highly responsive to temporal changes in the environment. On the contrary, diel (24 h leaf expansion in dicot plants is governed by endogenous control and therefore its temporal pattern does not strictly follow diel changes in the environment. Nevertheless, root and shoot are connected with each other through resource partitioning and changing environments for one organ could affect growth of the other organ, and hence overall plant growth. Results We developed a new technique, GROWMAP-plant, to monitor growth processes synchronously in leaf and root of the same plant with a high resolution over the diel period. This allowed us to quantify treatment effects on the growth rates of the treated and non-treated organ and the possible interaction between them. We subjected the root system of Nicotiana tabacum seedlings to three different conditions: constant darkness at 22°C (control, constant darkness at 10°C (root cooling, and 12 h/12 h light–dark cycles at 22°C (root illumination. In all treatments the shoot was kept under the same 12 h/12 h light–dark cycles at 22°C. Root growth rates were found to be constant when the root-zone environment was kept constant, although the root cooling treatment significantly reduced root growth. Root velocity was decreased after light-on and light-off events of the root illumination treatment, resulting in diel root growth rhythmicity. Despite these changes in root growth, leaf growth was not affected substantially by the root-zone treatments, persistently showing up to three times higher nocturnal growth than diurnal growth. Conclusion GROWMAP-plant allows detailed synchronous growth phenotyping of leaf and root in the same plant. Root growth was very responsive to the root cooling and root illumination, while these treatments altered neither relative growth rate nor diel growth pattern in the seedling leaf. Our results that were obtained simultaneously in growing

  3. Data from: Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    NARCIS (Netherlands)

    Eisenhauer, Nico; Strecker, Tanja; Lanoue, Arnaud; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, L.

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity

  4. OpenSimRoot: widening the scope and application of root architectural models.

    Science.gov (United States)

    Postma, Johannes A; Kuppe, Christian; Owen, Markus R; Mellor, Nathan; Griffiths, Marcus; Bennett, Malcolm J; Lynch, Jonathan P; Watt, Michelle

    2017-08-01

    OpenSimRoot is an open-source, functional-structural plant model and mathematical description of root growth and function. We describe OpenSimRoot and its functionality to broaden the benefits of root modeling to the plant science community. OpenSimRoot is an extended version of SimRoot, established to simulate root system architecture, nutrient acquisition and plant growth. OpenSimRoot has a plugin, modular infrastructure, coupling single plant and crop stands to soil nutrient and water transport models. It estimates the value of root traits for water and nutrient acquisition in environments and plant species. The flexible OpenSimRoot design allows upscaling from root anatomy to plant community to estimate the following: resource costs of developmental and anatomical traits; trait synergisms; and (interspecies) root competition. OpenSimRoot can model three-dimensional images from magnetic resonance imaging (MRI) and X-ray computed tomography (CT) of roots in soil. New modules include: soil water-dependent water uptake and xylem flow; tiller formation; evapotranspiration; simultaneous simulation of mobile solutes; mesh refinement; and root growth plasticity. OpenSimRoot integrates plant phenotypic data with environmental metadata to support experimental designs and to gain a mechanistic understanding at system scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  5. Iron- and ferritin-dependent reactive oxygen species distribution: impact on Arabidopsis root system architecture.

    Science.gov (United States)

    Reyt, Guilhem; Boudouf, Soukaina; Boucherez, Jossia; Gaymard, Frédéric; Briat, Jean-Francois

    2015-03-01

    Iron (Fe) homeostasis is integrated with the production of reactive oxygen species (ROS), and distribution at the root tip participates in the control of root growth. Excess Fe increases ferritin abundance, enabling the storage of Fe, which contributes to protection of plants against Fe-induced oxidative stress. AtFer1 and AtFer3 are the two ferritin genes expressed in the meristematic zone, pericycle and endodermis of the Arabidopsis thaliana root, and it is in these regions that we observe Fe stained dots. This staining disappears in the triple fer1-3-4 ferritin mutant. Fe excess decreases primary root length in the same way in wild-type and in fer1-3-4 mutant. In contrast, the Fe-mediated decrease of lateral root (LR) length and density is enhanced in fer1-3-4 plants due to a defect in LR emergence. We observe that this interaction between excess Fe, ferritin, and root system architecture (RSA) is in part mediated by the H2O2/O2·- balance between the root cell proliferation and differentiation zones regulated by the UPB1 transcription factor. Meristem size is also decreased in response to Fe excess in ferritin mutant plants, implicating cell cycle arrest mediated by the ROS-activated SMR5/SMR7 cyclin-dependent kinase inhibitors pathway in the interaction between Fe and RSA. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  6. Evaluation of allelopathic impact of aqueous extract of root and aerial root of Tinospora cordifolia (Willd.) miers on some weed plants

    OpenAIRE

    K. M. Abdul RAOOF; M. Badruzzaman SIDDIQUI

    2012-01-01

    The present laboratory experimental study was conducted to evaluate the allelopathic potential of Tinospora cordifolia (Willd.) Miers on seed germination and seedling growth of weed plants (Chenopodium album L. Chenopodium murale L., Cassia tora L. and Cassia sophera L.). Root and aerial root aqueous extracts of Tinospora at 0.5, 1.0, 2.0 and 4.0% concentrations were applied to determine their effect on seed germination and seedling growth of test plants under laboratory conditions. Germinati...

  7. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Rentz, Jeremy A [Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242 (United States); Alvarez, Pedro J.J. [Civil and Environmental Engineering, Rice University, Houston, TX 77251 (United States); Schnoor, Jerald L [Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242 (United States)

    2005-08-15

    Benzo[a]pyrene, a high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) was removed from solution by Sphingomonas yanoikuyae JAR02 while growing on root products as a primary carbon and energy source. Plant root extracts of osage orange (Maclura pomifera), hybrid willow (Salix albaxmatsudana), or kou (Cordia subcordata), or plant root exudates of white mulberry (Morus alba) supported 15-20% benzo[a]pyrene removal over 24 h that was similar to a succinate grown culture and an unfed acetonitrile control. No differences were observed between the different root products tested. Mineralization of {sup 14}C-7-benzo[a]pyrene by S. yanoikuyae JAR02 yielded 0.2 to 0.3% {sup 14}CO{sub 2} when grown with plant root products. Collectively, these observations were consistent with field observations of enhanced phytoremediation of HMW PAH and corroborated the hypothesis that co-metabolism may be a plant/microbe interaction important to rhizoremediation. However, degradation and mineralization was much less for root product-exposed cultures than salicylate-induced cultures, and suggested the rhizosphere may not be an optimal environment for HMW PAH degradation by Sphingomonas yanoikuyae JAR02. - Bacterial benzo[a]pyrene cometabolism, a plant-microbe interaction affecting polycyclic aromatic hydrocarbon phytoremediation was demonstrated with Sphingomonas yanoikuyae JAR02 that utilized plant root extracts and exudates as primary substrates.

  8. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula.

    Science.gov (United States)

    Bazin, Jérémie; Khan, Ghazanfar Abbas; Combier, Jean-Philippe; Bustos-Sanmamed, Pilar; Debernardi, Juan Manuel; Rodriguez, Ramiro; Sorin, Céline; Palatnik, Javier; Hartmann, Caroline; Crespi, Martin; Lelandais-Brière, Christine

    2013-06-01

    The root system is crucial for acquisition of resources from the soil. In legumes, the efficiency of mineral and water uptake by the roots may be reinforced due to establishment of symbiotic relationships with mycorrhizal fungi and interactions with soil rhizobia. Here, we investigated the role of miR396 in regulating the architecture of the root system and in symbiotic interactions in the model legume Medicago truncatula. Analyses with promoter-GUS fusions suggested that the mtr-miR396a and miR396b genes are highly expressed in root tips, preferentially in the transition zone, and display distinct expression profiles during lateral root and nodule development. Transgenic roots of composite plants that over-express the miR396b precursor showed lower expression of six growth-regulating factor genes (MtGRF) and two bHLH79-like target genes, as well as reduced growth and mycorrhizal associations. miR396 inactivation by mimicry caused contrasting tendencies, with increased target expression, higher root biomass and more efficient colonization by arbuscular mycorrhizal fungi. In contrast to MtbHLH79, repression of three GRF targets by RNA interference severely impaired root growth. Early activation of mtr-miR396b, concomitant with post-transcriptional repression of MtGRF5 expression, was also observed in response to exogenous brassinosteroids. Growth limitation in miR396 over-expressing roots correlated with a reduction in cell-cycle gene expression and the number of dividing cells in the root apical meristem. These results link the miR396 network to the regulation of root growth and mycorrhizal associations in plants. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  9. Two Seven-Transmembrane Domain MILDEW RESISTANCE LOCUS O Proteins Cofunction in Arabidopsis Root Thigmomorphogenesis[C][W

    Science.gov (United States)

    Chen, Zhongying; Noir, Sandra; Kwaaitaal, Mark; Hartmann, H. Andreas; Wu, Ming-Jing; Mudgil, Yashwanti; Sukumar, Poornima; Muday, Gloria; Panstruga, Ralph; Jones, Alan M.

    2009-01-01

    Directional root expansion is governed by nutrient gradients, positive gravitropism and hydrotropism, negative phototropism and thigmotropism, as well as endogenous oscillations in the growth trajectory (circumnutation). Null mutations in phylogenetically related Arabidopsis thaliana genes MILDEW RESISTANCE LOCUS O 4 (MLO4) and MLO11, encoding heptahelical, plasma membrane–localized proteins predominantly expressed in the root tip, result in aberrant root thigmomorphogenesis. mlo4 and mlo11 mutant plants show anisotropic, chiral root expansion manifesting as tightly curled root patterns upon contact with solid surfaces. The defect in mlo4 and mlo11 mutants is nonadditive and dependent on light and nutrients. Genetic epistasis experiments demonstrate that the mutant phenotype is independently modulated by the Gβ subunit of the heterotrimeric G-protein complex. Analysis of expressed chimeric MLO4/MLO2 proteins revealed that the C-terminal domain of MLO4 is necessary but not sufficient for MLO4 action in root thigmomorphogenesis. The expression of the auxin efflux carrier fusion, PIN1-green fluorescent protein, the pattern of auxin-induced gene expression, and acropetal as well as basipetal auxin transport are altered at the root tip of mlo4 mutant seedlings. Moreover, addition of auxin transport inhibitors or the loss of EIR1/AGR1/PIN2 function abolishes root curling of mlo4, mlo11, and wild-type seedlings. These results demonstrate that the exaggerated root curling phenotypes of the mlo4 and mlo11 mutants depend on auxin gradients and suggest that MLO4 and MLO11 cofunction as modulators of touch-induced root tropism. PMID:19602625

  10. Dichlorophen and Dichlorovos mediated genotoxic and cytotoxic assessment on root meristem cells of Allium cepa

    Directory of Open Access Journals (Sweden)

    Sibhghatulla Shaikh

    2012-06-01

    Full Text Available Plants are direct recipients of agro – toxics and therefore important materials for assessing environmental chemicals for genotoxicity. The meristematic mitotic cell of Allium cepa is an efficient cytogenetic material for chromosome aberration assay on environmental pollutants. Onion root tips were grown on moistened filter paper in petri dish at room temperature. Germinated root tips were then exposed to three concentrations of each pesticide for 24 h. About 1 – 2 mm length of root tip was cut, fixed in cornoy’s fixative, hydrolyzed in warm 1 N HCL, stained with acetocarmine and squashed on glass slide. About 3000 cells were scored and classified into interphase and normal or aberrant division stage. Cytotoxicity was determined by comparing the mitotic index (MI of treated cells with that of the negative control. The MI of cells treated with Dichlorophen and Dichlorovos at one or more concentration was half or less than that of control are said to be cytotoxic. Genotoxicity was measured by comparing the number of cells/1000 in aberrant division stages at each dose with the negative control using Mann – Whitney U test. Both Dichlorophen and Dichlorovos are genotoxic at higher concentrations i.e. 0.001%, 0.002% and 0.028%, 0.056% inducing chromosome fragment, chromosome lagging and bridges, stick chromosome and multipolar anaphase.

  11. Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate.

    Science.gov (United States)

    Maougal, Rim Tinhinen; Bargaz, Adnane; Sahel, Charaf; Amenc, Laurie; Djekoun, Abdelhamid; Plassard, Claude; Drevon, Jean-Jacques

    2014-04-01

    Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 μM phytate (C₆H₁₈O₂₄P₆) or 75 μmol Pi (K₂HPO₄), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.

  12. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species.

    Science.gov (United States)

    Kreszies, Tino; Schreiber, Lukas; Ranathunge, Kosala

    2018-02-07

    Water is the most important prerequisite for life and plays a major role during uptake and transport of nutrients. Roots are the plant organs that take up the major part of water, from the surrounding soil. Water uptake is related to the root system architecture, root growth, age and species dependent complex developmental changes in the anatomical structures. The latter is mainly attributed to the deposition of suberized barriers in certain layers of cell walls, such as endo- and exodermis. With respect to water permeability, changes in the suberization of roots are most relevant. Water transport or hydraulic conductivity of roots (Lp r ) can be described by the composite transport model and is known to be very variable between plant species and growth conditions and root developmental states. In this review, we summarize how anatomical structures and apoplastic barriers of roots can diversely affect water transport, comparing the model plant Arabidopsis with crop plants, such as barley and rice. Results comparing the suberin amounts and water transport properties indicate that the common assumption that suberin amount negatively correlates with water and solute transport through roots may not always be true. The composition, microstructure and localization of suberin may also have a great impact on the formation of efficient barriers to water and solutes. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  13. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation.

    OpenAIRE

    Ahkami, Amir H.; Melzer, Michael; Ghaffari, Mohammad R.; Pollmann, Stephan; Ghorbani, Majid; Shahinnia, Fahimeh; Hajirezaei, Mohammad R.; Druege, Uwe

    2013-01-01

    To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also inves...

  14. Initiation and elongation of lateral roots in Lactuca sativa

    Science.gov (United States)

    Zhang, N.; Hasenstein, K. H.

    1999-01-01

    Lactuca sativa cv. Baijianye seedlings do not normally produce lateral roots, but removal of the root tip or application of auxin, especially indole-butyric acid, triggered the formation of lateral roots. Primordia initiated within 9 h and were fully developed after 24 h by activating the pericycle cells opposite the xylem pole. The pericycle cells divided asymmetrically into short and long cells. The short cells divided further to form primordia. The effect of root tip removal and auxin application was reversed by 6-benzylaminopurine at concentrations >10(-8) M. The cytokinin oxidase inhibitor N1-(2chloro4pyridyl)-N2-phenylurea also suppressed auxin-induced lateral rooting. The elongation of primary roots was promoted by L-alpha-(2-aminoethoxyvinyl) glycine and silver ions, but only the latter enhanced elongation of lateral roots. The data indicate that the induction of lateral roots is controlled by basipetally moving cytokinin and acropetally moving auxin. Lateral roots appear to not produce ethylene.

  15. Piriformospora indica root colonization triggers local and systemic root responses and inhibits secondary colonization of distal roots.

    Science.gov (United States)

    Pedrotti, Lorenzo; Mueller, Martin J; Waller, Frank

    2013-01-01

    Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.

  16. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants.

    Science.gov (United States)

    Delay, Christina; Imin, Nijat; Djordjevic, Michael A

    2013-12-01

    The manifestation of repetitive developmental programmes during plant growth can be adjusted in response to various environmental cues. During root development, this means being able to precisely control root growth and lateral root development. Small signalling peptides have been found to play roles in many aspects of root development. One member of the CEP (C-TERMINALLY ENCODED PEPTIDE) gene family has been shown to arrest root growth. Here we report that CEP genes are widespread among seed plants but are not present in land plants that lack true branching roots or root vasculature. We have identified 10 additional CEP genes in Arabidopsis. Expression analysis revealed that CEP genes are regulated by environmental cues such as nitrogen limitation, increased salt levels, increased osmotic strength, and increased CO2 levels in both roots and shoots. Analysis of synthetic CEP variants showed that both peptide sequence and modifications of key amino acids affect CEP biological activity. Analysis of several CEP over-expression lines revealed distinct roles for CEP genes in root and shoot development. A cep3 knockout mutant showed increased root and shoot growth under a range of abiotic stress, nutrient, and light conditions. We demonstrate that CEPs are negative regulators of root development, slowing primary root growth and reducing lateral root formation. We propose that CEPs are negative regulators that mediate environmental influences on plant development.

  17. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    Science.gov (United States)

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  18. Affects N fertilization intensity and composition of root exudation from two plant species differing in their exploitation strategy?

    Science.gov (United States)

    Kotas, Petr; Kastovska, Eva

    2017-04-01

    The rhizosphere represents one of the most important hotspots of microbial activity in soil. As such, it controls soil element cycling and significantly contributes to important ecosystem processes like C and N sequestration. The close plant-microbe-soil interactions in the rhizosphere are mediated by the input of labile exudates into the surroundings of plant roots. Thus microbial performance is constrained by the intensity and composition of root exudation. However, it is poorly understood how closely root exudation corresponds with the plant metabolome and how it is related to plant traits and changing environmental conditions. To fill this gap, we determined the composition of the root metabolic pool and root exudates in two plant species differing in their exploitation type (conservative Carex acuta versus competitive Glyceria maxima) grown for two months in controlled conditions and treated weekly by two levels of foliar N fertilization. Based on previous studies, we knew that Glyceria has, compared to Carex, a lower tissue C:N ratio, higher photosynthetic rate, higher allocation belowground and also larger investment to exudation. Prior to extraction, the roots were cleaned by water and immediately frozen in liquid N2. The root exudates were collected from carefully cleaned roots of living plants encased in glass vials with water and subsequently lyophilised. Both sample types were silylated and analysed for their metabolic profiles using GC-MS/MS. Our results revealed that the metabolite content in root tissue (DW basis) of Glyceria was on average lower compared to Carex, but increased with fertilization, while the root tissue of Carex was characterized by significantly higher metabolite content in the low intensity fertilization treatment compared to both the control and high N fertilization intensity. In contrast, the amount of exuded compounds was much higher in Glyceria compared to Carex in the control plants, but decreased for Glyceria and increased

  19. Root strength of tropical plants - An investigation in the Western Ghats of Kerala, India

    Science.gov (United States)

    Lukose Kuriakose, S.; van Beek, L. P. H.; van Westen, C. J.

    2009-04-01

    Earlier research on debris flows in the Tikovil River basin of the Western Ghats concluded that root cohesion is significant in maintaining the overall stability of the region. In this paper we present the most recent results (December 2008) of root tensile strength tests conducted on nine species of plants that are commonly found in the region. They are 1) Rubber (Hevea Brasiliensis), 2) Coconut Palm (Cocos nucifera), 3) Jackfruit trees (Artocarpus heterophyllus), 4) Teak (Tectona grandis), 5) Mango trees (Mangifera indica), 6) Lemon grass (Cymbopogon citratus), 7) A variety of Tamarind (Garcinia gummigutta), 8) Coffee (Coffea Arabica) and Tea (Camellia sinensis). About 1500 samples were collected of which only 380 could be tested (in the laboratory) due to breakage of roots during the tests. In the successful tests roots failed in tension. Roots having diameters between 2 mm and 12 mm were tested. Each sample tested has a length of 15 cm. Results indicate that the roots of Coffee, Tamarind, Lemon grass and Jackfruit are the strongest of the nine plant types tested whereas Tea and Teak plants had the most fragile roots. Coconut roots behaved atypical to the others, as the bark of the roots was crushed and slipped from the clamp when tested whereas its internal fiber was the strongest of all tested. Root tensile strength decreases with increasing diameters, Rubber showing more ductile behaviour than Coffee and Tamarind that behaved more brittle, root tensile strength increasing exponentially for finer roots. Teak and Tea showed almost a constant root tensile strength over the range of diameters tested and little variability. Jack fruit and mango trees showed the largest variability, which may be explained by the presence of root nodules, preventing the derivation of an unequivocal relationship between root diameters and tensile strength. This results in uncertainty of root strength estimates that are applicable. These results provide important information to

  20. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses

    Science.gov (United States)

    Hawkes, C.V.; Belnap, J.; D'Antonio, C.; Firestone, M.K.

    2006-01-01

    Plant invasions have the potential to significantly alter soil microbial communities, given their often considerable aboveground effects. We examined how plant invasions altered the arbuscular mycorrhizal fungi of native plant roots in a grassland site in California and one in Utah. In the California site, we used experimentally created plant communities composed of exotic (Avena barbata, Bromus hordeaceus) and native (Nassella pulchra, Lupinus bicolor) monocultures and mixtures. In the Utah semi-arid grassland, we took advantage of invasion by Bromus tectorum into long-term plots dominated by either of two native grasses, Hilaria jamesii or Stipa hymenoides. Arbuscular mycorrhizal fungi colonizing roots were characterized with PCR amplification of the ITS region, cloning, and sequencing. We saw a significant effect of the presence of exotic grasses on the diversity of mycorrhizal fungi colonizing native plant roots. In the three native grasses, richness of mycorrhizal fungi decreased; in the native forb at the California site, the number of fungal RFLP patterns increased in the presence of exotics. The exotic grasses also caused the composition of the mycorrhizal community in native roots to shift dramatically both in California, with turnover of Glomus spp., and Utah, with replacement of Glomus spp. by apparently non-mycorrhizal fungi. Invading plants may be able to influence the network of mycorrhizal fungi in soil that is available to natives through either earlier root activity or differential carbon provision compared to natives. Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem. ?? Springer 2006.

  1. Intraspecific Trait Variation and Coordination: Root and Leaf Economics Spectra in Coffee across Environmental Gradients.

    Science.gov (United States)

    Isaac, Marney E; Martin, Adam R; de Melo Virginio Filho, Elias; Rapidel, Bruno; Roupsard, Olivier; Van den Meersche, Karel

    2017-01-01

    Hypotheses on the existence of a universal "Root Economics Spectrum" (RES) have received arguably the least attention of all trait spectra, despite the key role root trait variation plays in resource acquisition potential. There is growing interest in quantifying intraspecific trait variation (ITV) in plants, but there are few studies evaluating (i) the existence of an intraspecific RES within a plant species, or (ii) how a RES may be coordinated with other trait spectra within species, such as a leaf economics spectrum (LES). Using Coffea arabica (Rubiaceae) as a model species, we measured seven morphological and chemical traits of intact lateral roots, which were paired with information on four key LES traits. Field collections were completed across four nested levels of biological organization. The intraspecific trait coefficient of variation (cv) ranged from 25 to 87% with root diameter and specific root tip density showing the lowest and highest cv, respectively. Between 27 and 68% of root ITV was explained by site identity alone for five of the seven traits measured. A single principal component explained 56.2% of root trait covariation, with plants falling along a RES from resource acquiring to conserving traits. Multiple factor analysis revealed significant orthogonal relationships between root and leaf spectra. RES traits were strongly orthogonal with respect to LES traits, suggesting these traits vary independently from one another in response to environmental cues. This study provides among the first evidence that plants from the same species differentiate from one another along an intraspecific RES. We find that in one of the world's most widely cultivated crops, an intraspecific RES is orthogonal to an intraspecific LES, indicating that above and belowground responses of plants to managed (or natural) environmental gradients are likely to occur independently from one another.

  2. Classroom Modified Split-Root Technique and Its Application in a Plant Habitat Selection Experiment at the College Level

    Science.gov (United States)

    Elliott, Shannon S.; Winter, Peggy A.

    2011-01-01

    The split-root technique produces a plant with two equal root masses. Traditionally, the two root masses of the single plant are cultivated in adjacent pots with or without roots from competitors for the purpose of elucidating habitat preferences. We have tailored this technology for the classroom, adjusting protocols to match resources and time…

  3. Actin Cytoskeleton-Based Plant Synapse as Gravitransducer in the Transition Zone of the Root Apex

    Science.gov (United States)

    Baluska, Frantisek; Barlow, Peter; Volkmann, Dieter; Mancuso, Stefano

    The actin cytoskeleton was originally proposed to act as the signal transducer in the plant gravity sensory-motoric circuit. Surprisingly, however, several studies have documented that roots perfom gravisensing and gravitropism more effectively if exposed to diverse anti-F-actin drugs. Our study, using decapped maize root apices, has revealed that depolymerization of F-actin stimulates gravity perception in cells of the transition zone where root gravitropism is initiated (Mancuso et al. 2006). It has been proposed (Balǔka et al. 2005, 2009a) that s the non-growing adhesive end-poles, enriched with F-actin and myosin VIII, and active in endocytic recycling of both PIN transporters and cell wall pectins cross-linked with calcium and boron, act as the gravisensing domains, and that these impinge directly upon the root motoric responses via control of polar auxin transport. This model suggests that mechanical asymmetry at these plant synapses determines vectorial gravity-controlled auxin transport. Due to the gravity-imposed mechanical load upon the protoplast, a tensional stress is also imposed upon the plasma membrane of the physically lower synaptic cell pole. This stress is then relieved by shifting the endocytosis-exocytosis balance towards exocytosis (Balǔka et al. s 2005, 2009a,b). This `Synaptic Auxin Secretion' hypothesis does not conflict with the `Starch Statolith' hypothesis, which is based on amyloplast sedimentation. In fact, the `Synaptic Auxin Secretion' hypothesis has many elements which allow its unification with the Starch-Statolith model (Balǔka et al. 2005, 2009a,b). s References Balǔka F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion s domains for cell-to-cell communication. Trends Plant Sci 10: 106-111 Balǔka F, Schlicht M, s Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopoldina 96: 103-122 Balǔka s F, Mancuso S

  4. Genome-wide association mapping and agronomic impact of cowpea root architecture.

    Science.gov (United States)

    Burridge, James D; Schneider, Hannah M; Huynh, Bao-Lam; Roberts, Philip A; Bucksch, Alexander; Lynch, Jonathan P

    2017-02-01

    Genetic analysis of data produced by novel root phenotyping tools was used to establish relationships between cowpea root traits and performance indicators as well between root traits and Striga tolerance. Selection and breeding for better root phenotypes can improve acquisition of soil resources and hence crop production in marginal environments. We hypothesized that biologically relevant variation is measurable in cowpea root architecture. This study implemented manual phenotyping (shovelomics) and automated image phenotyping (DIRT) on a 189-entry diversity panel of cowpea to reveal biologically important variation and genome regions affecting root architecture phenes. Significant variation in root phenes was found and relatively high heritabilities were detected for root traits assessed manually (0.4 for nodulation and 0.8 for number of larger laterals) as well as repeatability traits phenotyped via DIRT (0.5 for a measure of root width and 0.3 for a measure of root tips). Genome-wide association study identified 11 significant quantitative trait loci (QTL) from manually scored root architecture traits and 21 QTL from root architecture traits phenotyped by DIRT image analysis. Subsequent comparisons of results from this root study with other field studies revealed QTL co-localizations between root traits and performance indicators including seed weight per plant, pod number, and Striga (Striga gesnerioides) tolerance. The data suggest selection for root phenotypes could be employed by breeding programs to improve production in multiple constraint environments.

  5. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    Science.gov (United States)

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-01-01

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth. PMID:26295391

  6. Rotan manau intercropped with rubber: rate of root growth between three and four years after planting

    International Nuclear Information System (INIS)

    Wan Rashidah Kadir; Aminuddin Mohamad; Ahmad Sahali Mardi; Zaharah Abd Rahman

    1997-01-01

    Wan Rashidah, K., Aminuddin, M., Ahmad Sahali, M. & Zaharah, A.R. 1997. Rotan manau intercropped with rubber: rate of root growth between three and four years after planting. Efficient fertiliser management depends partly on understanding the active root distribution. In the present study, the active root distribution of 3- and 4-y-old plantation grown rotan manau (Calamus manan) was assessed using isotope tracer technique. For the 3-y-old rotan manau, three distances from the plant base (0.5, 1.0 and 1.5 m) at 5 and 30 cm depths were examined. For the 4-y-old plants, two distances, viz-a-viz at a centre between two rattan plants and another in the middle between two rattan plants and two rubber trees were studied. The isotope used was 32P, applied as a solution with KH2PO4. The rotan manau plants had been established under mature rubber plantation. High proportions of feeder roots were found at 0.5 and 1.0 m distances at the surface (5 cm depth) for the 3-y-old plants. Uptake of 32P was also observed for the application at 1.5 m distance for both depths but the counts were small. Statistical analysis gave a highly significant difference within the distances and within the different depths. For a better synchronisation between fertiliser application and plant uptake, it seems that application at approximately between 0.5 and 1.0 m distance around the plant is most appropriate at this age. At four years after planting, important uptake was obtained only for the two plants located near the application area. Anyhow, to some extent it reflected that roots had already extended for another 1 m compared to the 3-y-old plants

  7. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration

    Science.gov (United States)

    Kell, Douglas B.

    2011-01-01

    Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

  8. Molecular responses in root-associative rhizospheric bacteria to variations in plant exudates

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2015-04-01

    Plant exudates are a major factor in the interface of plant-soil-microbe interactions and it is well documented that the microbial community structure in the rhizosphere is largely influenced by the particular exudates excreted by various plants. Azospirillum brasilense is a plant growth promoting rhizobacterium that is known to interact with a large number of plants, including important food crops. The regulatory gene flcA has an important role in this interaction as it controls morphological differentiation of the bacterium that is essential for attachment to root surfaces. Being a response regulatory gene, flcA mediates the response of the bacterial cell to signals from the surrounding rhizosphere. This makes this regulatory gene a good candidate for analysis of the response of bacteria to rhizospheric alterations, in this case, variations in root exudates. We will report on our studies on the response of Azospirillum, an ecologically, scientifically and agriculturally important bacterial genus, to variations in the rhizosphere.

  9. Optical methods for creating delivery systems of chemical compounds to plant roots

    Science.gov (United States)

    Kuznetsov, Pavel E.; Rogacheva, Svetlana M.; Arefeva, Oksana A.; Minin, Dmitryi V.; Tolmachev, Sergey A.; Kupadze, Machammad S.

    2004-08-01

    Spectrophotometric and fluorescence methods have been used for creation and investigation of various systems of target delivery of chemical compounds to roots of plants. The possibility of using liposomes, incrusted by polysaccharides of the external surface of nitrogen-fixing rizospheric bacteria Azospirillum brasilense SP 245, and nanoparticles incrusted by polysaccharides of wheat roots, as the named systems has been shown. The important role of polysaccharide-polysaccharide interaction in the adsorption processes of bacteria on wheat roots has been demonstrated.

  10. [Difference of anti-fracture mechanical characteristics between lateral-root branches and adjacent upper straight roots of four plant species in vigorous growth period].

    Science.gov (United States)

    Liu, Peng-fei; Liu, Jing; Zhu, Hong-hui; Zhang, Xin; Zhang, Ge; Li, You-fang; Su, Yu; Wang, Chen-jia

    2016-01-01

    Taking four plant species, Caragana korshinskii, Salix psammophila, Hippophae rhamnides and Artemisia sphaerocephala, which were 3-4 years old and in vigorous growth period, as test materials, the anti-fracture forces of lateral-root branches and adjacent upper straight roots were measured with the self-made fixture and the instrument of TY 8000. The lateral-root branches were vital and the diameters were 1-4 mm. The results showed that the anti-fracture force and anti-fracture strength of lateral-root branches were lesser than those of the adjacent upper straight roots even though the average diameter of lateral-root branches was greater. The ratios of anti-fracture strength of lateral-root branches to the adjacent upper straight roots were 71.5% for C. korshinskii, 62.9% for S. psammophila, 45.4% for H. rhamnides and 35.4% for A. sphaerocephala. For the four plants, the anti-fracture force positively correlated with the diameter in a power function, while the anti-fracture strength negatively correlated with diameter in a power function. The anti-fracture strengths of lateral-root branches and adjacent upper straight roots for the four species followed the sequence of C. korshinskii (33.66 and 47.06 MPa) > S. psammophila (17.31 and 27.54 MPa) > H. rhamnides (3.97 and 8.75 MPa) > A. sphaerphala (2.18 and 6.15 MPa).

  11. Effects of contrasting rooting distribution patterns on plant transpiration along a precipitation gradient

    Science.gov (United States)

    Understanding and predicting ecosystem functioning in water limited ecosystems requires a thorough assessment of the role plant root systems. Widespread ecological phenomena such as shrub encroachment may drastically change root distribution in the soil profile affecting the uptake of water and nutr...

  12. Light and decapitation effects on in vitro rooting in maize root segments.

    Science.gov (United States)

    Golaz, F W; Pilet, P E

    1985-10-01

    The effects of white light and decapitation on the initiation and subsequent emergence and elongation of lateral roots of apical maize (Zea mays L. cv LG 11) root segments have been examined. The formation of lateral root primordium was inhibited by the white light. This inhibition did not depend upon the presence of the primary root tip. However, root decapitation induced a shift of the site of appearance of the most apical primordium towards the root apex, and a strong disturbance of the distribution pattern of primordium volumes along the root axis. White light had a significant effect neither on the distribution pattern of primordium volumes, nor on the period of primordium development (time interval required for the smallest detectable primordia to grow out as secondary roots). Thus, considering the rooting initiation and emergence, the light effect was restricted to the initiation phase only. Moreover, white light reduced lateral root elongation as well as primary root growth.

  13. Improved and Reproducible Flow Cytometry Methodology for Nuclei Isolation from Single Root Meristem

    Directory of Open Access Journals (Sweden)

    Thaís Cristina Ribeiro Silva

    2010-01-01

    Full Text Available Root meristems have increasingly been target of cell cycle studies by flow cytometric DNA content quantification. Moreover, roots can be an alternative source of nuclear suspension when leaves become unfeasible and for chromosome analysis and sorting. In the present paper, a protocol for intact nuclei isolation from a single root meristem was developed. This proceeding was based on excision of the meristematic region using a prototypical slide, followed by short enzymatic digestion and mechanical isolation of nuclei during homogenization with a hand mixer. Such parameters were optimized for reaching better results. Satisfactory nuclei amounts were extracted and analyzed by flow cytometry, producing histograms with reduced background noise and CVs between 3.2 and 4.1%. This improved and reproducible technique was shown to be rapid, inexpensive, and simple for nuclear extraction from a single root tip, and can be adapted for other plants and purposes.

  14. Field performance of Quercus bicolor established as repeatedly air-root-pruned container and bareroot planting stock

    Science.gov (United States)

    J.W." Jerry" Van Sambeek; Larry D. Godsey; William D. Walter; Harold E. Garrett; John P. Dwyer

    2016-01-01

    Benefits of repeated air-root-pruning of seedlings when stepping up to progressively larger containers include excellent lateral root distribution immediately below the root collar and an exceptionally fibrous root ball. To evaluate long-term field performance of repeatedly air-root-pruned container stock, three plantings of swamp white oak (Quercus bicolor...

  15. Accumulation and translocation of K+, Na+ and Ca2+ supplied to the different root zones of corn seedlings

    International Nuclear Information System (INIS)

    Marschner, H.; Richter, Ch.

    1973-01-01

    In various distances from the tip of the primary root of 9 days old corn seedlings nutrient solution labelled with 42 K, 22 Na or 45 Ca was supplied to a 3 cm section of the root. The remainder of the root system was supplied with an identical nutrient solution but non-labelled. After 24 hours the roots were segmented and analysed for their content of 42 K, 22 Na or 45 Ca. From the treated zone K + was not only translocated in direction of the shoot but also to a high degree in direction of the root tip where a pronounced accumulation of K + was evident. In contrast to this most of the Na + , which was taken up, was accumulated in the treated zone, whereas the translocation in direction of the shoot was restricted; some translocation in direction of the root tip was detectable. The accumulation of Ca 2+ in the treated zone was less pronounced, most of the Ca 2+ was translocated to the shoot. There was no translocation of Ca 2+ in direction of the root tip (phloem transport). Supply of the same ion to the remainder of the root system scarcely affected uptake and translocation of this ion from the treated zone; however, in the presence of K + in the external solution pronounced exchange reactions and efflux of K + took place. When K + and Na + were simultaneously present in the treated zone the uptake of Na + was strongly depressed; uptake and translocation of Na + were stimulated however, when K + was supplied only to the remainder of the root system. When K + , Na + or Ca 2+ were supplied to different root zones in the region from 0-18 cm behind the root tip, in these fast growing roots the total uptake was the same in a range of 3-18 cm behind the tip. In the tip zone (0-3 cm) however, the uptake of K + was lower and the uptake of Ca 2+ was higher than in the other root zones. For all 3 cations with increasing distance from the root tip, the accumulation in the treated zone decreased and the translocation from this zone in direction of the shoot increased. The

  16. Root morphology, hydraulic conductivity and plant water relations of high-yielding rice grown under aerobic conditions.

    Science.gov (United States)

    Kato, Yoichiro; Okami, Midori

    2011-09-01

    Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. Root system development, stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Ψ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψ(leaf). Ψ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Ψ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.

  17. Concept for Sustained Plant Production on ISS Using VEGGIE Capillary Mat Rooting System

    Science.gov (United States)

    Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.

    2011-01-01

    Plant growth in microgravity presents unique challenges associated with maintaining appropriate conditions for seed germination, seedling establishment, maturation and harvest. They include maintaining appropriate soil moisture content, nutrient balance, atmospheric mixing and containment. Sustained production imposes additional challenges of harvesting, replanting, and safety. The VEGGIE is a deployable (collapsible) plant growth chamber developed as part of a NASA SBIR Phase II by Orbitec, Madison, WI. The intent of VEGGIE is to provide a low-resource system to produce fresh vegetables for the crew on long duration missions. The VEGGIE uses and LED array for lighting, an expandable bellows for containment, and a capillary matting system for nutrient and water delivery. The project evaluated a number of approaches to achieve sustained production, and repeated plantings, using the capillary rooting system. A number of different root media, seed containment, and nutrient delivery systems were evaluated and effects on seed germination and growth were evaluated. A number of issues limiting sustained production, such as accumulation of nutrients, uniform water, elevated vapor pressure deficit, and media containment were identified. A concept using pre-planted rooting packs shown to effectively address a number of those issues and is a promising approach for future development as a planting system for microgravity conditions.

  18. Thick root of cucumber: other susceptible plants and the effect of pH

    NARCIS (Netherlands)

    Gaag, van der D.J.; Paternotte, P.; Hamelink, R.

    2002-01-01

    Thick root is a relatively new disorder of cucumber grown in artificial substrates. Plants of cucumber, tomato, sweet pepper, lupin, anthurium, Cucurbita ficifolia, C. maxima and two lines from crosses between C. maxima and C. moschata were grown in thick root disease (TRD)-infested nutrient

  19. A latex metabolite benefits plant fitness under root herbivore attack

    OpenAIRE

    Huber, M.; Epping, J.; Gronover, C.S.; Fricke, J.; Aziz, Z.; Brillatz, T.; Swyers, M.; Köllner, T.G.; Vogel, H.; Hammerbacher, A.; Triebwasser-Freese, D.; Robert, C.A.M.; Verhoeven, K.; Preite, V.; Gershenzon, J.

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major n...

  20. Plants Regeneration Derived From Various on Peanut on Mutant Lines

    International Nuclear Information System (INIS)

    Dewi, Kumala; Masrizal; Mugiono

    1998-01-01

    The study of calli, greenspot formation and shoot regeneration on peanut mutant lines has ben conducted by MS media. Three explants derived from shoot tips, embryo and seeding root of two mutant lines a/20/3 and D/25/3/2 were used in this experiment. the explants were cultured on modified MS media enriched by vitamins, growth regulation, amino acids for fourth teen calli were transferred on regeneration media. The ability of calli formation and plant regeneration of each explant and genotypes of plants was varied. Greenspot and shoot formation were observed seventh days after the calli transferred on regeneration media. It is shown that the ability of calli, greenspot and shoot formation of each explants and genotypes was varied. the high ability of calli, greenspot and shoot formation were found in explant derived from shoot tip and embryo. Seedling root explant has lower ability in calli formation, while greenspot and shoot was formatted. The ability of calli, greenspot and shoot formation on A/20/3 mutant line was better than D/25/3/2 mutant line. (author)

  1. Transfer of radionuclides to crop plants through roots. Radioiodine

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Shigeo; Sumiya, Misako; Ohmomo, Yoichiro

    1987-07-01

    In an atmospheric discharge of radioiodines, direct deposition of the nuclides onto leaf surface must be the most significant pathway. However, root uptake is also of importance specifically for /sup 129/I because of its long half life of 1.57 x 10/sup 7/ years. In order to estimate the amount of the nuclide transferred to the crop plants from contaminated field, the experiments were carried out using solution culture. Rice plant, Oryza sativa cv. koshihikari, spinach, Spinacea oleracea L., radish, Raphanus sativus L., and the other four kinds of crop plants were exposed to culture solution in which Na/sup 131/I were contained. The transfer rates, defined as the ratio of activity of plant sample per day to the mean activity of culture solution, were calculated. And the differences by the organs of each crop plant and by plant species were discussed in this paper. Temporal critical crop plants for /sup 129/I were selected.

  2. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants

    International Nuclear Information System (INIS)

    Wang Xiuping; Han Heyou; Liu Xueqin; Gu Xiaoxu; Chen Kun; Lu Donglian

    2012-01-01

    The potential effects of oxidized multi-walled carbon nanotubes (o-MWCNTs) with a length ranging from 50 to 630 nm on the development and physiology of wheat plants were evaluated by examining their effects on seed germination, root elongation, stem length, and vegetative biomass at a concentration ranging from 10 to 160 μg/mL in the plant. Results indicated that after 7 days of exposure to the o-MWCNTs medium, faster root growth and higher vegetative biomass were observed, but seed germination and stem length did not show any difference as compared with controls. Moreover, a physiological study was conducted at cellular level using a traditional physiological approach to evidence the possible alterations in morphology, the cell length of root zone, and the dehydrogenase activity of seedlings. Transmission electron microscopy images revealed that o-MWCNTs could penetrate the cell wall and enter the cytoplasm after being taken up by roots. The cell length of root zone for the seedlings germinated and grown in the o-MWCNTs (80 μg/mL) medium increased by 1.4-fold and a significant concentration-dependent increase in the dehydrogenase activity for the o-MWCNT-treated wheat seedlings was detected. These findings suggest that o-MWCNTs can significantly promote cell elongation in the root system and increase the dehydrogenase activity, resulting in faster root growth and higher biomass production.

  3. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiuping; Han Heyou, E-mail: hyhan@mail.hzau.edu.cn; Liu Xueqin; Gu Xiaoxu; Chen Kun; Lu Donglian [Huazhong Agricultural University, College of Science, State Key Laboratory of Agricultural Microbiology, Institute of Chemical Biology (China)

    2012-06-15

    The potential effects of oxidized multi-walled carbon nanotubes (o-MWCNTs) with a length ranging from 50 to 630 nm on the development and physiology of wheat plants were evaluated by examining their effects on seed germination, root elongation, stem length, and vegetative biomass at a concentration ranging from 10 to 160 {mu}g/mL in the plant. Results indicated that after 7 days of exposure to the o-MWCNTs medium, faster root growth and higher vegetative biomass were observed, but seed germination and stem length did not show any difference as compared with controls. Moreover, a physiological study was conducted at cellular level using a traditional physiological approach to evidence the possible alterations in morphology, the cell length of root zone, and the dehydrogenase activity of seedlings. Transmission electron microscopy images revealed that o-MWCNTs could penetrate the cell wall and enter the cytoplasm after being taken up by roots. The cell length of root zone for the seedlings germinated and grown in the o-MWCNTs (80 {mu}g/mL) medium increased by 1.4-fold and a significant concentration-dependent increase in the dehydrogenase activity for the o-MWCNT-treated wheat seedlings was detected. These findings suggest that o-MWCNTs can significantly promote cell elongation in the root system and increase the dehydrogenase activity, resulting in faster root growth and higher biomass production.

  4. Cadmium uptake from solution by plants and its transport from roots to shoots

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, S.C.; Jones, L.H.P.; Hopper, M.J.

    1976-02-01

    The uptake of cadmium by the roots of plants, and its transport to shoots was examined using solution culture. Uptake by the roots of perennial ryegrass over a period of 4 hours from an aqueous solution containing 0.25 ppm cadmium as CdCl/sub 2/ was (i) enhanced by killing the roots and (ii) depressed when Ca/sup 2 +/, Mn/sup 2 +/ or Zn/sup 2 +/ were added to the solution. The distribution of cadmium between the roots and shoots of 23 species was examined at 4 days after a single, 3-day exposure to a nutrient solution containing 0.01 ppm added Cd. In all except 3 species, i.e. kale, lettuce and watercress, more than 50% of that taken up was retained in the shoot, and in fibrous roots of fodder beet, parsnip, carrot and radish it was greater than in the swollen storage roots. When perennial ryegrass was similarly exposed to solutions containing 0.01, 0.05, and 0.25 ppm added cadmium, uptake, as measured at 3 days after adding cadmium, increased with increasing rates of addition, but the proportion retained in the roots was constant (approximately 88%). There was no further transport from roots to shoots during the next 21 days, with the result that the concentration in the shoots decreased progressively with increasing growth. It is concluded that although the roots of several species can take up large quantities of cadmium from solution there are mechanisms which may restrict the movement of cadmium through plants, and thus to animals. 21 references, 7 tables.

  5. Phytotoxic flavonoids from roots of Stellera chamaejasme L. (Thymelaeaceae).

    Science.gov (United States)

    Yan, Zhiqiang; Guo, Hongru; Yang, Jiayue; Liu, Quan; Jin, Hui; Xu, Rui; Cui, Haiyan; Qin, Bo

    2014-10-01

    Allelopathy, the negative effect on plants of chemicals released to the surroundings by a neighboring plant, is an important factor which contributes to the spread of some weeds in plant communities. In this field, Stellera chamaejasme L. (Thymelaeaceae) is one of the most toxic and ecologically-threatening weeds in some of the grasslands of north and west China. Bioassay-guided fractionation of root extracts of this plant led to the isolation of eight flavonoids 1-8, whose structures were elucidated by spectroscopic analysis. All compounds obtained, except 7-methoxylneochaejasmin A (4) and (+)-epiafzelechin (5), showed strong phytotoxic activity against Arabidopsis thaliana seedlings. Seedling growth was reduced by neochamaejasmin B (1), mesoneochamaejasmin A (2), chamaejasmenin C (3), genkwanol A (6), daphnodorin B (7) and dihydrodaphnodorin B (8) with IC50 values of 6.9, 12.1, 43.2, 74.8, 7.1 and 27.3μg/mL, respectively, and all of these compounds disrupted root development. Endogenous auxin levels at the root tips of the A. thaliana DR5::GUS transgenic line were largely reduced by compounds 1, 2 and 6-8, and were increased by compound 4. Moreover, the inhibition rate of A. thaliana auxin transport mutants pin2 and aux1-7 by compounds 1-8 were all lower than the wild type (Col-0). The influence of these compounds on endogenous auxin distribution is thus proposed as a critical factor for the phytotoxic effect. Compounds 1, 2, 4 and 8 were found in soils associated with S. chamaejasme, and these flavonoids also showed phytotoxicity to Clinelymus nutans L., an associated weed of S. chamaejasme. These results indicated that some phytotoxic compounds from roots of S. chamaejasme may be involved in the potential allelopathic behavior of this widespread weed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Discrimination of plant root zone water status in greenhouse production based on phenotyping and machine learning techniques

    OpenAIRE

    Guo, Doudou; Juan, Jiaxiang; Chang, Liying; Zhang, Jingjin; Huang, Danfeng

    2017-01-01

    Plant-based sensing on water stress can provide sensitive and direct reference for precision irrigation system in greenhouse. However, plant information acquisition, interpretation, and systematical application remain insufficient. This study developed a discrimination method for plant root zone water status in greenhouse by integrating phenotyping and machine learning techniques. Pakchoi plants were used and treated by three root zone moisture levels, 40%, 60%, and 80% relative water content...

  7. Root Systems of Individual Plants, and the Biotic and Abiotic Factors Controlling Their Depth and Distribution: a Synthesis Using a Global Database.

    Science.gov (United States)

    Tumber-Davila, S. J.; Schenk, H. J.; Jackson, R. B.

    2017-12-01

    This synthesis examines plant rooting distributions globally, by doubling the number of entries in the Root Systems of Individual Plants database (RSIP) created by Schenk and Jackson. Root systems influence many processes, including water and nutrient uptake and soil carbon storage. Root systems also mediate vegetation responses to changing climatic and environmental conditions. Therefore, a collective understanding of the importance of rooting systems to carbon sequestration, soil characteristics, hydrology, and climate, is needed. Current global models are limited by a poor understanding of the mechanisms affecting rooting, carbon stocks, and belowground biomass. This improved database contains an extensive bank of records describing the rooting system of individual plants, as well as detailed information on the climate and environment from which the observations are made. The expanded RSIP database will: 1) increase our understanding of rooting depths, lateral root spreads and above and belowground allometry; 2) improve the representation of plant rooting systems in Earth System Models; 3) enable studies of how climate change will alter and interact with plant species and functional groups in the future. We further focus on how plant rooting behavior responds to variations in climate and the environment, and create a model that can predict rooting behavior given a set of environmental conditions. Preliminary results suggest that high potential evapotranspiration and seasonality of precipitation are indicative of deeper rooting after accounting for plant growth form. When mapping predicted deep rooting by climate, we predict deepest rooting to occur in equatorial South America, Africa, and central India.

  8. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces.

    Science.gov (United States)

    Rams, Thomas E; Alwaqyan, Abdulaziz Y

    2017-10-01

    This study assessed the reproducibility of a red diode laser device, and its capability to detect dental calculus in vitro on human tooth root surfaces. On each of 50 extracted teeth, a calculus-positive and calculus-free root surface was evaluated by two independent examiners with a low-power indium gallium arsenide phosphide diode laser (DIAGNOdent) fitted with a periodontal probe-like sapphire tip and emitting visible red light at 655 nm wavelength. Laser autofluorescence intensity readings of examined root surfaces were scored on a 0-99 scale, with duplicate assessments performed using the laser probe tip directed both perpendicular and parallel to evaluated tooth root surfaces. Pearson correlation coefficients of untransformed measurements, and kappa analysis of data dichotomized with a >40 autofluorescence intensity threshold, were calculated to assess intra- and inter-examiner reproducibility of the laser device. Mean autofluorescence intensity scores of calculus-positive and calculus-free root surfaces were evaluated with the Student's t -test. Excellent intra- and inter-examiner reproducibility was found for DIAGNOdent laser autofluorescence intensity measurements, with Pearson correlation coefficients above 94%, and kappa values ranging between 0.96 and 1.0, for duplicate readings taken with both laser probe tip orientations. Significantly higher autofluorescence intensity values were measured when the laser probe tip was directed perpendicular, rather than parallel, to tooth root surfaces. However, calculus-positive roots, particularly with calculus in markedly-raised ledges, yielded significantly greater mean DIAGNOdent laser autofluorescence intensity scores than calculus-free surfaces, regardless of probe tip orientation. DIAGNOdent autofluorescence intensity values >40 exhibited a stronger association with calculus (36.6 odds ratio) then measurements of ≥5 (20.1 odds ratio) when the laser probe tip was advanced parallel to root surfaces. Excellent

  9. O-2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodes

    DEFF Research Database (Denmark)

    Larsen, Morten; Santner, Jakob; Oburger, Eva

    2015-01-01

    dynamics in the rice rhizosphere. Applying high-resolution planar optode imaging, we investigated the O-2 dynamics of plants grown in water saturated soil, as a function of ambient O-2 level, irradiance and plant development, for submerged and emerged plants. O-2 leakage was heterogeneously distributed...... with zones of intense leakage around roots tips and young developing roots. While the majority of roots exhibited high ROL others remained surrounded by anoxic soil. ROL was affected by ambient O-2 levels around the plant, as well as irradiance, indicating a direct influence of photosynthetic activity on ROL...... of the rhizosphere. The work documents that spatio-temporal measurements are important to fully understand and account for the highly variable O-2 dynamics and associated biogeochemical processes and pathways in the rice rhizosphere....

  10. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    OpenAIRE

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phyto...

  11. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    Science.gov (United States)

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  12. Influence of electrical fields and asymmetric application of mucilage on curvature of primary roots of Zea mays

    Science.gov (United States)

    Marcum, H.; Moore, R.

    1990-01-01

    Primary roots of Zea mays cv. Yellow Dent growing in an electric field curve towards the anode. Roots treated with EDTA and growing in electric field do not curve. When root cap mucilage is applied asymmetrically to tips of vertically-oriented roots, the roots curve toward the mucilage. Roots treated with EDTA curve toward the side receiving mucilage and toward blocks containing 10 mM CaCl2, but not toward "empty" agar blocks or the cut surfaces of severed root tips. These results suggest that 1) free calcium (Ca) is necessary for root electrotropism, 2) mucilage contains effector(s) that induce gravitropiclike curvature, and 3) mucilage can replace gravitropic effectors chelated by EDTA. These results are consistent with the hypothesis that the downward movement of gravitropic effectors to the lower sides of tips of horizontally-oriented roots occurs at least partially in the apoplast.

  13. Expression of putative expansin genes in phylloxera (Daktulosphaira vitifoliae Fitch) induced root galls of Vitis spp.

    Science.gov (United States)

    Lawo, N C; Griesser, M; Forneck, A

    Grape phylloxera ( Daktulosphaira vitifoliae Fitch) is a serious global pest in viticulture. The insects are sedentary feeders and require a gall to feed and reproduce. The insects induce their feeding site within the meristematic zone of the root tip, where they stay attached, feeding both intra- and intercellularly, and causing damage by reducing plant vigour. Several changes in cell structure and composition, including increased cell division and tissue swelling close to the feeding site, cause an organoid gall called a nodosity to develop. Because alpha expansin genes are involved in cell enlargement and cell wall loosening in many plant tissues it may be anticipated that they are also involved in nodosity formation. To identify expansin genes in Vitis vinifera cv. Pinot noir , we mined for orthologues genes in a comparative analysis. Eleven putative expansin genes were identified and shown to be present in the rootstock Teleki 5C ( V. berlandieri Planch. x V. riparia Michx.) using specific PCR followed by DNA sequencing. Expression analysis of young and mature nodosities and uninfested root tips were conducted via quantitative real time PCR (qRT-PCR). Up-regulation was measured for three putative expansin genes (VvEXPA15, -A17 and partly -A20) or down-regulation for three other putative genes (VvEXPA7, -A12, -A20) in nodosities. The present study clearly shows the involvement of putative expansin genes in the phylloxera-root interaction.

  14. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    Directory of Open Access Journals (Sweden)

    Chantal ePlanchamp

    2015-01-01

    Full Text Available Pseudomonas putida KT2440 (KT2440 rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots and systemic (leaves early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots three days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal development in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as

  15. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.

    Science.gov (United States)

    Liu, Yunpeng; Chen, Lin; Zhang, Nan; Li, Zunfeng; Zhang, Guishan; Xu, Yu; Shen, Qirong; Zhang, Ruifu

    2016-04-01

    Mechanisms by which beneficial rhizobacteria promote plant growth include tryptophan-dependent indole-3-acetic acid (IAA) synthesis. The abundance of tryptophan in the rhizosphere, however, may influence the level of benefit provided by IAA-producing rhizobacteria. This study examined the cucumber-Bacillus amyloliquefaciens SQR9 system and found that SQR9, a bacterium previously shown to enhance the growth of cucumber, increased root secretion of tryptophan by three- to fourfold. Using a split-root system, SQR9 colonization of roots in one chamber not only increased tryptophan secretion from the noninoculated roots but also increased the expression of the cucumber tryptophan transport gene but not the anthranilate synthesis gene in those roots. The increased tryptophan in isolated rhizosphere exudates was sufficient to support increased IAA production by SQR9. Moreover, SQR9 colonization of roots in one chamber in the split-root system resulted in sufficient tryptophan production by the other roots to upregulate SQR9 IAA biosynthesis genes, including a 27-fold increase in the indole-3-acetonitrilase gene yhcX during subsequent colonization of those roots. Deletion of yhcX eliminated SQR9-mediated increases in root surface area, likely by reducing IAA-stimulated lateral root growth. This study demonstrates a chemical dialogue between B. amyloliquefaciens and cucumber in which this communication contributes to bacteria-mediated plant-growth enhancement.

  16. Modeling shoot-tip temperature in the greenhouse environment

    International Nuclear Information System (INIS)

    Faust, J.E.; Heins, R.D.

    1998-01-01

    An energy-balance model is described that predicts vinca (Catharanthus roseus L.) shoot-tip temperature using four environmental measurements: solar radiation and dry bulb, wet bulb, and glazing material temperature. The time and magnitude of the differences between shoot-tip and air temperature were determined in greenhouses maintained at air temperatures of 15, 20, 25, 30, or 35 °C. At night, shoot-tip temperature was always below air temperature. Shoot-tip temperature decreased from 0.5 to 5 °C below air temperature as greenhouse glass temperature decreased from 2 to 15 °C below air temperature. During the photoperiod under low vapor-pressure deficit (VPD) and low air temperature, shoot-tip temperature increased ≈4 °C as solar radiation increased from 0 to 600 W·m -2 . Under high VPD and high air temperature, shoot-tip temperature initially decreased 1 to 2 °C at sunrise, then increased later in the morning as solar radiation increased. The model predicted shoot-tip temperatures within ±1 °C of 81% of the observed 1-hour average shoot-tip temperatures. The model was used to simulate shoot-tip temperatures under different VPD, solar radiation, and air temperatures. Since the rate of leaf and flower development are influenced by the temperature of the meristematic tissues, a model of shoot-tip temperature will be a valuable tool to predict plant development in greenhouses and to control the greenhouse environment based on a plant temperature setpoint. (author)

  17. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida

    OpenAIRE

    Zerche, Siegfried; Haensch, Klaus-Thomas; Druege, Uwe; Hajirezaei, Mohammad-Reza

    2016-01-01

    Background Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (Nt), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how ...

  18. Effect of Root-Zone Moisture Variations on Growth of Lettuce and Pea Plants

    Science.gov (United States)

    Ilieva, Iliana; Ivanova, Tania

    2008-06-01

    Variations in substrate moisture lead to changes in water and oxygen availability to plant roots. Ground experiments were carried out in the laboratory prototype of SVET-2 Space Greenhouse to study the effect of variation of root-zone moisture conditions on growth of lettuce and pea plants. The effect of transient increase (for 1 day) and drastic increase (waterlogging for 10 days) of substrate moisture was studied with 16-day old pea and 21-day old lettuce plants respectively. Pea height and fresh biomass accumulation were not affected by transient substrate moisture increase. Net photosynthetic rate (Pn) of pea plants showed fast response to substrate moisture variation, while chlorophyll content did not change. Drastic change of substrate moisture suppressed lettuce Pn, chlorophyll biosynthesis and plant growth. These parameters slowly recovered after termination of waterlogging treatment but lettuce yield was greatly affected. The results showed that the most sensitive physiological parameter to substrate moisture variations is photosynthesis.

  19. Plant density-dependent variations in bioactive markers and root yield in Australian-grown Salvia miltiorrhiza Bunge.

    Science.gov (United States)

    Li, Chun Guang; Sheng, Shu Jun; Pang, Edwin C K; May, Brian; Xue, Charlie Chang Li

    2011-04-01

    The plant density-dependent variations in the root yield and content, and the yield of biomarkers in Australian grown Salvia miltiorrhiza Bunge, a commonly used Chinese medicinal herb for the treatment of cardiovascular diseases, were investigated in a field trial involving six different plant densities. The key biomarker compounds cryptotanshinone, tanshinone I, tanshinone IIA, and salvianolic acid B were quantified by a validated RP-HPLC method, and the root yields were determined per plant pair or unit area. There were significant variations (pplant densities. Positive linear correlations were observed between the contents of the three tanshinones, whereas negative linear correlations were revealed between the contents of the tanshinones and salvianolic acid B. The highest root yield per plant pair was achieved when the plants were grown at 45×30 cm or 45×40 cm, whereas the highest root production par unit area was obtained for a plant density of 30×30 cm. The highest contents of the three tanshinones and the most abundant production of these tanshinones per unit area were achieved when the plants were grown at 30×30 cm. However, the highest content of salvianolic acid B was found for a density of 45×40 cm, while its highest yield per unit area was obtained for densities of 30×40 cm or 45×30 cm. The findings suggest that the plant density distinctly affects the root yield and content and the yield of tanshinones and salvianolic acid B in Australian grown S. miltiorrhiza, which may be used as a guide for developing optimal agricultural procedures for cultivating this herb. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Comparison of different types of phacoemulsification tips. I. Quantitative analysis of elemental composition and tip surface microroughness.

    Science.gov (United States)

    Tsaousis, Konstantinos T; Werner, Liliana; Perez, Jesus Paulo; Li, He J; Reiter, Nicholas; Guan, Jia J; Mamalis, Nick

    2016-09-01

    To evaluate the elemental composition of phacoemulsification tips and their surface roughness in the microscale. John A. Moran Eye Center and Utah Nanofab, College of Engineering, University of Utah, Salt Lake City, Utah, USA. Experimental study. Seven types of phacoemulsification tips were studied. The phaco tips were examined through energy-dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) for elemental composition. In addition, the roughness of the opening in all tips was assessed through 3-dimensional white-light interferometry. Elemental analysis showed considerable differences in the surface layers between manufacturers. Alcon tips had a thinner oxidized titanium (Ti) layer in their surface. Through XPS, vanadium was not detected in the superficial layers of any tip, but only in deeper levels. The microroughness surface analysis showed comparable results regarding their root-mean-square (RMS) metric. Maximum peak valley distance values varied and appeared to be dependent on the quality of material process rather than the material itself. Phacoemulsification tips are made of Ti alloys and showed differences between models, especially regarding their composition in the superficial layers. Their opening end roughness showed an overall appropriate RMS value of less than 1.0 μm in all cases. The existence of small defected areas highlights the importance of adequate quality control of these critical surgical instruments. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Root hydraulic vulnerability regulation of whole-plant conductance along hillslope gradients within subalpine and montane forests

    Science.gov (United States)

    Beverly, D.; Speckman, H. N.; Ewers, B. E.

    2017-12-01

    Ecosystem-scale models often rely on root vulnerability or whole-plant conductance for simulating seasonal evapotranspiration declines via constraints of water uptake and vegetation mortality. Further, many of these ecosystem models rely on single, unvarying, hydraulic parameter estimates for modeling large areas. Ring-porous species have shown seasonal variability in root vulnerability (percent loss of conductivity; PLC) and whole-plant conductance (Kw) but simulations of coniferous forest typically rely on point measurements. This assumption for coniferous forest is not likely true because of seasonal variability caused by phenology and environmental stresses and the potential for cavitation fatigue is not considered. Moreover, many of these dynamics have only been considered for stems even though roots are often the most vulnerable segments of the pathway for conifers. We hypothesized that seasonally dynamic whole-plant conductance along hillslope gradients in coniferous forests are regulated by cavitation fatigue within the roots resulting in seasonal increases in vulnerability. To test the hypothesis, a subalpine mixed forest (3000 m.a.s.l) and montane forest (2550 m.a.s.l.) were monitored between 2015-2017 to quantify PLC and Kw along the hillslope gradients of 300 m and 50 m, respectively. Forest plots were instrumented with 35 Granier-type sapflow sensors. Seasonal sampling campaigns occurred to quantify PLC through centrifuge techniques and Kw through Darcy's law approximations with pre-dawn and diurnal leaf water potentials. Downslope roots exhibit a 33% decrease in maximal conductivity corresponding to the approximately 50% decrease in whole-plant conductance suggesting seasonal soil dry-down limitations within the downslope stands. Upslope stands had no to little change in root vulnerability or decrease in whole-plant conductance as soil water limitations occur immediately following snowmelt, thus limiting hydraulic conductance throughout the growing

  2. Effect of soil water content on spatial distribution of root exudates and mucilage in the rhizosphere

    Science.gov (United States)

    Holz, Maire; Zarebanadkouki, Mohsen; Kuzyakov, Yakov; Carminati, Andrea

    2016-04-01

    Water and nutrients are expected to become the major factors limiting food production. Plant roots employ various mechanisms to increase the access to these limited soil resources. Low molecular root exudates released into the rhizosphere increase nutrient availability, while mucilage improves water availability under low moisture conditions. However, studies on the spatial distribution and quantification of exudates in soil are scarce. Our aim was therefore to quantify and visualize root exudates and mucilage distribution around growing roots using neutron radiography and 14C imaging at different levels of water stress. Maize plants were grown in rhizotrons filled with a silty soil and were exposed to varying soil conditions, from optimal to dry. Mucilage distribution around the roots was estimated from the profiles of water content in the rhizosphere - note that mucilage increases the soil water content. The profiles of water content around different root types and root ages were measured with neutron radiography. Rhizosphere extension was approx. 0.7 mm and did not differ between wet and dry treatments. However, water content (i.e. mucilage concentration) in the rhizosphere of plants grown in dry soils was higher than for plants grown under optimal conditions. This effect was particularly pronounced near the tips of lateral roots. The higher water contents near the root are explained as the water retained by mucilage. 14C imaging of root after 14CO2 labeling of shoots (Pausch and Kuzyakov 2011) was used to estimate the distribution of all rhizodeposits. Two days after labelling, 14C distribution was measured using phosphor-imaging. To quantify 14C in the rhizosphere a calibration was carried out by adding given amounts of 14C-glucose to soil. Plants grown in wet soil transported a higher percentage of 14C to the roots (14Croot/14Cshoot), compared to plants grown under dry conditions (46 vs. 36 %). However, the percentage of 14C allocated from roots to

  3. Gene expression in arabidopsis shoot tips after liquid nitrogen exposure

    Science.gov (United States)

    Arabidopsis thaliana shoot tips can be successfully cryopreserved using either Plant Vitrification Solution 2 (PVS2) or Plant Vitrification Solution 3 (PVS3) as the cryoprotectant. We used this model system to identify suites of genes that were either upregulated or downregulated as shoot tips recov...

  4. K+ and Na+ fluxes in roots of two Chinese Iris populations

    Directory of Open Access Journals (Sweden)

    Pinfang LI,Biao ZHANG

    2014-06-01

    Full Text Available Maintenance of ion homeostasis, particularly the regulation of K+ and Na+ uptake, is important for all plants to adapt to salinity. Observations on ionic response to salinity and net fluxes of K+, Na+ in the root exhibited by plants during salt stress have highlighted the need for further investigation. The objectives of this study were to compare salt adaptation of two Chinese Iris (Iris lactea Pall. var. chinensis (Fisch. Koidz. populations, and to improve understanding of adaptation to salinity exhibited by plants. Plants used in this study were grown from seeds collected in the Xinjiang Uygur Autonomous Region (Xj and Beijing Municipality (Bj, China. Hydroponically-grown seedlings of the two populations were supplied with nutrient solutions containing 0.1 (control and 140 mmol·L-1 NaCl. After 12 days, plants were harvested for determination of relative growth rate and K+, Na+ concentrations. Net fluxes of K+, Na+ from the apex and along the root axis to 10.8 mm were measured using non-invasive micro-test technique. With 140 mmol·L-1 NaCl treatment, shoots for population Xj had larger relative growth rate and higher K+ concentration than shoots for population Bj. However, the Na+ concentrations in both shoots and roots were lower for Xj than those for Bj. There was a lower net efflux of K+ found in population Xj than by Bj in the mature zone (approximately 2.4-10.8 mm from root tip. However, no difference in the efflux of Na+ between the populations was obtained. Population Xj of I. lactea continued to grow normally under NaCl stress, and maintained a higher K+/Na+ ratio in the shoots. These traits, which were associated with lower K+ leakage, help population Xj adapt to saline environments.

  5. A below-ground herbivore shapes root defensive chemistry in natural plant populations.

    Science.gov (United States)

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-03-30

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. © 2016 The Author(s).

  6. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.

    Science.gov (United States)

    Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung

    2018-01-01

    The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  7. In vitro propagation of cordyline plant using electromagnetic waves

    International Nuclear Information System (INIS)

    EL-Sharnouby, M.E.

    2007-01-01

    Shoot tips of cordyline terminals were cultured in vitro on different media (MS. NN and A) to select the best culture medium. Explants were subjected to different cytokines, microwaves periods, auxins and agriculture media. The results showed that MS was the best culture medium. The maximum number of shoots as well as per plant and number of leaves per plant were produced on MS medium supplemented with 4 mg/l 2ip. Exposing the plantlets to microwave irradiation for one minute caused the best proliferation rate, comparing control plantlets. The addition of auxin IBA at concentrate 2 mg/I to culture medium gave a significant increasing in number of roots and root length. Acclimatization culture medium containing peatmoss, sand and loam at equal volume parts gave a significant increasing in plant growth and greening than other acclimatization treatments

  8. Co-ordinated growth between aerial and root systems in young apple plants issued from in vitro culture.

    Science.gov (United States)

    Costes, E; García-Villanueva, E; Jourdan, C; Regnard, J L; Guédon, Y

    2006-01-01

    In several species exhibiting a rhythmic aerial growth, the existence of an alternation between root and shoot growth has been demonstrated. The present study aims to investigate the respective involvement of the emergence of new organs and their elongation in relation to this phenomenon and its possible genotypic variation in young apple plants. Two apple varieties, X6407 (recently named 'Ariane') and X3305 ('Chantecler' x 'Baujade'), were compared. Five plants per variety, issued from in vitro culture, were observed in minirhizotrons over 4 months. For each plant, root emergence and growth were observed twice per week. Growth rates were calculated for all roots with more than two segments and the branching density was calculated on primary roots. On the aerial part, the number of leaves, leaf area and total shoot length were observed weekly. No significant difference was observed between varieties in any of the final characteristics of aerial growth. Increase in leaf area and shoot length exhibited a 3-week rhythm in X3305 while a weaker signal was observed in Ariane. The primary root growth rate was homogeneous between the plants and likewise between the varieties, while their branching density differed significantly. Secondary roots emerged rhythmically, with a 3-week and a 2-week rhythm, respectively, in X3305 and 'Ariane'. Despite a high intra-variety variability, significant differences were observed between varieties in the secondary root life span and mean length. A synchronism between leaf emergence and primary root growth was highlighted in both varieties, while an opposition phase was observed between leaf area increments and secondary root emergence in X3305 only. A biological model of dynamics that summarizes the interactions between processes and includes the assumption of a feedback effect of lateral root emergence on leaf emergence is proposed.

  9. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots

    Science.gov (United States)

    Hussain, Anwar; Shah, Syed T.; Rahman, Hazir; Irshad, Muhammad; Iqbal, Amjad

    2015-01-01

    Nostoc is widely known for its ability to fix atmospheric nitrogen and the establishment of symbiotic relationship with a wide range of plants from various taxonomic groups. Several strains of Nostoc produce phytohormones that promote growth of its plant partners. Nostoc OS-1 was therefore selected for study because of the presence of putative ipdC gene that encodes a key enzyme to produce Indole-3-acetic acid (IAA). The results indicated that both cellular and released IAA was found high with increasing incubation time and reached to a peak value (i.e., 21 pmol mg-1ch-a) on the third week as determined by UPLC-ESI-MS/MS. Also the Nostoc OS-1 strain efficiently colonized the roots and promoted the growth of rice as well as wheat under axenic conditions and induced ipdC gene that suggested the possible involvement of IAA in these phenotypes. To confirm the impact of IAA on root colonization efficiency and plant promoting phenotypes of Nostoc OS-1, an ipdC knockout mutant was generated by homologous recombinant method. The amount of releasing IAA, in vitro growth, root colonization, and plant promoting efficiency of the ipdC knockout mutant was observed significantly lower than wild type strain under axenic conditions. Importantly, these phenotypes were restored to wild-type levels when the ipdC knockout mutant was complemented with wild type ipdC gene. These results together suggested that ipdC and/or synthesized IAA of Nostoc OS-1 is required for its efficient root colonization and plant promoting activity. PMID:25699072

  10. Genetic Analysis of Gravity Signal Transduction in Arabidopsis Roots

    Science.gov (United States)

    Masson, Patrick; Strohm, Allison; Barker, Richard; Su, Shih-Heng

    that the protein-import function of the complex, not the presence of a large acidic domain of TOC132 within the cytoplasm, is needed for gravity signal transduction. Furthermore, mutations in several genes encoding distinct members of the TOC complex also enhanced the gravitropic defect of arg1. Together, these data suggest that the TOC complex works indirectly in gravity signal transduction through its ability to target specific cytoplasmically synthesized proteins, possibly gravity signal transducers, into the plastid. We have used a proteomic strategy to identify root-tip proteins that are differentially expressed between wild type and mar2 mutant plants. The corresponding list of differentially expressed proteins, which includes a surprisingly small number of plastid-targeted molecules, mainly contains proteins that are predicted to be associated with distinct cellular compartments. Several of the corresponding genes were found to also be differentially expressed between wild type and mar2 mutant root tips at the transcriptional level, suggesting cross-talk between amyloplasts and nucleus in these cells. Some of the differentially represented proteins are encoded by genes that are differentially expressed in the root tip in response to gravistimulation, further suggesting their contribution to gravity signal transduction. Work in underway to elucidate their function and potential contribution to this pathway. This work was funded by grants from the National Science Foundation.

  11. Stimulation of vesicular-arbuscular mycorrhizal fungi by mycotrophic and nonmycotrophic plant root systems.

    Science.gov (United States)

    Schreiner, R P; Koide, R T

    1993-08-01

    Transformed root cultures of three nonmycotrophic and one mycotrophic plant species stimulated germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus etunicatum (Becker & Gerd.) in a gel medium. However, only roots of the mycotrophic species (carrot) supported continued hyphal exploration after 3 to 4 weeks and promoted appressoria formation by G. etunicatum.

  12. Stimulation of Vesicular-Arbuscular Mycorrhizal Fungi by Mycotrophic and Nonmycotrophic Plant Root Systems

    OpenAIRE

    Schreiner, R. Paul; Koide, Roger T.

    1993-01-01

    Transformed root cultures of three nonmycotrophic and one mycotrophic plant species stimulated germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus etunicatum (Becker & Gerd.) in a gel medium. However, only roots of the mycotrophic species (carrot) supported continued hyphal exploration after 3 to 4 weeks and promoted appressoria formation by G. etunicatum.

  13. Utilization of (15)NO3 (-) by nodulated soybean plants under conditions of root hypoxia.

    Science.gov (United States)

    Nunes Menolli Lanza, Luciana; Ferreira Lanza, Daniel Carlos; Sodek, Ladaslav

    2014-07-01

    Waterlogging of soils is common in nature. The low availability of oxygen under these conditions leads to hypoxia of the root system impairing the development and productivity of the plant. The presence of nitrate under flooding conditions is regarded as being beneficial towards tolerance to this stress. However, it is not known how nodulated soybean plants, cultivated in the absence of nitrate and therefore not metabolically adapted to this compound, would respond to nitrate under root hypoxia in comparison with non-nodulated plants grown on nitrate. A study was conducted with (15)N labelled nitrate supplied on waterlogging for a period of 48 h using both nodulated and non-nodulated plants of different physiological ages. Enrichment of N was found in roots and leaves with incorporation of the isotope in amino acids, although to a much smaller degree under hypoxia than normoxia. This demonstrates that nitrate is taken up under hypoxic conditions and assimilated into amino acids, although to a much lesser extent than for normoxia. The similar response obtained with nodulated and non-nodulated plants indicates the rapid metabolic adaptation of nodulated plants to the presence of nitrate under hypoxia. Enrichment of N in nodules was very much weaker with a distinct enrichment pattern of amino acids (especially asparagine) suggesting that labelling arose from a tissue source external to the nodule rather than through assimilation in the nodule itself.

  14. Influence of plant genotype on the cultivable fungi associated to tomato rhizosphere and roots in different soils.

    Science.gov (United States)

    Poli, Anna; Lazzari, Alexandra; Prigione, Valeria; Voyron, Samuele; Spadaro, Davide; Varese, Giovanna Cristina

    2016-01-01

    Rhizosphere and root-associated microbiota are crucial in determining plant health and in increasing productivity of agricultural crops. To date, research has mainly focused on the bacterial dimension of the microbiota. However, interest in the mycobiota is increasing, since fungi play a key role in soil ecosystems. We examined the effect of plant genotype, soil, and of Fusarium oxysporum f. sp. lycopersici (Fol) on the cultivable component of rhizosphere and root-associated mycobiota of tomato. Resistant and susceptible varieties were cultivated on two different soils (A and B), under glasshouse conditions. Isolated fungi were identified by morphological and molecular approaches. Differences were found between the rhizosphere and the roots, which in general displayed a lower number of species. The structure of the mycobiota was significantly affected by the soil type in the rhizosphere as well as by the plant genotype within the roots (NPERMANOVA, p fungi. Overall, the results indicated that i) soil type and plant genotype affect the fungal communities; ii) plant roots select few species from the rhizosphere; and iii) the fungal community structure is influenced by Fol. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Climate, soil and plant functional types as drivers of global fine-root trait variation

    NARCIS (Netherlands)

    Freschet, Grégoire T.; Valverde-Barrantes, Oscar J.; Tucker, Caroline M.; Craine, Joseph M.; McCormack, M. Luke; Violle, Cyrille; Fort, Florian; Blackwood, Christopher B.; Urban-Mead, Katherine R.; Iversen, Colleen M.; Bonis, Anne; Comas, Louise H.; Cornelissen, Johannes H.C.; Dong, Ming; Guo, Dali; Hobbie, Sarah E.; Holdaway, Robert J.; Kembel, Steven W.; Makita, Naoki; Onipchenko, Vladimir G.; Picon-Cochard, Catherine; Reich, Peter B.; de la Riva, Enrique G.; Smith, Stuart W.; Soudzilovskaia, Nadejda A.; Tjoelker, Mark G.; Wardle, David A.; Roumet, Catherine

    2017-01-01

    Ecosystem functioning relies heavily on below-ground processes, which are largely regulated by plant fine-roots and their functional traits. However, our knowledge of fine-root trait distribution relies to date on local- and regional-scale studies with limited numbers of species, growth forms and

  16. Heavy Metals in Crop Plants: Transport and Redistribution Processes on the Whole Plant Level

    Directory of Open Access Journals (Sweden)

    Valérie Page

    2015-09-01

    Full Text Available Copper, zinc, manganese, iron, nickel and molybdenum are essential micronutrients for plants. However, when present in excess they may damage the plant or decrease the quality of harvested plant products. Some other heavy metals such as cadmium, lead or mercury are not needed by plants and represent pollutants. The uptake into the roots, the loading into the xylem, the acropetal transport to the shoot with the transpiration stream and the further redistribution in the phloem are crucial for the distribution in aerial plant parts. This review is focused on long-distance transport of heavy metals via xylem and phloem and on interactions between the two transport systems. Phloem transport is the basis for the redistribution within the shoot and for the accumulation in fruits and seeds. Solutes may be transferred from the xylem to the phloem (e.g., in the small bundles in stems of cereals, in minor leaf veins. Nickel is highly phloem-mobile and directed to expanding plant parts. Zinc and to a lesser degree also cadmium are also mobile in the phloem and accumulate in meristems (root tips, shoot apex, axillary buds. Iron and manganese are characterized by poor phloem mobility and are retained in older leaves.

  17. Using common mycorrhizal networks for controlled inoculation of Quercus spp. with Tuber melanosporum: the nurse plant method.

    Science.gov (United States)

    Pereira, Guillermo; Palfner, Götz; Chávez, Daniel; Suz, Laura M; Machuca, Angela; Honrubia, Mario

    2013-07-01

    The high cost and restricted availability of black truffle spore inoculum for controlled mycorrhiza formation of host trees produced for truffle orchards worldwide encourage the search for more efficient and sustainable inoculation methods that can be applied globally. In this study, we evaluated the potential of the nurse plant method for the controlled inoculation of Quercus cerris and Quercus robur with Tuber melanosporum by mycorrhizal networks in pot cultures. Pine bark compost, adjusted to pH 7.8 by liming, was used as substrate for all assays. Initially, Q. robur seedlings were inoculated with truffle spores and cultured for 12 months. After this period, the plants presenting 74 % mycorrhizal fine roots were transferred to larger containers. Nurse plants were used for two treatments of two different nursling species: five sterilized acorns or five 45-day-old, axenically grown Q. robur or Q. cerris seedlings, planted in containers around the nurse plant. After 6 months, colonized nursling plant root tips showed that mycorrhiza formation by T. melanosporum was higher than 45 % in the seedlings tested, with the most successful nursling combination being Q. cerris seedlings, reaching 81 % colonization. Bulk identification of T. melanosporum mycorrhizae was based on morphological and anatomical features and confirmed by sequencing of the internal transcribed spacer region of the ribosomal DNA of selected root tips. Our results show that the nurse plant method yields attractive rates of mycorrhiza formation by the Périgord black truffle and suggest that establishing and maintaining common mycorrhizal networks in pot cultures enables sustained use of the initial spore inoculum.

  18. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions.

    Science.gov (United States)

    Uga, Yusaku; Sugimoto, Kazuhiko; Ogawa, Satoshi; Rane, Jagadish; Ishitani, Manabu; Hara, Naho; Kitomi, Yuka; Inukai, Yoshiaki; Ono, Kazuko; Kanno, Noriko; Inoue, Haruhiko; Takehisa, Hinako; Motoyama, Ritsuko; Nagamura, Yoshiaki; Wu, Jianzhong; Matsumoto, Takashi; Takai, Toshiyuki; Okuno, Kazutoshi; Yano, Masahiro

    2013-09-01

    The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.

  19. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities

    Science.gov (United States)

    Rijo, Patrícia; Garcia, Catarina; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Śliwiński, Tomasz

    2016-01-01

    The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55–62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125 µg/mL). HR and SGR essential oils also decreased the expression of IL-1β, IL-6, and TNF-α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants. PMID:28074117

  20. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities.

    Science.gov (United States)

    Skała, Ewa; Rijo, Patrícia; Garcia, Catarina; Sitarek, Przemysław; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Wysokińska, Halina; Śliwiński, Tomasz

    2016-01-01

    The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55-62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125  µ g/mL). HR and SGR essential oils also decreased the expression of IL-1 β , IL-6, and TNF- α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants.

  1. Air lateral root pruning affects longleaf pine seedling root system morphology

    Science.gov (United States)

    Shi-Jean Susana Sung; Dave Haywood

    2016-01-01

    Longleaf pine (Pinus palustris) seedlings were cultured with air lateral root pruning (side-vented containers, VT) or without (solid-walled containers, SW). Seedling root system morphology and growth were assessed before planting and 8 and 14 months after planting. Although VT seedlings had greater root collar diameter than the SW before planting,...

  2. Root plasticity buffers competition among plants: theory meets experimental data.

    Science.gov (United States)

    Schiffers, Katja; Tielbörger, Katja; Tietjen, Britta; Jeltsch, Florian

    2011-03-01

    Morphological plasticity is a striking characteristic of plants in natural communities. In the context of foraging behavior particularly, root plasticity has been documented for numerous species. Root plasticity is known to mitigate competitive interactions by reducing the overlap of the individuals' rhizospheres. But despite its obvious effect on resource acquisition, plasticity has been generally neglected in previous empirical and theoretical studies estimating interaction intensity among plants. In this study, we developed a semi-mechanistic model that addresses this shortcoming by introducing the idea of compensatory growth into the classical-zone-of influence (ZOI) and field-of-neighborhood (FON) approaches. The model parameters describing the belowground plastic sphere of influence (PSI) were parameterized using data from an accompanying field experiment. Measurements of the uptake of a stable nutrient analogue at distinct distances to the neighboring plants showed that the study species responded plastically to belowground competition by avoiding overlap of individuals' rhizospheres. An unexpected finding was that the sphere of influence of the study species Bromus hordeaceus could be best described by a unimodal function of distance to the plant's center and not with a continuously decreasing function as commonly assumed. We employed the parameterized model to investigate the interplay between plasticity and two other important factors determining the intensity of competitive interactions: overall plant density and the distribution of individuals in space. The simulation results confirm that the reduction of competition intensity due to morphological plasticity strongly depends on the spatial structure of the competitive environment. We advocate the use of semi-mechanistic simulations that explicitly consider morphological plasticity to improve our mechanistic understanding of plant interactions.

  3. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Deng, Chenguang; Wang, Ting; Wu, Jingjing; Xu, Wei; Li, Huasheng; Liu, Min

    2017-01-01

    Highlights: • The radio-adaptive response (RAR) of A. thaliana root growth is modulated in microgravity. • The DNA damage repairs in RAR are regulated by microgravity. • The phytohormone auxin plays a regulatory role in the modulation of microgravity on RAR of root growth. - Abstract: Space particles have an inevitable impact on organisms during space missions; radio-adaptive response (RAR) is a critical radiation effect due to both low-dose background and sudden high-dose radiation exposure during solar storms. Although it is relevant to consider RAR within the context of microgravity, another major space environmental factor, there is no existing evidence as to its effects on RAR. In the present study, we established an experimental method for detecting the effects of gamma-irradiation on the primary root growth of Arabidopsis thaliana, in which RAR of root growth was significantly induced by several dose combinations. Microgravity was simulated using a two-dimensional rotation clinostat. It was shown that RAR of root growth was significantly inhibited under the modeled microgravity condition, and was absent in pgm-1 plants that had impaired gravity sensing in root tips. These results suggest that RAR could be modulated in microgravity. Time course analysis showed that microgravity affected either the development of radio-resistance induced by priming irradiation, or the responses of plants to challenging irradiation. After treatment with the modeled microgravity, attenuation in priming irradiation-induced expressions of DNA repair genes (AtKu70 and AtRAD54), and reduced DNA repair efficiency in response to challenging irradiation were observed. In plant roots, the polar transportation of the phytohormone auxin is regulated by gravity, and treatment with an exogenous auxin (indole-3-acetic acid) prevented the induction of RAR of root growth, suggesting that auxin might play a regulatory role in the interaction between microgravity and RAR of root growth.

  4. Effect of modeled microgravity on radiation-induced adaptive response of root growth in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Chenguang [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Wang, Ting [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Wu, Jingjing [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Xu, Wei [Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences (China); Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province (China); Institute of Technical Biology and Agriculture Engineering, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031 (China); Li, Huasheng; Liu, Min [China Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); and others

    2017-02-15

    Highlights: • The radio-adaptive response (RAR) of A. thaliana root growth is modulated in microgravity. • The DNA damage repairs in RAR are regulated by microgravity. • The phytohormone auxin plays a regulatory role in the modulation of microgravity on RAR of root growth. - Abstract: Space particles have an inevitable impact on organisms during space missions; radio-adaptive response (RAR) is a critical radiation effect due to both low-dose background and sudden high-dose radiation exposure during solar storms. Although it is relevant to consider RAR within the context of microgravity, another major space environmental factor, there is no existing evidence as to its effects on RAR. In the present study, we established an experimental method for detecting the effects of gamma-irradiation on the primary root growth of Arabidopsis thaliana, in which RAR of root growth was significantly induced by several dose combinations. Microgravity was simulated using a two-dimensional rotation clinostat. It was shown that RAR of root growth was significantly inhibited under the modeled microgravity condition, and was absent in pgm-1 plants that had impaired gravity sensing in root tips. These results suggest that RAR could be modulated in microgravity. Time course analysis showed that microgravity affected either the development of radio-resistance induced by priming irradiation, or the responses of plants to challenging irradiation. After treatment with the modeled microgravity, attenuation in priming irradiation-induced expressions of DNA repair genes (AtKu70 and AtRAD54), and reduced DNA repair efficiency in response to challenging irradiation were observed. In plant roots, the polar transportation of the phytohormone auxin is regulated by gravity, and treatment with an exogenous auxin (indole-3-acetic acid) prevented the induction of RAR of root growth, suggesting that auxin might play a regulatory role in the interaction between microgravity and RAR of root growth.

  5. Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice.

    Science.gov (United States)

    Williams, Paul N; Santner, Jakob; Larsen, Morten; Lehto, Niklas J; Oburger, Eva; Wenzel, Walter; Glud, Ronnie N; Davison, William; Zhang, Hao

    2014-01-01

    In wetland-adapted plants, such as rice, it is typically root apexes, sites of rapid entry for water/nutrients, where radial oxygen losses (ROLs) are highest. Nutrient/toxic metal uptake therefore largely occurs through oxidized zones and pH microgradients. However, the processes controlling the acquisition of trace elements in rice have been difficult to explore experimentally because of a lack of techniques for simultaneously measuring labile trace elements and O2/pH. Here, we use new diffusive gradients in thin films (DGT)/planar optode sandwich sensors deployed in situ on rice roots to demonstrate a new geochemical niche of greatly enhanced As, Pb, and Fe(II) mobilization into solution immediately adjacent to the root tips characterized by O2 enrichment and low pH. Fe(II) mobilization was congruent to that of the peripheral edge of the aerobic root zone, demonstrating that the Fe(II) mobilization maximum only developed in a narrow O2 range as the oxidation front penetrates the reducing soil. The Fe flux to the DGT resin at the root apexes was 3-fold higher than the anaerobic bulk soil and 27 times greater than the aerobic rooting zone. These results provide new evidence for the importance of coupled diffusion and oxidation of Fe in modulating trace metal solubilization, dispersion, and plant uptake.

  6. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings

    OpenAIRE

    Druege, Uwe; Franken, Philipp; Hajirezaei, Mohammad R.

    2016-01-01

    Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvemen...

  7. Soil-to-plant halogens transfer studies 2. Root uptake of radiochlorine by plants

    International Nuclear Information System (INIS)

    Kashparov, V.; Colle, C.; Zvarich, S.; Yoschenko, V.; Levchuk, S.; Lundin, S.

    2005-01-01

    Long-term field experiments have been carried out in the Chernobyl exclusion zone in order to determine the parameters governing radiochlorine ( 36 Cl) transfer to plants from four types of soil, namely, podzoluvisol, greyzem, and typical and meadow chernozem. Radiochlorine concentration ratios (CR) in radish roots (15 ± 10), lettuce leaves (30 ± 15), bean pods (15 ± 11) and wheat seed (23 ± 11) and straw (210 ± 110) for fresh weight of plants were obtained. These values correlate well with stable chlorine values for the same plants. One year after injection, 36 Cl reached a quasi-equilibrium with stable chlorine in the agricultural soils and its behavior in the soil-plant system mimicked the behavior of stable chlorine (this behavior was determined by soil moisture transport in the investigated soils). In the absence of intensive vertical migration, more than half of 36 Cl activity in arable layer of soil passes into the radish, lettuce and the aboveground parts of wheat during a single vegetation period

  8. Soil-to-plant halogens transfer studies 2. Root uptake of radiochlorine by plants

    Energy Technology Data Exchange (ETDEWEB)

    Kashparov, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Colle, C. [Institute for Radioprotection and Nuclear Safety (IRSN/DEI/SECRE), Cadarache bat 159, BP 3, 13115 Saint Paul-lez-Durance (France)]. E-mail: claude.colle@irsn.fr; Zvarich, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Yoschenko, V. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Levchuk, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine); Lundin, S. [Ukrainian Institute of Agricultural Radiology (UIAR), Mashinostroiteley Str.7, Chabany, Kiev Region 08162 (Ukraine)

    2005-07-01

    Long-term field experiments have been carried out in the Chernobyl exclusion zone in order to determine the parameters governing radiochlorine ({sup 36}Cl) transfer to plants from four types of soil, namely, podzoluvisol, greyzem, and typical and meadow chernozem. Radiochlorine concentration ratios (CR) in radish roots (15 {+-} 10), lettuce leaves (30 {+-} 15), bean pods (15 {+-} 11) and wheat seed (23 {+-} 11) and straw (210 {+-} 110) for fresh weight of plants were obtained. These values correlate well with stable chlorine values for the same plants. One year after injection, {sup 36}Cl reached a quasi-equilibrium with stable chlorine in the agricultural soils and its behavior in the soil-plant system mimicked the behavior of stable chlorine (this behavior was determined by soil moisture transport in the investigated soils). In the absence of intensive vertical migration, more than half of {sup 36}Cl activity in arable layer of soil passes into the radish, lettuce and the aboveground parts of wheat during a single vegetation period.

  9. Investigation of fungal root colonizers of the invasive plant Vincetoxicum rossicum and co-occurring local native plants in a field and woodland area in Southern Ontario

    Directory of Open Access Journals (Sweden)

    Cindy Bongard

    2013-06-01

    Full Text Available Fungal communities forming associations with plant roots have generally been described as ranging from symbiotic to parasitic. Disruptions to these associations consequently can have significant impacts on native plant communities. We examined how invasion by Vincetoxicum rossicum, a plant native to Europe, can alter both the arbuscular mycorrhizal fungi, as well as the general fungal communities associating with native plant roots in both field and woodland sites in Southern Ontario. In two different sites in the Greater Toronto Area, we took advantage of invasion by V. rossicum and neighbouring uninvaded sites to investigate the fungal communities associating with local plant roots, including goldenrod (Solidago spp., wild red raspberry (Rubus idaeus, Canada anemone (Anemone canadensis, meadow rue (Thalictrum dioicum, and wild ginger (Asarum canadense. Fungi colonizing roots were characterized with terminal restriction fragment length polymorphism (T-RFLP analysis of amplified total fungal (TF and arbuscular mycorrhizal fungal (AMF ribosomal fragments. We saw a significant effect of the presence of this invader on the diversity of TF phylotypes colonizing native plant roots, and a composition shift of both the TF and AMF community in native roots in both sites. In native communities invaded by V. rossicum, a significant increase in richness and colonization density of TF suggests that invaders such as V. rossicum may be able to influence the composition of soil fungi available to natives, possibly via mechanisms such as increased carbon provision or antibiosis attributable to unique root exudates.

  10. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update

    Directory of Open Access Journals (Sweden)

    Yangmin X. Kim

    2018-02-01

    Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  11. Influence of chronic internal and acute external irradiations on the critical tissues of plants

    International Nuclear Information System (INIS)

    Kostyuk, O.P.; Ryasnenko, N.A.; Grodzins'kij, D.M.

    1998-01-01

    Peculiarities of chronic internal and acute external irradiations of the critical (as for irradiation influence) plants part, meristem, are studied. In particular, the investigation has aimed to evaluate the level of doses, accumulated by plant tissues, of the chronic internal irradiation from radiocaesium incorporated by them, and to compare its possible effect to one caused by the acute external irradiation. It is shown that the effects of both chronic and acute irradiations have similar features, and it is assumed that they have the very same mechanisms. We think that such a parameter of the plant ability to accumulate radiocaesium as the ratio of its content in a root tip and in the whole root system is a very sensible and useful criterion to estimate the irradiation influence on plants

  12. Fungi colonizing the soil and roots of tomato (Lycopersicum esculentum Mill. plants treated with biological control agents

    Directory of Open Access Journals (Sweden)

    Bożena Cwalina-Ambroziak

    2012-12-01

    Full Text Available Tomato plants, cv. Rumba Ożarowska, grown in the greenhouse of the University of Warmia and Mazury, were protected in the form of alternate spraying (twice and watering (twice with 5% aqueous extracts of the following plant species: Aloe vulgaris Lam., Achillea millefolium L., Mentha piperita L., Polygonum aviculare L., Equisetum arvense L., Juglans regia L. and Urtica dioica L. Plants not treated with the extracts served as control. After fruit harvest, samples of roots and soil were collected. The roots were disinfected and next placed on PDA medium. Soil-colonizing fungi were cultured on Martin medium. Fungi were identified microscopically after incubation. Pathogenic fungal species, Colletotrichum coccodes, Fusarium equiseti, F. oxysporum and F. poae, accounted for over 60% of all isolates obtained from the roots of tomato plants. The soil fungal community was dominated by yeast-like fungi (75.4%, whereas pathogenic fungi were present in low numbers. The applied 5% aqueous plant extracts effectively reduced the abundance of fungi, including pathogenic species, colonizing tomato plants and soil. The extract from P. aviculare showed the highest efficacy, while the extract from J. regia was least effective. Fungi showing antagonistic activity against pathogens (Paecilomyces roseum and species of the genus Trichoderma were isolated in greatest abundance from the soil and the roots of tomato plants treated with A. millefolium, M. piperita and U. dioica extracts.

  13. Cutting efficiency of apical preparation using ultrasonic tips with microprojections: confocal laser scanning microscopy study.

    Science.gov (United States)

    Kwak, Sang-Won; Moon, Young-Mi; Yoo, Yeon-Jee; Baek, Seung-Ho; Lee, WooCheol; Kim, Hyeon-Cheol

    2014-11-01

    The purpose of this study was to compare the cutting efficiency of a newly developed microprojection tip and a diamond-coated tip under two different engine powers. The apical 3-mm of each root was resected, and root-end preparation was performed with upward and downward pressure using one of the ultrasonic tips, KIS-1D (Obtura Spartan) or JT-5B (B&L Biotech Ltd.). The ultrasonic engine was set to power-1 or -4. Forty teeth were randomly divided into four groups: K1 (KIS-1D / Power-1), J1 (JT-5B / Power-1), K4 (KIS-1D / Power-4), and J4 (JT-5B / Power-4). The total time required for root-end preparation was recorded. All teeth were resected and the apical parts were evaluated for the number and length of cracks using a confocal scanning micrscope. The size of the root-end cavity and the width of the remaining dentin were recorded. The data were statistically analyzed using two-way analysis of variance and a Mann-Whitney test. There was no significant difference in the time required between the instrument groups, but the power-4 groups showed reduced preparation time for both instrument groups (p < 0.05). The K4 and J4 groups with a power-4 showed a significantly higher crack formation and a longer crack irrespective of the instruments. There was no significant difference in the remaining dentin thickness or any of the parameters after preparation. Ultrasonic tips with microprojections would be an option to substitute for the conventional ultrasonic tips with a diamond coating with the same clinical efficiency.

  14. CLE peptides regulate lateral root development in response to nitrogen nutritional status of plants.

    Science.gov (United States)

    Araya, Takao; von Wirén, Nicolaus; Takahashi, Hideki

    2014-01-01

    CLE (CLAVATA3/embryo surrounding region (ESR)) peptides control meristem functions in plants. Our recent study highlights the critical role of a peptide-receptor signaling module composed of nitrogen (N)-responsive CLE peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase in controlling lateral root development in Arabidopsis thaliana. CLE1, -3, -4 and -7 are expressed in root pericycle cells in Arabidopsis roots under N-limited growth conditions. Overexpression of these CLE genes inhibits lateral root emergence from the primary root. The inhibitory action of N-responsive CLE peptides on lateral root development requires the function of CLV1 expressed in phloem companion cells in roots, suggesting that downstream signals are transferred through phloem for systemic regulation of root system architecture. An additional mechanism downstream of CLV1 feedback-regulates transcript levels of N-responsive CLE genes in roots for fine-tuning the signal amplitude.

  15. GROWTH AND ARCHITECTURE OF ROOT SYSTEMS OF PLANTS OF Eucalyptus camaldulensis, E. GRANDIS AND E. PELLITA WERE EVALUATED AFTER THE PLANTING

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio dos Santos Leles

    2001-01-01

    Full Text Available The seedlings were produced according to two methodologies: pressed blocks and stiff plastic tubes. A mixture of decomposed sugar-cane bagasse (60% and industrial sugar-cane plant residues (40% were used as substrate. The blocks were made by pressing the humid substrate in metallic moulds with the dimensions of 60 x 40 x 20 cm (lenght, width and height and pressure of 10 kgf/cm2 for 15 minutes. Under this load the blocks height was reduced to 10 cm. They were placed in wooden boxes with screen bottom. The stiff plastic tubes had circular section 12 cm high, with volume capacity of 50 cm3. The seeds were sown in the blocks 5 cm apart, by means of a spatula. At the end of nursey phase, the seedlings were planted the field. After 2, 6 and 10 months of planting, the height and the diameter at the ground level were evaluated. At the age of 10 months it was also evaluated the number of laterals root and deformatiom cofficient the three plants for treatment. Two months after planting, the plants originated from the pressed blocks showed growth highly signifficant in relation to those of the stiff plastic tubes. At 10 months, of age only Eucalyptus grandis seedlings showed significant difference concerning to height and diameter at the ground level between plants produced by pressed blocks and stiff plastic tubes. For the three species, the pressed blocks seedling showed higher number of lateral roots and smaller number of root deformation coefficents in comparision to the plants from the stiff tubes.

  16. Utilization of 15NO3− by nodulated soybean plants under conditions of root hypoxia

    OpenAIRE

    Nunes Menolli Lanza, Luciana; Ferreira Lanza, Daniel Carlos; Sodek, Ladaslav

    2014-01-01

    Waterlogging of soils is common in nature. The low availability of oxygen under these conditions leads to hypoxia of the root system impairing the development and productivity of the plant. The presence of nitrate under flooding conditions is regarded as being beneficial towards tolerance to this stress. However, it is not known how nodulated soybean plants, cultivated in the absence of nitrate and therefore not metabolically adapted to this compound, would respond to nitrate under root hypox...

  17. Potential of Root Exudates from Wetland Plants and Their Potential Role for Denitrification and Allelopathic Interactions

    DEFF Research Database (Denmark)

    Zhai, Xu

    Root exudates from wetland plants have both positive and negative interactions among microbe, plants and ecosystems. Wetland species releasing organic carbon into the rhizosphere for providing energy to denitrifying bacteria fuel denitrification for removal nitrogen in subsurface flow constructed...... wetlands. Furthermore, environmental factors such as temperature and light-regime affect the photosynthetic carbon fixation, which continuously influence the compositions and quantity of root exudates released into rhizosphere. Conversely, root exudates from invasive species might contain some phytotoxic...... chemicals to suppress the growth of native species. Phragmites australis is recognized as the most invasive species in wetland ecosystems in North America, and allelopathy has been reported to be involved in the invasion success of the introduced exotic P. australis. The composition of the root exudates may...

  18. Induction of micronuclei in the root tip cells of Haplopappus germinating seeds by fission neutrons and X rays

    International Nuclear Information System (INIS)

    Hanmoto, Hidehiro; Yonezawa, Yoshihiko; Itoh, Tetsuo; Kondo, Sohei.

    1992-01-01

    Seeds of Haplopappus gracilis (2n=4), an annual Compositae, were soaked in water for 24 hr and then irradiated with fission neutrons from the 1-wattage reactor, UTR-KINKI, or X rays. The root tip cells were inspected at 48 hr post-irradiation for evidence of chromosome damage using micronucleus as endpoint. The frequency of neutron-induced micronuclei increased almost linearly as the dose increased up to as much as 1.2 Gy. X-ray-induced micronuclei showed an exponential dose-response relation. From dose-response data, we estimated that the dose necessary to induce micronuclei at a frequency of 5 per 1,000 cells was 1.2 Gy for neutrons and 8.6 Gy for X rays. Thus, to induce chromosome damage in the somatic cells of germinating Haplopappus seeds, fission neutrons were much more effective than X rays. (author)

  19. archiDART v3.0: A new data analysis pipeline allowing the topological analysis of plant root systems.

    Science.gov (United States)

    Delory, Benjamin M; Li, Mao; Topp, Christopher N; Lobet, Guillaume

    2018-01-01

    Quantifying plant morphology is a very challenging task that requires methods able to capture the geometry and topology of plant organs at various spatial scales. Recently, the use of persistent homology as a mathematical framework to quantify plant morphology has been successfully demonstrated for leaves, shoots, and root systems. In this paper, we present a new data analysis pipeline implemented in the R package archiDART to analyse root system architectures using persistent homology. In addition, we also show that both geometric and topological descriptors are necessary to accurately compare root systems and assess their natural complexity.

  20. Automatic non-destructive three-dimensional acoustic coring system for in situ detection of aquatic plant root under the water bottom

    Directory of Open Access Journals (Sweden)

    Katsunori Mizuno

    2016-05-01

    Full Text Available Digging is necessary to detect plant roots under the water bottom. However, such detection is affected by the transparency of water and the working skills of divers, usually requires considerable time for high-resolution sampling, and always damages the survey site. We developed a new automatic non-destructive acoustic measurement system that visualizes the space under the water bottom, and tested the system in the in situ detection of natural plant roots. The system mainly comprises a two-dimensional waterproof stage controlling unit and acoustic measurement unit. The stage unit was electrically controlled through a notebook personal computer, and the space under the water bottom was scanned in a two-dimensional plane with the stage unit moving in steps of 0.01 m (±0.0001 m. We confirmed a natural plant root with diameter of 0.025–0.030 m in the reconstructed three-dimensional acoustic image. The plant root was at a depth of about 0.54 m and the propagation speed of the wave between the bottom surface and plant root was estimated to be 1574 m/s. This measurement system for plant root detection will be useful for the non-destructive assessment of the status of the space under the water bottom.

  1. Desorption of absorbed iron in bean root and leaf tissues

    International Nuclear Information System (INIS)

    Jooste, J.H.; De Bruyn, J.A.

    1979-01-01

    The effect of different desorption media on the amount of absorbed Fe (from a solution of FeCl 3 in 0,5 mM CaCl 2 ) retained by leaf discs and excised root tips of bean plants was investigated. Attempts were also made to determine the effect of desorption on the intracellular distribution of Fe. Desorption in water or an FeCl 3 solution had no pronounced effect on the amount of absorbed Fe retained by either the leaf or root tissues. However, Na 2 -EDTA was able to desorb a considerable portion of the absorbed Fe, especially in root tissue. This applies to Fe absorbed from solutions of FeCl 3 and Fe-EDDHA. Desorption by the chelate removed Fe from practically all the different particulate fractions of both root and leaf tissues, but desorption following the longer absorption periods resulted in an increase in the Fe content of the 'soluble' fraction. The possibility that Na 2 -EDTA causes an increased permeability of cell membranes seems likely. The view that removal of Ca by the chelate causes this increase in permeability could not be confirmed [af

  2. Effects of fluoride on germination, early growth and antioxidant enzyme activities of legume plant species Prosopis juliflora.

    Science.gov (United States)

    Saini, Poonam; Khan, Suphiya; Baunthiyal, Mamta; Sharma, Vinay

    2013-03-01

    Prosopis juliflora (Mimosoideae) is a fast growing and drought resistant tree of semi-arid region of India where fluoride (F) toxicity is a common problem. In the present investigations this species was fluoride tested to check their capacity as bioindicator plant and its efficiency to accumulate. To achieve this aim, P. juliflora seedlings grown in hydroponic culture containing different concentrations of F were analyzed for germination percentage together with some biochemical parameters viz, antioxidant enzyme activities, total chlorophyll and accumulation of F in different plant parts. After 15 days of treatment, root growth (r = -0.928, p juliflora did not show any morphological changes (marginal and tip chlorosis of leaf portions, necrosis and together these features are referred to as leaf "tip-burn") therefore, this species may be used as suitable bioindicator species for potentially F affected areas. Further, higher accumulation of F in roots indicates that P. juliflora is a suitable species for the removal of F in phytoremediation purposes.

  3. Plant stem cell niches.

    Science.gov (United States)

    Stahl, Yvonne; Simon, Rüdiger

    2005-01-01

    Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.

  4. Seed priming with extracts of Acacia nilotica (L.) Willd. ex Delile and Sapindus mukorossi (L.) plant parts in the control of root rot fungi and growth of plants

    International Nuclear Information System (INIS)

    Rafi, H.; Dawar, S.; Zaki, M.J.

    2015-01-01

    Seed priming with plant extracts and chemicals has been used as an important growth enhancement tool in crop plants. In this research, an attempt was made to understand the mechanism of various seed priming treatments on greenhouse-grown okra (Abelmoschus esculentus (L.) Moench.), sunflower (Helianthus annuus L.), peanut (Arachis hypogaea L.) and chickpea (Cicer arietinum L.) for the control of root infecting fungi like Rhizoctonia solani (Kn), Fusarium spp. and Macrophomina phaseolina (Tassi) Goid by plant parts extracts (stem, leaves and seeds) of Acacia nilotica (L.) Willd. ex Delile and Sapindus mukorossi (L) at different time intervals (5, 10, 20, 40 minutes). Results showed significant suppression of root rot fungi and significantly enhanced the growth parameters like shoot length, root length, shoot weight and root weight. Seed-priming with A. nilotica and S. mukorossi leaves extract for 10 minutes time interval was found to be effective for the control of root rot fungi and growth of all tested leguminous and non-leguminous plants. (author)

  5. Detect thy neighbor: Identity recognition at the root level in plants

    NARCIS (Netherlands)

    Chen, B.J.W.; During, H.J.; Anten, N.P.R.

    2012-01-01

    Some plant species increase root allocation at the expense of reproduction in the presence of non-self and non-kin neighbors, indicating the capacity of neighbor-identityrecognition at the rootlevel. Yet in spite of the potential consequences of rootidentityrecognition for the relationship between

  6. An evaluation of root resorption after orthodontic treatment.

    Science.gov (United States)

    Thomas, E; Evans, W G; Becker, P

    2012-08-01

    Root resorption is commonly seen, albeit in varying degrees, in cases that have been treated orthodontically. In this retrospective study the objective was to compare the amount of root resorption observed after active orthodontic treatment had been completed with one of three different appliance systems, namely, Tip Edge, Modified Edgewise and Damon. The sample consisted of pre and post-treatment cephalograms of sixty eight orthodontic cases. Root resorption of the maxillary central incisor was assessed from pre- and post- treatment lateral ce phalograms using two methods. In the first, overall tooth length from the incisal edge to the apex was measured on both pre and post-treatment lateral cephalograms and root resorption was recorded as an actual millimetre loss of tooth length. There was a significant upward linear trend (p = 0.052) for root resorption from the Tip Edge Group to the Damon Group. In the second method root resorption was visually evaluated by using the five grade ordinal scale of Levander and Malmgren (1988). It was found that the majorty of cases in the sample came under Grade 1 and Grade 2 category of root resorption. Statistical evaluation tested the extent of agree ment in this study between visual measurements and actual measurements and demonstrated a significant association (p = 0.018) between the methods.

  7. Assessment of two medicinal plants, Psidium guajava L. and Achillea millefolium L., in in vitro and in vivo assays

    Directory of Open Access Journals (Sweden)

    Teixeira Rosangela de Oliveira

    2003-01-01

    Full Text Available The use of medicinal plants by the general population is an old and still widespread practice, which makes studies of their genotoxicity essential. Psidium guajava L. and Achillea millefolium L. are examples of plants commonly used in popular medicine. P. guajava L. is indicated for diarrhea and also as an antiseptic, while A. millefolium L. is indicated as an analgesic, antispasmodic, digestive, diuretic, antiseptic, astringent, emollient, wound healer and hemorrhoid medication. The aim of this study was to determine the effects of the infusions of these two plant species on chromosomes and the cell cycle. Leaves from the plants were used to prepare infusions, in the same manner as teas, but at two different concentrations. Allium cepa L. root-tip cells (P. guajava L. - 2.62 and 26.2 mg/mL, and A. millefolium L. - 3.5 and 35.0 mg/mL and Wistar rat bone marrow cells (P. guajava L. - 2.62 and 26.2 mg/100g body weight, and A. millefolium L. - 3.5 and 35.0 mg/100g body weight were used as in vivo plant and animal test systems, respectively. Human peripheral blood lymphocytes (P. guajava L. - 0.262 and 2.62 mg/mL culture medium, and A. millefolium L. - 0.35 and 3.5 mg/mL culture medium were used as in vitro test system. The P. guajava L. infusion at the higher concentration caused a statistically significant inhibition of cellular division in the onion root-tip cells, not observed in onion root-tip cells treated with A. millefolium L. No statistically significant alterations were found, as compared to untreated controls, in either the cell cycle or the number of chromosome alterations, after treatments with either plant, in rat cells or in cultured human lymphocytes. These results regarding the cytotoxicity and mutagenicity of these plants provide valuable information about the safety of using them as therapeutic agents.

  8. Distribution of radiocesium in bamboo leaves, roots and shoots. Application of an imaging plate

    International Nuclear Information System (INIS)

    Minowa, Haruka; Ogata, Yoshimune; Satou, Yukihiko

    2012-01-01

    When radiocesium is taken into a wild plant accidentally, it will circulate for a certain period of time. Bamboo is that in some cases relative high concentration of radiocesium have been reported. Radiocesium is considered to be concentrated in bamboo shoot by translocation in plants from bamboo leaves or roots. In this study, to investigate the behavior of radiocesium, shoots, roots, branches and leaves of bamboo (Phyllostadhys edulis) were collected at Yamakiya area, Kawamata-machi, Date-gun, Fukushima Prefecture. Radiation image analysis was conducted using an imaging plate BAS 2040 (Fujifilm) and an image analyzer Typhoon FLA7000 (GE Healthcare Japan Corp.). The content of radiocesium was about 500 Bq for "1"3"4Cs and 700 Bq for "1"3"7Cs per the bamboo shoot (500 g approximately). In the edible parts of bamboo shoots, the skin of bamboo shoots and leaves of newly-grown, radiocesium uptake was in high concentration, especially at the tip. (author)

  9. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    Science.gov (United States)

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. How to put plant root uptake into a soil water flow model [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Xuejun Dong

    2016-01-01

    Full Text Available The need for improved crop water use efficiency calls for flexible modeling platforms to implement new ideas in plant root uptake and its regulation mechanisms. This paper documents the details of modifying a soil infiltration and redistribution model to include (a dynamic root growth, (b non-uniform root distribution and water uptake, (c the effect of water stress on plant water uptake, and (d soil evaporation. The paper also demonstrates strategies of using the modified model to simulate soil water dynamics and plant transpiration considering different sensitivity of plants to soil dryness and different mechanisms of root water uptake. In particular, the flexibility of simulating various degrees of compensated uptake (whereby plants tend to maintain potential transpiration under mild water stress is emphasized. The paper also describes how to estimate unknown root distribution and rooting depth parameters by the use of a simulation-based searching method. The full documentation of the computer code will allow further applications and new development.

  11. Growth of bean and tomato plants as affected by root absorbed growth substances and atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tognoni, F; Halevy, A H; Wittwer, S H

    1967-01-01

    Bean and tomato plants were grown in solution culture root media containing pre-determined concentrations of gibberellin A/sub 3/ (GA), 1-naphthalene-acetic acid (NAA), N/sup 6/-benzyladenine (BA), (2-chloroethyl)trimethylammonium chloride (CCC), and at atmospheric levels of 300 and 1000 ppm of CO/sub 2/. Net assimilation rates (NAR), relative growth rates (RGR), leaf area ratios (LAR), root to top dry weight ratios (R/T) and changes in dry weight, size, and form of each organ were recorded. Gibberellin had no effect on RGR of either plant species but increased the NAR of tomatoes at 1000 ppm CO/sub 2/. Total dry weight was only slightly affected by GA but root growth and R/T were markedly depressed. CCC had no effect on NAR, but decreased RGR and LAR. Root growth of beans and R/T in both plants were promoted by CCC. NAR and RGR were strongly inhibited by BA and NAA. Inhibition of stem and leaf growth by CCC and NAA was greater than that for roots; thus, R/T ratios were increased. Root branching was promoted by NAA. High (1000 ppm), compared to the low (300 ppm), atmospheric levels of CO/sub 2/ generally promoted root growth and produced an increase in the R/T, both in the absence and presence of chemical treatment. The multiplicity of effects of the root-absorbed chemical growth substances and CO/sub 2/ on growth and photosynthesis is discussed.

  12. Root herbivory indirectly affects above- and below-ground community members and directly reduces plant performance

    NARCIS (Netherlands)

    Barber, N.A.; Milano, N.J.; Kiers, E.T.; Theis, N.; Bartolo, V.; Hazzard, R.V.; Adler, L.S.

    2015-01-01

    There is a widespread recognition that above- and below-ground organisms are linked through their interactions with host plants that span terrestrial subsystems. In addition to direct effects on plants, soil organisms such as root herbivores can indirectly alter interactions between plants and other

  13. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms

    NARCIS (Netherlands)

    Pangesti, N.P.D.; Pineda Gomez, A.M.; Pieterse, C.M.J.; Dicke, M.; Loon, van J.J.A.

    2013-01-01

    Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the

  14. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera)

    OpenAIRE

    Kumar Ramesh R.; Reddy Anjaneya Prasanna L.; Subbaiah Chinna J.; Kumar Niranjana A.; Prasad Nagendra H.N.; Bhukya Balakishan

    2011-01-01

    Ashwagandha (Withania somnifera) is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes) and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant) and crude fiber content exhibited strong association among them and ...

  15. Micronucleus test of varying amounts of potassium bromate (KBrO3) on the meristematic cells of Allium cepa var. aggregatum root tips

    International Nuclear Information System (INIS)

    Cajigal Romnick, M.; Somera, Leomerto A.

    1999-03-01

    Four hundred twenty onion bulbs of the multiplier variety Allium cepa var. aggregatum were used as test materials to assay the micronucleus induction capacity of potassium bromate doses of 0, 5, 10, 25, 50, 75, and 100 parts per million. Microscopic analyses were done using onion root tips prepared according to a modified technique of Medina (1994). These analyses were done on root tips taken from onions grown in KBrO 3 for three days and for five days. The study was conducted following a completely randomized design and the data were statistically analyzed using a non-parametric equivalent of the analysis of variance. A significant amount of micronucleated cells (MCN) were found among treated onions compared with the almost non-occurrence in the control groups (0 ppm). The Kruskal-Wallis H-test and the Wilcoxon two-samples tests revealed significant differences among treatment means and that a significant increase in the number of MCN occurs as the dose of KBr0 3 increased in both day experiments. Results from the higher doses of 50, 75, and 100 ppm were found to be significantly the same for the day 3 experiments while those of the day 5 higher doses are characterized by lack of clear cellular and nuclear outline such that scoring is difficult. Differences in MCN averages for the day 3 and 5 experiments appear to be insignificant. However, day 3 results show averages that are more significantly different from each other. These prove that the MCN can be used as an efficient and time-saving parameter for the allium test of chemicals with chromosome breaking capacities. (Author)

  16. Spatiotemporal variation of nitrate uptake kinetics within the maize (Zea mays L.) root system is associated with greater nitrate uptake and interactions with architectural phenes.

    Science.gov (United States)

    York, Larry M; Silberbush, Moshe; Lynch, Jonathan P

    2016-06-01

    Increasing maize nitrogen acquisition efficiency is a major goal for the 21st century. Nitrate uptake kinetics (NUK) are defined by I max and K m, which denote the maximum uptake rate and the affinity of transporters, respectively. Because NUK have been studied predominantly at the molecular and whole-root system levels, little is known about the functional importance of NUK variation within root systems. A novel method was created to measure NUK of root segments that demonstrated variation in NUK among root classes (seminal, lateral, crown, and brace). I max varied among root class, plant age, and nitrate deprivation combinations, but was most affected by plant age, which increased I max, and nitrate deprivation time, which decreased I max K m was greatest for crown roots. The functional-structural simulation SimRoot was used for sensitivity analysis of plant growth to root segment I max and K m, as well as to test interactions of I max with root system architectural phenes. Simulated plant growth was more sensitive to I max than K m, and reached an asymptote near the maximum I max observed in the empirical studies. Increasing the I max of lateral roots had the largest effect on shoot growth. Additive effects of I max and architectural phenes on nitrate uptake were observed. Empirically, only lateral root tips aged 20 d operated at the maximum I max, and simulations demonstrated that increasing all seminal and lateral classes to this maximum rate could increase plant growth by as much as 26%. Therefore, optimizing I max for all maize root classes merits attention as a promising breeding goal. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. A Bacillus subtilis Sensor Kinase Involved in Triggering Biofilm Formation on the Roots of Tomato Plants

    Science.gov (United States)

    Chen, Yun; Cao, Shugeng; Chai, Yunrong; Clardy, Jon; Kolter, Roberto; Guo, Jian-hua; Losick, Richard

    2012-01-01

    SUMMARY The soil bacterium Bacillus subtilis is widely used in agriculture as a biocontrol agent able to protect plants from a variety of pathogens. Protection is thought to involve the formation of bacterial communities - biofilms - on the roots of the plants. Here we used confocal microscopy to visualize biofilms on the surface of the roots of tomato seedlings and demonstrated that biofilm formation requires genes governing the production of the extracellular matrix that holds cells together. We further show that biofilm formation was dependent on the sensor histidine kinase KinD and in particular on an extracellular CACHE domain implicated in small molecule sensing. Finally, we report that exudates of tomato roots strongly stimulated biofilm formation ex planta and that an abundant small molecule in the exudates, l-malic acid, was able to stimulate biofilm formation at high concentrations in a manner that depended on the KinD CACHE domain. We propose that small signaling molecules released by the roots of tomato plants are directly or indirectly recognized by KinD, triggering biofilm formation. PMID:22716461

  18. Concentration of petroleum-hydrocarbon contamination shapes fungal endophytic community structure in plant roots

    Directory of Open Access Journals (Sweden)

    Guillaume eBourdel

    2016-05-01

    Full Text Available Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous patterns of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of

  19. Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana.

    Science.gov (United States)

    Walch-Liu, Pia; Liu, Lai-Hua; Remans, Tony; Tester, Mark; Forde, Brian G

    2006-08-01

    The roots of many plant species are known to use inorganic nitrogen, in the form of , as a cue to initiate localized root proliferation within nutrient-rich patches of soil. We report here that, at micromolar concentrations and in a genotype-dependent manner, exogenous l-glutamate is also able to elicit complex changes in Arabidopsis root development. l-Glutamate is perceived specifically at the primary root tip and inhibits mitotic activity in the root apical meristem, but does not interfere with lateral root initiation or outgrowth. Only some time after emergence do lateral roots acquire l-glutamate sensitivity, indicating that their ability to respond to l-glutamate is developmentally regulated. Comparisons between different Arabidopsis ecotypes revealed a remarkable degree of natural variation in l-glutamate sensitivity, with C24 being the most sensitive. The aux1-7 auxin transport mutant had reduced l-glutamate sensitivity, suggesting a possible interaction between l-glutamate and auxin signaling. Surprisingly, two loss-of-function mutants at the AXR1 locus (axr1-3 and axr1-12) were hypersensitive to l-glutamate. A pharmacological approach, using agonists and antagonists of mammalian ionotropic glutamate receptors, was unable to provide evidence of a role for their plant homologs in sensing exogenous glutamate. We discuss the mechanism of l-glutamate sensing and the possible ecological significance of the observed l-glutamate-elicited changes in root architecture.

  20. Plants influence on arsenic availability and speciation in the rhizosphere, roots and shoots of three different vegetables

    International Nuclear Information System (INIS)

    Bergqvist, Claes; Herbert, Roger; Persson, Ingmar; Greger, Maria

    2014-01-01

    The toxicity of arsenic (As) in the environment is controlled by its concentration, availability and speciation. The aims of the study were to evaluate the accumulation and speciation of As in carrot, lettuce and spinach cultivated in soils with various As concentrations and to estimate the concomitant health risks associated with the consumption of the vegetables. Arsenic concentration and speciation in plant tissues and soils was analysed by HPLC, AAS and XANES spectroscopy. To estimate the plants influence in the rhizosphere, organic acids in lettuce root exudates were analysed by ion chromatography. The results showed that the As accumulation was higher in plants cultivated in soil with higher As extractability. Arsenate predominated in the soils, rhizosphere and root exudates of lettuce. Succinic acid was the major organic acid in lettuce root exudates. Ingestion of the tested vegetables may result in an intake of elevated levels of inorganic As. -- Highlights: • In soils with higher arsenic extractability, accumulation in plants was higher. • Arsenate predominated in the soils, rhizosphere and root exudates of lettuce. • Arsenite predominated in the shoots of healthy looking vegetables. -- Regardless of the initial level of extractable As in the soil, the plants almost doubled the extractable As in the rhizosphere soil

  1. Creative accomplishment of continuous TIP motor torque monitoring system in BWR plant

    International Nuclear Information System (INIS)

    Sun, C.H.; Li, I.N.; Liu, C.S.

    1986-01-01

    The Traveling In-core Probe (TIP) system is designed so delicate that the routine preventive maintenance - torque measurement is required to keep system operating properly. Normally, the torque measurement is performed by manually rotating torque wrench on the local TIP drive mechanism or using wattmeter during automatic operation. Whenever, either torque wrench or wattmeter measurement is performed, the high radiation exposure to maintenance personnel and mass manpower is expected. Because of this reason Taipower has developed a continuous TIP motor torque monitoring system to save manpower and minimize radiation exposure to maintenance personnel. This methods of TIP motor torque measurement will also predict TIP guide tube deterioration. (author)

  2. Agrobacterium rhizogenes - based transformation of soybean roots to form composite plants

    Science.gov (United States)

    Composite plants are a powerful tool to rapidly analyze the effects of gene overexpression, gene silencing, and examine test promoter expression in transgenic roots. No sterile tissue culture is needed. This avoids loss of valuable material due to contamination of sterile cultures. This method uses ...

  3. The abundance of pink-pigmented facultative methylotrophs in the root zone of plant species in invaded coastal sage scrub habitat.

    Science.gov (United States)

    Irvine, Irina C; Brigham, Christy A; Suding, Katharine N; Martiny, Jennifer B H

    2012-01-01

    Pink-pigmented facultative methylotrophic bacteria (PPFMs) are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C(1) compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 10(2) to 10(5) CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives) than perennial species (all natives). Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems.

  4. A plant microRNA regulates the adaptation of roots to drought stress

    KAUST Repository

    Chen, Hao; Li, Zhuofu; Xiong, Liming

    2012-01-01

    Plants tend to restrict their horizontal root proliferation in response to drought stress, an adaptive response mediated by the phytohormone abscisic acid (ABA) in antagonism with auxin through unknown mechanisms. Here, we found that stress

  5. Cutting efficiency of apical preparation using ultrasonic tips with microprojections: confocal laser scanning microscopy study

    Directory of Open Access Journals (Sweden)

    Sang-Won Kwak

    2014-11-01

    Full Text Available Objectives The purpose of this study was to compare the cutting efficiency of a newly developed microprojection tip and a diamond-coated tip under two different engine powers. Materials and Methods The apical 3-mm of each root was resected, and root-end preparation was performed with upward and downward pressure using one of the ultrasonic tips, KIS-1D (Obtura Spartan or JT-5B (B&L Biotech Ltd.. The ultrasonic engine was set to power-1 or -4. Forty teeth were randomly divided into four groups: K1 (KIS-1D / Power-1, J1 (JT-5B / Power-1, K4 (KIS-1D / Power-4, and J4 (JT-5B / Power-4. The total time required for root-end preparation was recorded. All teeth were resected and the apical parts were evaluated for the number and length of cracks using a confocal scanning micrscope. The size of the root-end cavity and the width of the remaining dentin were recorded. The data were statistically analyzed using two-way analysis of variance and a Mann-Whitney test. Results There was no significant difference in the time required between the instrument groups, but the power-4 groups showed reduced preparation time for both instrument groups (p < 0.05. The K4 and J4 groups with a power-4 showed a significantly higher crack formation and a longer crack irrespective of the instruments. There was no significant difference in the remaining dentin thickness or any of the parameters after preparation. Conclusions Ultrasonic tips with microprojections would be an option to substitute for the conventional ultrasonic tips with a diamond coating with the same clinical efficiency.

  6. Effect of root temperature on the uptake and metabolism of anions by the root system of Zea mays L. I. Uptake of sulphate by resistant and non-resistant plants

    Energy Technology Data Exchange (ETDEWEB)

    Holobrada, M; Mistrik, I; Kolek, J [Institute of Experimental Biology and Ecology of the Slovak Academy of Sciences, Bratislava (Czechoslovakia)

    1980-01-01

    The effect of root temperature upon the uptake of /sup 35/S-sulfate by intact 21 days old maize roots was discussed. The plant roots grown at 20 degC were cooled in steps down to 15 degC or 5 degC. The rate of /sup 35/S uptake was studied both in the whole root system and separately in the individual roots (primary seminal root, seminal adventitious roots and nodal roots). Differences were ascertained at lower uptakes by various root samples from resistant and nonresistant maize cultivars.

  7. Jasmonic Acid Enhances Al-Induced Root Growth Inhibition.

    Science.gov (United States)

    Yang, Zhong-Bao; He, Chunmei; Ma, Yanqi; Herde, Marco; Ding, Zhaojun

    2017-02-01

    Phytohormones such as ethylene and auxin are involved in the regulation of the aluminum (Al)-induced root growth inhibition. Although jasmonate (JA) has been reported to play a crucial role in the regulation of root growth and development in response to environmental stresses through interplay with ethylene and auxin, its role in the regulation of root growth response to Al stress is not yet known. In an attempt to elucidate the role of JA, we found that exogenous application of JA enhanced the Al-induced root growth inhibition. Furthermore, phenotype analysis with mutants defective in either JA biosynthesis or signaling suggests that JA is involved in the regulation of Al-induced root growth inhibition. The expression of the JA receptor CORONATINE INSENSITIVE1 (COI1) and the key JA signaling regulator MYC2 was up-regulated in response to Al stress in the root tips. This process together with COI1-mediated Al-induced root growth inhibition under Al stress was controlled by ethylene but not auxin. Transcriptomic analysis revealed that many responsive genes under Al stress were regulated by JA signaling. The differential responsive of microtubule organization-related genes between the wild-type and coi1-2 mutant is consistent with the changed depolymerization of cortical microtubules in coi1 under Al stress. In addition, ALMT-mediated malate exudation and thus Al exclusion from roots in response to Al stress was also regulated by COI1-mediated JA signaling. Together, this study suggests that root growth inhibition is regulated by COI1-mediated JA signaling independent from auxin signaling and provides novel insights into the phytohormone-mediated root growth inhibition in response to Al stress. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. Migraine strikes as neuronal excitability reaches a tipping point

    NARCIS (Netherlands)

    Scheffer, Marten; van den Berg, Albert; Ferrari, Michel D.

    2013-01-01

    Self-propagating waves of cerebral neuronal firing, known as spreading depolarisations, are believed to be at the roots of migraine attacks. We propose that the start of spreading depolarisations corresponds to a critical transition that occurs when dynamic brain networks approach a tipping point.

  9. Migraine Strikes as Neuronal Excitability Reaches a Tipping Point

    NARCIS (Netherlands)

    Scheffer, M.; Berg, van den A.; Ferrari, B.

    2013-01-01

    Self-propagating waves of cerebral neuronal firing, known as spreading depolarisations, are believed to be at the roots of migraine attacks. We propose that the start of spreading depolarisations corresponds to a critical transition that occurs when dynamic brain networks approach a tipping point.

  10. From lifting to planting: Root dip treatments affect survival of loblolly pine (Pinus taeda)

    Science.gov (United States)

    Tom E. Starkey; David B. South

    2009-01-01

    Hydrogels and clay slurries are the materials most commonly applied to roots of pines in the southern United States. Most nursery managers believe such applications offer a form of "insurance" against excessive exposure during planting. The objective of this study was to examine the ability of root dip treatments to: (1) support fungal growth; and (2) protect...

  11. Effect of external pH on the cytoplasmic and vacuolar pHs in Mung bean root-tip cells

    International Nuclear Information System (INIS)

    Torimitsu, Keiichi; Yazaki, Yoshiaki; Nagasuka, Kinuyo; Ohta, Eiji; Sakata, Makoto

    1984-01-01

    The effect of the external pH on the intracellular pH in mung bean (Vigna mungo (L.) Hepper) root-tip cells was investigated with the 31 P nuclear magnetic resonance (NMR) method. The 31 P NMR spectra showed three peaks caused by cytoplasmic G-6-P, cytoplasmic Psub(i) and vacuolar Psub(i). The cytoplasmic and vacuolar pHs could be determined by comparing the Psub(i) chemical shifts with the titration curve. When the external pH was changed over a range from pH 3 to 10, the cytoplasmic pH showed smaller changes than the vacuolar pH, suggesting that the former is regulated more strictly than the latter. The H + -ATPase inhibitor, DCCD, caused the breakdown of the mechanism that regulates the intracellular pH. H + -ATPase appears to have an important part in the regulation of the intracellular pH. (author)

  12. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation.

    Science.gov (United States)

    Romero-Munar, Antònia; Del-Saz, Néstor Fernández; Ribas-Carbó, Miquel; Flexas, Jaume; Baraza, Elena; Florez-Sarasa, Igor; Fernie, Alisdair Robert; Gulías, Javier

    2017-07-01

    The effect of arbuscular mycorrhiza (AM) symbiosis on plant growth is associated with the balance between costs and benefits. A feedback regulation loop has been described in which the higher carbohydrate cost to plants for AM symbiosis is compensated by increases in their photosynthetic rates. Nevertheless, plant carbon balance depends both on photosynthetic carbon uptake and respiratory carbon consumption. The hypothesis behind this research was that the role of respiration in plant growth under AM symbiosis may be as important as that of photosynthesis. This hypothesis was tested in Arundo donax L. plantlets inoculated with Rhizophagus irregularis and Funneliformis mosseae. We tested the effects of AM inoculation on both photosynthetic capacity and in vivo leaf and root respiration. Additionally, analyses of the primary metabolism and ion content were performed in both leaves and roots. AM inoculation increased photosynthesis through increased CO 2 diffusion and electron transport in the chloroplast. Moreover, respiration decreased only in AM roots via the cytochrome oxidase pathway (COP) as measured by the oxygen isotope technique. This decline in the COP can be related to the reduced respiratory metabolism and substrates (sugars and tricarboxylic acid cycle intermediates) observed in roots. © 2017 John Wiley & Sons Ltd.

  13. Quantitative imaging of radial oxygen loss from Valisneria spiralis roots with a fluorescent planar optode

    International Nuclear Information System (INIS)

    Han, Chao; Ren, Jinghua; Tang, Hao; Xu, Di; Xie, Xianchuan

    2016-01-01

    Oxygen (O_2) availability within the sediment–root interface is critical to the survival of macrophytes in O_2-deficient sediment; however, our knowledge of the fine-scale impact of macrophyte roots upon the spatiotemporal dynamics of O_2 is relatively limited. In this study, a non-invasive imaging technology was utilized to map O_2 micro-distribution around Vallisneria spiralis. Long-term imaging results gathered during a 36 day-period revealed an abundance of O_2 spatiotemporal patterns ranging from 0 to 250 μmol L"− "1. The root-induced O_2 leakage and consequent oxygenated area were stronger in the vicinity of the basal root compared to that found in the root tip. The O_2 images revealed V. spiralis exhibited radial O_2 loss (ROL) along the entire root, and the O_2 distribution along the root length showed a high degree of small-scale spatial heterogeneity decreasing from 80% at the basal root surface to 10% at the root tip. The oxygenated zone area around the roots increased as O_2 levels increased with root growth and irradiance intensities ranging from 0 to 216 μmol photons m"− "2 s"− "1. A weak ROL measuring < 20% air saturation around the basal root surface was maintained in darkness, which was presumably attributed to the O_2 supply from overlying water via plant aerenchyma. The estimated total O_2 release to the rhizosphere of V. spiralis was determined to range from 8.80 ± 7.32 to 30.34 ± 17.71 nmol m"− "2 s"− "1, which is much higher than many other macrophyte species. This O_2 release may be an important contribution to the high-capacity of V. spiralis for quickly colonizing anaerobic sediment. - Highlights: • Planar imaging method was used to map O2 micro-distribution. • Highly dynamic rhizospheric O2-spatiotemporal distribution was observed. • O_2 leakage along the entire root of Vallisneria spirals were defined. • The ROL rates of 8.80–30.34 nmol m"− "2 s"− "1 were measured over a 36-day growth. • ROL was closely

  14. Dynamics of plant nutrient uptake as affected by biopore-associated root growth in arable subsoil

    DEFF Research Database (Denmark)

    Han, Eusun; Kautz, Timo; Huang, Ning

    2017-01-01

    %) precrops, respectively. On average root diameter and root dry mass of following crops were greater by 11 and 15 % after chicory than tall fescue. At anthesis chicory-barley treatment accumulated 10 % more K in comparison to tall fescue-barley treatment. P uptake of canola was greater (7 %) after tall...... fescue compared with chicory at the stage of fruit development. Conclusions: Our results suggest that the subsoil heterogenization by altered soil biopores hold relevance for plant root growth and overall crop performance. However, the effects depended on biopore size classes, root characteristics...

  15. Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis.

    Science.gov (United States)

    Pang, Yongqi; Li, Lijuan; Ren, Fei; Lu, Pingli; Wei, Pengcheng; Cai, Jinghui; Xin, Lingguo; Zhang, Juan; Chen, Jia; Wang, Xuechen

    2010-06-01

    Boron (B) toxicity to plants is responsible for low crop productivity in many regions of the world. Here we report a novel and effective means to alleviate the B toxicity to plants under high B circumstance. Functional characterization of AtTIP5;1, an aquaporin gene, revealed that overexpression of AtTIP5;1 (OxAtTIP5;1) in Arabidopsis significantly increased its tolerance to high B toxicity. Compared to wild-type plants, OxAtTIP5;1 plants exhibited longer hypocotyls, accelerated development, increased silique production under high B treatments. GUS staining and quantitative RT-PCR (qRT-PCR) results demonstrated that the expression of AtTIP5;1 was induced by high B concentration treatment. Subcellular localization analysis revealed that the AtTIP5;1-GFP fusion protein was localized on the tonoplast membrane, which was consistent with the prediction based on bioinformatics. Taken together, our results suggest that AtTIP5;1 is involved in B transport pathway possibly via vacuolar compartmentation for B, and that overexpression of AtTIP5;1 in plants may provide an effective way to overcome the problem resulting from high B concentration toxicity. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  16. Effects of plant growth promoting rhizobacteria (PGPR on rooting and root growth of kiwifruit (Actinidia deliciosa stem cuttings

    Directory of Open Access Journals (Sweden)

    YASAR ERTURK

    2010-01-01

    Full Text Available The effects of plant growth promoting rhizobacteria (PGPR on the rooting and root growth of semi-hardwood and hardwood kiwifruit stem cuttings were investigated. The PGPR used were Bacillus RC23, Paenibacillus polymyxa RC05, Bacillus subtilis OSU142, Bacillus RC03, Comamonas acidovorans RC41, Bacillus megaterium RC01 and Bacillus simplex RC19. All the bacteria showed indole-3-acetic acid (IAA producing capacity. Among the PGPR used, the highest rooting ratios were obtained at 47.50% for semi-hardwood stem cuttings from Bacillus RC03 and Bacillus simplex RC19 treatments and 42.50% for hardwood stem cuttings from Bacillus RC03. As well, Comamonas acidovorans RC41 inoculations indicated higher value than control treatments. The results suggest that these PGPR can be used in organic nursery material production and point to the feasibility of synthetic auxin (IBA replacement by organic management based on PGPR.

  17. Rooting of hybrid clones of Populus tremula L. x P. tremuloides Michx. by stem cuttings derived from micropropagated plants

    Energy Technology Data Exchange (ETDEWEB)

    Qibin Yu [Univ. of Helsinki (Finland). Dept. of Plant Biology; Maentylae, N. [Univ. of Turku (Finland). Dept. of Biology, Plant Physiology and Molecular Biology; Salonen, M. [Finnish Forest Research Inst., Laeyliaeinen (Finland). Haapastensyrjae Breeding Station

    2001-07-01

    Propagation costs could be cut by replacing part of the micropropagation process with steps involving more traditional techniques. This study explored possibilities for improving existing vegetative propagation techniques for aspen using stem cuttings obtained from micropropagated plants. Vegetative propagation through stem cuttings was studied in 10 micropropagated hybrid aspen clones (Populus tremula L. x P. tremuloides Michx). Cuttings containing one axillary bud were harvested from the same donor plants twice during the growing season: the first harvest in May and the second harvest in July. Rooting percentage was correlated positively with root length, number of roots and height of cutting plant but negatively with length of rooting. The average rooting percentage was 53% in the first harvest and 27% in second harvest. Indole-3-butyric acid treatments (1.2 mM) significantly improved rooting in the second harvest, but not in the first harvest, suggesting different endogenous auxin levels in the cuttings. A significant variation for most traits related to rooting ability was found among the clones, indicating that clonal effects play an important role in the propagation of aspen. Thus, clones with a good response in shoot growth and rooting could be exploited in large-scale propagation using stem cuttings.

  18. Graviresponsiveness of surgically altered primary roots of Zea mays

    Science.gov (United States)

    Maimon, E.; Moore, R.

    1991-01-01

    We examined the gravitropic responses of surgically altered primary roots of Zea mays to determine the route by which gravitropic inhibitors move from the root tip to the elongating zone. Horizontally oriented roots, from which a 1-mm-wide girdle of epidermis plus 2-10 layers of cortex were removed from the apex of the elongating zone, curve downward. However, curvature occurred only apical to the girdle. Filling the girdle with mucilage-like material transmits curvature beyond the girdle. Vertically oriented roots with a half-girdle' (i.e. the epidermis and 2-10 layers of the cortex removed from half of the circumference of the apex of the elongating zone) curve away from the girdle. Inserting the half-girdle at the base of the elongating zone induces curvature towards the girdle. Filling the half-circumference girdles with mucilage-like material reduced curvature significantly. Stripping the epidermis and outer 2-5 layers of cortex from the terminal 1.5 cm of one side of a primary root induces curvature towards the cut, irrespective of the root's orientation to gravity. This effect is not due to desiccation since treated roots submerged in water also curved towards their cut surface. Coating a root's cut surface with a mucilage-like substance minimizes curvature. These results suggest that the outer cell-layers of the root, especially the epidermis, play an important role in root gravicurvature, and the gravitropic signals emanating from the root tip can move apoplastically through mucilage.

  19. Can root electrical capacitance be used to predict root mass in soil?

    Science.gov (United States)

    Dietrich, R C; Bengough, A G; Jones, H G; White, P J

    2013-07-01

    Electrical capacitance, measured between an electrode inserted at the base of a plant and an electrode in the rooting substrate, is often linearly correlated with root mass. Electrical capacitance has often been used as an assay for root mass, and is conventionally interpreted using an electrical model in which roots behave as cylindrical capacitors wired in parallel. Recent experiments in hydroponics show that this interpretation is incorrect and a new model has been proposed. Here, the new model is tested in solid substrates. The capacitances of compost and soil were determined as a function of water content, and the capacitances of cereal plants growing in sand or potting compost in the glasshouse, or in the field, were measured under contrasting irrigation regimes. Capacitances of compost and soil increased with increasing water content. At water contents approaching field capacity, compost and soil had capacitances at least an order of magnitude greater than those of plant tissues. For plants growing in solid substrates, wetting the substrate locally around the stem base was both necessary and sufficient to record maximum capacitance, which was correlated with stem cross-sectional area: capacitance of excised stem tissue equalled that of the plant in wet soil. Capacitance measured between two electrodes could be modelled as an electrical circuit in which component capacitors (plant tissue or rooting substrate) are wired in series. The results were consistent with the new physical interpretation of plant capacitance. Substrate capacitance and plant capacitance combine according to standard physical laws. For plants growing in wet substrate, the capacitance measured is largely determined by the tissue between the surface of the substrate and the electrode attached to the plant. Whilst the measured capacitance can, in some circumstances, be correlated with root mass, it is not a direct assay of root mass.

  20. Differential effects of fine root morphology on water dynamics in the root-soil interface

    Science.gov (United States)

    DeCarlo, K. F.; Bilheux, H.; Warren, J.

    2017-12-01

    Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.

  1. The Effect of Designated Pollutants on Plants

    Science.gov (United States)

    1979-12-01

    aberration and mitotic inhibition induced by sodium fluoride and diethyl amine in root-tip cells of Allium cepa, A. sativum and Vicia faba, Egypt J...induced by sodium fluoride in Allium cepa root tip chromosomes, Can. J. Genet. Cytol. 8:241-244. Mohamed, A. H., J. D. Smith, and H. G. Applegate

  2. Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development.

    Science.gov (United States)

    Ticconi, Carla A; Delatorre, Carla A; Lahner, Brett; Salt, David E; Abel, Steffen

    2004-03-01

    Plants have evolved complex strategies to maintain phosphate (Pi) homeostasis and to maximize Pi acquisition when the macronutrient is limiting. Adjustment of root system architecture via changes in meristem initiation and activity is integral to the acclimation process. However, the mechanisms that monitor external Pi status and interpret the nutritional signal remain to be elucidated. Here, we present evidence that the Pi deficiency response, pdr2, mutation disrupts local Pi sensing. The sensitivity and amplitude of metabolic Pi-starvation responses, such as Pi-responsive gene expression or accumulation of anthocyanins and starch, are enhanced in pdr2 seedlings. However, the most conspicuous alteration of pdr2 is a conditional short-root phenotype that is specific for Pi deficiency and caused by selective inhibition of root cell division followed by cell death below a threshold concentration of about 0.1 mm external Pi. Measurements of general Pi uptake and of total phosphorus (P) in root tips exclude a defect in high-affinity Pi acquisition. Rescue of root meristem activity in Pi-starved pdr2 by phosphite (Phi), a non-metabolizable Pi analog, and divided-root experiments suggest that pdr2 disrupts sensing of low external Pi availability. Thus, PDR2 is proposed to function at a Pi-sensitive checkpoint in root development, which monitors environmental Pi status, maintains and fine-tunes meristematic activity, and finally adjusts root system architecture to maximize Pi acquisition.

  3. Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants.

    Science.gov (United States)

    Gratão, Priscila Lupino; Monteiro, Carolina Cristina; Tezotto, Tiago; Carvalho, Rogério Falleiros; Alves, Letícia Rodrigues; Peters, Leila Priscila; Azevedo, Ricardo Antunes

    2015-10-01

    Many aspects related to ROS modulation of signaling networks and biological processes that control stress responses still remain unanswered. For this purpose, the grafting technique may be a powerful tool to investigate stress signaling and specific responses between plant organs during stress. In order to gain new insights on the modulation of antioxidant stress responses mechanisms, gas-exchange measurements, lipid peroxidation, H2O2 content, proline, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) were analyzed in Micro-Tom grafted plants submitted to cadmium (Cd). The results observed revealed that higher amounts of Cd accumulated mainly in the roots and rootstocks when compared to leaves and scions. Macronutrients uptake (Ca, S, P and Mg) decreased in non-grafted plants, but differed among plant parts in all grafted plants. The results showed that the accumulation of proline observed in scions of grafted plants could be associated to the lower MDA contents in the scions of grafted plants. In the presence of Cd, non-grafted plants displayed increased CAT, GR, GPOX and APX activities for both tissues, whilst grafted plants revealed distinct trends that clearly indicate signaling responses from the rootstocks, allowing sufficient time to activate defense mechanisms in shoot. The information available concerning plants subjected to grafting can provide a better understanding of the mechanisms of Cd detoxification involving root-to-shoot signaling, opening new possibilities on strategies which can be used to manipulate heavy metal tolerance, since antioxidant systems are directly involved in such mechanism.

  4. The abundance of pink-pigmented facultative methylotrophs in the root zone of plant species in invaded coastal sage scrub habitat.

    Directory of Open Access Journals (Sweden)

    Irina C Irvine

    Full Text Available Pink-pigmented facultative methylotrophic bacteria (PPFMs are associated with the roots, leaves and seeds of most terrestrial plants and utilize volatile C(1 compounds such as methanol generated by growing plants during cell division. PPFMs have been well studied in agricultural systems due to their importance in crop seed germination, yield, pathogen resistance and drought stress tolerance. In contrast, little is known about the PPFM abundance and diversity in natural ecosystems, let alone their interactions with non-crop species. Here we surveyed PPFM abundance in the root zone soil of 5 native and 5 invasive plant species along ten invasion gradients in Southern California coastal sage scrub habitat. PPFMs were present in every soil sample and ranged in abundance from 10(2 to 10(5 CFU/g dry soil. This abundance varied significantly among plant species. PPFM abundance was 50% higher in the root zones of annual or biennial species (many invasives than perennial species (all natives. Further, PPFM abundance appears to be influenced by the plant community beyond the root zone; pure stands of either native or invasive species had 50% more PPFMs than mixed species stands. In sum, PPFM abundance in the root zone of coastal sage scrub plants is influenced by both the immediate and surrounding plant communities. The results also suggest that PPFMs are a good target for future work on plant-microorganism feedbacks in natural ecosystems.

  5. Microscopic processes ruling the bioavailability of Zn to roots of Euphorbia pithyusa L. pioneer plant.

    Science.gov (United States)

    Medas, Daniela; De Giudici, Giovanni; Casu, Maria Antonietta; Musu, Elodia; Gianoncelli, Alessandra; Iadecola, Antonella; Meneghini, Carlo; Tamburini, Elena; Sprocati, Anna Rosa; Turnau, Katarzyna; Lattanzi, Pierfranco

    2015-02-03

    Euphorbia pithyusa L. was used in a plant growth-promoting assisted field trial experiment. To unravel the microscopic processes at the interface, thin slices of E. pithyusa roots were investigated by micro-X-ray fluorescence mapping. Roots and rhizosphere materials were examined by X-ray absorption spectroscopy at the Zn K-edge, X-ray diffraction, and scanning electron microscopy. Results indicate some features common to all the investigated samples. (i) In the rhizosphere of E. pithyusa, Zn was found to exist in different phases. (ii) Si and Al are mainly concentrated in a rim at the epidermis of the roots. (iii) Zn is mostly stored in root epidermis and does not appear to be coordinated to organic molecules but mainly occurs in mineral phases such as Zn silicates. We interpreted that roots of E. pithyusa significantly promote mineral evolution in the rhizosphere. Concomitantly, the plant uses Si and Al extracted by soil minerals to build a biomineralization rim, which can capture Zn. This Zn silicate biomineralization has relevant implications for phytoremediation techniques and for further biotechnology development, which can be better designed and developed after specific knowledge of molecular processes ruling mineral evolution and biomineralization processes has been gained.

  6. Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices

    International Nuclear Information System (INIS)

    Liu Wan; Yang, Y.S.; Li, P.J.; Zhou, Q.X.; Xie, L.J.; Han, Y.P.

    2009-01-01

    Impact assessment of contaminants in soil is an important issue in environmental quality study and remediation of contaminated land. A random amplified polymorphic DNA (RAPD) 'fingerprinting' technique was exhibited to detect genotoxin-induced DNA damage of plants from heavy metal contaminated soil. This study compared the effects occurring at molecular and population levels in barley seedlings exposed to cadmium (Cd) contamination in soil. Results indicate that reduction of root growth and increase of total soluble protein level in the root tips of barley seedlings occurred with the ascending Cd concentrations. For the RAPD analyses, nine 10-base pair (bp) random RAPD primers (decamers) with 60-70% GC content were found to produce unique polymorphic band patterns and subsequently were used to produce a total of 129 RAPD fragments of 144-2639 base pair in molecular size in the root tips of control seedlings. Results produced from nine primers indicate that the changes occurring in RAPD profiles of the root tips following Cd treatment included alterations in band intensity as well as gain or loss of bands compared with the control seedlings. New amplified fragments at molecular size from approximately 154 to 2245 bp appeared almost for 10, 20 and 40 mg L -1 Cd with 9 primers (one-four new polymerase chain reaction, (PCR) products), and the number of missing bands enhanced with the increasing Cd concentration for nine primers. These results suggest that genomic template stability reflecting changes in RAPD profiles were significantly affected and it compared favourably with the traditional indices such as growth and soluble protein level at the above Cd concentrations. The DNA polymorphisms detected by RAPD can be applied as a suitable biomarker assay for detection of the genotoxic effects of Cd stress in soil on plants. As a tool in risk assessment the RAPD assay can be used in characterisation of Cd hazard in soil

  7. Can diversity in root architecture explain plant water use efficiency? A modeling study.

    Science.gov (United States)

    Tron, Stefania; Bodner, Gernot; Laio, Francesco; Ridolfi, Luca; Leitner, Daniel

    2015-09-24

    Drought stress is a dominant constraint to crop production. Breeding crops with adapted root systems for effective uptake of water represents a novel strategy to increase crop drought resistance. Due to complex interaction between root traits and high diversity of hydrological conditions, modeling provides important information for trait based selection. In this work we use a root architecture model combined with a soil-hydrological model to analyze whether there is a root system ideotype of general adaptation to drought or water uptake efficiency of root systems is a function of specific hydrological conditions. This was done by modeling transpiration of 48 root architectures in 16 drought scenarios with distinct soil textures, rainfall distributions, and initial soil moisture availability. We find that the efficiency in water uptake of root architecture is strictly dependent on the hydrological scenario. Even dense and deep root systems are not superior in water uptake under all hydrological scenarios. Our results demonstrate that mere architectural description is insufficient to find root systems of optimum functionality. We find that in environments with sufficient rainfall before the growing season, root depth represents the key trait for the exploration of stored water, especially in fine soils. Root density, instead, especially near the soil surface, becomes the most relevant trait for exploiting soil moisture when plant water supply is mainly provided by rainfall events during the root system development. We therefore concluded that trait based root breeding has to consider root systems with specific adaptation to the hydrology of the target environment.

  8. The 'root-brain' hypothesis of Charles and Francis Darwin: Revival after more than 125 years.

    Science.gov (United States)

    Baluska, Frantisek; Mancuso, Stefano; Volkmann, Dieter; Barlow, Peter W

    2009-12-01

    This year celebrates the 200(th) aniversary of the birth of Charles Darwin, best known for his theory of evolution summarized in On the Origin of Species. Less well known is that, in the second half of his life, Darwin's major scientific focus turned towards plants. He wrote several books on plants, the next-to-last of which, The Power of Movement of Plants, published together with his son Francis, opened plants to a new view. Here we amplify the final sentence of this book in which the Darwins proposed that: "It is hardly an exaggeration to say that the tip of the radicle thus endowed [with sensitivity] and having the power of directing the movements of the adjoining parts, acts like the brain of one of the lower animals; the brain being seated within the anterior end of the body, receiving impressions from the sense-organs, and directing the several movements." This sentence conveys two important messages: first, that the root apex may be considered to be a 'brain-like' organ endowed with a sensitivity which controls its navigation through soil; second, that the root apex represents the anterior end of the plant body. In this article, we discuss both these statements.

  9. Evolutionary potential of root chemical defense: genetic correlations with shoot chemistry and plant growth.

    Science.gov (United States)

    Parker, J D; Salminen, J-P; Agrawal, Anurag A

    2012-08-01

    Root herbivores can affect plant fitness, and roots often contain the same secondary metabolites that act as defenses in shoots, but the ecology and evolution of root chemical defense have been little investigated. Here, we investigated genetic variance, heritability, and correlations among defensive phenolic compounds in shoot vs. root tissues of common evening primrose, Oenothera biennis. Across 20 genotypes, there were roughly similar concentrations of total phenolics in shoots vs. roots, but the allocation of particular phenolics to shoots vs. roots varied along a continuum of genotype growth rate. Slow-growing genotypes allocated 2-fold more of the potential pro-oxidant oenothein B to shoots than roots, whereas fast-growing genotypes had roughly equivalent above and belowground concentrations. Phenolic concentrations in both roots and shoots were strongly heritable, with mostly positive patterns of genetic covariation. Nonetheless, there was genotype-specific variation in the presence/absence of two major ellagitannins (oenothein A and its precursor oenothein B), indicating two different chemotypes based on alterations in this chemical pathway. Overall, the presence of strong genetic variation in root defenses suggests ample scope for the evolution of these compounds as defenses against root herbivores.

  10. Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin.

    Science.gov (United States)

    Tanimoto, Eiichi

    2012-07-01

    Since the plant hormone gibberellin (GA) was discovered as a fungal toxin that caused abnormal elongation of rice shoots, the physiological function of GA has mainly been investigated in relation to the regulation of plant height. However, an indispensable role for GA in root growth has been elucidated by using severely GA-depleted plants, either with a gene mutation in GA biosynthesis or which have been treated by an inhibitor of GA biosynthesis. The molecular sequence of GA signalling has also been studied to understand GA functions in root growth. This review addresses research progress on the physiological functions of GA in root growth. Concentration-dependent stimulation of elongation growth by GA is important for the regulation of plant height and root length. Thus the endogenous level of GA and/or the GA sensitivity of shoots and roots plays a role in determining the shoot-to-root ratio of the plant body. Since the shoot-to-root ratio is an important parameter for agricultural production, control of GA production and GA sensitivity may provide a strategy for improving agricultural productivity. The sequence of GA signal transduction has recently been unveiled, and some component molecules are suggested as candidate in planta regulatory sites and as points for the artificial manipulation of GA-mediated growth control. This paper reviews: (1) the breakthrough dose-response experiments that show that root growth is regulated by GA in a lower concentration range than is required for shoot growth; (2) research on the regulation of GA biosynthesis pathways that are known predominantly to control shoot growth; and (3) recent research on GA signalling pathways, including GA receptors, which have been suggested to participate in GA-mediated growth regulation. This provides useful information to suggest a possible strategy for the selective control of shoot and root growth, and to explain how GA plays a role in rosette and liana plants with tall or short, and slender

  11. Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp.

    Science.gov (United States)

    Shi, Wei-Ling; Chen, Xiu-Lan; Wang, Li-Xia; Gong, Zhi-Ting; Li, Shuyu; Li, Chun-Long; Xie, Bin-Bin; Zhang, Wei; Shi, Mei; Li, Chuanyou; Zhang, Yu-Zhong; Song, Xiao-Yan

    2016-04-01

    Trichoderma spp. are well known biocontrol agents that produce a variety of antibiotics. Peptaibols are a class of linear peptide antibiotics mainly produced by Trichoderma Alamethicin, the most studied peptaibol, is reported as toxic to plants at certain concentrations, while the mechanisms involved are unclear. We illustrated the toxic mechanisms of peptaibols by studying the growth-inhibitory effect of Trichokonin VI (TK VI), a peptaibol from Trichoderma longibrachiatum SMF2, on Arabidopsis primary roots. TK VI inhibited root growth by suppressing cell division and cell elongation, and disrupting root stem cell niche maintenance. TK VI increased auxin content and disrupted auxin response gradients in root tips. Further, we screened the Arabidopsis TK VI-resistant mutant tkr1. tkr1 harbors a point mutation in GORK, which encodes gated outwardly rectifying K(+)channel proteins. This mutation alleviated TK VI-induced suppression of K(+)efflux in roots, thereby stabilizing the auxin gradient. The tkr1 mutant also resisted the phytotoxicity of alamethicin. Our results indicate that GORK channels play a key role in peptaibol-plant interaction and that there is an inter-relationship between GORK channels and maintenance of auxin homeostasis. The cellular and molecular insight into the peptaibol-induced inhibition of plant root growth advances our understanding of Trichoderma-plant interactions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. RootAnalyzer: A Cross-Section Image Analysis Tool for Automated Characterization of Root Cells and Tissues.

    Directory of Open Access Journals (Sweden)

    Joshua Chopin

    Full Text Available The morphology of plant root anatomical features is a key factor in effective water and nutrient uptake. Existing techniques for phenotyping root anatomical traits are often based on manual or semi-automatic segmentation and annotation of microscopic images of root cross sections. In this article, we propose a fully automated tool, hereinafter referred to as RootAnalyzer, for efficiently extracting and analyzing anatomical traits from root-cross section images. Using a range of image processing techniques such as local thresholding and nearest neighbor identification, RootAnalyzer segments the plant root from the image's background, classifies and characterizes the cortex, stele, endodermis and epidermis, and subsequently produces statistics about the morphological properties of the root cells and tissues. We use RootAnalyzer to analyze 15 images of wheat plants and one maize plant image and evaluate its performance against manually-obtained ground truth data. The comparison shows that RootAnalyzer can fully characterize most root tissue regions with over 90% accuracy.

  13. Micronucleus test of varying amounts of potassium bromate (KBrO{sub 3}) on the meristematic cells of Allium cepa var. aggregatum root tips

    Energy Technology Data Exchange (ETDEWEB)

    Cajigal Romnick, M; Somera, Leomerto A

    1999-03-01

    Four hundred twenty onion bulbs of the multiplier variety Allium cepa var. aggregatum were used as test materials to assay the micronucleus induction capacity of potassium bromate doses of 0, 5, 10, 25, 50, 75, and 100 parts per million. Microscopic analyses were done using onion root tips prepared according to a modified technique of Medina (1994). These analyses were done on root tips taken from onions grown in KBrO{sub 3} for three days and for five days. The study was conducted following a completely randomized design and the data were statistically analyzed using a non-parametric equivalent of the analysis of variance. A significant amount of micronucleated cells (MCN) were found among treated onions compared with the almost non-occurrence in the control groups (0 ppm). The Kruskal-Wallis H-test and the Wilcoxon two-samples tests revealed significant differences among treatment means and that a significant increase in the number of MCN occurs as the dose of KBr0{sub 3} increased in both day experiments. Results from the higher doses of 50, 75, and 100 ppm were found to be significantly the same for the day 3 experiments while those of the day 5 higher doses are characterized by lack of clear cellular and nuclear outline such that scoring is difficult. Differences in MCN averages for the day 3 and 5 experiments appear to be insignificant. However, day 3 results show averages that are more significantly different from each other. These prove that the MCN can be used as an efficient and time-saving parameter for the allium test of chemicals with chromosome breaking capacities. (Author)

  14. AGROBACTERIUM-MEDIATED TRANSFORMATION OF COMPOSITAE PLANTS. I. CONSTRUCTION OF TRANSGENIC PLANTS AND «HAIRY» ROOTS WITH NEW PROPERTIES

    Directory of Open Access Journals (Sweden)

    N. A.Matvieieva

    2013-02-01

    Full Text Available The review explores some of the recent advances and the author's own researchs concerning biotechnological approaches for Agrobacterium tumefaciens- and A. rhizogenes-mediated transformation of Compositae family plants. This paper reviews the results of genetic transformation of Compositae plants, including edible (Cichorium intybus, Lactuca sativa, oil (Helianthus annuus, decorative (Gerbera hybrida, medical (Bidens pilosa, Artemisia annua, Artemisia vulgaris, Calendula officinalis, Withania somnifera etc. plant species. Some Compositae genetic engineering areas are considered including creation of plants, resistant to pests, diseases and herbicides, to the effect of abiotic stress factors as well as plants with altered phenotype. The article also presents the data on the development of biotechnology for Compositae plants Cynara cardunculus, Arnica montana, Cichorium intybus, Artemisia annua "hairy" roots construction.

  15. Effect of different irrigation systems on root growth of maize and cowpea plants in sandy soil

    Directory of Open Access Journals (Sweden)

    Noha A. Mahgoub

    2017-10-01

    Full Text Available A field experiment was conducted at the Experimental Farm, Faculty of Agriculture, Suez Canal University to study the influence of different irrigation systems on root length density and specific root length of maize and cowpea plants cultivated in sandy soil. Three irrigation systems (Surface, drip and sprinkler irrigation were used in this study. The NPK fertilizers were applied as recommended doses for maize and cowpea. Root samples were collected from the soil profile below one plant (maize and cowpea which was irrigated by the three irrigation systems by using an iron box (30 cm× 20 cm which is divided into 24 small boxes each box is (5× 5 × 5 cm. At surface irrigation, root length density of cowpea reached to soil depth 30-40cm with lateral distances 5-10 cm and 15-20 cm. Vertical distribution of root length density of maize was increased with soil depth till 20-25 cm, and then it decreased till soil depth 35-40cm. Under drip irrigation, root length density of cowpea increased horizontally from 0-5cm to 10-15cm then it decreased till soil depth 25-30 cm and below this depth root length density disappeared. For the root length density and specific root length of maize under drip irrigation, the data showed that root length density and specific root length decreased with increasing in soil depth. The root length density of cowpea under sprinkler irrigation at 0-5cm disappeared from horizontal distance at 25-30 cm. The data showed that root length density of maize under sprinkler irrigation was higher at the soil top layers 0-5 cm and 5-10 cm than other layers from 10-40 cm.

  16. The plant as metaorganism and research on next-generation systemic pesticides - Prospects and challenges

    Directory of Open Access Journals (Sweden)

    Zisis Vryzas

    2016-12-01

    Full Text Available Systemic pesticides (SP are usually recommended for soil treatments and as seed coating agents and are taken up from the soil by involving various plant-mediated processes, physiological and morphological attributes of the root systems. Microscopic insights and next-generation sequencing combined with bioinformatics allow us now to identify new functions and interactions of plant-associated bacteria and perceive plants as meta-organisms. Host symbiotic, rhizo-epiphytic, endophytic microorganisms and their functions on plants have not been studied yet in accordance with uptake, tanslocation and action of pesticides. Root tips exudates mediated by rhizobacteria could modify the uptake of specific pesticides while bacterial ligands and enzymes can affect metabolism and fate of pesticide within plant. Over expression of specific proteins in cell membrane can also modify pesticide influx in roots. Moreover, proteins and other membrane compartments are usually involved in pesticide modes of action and resistance development. In this article it is discussed what is known of the physiological attributes including apoplastic, symplastic and trans-membane transport of systemic pesticides in accordance with the intercommunication dictated by plant-microbe, cell to cell and intracellular signaling. Prospects and challenges for uptake, translocation, storage, exudation, metabolism and action of systemic pesticides are given through the prism of new insights of plant microbiome. Interactions of soil applied pesticides with physiological processes, plant root exudates and plant microbiome are summarized to scrutinize challenges for the next-generation pesticides.

  17. Comparative effects of partial root-zone irrigation and deficit irrigation on phosphorus uptake in tomato plants

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Liu, Fulai; Jensen, Christian Richardt

    2012-01-01

    The comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on phosphorus (P) uptake in tomato (Lycopersicon esculentum Mill.) plants were investigated in a split-root pot experiment. The results showed that PRI treatment improved water-use efficiency (WUE) compared...... to the DI treatment. PRI-treated plants accumulated significantly higher amounts of P in their shoots than DI plants under organic maize straw N fertilisation, whereas similar levels of shoot P accumulation were observed under mineral N fertilisation. Thus, the form of N fertiliser, and thereby...... the different plant N status, affected the accumulation of P in shoots, as reflected by a higher plant N:P ratio following mineral N fertilisation than after organic N fertilisation. Compared to the DI treatment, PRI significantly increased both the physiological and agronomic efficiencies of P-use under...

  18. Aquaporins and root water uptake

    Science.gov (United States)

    Water is one of the most critical resources limiting plant growth and crop productivity, and root water uptake is an important aspect of plant physiology governing plant water use and stress tolerance. Pathways of root water uptake are complex and are affected by root structure and physiological res...

  19. Plasma membrane H(+)-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Zhu, Changhua; Yang, Na; Ma, Xiaoling; Li, Guijun; Qian, Meng; Ng, Denny; Xia, Kai; Gan, Lijun

    2015-06-01

    Our results show that methyl jasmonate induces plasma membrane H (+) -ATPase activity and subsequently influences the apoplastic pH of trichoblasts to maintain a cell wall pH environment appropriate for root hair development. Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. Plant hormones are critical regulators of root hair development. In this study, we investigated the regulatory role of the plasma membrane (PM) H(+)-ATPase in methyl jasmonate (MeJA)-induced root hair formation. We found that MeJA had a pronounced effect on the promotion of root hair formation in lettuce seedlings, but that this effect was blocked by the PM H(+)-ATPase inhibitor vanadate. Furthermore, MeJA treatment increased PM H(+)-ATPase activity in parallel with H(+) efflux from the root tips of lettuce seedlings and rhizosphere acidification. Our results also showed that MeJA-induced root hair formation was accompanied by hydrogen peroxide accumulation. The apoplastic acidification acted in concert with reactive oxygen species to modulate root hair formation. Our results suggest that the effect of MeJA on root hair formation is mediated by modulation of PM H(+)-ATPase activity.

  20. Susceptibility of parent and interspecific Fl hybrid pine trees to tip moth damage in a coastal North Carolina planting

    Science.gov (United States)

    Maxine T. Highsmith; John Frampton; David 0' Malley; James Richmond; Martesa Webb

    2001-01-01

    Tip moth damage arnong families of parent pine species and their interspecific F1 hybrids was quantitatively assessed in a coastal planting in North Carolina. Three slash pine (Pinus elliotti var. elliotti Engelm.), two loblolly pine (Pinus taeda L.), and four interspecific F1 hybrid pine families were used. The...

  1. The Application of Contrast Media for In Vivo Feature Enhancement in X-Ray Computed Tomography of Soil-Grown Plant Roots.

    Science.gov (United States)

    Keyes, Samuel D; Gostling, Neil J; Cheung, Jessica H; Roose, Tiina; Sinclair, Ian; Marchant, Alan

    2017-06-01

    The use of in vivo X-ray microcomputed tomography (μCT) to study plant root systems has become routine, but is often hampered by poor contrast between roots, soil, soil water, and soil organic matter. In clinical radiology, imaging of poorly contrasting regions is frequently aided by the use of radio-opaque contrast media. In this study, we present evidence for the utility of iodinated contrast media (ICM) in the study of plant root systems using μCT. Different dilutions of an ionic and nonionic ICM (Gastrografin 370 and Niopam 300) were perfused into the aerial vasculature of juvenile pea plants via a leaf flap (Pisum sativum). The root systems were imaged via μCT, and a variety of image-processing approaches used to quantify and compare the magnitude of the contrast enhancement between different regions. Though the treatment did not appear to significantly aid extraction of full root system architectures from the surrounding soil, it did allow the xylem and phloem units of seminal roots and the vascular morphology within rhizobial nodules to be clearly visualized. The nonionic, low-osmolality contrast agent Niopam appeared to be well tolerated by the plant, whereas Gastrografin showed evidence of toxicity. In summary, the use of iodine-based contrast media allows usually poorly contrasting root structures to be visualized nondestructively using X-ray μCT. In particular, the vascular structures of roots and rhizobial nodules can be clearly visualized in situ.

  2. Impact of soil salinity on the plant-growth – promoting and biological control abilities of root associated bacteria

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdieva

    2017-11-01

    Full Text Available The effectiveness of plant growth – promoting bacteria is variable under different biotic and abiotic conditions. Abiotic factors may negatively affect the beneficial properties and efficiency of the introduced PGPR inoculants. The aim of this study was to evaluate the effect of plant growth – promoting rhizobacteria on plant growth and on the control of foot and root rot of tomatoes caused by Fusarium solani under different soil salinity conditions. Among the five tested strains, only Pseudomonas chlororaphis TSAU13, and Pseudomonas extremorientalis TSAU20 were able to stimulate plant growth and act as biological controls of foot and root rot disease of tomato. The soil salinity did not negatively affect the beneficial impacts of these strains, as they were able to colonize and survive on the roots of tomato plants under both saline and non-saline soil conditions. The improved plant height and fruit yield of tomato was also observed for plants inoculated with P. extremorientalis TSAU20. Our results indicated that, saline condition is not crucial factor in obtaining good performance with respect to the plant growth stimulating and biocontrol abilities of PGPR strains. The bacterial inoculant also enhanced antioxidant enzymes activities thereby preventing ROS induced oxidative damage in plants, and the proline concentrations in plant tissue that play an important role in plant stress tolerance.

  3. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner.

    Science.gov (United States)

    Araya, Takao; Miyamoto, Mayu; Wibowo, Juliarni; Suzuki, Akinori; Kojima, Soichi; Tsuchiya, Yumiko N; Sawa, Shinichiro; Fukuda, Hiroo; von Wirén, Nicolaus; Takahashi, Hideki

    2014-02-04

    Morphological plasticity of root systems is critically important for plant survival because it allows plants to optimize their capacity to take up water and nutrients from the soil environment. Here we show that a signaling module composed of nitrogen (N)-responsive CLE (CLAVATA3/ESR-related) peptides and the CLAVATA1 (CLV1) leucine-rich repeat receptor-like kinase is expressed in the root vasculature in Arabidopsis thaliana and plays a crucial role in regulating the expansion of the root system under N-deficient conditions. CLE1, -3, -4, and -7 were induced by N deficiency in roots, predominantly expressed in root pericycle cells, and their overexpression repressed the growth of lateral root primordia and their emergence from the primary root. In contrast, clv1 mutants showed progressive outgrowth of lateral root primordia into lateral roots under N-deficient conditions. The clv1 phenotype was reverted by introducing a CLV1 promoter-driven CLV1:GFP construct producing CLV1:GFP fusion proteins in phloem companion cells of roots. The overaccumulation of CLE2, -3, -4, and -7 in clv1 mutants suggested the amplitude of the CLE peptide signals being feedback-regulated by CLV1. When CLE3 was overexpressed under its own promoter in wild-type plants, the length of lateral roots was negatively correlated with increasing CLE3 mRNA levels; however, this inhibitory action of CLE3 was abrogated in the clv1 mutant background. Our findings identify the N-responsive CLE-CLV1 signaling module as an essential mechanism restrictively controlling the expansion of the lateral root system in N-deficient environments.

  4. The occurrence of arbuscular mycorrhizal fungi in soil and root of medicinal plants in Bu-Ali Sina garden in Hamadan, Iran

    Directory of Open Access Journals (Sweden)

    Ali Akbar Safari Sinegani

    2017-01-01

    Full Text Available Introduction: The study of symbiotic relationship between arbuscular mycorrhizal fungi (AMF and medicinal plants is very important. Information about the symbiosis of medicinal plant species with AMF in the semi-arid regions of Iran is rare. This information allows increasing knowledge of the biology and ecology of these plant species. Materials and methods: The existence of AM symbiosis in 48 medicinal plant species (belonging to 9 families was studied by root staining. Soil around the root of each species was sampled and analyzed for all soil properties which may be interrelated to AM symbiosis. The importance of different soil properties in AMF and plant biological relationship and the dependency of root colonization and spore formation by AMF on soil properties were statistically analyzed. Results: Among them Lepidium sativum, Brassica oleracea, Cheiranthus cheiri, Beta vulgaris, Spinacia oleracea, Malva sylvestris, Zygophyllum fabago, Arctium Lappa have not been colonized by AM fungi. Colonization and spore density of perennial plants were slightly higher than those of annual plants and were varied among different plant families. Soil texture and available phosphorous were the most important soil properties affecting fungal root colonization and spore numbers. Discussion and conclusion: Although in accordance with other researches, most of the medicinal plants from Brassicaceae family had no mycorrhizal symbiosis, a few of them had this type of symbiosis. Dependency of spore formation by AM fungi on soil properties was higher than dependency of root colonization percentage on soil properties. Increasing root colonization and spore numbers with increasing the percentage of sand and decreasing the percentage of clay and available phosphorous in soils show that plants are more depended on mycorrhizal symbiosis in hard environments and less productive soils.

  5. Confirmation and quantification of strigolactones, germination stimulants for root parasitic plants Striga and Orobanche, produced by cotton.

    Science.gov (United States)

    Sato, Daisuke; Awad, Ayman A; Takeuchi, Yasutomo; Yoneyama, Koichi

    2005-01-01

    The germination stimulants for root parasitic plants Striga and Orobanche produced by cotton (Gossypium hirsutum L.) were examined in detail. Seeds of cotton were germinated and grown on glass wool wetted with sterile distilled water in sterile filter units. The root exudate was collected daily and extracted with ethyl acetate. Each of these ethyl acetate extracts was analyzed directly by high-performance liquid chromatography linked with tandem mass spectrometry (LC/MS/MS). The results demonstrate that cotton roots exuded strigol and strigyl acetate, but no other known strigolactones such as orobanchol and alectrol. The production of strigol was detected even in the root exudate collected during the first 24 h of incubation and reached a maximum 5-7 days later. The average exudation of strigol and strigyl acetate during the incubation period was ca. 15 and 2 pg/plant/day, respectively, indicating that strigol mainly contributed to germination stimulation by the cotton root exudate.

  6. Micropropagation of Plantago asiatica L. through culture of shoot-tips

    Directory of Open Access Journals (Sweden)

    Joanna Makowczyńska

    2011-01-01

    Full Text Available Shoot-tip multiplication of the medicinal species - Plantago asiatica was carried on MS medium with IAA and BAP or kinetin. Best results in micropropagation were achieved by adding 0.1 mg/dm3 IAA and 1 mg/dm3 BAP. After 6 weeks shoots were transferred to MS medium for rooting. The resulting plantlets were transferred after 8 weeks into pots and after a period of adaptation into the ground (field culture. The species Plantago asiatica was propagated in vitro by shoot-tip multiplication for the first time.

  7. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    Science.gov (United States)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  8. Phosphorus acquisition by citrate- and phytase-exuding Nicotiana tabacum plant mixtures depends on soil phosphorus availability and root intermingling.

    Science.gov (United States)

    Giles, Courtney D; Richardson, Alan E; Cade-Menun, Barbara J; Mezeli, Malika M; Brown, Lawrie K; Menezes-Blackburn, Daniel; Darch, Tegan; Blackwell, Martin Sa; Shand, Charles A; Stutter, Marc I; Wendler, Renate; Cooper, Patricia; Lumsdon, David G; Wearing, Catherine; Zhang, Hao; Haygarth, Philip M; George, Timothy S

    2018-03-02

    Citrate and phytase root exudates contribute to improved phosphorus (P) acquisition efficiency in Nicotiana tabacum (tobacco) when both exudates are produced in a P deficient soil. To test the importance of root intermingling in the interaction of citrate and phytase exudates, Nicotiana tabacum plant-lines with constitutive expression of heterologous citrate (Cit) or fungal phytase (Phy) exudation traits were grown under two root treatments (roots separated or intermingled) and in two soils with contrasting soil P availability. Complementarity of plant mixtures varying in citrate efflux rate and mobility of the expressed phytase in soil was determined based on plant biomass and P accumulation. Soil P composition was evaluated using solution 31 P NMR spectroscopy. In the soil with limited available P, positive complementarity occurred in Cit+Phy mixtures with roots intermingled. Root separation eliminated positive interactions in mixtures expressing the less mobile phytase (Aspergillus niger PhyA) whereas positive complementarity persisted in mixtures that expressed the more mobile phytase (Peniophora lycii PhyA). Soils from Cit+Phy mixtures contained less inorganic P and more organic P compared to monocultures. Exudate-specific strategies for the acquisition of soil P were most effective in P-limited soil and depended on citrate efflux rate and the relative mobility of the expressed phytase in soil. Plant growth and soil P utilization in plant systems with complementary exudation strategies are expected to be greatest where exudates persist in soil and are expressed synchronously in space and time. This article is protected by copyright. All rights reserved.

  9. Demonstration of the economic feasibility of plant tissue culture for jojoba (Simmondsia chinensis) and Euphorbia spp

    Energy Technology Data Exchange (ETDEWEB)

    Sluis, C.

    1980-09-01

    The economic feasibility of plant tissue culture was demonstrated as applied to two plants: jojoba (Simmondsia chinensis) and Euphorbia spp. The gopher weed (Euphorbia lathyris) was selected as the species of Euphorbia to research due to the interest in this plant as a potential source of hydrocarbon-like compounds. High yield female selections of jojoba were chosen from native stands and were researched to determine the economic feasibility of mass producing these plants via a tissue culture micropropagation program. The female jojoba selection was successfully mass produced through tissue culture. Modifications in initiation techniques, as well as in multiplication media and rooting parameters, were necessary to apply the tissue culture system, which had been developed for juvenile seedling tissue, to mature jojobas. Since prior attempts at transfer of tissue cultured plantlets were unsuccessful, transfer research was a major part of the project and has resulted in a system for transfer of rooted jojoba plantlets to soil. Euphorbia lathyris was successfully cultured using shoot tip cultures. Media and procedures were established for culture initiation, multiplication of shoots, callus induction and growth, and root initiation. Well-developed root systems were not attained and root initiation percentages should be increased if the system is to become commercially feasible.

  10. Quantification of effective plant rooting depth: advancing global hydrological modelling

    Science.gov (United States)

    Yang, Y.; Donohue, R. J.; McVicar, T.

    2017-12-01

    Plant rooting depth (Zr) is a key parameter in hydrological and biogeochemical models, yet the global spatial distribution of Zr is largely unknown due to the difficulties in its direct measurement. Moreover, Zr observations are usually only representative of a single plant or several plants, which can differ greatly from the effective Zr over a modelling unit (e.g., catchment or grid-box). Here, we provide a global parameterization of an analytical Zr model that balances the marginal carbon cost and benefit of deeper roots, and produce a climatological (i.e., 1982-2010 average) global Zr map. To test the Zr estimates, we apply the estimated Zr in a highly transparent hydrological model (i.e., the Budyko-Choudhury-Porporato (BCP) model) to estimate mean annual actual evapotranspiration (E) across the globe. We then compare the estimated E with both water balance-based E observations at 32 major catchments and satellite grid-box retrievals across the globe. Our results show that the BCP model, when implemented with Zr estimated herein, optimally reproduced the spatial pattern of E at both scales and provides improved model outputs when compared to BCP model results from two already existing global Zr datasets. These results suggest that our Zr estimates can be effectively used in state-of-the-art hydrological models, and potentially biogeochemical models, where the determination of Zr currently largely relies on biome type-based look-up tables.

  11. Root deformation reduces tolerance of lodgepole pine to attack by Warren root collar weevil.

    Science.gov (United States)

    Robert, Jeanne A; Lindgren, B Staffan

    2010-04-01

    Surveys were conducted on regenerating stands of lodgepole pine to determine the relationship between root deformation and susceptibility to attack by the Warren root collar weevil, Hylobius warreni Wood. The total number of trees attacked by H. warreni did not differ between planted and natural trees. A matched case-control logistic regression suggested that root cross-sectional area was more important in predicting weevil attack for naturally regenerated trees than for planted trees, but weevils were associated with a larger reduction in height-to-diameter ratios for trees with planted root characteristics than for trees with natural root form. Neither the stability of attacked versus unattacked trees differed significantly and there was no significant interaction of weevil attack and tree type, but weevil-killed trees had different root characteristics than alive, attacked trees. Lateral distribution and root cross-sectional area were significant predictors of alive attacked trees versus weevil-killed trees, suggesting that trees with poor lateral spread or poor root cross-sectional area are more likely to die from weevil attack. We conclude that root deformation does not necessarily increase susceptibility to attack but may increase the likelihood of mortality. Thus, measures to facilitate good root form are needed when planting pine in areas with high risk of Warren root collar weevil attack.

  12. Using three-dimensional plant root architecture in models of shallow-slope stability.

    Science.gov (United States)

    Danjon, Frédéric; Barker, David H; Drexhage, Michael; Stokes, Alexia

    2008-05-01

    The contribution of vegetation to shallow-slope stability is of major importance in landslide-prone regions. However, existing slope stability models use only limited plant root architectural parameters. This study aims to provide a chain of tools useful for determining the contribution of tree roots to soil reinforcement. Three-dimensional digitizing in situ was used to obtain accurate root system architecture data for mature Quercus alba in two forest stands. These data were used as input to tools developed, which analyse the spatial position of roots, topology and geometry. The contribution of roots to soil reinforcement was determined by calculating additional soil cohesion using the limit equilibrium model, and the factor of safety (FOS) using an existing slope stability model, Slip4Ex. Existing models may incorrectly estimate the additional soil cohesion provided by roots, as the spatial position of roots crossing the potential slip surface is usually not taken into account. However, most soil reinforcement by roots occurs close to the tree stem and is negligible at a distance >1.0 m from the tree, and therefore global values of FOS for a slope do not take into account local slippage along the slope. Within a forest stand on a landslide-prone slope, soil fixation by roots can be minimal between uniform rows of trees, leading to local soil slippage. Therefore, staggered rows of trees would improve overall slope stability, as trees would arrest the downward movement of soil. The chain of tools consisting of both software (free for non-commercial use) and functions available from the first author will enable a more accurate description and use of root architectural parameters in standard slope stability analyses.

  13. Translocation of metal ions from soil to tobacco roots and their concentration in the plant parts.

    Science.gov (United States)

    da Silva, Cleber Pinto; de Almeida, Thiago E; Zittel, Rosimara; de Oliveira Stremel, Tatiana R; Domingues, Cinthia E; Kordiak, Januário; de Campos, Sandro Xavier

    2016-12-01

    This paper presents a study on the translocation factors (TFs) and bioconcentration factors (BCFs) of copper (Cu), manganese (Mn), zinc (Zn), cobalt (Co), chromium (Cr), cadmium (Cd), lead (Pb), iron (Fe), nickel (Ni), and arsenic (As) ions in roots, stems, and leaves of tobacco. The results revealed that during the tobacco growth, the roots are able to increase the sensitiveness of the physiological control, reducing the translocation of the metals Ni (0.38) and Pb (0.48) to the leaves. Cd and Zn presented factors TF and BCF >1 in the three tissues under analysis, which indicates the high potential for transportation and accumulation of these metals in all plant tissues. The TF values for Cr (0.65) and As (0.63) revealed low translocation of these ions to the aerial parts, indicating low mobility of ions from the roots. Therefore, tobacco can be considered an efficient accumulator of Ni, Cr, As and Pb in roots and Cd and Zn in all plant parts.

  14. Use of ex vitro composite plants to study the interaction of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides

    Science.gov (United States)

    2012-01-01

    Background Cowpea (Vigna unguiculata L.) is an important grain and forage legume grown throughout sub-Saharan Africa primarily by subsistence farmers on poor, drought prone soils. Genetic improvement of the crop is being actively pursued and numerous functional genomics studies are underway aimed at characterizing gene controlling key agronomic characteristics for disease and pest resistances. Unfortunately, similar to other legumes, efficient plant transformation technology is a rate-limiting step in analysis of gene function in cowpea. Results Here we describe an optimized protocol for the rapid generation of transformed hairy roots on ex vitro composite plants of cowpea using Agrobacterium rhizogenes. We further demonstrate the applicability of cowpea composite plants to study gene expression involved in the resistance response of the plant roots to attack by the root parasitic weed, Striga gesnerioides. The utility of the new system and critical parameters of the method are described and discussed herein. Conclusions Cowpea composite plants offer a rapid alternative to methods requiring stable transformation and whole plant regeneration for studying gene expression in resistance or susceptibility responses to parasitic weeds. Their use can likely be readily adapted to look at the effects of both ectopic gene overexpression as well as gene knockdown of root associated defense responses and to the study of a broader range of root associated physiological and aphysiological processes including root growth and differentiation as well as interactions with other root pests, parasites, and symbionts. PMID:22741546

  15. Root bioactivity of corn and sunflower as evaluated by 75Se-plant injection technique

    International Nuclear Information System (INIS)

    Haak, E.; Paltineanu, I.C.

    1982-01-01

    A tracer technique was used for root studies under field conditions on a chernozemic soil in Romania. 75 Se was injected at the stem base and radioassayed for its presence in soil profiles with a gammasond lowered to different depths. Based on the assumption that 75 Se is preferably transferred within the root system to active root tissue of injected plants, the root bioactivity was estimated for corn at the knee high stage and just before tasseling, and for sunflower at early maturing, the crops being subjected to different N-fertilization and irigation treatments. The pattern of root bioactivity varied with crop, time and treatment applied. The technique, which is briefly described, seems to be a promising tool for delineation of root response to variation with depth in the soil profile of moisture and nutrient status and as shown in this pilote investigation for delineation of effects of irrigation and N-fertilization. (Authors)

  16. Genotype and planting density effects on rooting traits and yield in cotton (Gossypium hirsutum L.)

    NARCIS (Netherlands)

    Zhang, L.Z.; Li, B.G.; Yan, G.T.; Werf, van der W.; Spiertz, J.H.J.; Zhang, S.P.

    2006-01-01

    Root density distribution of plants is a major indicator of competition between plants and determines resource capture from the soil. This experiment was conducted in 2005 at Anyang, located in the Yellow River region, Henan Province, China. Three cotton (Gossypium hirsutum L.) cultivars were

  17. Living roots effect on 14C-labelled root litter decomposition

    International Nuclear Information System (INIS)

    Billes, G.; Bottner, P.

    1981-01-01

    Wheat was 14 C-labelled by cultivation on soil in pots, from seedling to maturity, in a chamber with constant CO 2 and 14 CO 2 levels. The 14 C-distribution was constant amongst the aerial parts, the roots and the soil in the whole pots. After cutting the plant tops, the pots were dried without disturbing the soil and root system. The pots were then incubated under controlled humidity and temperature conditions for 62 days. In the same time a second wheat cultivation was grown on one half of the pots in normal atmosphere without plant cultivation. The purpose of the work is to study the effect of living roots on decomposition of the former 14 C labelled roots litter. The CO 2 and the 14 CO 2 released from the soil were continuously measured. On incubation days 0, 18, 33 and 62, the remaining litter was separated from soil, and the organic matter was fractionated by repeated hydrolysis and NaOH extraction. Root litter disappeared faster when living roots were present than in bare soil. The accumulation and mineralization rates of humified components in soil followed two stages. While the roots of second wheat cultivation grew actively (until earing), the strong acid hydrolysable components accumulated in larger amount than in the case of bare soil. After earing, while roots activity was depressed, these components were partly mineralized and the 14 CO 2 release was then higher with plants than with bare soil. The humification and mineralization rate were related with living plant phenology stages. (orig.)

  18. A mathematical model for investigating the effect of cluster roots on plant nutrient uptake

    KAUST Repository

    Zygalakis, K. C.

    2012-04-01

    Cluster roots are thought to play an important role in mediating nutrient uptake by plants. In this paper we develop a mathematical model for the transport and uptake of phosphate by a single root. Phosphate is assumed to diffuse in the soil fluid phase and can also solubilised due to citrate exudation. Using multiple scale homogenisation techniques we derive an effective model that accounts for the cumulative effect of citrate exudation and phosphate uptake by cluster roots whilst still retaining all the necessary information about the microscale geometry and effects. © 2012 EDP Sciences and Springer.

  19. Biomass production and control of nutrient leaching of willows using different planting methods with special emphasis on an appraisal of the electrical impedance for roots

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cao

    2011-07-01

    Willow reproduction can be achieved through vertically or horizontally planted cuttings. Conventionally, plantations are established by inserting cuttings vertically into the soil. There is, however, a lack of information about the biomass production and nutrient leaching of plantations established through horizontally planted cuttings. A greenhouse experiment and a field trial were carried out to investigate whether horizontally planted Salix schwerinii cuttings have a positive effect on stem yield, root distribution and nutrient leaching in comparison with vertically planted cuttings with different planting densities. The shoots' height of horizontally planted cuttings was significantly smaller than that of vertically planted cuttings during the first two weeks after planting in the pot experiment. Thereafter, no significant effect of planting orientation on the stem biomass was observed in the two conducted experiments. In both experiments the total stem biomass increased with the planting density. It was also found that the fine root biomass and the specific root length were not affected by the planting orientation or density, while the fine root surface area and the absorbing root surface area (ARSA) were affected only by the planting density. The planting orientation did not affect the nutrient concentrations in the soil leachate, apart from SO{sub 4}-S and PO{sub 4}-P in the pot experiment. The ARSA in the pot experiment was assessed by using the earth impedance method. The applicability of this method was evaluated in a hydroponic study of willow cuttings where root and stem were measured independently. Electrical resistance had a good correlation with the contact area of the roots with the solution. However, the resistance depended strongly on the contact area of the stem with the solution, which caused a bias in the evaluation of root surface area. A similar experimental set-up with electrical impedance spectroscopy was employed to study the

  20. Root system markup language: toward a unified root architecture description language.

    Science.gov (United States)

    Lobet, Guillaume; Pound, Michael P; Diener, Julien; Pradal, Christophe; Draye, Xavier; Godin, Christophe; Javaux, Mathieu; Leitner, Daniel; Meunier, Félicien; Nacry, Philippe; Pridmore, Tony P; Schnepf, Andrea

    2015-03-01

    The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary facilities, yet it is widely accepted that none of these software tools is able to extract in an efficient way the growing array of static and dynamic features for different types of images and species. We describe the Root System Markup Language (RSML), which has been designed to overcome two major challenges: (1) to enable portability of root architecture data between different software tools in an easy and interoperable manner, allowing seamless collaborative work; and (2) to provide a standard format upon which to base central repositories that will soon arise following the expanding worldwide root phenotyping effort. RSML follows the XML standard to store two- or three-dimensional image metadata, plant and root properties and geometries, continuous functions along individual root paths, and a suite of annotations at the image, plant, or root scale at one or several time points. Plant ontologies are used to describe botanical entities that are relevant at the scale of root system architecture. An XML schema describes the features and constraints of RSML, and open-source packages have been developed in several languages (R, Excel, Java, Python, and C#) to enable researchers to integrate RSML files into popular research workflow. © 2015 American Society of Plant Biologists. All Rights Reserved.