WorldWideScience

Sample records for plant root morphogenesis

  1. Truffles Regulate Plant Root Morphogenesis via the Production of Auxin and Ethylene1[C][W][OA

    Science.gov (United States)

    Splivallo, Richard; Fischer, Urs; Göbel, Cornelia; Feussner, Ivo; Karlovsky, Petr

    2009-01-01

    Truffles are symbiotic fungi that form ectomycorrhizas with plant roots. Here we present evidence that at an early stage of the interaction, i.e. prior to physical contact, mycelia of the white truffle Tuber borchii and the black truffle Tuber melanopsorum induce alterations in root morphology of the host Cistus incanus and the nonhost Arabidopsis (Arabidopsis thaliana; i.e. primary root shortening, lateral root formation, root hair stimulation). This was most likely due to the production of indole-3-acetic acid (IAA) and ethylene by the mycelium. Application of a mixture of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid and IAA fully mimicked the root morphology induced by the mycelium for both host and nonhost plants. Application of the single hormones only partially mimicked it. Furthermore, primary root growth was not inhibited in the Arabidopsis auxin transport mutant aux1-7 by truffle metabolites while root branching was less effected in the ethylene-insensitive mutant ein2-LH. The double mutant aux1-7;ein2-LH displayed reduced sensitivity to fungus-induced primary root shortening and branching. In agreement with the signaling nature of truffle metabolites, increased expression of the auxin response reporter DR5∷GFP in Arabidopsis root meristems subjected to the mycelium could be observed, confirming that truffles modify the endogenous hormonal balance of plants. Last, we demonstrate that truffles synthesize ethylene from l-methionine probably through the α-keto-γ-(methylthio)butyric acid pathway. Taken together, these results establish the central role of IAA and ethylene as signal molecules in truffle/plant interactions. PMID:19535471

  2. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space.

    Science.gov (United States)

    Hoson, Takayuki

    2014-05-16

    The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front) directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms.

  3. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space

    Directory of Open Access Journals (Sweden)

    Takayuki Hoson

    2014-05-01

    Full Text Available The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms.

  4. Contribution of mesenchymal proliferation in tooth root morphogenesis.

    Science.gov (United States)

    Sohn, W-J; Choi, M-A; Yamamoto, H; Lee, S; Lee, Y; Jung, J-K; Jin, M-U; An, C-H; Jung, H-S; Suh, J-Y; Shin, H-I; Kim, J-Y

    2014-01-01

    In mouse tooth development, the roots of the first lower molar develop after crown formation to form 2 cylindrical roots by post-natal day 5. This study compared the morphogenesis and cellular events of the mesial-root-forming (MRF) and bifurcation-forming (BF) regions, located in the mesial and center of the first lower molar, to better define the developmental mechanisms involved in multi-rooted tooth formation. We found that the mesenchyme in the MRF showed relatively higher proliferation than the bifurcation region. This suggested that spatially regulated mesenchymal proliferation is required for creating cylindrical root structure. The mechanism may involve the mesenchyme forming a physical barrier to epithelial invagination of Hertwig's epithelial root sheath. To test these ideas, we cultured roots in the presence of pharmacological inhibitors of microtubule and actin polymerization, nocodazole and cytochalasin-D. Cytochalasin D also inhibits proliferation in epithelium and mesenchyme. Both drugs resulted in altered morphological changes in the tooth root structures. In particular, the nocodazole- and cytochalasin-D-treated specimens showed a loss of root diameter and formation of a single-root, respectively. Immunolocalization and three-dimensional reconstruction results confirmed these mesenchymal cellular events, with higher proliferation in MRF in multi-rooted tooth formation.

  5. The role of nitric oxide and hemoglobin in plant development and morphogenesis

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Shah, Jay K; Igamberdiev, Abir U

    2013-01-01

    Plant morphogenesis is regulated endogenously through phytohormones and other chemical signals, which may act either locally or distant from their place of synthesis. Nitric oxide (NO) is formed by a number of controlled processes in plant cells. It is a central signaling molecule with several...... the local cellular NO concentration. In this review, we analyze available data on the role of NO and plant hemoglobins in morphogenetic processes in plants. The comparison of the data suggests that hemoglobin gene expression in plants modulates development and morphogenesis of organs, such as roots...... and shoots, through the localized control of NO, and that hemoglobin gene expression should always be considered a modulating factor in processes controlled directly or indirectly by NO in plants....

  6. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?

    Science.gov (United States)

    Fusconi, Anna

    2014-01-01

    Arbuscular mycorrhizae (AMs) form a widespread root-fungus symbiosis that improves plant phosphate (Pi) acquisition and modifies the physiology and development of host plants. Increased branching is recognized as a general feature of AM roots, and has been interpreted as a means of increasing suitable sites for colonization. Fungal exudates, which are involved in the dialogue between AM fungi and their host during the pre-colonization phase, play a well-documented role in lateral root (LR) formation. In addition, the increased Pi content of AM plants, in relation to Pi-starved controls, as well as changes in the delivery of carbohydrates to the roots and modulation of phytohormone concentration, transport and sensitivity, are probably involved in increasing root system branching. This review discusses the possible causes of increased branching in AM plants. The differential root responses to Pi, sugars and hormones of potential AM host species are also highlighted and discussed in comparison with those of the non-host Arabidopsis thaliana. Fungal exudates are probably the main compounds regulating AM root morphogenesis during the first colonization steps, while a complex network of interactions governs root development in established AMs. Colonization and high Pi act synergistically to increase root branching, and sugar transport towards the arbusculated cells may contribute to LR formation. In addition, AM colonization and high Pi generally increase auxin and cytokinin and decrease ethylene and strigolactone levels. With the exception of cytokinins, which seem to regulate mainly the root:shoot biomass ratio, these hormones play a leading role in governing root morphogenesis, with strigolactones and ethylene blocking LR formation in the non-colonized, Pi-starved plants, and auxin inducing them in colonized plants, or in plants grown under high Pi conditions.

  7. INFLUENCE OF VITAMIN MORPHOGENESIS REGENERATED PLANTS POTATO IN VITRO TO INTENSIFY PRODUCTION OF ELITE PLANTING MATERIAL

    Directory of Open Access Journals (Sweden)

    E. P. Miakisheva

    2016-08-01

    Full Text Available The paper identifies the need to use the techniques of modern biotechnology in primary seed potatoes in the Russian Federation. At present time, the playback of potatoes does not meet current phytosanitary requirements, moreover, there is a low yield of potatoes in the whole country and the region for a long period of time. The potato yield that annually produced in Russia is much lower than the world's, and does not meet the genetic capabilities of used varieties. Modern methods of biotechnology have undeniable advantages and make it possible to carry out year-round operation for the production of elite planting material of potato. Effective implementation of such activities is provided by careful selection of plant cultivation conditions in vitro, selection of breeding gound and environmental components for each variety in order to provide the maximum parameters of plant growth and productivity. During research we examined the effect of vitamin component of breeding ground according to the formula of  Murashige and Skoog, containing thiamine, pyridoxine, and niacin (the co-enzymes that involved in biochemical reactions of the plants. The effect of vitamin complex on the above-ground plant parts (plant height and number of internodes, as well as indicators of root formation (number and length of roots was studied for regenerated plants of four potato varieties: Adretta, Red Scarlett, Lubava, and Kuznechanka. We proved a positive effect of vitamin component on plant morphogenesis. For each variety we determined the optimal ratio in nutriculture medium.

  8. Formative cell divisions: principal determinants of plant morphogenesis.

    Science.gov (United States)

    Smolarkiewicz, Michalina; Dhonukshe, Pankaj

    2013-03-01

    Formative cell divisions utilizing precise rotations of cell division planes generate and spatially place asymmetric daughters to produce different cell layers. Therefore, by shaping tissues and organs, formative cell divisions dictate multicellular morphogenesis. In animal formative cell divisions, the orientation of the mitotic spindle and cell division planes relies on intrinsic and extrinsic cortical polarity cues. Plants lack known key players from animals, and cell division planes are determined prior to the mitotic spindle stage. Therefore, it appears that plants have evolved specialized mechanisms to execute formative cell divisions. Despite their profound influence on plant architecture, molecular players and cellular mechanisms regulating formative divisions in plants are not well understood. This is because formative cell divisions in plants have been difficult to track owing to their submerged positions and imprecise timings of occurrence. However, by identifying a spatiotemporally inducible cell division plane switch system applicable for advanced microscopy techniques, recent studies have begun to uncover molecular modules and mechanisms for formative cell divisions. The identified molecular modules comprise developmentally triggered transcriptional cascades feeding onto microtubule regulators that now allow dissection of the hierarchy of the events at better spatiotemporal resolutions. Here, we survey the current advances in understanding of formative cell divisions in plants in the context of embryogenesis, stem cell functionality and post-embryonic organ formation.

  9. Project Work on Plant Roots.

    Science.gov (United States)

    Devonald, V. G.

    1986-01-01

    Methods of investigating plant root growth developed for research purposes can be adopted for student use. Investigations of the effect of water table level and of ethylene concentration are described, and techniques of measuring root growth are explained. (Author/ML)

  10. Economic strategies of plant absorptive roots vary with root diameter

    Science.gov (United States)

    Kong, D. L.; Wang, J. J.; Kardol, P.; Wu, H. F.; Zeng, H.; Deng, X. B.; Deng, Y.

    2016-01-01

    Plant roots typically vary along a dominant ecological axis, the root economics spectrum, depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root economic strategies differ with increasing root diameter. To test this hypothesis, we used seven plant species (a fern, a conifer, and five angiosperms from south China) for which we separated absorptive roots into two categories: thin roots (thickness of root cortex plus epidermis perspective on our understanding of the root economics spectrum.

  11. Morphogenesis in Plants: Modeling the Shoot Apical Meristem, and Possible Applications

    Science.gov (United States)

    Mjolsness, Eric; Gor, Victoria; Meyerowitz, Elliot; Mann, Tobias

    1998-01-01

    A key determinant of overall morphogenesis in flowering plants such as Arabidopsis thaliana is the shoot apical meristem (growing tip of a shoot). Gene regulation networks can be used to model this system. We exhibit a very preliminary two-dimensional model including gene regulation and intercellular signaling, but omitting cell division and dynamical geometry. The model can be trained to have three stable regions of gene expression corresponding to the central zone, peripheral zone, and rib meristem. We also discuss a space-engineering motivation for studying and controlling the morphogenesis of plants using such computational models.

  12. The morphogenesis-related NDR kinase pathway of Colletotrichum orbiculare is required for translating plant surface signals into infection-related morphogenesis and pathogenesis

    Science.gov (United States)

    Kodama, Sayo; Ishizuka, Junya; Miyashita, Ito; Ishii, Takaaki; Miyoshi, Hideto

    2017-01-01

    Plant infection by pathogenic fungi involves the differentiation of appressoria, specialized infection structures, initiated by fungal sensing and responding to plant surface signals. How plant fungal pathogens control infection-related morphogenesis in response to plant-derived signals has been unclear. Here we showed that the morphogenesis-related NDR kinase pathway (MOR) of the cucumber anthracnose fungus Colletotrichum orbiculare is crucial for appressorium development following perception of plant-derived signals. By screening of random insertional mutants, we identified that the MOR element CoPag1 (Perish-in-the-absence-of-GYP1) is a key component of the plant-derived signaling pathway involved in appressorium morphogenesis. Constitutive activation of the NDR kinase CoCbk1 (Cell-wall-biosynthesis-kinase-1) complemented copag1 defects. Furthermore, copag1 deletion impaired CoCbk1 phosphorylation, suggesting that CoPag1 functions via CoCbk1 activation. Searching for the plant signals that contribute to appressorium induction via MOR, we found that the cutin monomer n-octadecanal, degraded from the host cuticle by conidial esterases, functions as a signal molecule for appressorium development. Genome-wide transcriptional profiling during appressorium development revealed that MOR is responsible for the expression of a subset of the plant-signal-induced genes with potential roles in pathogenicity. Thus, MOR of C. orbiculare has crucial roles in regulating appressorium development and pathogenesis by communicating with plant-derived signals. PMID:28146587

  13. Root formation in ethylene-insensitive plants.

    Science.gov (United States)

    Clark, D G; Gubrium, E K; Barrett, J E; Nell, T A; Klee, H J

    1999-09-01

    Experiments with ethylene-insensitive tomato (Lycopersicon esculentum) and petunia (Petunia x hybrida) plants were conducted to determine if normal or adventitious root formation is affected by ethylene insensitivity. Ethylene-insensitive Never ripe (NR) tomato plants produced more below-ground root mass but fewer above-ground adventitious roots than wild-type Pearson plants. Applied auxin (indole-3-butyric acid) increased adventitious root formation on vegetative stem cuttings of wild-type plants but had little or no effect on rooting of NR plants. Reduced adventitious root formation was also observed in ethylene-insensitive transgenic petunia plants. Applied 1-aminocyclopropane-1-carboxylic acid increased adventitious root formation on vegetative stem cuttings from NR and wild-type plants, but NR cuttings produced fewer adventitious roots than wild-type cuttings. These data suggest that the promotive effect of auxin on adventitious rooting is influenced by ethylene responsiveness. Seedling root growth of tomato in response to mechanical impedance was also influenced by ethylene sensitivity. Ninety-six percent of wild-type seedlings germinated and grown on sand for 7 d grew normal roots into the medium, whereas 47% of NR seedlings displayed elongated tap-roots, shortened hypocotyls, and did not penetrate the medium. These data indicate that ethylene has a critical role in various responses of roots to environmental stimuli.

  14. Salt stress signals shape the plant root

    NARCIS (Netherlands)

    C.S. Galvan-Ampudia; C. Testerink

    2011-01-01

    Plants use different strategies to deal with high soil salinity. One strategy is activation of pathways that allow the plant to export or compartmentalise salt. Relying on their phenotypic plasticity, plants can also adjust their root system architecture (RSA) and the direction of root growth to avo

  15. Polarity establishment, morphogenesis, and cultured plant cells in space

    Science.gov (United States)

    Krikorian, Abraham D.

    1989-01-01

    Plant development entails an orderly progression of cellular events both in terms of time and geometry. There is only circumstantial evidence that, in the controlled environment of the higher plant embryo sac, gravity may play a role in embryo development. It is still not known whether or not normal embryo development and differentiation in higher plants can be expected to take place reliably and efficiently in the micro g space environment. It seems essential that more attention be given to studying aspects of reproductive biology in order to be confident that plants will survive seed to seed to seed in a space environment. Until the time arrives when successive generations of plants can be grown, the best that can be done is utilize the most appropriate systems and begin, piece meal, to accumulate information on important aspects of plant reproduction. Cultured plant cells can play an important role in these activities since they can be grown so as to be morphogenetically competent, and thus can simulate those embryogenic events more usually identified with fertilized eggs in the embryo sac of the ovule in the ovary. Also, they can be manipulated with relative ease. The extreme plasticity of such demonstrably totipotent cell systems provides a means to test environmental effects such as micro g on a potentially free-running entity. The successful manipulation and management of plant cells and propagules in space also has significance for exploitation of biotechnologies in space since such systems, perforce, are an important vehicle whereby many genetic engineering manipulations are achieved.

  16. Plant GTPases: regulation of morphogenesis by ROPs and ROS.

    Science.gov (United States)

    Uhrig, Joachim F; Hülskamp, Martin

    2006-03-21

    Polarized cell growth in plants is controlled by Rho-like small GTPases (ROPs), not only through the canonical WAVE/Arp2/3 pathway, but also through newly defined plant-specific pathways involving the regulated release of reactive oxygen species (ROS).

  17. Growth and morphogenesis of sun and shade plants

    NARCIS (Netherlands)

    Corre, W.J.

    1984-01-01

    A number of species of sun and shade plants in the vegetative phase were grown in different light intensities, different light qualities (r/fr ratio) and different combinations of light intensity and nutrient supply. Sun and shade species were also grown at various plant densities and in interspecif

  18. Nutrition and adventitious rooting in woody plants

    Directory of Open Access Journals (Sweden)

    Fernanda Bortolanza Pereira

    2016-09-01

    Full Text Available Vegetative propagation success of commercial genotypes via cutting techniques is related to several factors, including nutritional status of mother trees and of propagation material. The nutritional status determines the carbohydrate quantities, auxins and other compounds of plant essential metabolism for root initiation and development. Each nutrient has specific functions in plant, acting on plant structure or on plant physiology. Although the importance of mineral nutrition for success of woody plants vegetative propagation and its relation with adventitious rooting is recognized, the role of some mineral nutrients is still unknown. Due to biochemical and physiological complexity of adventitious rooting process, there are few researches to determine de role of nutrients on development of adventitious roots. This review intends to explore de state of the art about the effect of mineral nutrition on adventitious rooting of woody plants.

  19. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth.

    Science.gov (United States)

    Dovana, Francesco; Mucciarelli, Marco; Mascarello, Maurizio; Fusconi, Anna

    2015-01-01

    Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L.) Heynh., 14 and 21 days after inoculation (DAI). Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW) and dry weight (DW) was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP) fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi.

  20. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth.

    Directory of Open Access Journals (Sweden)

    Francesco Dovana

    Full Text Available Fungal endophytes have shown to affect plant growth and to confer stress tolerance to the host; however, effects of endophytes isolated from water plants have been poorly investigated. In this study, fungi isolated from stems (stem-E and roots (root-E of Mentha aquatica L. (water mint were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis (L. Heynh., 14 and 21 days after inoculation (DAI. Nineteen fungi were analysed and, based on ITS analysis, 17 isolates showed to be genetically distinct. The overall effect of water mint endophytes on Arabidopsis fresh (FW and dry weight (DW was neutral and positive, respectively, and the increased DW, mainly occurring 14 DAI, was possibly related to plant defence mechanism. Only three fungi increased both FW and DW of Arabidopsis at 14 and 21 DAI, thus behaving as plant growth promoting (PGP fungi. E-treatment caused a reduction of root depth and primary root length in most cases and inhibition-to-promotion of root area and lateral root length, from 14 DAI. Only Phoma macrostoma, among the water mint PGP fungi, increased both root area and depth, 21 DAI. Root depth and area 14 DAI were shown to influence DWs, indicating that the extension of the root system, and thus nutrient uptake, was an important determinant of plant dry biomass. Reduction of Arabidopsis root depth occurred to a great extent when plants where treated with stem-E while root area decreased or increased under the effects of stem-E and root-E, respectively, pointing to an influence of the endophyte origin on root extension. M. aquatica and many other perennial hydrophytes have growing worldwide application in water pollution remediation. The present study provided a model for directed screening of endophytes able to modulate plant growth in the perspective of future field applications of these fungi.

  1. Morphogenesis of root nodules in white clover. II. The effect of mutation in genes nod IJ of the microsymbiont upon the nodule structure

    Directory of Open Access Journals (Sweden)

    Barbara Łotocka

    2014-01-01

    Full Text Available Morphogenesis of ineffective root nodules initiated on the roots of white clover 'Astra' by the Rhizobium leguminosarum biovar. trifolii strains ANU261 (Tn5 insertion in nod 1 gene and ANU262 (Tn5 insertion in nod J gene was investigated. Following changes were observed, as compared to the wild-type nodulation: the exaggerated, not delayed reaction of root hairs; the delay in nodulation with the number of nodules the same as in plants inoculated with a wild strain; the formation and organization of the nodule primordium not changed in comparison with the wild-type nodules; infection threads abnormally branched and diffusing with bacteria deprived of light zone and enriched with storage material; infected cells of bacteroidal tissue abnormally strongly osmiophilic and only slightly vacuolated; symbiosomes with very narrowed peribacteroidal space, subject to premature degradation; abnormal accumulation of starch in the nodule tissues; nodule development blocked at the stage of laterally situated meristem and single nodule bundle; inhibition of divisions in the meristem and vacuolation of its cells; the appearance of single cells with colonies of saprophytic rhizobia embedded in the fibrillar matrix in the old, degraded regions of the bacteroidal tissue.

  2. Apoplastic interactions between plants and plant root intruders

    Directory of Open Access Journals (Sweden)

    Kanako eMitsumasu

    2015-08-01

    Full Text Available Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root-parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones (SLs, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  3. Apoplastic interactions between plants and plant root intruders.

    Science.gov (United States)

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.

  4. Apoplastic interactions between plants and plant root intruders

    Science.gov (United States)

    Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko

    2015-01-01

    Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant–parasite interactions. PMID:26322059

  5. Plant root-microbe communication in shaping root microbiomes.

    Science.gov (United States)

    Lareen, Andrew; Burton, Frances; Schäfer, Patrick

    2016-04-01

    A growing body of research is highlighting the impacts root-associated microbial communities can have on plant health and development. These impacts can include changes in yield quantity and quality, timing of key developmental stages and tolerance of biotic and abiotic stresses. With such a range of effects it is clear that understanding the factors that contribute to a plant-beneficial root microbiome may prove advantageous. Increasing demands for food by a growing human population increases the importance and urgency of understanding how microbiomes may be exploited to increase crop yields and reduce losses caused by disease. In addition, climate change effects may require novel approaches to overcoming abiotic stresses such as drought and salinity as well as new emerging diseases. This review discusses current knowledge on the formation and maintenance of root-associated microbial communities and plant-microbe interactions with a particular emphasis on the effect of microbe-microbe interactions on the shape of microbial communities at the root surface. Further, we discuss the potential for root microbiome modification to benefit agriculture and food production.

  6. Plant morphogenesis, auxin, and the signal-trafficking network incompleteness theorem

    Directory of Open Access Journals (Sweden)

    Karl J. Niklas

    2012-03-01

    Full Text Available Plant morphogenesis (the development of form and function requires signal-trafficking and cross-talking among all levels of organization to coordinate the operation of metabolic and genomic networked systems. Many if not all of these biological features can be rendered as logic circuits supervising the operation of one or more signal-activated metabolic or genome networks. This approach simplifies complex morphogenetic phenomena and allows for their aggregation into diagrams of larger, more "global" networked systems. This conceptualization is illustrated for morphogenesis in model plants such as maize (Zea mays and Thale cress (Arabidopsis thaliana from an evolutionary perspective. The phytohormone indole-acetic acid (IAA is used as an example for a well-known signaling chemical and discussed in terms of the logic circuits and signal-activated sub-systems for hormone-mediated wall loosening and cell expansion as well as polar/lateral intercellular IAA transport. For each of these phenomena, a circuit/sub-system diagram highlights missing components, either in the logic circuit or in the sub-system it supervises, that must be identified experimentally if each of these basic phenomena is to be fully understood within a phylogen

  7. Plant Hormones: How They Affect Root Formation.

    Science.gov (United States)

    Reinhard, Diana Hereda

    This science study aid, produced by the U.S. Department of Agriculture, includes a series of plant rooting activities for secondary science classes. The material in the pamphlet is written for students and includes background information on plant hormones, a vocabulary list, and five learning activities. Objectives, needed materials, and…

  8. N,N-dimethyl hexadecylamine and related amines regulate root morphogenesis via jasmonic acid signaling in Arabidopsis thaliana.

    Science.gov (United States)

    Raya-González, Javier; Velázquez-Becerra, Crisanto; Barrera-Ortiz, Salvador; López-Bucio, José; Valencia-Cantero, Eduardo

    2017-05-01

    Plant growth-promoting rhizobacteria are natural inhabitants of roots, colonize diverse monocot and dicot species, and affect several functional traits such as root architecture, adaptation to adverse environments, and protect plants from pathogens. N,N-dimethyl-hexadecylamine (C16-DMA) is a rhizobacterial amino lipid that modulates the postembryonic development of several plants, likely as part of volatile blends. In this work, we evaluated the bioactivity of C16-DMA and other related N,N-dimethyl-amines with varied length and found that inhibition of primary root growth was related to the length of the acyl chain. C16-DMA inhibited primary root growth affecting cell division and elongation, while promoting lateral root formation and root hair growth and density in Arabidopsis thaliana (Arabidopsis) wild-type (WT) seedlings. Interestingly, C16-DMA induced the expression of the jasmonic acid (JA)-responsive gene marker pLOX2:uidA, while JA-related mutants jar1, coi1-1, and myc2 affected on JA biosynthesis and perception, respectively, are compromised in C16-DMA responses. Comparison of auxin-regulated gene expression, root architectural changes in WT, and auxin-related mutants aux1-7, tir1/afb2/afb3, and arf7-1/arf19-1 to C16-DMA shows that the C16-DMA effects occur independently of auxin signaling. Together, these results reveal a novel class of aminolipids modulating root organogenesis via crosstalk with the JA signaling pathway.

  9. Parameterizing the soil - water - plant root system

    NARCIS (Netherlands)

    Feddes, R.A.; Raats, P.A.C.

    2004-01-01

    Root water uptake is described from the local scale, to the field scale and to the regional and global scales. The local macroscopic model can be incorporated in Soil-Plant-Atmosphere Continuum (SPAC) numerical models, like the SWAP, HYSWASOR, HYDRUS, ENVIRO-GRO and FUSSIM models. These SPAC models

  10. A review on the molecular mechanism of plants rooting modulated ...

    African Journals Online (AJOL)

    A review on the molecular mechanism of plants rooting modulated by auxin. ... rooting modulated by auxin. H Han, S Zhang, X Sun ... Phytohormones, especially auxin, played an essential role in regulating roots developments. This review ...

  11. Model of polar auxin transport coupled to mechanical forces retrieves robust morphogenesis along the Arabidopsis root

    Science.gov (United States)

    Romero-Arias, J. Roberto; Hernández-Hernández, Valeria; Benítez, Mariana; Alvarez-Buylla, Elena R.; Barrio, Rafael A.

    2017-03-01

    Stem cells are identical in many scales, they share the same molecular composition, DNA, genes, and genetic networks, yet they should acquire different properties to form a functional tissue. Therefore, they must interact and get some external information from their environment, either spatial (dynamical fields) or temporal (lineage). In this paper we test to what extent coupled chemical and physical fields can underlie the cell's positional information during development. We choose the root apical meristem of Arabidopsis thaliana to model the emergence of cellular patterns. We built a model to study the dynamics and interactions between the cell divisions, the local auxin concentration, and physical elastic fields. Our model recovers important aspects of the self-organized and resilient behavior of the observed cellular patterns in the Arabidopsis root, in particular, the reverse fountain pattern observed in the auxin transport, the PIN-FORMED (protein family of auxin transporters) polarization pattern and the accumulation of auxin near the region of maximum curvature in a bent root. Our model may be extended to predict altered cellular patterns that are expected under various applied auxin treatments or modified physical growth conditions.

  12. The evolutionary root of flowering plants.

    Science.gov (United States)

    Goremykin, Vadim V; Nikiforova, Svetlana V; Biggs, Patrick J; Zhong, Bojian; Delange, Peter; Martin, William; Woetzel, Stefan; Atherton, Robin A; McLenachan, Patricia A; Lockhart, Peter J

    2013-01-01

    Correct rooting of the angiosperm radiation is both challenging and necessary for understanding the origins and evolution of physiological and phenotypic traits in flowering plants. The problem is known to be difficult due to the large genetic distance separating flowering plants from other seed plants and the sparse taxon sampling among basal angiosperms. Here, we provide further evidence for concern over substitution model misspecification in analyses of chloroplast DNA sequences. We show that support for Amborella as the sole representative of the most basal angiosperm lineage is founded on sequence site patterns poorly described by time-reversible substitution models. Improving the fit between sequence data and substitution model identifies Trithuria, Nymphaeaceae, and Amborella as surviving relatives of the most basal lineage of flowering plants. This finding indicates that aquatic and herbaceous species dominate the earliest extant lineage of flowering plants. [; ; ; ; ; .].

  13. [Medicinal plant hairy roots generating and their applications].

    Science.gov (United States)

    Zhang, Meng; Gao, Wei; Wang, Xiu-Juan

    2014-06-01

    As a kind of the plant tissue cultures, hairy root culture is characterized by rapid growth without exogenous hormones source and high yield of secondary metabolites, which attracted the attention of scholars in resent years. This work systematically summarized the research of medicinal plant hairy roots, including the mechanism, current situation of medicinal plant hairy roots, and their applications.

  14. ROOT ALLOMETRY OF TWO SUBTROPICAL PLANT COMMUNITIES OF NORTHEASTERN MEXICO

    OpenAIRE

    Eduardo de los Ríos-Carrasco; José de Jesús Návar-Cháidez

    2010-01-01

    This research work aimed at the study of the root allometry in sub-tropical Tamaulipan thornscrub and pine forest communities of Nuevo Leon, Mexico. By excavating each individual root of each of 20 trees per plant community, we developed root allometric equations for biomass, volume, total length and diameter. Covariance analysis, ancova, was employed to determine the statistical difference of these variables between plant communities. Results indicate that pine plant trees have larger root v...

  15. Obtaining plant Miscanthus sacchariflorus (Maxim. Hack and Miscanthus sinensis Andersson in vitro culture by indirect morphogenesis

    Directory of Open Access Journals (Sweden)

    С. М. Гонтаренко

    2017-03-01

    Full Text Available Purpose. To obtain Miscanthus sacchariflorus (Maxim. Hack and Miscanthus sinensis Andersson in vitro culture by indirect morphogenesis. Methods. Biotechnological procedures, mathematical and statistical analyses. Results. Composition of nutrient medium was developed intended for induction of callusogenesis from Miscanthus seeds with a poor germination and viability of seedlings – Murashige and Skoog (MS medium was modified for the amount of macroelements (half-dose that was supplemented with amino acids (300 mg/l of glutamic acid, 50 mg/l of aspartic acid, 5 mg/l of tyrosine, 3 mg/l of arginine, 2 mg/l of hydroxyproline and plant growth regulators [2,5 mg/l of 2.4D (2.4-Dichlorophenoxyacetic acid, 0,6 mg/l of BAP (6-Benzyl-aminopurine and 0,3 mg/l of ABA (Abscisic acid]. Composition of nutrient medium was developed for regeneration of microplants from callus – agar MS medium was modified for the amount of macroelements (half-dose supplemented with vitamins: 10 mg/l of thiaminum, 1,0 mg/l of pyridoxine, 1,0 mg/l of nicotinic acid (by White, 1,0 mg/l of ascorbic acid, 250 mg/l of glutamic acid, 2,0 mg/l of BAP, 0,3 mg/l of NAA (Naphthaleneacetic acid. On this medium, 100% regeneration of M. sacchariflorus (Maxim. Hack and 50% regeneration of M. sinensis Andersson was obtained. Due to media modification aimed at initiating callusogenesis and microplants regeneration, reproduction factor of M. sinensis was increased 20 times at the average, M. sacchariflorus – 35–40 times. Conclusions. Plants of M. sacchariflorus (Maxim. Hack and M. sinensis Andersson were obtained in vitro culture by initiation of callusogenes and microplants regeneration from the Miscanthus seeds with poor germination and viability on nutrient media of certain composition.

  16. Root Traits and Phenotyping Strategies for Plant Improvement

    Directory of Open Access Journals (Sweden)

    Ana Paez-Garcia

    2015-06-01

    Full Text Available Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.

  17. Root bacterial endophytes alter plant phenotype, but not physiology

    DEFF Research Database (Denmark)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    2016-01-01

    Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant...... phenotype. We chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits...... (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light-Asat, and saturating CO2-Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf...

  18. Single Plant Root System Modeling under Soil Moisture Variation

    Science.gov (United States)

    Yabusaki, S.; Fang, Y.; Chen, X.; Scheibe, T. D.

    2016-12-01

    A prognostic Virtual Plant-Atmosphere-Soil System (vPASS) model is being developed that integrates comprehensively detailed mechanistic single plant modeling with microbial, atmospheric, and soil system processes in its immediate environment. Three broad areas of process module development are targeted: Incorporating models for root growth and function, rhizosphere interactions with bacteria and other organisms, litter decomposition and soil respiration into established porous media flow and reactive transport models Incorporating root/shoot transport, growth, photosynthesis and carbon allocation process models into an integrated plant physiology model Incorporating transpiration, Volatile Organic Compounds (VOC) emission, particulate deposition and local atmospheric processes into a coupled plant/atmosphere model. The integrated plant ecosystem simulation capability is being developed as open source process modules and associated interfaces under a modeling framework. The initial focus addresses the coupling of root growth, vascular transport system, and soil under drought scenarios. Two types of root water uptake modeling approaches are tested: continuous root distribution and constitutive root system architecture. The continuous root distribution models are based on spatially averaged root development process parameters, which are relatively straightforward to accommodate in the continuum soil flow and reactive transport module. Conversely, the constitutive root system architecture models use root growth rates, root growth direction, and root branching to evolve explicit root geometries. The branching topologies require more complex data structures and additional input parameters. Preliminary results are presented for root model development and the vascular response to temporal and spatial variations in soil conditions.

  19. Action of plant root exudates in bioremediations: a review

    Directory of Open Access Journals (Sweden)

    Peter Dundek

    2011-01-01

    Full Text Available This work presents a summary of literature dealing with the use of plant root exudates in bioremediations. Bioremediation using plants (phytoremediation or rhizoremediation and associate rhizosphere to decontaminate polluted soil is a method based on the catabolic potential of root-associated microorganisms, which are supported by the organic substrates released from roots. These substrates are called “root exudates”. Root exudates support metabolism of pollutants-decomposing microorganisms in the rhizosphere, and affect sorption / desorption of pollutants. Awareness of exudation rates is necessary for testing soil decontamination. Commonly, water-soluble root exudates of different plants are studied for their qualitative composition which should be related to total carbon of exuded water-soluble compounds. This paper presents the determined rate of plant root exudation and the amount of root exudates carbon used to form artificial rhizosphere.

  20. Root traits contributing to plant productivity under drought.

    Science.gov (United States)

    Comas, Louise H; Becker, Steven R; Cruz, Von Mark V; Byrne, Patrick F; Dierig, David A

    2013-11-05

    Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less "leaky" and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g., functional differences between fine and coarse roots) needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria) and rice (Oryza) show approaches to phenotyping of root traits and current understanding of root trait genetics for breeding.

  1. Root traits contributing to plant productivity under drought

    Directory of Open Access Journals (Sweden)

    Louise eComas

    2013-11-01

    Full Text Available Geneticists and breeders are positioned to breed plants with root traits that improve productivity under drought. However, a better understanding of root functional traits and how traits are related to whole plant strategies to increase crop productivity under different drought conditions is needed. Root traits associated with maintaining plant productivity under drought include small fine root diameters, long specific root length (SRL, and considerable root length density, especially at depths in soil with available water. In environments with late season water deficits, small xylem diameters in targeted seminal roots save soil water deep in the soil profile for use during crop maturation and result in improved yields. Capacity for deep root growth and large xylem diameters in deep roots may also improve root acquisition of water when ample water at depth is available. Xylem pit anatomy that makes xylem less ‘leaky’ and prone to cavitation warrants further exploration holding promise that such traits may improve plant productivity in water-limited environments without negatively impacting yield under adequate water conditions. Rapid resumption of root growth following soil rewetting may improve plant productivity under episodic drought. Genetic control of many of these traits through breeding appears feasible. Several recent reviews have covered methods for screening root traits but an appreciation for the complexity of root systems (e.g. functional differences between fine and coarse roots needs to be paired with these methods to successfully identify relevant traits for crop improvement. Screening of root traits at early stages in plant development can proxy traits at mature stages but verification is needed on a case by case basis that traits are linked to increased crop productivity under drought. Examples in lesquerella (Physaria and rice (Oryza show approaches to phenotyping of root traits and current understanding of root trait

  2. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height.

    Science.gov (United States)

    Li, Zhaoxia; Zhang, Xinrui; Zhao, Yajie; Li, Yujie; Zhang, Guangfeng; Peng, Zhenghua; Zhang, Juren

    2017-05-12

    Maize is a globally important food, feed crop and raw material for the food and energy industry. Plant architecture optimization plays important roles in maize yield improvement. PIN-FORMED (PIN) proteins are important for regulating auxin spatiotemporal asymmetric distribution in multiple plant developmental processes. In this study, ZmPIN1a overexpression in maize increased the number of lateral roots and inhibited their elongation, forming a developed root system with longer seminal roots and denser lateral roots. ZmPIN1a overexpression reduced plant height, internode length and ear height. This modification of the maize phenotype increased the yield under high-density cultivation conditions, and the developed root system improved plant resistance to drought, lodging and a low-phosphate environment. IAA concentration, transport capacity determination and application of external IAA indicated that ZmPIN1a overexpression led to increased IAA transport from shoot to root. The increase in auxin in the root enabled the plant to allocate more carbohydrates to the roots, enhanced the growth of the root and improved plant resistance to environmental stress. These findings demonstrate that maize plant architecture can be improved by root breeding to create an ideal phenotype for further yield increases. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. PvRACK1 loss-of-function impairs cell expansion and morphogenesis in Phaseolus vulgaris L. root nodules.

    Science.gov (United States)

    Islas-Flores, Tania; Guillén, Gabriel; Alvarado-Affantranger, Xóchitl; Lara-Flores, Miguel; Sánchez, Federico; Villanueva, Marco A

    2011-07-01

    Receptor for activated C kinase (RACK1) is a highly conserved, eukaryotic protein of the WD-40 repeat family. Its peculiar β-propeller structure allows its interaction with multiple proteins in various plant signal-transduction pathways, including those arising from hormone responses, development, and environmental stress. During Phaseolus vulgaris root development, RACK1 (PvRACK1) mRNA expression was induced by auxins, abscissic acid, cytokinin, and gibberellic acid. In addition, during P. vulgaris nodule development, PvRACK1 mRNA was highly accumulated at 12 to 15 days postinoculation, suggesting an important role after nodule meristem initiation and Rhizobium nodule infection. PvRACK1 transcript accumulation was downregulated by a specific RNA interference construct which was expressed in transgenic roots of composite plants of P. vulgaris inoculated with Rhizobium tropici. PvRACK1 downregulated transcript levels were monitored by quantitative reverse-transcription polymerase chain reaction analysis in individual transgenic roots and nodules. We observed a clear phenotype in PvRACK1-knockdown nodules, in which nodule number and nodule cell expansion were impaired, resulting in altered nodule size. Microscopic analysis indicated that, in PvRACK1-knockdown nodules, infected and uninfected cells were considerably smaller (80 and 60%, respectively) than in control nodules. In addition, noninfected cells and symbiosomes in silenced nodules showed significant defects in membrane structure under electron microscopy analysis. These findings indicate that PvRACK1 has a pivotal role in cell expansion and in symbiosome and bacteroid integrity during nodule development.

  4. In Vitro Morphogenesis of Arabidopsis to Search for Novel Endophytic Fungi Modulating Plant Growth

    National Research Council Canada - National Science Library

    Dovana, Francesco; Mucciarelli, Marco; Mascarello, Maurizio; Fusconi, Anna

    2015-01-01

    .... In this study, fungi isolated from stems (stem-E) and roots (root-E) of Mentha aquatica L. (water mint) were identified, and their morphogenetic properties analysed on in vitro cultured Arabidopsis...

  5. Light as stress factor to plant roots - case of root halotropism.

    Science.gov (United States)

    Yokawa, Ken; Fasano, Rossella; Kagenishi, Tomoko; Baluška, František

    2014-01-01

    Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up root growth via reactive oxygen species-mediated and F-actin dependent process. On the other hand, keeping Arabidopsis roots in darkness alters F-actin distribution, polar localization of PIN proteins as well as polar transport of auxin. Several signaling components activated by phytohormones are overlapping with light-related signaling cascade. We demonstrated that the sensitivity of roots to salinity is altered in the light-grown Arabidopsis roots. Particularly, light-exposed roots are less effective in their salt-avoidance behavior known as root halotropism. Here we discuss these new aspects of light-mediated root behavior from cellular, physiological and evolutionary perspectives.

  6. Estimating plant root water uptake using a neural network approach

    DEFF Research Database (Denmark)

    Qiao, D M; Shi, H B; Pang, H B

    2010-01-01

    and plant characteristics, and how to model it has been of interest for many years. Most macroscopic models for water uptake operate at soil profile scale under the assumption that the uptake rate depends on root density and soil moisture. Whilst proved appropriate, these models need spatio-temporal root...... density distributions, which is tedious to measure in situ and prone to uncertainty because of the complexity of root architecture hidden in the opaque soils. As a result, developing alternative methods that do not explicitly need the root density to estimate the root water uptake is practically useful......Water uptake by plant roots is an important process in the hydrological cycle, not only for plant growth but also for the role it plays in shaping microbial community and bringing in physical and biochemical changes to soils. The ability of roots to extract water is determined by combined soil...

  7. Root bacterial endophytes alter plant phenotype, but not physiology

    Directory of Open Access Journals (Sweden)

    Jeremiah A. Henning

    2016-11-01

    Full Text Available Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant phenotype. We chose three bacterial strains that differed in predicted metabolic capabilities, plant hormone production and metabolism, and secondary metabolite synthesis. We inoculated each bacterial strain on a single genotype of Populus trichocarpa and measured the response of plant growth related traits (root:shoot, biomass production, root and leaf growth rates and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light–Asat, and saturating CO2–Amax. Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content. In sum, bacterial inoculation did not significantly increase plant carbon fixation and biomass, but their presence altered where and how carbon was being allocated in the plant host.

  8. Hairy Root and Its Application in Plant Genetic Engineering

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Agrobacterium rhizogenes Conn. causes hairy root disease in plants. Hairy root-infected A. rhizogenes is characterized by a high growth rate and genetic stability. Hairy root cultures have been proven to be an efficient means of producing secondary metabolites that are normally biosynthesized in roots of differentiated plants.Furthermore, a transgenic root system offers tremendous potential for introducing additional genes along with the Ri plasmid, especially with modified genes, into medicinal plant cells with A. rhizogenes vector systems.The cultures have turned out to be a valuable tool with which to study the biochemical properties and the gene expression profile of metabolic pathways. Moreover, the cultures can be used to elucidate the intermediates and key enzymes involved in the biosynthesis of secondary metabolites. The present article discusses various applications of hairy root cultures in plant genetic engineering and potential problems associated with them.

  9. GiA Roots: software for the high throughput analysis of plant root system architecture

    OpenAIRE

    Galkovskyi Taras; Mileyko Yuriy; Bucksch Alexander; Moore Brad; Symonova Olga; Price Charles A; Topp Christopher N; Iyer-Pascuzzi Anjali S; Zurek Paul R; Fang Suqin; Harer John; Benfey Philip N; Weitz Joshua S

    2012-01-01

    Abstract Background Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. Results We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically...

  10. Conserved Gene Expression Programs in Developing Roots from Diverse Plants.

    Science.gov (United States)

    Huang, Ling; Schiefelbein, John

    2015-08-01

    The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants.

  11. The role of root border cells in plant defense.

    Science.gov (United States)

    Hawes, M C; Gunawardena, U; Miyasaka, S; Zhao, X

    2000-03-01

    The survival of a plant depends upon the capacity of root tips to sense and move towards water and other nutrients in the soil. Perhaps because of the root tip's vital role in plant health, it is ensheathed by large populations of detached somatic cells - root 'border' cells - which have the ability to engineer the chemical and physical properties of the external environment. Of particular significance, is the production by border cells of specific chemicals that can dramatically alter the behavior of populations of soilborne microflora. Molecular approaches are being used to identify and manipulate the expression of plant genes that control the production and the specialized properties of border cells in transgenic plants. Such plants can be used to test the hypothesis that these unusual cells act as a phalanx of biological 'goalies', which neutralize dangers to newly generated root tissue as the root tip makes its way through soil.

  12. Plant diversity effects on root decomposition in grasslands

    Science.gov (United States)

    Chen, Hongmei; Mommer, Liesje; van Ruijven, Jasper; de Kroon, Hans; Gessler, Arthur; Scherer-Lorenzen, Michael; Wirth, Christian; Weigelt, Alexandra

    2016-04-01

    Loss of plant diversity impairs ecosystem functioning. Compared to other well-studied processes, we know little about whether and how plant diversity affects root decomposition, which is limiting our knowledge on biodiversity-carbon cycling relationships in the soil. Plant diversity potentially affects root decomposition via two non-exclusive mechanisms: by providing roots of different substrate quality and/or by altering the soil decomposition environment. To disentangle these two mechanisms, three decomposition experiments using a litter-bag approach were conducted on experimental grassland plots differing in plant species richness, functional group richness and functional group composition (e.g. presence/absence of grasses, legumes, small herbs and tall herbs, the Jena Experiment). We studied: 1) root substrate quality effects by decomposing roots collected from the different experimental plant communities in one common plot; 2) soil decomposition environment effects by decomposing standard roots in all experimental plots; and 3) the overall plant diversity effects by decomposing community roots in their 'home' plots. Litter bags were installed in April 2014 and retrieved after 1, 2 and 4 months to determine the mass loss. We found that mass loss decreased with increasing plant species richness, but not with functional group richness in the three experiments. However, functional group presence significantly affected mass loss with primarily negative effects of the presence of grasses and positive effects of the presence of legumes and small herbs. Our results thus provide clear evidence that species richness has a strong negative effect on root decomposition via effects on both root substrate quality and soil decomposition environment. This negative plant diversity-root decomposition relationship may partly account for the positive effect of plant diversity on soil C stocks by reducing C loss in addition to increasing primary root productivity. However, to fully

  13. Plant development in space: Observations on root formation and growth

    Science.gov (United States)

    Levine, H. G.; Kann, R. P.; Krikorian, Abraham D.

    1990-01-01

    Root growth in space is discussed and observations on root production from plants flown as part of the Chromex project that were defined as to their origin, stage of development and physiological status, are presented. Roots were generated from fully differentiated, aseptically maintained individuals of Haplopappus gracilis (Compositae) under spaceflight conditions. Results are compared for tissue culture generated plantlets and comparably sized seedling clone individuals, both of which had their roots trimmed on Earth before they were loaded into NASA's plant growth unit and subjected to a 5 day shuttle flight (STS-29). Asepsis was maintained throughout the experiment. Overall root production was 40 to 50 percent greater under spaceflight conditions than during ground control tests. However, root formation slowed down towards the end of the flight. This decrease in new roots did not occur in the ground controls that sought to simulate flight except for microgravity.

  14. Root Border Cells and Their Role in Plant Defense.

    Science.gov (United States)

    Hawes, Martha; Allen, Caitilyn; Turgeon, B Gillian; Curlango-Rivera, Gilberto; Minh Tran, Tuan; Huskey, David A; Xiong, Zhongguo

    2016-08-01

    Root border cells separate from plant root tips and disperse into the soil environment. In most species, each root tip can produce thousands of metabolically active cells daily, with specialized patterns of gene expression. Their function has been an enduring mystery. Recent studies suggest that border cells operate in a manner similar to mammalian neutrophils: Both cell types export a complex of extracellular DNA (exDNA) and antimicrobial proteins that neutralize threats by trapping pathogens and thereby preventing invasion of host tissues. Extracellular DNases (exDNases) of pathogens promote virulence and systemic spread of the microbes. In plants, adding DNase I to root tips eliminates border cell extracellular traps and abolishes root tip resistance to infection. Mutation of genes encoding exDNase activity in plant-pathogenic bacteria (Ralstonia solanacearum) and fungi (Cochliobolus heterostrophus) results in reduced virulence. The study of exDNase activities in plant pathogens may yield new targets for disease control.

  15. Plant growth-promoting rhizobacteria and root system functioning

    Directory of Open Access Journals (Sweden)

    Jordan eVacheron

    2013-09-01

    Full Text Available The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, Plant Growth-Promoting Rhizobacteria (PGPR colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

  16. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2015-10-01

    Full Text Available Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV. The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N, phosphoprotein (P, large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses.

  17. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis.

    Science.gov (United States)

    Wang, Qiang; Ma, Xiaonan; Qian, ShaSha; Zhou, Xin; Sun, Kai; Chen, Xiaolan; Zhou, Xueping; Jackson, Andrew O; Li, Zhenghe

    2015-10-01

    Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The procedure involves Agrobacterium-mediated transcription of full-length SYNV antigenomic RNA and co-expression of the nucleoprotein (N), phosphoprotein (P), large polymerase core proteins and viral suppressors of RNA silencing in Nicotiana benthamiana plants. Optimization of core protein expression resulted in up to 26% recombinant SYNV (rSYNV) infections of agroinfiltrated plants. A reporter virus, rSYNV-GFP, engineered by inserting a green fluorescence protein (GFP) gene between the N and P genes was able to express GFP during systemic infections and after repeated plant-to-plant mechanical passages. Deletion analyses with rSYNV-GFP demonstrated that SYNV cell-to-cell movement requires the sc4 protein and suggested that uncoiled nucleocapsids are infectious movement entities. Deletion analyses also showed that the glycoprotein is not required for systemic infection, although the glycoprotein mutant was defective in virion morphogenesis. Taken together, we have developed a robust reverse genetics system for SYNV that provides key insights into morphogenesis and movement of an enveloped plant virus. Our study also provides a template for developing analogous systems for reverse genetic analysis of other plant NSR viruses.

  18. Plant rooting strategies in water-limited ecosystems

    Science.gov (United States)

    Collins, D. B. G.; Bras, R. L.

    2007-06-01

    Root depth and distribution are vital components of a plant's strategy for growth and survival in water-limited ecosystems and play significant roles in hydrologic and biogeochemical cycling. Knowledge of root profiles is invaluable in measuring and predicting ecosystem dynamics, yet data on root profiles are difficult to obtain. We developed an ecohydrological model of environmental forcing, soil moisture dynamics, and transpiration to explore dependencies of optimal rooting on edaphic, climatic, and physiological factors in water-limited ecosystems. The analysis considers individual plants with fixed biomass. Results of the optimization approach are consistent with profiles observed in nature. Optimal rooting was progressively deeper, moving from clay to loam, silt and then sand, and in wetter and cooler environments. Climates with the majority of the rainfall in winter produced deeper roots than if the rain fell in summer. Long and infrequent storms also favored deeper rooting. Plants that exhibit water stress at slight soil moisture deficiencies consistently showed deeper optimal root profiles. Silt generated the greatest sensitivity to differences in climatic and physiological parameters. The depth of rooting is governed by the depth to which water infiltrates, as influenced by soil properties and the timing and magnitude of water input and evaporative demand. These results provide a mechanistic illustration of the diversity of rooting strategies in nature.

  19. Root herbivore identity matters in plant-mediated interactions between root and shoot herbivores

    NARCIS (Netherlands)

    Wurst, S.; Putten, van der W.H.

    2007-01-01

    Plants are simultaneously attacked by a multitude of herbivores that affect plant responses and plant-mediated interactions in a variety of ways. So far, studies on indirect interactions between below- and aboveground herbivores have almost exclusively focused on interactions between only one root

  20. Arbuscular mycorrhiza: the mother of plant root endosymbioses.

    Science.gov (United States)

    Parniske, Martin

    2008-10-01

    Arbuscular mycorrhiza (AM), a symbiosis between plants and members of an ancient phylum of fungi, the Glomeromycota, improves the supply of water and nutrients, such as phosphate and nitrogen, to the host plant. In return, up to 20% of plant-fixed carbon is transferred to the fungus. Nutrient transport occurs through symbiotic structures inside plant root cells known as arbuscules. AM development is accompanied by an exchange of signalling molecules between the symbionts. A novel class of plant hormones known as strigolactones are exuded by the plant roots. On the one hand, strigolactones stimulate fungal metabolism and branching. On the other hand, they also trigger seed germination of parasitic plants. Fungi release signalling molecules, in the form of 'Myc factors' that trigger symbiotic root responses. Plant genes required for AM development have been characterized. During evolution, the genetic programme for AM has been recruited for other plant root symbioses: functional adaptation of a plant receptor kinase that is essential for AM symbiosis paved the way for nitrogen-fixing bacteria to form intracellular symbioses with plant cells.

  1. The unseen iceberg: plant roots in arctic tundra.

    Science.gov (United States)

    Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F; Euskirchen, Eugenie S; McGuire, A David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey M; Wullschleger, Stan D

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  2. White root tips supply plants with oxygen, water and nutrients

    NARCIS (Netherlands)

    Heuvelink, E.; Kierkels, T.

    2016-01-01

    The main, most important function of roots belonging to horticultural crops is the uptake of water and nutrients. Healthy roots are essential for a healthy plant. After all, if the uptake of water and nutrients is not functioning properly, then other aspects also leave a lot to be desired

  3. Uptake of water from soils by plant roots

    NARCIS (Netherlands)

    Raats, P.A.C.

    2007-01-01

    Uptake of water by plant roots can be considered at two different Darcian scales, referred to as the mesoscopic and macroscopic scales. At the mesoscopic scale, uptake of water is represented by a flux at the soil¿root interface, while at the macroscopic scale it is represented by a sink term in the

  4. The unseen iceberg: Plant roots in arctic tundra

    Science.gov (United States)

    Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, Anthony; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  5. Effect of plant growth promoting rhizobacteria on root morphology of ...

    African Journals Online (AJOL)

    Jane

    2011-10-03

    Oct 3, 2011 ... fertilizers, are highly effective in improving root morphology and growth in safflower. .... made by Duncan's Multiple Range Test (Duncan, 1955). ... In case of cv. Saif-32 ..... Previous studies showed that plant growth promotion.

  6. Plant root tortuosity: an indicator of root path formation in soil with different composition and density

    Science.gov (United States)

    Popova, Liyana; van Dusschoten, Dagmar; Nagel, Kerstin A.; Fiorani, Fabio; Mazzolai, Barbara

    2016-01-01

    Background and Aims Root soil penetration and path optimization are fundamental for root development in soil. We describe the influence of soil strength on root elongation rate and diameter, response to gravity, and root-structure tortuosity, estimated by average curvature of primary maize roots. Methods Soils with different densities (1·5, 1·6, 1·7 g cm−3), particle sizes (sandy loam; coarse sand mixed with sandy loam) and layering (monolayer, bilayer) were used. In total, five treatments were performed: Mix_low with mixed sand low density (three pots, 12 plants), Mix_medium - mixed sand medium density (three pots, 12 plants), Mix_high - mixed sand high density (three pots, ten plants), Loam_low sandy loam soil low density (four pots, 16 plants), and Bilayer with top layer of sandy loam and bottom layer mixed sand both of low density (four pots, 16 plants). We used non-invasive three-dimensional magnetic resonance imaging to quantify effects of these treatments. Key Results Roots grew more slowly [root growth rate (mm h–1); decreased 50 %] with increased diameters [root diameter (mm); increased 15 %] in denser soils (1·7 vs. 1·5 g cm–3). Root response to gravity decreased 23 % with increased soil compaction, and tortuosity increased 10 % in mixed sand. Response to gravity increased 39 % and tortuosity decreased 3 % in sandy loam. After crossing a bilayered–soil interface, roots grew more slowly, similar to roots grown in soil with a bulk density of 1·64 g cm–3, whereas the actual experimental density was 1·48±0·02 g cm–3. Elongation rate and tortuosity were higher in Mix_low than in Loam_low. Conclusions The present study increases our existing knowledge of the influence of physical soil properties on root growth and presents new assays for studying root growth dynamics in non-transparent media. We found that root tortuosity is indicative of root path selection, because it could result from both mechanical deflection and

  7. Nematode feeding sites: unique organs in plant roots.

    Science.gov (United States)

    Kyndt, Tina; Vieira, Paulo; Gheysen, Godelieve; de Almeida-Engler, Janice

    2013-11-01

    Although generally unnoticed, nearly all crop plants have one or more species of nematodes that feed on their roots, frequently causing tremendous yield losses. The group of sedentary nematodes, which are among the most damaging plant-parasitic nematodes, cause the formation of special organs called nematode feeding sites (NFS) in the root tissue. In this review we discuss key metabolic and cellular changes correlated with NFS development, and similarities and discrepancies between different types of NFS are highlighted.

  8. Random River Fluctuations Shape the Root Profile of Riparian Plants

    Science.gov (United States)

    Perona, P.; Tron, S.; Gorla, L.; Schwarz, M.; Laio, F.; Ridolfi, L.

    2015-12-01

    Plant roots are recognized to play a key role in the riparian ecosystems: they contribute to the plant as well as to the streambank and bedforms stability, help to enhance the water quality of the river, and sustain the belowground biodiversity. The complexity of the root-system architecture recalls their remarkable ability to respond to environmental conditions, notably including soil heterogeneity, resource availability, and climate. In fluvial environments where nutrient availability is not a limiting factor for plant to grow, the root growth of phreatophytic plants is strongly influenced by water and oxygen availability in the soil. In this work, we demonstrate that the randomness of water table fluctuations, determined by streamflow stochastic variability, is likely to be the main driver for the root development strategy of riparian plants. A collection of root measurements from field and outdoor controlled experiments is used to demonstrate that the vertical root density distribution can be described by a simple analytical expression, whose parameters are linked to properties of soil, plant and water table fluctuations. This physically-based expression is able to predict riparian plant roots adaptability to different hydrological and pedologic scenarios in riverine environments. Hence, this model has great potential towards the comprehension of the effects of future climate and environmental changing conditions on plant adaptation and river ecomorphodynamic processes. Finally, we present an open access graphical user interface that we developed in order to estimate the vertical root distribution in fluvial environments and to make the model easily available to a wider scientific and professional audience.

  9. RootGraph: a graphic optimization tool for automated image analysis of plant roots.

    Science.gov (United States)

    Cai, Jinhai; Zeng, Zhanghui; Connor, Jason N; Huang, Chun Yuan; Melino, Vanessa; Kumar, Pankaj; Miklavcic, Stanley J

    2015-11-01

    This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions.

  10. Using Hairy Roots for Production of Valuable Plant Secondary Metabolites.

    Science.gov (United States)

    Tian, Li

    2015-01-01

    Plants synthesize a wide variety of natural products, which are traditionally termed secondary metabolites and, more recently, coined specialized metabolites. While these chemical compounds are employed by plants for interactions with their environment, humans have long since explored and exploited plant secondary metabolites for medicinal and practical uses. Due to the tissue-specific and low-abundance accumulation of these metabolites, alternative means of production in systems other than intact plants are sought after. To this end, hairy root culture presents an excellent platform for producing valuable secondary metabolites. This chapter will focus on several major groups of secondary metabolites that are manufactured by hairy roots established from different plant species. Additionally, the methods for preservations of hairy roots will also be reviewed.

  11. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    Science.gov (United States)

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  12. Fungal root endophytes of the carnivorous plant Drosera rotundifolia.

    Science.gov (United States)

    Quilliam, Richard S; Jones, David L

    2010-06-01

    As carnivorous plants acquire substantial amounts of nutrients from the digestion of their prey, mycorrhizal associations are considered to be redundant; however, fungal root endophytes have rarely been examined. As endophytic fungi can have profound impacts on plant communities, we aim to determine the extent of fungal root colonisation of the carnivorous plant Drosera rotundifolia at two points in the growing season (spring and summer). We have used a culture-dependent method to isolate fungal endophytes and diagnostic polymerase chain reaction methods to determine arbuscular mycorrhizal fungi colonisation. All of the roots sampled contained culturable fungal root endophytes; additionally, we have provided molecular evidence that they also host arbuscular mycorrhizal fungi. Colonisation showed seasonal differences: Roots in the spring were colonised by Articulospora tetracladia, two isolates of uncultured ectomycorrhizal fungi, an unidentified species of fungal endophyte and Trichoderma viride, which was present in every plant sampled. In contrast, roots in the summer were colonised by Alatospora acuminata, an uncultured ectomycorrhizal fungus, Penicillium pinophilum and an uncultured fungal clone. Although the functional roles of fungal endophytes of D. rotundifolia are unknown, colonisation may (a) confer abiotic stress tolerance, (b) facilitate the acquisition of scarce nutrients particularly at the beginning of the growing season or (c) play a role in nutrient signalling between root and shoot.

  13. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack

    NARCIS (Netherlands)

    Huber, M.; Epping, Janina; Schulze Gronover, C.; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Kollner, T.G.; Vogel, H.; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A.M.; Verhoeven, K.J.F.; Preite, V.; Gershenzon, J.; Erb, M.

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivor

  14. In vitro CLE peptide bioactivity assay on plant roots

    Science.gov (United States)

    Plant CLAVATA3/ESR (CLE)-related proteins play diverse roles in plant growth and development including regulating the development of root meristem. Mature CLE peptides are typically 12-13 amino acids (aa) in length that are derived from the conserved C-termini of their precursor proteins. Genes enco...

  15. Integrating water by plant roots over spatially distributed soil salinity

    Science.gov (United States)

    Homaee, Mehdi; Schmidhalter, Urs

    2010-05-01

    In numerical simulation models dealing with water movement and solute transport in vadose zone, the water budget largely depends on uptake patterns by plant roots. In real field conditions, the uptake pattern largely changes in time and space. When dealing with soil and water salinity, most saline soils demonstrate spatially distributed osmotic head over the root zone. In order to quantify such processes, the major difficulty stems from lacking a sink term function that adequately accounts for the extraction term especially under variable soil water osmotic heads. The question of how plants integrate such space variable over its rooting depth remains as interesting issue for investigators. To move one step forward towards countering this concern, a well equipped experiment was conducted under heterogeneously distributed salinity over the root zone with alfalfa. The extraction rates of soil increments were calculated with the one dimensional form of Richards equation. The results indicated that the plant uptake rate under different mean soil salinities preliminary reacts to soil salinity, whereas at given water content and salinity the "evaporative demand" and "root activity" become more important to control the uptake patterns. Further analysis revealed that root activity is inconstant when imposed to variable soil salinity. It can be concluded that under heterogeneously distributed salinity, most water is taken from the less saline increment while the extraction from other root zone increments with higher salinities never stops.

  16. Soil Anti-Scouribility Enhanced by Plant Roots

    Institute of Scientific and Technical Information of China (English)

    Zheng-Chao ZHOU; Zhou-Ping SHANGGUAN

    2005-01-01

    The magnitude of soil anti-scouribility depends on the physical condition of the soil. Plant roots can greatly enhance soil stability and anti-erodibility. A scouring experiment of undisturbed soil was conducted to investigate the effects of roots on soil anti-scouribility and its distribution in the soil profile. At the end of each erosion test, plant roots were collected from soil samples and root surface area was calculated by means of a computer image analysis system (CIAS). Root surface area density (RSAD), the surface area of the roots per unit of soil volume, was related to soil anti-scouribility. More than 83% of root surface area was concentrated in the 0 - 30 cm soil layer. Soil anti-scouribility increased with an increase in RSAD and the value of intensified soil anti-scouribility (△AS) can be expressed by exponential equations, depending on the plant species. These equations were △AS = 9.578 6 RSAD0.8321 (R2 = 0.951) for afforested Pinus tabulaeformis Cart., △AS = 7.808 7 RSAD0.7894 (R2 = 0.974) for afforested Robinia pseudoacacia L., and △AS = 9.256 6 RSAD0.8707 (R2 = 0.899) for Bothriochloa ischemum L.

  17. Sodium efflux in plant roots: what do we really know?

    Science.gov (United States)

    Britto, D T; Kronzucker, H J

    2015-08-15

    The efflux of sodium (Na(+)) ions across the plasma membrane of plant root cells into the external medium is surprisingly poorly understood. Nevertheless, Na(+) efflux is widely regarded as a major mechanism by which plants restrain the rise of Na(+) concentrations in the cytosolic compartments of root cells and, thus, achieve a degree of tolerance to saline environments. In this review, several key ideas and bodies of evidence concerning root Na(+) efflux are summarized with a critical eye. Findings from decades past are brought to bear on current thinking, and pivotal studies are discussed, both "purely physiological", and also with regard to the SOS1 protein, the only major Na(+) efflux transporter that has, to date, been genetically characterized. We find that the current model of rapid transmembrane sodium cycling (RTSC), across the plasma membrane of root cells, is not adequately supported by evidence from the majority of efflux studies. An alternative hypothesis cannot be ruled out, that most Na(+) tracer efflux from the root in the salinity range does not proceed across the plasma membrane, but through the apoplast. Support for this idea comes from studies showing that Na(+) efflux, when measured with tracers, is rarely affected by the presence of inhibitors or the ionic composition in saline rooting media. We conclude that the actual efflux of Na(+) across the plasma membrane of root cells may be much more modest than what is often reported in studies using tracers, and may predominantly occur in the root tips, where SOS1 expression has been localized.

  18. Strigolactone and root infestation by parasitic plants.

    NARCIS (Netherlands)

    Cardoso, C.; Ruyter-Spira, C.P.; Bouwmeester, H.J.

    2011-01-01

    Strigolactones are signaling molecules that play a role in host recognition by parasitic plants of the Striga, Orobanche and Phelipanche genera which are among the most detrimental weeds in agriculture. The same class of molecules is also involved in the establishment of the symbiosis of plants with

  19. Cell wall matrix polysaccharide distribution and cortical microtubule organization: two factors controlling mesophyll cell morphogenesis in land plants.

    Science.gov (United States)

    Sotiriou, P; Giannoutsou, E; Panteris, E; Apostolakos, P; Galatis, B

    2016-03-01

    This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril

  20. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    Science.gov (United States)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  1. Role of root microbiota in plant productivity.

    Science.gov (United States)

    Tkacz, Andrzej; Poole, Philip

    2015-04-01

    The growing human population requires increasing amounts of food, but modern agriculture has limited possibilities for increasing yields. New crop varieties may be bred to have increased yields and be more resistant to environmental stress and pests. However, they still require fertilization to supplement essential nutrients that are normally limited in the soil. Soil microorganisms present an opportunity to reduce the requirement for inorganic fertilization in agriculture. Microorganisms, due to their enormous genetic pool, are also a potential source of biochemical reactions that recycle essential nutrients for plant growth. Microbes that associate with plants can be considered to be part of the plant's pan-genome. Therefore, it is essential for us to understand microbial community structure and their 'metagenome' and how it is influenced by different soil types and crop varieties. In the future we may be able to modify and better utilize the soil microbiota potential for promoting plant growth.

  2. Root architecture characteristics of plant inlay in live slope grating

    Institute of Scientific and Technical Information of China (English)

    Gao Jia-rong; Wang Fang; Gao Yang; Rosemarie Stangl

    2007-01-01

    In the experimental garden of the Department of Soil Bioengineering and Landscape Construction, University of Applied Life Sciences in Vienna, Austria, coarse root systems of three different brush species were completely excavated and semi-automatically digitized. The species were Lonicera xylosteum, Ligustrum vulgare and Euonymus europaeus. The 3-D root architectures reveal different growth strategies between species, which are related to ecological characteristics and physical soil properties. The root architecture of Lonicera xylosteum and Ligustrum vulgare, planted in the under layer of the live slope grading, where the soil is very tight and the soil water content and fertility are relatively low, is shallow. However, the root distribution of E. europaeus, planted in the middle layer, where environmental conditions are better, is deeper. Most of the root biomass of the three species is concentrated in the 0-30 cm soil layer. A quarter of the root biomass ofLigustrum vulgare is distributed in the upper layer of the plant inlay. E. europaeus has a relatively even distribution in the 30-60 cm and 60-90 cm soil layer.

  3. Evaluating mechano-transduction and touch responses in plant roots.

    Science.gov (United States)

    Swanson, Sarah J; Barker, Richard; Ye, Yonggeng; Gilroy, Simon

    2015-01-01

    Mechanical forces can be imposed on plants either from the environment, through factors such as the weather, mechanical properties of the soil and animal movement, or through the internal forces generated by the interplay between turgor-driven growth and the rigid plant cell wall. Such mechanical cues have profound effects on plant growth and development leading to responses ranging from directional growth patterns as seen, e.g., in tendrils coiling around supports, to the reprogramming of entire developmental programs. Thus, assays to assess mechanical sensitivity and response provide important tools for helping understand a wide range of plant physiological and developmental responses. Here, we describe simple assays to monitor mechanical response in the plant root system focusing on the quantification of root skewing, waving and obstacle avoidance.

  4. Role of acetylcholine on plant root-shoot signal transduction

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The role of acetylcholine (ACh) on plant root- shoot communication was investigated using the root-split system of Vicia faba L. In the experiments, slight osmotic stress caused the decrease of ACh content in root tips and the xylem sap transported up per time unit from root tip to the shoot when the water potential of the shoot was kept unchanged. It also caused the decrease of ACh content in the abaxial epidermis. The decrease was highly correlative to the changes of transpiration rate, suggesting that the decrease of ACh content probably functions as a signal to regulate stomatal behavior. The effect of osmotic stress might be mainly through the inhibition of the ACh synthesis in root tip; thus further influences the ACh content in root tip, xylem sap and abaxial epidermis and resulting in the changes of stomatal behavior. These results provide new evidence that plants transduce positive and negative signals among roots and shoots to coordinate stomatal behavior and adapt to variable environments.

  5. Induction of Pseudoactinorhizae by the Plant Pathogen Agrobacterium rhizogenes.

    Science.gov (United States)

    Berg, R H; Liu, L; Dawson, J O; Savka, M A; Farrand, S K

    1992-02-01

    Infection of Elaeagnus angustifolia cotyledonary wounds by Agrobacterium rhizogenes strain NCPPB 2659 resulted in the formation of pseudoactinorhizae on roots differentiated from callus. These pseudoactinorhizal root nodules were anatomically indistinguishable from the actinorhizae induced by the plant's microsymbiont Frankia. This unusual hairy root phenotype provides support for the concept that the genetic program for actinorhiza morphogenesis resides in the plant's genome.

  6. Fluorescence Imaging of the Cytoskeleton in Plant Roots.

    Science.gov (United States)

    Dyachok, Julia; Paez-Garcia, Ana; Yoo, Cheol-Min; Palanichelvam, Karuppaiah; Blancaflor, Elison B

    2016-01-01

    During the past two decades the use of live cytoskeletal probes has increased dramatically due to the introduction of the green fluorescent protein. However, to make full use of these live cell reporters it is necessary to implement simple methods to maintain plant specimens in optimal growing conditions during imaging. To image the cytoskeleton in living Arabidopsis roots, we rely on a system involving coverslips coated with nutrient supplemented agar where the seeds are directly germinated. This coverslip system can be conveniently transferred to the stage of a confocal microscope with minimal disturbance to the growth of the seedling. For roots with a larger diameter such as Medicago truncatula, seeds are first germinated in moist paper, grown vertically in between plastic trays, and roots mounted on glass slides for confocal imaging. Parallel with our live cell imaging approaches, we routinely process fixed plant material via indirect immunofluorescence. For these methods we typically use non-embedded vibratome-sectioned and whole mount permeabilized root tissue. The clearly defined developmental regions of the root provide us with an elegant system to further understand the cytoskeletal basis of plant development.

  7. Hairy roots induced by Agrobacterium rhizogenes and production of regenerative plants in hairy root cultures in maize

    Institute of Scientific and Technical Information of China (English)

    XU; Hongwei; ZHOU; Xiaofu; LU; Jingmei; WANG; Junjie; WANG; Xingzhi

    2006-01-01

    Hairy roots of maize were induced by infecting 15-d calli with Agrobacterium rhizogenes. The hairy roots cultured in hormone-free media showed the vigorous growth and typical hairy root features. The regenerated plants were produced from hairy roots in MS media supplemented with 1.6 mg/L ZT and 0.4 mg/L NAA. The PCR-Southern hybridization demonstrated that T-DNA had been integrated into the chromosome of regenerated plants.

  8. CHARACTERIZATION OF CADMIUM UPTAKE BY ROOTS OF DURUM WHEAT PLANTS

    Directory of Open Access Journals (Sweden)

    Lyubka Koleva

    2009-03-01

    Full Text Available Root Cd uptake of durum wheat plants (cv. Beloslava was characterized in hydroponics conditions. The uptake experiments have been performed in Cd concentration range of 0 – 2 μM adjusted by both stable Cd and radiolabeled (109Cd tracer. Cd removal from the solution over duration of 1 hour reached 50%. The part of loosely adsorbed Cd ions on root surface accounted for about 20%. Over 30% of absorbed Cd at 0.5 μM Cd treatment was retained in root cell walls. The apparent root Cd accumulation showed concentration-dependant tendency with the highest accumulation value of 7.45 nmol Cd g FW-1.

  9. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions.

    Science.gov (United States)

    Silva-Navas, Javier; Moreno-Risueno, Miguel A; Manzano, Concepción; Pallero-Baena, Mercedes; Navarro-Neila, Sara; Téllez-Robledo, Bárbara; Garcia-Mina, Jose M; Baigorri, Roberto; Gallego, Francisco Javier; del Pozo, Juan C

    2015-10-01

    In nature roots grow in the dark and away from light (negative phototropism). However, most current research in root biology has been carried out with the root system grown in the presence of light. Here, we have engineered a device, called Dark-Root (D-Root), to grow plants in vitro with the aerial part exposed to the normal light/dark photoperiod while the roots are in the dark or exposed to specific wavelengths or light intensities. D-Root provides an efficient system for cultivating a large number of seedlings and easily characterizing root architecture in the dark. At the morphological level, root illumination shortens root length and promotes early emergence of lateral roots, therefore inducing expansion of the root system. Surprisingly, root illumination also affects shoot development, including flowering time. Our analyses also show that root illumination alters the proper response to hormones or abiotic stress (e.g. salt or osmotic stress) and nutrient starvation, enhancing inhibition of root growth. In conclusion, D-Root provides a growing system closer to the natural one for assaying Arabidopsis plants, and therefore its use will contribute to a better understanding of the mechanisms involved in root development, hormonal signaling and stress responses.

  10. Role of AtCDC48 & the AtCDC48 Regulatory Protein Family, PUX, in Plant Cell Morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Bednarek, Sebastian, Y.

    2009-11-08

    CDC48 in membrane trafficking and organelle biogenesis during plant cytokinesis and cell expansion, 2) to analyze the subcellular localization and function of two members of the SYP3 t–SNARE family, SYP31 and SYP32, and 3) to determine the role of select members of the PUX protein family and the distinct biochemical pathways to which they target the chaperone activity of AtCDC48 to. The integration of genetic, morphological, and biochemical data from these studies is expected to contribute significantly to both an understanding of the function and organization of the plant secretory pathway and its role in plant cell morphogenesis.

  11. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans.

    Science.gov (United States)

    Raut, Jayant S; Shinde, Ravikumar B; Chauhan, Nitin M; Karuppayil, S Mohan

    2013-01-01

    Biofilm-related infections caused by Candida albicans and associated drug resistant micro-organisms are serious problems for immunocompromised populations. Molecules which can prevent or remove biofilms are needed. Twenty-eight terpenoids of plant origin were analysed for their activity against growth, virulence attributes, and biofilms of C. albicans. Eighteen molecules exhibited minimum inhibitory concentrations of terpenoids resulted in significant (p terpenoids were identified as inhibitors of mature biofilms. This study demonstrated the antibiofilm potential of terpenoids, which need to be further explored as therapeutic strategy against biofilm associated infections of C. albicans.

  12. Externally imposed electric field enhances plant root tip regeneration

    Science.gov (United States)

    Kral, Nicolas; Hanna Ougolnikova, Alexandra

    2016-01-01

    Abstract In plants, shoot and root regeneration can be induced in the distinctive conditions of tissue culture (in vitro) but is also observed in intact individuals (in planta) recovering from tissue damage. Roots, for example, can regenerate their fully excised meristems in planta, even in mutants with impaired apical stem cell niches. Unfortunately, to date a comprehensive understanding of regeneration in plants is still missing. Here, we provide evidence that an imposed electric field can perturb apical root regeneration in Arabidopsis. Crucially, we explored both spatial and temporal competences of the stump to respond to electrical stimulation, by varying respectively the position of the cut and the time interval between excision and stimulation. Our data indicate that a brief pulse of an electric field parallel to the root is sufficient to increase by up to two‐fold the probability of its regeneration, and to perturb the local distribution of the hormone auxin, as well as cell division regulation. Remarkably, the orientation of the root towards the anode or the cathode is shown to play a role. PMID:27606066

  13. Corrections for rooting volume and plant size reveal negative effects of neighbour presence on root allocation in pea

    NARCIS (Netherlands)

    Chen, B.J.W.; During, H.J.; Vermeulen, P.J.; Kroon, de H.; Poorter, H.; Anten, Niels

    2015-01-01

    Plants are able to detect the presence of their neighbours belowground. The associated root responses may affect plant performance, plant-plant interactions and community dynamics, but the extent and direction of these responses is heavily debated. Some studies suggest that plants will over-prolifer

  14. Corrections for rooting volume and plant size reveal negative effects of neighbour presence on root allocation in pea

    NARCIS (Netherlands)

    Chen, B.J.W.; During, H.J.; Vermeulen, P.J.; Kroon, de H.; Poorter, H.; Anten, N.P.R.

    2015-01-01

    Plants are able to detect the presence of their neighbours belowground. The associated root responses may affect plant performance, plant-plant interactions and community dynamics, but the extent and direction of these responses is heavily debated. Some studies suggest that plants will over-prolifer

  15. Effects of ultraviolet radiation on microtubule organisation and morphogenesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Staxen, I.

    1994-09-01

    The involvement of the cytoskeleton in the development of somatic embryos was studied in Larix x eurolepis. Protoplasts were isolated from both somatic embryo-regenerating and non-generating cultures and fractionated on a discontinuous Percoll density gradient. Protoplasts of two cell lines of Larix eurolepis, one with regenerating potential and one lacking this potential, were compared. In contrast to the non-regenerating line were a protoplast-like organisation of the cortical microtubules was maintained, re-organisation of this microtubular network occurred in the regenerable line after only three days of culture, indicating that organised growth was occurring. However, this early organisation of cortical microtubules may not always be a valid marker for regenerable and non-regenerable material. In order to investigate the effect of ultraviolet-B (UV-B, 280-320 nm) radiation on the microtubule cytoskeleton, protoplasts were isolated from leaves of Petunia hybrida and subjected to four different doses of UV-B radiation. The organisation of the microtubules and the progression of the cells through the cell cycle was observed at 0, 24, 48 and 72 h after irradiation. UV-B induced breaks in the cortical microtubules resulting in shorter fragments with increasing amounts of radiation. Also, the division of the protoplasts was delayed. Whole Petunia plants were grown in growth chambers in the presence and absence of UV-B. The plants responded to UV-B with increased rates of CO{sub 2} assimilation, a 60% increase in UV-screening compounds and the changes in the morphology of the leaves that were reflected in a 70-100% increase in leaf area and 20% decrease in leaf thickness. The microtubules of the epidermal cells was not affected by UV-B, nor was the number of epidermal cells (per unit area). The increase in leaf area in the UV-treated plants appeared due to stimulation of cell division in the leaf meristems. 111 refs, 5 figs, 2 tabs.

  16. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Directory of Open Access Journals (Sweden)

    Meret Huber

    2016-01-01

    Full Text Available Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg. decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha, and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  17. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack.

    Science.gov (United States)

    Huber, Meret; Epping, Janina; Schulze Gronover, Christian; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Köllner, Tobias G; Vogel, Heiko; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A M; Verhoeven, Koen; Preite, Veronica; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.

  18. [Root architecture of two desert plants in central Hexi Corridor of Northwest China].

    Science.gov (United States)

    Shan, Li-Shan; Li, Yi; Ren, Wei; Su, Shi-Ping; Dong, Qiu-Lian; Geng, Dong-Mei

    2013-01-01

    In this study, the root systems of desert plant species Reaumuria soongorica and Nitraria tangutorum in the central Hexi Corridor of Northwest China were excavated by shovel, and the characteristics of the plant root architecture were analyzed by using topology and fractal theory. The root topological indices of the two desert plants were small, and the root branching patterns were herringbone-like. The roots of the two desert plants had obvious fractal characteristics, with the fractal dimension of R. soongorica and N. tangutorum being (1.18 +/- 0.04) and (1.36 +/- 0.06), respectively. The root fractal dimension and fractal abundance were significantly positively correlated with the root average link length. The root average link lengths of the two plants were long, which enlarged the plants' effective nutrition space, and thus, made the plants adapt to the dry and infertile soil environment. The sums of the root cross-sectional areas before and after the root bifurcation of the two desert plants were equal, which verified the principle of Leonardo da Vinci. A total of 17 parameters of root architecture were analyzed by the principal component analysis. The parameters of root topological structure, numbers of root links, stepwise branching ratio, and root diameter could well present the root architecture characteristics of the two desert plants.

  19. Root profile in Multi-layered Dehesas: an approach to plant-to-plant Interaction

    Science.gov (United States)

    Rolo, V.; Moreno, G.

    2009-04-01

    Assessing plant-to-plant relationship is a key issue in agroforestry systems. Due to the sessile feature of plants most of these interactions take place within a restricted space, so characterizing the zone where the plant alters its environment is important to find overlapping areas where the facilitation or competition could occur. Main part of plan-to-plant interactions in the dehesa are located at belowground level, thus the main limited resources in Mediterranean ecosystems are soil nutrient and water. Hence a better knowledge of rooting plant profile can be useful to understand the functioning of the dehesa. The Iberian dehesa has always been considered as a silvopastoral system where, at least, two strata of vegetation coexist: native grasses and trees. However the dehesa is also a diverse system where cropland and encroached territories have been systematically combined, more or less periodically, with native pasture in order to obtain agricultural, pastoral and forestry outputs. These multipurpose mosaic-type systems generate several scenarios where the plant influence zone may be overlapped and the interaction, competition or facilitation, between plants can play an important role in the ecosystem functioning in terms of productivity and stability. In the present study our aim was to characterize the rooting profile of multi-layered dehesas in order to understand the competitive, and/or facilitative, relationships within the different plant strata. The root profile of Quercus ilex subsp. ballota, Cistus ladanifer, Retama spaherocarpa and natural grasses was studied. So 48 trenches, up to 2 meters deep, were excavated in 4 different environments: (i) grass; (ii) tree-grass; (iii) tree-shrub and (iv) tree-shrub-grass (12 trenches in each environment). The study was carried out in 4 dehesas, 2 encroached with C. ladanifer and 2 with R. spaherocarpa. In every trench soil samples were taken each 20 cm. Subsequently, all samples were sieved using different mesh

  20. The root herbivore history of the soil affects the productivity of a grassland plant community and determines plant response to new root herbivore attack.

    Directory of Open Access Journals (Sweden)

    Ilja Sonnemann

    Full Text Available Insect root herbivores can alter plant community structure by affecting the competitive ability of single plants. However, their effects can be modified by the soil environment. Root herbivory itself may induce changes in the soil biota community, and it has recently been shown that these changes can affect plant growth in a subsequent season or plant generation. However, so far it is not known whether these root herbivore history effects (i are detectable at the plant community level and/or (ii also determine plant species and plant community responses to new root herbivore attack. The present greenhouse study determined root herbivore history effects of click beetle larvae (Elateridae, Coleoptera, genus Agriotes in a model grassland plant community consisting of six common species (Achillea millefolium, Plantago lanceolata, Taraxacum officinale, Holcus lanatus, Poa pratensis, Trifolium repens. Root herbivore history effects were generated in a first phase of the experiment by growing the plant community in soil with or without Agriotes larvae, and investigated in a second phase by growing it again in the soils that were either Agriotes trained or not. The root herbivore history of the soil affected plant community productivity (but not composition, with communities growing in root herbivore trained soil producing more biomass than those growing in untrained soil. Additionally, it influenced the response of certain plant species to new root herbivore attack. Effects may partly be explained by herbivore-induced shifts in the community of arbuscular mycorrhizal fungi. The root herbivore history of the soil proved to be a stronger driver of plant growth on the community level than an actual root herbivore attack which did not affect plant community parameters. History effects have to be taken into account when predicting the impact of root herbivores on grasslands.

  1. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants.

    Science.gov (United States)

    Bonito, Gregory; Reynolds, Hannah; Robeson, Michael S; Nelson, Jessica; Hodkinson, Brendan P; Tuskan, Gerald; Schadt, Christopher W; Vilgalys, Rytas

    2014-07-01

    Microbial communities in plant roots provide critical links between above- and belowground processes in terrestrial ecosystems. Variation in root communities has been attributed to plant host effects and microbial host preferences, as well as to factors pertaining to soil conditions, microbial biogeography and the presence of viable microbial propagules. To address hypotheses regarding the influence of plant host and soil biogeography on root fungal and bacterial communities, we designed a trap-plant bioassay experiment. Replicate Populus, Quercus and Pinus plants were grown in three soils originating from alternate field sites. Fungal and bacterial community profiles in the root of each replicate were assessed through multiplex 454 amplicon sequencing of four loci (i.e., 16S, SSU, ITS, LSU rDNA). Soil origin had a larger effect on fungal community composition than did host species, but the opposite was true for bacterial communities. Populus hosted the highest diversity of rhizospheric fungi and bacteria. Root communities on Quercus and Pinus were more similar to each other than to Populus. Overall, fungal root symbionts appear to be more constrained by dispersal and biogeography than by host availability.

  2. H-independent glutamine transport in plant root tips.

    Directory of Open Access Journals (Sweden)

    Huaiyu Yang

    Full Text Available BACKGROUND: Glutamine is one of the primary amino acids in nitrogen assimilation and often the most abundant amino acid in plant roots. To monitor this important metabolite, a novel genetically encoded fluorescent FRET-reporter was constructed and expressed in Arabidopsis thaliana. As a candidate for the glutamine fluxes, the root tip localized, putative amino acid transporter CAT8 was analyzed and heterologously expressed in yeast and oocytes. PRINCIPAL FINDINGS: Rapid and reversible in vivo fluorescence changes were observed in reporter-expressing root tips upon exposure and removal of glutamine. FRET changes were detected at acid and neutral pH and in the presence of a protonophore, suggesting that part of the glutamine fluxes were independent of the pH. The putative amino acid transporter CAT8 transported glutamine, had a half maximal activity at approximately 100 microM and the transport was independent of external pH. CAT8 localized not only to the plasma membrane, but additionally to the tonoplast, when tagged with GFP. Ultrastructural analysis confirmed this dual localization and additionally identified CAT8 in membranes of autophagosomes. Loss-of function of CAT8 did not affect growth in various conditions, but over-expressor plants had increased sensitivity to a structural substrate analog, the glutamine synthetase inhibitor L-methionine sulfoximine. CONCLUSIONS: The combined data suggest that proton-independent glutamine facilitators exist in root tips.

  3. Differences in U root-to-shoot translocation between plant species explained by U distribution in roots

    Energy Technology Data Exchange (ETDEWEB)

    Straczek, Anne; Duquene, Lise [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Wegrzynek, Dariusz [IAEA, Seibersdorf Laboratories, A-2444 Seibersdorf (Austria); Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Chinea-Cano, Ernesto [IAEA, Seibersdorf Laboratories, A-2444 Seibersdorf (Austria); Wannijn, Jean [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Navez, Jacques [Royal Museum of Africa, Department of Geology, Leuvensesteenweg 13, 3080 Tervuren (Belgium); Vandenhove, Hildegarde, E-mail: hvandenh@sckcen.b [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium)

    2010-03-15

    Accumulation and distribution of uranium in roots and shoots of four plants species differing in their cation exchange capacity of roots (CECR) was investigated. After exposure in hydroponics for seven days to 100 mumol U L{sup -1}, distribution of uranium in roots was investigated through chemical extraction of roots. Higher U concentrations were measured in roots of dicots which showed a higher CECR than monocot species. Chemical extractions indicated that uranium is mostly located in the apoplasm of roots of monocots but that it is predominantly located in the symplasm of roots of dicots. Translocation of U to shoot was not significantly affected by the CECR or distribution of U between symplasm and apoplasm. Distribution of uranium in roots was investigated through chemical extraction of roots for all species. Additionally, longitudinal and radial distribution of U in roots of maize and Indian mustard, respectively showing the lowest and the highest translocation, was studied following X-ray fluorescence (XRF) analysis of specific root sections. Chemical analysis and XRF analysis of roots of maize and Indian mustard clearly indicated a higher longitudinal and radial transport of uranium in roots of Indian mustard than in roots of maize, where uranium mostly accumulated in root tips. These results showed that even if CECR could partly explain U accumulation in roots, other mechanisms like radial and longitudinal transport are implied in the translocation of U to the shoot.

  4. Arbuscular mycorrhizal fungi (Glomeromycota associated with roots of plants

    Directory of Open Access Journals (Sweden)

    Sławomir Kowalczyk

    2013-12-01

    Full Text Available The results of studies of the occurrence of arbuscular mycorrhizal fungi (AMF and arbuscular mycorrhizae of the phylum Glomeromycota associated with roots of 31 cultivated, uncultivated and protected plant species growing at 103 sites of the Lubuskie province NW Poland are presented and discussed. The AMF most frequently found were members of the genus Glomus. Other relatively frequently revealed fungi were Scutellospora spp. Spore populations of AMF generally were more abundant and diverse in cultivated soils. Most protected plant species harboured AMF.

  5. Corrections for rooting volume and plant size reveal negative effects of neighbour presence on root allocation in pea

    NARCIS (Netherlands)

    Chen, B.; During, H.J.; Vermeulen, P.J.; Kroon, de H.; Poorter, H.; Anten, N.P.R.

    2015-01-01

    1. Plants are able to detect the presence of their neighbours below-ground. The associated root responses may affect plant performance, plant–plant interactions and community dynamics, but the extent and direction of these responses is heavily debated. 2. Some studies suggest that plants will over-p

  6. Corrections for rooting volume and plant size reveal negative effects of neighbour presence on root allocation in pea

    NARCIS (Netherlands)

    Chen, B.; During, H.J.; Vermeulen, P.J.; Kroon, de H.; Poorter, H.; Anten, N.P.R.

    2015-01-01

    1. Plants are able to detect the presence of their neighbours below-ground. The associated root responses may affect plant performance, plant–plant interactions and community dynamics, but the extent and direction of these responses is heavily debated. 2. Some studies suggest that plants will over-p

  7. Aquatic adventitious roots of the wetland plant Meionectes brownii can photosynthesize

    DEFF Research Database (Denmark)

    Rich, Sarah Meghan; Ludwig, Martha; Pedersen, Ole

    2011-01-01

    • Many wetland plants produce aquatic adventitious roots from submerged stems. Aquatic roots can form chloroplasts, potentially producing endogenous carbon and oxygen. Here, aquatic root photosynthesis was evaluated in the wetland plant Meionectes brownii, which grows extensive stem-borne aquatic...... m(-3) dissolved CO(2), aquatic roots fix carbon at 0.016 µmol CO(2) g(-1) DM s(-1). Illuminated aquatic roots do not rely on exogenous inputs of O(2). • The photosynthetic ability of aquatic roots presumably offers an advantage to submerged M. brownii as aquatic roots, unlike sediment roots, need...

  8. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress.

    Science.gov (United States)

    Sheng, Min; Tang, Ming; Chen, Hui; Yang, Baowei; Zhang, Fengfeng; Huang, Yanhui

    2009-07-01

    Salt stress has become a severe global problem, and salinity is one of the most important abiotic factors limiting plant growth and yield. It is known that arbuscular mycorrhizal (AM) fungi decrease plant yield losses under salinity. With the aim of determining whether AM inoculation would give an advantage to root development under salt stress, a greenhouse experiment was carried out with AM or without AM fungi. Maize plants were grown in a sand and soil mixture with 5 NaCl levels (0, 0.5, 1.0, 1.5, and 2.0 g/kg dry substrate) for 55 days, following 15 days of nonsaline pretreatment. At all salt levels, mycorrhizal plants had higher dry shoot and root mass, higher root activity, and lower root to shoot ratios than non-mycorrhizal plants. In salt-free soil, root length, root surface area, root volume, and number of root tips and forks were significantly larger in mycorrhizal plants than in non-mycorrhizal plants, whereas, under salt stress, average root diameter and root volume of mycorrhizal plants were larger than those of non-mycorrhizal plants. Regardless of the NaCl level, mycorrhizal plants had lower specific root length, lower percentage of root length in the 0-0.2 mm diameter class, and higher percentage of root length in both the 0.2-0.4 mm and 0.4-0.6 mm diameter classes, which suggests that the root system shows a significant shift towards a thicker root system when maize plants were inoculated with Glomus mosseae (Nicolson & Gerdemann). The results presented here indicate that the improvements in root activity and the coarse root system of mycorrhizal maize may help in alleviating salt stress on the plant.

  9. Aquatic Plant Control Research Program: The Rhizosphere Microbiology of Rooted Aquatic Plants.

    Science.gov (United States)

    1988-04-01

    organic compounds materials are flooded periods, a and partially accumulated temporary buildup of degraded plant and reduced organic com- animal matter...extensive mycelium , mycorrhizal fungi also contribute to the stabilization of both the plant and the substrate. The fungi further facili- tate this...excretion of organic materials by plant roots mediates the selection and growth of bacteria in the rhizosphere, any changes that aging brings about in

  10. Fate of polycyclic aromatic hydrocarbons in plant-soil systems: Plant responses to a chemical stress in the root zone

    Energy Technology Data Exchange (ETDEWEB)

    Hoylman, A.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Ecology; Walton, B.T. [Oak Ridge National Lab., TN (United States)

    1994-01-01

    Under laboratory conditions selected to maximize root uptake, plant tissue distribution of PAH-derived {sup 14}C was largely limited to root tissue of Malilotus alba. These results suggest that plant uptake of PAHs from contaminated soil via roots, and translocation to aboveground plant tissues (stems and leaves), is a limited mechanism for transport into terrestrial food chains. However, these data also indicate that root surface sorption of PAHs may be important for plants grown in soils containing elevated concentration PAHs. Root surface sorption of PAHs may be an important route of exposure for plants in soils containing elevated concentrations of PAHS. Consequently, the root-soil interface may be the site of plant-microbial interactions in response to a chemical stress. In this study, evidence of a shift in carbon allocation to the root zone of plants exposed to phenanthrene and corresponding increases in soil respiration and heterotrophic plate counts provide evidence of a plant-microbial response to a chemical stress. The results of this study establish the importance of the root-soil interface for plants growing in PAH contaminated soil and indicate the existence of plant-microbial interactions in response to a chemical stress. These results may provide new avenues of inquiry for studies of plant toxicology, plant-microbial interactions in the rhizosphere, and environmental fates of soil contaminants. In addition, the utilization of plants to enhance the biodegradation of soil contaminants may require evaluation of plant physiological changes and plant shifts in resource allocation.

  11. Fate of polycyclic aromatic hydrocarbons in plant-soil systems: Plant responses to a chemical stress in the root zone

    Energy Technology Data Exchange (ETDEWEB)

    Hoylman, Anne M. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-01-01

    Under laboratory conditions selected to maximize root uptake, plant tissue distribution of PAH-derived 14C was largely limited to root tissue of Malilotus alba. These results suggest that plant uptake of PAHs from contaminated soil via roots, and translocation to aboveground plant tissues (stems and leaves), is a limited mechanism for transport into terrestrial food chains. However, these data also indicate that root surface sorption of PAHs may be important for plants grown in soils containing elevated concentration PAHs. Root surface sorption of PAHs may be an important route of exposure for plants in soils containing elevated concentrations of PAHS. Consequently, the root-soil interface may be the site of plant-microbial interactions in response to a chemical stress. In this study, evidence of a shift in carbon allocation to the root zone of plants exposed to phenanthrene and corresponding increases in soil respiration and heterotrophic plate counts provide evidence of a plant-microbial response to a chemical stress. The results of this study establish the importance of the root-soil interface for plants growing in PAH contaminated soil and indicate the existence of plant-microbial interactions in response to a chemical stress. These results may provide new avenues of inquiry for studies of plant toxicology, plant-microbial interactions in the rhizosphere, and environmental fates of soil contaminants. In addition, the utilization of plants to enhance the biodegradation of soil contaminants may require evaluation of plant physiological changes and plant shifts in resource allocation.

  12. Composite potato plants with transgenic roots on non-transgenic shoots: a model system for studying gene silencing in roots

    DEFF Research Database (Denmark)

    Horn, Patricia; Santala, Johanna; Nielsen, Steen Lykke;

    2014-01-01

    Composite plants, with transgenic roots on a non-transgenic shoot, can be obtained by shoot explant transformation with Agrobacterium rhizogenes. The aim of this study was to generate composite potato plants (Solanum tuberosum) to be used as a model system in future studies on root...... of composite potato plants expressed significantly higher amounts of β-glucuronidase (GUS) than the roots of a GUS-transgenic potato line event. Silencing of the uidA transgene (GUS) was tested by inducing roots on the GUS-transgenic cv. Albatros event with strains of A. rhizogenes over-expressing either......-mediated silencing (co-suppression) was not functional in roots. The results suggest that composite plants offer a useful experimental system for potato research, which has gained little previous attention....

  13. Fast-cycling unit of root turnover in perennial herbaceous plants in a cold temperate ecosystem

    Science.gov (United States)

    Sun, Kai; Luke McCormack, M.; Li, Le; Ma, Zeqing; Guo, Dali

    2016-01-01

    Roots of perennial plants have both persistent portion and fast-cycling units represented by different levels of branching. In woody species, the distal nonwoody branch orders as a unit are born and die together relatively rapidly (within 1–2 years). However, whether the fast-cycling units also exist in perennial herbs is unknown. We monitored root demography of seven perennial herbs over two years in a cold temperate ecosystem and we classified the largest roots on the root collar or rhizome as basal roots, and associated finer laterals as secondary, tertiary and quaternary roots. Parallel to woody plants in which distal root orders form a fast-cycling module, basal root and its finer laterals also represent a fast-cycling module in herbaceous plants. Within this module, basal roots had a lifespan of 0.5–2 years and represented 62–87% of total root biomass, thus dominating annual root turnover (60%–81% of the total). Moreover, root traits including root length, tissue density, and biomass were useful predictors of root lifespan. We conclude that both herbaceous and woody plants have fast-cycling modular units and future studies identifying the fast-cycling module across plant species should allow better understanding of how root construction and turnover are linked to whole-plant strategies.

  14. Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase.

    Science.gov (United States)

    Eick, Manuela; Stöhr, Christine

    2012-10-01

    A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.

  15. New practical and theoretical approaches to the induction of morphogenesis from plant tumors in vitro using new types of plant growth regulators: towards constructive paradigms in agriculture and medicine.

    Science.gov (United States)

    Lieber, Michael M

    2013-01-01

    Using classical or traditional plant growth regulators, calli or plant tumors have been produced in vitro and subsequently have been induced to produce buds and plantlets, a process referred to as regeneration. For many years, this has been a successful procedure for in vitro, plant propagation. However, for a number of plant species investigators could not induce calli in vitro to produce buds. Organogenesis was still recalcitrant for various plants in 1980. New types or nonconventional growth regulators, such as methylglyoxal and ascorbic acid, were then found to overcome recalcitrant organogenesis in vitro. Their successful or effective use gave support to a theory that stressful, non-uniform cohesive force-fields, electromagnetic in nature, occurring through the application of certain chemicals, are necessary for in vitro morphogenesis from plant neoplasm or callus. Morphogenesis is seen as an adaptive accommodation to the inner stresses from such non-uniform, cohesive forces. Diverse chemicals, not considered traditional plant growth regulators would, it has been conjectured, enable the generation of such cohesive forces, in non-uniform arrays, and it has been predicted that more chemicals of this type will be discovered. A new constructive approach to agriculture and medicine, using a new plant tissue-culture model, based on new theory, has also been predicted.

  16. Interactive effects of root endophytes and arbuscular mycorrhizal fungi on an experimental plant community.

    Science.gov (United States)

    Rillig, Matthias C; Wendt, Stefanie; Antonovics, Janis; Hempel, Stefan; Kohler, Josef; Wehner, Jeannine; Caruso, Tancredi

    2014-01-01

    Plant-soil microbial interactions have moved into focus as an important mechanism for understanding plant coexistence and composition of communities. Both arbuscular mycorrhizal (AM) as well as other root endophytic fungi co-occur in plant roots, and therefore have the potential to influence relative abundances of plant species in local assemblages. However, no study has experimentally examined how these key root endosymbiont groups might interact and affect plant community composition. Here, using an assemblage of five plant species in mesocosms in a fully factorial experiment, we added an assemblage of AM fungi and/or a mixture of root endophytic fungal isolates, all obtained from the same grassland field site. The results demonstrate that the AM fungi and root endophytes interact to affect plant community composition by changing relative species abundance, and consequently aboveground productivity. Our study highlights the need to explicitly consider interactions of root-inhabiting fungal groups in studies of plant assemblages.

  17. Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance.

    Directory of Open Access Journals (Sweden)

    Ilja Sonnemann

    Full Text Available Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae larvae (43% in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height, and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio. Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of

  18. Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance.

    Science.gov (United States)

    Sonnemann, Ilja; Pfestorf, Hans; Jeltsch, Florian; Wurst, Susanne

    2015-01-01

    Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae) larvae (43%) in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height), and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio). Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of insect root

  19. A review of the influence of root-associating fungi and root exudates on the success of invasive plants

    Directory of Open Access Journals (Sweden)

    Cindy Bongard

    2012-08-01

    Full Text Available Plant-fungal interactions are essential for understanding the distribution and abundance of plants species. Recently, arbuscular mycorrhizal fungal (AMF partners of non-indigenous invasive plants have been hypothesized to be a critical factor influencing the invasion processes. AMF are known to improve nutrient and moisture uptake, as well as disrupt parasitic and pathogenic microbes in the host plant. Such benefits may enable invaders to establish significant and persistent populations in environments previously dominated by natives. Coupling these findings with studies on invader pathogen-disrupting root exudates is not well documented in the literature describing plant invasion strategies. The interaction effects of altered AMF associations and the impact of invader root exudates would be more relevant than understanding the AMF dynamics or the phytochemistry of successful invaders in isolation, particularly given that AMF and root exudates can have a similar role in pathogen control but function quite differently. One means to achieve this goal is to assess these strategies concurrently by characterizing both the general (mostly pathogens or commensals and AM-specific fungal colonization patterns found in field collected root samples of successful invaders, native plants growing within dense patches of invaders, and native plants growing separately from invaders. In this review I examine the emerging evidence of the ways in which AMF-plant interactions and the production of defensive root exudates provide pathways to invasive plant establishment and expansion, and conclude that interaction studies must be pursued to achieve a more comprehensive understanding of successful plant invasion.

  20. Significance of Plant Root Microorganisms in Reclaiming Water in CELSS

    Science.gov (United States)

    Bubenheim, David L.; Greene, Catherine; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Since many microorganisms demonstrate the ability to quickly break down complex mixtures of waste and environmental contaminants, examining their potential use for water recycling in a closed environment is appealing. Water contributes approximately 90 percent of the life sustaining provisions in a human space habitat. Nearly half of the daily water requirements will be used for personal hygiene and dish washing. The primary contaminants of the used "gray" water will be the cleansing agents or soaps used to carry out these functions. Reclaiming water from the gray water waste streams is one goal of the NASA program, Controlled Ecological Life Support Systems (CELSS). The microorganisms of plane roots are well documented to be of a beneficial effect to promote plant growth. Most plants exhibit a range of bacteria and fungi which can be highly plant-specific. In our investigations with lettuce grown in hydroponic culture, we identified a microflora of normal rhizosphere. When the roots were exposed to an anionic surfactant, the species diversity changed, based on morphological characteristics, with the numbers of species being reduced from 7 to 2 after 48 hours of exposure. In addition, the species that became dominant in the presence of the anionic surfactant also demonstrated a dramatic increase in population density which corresponded to the degradation of the surfactant in the root zone. The potential for using these or other rhizosphere bacteria as a primary or secondary waste processor is promising, but a number of issues still warrant investigation; these include but are not limited to: (1) the full identification of the microbes, (2) the classes of surfactants the microbes will degrade, (3) the environmental conditions required for optimal processing efficiency and (4) the ability of transferring the microbes to a non-living solid matrix such as a bioreactor.

  1. Significance of Plant Root Microorganisms in Reclaiming Water in CELSS

    Science.gov (United States)

    Bubenheim, David L.; Greene, Catherine; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Since many microorganisms demonstrate the ability to quickly break down complex mixtures of waste and environmental contaminants, examining their potential use for water recycling in a closed environment is appealing. Water contributes approximately 90 percent of the life sustaining provisions in a human space habitat. Nearly half of the daily water requirements will be used for personal hygiene and dish washing. The primary contaminants of the used "gray" water will be the cleansing agents or soaps used to carry out these functions. Reclaiming water from the gray water waste streams is one goal of the NASA program, Controlled Ecological Life Support Systems (CELSS). The microorganisms of plane roots are well documented to be of a beneficial effect to promote plant growth. Most plants exhibit a range of bacteria and fungi which can be highly plant-specific. In our investigations with lettuce grown in hydroponic culture, we identified a microflora of normal rhizosphere. When the roots were exposed to an anionic surfactant, the species diversity changed, based on morphological characteristics, with the numbers of species being reduced from 7 to 2 after 48 hours of exposure. In addition, the species that became dominant in the presence of the anionic surfactant also demonstrated a dramatic increase in population density which corresponded to the degradation of the surfactant in the root zone. The potential for using these or other rhizosphere bacteria as a primary or secondary waste processor is promising, but a number of issues still warrant investigation; these include but are not limited to: (1) the full identification of the microbes, (2) the classes of surfactants the microbes will degrade, (3) the environmental conditions required for optimal processing efficiency and (4) the ability of transferring the microbes to a non-living solid matrix such as a bioreactor.

  2. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling

    NARCIS (Netherlands)

    Rebeca Cosme, M.P.

    2016-01-01

    Plant–microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water w

  3. Effects of eutrophication and temperature on submersed rooted plants

    DEFF Research Database (Denmark)

    Raun, Ane-Marie Løvendahl

    of eutrophication and temperatures were clarified for the temporal seagrass Zostera marina. Furthermore, the direct effect of sediment enrichment with labile organic matter was examined for four freshwater species with different growth strategies (isoetids: Lobelia dortmanna and Littorella uniflora, and elodeids...... decreased root formation and elodeid plants, furthermore, had reduced leaf formation. Higher levels of bicarbonate were unable to alleviate the negative impact of organic enrichment of sediment for all the tested species. No doubt that both eutrophication and global warming are challenging to the aquatic...

  4. [XPS analysis of tea plant leaf and root surface].

    Science.gov (United States)

    Fang, Jiang-yu; Wan, Xiao-chun

    2008-09-01

    XPS was applied to analyze the surface chemical composition and structure of the tea plant leaf and root. It was detected that the surface is made up of mainly 4 elements: C, O, N and Al, with little P and F in abaxial leaf. Based on the botanic epidermis structure and the chemical composition, with the help of the standard spectrum data bank on line and the wood XPS study results, and through line Gaussian and Lorentizian the mixed, the binding energy of C(1s) of the leaf surface was classified as 3 types: the first was C1, with the electron binding energy of 285 eV, from C-C or C-H group, representing lipid compound like cutin and wax. C2 with the binding energy of 286.35 eV in the adaxial and 286.61 eV in the abaxial, came from the single bond of carbon and oxygen C-O, mainly standing for cellulose. C3 with the binding energy of approximately 288 eV (288.04 eV in adaxial and 288.09 eV in abaxial) was the sign of C=O group, which is acyl in protein with the confirmation of N(1s) (399-401 eV)and O(1s) analyses. In the root surface, besides the same compounds of cutin and wax (C1, binding energy 285 eV), cellulose (C2, binding energy 286.49 eV) and protein (C3, binding energy 288.78 eV)as in the leaf, there appeared C5 type with the binding energy of 283.32 eV. Because it was lower than C1, it was estimated as carbon linking to metal. Both the leaf and the root surfaces didn't have C4, a type of O-C=O, which is common in wood surface with the highest oxidated carbon of 289-289.5 eV binding energy, indicating that organic acid secreted by the root existed freely on the root surface, without any chemical association with the surface compounds. The results of the separated spectrum of O(1s) supported the above C(1s) results. By the ratio of each type of C, there were more oxygen groups in the abaxial than in the adaxial, implicating more active chemical properties on the abaxial. Compared with the leaf, cutin and wax was little in the root and oxygen groups were many

  5. Influence of autoclaved fungal materials on spearmint (Mentha spicata L.) growth, morphogenesis, and secondary metabolism.

    Science.gov (United States)

    Khan, Naseem I; Tisserat, Brent; Berhow, Mark; Vaughn, Steven F

    2005-07-01

    The influence of autoclaved fungal materials such as culture filtrate, freeze-dried mycelium (FDM), mycelium suspension, and spore suspension (SS) on the growth, morphogenesis, and carvone production of spearmint (Mentha spicata L.) plants was studied. Fungal materials were either applied as a drench or spray on the plants. Spearmint plants (cv. "294099") drenched with SS (1 x 10(8) spores/ml) of Trichoderma reesei showed no significant differences in leaf numbers, root numbers, or shoot numbers compared with nontreated controls. However, significantly higher fresh weights and carvone levels were observed in plants drenched with T. reesei SS compared with the untreated controls. Fungal materials derived from Aspergillus sp., Fusarium graminearum, F. sporotrichoides, Penicillium sp., P. acculeatum, Rhizopus oryzae, and T. reesei were sprayed on spearmint foliage. F. graminearum, F. sporotrichoides, or R. oryzae elicited no enhanced growth, morphogenesis, or secondary metabolism responses. The best growth and morphogenesis responses were obtained employing Aspergillus sp., Penicillium sp., or T. reesei foliar sprays. For example, spearmint cv. "557807" plants sprayed with 100 mg/l FDM T. reesei isolate NRRL 11460 C30 stimulated higher fresh weights (75%), shoot numbers (39%), leaf numbers (57%), and root numbers (108%) compared with untreated plants. This effect was not dose-dependent because similar growth and morphogenesis responses were obtained by testing 10, 100, or 1000 mg/l FDM concentrations. Carvone levels in fungal-treated foliar-sprayed plants were comparable to nontreated controls. However, total carvone levels per plant were higher in fungal-treated plants because of their increased fresh weight.

  6. Differences in root uptake of radiocaesium by 30 plant taxa

    Energy Technology Data Exchange (ETDEWEB)

    Broadley, M.R.; Willey, N.J. [University of the West of England, Bristol (United Kingdom). Faculty of Applied Sciences

    1997-12-31

    The concentration of Cs was measured in the shoots of 30 taxa of plants after exposing the roots for 6 h to 0.1 {mu}g radiolabelled Cs g{sup -1} soil. There were maximum differences between Chenopodium quinoa and Koeleria macrantha of 20-fold in Cs concentration and 100-fold in total Cs accumulated. There was a weak relationship between Rb(K) and Cs concentration across the 30 taxa, but a strong relationship within the Gramineae and Chenopodiaceae. Taxa in the Chenopodiaceae discriminated approximately nine times less between Rb and Cs during uptake than did those in the Gramineae. The lowest Cs concentrations occurred in slow growing Gramineae and the highest in fast growing Chenopodiaceae. If radiocaesium uptake by the Chenopodiaceae during chronic exposures shows similar patterns to those reported here after acute exposure, then the food contamination implications and the potential for phytoremediation of radiocaesium contaminated soils using plants in this family may be worth investigating. (author).

  7. Plant hormone cross-talk: the pivot of root growth.

    Science.gov (United States)

    Pacifici, Elena; Polverari, Laura; Sabatini, Sabrina

    2015-02-01

    Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process. A pool of stem cells, placed in a niche at the apex of the meristem, is a source of self-renewing cells that provides cells for tissue formation. During the first days post-germination, the meristem reaches its final size as a result of a balance between cell division and cell differentiation. A complex network of interactions between hormonal pathways co-ordinates such developmental inputs. In recent years, by means of molecular and computational approaches, many efforts have been made aiming to define the molecular components of these networks. In this review, we focus our attention on the molecular mechanisms at the basis of hormone cross-talk during root meristem size determination. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Characterization of Azospirillum Isolated from Nitrogen-Fixing Roots of Harvested Sorghum Plants

    Science.gov (United States)

    Wong, Peter P.; Stenberg, Nancy E.

    1979-01-01

    Root segments of harvested sorghum plants had acetylene reduction activity ranging from 11 to 61 nmol of ethylene formed per h per g (dry weight). Five strains of Azospirillum brasilense sp. nov. were isolated from root segments. PMID:16345484

  9. Operational Evaluation of the Root Modules of the Advanced Plant Habitat

    Science.gov (United States)

    Monje, O.

    2014-01-01

    Photosynthetic and growth data were collected on APH Root Module. Described Stand pipe system for active moisture control. Tested germination in wicks. Evaluated EC-5 moisture sensors. Demonstrated that Wheat plants can grow in the APH Root Module.

  10. The RootChip: an integrated microfluidic chip for plant science.

    Science.gov (United States)

    Grossmann, Guido; Guo, Woei-Jiun; Ehrhardt, David W; Frommer, Wolf B; Sit, Rene V; Quake, Stephen R; Meier, Matthias

    2011-12-01

    Studying development and physiology of growing roots is challenging due to limitations regarding cellular and subcellular analysis under controlled environmental conditions. We describe a microfluidic chip platform, called RootChip, that integrates live-cell imaging of growth and metabolism of Arabidopsis thaliana roots with rapid modulation of environmental conditions. The RootChip has separate chambers for individual regulation of the microenvironment of multiple roots from multiple seedlings in parallel. We demonstrate the utility of The RootChip by monitoring time-resolved growth and cytosolic sugar levels at subcellular resolution in plants by a genetically encoded fluorescence sensor for glucose and galactose. The RootChip can be modified for use with roots from other plant species by adapting the chamber geometry and facilitates the systematic analysis of root growth and metabolism from multiple seedlings, paving the way for large-scale phenotyping of root metabolism and signaling.

  11. The RootChip: An Integrated Microfluidic Chip for Plant Science[W][OA

    Science.gov (United States)

    Grossmann, Guido; Guo, Woei-Jiun; Ehrhardt, David W.; Frommer, Wolf B.; Sit, Rene V.; Quake, Stephen R.; Meier, Matthias

    2011-01-01

    Studying development and physiology of growing roots is challenging due to limitations regarding cellular and subcellular analysis under controlled environmental conditions. We describe a microfluidic chip platform, called RootChip, that integrates live-cell imaging of growth and metabolism of Arabidopsis thaliana roots with rapid modulation of environmental conditions. The RootChip has separate chambers for individual regulation of the microenvironment of multiple roots from multiple seedlings in parallel. We demonstrate the utility of The RootChip by monitoring time-resolved growth and cytosolic sugar levels at subcellular resolution in plants by a genetically encoded fluorescence sensor for glucose and galactose. The RootChip can be modified for use with roots from other plant species by adapting the chamber geometry and facilitates the systematic analysis of root growth and metabolism from multiple seedlings, paving the way for large-scale phenotyping of root metabolism and signaling. PMID:22186371

  12. Response of root fungi in Pisum sativum to plant and soil environmental factors

    DEFF Research Database (Denmark)

    Yu, Lingling

    Plant roots harbor a large number of fungi that play an important role both in agroecosystems and natural ecosystems. These fungi can be plant pathogenic, parasitic, saprotrophic or mutualistic. The root-associated fungi are involved in various ecological processes in root ecosystems......, such as improving plant nutrient uptake, cycling organic carbon, suppressing plant diseases and enhancing plant tolerance to biotic and abiotic stress. In turn, the community and structure of root-associated fungi maybe influenced by rhizosphere conditions such as plant health status, plant growth stage...... and nutritional status of the plant and soil environments. However, limited information is available about the richness and composition of most of these root-associated fungi as studies of fungal communities remain a challenge because of below-ground high taxonomic and ecological diversity. In the present study...

  13. How genetic modification of roots affects rhizosphere processes and plant performance

    NARCIS (Netherlands)

    Kabouw, P.; Dam, van N.M.; Putten, van der W.H.; Biere, A.

    2012-01-01

    Genetic modification of plants has become common practice. However, root-specific genetic modifications have only recently been advocated. Here, a review is presented regarding how root-specific modifications can have both plant internal and rhizosphere-mediated effects on aboveground plant

  14. How genetic modification of roots affects rhizosphere processes and plant performance

    NARCIS (Netherlands)

    Kabouw, P.; Dam, van N.M.; Putten, van der W.H.; Biere, A.

    2012-01-01

    Genetic modification of plants has become common practice. However, root-specific genetic modifications have only recently been advocated. Here, a review is presented regarding how root-specific modifications can have both plant internal and rhizosphere-mediated effects on aboveground plant properti

  15. Root foraging for Patchy Phosphorus of Plant Species with Contrasting Foraging Strategy - Role of Roots and Mycorrhiza

    Science.gov (United States)

    Felderer, B.; Robinson, B. H.; Jansa, J.; Vontobel, P.; Frossard, E.; Schulin, R.

    2009-04-01

    Plant nutrients are distributed heterogeneously in soil. Thus the nutrient distribution together with nutrient availability, temporal and spatial development of roots determine nutrient uptake by the plants. Plants have developed several strategies to cope with the patchy nutrient distribution. Preferential root development within nutrient-enriched patches is a prominent response to heterogeneous nutrient distribution. This capacity to precisely allocate roots is called morphological plasticity and is highly variable between plant species. Another strategy is the increased nutrient uptake per unit of root surface in the nutrient-rich patches as compared to root zones outside such patches, so-called physiological plasticity . Additionally, enhanced nutrient uptake from nutrient-rich patches might be supported by increased production of mycorrhizal extraradical hyphae. We refer to this phenomenon as plastic response of the mycorrhiza-plant association. Relative importance for nutrient acquisition of these responses to heterogeneous nutrient distribution might vary between plant species. However, quantitative data are very rare. We will investigate nutrient acquisition and root development over time in sandy substrate with heterogeneous phosphorus (P) distribution of two model plant species with different nutrient foraging strategies (Lotus corniculatus, Trifolium arvense). These plant species are characterized by high and low morphological plasticity, respectively (according to results of preliminary experiments). We follow three main goals in a single mesocosm experiment, where P is to be homogeneously or patchily distributed in a sandy substrate: 1. - Imaging of root architecture of Lotus corniculatus and Trifolium arvense on a time line. 2. - Assessment of the physiological plasticity of Lotus corniculatus and Trifolium arvense 3. - Determination of the plasticity of mycorrhiza-plant association of Lotus corniculatus and Trifolium arvense associated with either of

  16. A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa.

    Directory of Open Access Journals (Sweden)

    Franciele Santos

    Full Text Available A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.

  17. A novel interaction between plant-beneficial rhizobacteria and roots: colonization induces corn resistance against the root herbivore Diabrotica speciosa.

    Science.gov (United States)

    Santos, Franciele; Peñaflor, Maria Fernanda G V; Paré, Paul W; Sanches, Patrícia A; Kamiya, Aline C; Tonelli, Mateus; Nardi, Cristiane; Bento, José Mauricio S

    2014-01-01

    A number of soil-borne microorganisms, such as mycorrhizal fungi and rhizobacteria, establish mutualistic interactions with plants, which can indirectly affect other organisms. Knowledge of the plant-mediated effects of mutualistic microorganisms is limited to aboveground insects, whereas there is little understanding of what role beneficial soil bacteria may play in plant defense against root herbivory. Here, we establish that colonization by the beneficial rhizobacterium Azospirillum brasilense affects the host selection and performance of the insect Diabrotica speciosa. Root larvae preferentially orient toward the roots of non-inoculated plants versus inoculated roots and gain less weight when feeding on inoculated plants. As inoculation by A. brasilense induces higher emissions of (E)-β-caryophyllene compared with non-inoculated plants, it is plausible that the non-preference of D. speciosa for inoculated plants is related to this sesquiterpene, which is well known to mediate belowground insect-plant interactions. To the best of our knowledge, this is the first study showing that a beneficial rhizobacterium inoculant indirectly alters belowground plant-insect interactions. The role of A. brasilense as part of an integrative pest management (IPM) program for the protection of corn against the South American corn rootworm, D. speciosa, is considered.

  18. Plant and root endophyte assembly history: interactive effects on native and exotic plants.

    Science.gov (United States)

    Sikes, Benjamin A; Hawkes, Christine V; Fukami, Tadashi

    2016-02-01

    Differences in the arrival timing of plants and soil biota may result in different plant communities through priority effects, potentially affecting the success of native vs. exotic plants, but experimental evidence is largely lacking. We conducted a greenhouse experiment to investigate whether the assembly history of plants and fungal root endophytes could interact to influence plant emergence and biomass. We introduced a grass species and eight fungal species from one of three land-use types (undisturbed, disturbed, or pasture sites in a Florida scrubland) in factorial combinations. We then introduced all plants and fungi from the other land-use types 2 weeks later. Plant emergence was monitored for 6 months, and final plant biomass and fungal species composition assessed. The emergence and growth of the exotic Melinis repens and the native Schizacharyium niveum were affected negatively when introduced early with their "home" fungi, but early introduction of a different plant species or fungi from a different site type eliminated these negative effects, providing evidence for interactive priority effects. Interactive effects of plant and fungal arrival history may be an overlooked determinant of plant community structure and may provide an effective management tool to inhibit biological invasion and aid ecosystem restoration.

  19. Colonization of Greek olive cultivars' root system by arbuscular mycorrhiza fungus: root morphology, growth, and mineral nutrition of olive plants

    Directory of Open Access Journals (Sweden)

    Theocharis Chatzistathis

    2013-06-01

    Full Text Available Rooted leafy cuttings of three Greek olive (Olea europaea L. cultivars (Koroneiki, Kothreiki and Chondrolia Chalkidikis were grown for six months in three soil types, in an experimental greenhouse, in order to investigate: i if their root system was colonized by arbuscular mycorrhiza fungus (AMF genus and, ii if genotypic differences concerning growth and mineral nutrition of olive plants existed. Gigaspora sp. colonized the root system of the three cultivars studied, while Glomus sp. colonized only the root system of 'Koroneiki'. Furthermore, in most cases root colonization by AMF differed among cultivars and soil types. The maximum root colonization, in all soils, was found in 'Chondrolia Chalkidikis'. In the three soils studied, the ratio shoot dry weight (SDW/ root dry weight (RDW was higher in 'Chondrolia Chalkidikis' than in the other two cultivars. Furthermore, root system morphology of the three olive cultivars was completely different, irrespectively of soil type. Leaf Mn, Fe, Zn, Ca, Mg, K and P concentrations, as well as total per plant nutrient content and nutrient use efficiency, differed among cultivars under the same soil conditions. These differences concerning root morphology, SDW/RDW, as well as nutrient uptake and use efficiency, could be possibly ascribed to the differential AMF colonization by Glomus sp. and Gigaspora sp.

  20. [Induction of polyploid in hairy roots of Nicotiana tabacum and its plant regeneration].

    Science.gov (United States)

    Hou, Lili; Shi, Heping; Yu, Wu; Tsang, Po Keung Eric; Chow, Cheuk Fai Stephen

    2014-04-01

    By genetic transformation with Agrobacterum rhizogenes and artificial chromosome doubling techniques, we studied the induction of hairy roots and their polyploidization, and subsequent plant regeneration and nicotine determination to enhance the content of nicotine in Nicotiana tabacum. The results show that hairy roots could be induced from the basal surface of leaf explants of N. tabacum 8 days after inoculation with Agrobacterium rhizogenes ATCC15834. The percentage of the rooting leaf explants was 100% 15 days after inoculation. The hairy roots could grow rapidly and autonomously on solid or liquid phytohormones-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and paper electrophoresis of opines from N. tabacum hairy roots. The highest rate of polyploidy induction, more than 64.71%, was obtained after treatment of hairy roots with 0.1% colchicine for 36 h. The optimum medium for plant regeneration from polyploid hairy roots was MS+2.0 mg/L 6-BA +0.2 mg/L NAA. Compared with the control diploid plants, the hairy roots-regenerated plants had weak apical dominance, more axillary buds and more narrow leaves; whereas the polyploid hairy root-regenerated plants had thicker stems, shorter internodes and the colour, width and thickness of leaves were significantly higher than that of the control. Observation of the number of chromosomes in their root tip cells reveals that the obtained polyploid regenerated plants were tetraploidy, with 96 (4n = 96) chromosomes. Pot-grown experiments showed compared to the control, the flowering was delayed by 21 days in diploid hairy roots-regenerated plants and polyploid hairy root-regenerated plants. GC-MS detection shows that the content of nicotine in polyploid plants was about 6.90 and 4.57 times the control and the diploid hairy roots-regenerated plants, respectively.

  1. Iron plaques improve the oxygen supply to root meristems of the freshwater plant, Lobelia dortmanna

    DEFF Research Database (Denmark)

    Møller, Claus Lindskov; Sand-Jensen, Kaj

    2008-01-01

    * High radial oxygen loss (ROL) from roots of aquatic plants to reduced sediments is thought to deplete the roots of oxygen and restrict the distribution of those species unable to form a barrier to oxygen loss. Metal precipitates with high iron content (Fe-plaques) frequently form on roots...... of aquatic plants and could create such a diffusion barrier, thereby diverting a larger proportion of downward oxygen transport to the root meristems. * To investigate whether Fe-plaques form a barrier to oxygen loss, ROL and internal oxygen concentrations were measured along the length of roots...... of the freshwater plant Lobelia dortmanna using platinum sleeve electrodes and Clark-type microelectrodes. * Measurements showed that ROL was indeed lower from roots with Fe-plaques than roots without plaques and that ROL declined gradually with thicker iron coating on roots. The low ROL was caused by low diffusion...

  2. A comparative study on the potential of oxygen release by roots of selected wetland plants

    Science.gov (United States)

    Yao, Fang; Shen, Gen-xiang; Li, Xue-lian; Li, Huai-zheng; Hu, Hong; Ni, Wu-zhong

    The capacity of root oxygen release by selected wetland plants pre-grown under both nutrient solution and artificial wastewater conditions were determined. The results indicated that the significant differences of root oxygen release by the tested wetland plants existed, and the biochemical process was the main source of root oxygen release as oxygen released by Vetiveria zizanioides L. Nash roots through biochemical process was contributed to 77% and 74% of total root oxygen release under nutrient solution conditions and artificial wastewater conditions, respectively, and that was 72% and 71% of total root oxygen release for Cyperus alternifolius L. It was found that the formation of root plaque with iron oxide was a function of root oxygen release as iron oxide concentration in root plaque was positively correlated to the potential of oxygen released by wetland plant roots with the regression coefficients as 0.874 *( p wetland plants being tolerant to anoxia during wastewater treatment. It was suggested that the potential of root oxygen release could be used as a parameter for selecting wetland plants that can increase oxygen supply to soil or substrate of constructed wetlands and enhance nutrient transformation and removal, and V. zizanioides L. Nash with the highest potential of root oxygen release and higher tolerance to wastewater could be recommended to establish vegetated wetlands for treating nutrient-rich wastewater such as domestic wastewater.

  3. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants

    Directory of Open Access Journals (Sweden)

    Lesley A. Judd

    2015-07-01

    Full Text Available The study, characterization, observation, and quantification of plant root growth and root systems (Rhizometrics has been and remains an important area of research in all disciplines of plant science. In the horticultural industry, a large portion of the crops grown annually are grown in pot culture. Root growth is a critical component in overall plant performance during production in containers, and therefore it is important to understand the factors that influence and/or possible enhance it. Quantifying root growth has varied over the last several decades with each method of quantification changing in its reliability of measurement and variation among the results. Methods such as root drawings, pin boards, rhizotrons, and minirhizotrons initiated the aptitude to measure roots with field crops, and have been expanded to container-grown plants. However, many of the published research methods are monotonous and time-consuming. More recently, computer programs have increased in use as technology advances and measuring characteristics of root growth becomes easier. These programs are instrumental in analyzing various root growth characteristics, from root diameter and length of individual roots to branching angle and topological depth of the root architecture. This review delves into the expanding technologies involved with expertly measuring root growth of plants in containers, and the advantages and disadvantages that remain.

  4. Growth, Nitrogen Uptake and Flow in Maize Plants Affected by Root Growth Restriction

    Institute of Scientific and Technical Information of China (English)

    Liang-zheng Xu; Jun-fang Niu; Chun-jian Li; Fu-suo Zhang

    2009-01-01

    The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.

  5. Deciphering composition and function of the root microbiome of a legume plant.

    Science.gov (United States)

    Hartman, Kyle; van der Heijden, Marcel Ga; Roussely-Provent, Valexia; Walser, Jean-Claude; Schlaeppi, Klaus

    2017-01-17

    Diverse assemblages of microbes colonize plant roots and collectively function as a microbiome. Earlier work has characterized the root microbiomes of numerous plant species, but little information is available for legumes despite their key role in numerous ecosystems including agricultural systems. Legumes form a root nodule symbiosis with nitrogen-fixing Rhizobia bacteria and thereby account for large, natural nitrogen inputs into soils. Here, we describe the root bacteria microbiome of the legume Trifolium pratense combining culture-dependent and independent methods. For a functional understanding of individual microbiome members and their impact on plant growth, we began to inoculate root microbiome members alone or in combination to Trifolium roots. At a whole-root scale, Rhizobia bacteria accounted for ~70% of the root microbiome. Other enriched members included bacteria from the genera Pantoea, Sphingomonas, Novosphingobium, and Pelomonas. We built a reference stock of 200 bacteria isolates, and we found that they corresponded to ~20% of the abundant root microbiome members. We developed a microcosm system to conduct simplified microbiota inoculation experiments with plants. We observed that while an abundant root microbiome member reduced plant growth when inoculated alone, this negative effect was alleviated if this Flavobacterium was co-inoculated with other root microbiome members. The Trifolium root microbiome was dominated by nutrient-providing Rhizobia bacteria and enriched for bacteria from genera that may provide disease protection. First microbiota inoculation experiments indicated that individual community members can have plant growth compromising activities without being apparently pathogenic, and a more diverse root community can alleviate plant growth compromising activities of its individual members. A trait-based characterization of the reference stock bacteria will permit future microbiota manipulation experiments to decipher overall

  6. Response of root fungi in Pisum sativum to plant and soil environmental factors

    DEFF Research Database (Denmark)

    Yu, Lingling

    Plant roots harbor a large number of fungi that play an important role both in agroecosystems and natural ecosystems. These fungi can be plant pathogenic, parasitic, saprotrophic or mutualistic. The root-associated fungi are involved in various ecological processes in root ecosystems, such as imp......Plant roots harbor a large number of fungi that play an important role both in agroecosystems and natural ecosystems. These fungi can be plant pathogenic, parasitic, saprotrophic or mutualistic. The root-associated fungi are involved in various ecological processes in root ecosystems......, such as improving plant nutrient uptake, cycling organic carbon, suppressing plant diseases and enhancing plant tolerance to biotic and abiotic stress. In turn, the community and structure of root-associated fungi maybe influenced by rhizosphere conditions such as plant health status, plant growth stage...... and nutritional status of the plant and soil environments. However, limited information is available about the richness and composition of most of these root-associated fungi as studies of fungal communities remain a challenge because of below-ground high taxonomic and ecological diversity. In the present study...

  7. Effects of eutrophication and temperature on submersed rooted plants

    DEFF Research Database (Denmark)

    Raun, Ane-Marie Løvendahl

    decreased root formation and elodeid plants, furthermore, had reduced leaf formation. Higher levels of bicarbonate were unable to alleviate the negative impact of organic enrichment of sediment for all the tested species. No doubt that both eutrophication and global warming are challenging to the aquatic...... in combination with high temperature affect internal oxygen concentrations, growth and survival of aquatic macrophytes. Measurements of internal oxygen levels were made on several north temperate and tropical marine seagrass species exposed to a range of water column oxygen concentrations. The combined effects...... of eutrophication and temperatures were clarified for the temporal seagrass Zostera marina. Furthermore, the direct effect of sediment enrichment with labile organic matter was examined for four freshwater species with different growth strategies (isoetids: Lobelia dortmanna and Littorella uniflora, and elodeids...

  8. Root bacterial endophytes alter plant phenotype, but not physiology

    DEFF Research Database (Denmark)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.;

    2016-01-01

    (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light-Asat, and saturating CO2-Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf...

  9. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion.

    Directory of Open Access Journals (Sweden)

    Swarnalee Dutta

    Full Text Available The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs. We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430. There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE, compared to those exposed to groundnut-root exudates (GRE. In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2, in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.

  10. Root and bacterial secretions regulate the interaction between plants and PGPR leading to distinct plant growth promotion effects

    Science.gov (United States)

    Plant growth-promoting rhizobacteria (PGPR) have garnered interest in agriculture due to their ability to influence the growth and production of host plants. ATP-binding cassette (ABC) transporters play important roles in plant-microbe interactions by modulating plant root exudation. The present stu...

  11. [Induction of polyploid hairy roots and its plant regeneration in Pogostemon cablin].

    Science.gov (United States)

    Shi, Heping; Yu, Wu; Zhang, Guopeng; Tsang, Pokeung Eric; Chow, Cheuk Fai Stephen

    2014-08-01

    Abstract: In order to enhance the content of secondary metabolites patchouli alcohol in Pogostemon cablin, we induced polyploid hairy roots and their plant regeneration, and determined the content of patchouli alcohol through artificial chromosome doubling with colchicine. The highest rate of polyploidy induction was more than 40% when hairy roots were treated with 0.05% colchicine for 36 h. The obtained polyploid hairy roots formed adventitious shoots when cultured in an MS medium with 6-BA 0.2 mg/L and NAA 0.1 mg/L for 60 d. Compared with the control diploid plants, the polyploid hairy root-regenerated plants of P. cablin had more developed root systems, thicker stems, shorter internodes and longer, wider and thicker leaves. Observation of the chromosome number in their root tip cells reveals that the obtained polyploid regenerated plants were tetraploidy, with 128 (4n = 128) chromosomes. The leaves contained around twice as many stomatal guard cells and chloroplasts as the controls, but the stomatal density declined with increasing ploidy. The stomatal density in diploid plants was around 1.67 times of that in polyploid plants. GC-MS analysis shows that the content of patchouli alcholol in the hairy root-derived polyploid plants was about 4.25 mg/g dry weight, which was 2.3 times of that in diploid plants. The present study demonstrates that polyploidization of hairy roots can stimulate the content of patchouli alcholol in medicinal plant of P. cablin.

  12. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling.

    Science.gov (United States)

    Cosme, Marco; Lu, Jing; Erb, Matthias; Stout, Michael Joseph; Franken, Philipp; Wurst, Susanne

    2016-08-01

    Plant-microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress.

  13. Emerging role of roots in plant responses to aboveground insect herbivory

    Institute of Scientific and Technical Information of China (English)

    Vamsi J.Nalam; Jyoti Shah; Punya Nachappa

    2013-01-01

    Plants have evolved complex biochemical mechanisms to counter threats from insect herbivory.Recent research has revealed an important role of roots in plant responses to above ground herbivory (AGH).The involvement of roots is integral to plant resistance and tolerance mechanisms.Roots not only play an active role in plant defenses by acting as sites for biosynthesis of various toxins and but also contribute to tolerance by storing photoassimilates to enable future regrowth.The interaction of roots with beneficial soilborne microorganisms also influences the outcome of the interaction between plant and insect herbivores.Shoot-to-root communication signals are critical for plant response to AGH.A better understanding of the role of roots in plant response to AGH is essential in order to develop a comprehensive picture of plant-insect interactions.Here,we summarize the current status of research on the role of roots in plant response to AGH and also discuss possible signals involved in shoot-to-root communication.

  14. Competition between Plant-Populations with Different Rooting Depths. 3. Field Experiments

    NARCIS (Netherlands)

    Berendse, F.

    1982-01-01

    The model proposed in the first paper in this series predicts that in mixtures of plant species with different rooting depths there will be an inverse correlation between the relative crowding coefficient of the deep rooting species with respect to the shallow rooting one and the frequency of the de

  15. Bioremediation of phenolic compounds from water with plant root surface peroxidases

    Energy Technology Data Exchange (ETDEWEB)

    Adler, P.R.; Arora, R.; El Ghaouth, A. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1994-09-01

    Peroxidases have been shown to polymerize phenolic compounds, thereby removing them from solution by precipitation. Others have studied the role of root surface associated peroxidases as a defense against fungal root pathogens; however, their use in detoxification of organic pollutants in vivo at the root surface has not been studied. Two plant species, waterhyacinth [Eichhornia crassipes (C. Mart) Solms-Laub.] and tomato (Lycopersicon esculentum L.), were tested for both in vitro and in vivo peroxidase activity on the root surface. In vitro studies indicated that root surface peroxidase activities were 181 and 78 nmol tetraguaiacol formed min{sup -1} g{sup -1} root fresh wt., for tomato and waterhyacinth, respectively. Light microscope studies revealed that guaiacol was polymerized in vivo at the root surface. Although peroxidase was evenly distributed on tomato roots, it was distributed patchily on waterhyacinth roots. In vitro studies using gas chromatography-mass spectrometry (GC-MS) showed that the efficiency of peroxidase to polymerize phenols vary with phenolic compound. We suggest that plants may be utilized as a source of peroxidases for removal of phenolic compounds that are on the EPA priority pollutant list and that root surface peroxidases may minimize the absorption of phenolic compounds into plants by precipitating them at the root surface. In this study we have identified a new use for root-associated proteins in ecologically engineering plant systems for bioremediation of phenolic compounds in the soil and water environment. 25 refs., 2 figs., 2 tabs.

  16. The Influence of Plant Root Systems on Subsurface Flow: Implications for Slope Stability

    Science.gov (United States)

    Although research has explained how plant roots mechanically stabilize soils, in this article we explore how root systems create networks of preferential flow and thus influence water pressures in soils to trigger landslides. Root systems may alter subsurface flow: Hydrological m...

  17. Physical mechanisms of plant roots affecting weathering and leaching of loess soil

    Institute of Scientific and Technical Information of China (English)

    LI; Yong; ZHANG; Qingwen; WAN; Guojiang; HUANG; Ronggui; PIAO; Hechun; BAI; Lingyu; LI; Lu

    2006-01-01

    Plant roots have potential impacts on soil mineral weathering and leaching. Our objective is to understand the physical mechanisms of plant roots affecting weathering and leaching of loess soil. Root densities were measured through the method of a large-size dug profile, and transport fluxes of soil elements were determined using an undisturbed monolith soil infiltration device on the hilly and gully regions of the Chinese Loess Plateau. The results show that the improvement effects of soil environment by plant roots are mainly controlled by the density and weight of the fibrous roots with the diameters less than 1 mm. Plant roots have the stronger effects on soil physical properties than chemical properties. The principal components analysis (PCA) indicates that soil physical properties by plant roots account for 56.7% of variations in soil environment whereas soil chemical properties and pH contribute about 24.2% of the soil variations. The roles of plant roots in controlling soil weathering and leaching increased in the following order: infiltration enhancement > increase of bioactive substance > stabilization of soil structure. The effects of plant roots on soil mineral weathering and leaching can be quantified using the multiple regression models with the high prediction accuracies developed in this study.

  18. Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants.

    Science.gov (United States)

    Ibañez, Sabrina; Talano, Melina; Ontañon, Ornella; Suman, Jachym; Medina, María I; Macek, Tomas; Agostini, Elizabeth

    2016-09-25

    Phytoremediation has emerged as an attractive methodology to deal with environmental pollution, which is a serious worldwide problem. Although important advances have been made in this research field, there are still some drawbacks to become a widely used practice, such as the limited plant's metabolic rate and their difficulty to break down several organic compounds or to tolerate/accumulate heavy metals. However, biotechnology has opened new gateways in phytoremediation research by offering the opportunity for direct gene transfer to enhance plant capabilities for environmental cleanup. In this context, hairy roots (HRs) have emerged as an interesting model system to explore the potential of plants to remove inorganic and organic pollutants. Besides, their use in rhizoremediation studies has also been explored. In this minireview we will discuss the most recent advances using genetic engineering for enhancing phytoremediation capabilities of plants and HRs.

  19. Artificial Plant Root System Growth for Distributed Optimization: Models and Emergent Behaviors

    Directory of Open Access Journals (Sweden)

    Su Weixing

    2016-01-01

    Full Text Available Plant root foraging exhibits complex behaviors analogous to those of animals, including the adaptability to continuous changes in soil environments. In this work, we adapt the optimality principles in the study of plant root foraging behavior to create one possible bio-inspired optimization framework for solving complex engineering problems. This provides us with novel models of plant root foraging behavior and with new methods for global optimization. This framework is instantiated as a new search paradigm, which combines the root tip growth, branching, random walk, and death. We perform a comprehensive simulation to demonstrate that the proposed model accurately reflects the characteristics of natural plant root systems. In order to be able to climb the noise-filled gradients of nutrients in soil, the foraging behaviors of root systems are social and cooperative, and analogous to animal foraging behaviors.

  20. Competition between Plant-Populations with Different Rooting Depths. 2. Pot Experiments

    NARCIS (Netherlands)

    Berendse, F.

    1981-01-01

    In a previous paper in this series a model was proposed lor the competition between plant populations with different rooting depths. This model predicts that in mixtures of plant populations with different rooting depths the Relative Yield Total will exceed unity. Secondly it predicts that in these

  1. Competition Between Plant Populations with Different Rooting Depths I. Theoretical Considerations

    NARCIS (Netherlands)

    Berendse, Frank

    1979-01-01

    As an extension of De Wit’s competition theory a theoretical description has been developed of competition between plant populations with different rooting depths. This model shows that in mixtures of plants with different rooting depths the value of the Relative Yield Total can be expected to excee

  2. Competition between Plant-Populations with Different Rooting Depths. 1. Theoretical Considerations

    NARCIS (Netherlands)

    Berendse, F.

    1979-01-01

    As an extension of De Wit's competition theory a theoretical description has been developed of competition between plant populations with different rooting depths. This model shows that in mixtures of plants with different rooting depths the value of the Relative Yield Total can be expected to excee

  3. Data from: Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    NARCIS (Netherlands)

    Eisenhauer, Nico; Strecker, Tanja; Lanoue, Arnaud; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, L.

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity

  4. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

    NARCIS (Netherlands)

    Eisenhauer, Nico; Lanoue, Arnaud; Strecker, Tanja; Scheu, Stefan; Steinauer, Katja; Thakur, Madhav P.; Mommer, Liesje

    2017-01-01

    Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity

  5. About the species composition of microscopic fungi in soils and woody plant roots in urban environment

    Directory of Open Access Journals (Sweden)

    Bukharina Irina,

    2016-11-01

    Full Text Available The living state and the presence of mycorrhizal fungi in the roots of woody plants in relation to the level of soil pollution in the urban environment have been studied. The DNA analysis of the roots and soil revealed that in a more severe pollution in the roots of woody plants in a good living state the DNA of end trophic mycorrhizal fungi was detected.

  6. Three-dimensional Solute Transport Modeling in Coupled Soil and Plant Root Systems

    OpenAIRE

    2014-01-01

    Many environmental and agricultural challenges rely on the proper understanding of water flow and solute transport in soils, for example the carbon cycle, crop growth, irrigation scheduling or fate of pollutants in subsoil. Current modeling approaches typically simulate plant uptake via empirical approaches, which neglect the three-dimensional (3D) root architecture. Yet, nowadays 3D soil-root water and solute models on plant-scale exist, which can be used for assessing the impact of root arc...

  7. Do root traits affect a plant's ability to influence soil erosion?

    Science.gov (United States)

    Burak, Emma; Quinton, John; Dodd, Ian

    2017-04-01

    With the ever increasing global population the agricultural sector is put under increasing pressure. This pressure is imposed on the soil and results in wide spread degradation that ultimately decreases productivity. Soil erosion is one of the main features of this degradation. Much focus has been put on the ability of plant canopies to mitigate soil erosion but little research has assessed the impact of below ground biomass. It is understood that woody roots reinforce slopes and lateral roots are believed to support the soil surface but the impact of root hairs is completely unknown. This study used two root hairless mutants one of barley (brb) and one of maize (rth3) along with their wild types (WT) to assess the capacity of different root traits to bind soil particles to the root system, creating a physical coating called a rhizosheath. The two genotypes were grown in a clay loam and periodically harvested during vegetative development. Rhizosheath weight was used to measure the ability of the root system to effectively bind soil particles, while root length was measured to standardise the results between genotypes. Overall, rhizosheath weight increased linearly with root length. When compared to WT plants of the same age, the root length of brb was, on average, 37% greater, suggesting that they compensated for the absence of root hairs by proliferating lateral roots. However, WT plants were far superior at binding soil particles as the rhizosheath weights were 5 fold greater, when expressed per unit root length. Thus root hairs are more important in binding soil particles than lateral roots. Whether these genotypic differences in root traits affect soil erosion will be assessed using mesocosm and field trials. Keywords: Soil erosion, Roots, Barley, Rhizosheath

  8. Spatial heterogeneity of plant-soil feedback affects root interactions and interspecific competition.

    Science.gov (United States)

    Hendriks, Marloes; Ravenek, Janneke M; Smit-Tiekstra, Annemiek E; van der Paauw, Jan Willem; de Caluwe, Hannie; van der Putten, Wim H; de Kroon, Hans; Mommer, Liesje

    2015-08-01

    Plant-soil feedback is receiving increasing interest as a factor influencing plant competition and species coexistence in grasslands. However, we do not know how spatial distribution of plant-soil feedback affects plant below-ground interactions. We investigated the way in which spatial heterogeneity of soil biota affects competitive interactions in grassland plant species. We performed a pairwise competition experiment combined with heterogeneous distribution of soil biota using four grassland plant species and their soil biota. Patches were applied as quadrants of 'own' and 'foreign' soils from all plant species in all pairwise combinations. To evaluate interspecific root responses, species-specific root biomass was quantified using real-time PCR. All plant species suffered negative soil feedback, but strength was species-specific, reflected by a decrease in root growth in own compared with foreign soil. Reduction in root growth in own patches by the superior plant competitor provided opportunities for inferior competitors to increase root biomass in these patches. These patterns did not cascade into above-ground effects during our experiment. We show that root distributions can be determined by spatial heterogeneity of soil biota, affecting plant below-ground competitive interactions. Thus, spatial heterogeneity of soil biota may contribute to plant species coexistence in species-rich grasslands.

  9. Role of calcium in gravity perception of plant roots

    Science.gov (United States)

    Evans, Michael L.

    1986-01-01

    Calcium ions may play a key role in linking graviperception by the root cap to the asymmetric growth which occurs in the elongation zone of gravistimulated roots. Application of calcium-chelating agents to the root cap inhibits gravitropic curvature without affecting growth. Asymmetric application of calcium to one side of the root cap induces curvature toward the calcium source, and gravistimulation induces polar movement of applied (Ca-45)(2+) across the root cap toward the lower side. The action of calcium may be linked to auxin movement in roots since: (1) auxin transport inhibitors interfere both with gravitropic curvature and graviinduced polar calcium movement and (2) asymmetric application of calcium enhances auxin movement across the elongation zone of gravistimulated roots. Indirect evidence indicates that the calcium-modulated regulator protein, calmodulin, may be involved in either the transport or action of calcium in the gravitropic response mechanism of roots.

  10. [Disease resistance signal transfer between roots of different tomato plants through common arbuscular mycorrhiza networks].

    Science.gov (United States)

    Xie, Li-Jun; Song, Yuan-Yuan; Zeng, Ren-Sen; Wang, Rui-Long; Wei, Xiao-Chen; Ye, Mao; Hu, Lin; Zhang, Hui

    2012-05-01

    Common mycorrhizal networks (CMNs) are the underground conduits of nutrient exchange between plants. However, whether the CMNs can serve as the underground conduits of chemical communication to transfer the disease resistance signals between plants are unknown. By inoculating arbuscular mycorrhizal fungus (AMF) Glomus mosseae to establish CMNs between 'donor' and 'receiver' tomato plants, and by inoculating Alternaria solani, the causal agent of tomato early blight disease, to the 'donor' plants, this paper studied whether the potential disease resistance signals can be transferred between the 'donor' and 'receiver' plants roots. The real time RT-PCR analysis showed that after inoculation with A. solani, the AMF-inoculated 'donor' plants had strong expression of three test defense-related genes in roots, with the transcript levels of the phenylalanine ammonia-lyase (PAL), lipoxygenase (LOX) and chitinase (PR3) being significantly higher than those in the roots of the 'donor' plants only inoculated with A. solani, not inoculated with both A. solani and AMF, and only inoculated with AMF. More importantly, in the presence of CMNs, the expression levels of the three genes in the roots of the 'receiver' plants were significantly higher than those of the 'receiver' plants without CMNs connection, with the connection blocking, and with the connection but the 'donor' plants not A. solani-inoculated. Compared with the control (without CMNs connection), the transcript level of the PAL, LOX and PR3 in the roots of the 'receiver' plants having CMNs connection with the 'donor' plants was 4.2-, 4.5- and 3.5-fold higher, respectively. In addition, the 'donor' plants activated their defensive responses more quickly than the 'receiver' plants (18 and 65 h vs. 100 and 140 h). These findings suggested that the disease resistance signals produced by the pathogen-induced 'donor' tomato plant roots could be transferred to the 'receiver' plant roots through CMNs.

  11. Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance.

    Science.gov (United States)

    Li, Tao; Lin, Ge; Zhang, Xin; Chen, Yongliang; Zhang, Shubin; Chen, Baodong

    2014-11-01

    Both arbuscular mycorrhizal (AM) fungi and root hairs play important roles in plant uptake of water and mineral nutrients. To reveal the relative importance of mycorrhiza and root hairs in plant water relations, a bald root barley (brb) mutant and its wild type (wt) were grown with or without inoculation of the AM fungus Rhizophagus intraradices under well-watered or drought conditions, and plant physiological traits relevant to drought stress resistance were recorded. The experimental results indicated that the AM fungus could almost compensate for the absence of root hairs under drought-stressed conditions. Moreover, phosphorus (P) concentration, leaf water potential, photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency were significantly increased by R. intraradices but not by root hairs, except for shoot P concentration and photosynthetic rate under the drought condition. Root hairs even significantly decreased root P concentration under drought stresses. These results confirm that AM fungi can enhance plant drought tolerance by improvement of P uptake and plant water relations, which subsequently promote plant photosynthetic performance and growth, while root hairs presumably contribute to the improvement of plant growth and photosynthetic capacity through an increase in shoot P concentration.

  12. Changes in arbuscular mycorrhizal associations and fine root traits in sites under different plant successional phases in southern Brazil.

    Science.gov (United States)

    Zangaro, Waldemar; de Assis, Rafael Leandro; Rostirola, Leila Vergal; de Souza, Priscila Bochi; Gonçalves, Melissa Camargo; Andrade, Galdino; Nogueira, Marco Antonio

    2008-12-01

    Fine root morphological traits and distribution, arbuscular mycorrhizal (AM) fungi, soil fertility, and nutrient concentration in fine root tissue were compared in sites under different successional phases: grass plants, secondary forest, and mature forest in Londrina county, Paraná state, southern Brazil. Soil cores were collected randomly at the 0-10- and 10-20-cm depths in three quadrants (50 m2) in each site. Plants from the different successional stages displayed high differences in fine root distribution, fine root traits, and mycorrhizal root colonization. There were increases in the concentration of nutrients both in soil and fine roots and decrease of bulk soil density along the succession. The fine root biomass and diameter increased with the succession progress. The total fine root length, specific root length, root hair length, and root hair incidence decreased with the succession advance. Similarly, the mycorrhizal root colonization and the density of AM fungi spores in the soil decreased along the succession. Mycorrhizal root colonization and spore density were positively correlated with fine root length, specific root length, root hair length, root hair incidence, and bulk density and negatively correlated with fine root diameter and concentration of some nutrients both in soil and root tissues. Nutrient concentration in root tissue and in soil was positively correlated with fine root diameter and negatively correlated with specific root length, root hair length, and root hair incidence. These results suggest different adaptation strategies of plant roots for soil exploration and mineral acquisition among the different successional stages. Early successional stages displayed plants with fine root morphology and AM fungi colonization to improve the root functional efficiencies for uptake of nutrients and faster soil resource exploration. Late successional stages displayed plants with fine root morphology and mycorrhizal symbiosis for both a lower

  13. Effects of narrow plant spacing on root distribution and physiological nitrogen use efficiency in summer maize

    Directory of Open Access Journals (Sweden)

    Wenshun Jiang

    2013-10-01

    Full Text Available The objective of this study was to understand the effects of plant spacing on grain yield and root competition in summer maize (Zea mays L.. Maize cultivar Denghai 661 was planted in rectangular tanks (0.54 m × 0.27 m × 1.00 m under 27 cm (normal and 6 cm (narrow plant spacing and treated with zero and 7.5 g nitrogen (N per plant. Compared to normal plant spacing, narrow plant spacing generated less root biomass in the 0–20 cm zone under both N rates, slight reductions of dry root weight in the 20–40 cm and 40–70 cm zones at the mid-grain filling stage, and slight variation of dry root weights in the 70–100 cm zone during the whole growth period. Narrow plant spacing decreased root reductive activity in all root zones, especially at the grain-filling stage. Grain yield and above-ground biomass were 5.0% and 8.4% lower in the narrow plant spacing than with normal plant spacing, although narrow plant spacing significantly increased N harvest index and N use efficiency in both grain yield and biomass, and higher N translocation rates from vegetative organs. These results indicate that the reductive activity of maize roots in all soil layers and dry weights of shallow roots were significantly decreased under narrow plant spacing conditions, resulting in lower root biomass and yield reduction at maturity. Therefore, a moderately dense sowing is a basis for high yield in summer maize.

  14. Effects of narrow plant spacing on root distribution and physiological nitrogen use efficiency in summer maize

    Institute of Scientific and Technical Information of China (English)

    Wenshun; Jiang; Kongjun; Wang; Qiuping; Wu; Shuting; Dong; Peng; Liu; Jiwang; Zhang

    2013-01-01

    The objective of this study was to understand the effects of plant spacing on grain yield and root competition in summer maize(Zea mays L.). Maize cultivar Denghai 661 was planted in rectangular tanks(0.54 m × 0.27 m × 1.00 m) under 27 cm(normal) and 6 cm(narrow) plant spacing and treated with zero and 7.5 g nitrogen(N) per plant. Compared to normal plant spacing, narrow plant spacing generated less root biomass in the 0–20 cm zone under both N rates, slight reductions of dry root weight in the 20–40 cm and 40–70 cm zones at the mid-grain filling stage, and slight variation of dry root weights in the 70–100 cm zone during the whole growth period. Narrow plant spacing decreased root reductive activity in all root zones, especially at the grain-filling stage. Grain yield and above-ground biomass were 5.0% and 8.4% lower in the narrow plant spacing than with normal plant spacing, although narrow plant spacing significantly increased N harvest index and N use efficiency in both grain yield and biomass, and higher N translocation rates from vegetative organs. These results indicate that the reductive activity of maize roots in all soil layers and dry weights of shallow roots were significantly decreased under narrow plant spacing conditions, resulting in lower root biomass and yield reduction at maturity. Therefore, a moderately dense sowing is a basis for high yield in summer maize.

  15. MES buffer affects Arabidopsis root apex zonation and root growth by suppressing superoxide generation in root apex

    Directory of Open Access Journals (Sweden)

    Tomoko eKagenishi

    2016-02-01

    Full Text Available In plants, growth of roots and root hairs is regulated by the fine cellular control of pH and reactive oxygen species. MES, 2-(N-morpholinoethanesulfonic acid as one of the Good’s buffers has broadly been used for buffering medium, and it is thought to suit for plant growth with the concentration at 0.1% (w/v because the buffer capacity of MES ranging pH 5.5-7.0 (for Arabidopsis, pH 5.8. However, many reports have shown that, in nature, roots require different pH values on the surface of specific root apex zones, namely meristem, transition zone and elongation zone. Despite the fact that roots always grow on a media containing buffer molecule, little is known about impact of MES on root growth. Here, we have checked the effects of different concentrations of MES buffer using growing roots of Arabidopsis thaliana. Our results show that 1% of MES significantly inhibited root growth, the number of root hairs and length of meristem, whereas 0.1% promoted root growth and root apex area (region spanning from the root tip up to the transition zone. Furthermore, superoxide generation in root apex disappeared at 1% of MES. These results suggest that MES disturbs normal root morphogenesis by changing the reactive oxygen species (ROS homeostasis in root apex.

  16. Spatial root distribution of plants growing in vertical media for use in living walls

    DEFF Research Database (Denmark)

    Jørgensen, Lars; Dresbøll, Dorte Bodin; Thorup-Kristensen, Kristian

    2014-01-01

    Background and Aims: For plants growing in living walls, the growth potential is correlated to the roots ability to utilize resources in all parts of the growing medium and thereby to the spatial root distribution. The aim of the study was to test how spatial root distribution was affected...... by growing medium, planting position and competition from other plants. Methods: Five species (Campanula poscharskyana cv. 'Stella', Fragaria vesca cv. 'Småland', Geranium sanguineum cv. 'Max Frei', Sesleria heufleriana and Veronica officinalis cv. 'Allgrün') were grown in three growing media (coir and two...... of growing medium, plant species and planting position is important for a living wall as it affects the spatial root growth of the plants. © 2014 Springer International Publishing Switzerland....

  17. Plant Rooting Depth, Soil Hydrology, and Implications to Terrestrial Environmental Change

    Science.gov (United States)

    Fan, Y.; Miguez-Macho, G.

    2016-12-01

    Plant rooting depth is a first-order indicator of the depth of the Earth's crust penetrated, exploited and altered by terrestrial vegetation. Deep root penetration accelerates rock weathering while reducing erosion thus actively shaping the evolution of terrestrial and global environment (through long-term carbon cycle). Deeper roots allow plant access to deeper resources enhancing resilience to environmental stress, thus in part underlying plant biogeography. Unlike their aboveground counterparts, roots are difficult to observe, and basic knowledge, such as their vertical extent, remain poorly constrained. Here we shed new lights on roots through (a) a global compilation and synthesis of rooting depth observations, (b) correlations with biotic and abiotic drivers, (c) a multiscale hydrologic framework to explain the emerging patterns, and (d) global, ecosystem-level (5m) uptake than previous thought. Implications to past and future environmental change are briefly discussed.

  18. Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea

    Science.gov (United States)

    Lux, Alexander; Vaculík, Marek; Martinka, Michal; Lišková, Desana; Kulkarni, Manoj G.; Stirk, Wendy A.; Van Staden, Johannes

    2011-01-01

    Background and Aims Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to plant organs and reaction of root tissues. Methods Plants grown from seeds were cultivated in controlled conditions. Hydroponic cultivation is not suitable for this species as roots do not tolerate aquatic conditions, and additional stress by Cd treatment results in total root growth inhibition and death. After cultivation in perlite the plants exposed to 1 and 5 mg Cd L−1 in half-strength Hoagland's solution were compared with control plants. Growth parameters were evaluated, Cd content was determined by inductively coupled plasma mass spectroscopy (ICP-MS) and root structure was investigated using various staining procedures, including the fluorescent stain Fluorol yellow 088 to detect suberin deposition in cell walls. Key Results The plants exposed to Cd were significantly reduced in growth. Most of the Cd taken up by plants after 4 weeks cultivation was retained in roots, and only a small amount was translocated to bulbs and leaves. In reaction to higher Cd concentrations, roots developed a hypodermal periderm close to the root tip. Cells produced by cork cambium impregnate their cell walls by suberin. Conclusions It is suggested that the hypodermal periderm is developed in young root parts in reaction to Cd toxicity to protect the root from radial uptake of Cd ions. Secondary meristems are usually not present in monocotyledonous species. Another interpretation explaining formation of protective suberized layers as a result of periclinal divisions of the hypodermis is discussed. This process may represent an as yet unknown defence reaction of roots when exposed to elemental stress. PMID:21118841

  19. Soil abiotic factors influence interactions between belowground herbivores and plant roots.

    Science.gov (United States)

    Erb, Matthias; Lu, Jing

    2013-03-01

    Root herbivores are important ecosystem drivers and agricultural pests, and, possibly as a consequence, plants protect their roots using a variety of defensive strategies. One aspect that distinguishes belowground from aboveground plant-insect interactions is that roots are constantly exposed to a set of soil-specific abiotic factors. These factors can profoundly influence root resistance, and, consequently, the outcome of the interaction with belowground feeders. In this review, we synthesize the current literature on the impact of soil moisture, nutrients, and texture on root-herbivore interactions. We show that soil abiotic factors influence the interaction by modulating herbivore abundance and behaviour, root growth and resistance, beneficial microorganisms, as well as natural enemies of the herbivores. We suggest that abiotic heterogeneity may explain the high variability that is often encountered in root-herbivore systems. We also propose that under abiotic stress, the relative fitness value of the roots and the potential negative impact of herbivory increases, which may lead to a higher defensive investment and an increased recruitment of beneficial microorganisms by the plant. At the same time, both root-feeding herbivores and natural enemies are likely to decrease in abundance under extreme environmental conditions, leading to a context- and species-specific impact on plant fitness. Only by using tightly controlled experiments that include soil abiotic heterogeneity will it be possible to understand the impact of root feeders on an ecosystem scale and to develop predictive models for pest occurrence and impact.

  20. Classroom Modified Split-Root Technique and Its Application in a Plant Habitat Selection Experiment at the College Level

    Science.gov (United States)

    Elliott, Shannon S.; Winter, Peggy A.

    2011-01-01

    The split-root technique produces a plant with two equal root masses. Traditionally, the two root masses of the single plant are cultivated in adjacent pots with or without roots from competitors for the purpose of elucidating habitat preferences. We have tailored this technology for the classroom, adjusting protocols to match resources and time…

  1. Legume presence reduces the decomposition rate of non-legume roots, role of plant traits?

    Science.gov (United States)

    De Deyn, Gerlinde B.; Saar, Sirgi; Barel, Janna; Semchenko, Marina

    2016-04-01

    Plant litter traits are known to play an important role in the rate of litter decomposition and mineralization, both for aboveground and belowground litter. However also the biotic and abiotic environment in which the litter decomposes plays a significant role in the rate of decomposition. The presence of living plants may accelerate litter decomposition rates via a priming effects. The size of this effect is expected to be related to the traits of the litter. In this study we focus on root litter, given that roots and their link to ecosystem processes have received relatively little attention in trait-based research. To test the effect of a growing legume plant on root decomposition and the role of root traits in this we used dead roots of 7 different grassland species (comprising grasses, a forb and legumes), determined their C, N, P content and quantified litter mass loss after eight weeks of incubation in soil with and without white clover. We expected faster root decomposition with white clover, especially for root litter with low N content. In contrast we found slower decomposition of grass and forb roots which were poor in N (negative priming) in presence of white clover, while decomposition rates of legume roots were not affected by the presence of white clover. Overall we found that root decomposition can be slowed down in the presence of a living plant and that this effect depends on the traits of the decomposing roots, with a pronounced reduction in root litter poor in N and P, but not in the relatively nutrient-rich legume root litters. The negative priming effect of legume plants on non-legume litter decomposition may have resulted from preferential substrate utilisation by soil microbes.

  2. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status.

    Science.gov (United States)

    Yang, C H; Crowley, D E

    2000-01-01

    Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of the plants were treated with foliar iron every day to inhibit phytosiderophore production and to alter root exudate composition. After 30 days, the bacterial communities associated with different root zones, including the primary root tips, nonelongating secondary root tips, sites of lateral root emergence, and older roots distal from the tip, were characterized by using 16S ribosomal DNA (rDNA) fingerprints generated by PCR-denaturing gradient gel electrophoresis (DGGE). Our results showed that the microbial communities associated with the different root locations produced many common 16S rDNA bands but that the communities could be distinguished by using correspondence analysis. Approximately 40% of the variation between communities could be attributed to plant iron nutritional status. A sequence analysis of clones generated from a single 16S rDNA band obtained at all of the root locations revealed that there were taxonomically different species in the same band, suggesting that the resolving power of DGGE for characterization of community structure at the species level is limited. Our results suggest that the bacterial communities in the rhizosphere are substantially different in different root zones and that a rhizosphere community may be altered by changes in root exudate composition caused by changes in plant iron nutritional status.

  3. COMPREHENSIVE CHEMICAL PROFILING OF GRAMINEOUS PLANT ROOT EXUDATES USING HIGH-RESOLUTION NMR AND MS. (R825433C007)

    Science.gov (United States)

    Root exudates released into soil have important functions in mobilizing metal micronutrients and for causing selective enrichment of plant beneficial soil micro-organisms that colonize the rhizosphere. Analysis of plant root exudates typically has involved chromatographic meth...

  4. In situ stimulation vs. bioaugmentation: Can microbial inoculation of plant roots enhance biodegradation of organic compounds?

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, M.T.; Metting, F.B. Jr.; Fredrickson, J.K. [Pacific Northwest Lab., Richland, WA (United States); Seidler, R.J. [Environmental Protection Agency, Corvallis, OR (United States). Environmental Research Lab.

    1993-06-01

    The use of plant roots and their associated rhizosphere bacteria for biocontainment and biorestoration offers several advantages for treating soil-dispersed contaminants and for application to large land areas. Plant roots function as effective delivery systems, since root growth transports bacteria vertically and laterally along the root in the soil column (see [ 1,2]). Movement of microbes along roots and downward in the soil column can be enhanced via irrigation [1-4]. For example, Ciafardini et al. [3] increased the nodulation and the final yield of soybeans during pod filling by including Bradyrhizobium japonicum in the irrigation water. Using rhizosphere microorganisms is advantageous for biodegradation of compounds that are degraded mainly by cometabolic processes, e.g., trichloroethylene (TCE). The energy source for bacterial growth and metabolism is supplied by the plant in the form of root exudates and other sloughed organic material. Plants are inexpensive, and by careful choice of species that possess either tap or fibrous root growth patterns, they can be used to influence mass transport of soil contaminants to the root surface via the transpiration stream [5]. Cropping of plants to remove heavy metals from contaminated soils has been proposed as a viable, low-cost, low-input treatment option [6]. The interest in use of plants as a remediation strategy has even reached the popular press [7], where the use of ragweed for the reclamation of sites contaminated with tetraethyl lead and other heavy metals was discussed.

  5. Root growth and plant biomass in Lolium perenne exploring a nutrient-rich patch in soil.

    Science.gov (United States)

    Nakamura, Ryoji; Kachi, Naoki; Suzuki, Jun-Ichirou

    2008-11-01

    We investigated soil exploration by roots and plant growth in a heterogeneous environment to determine whether roots can selectively explore a nutrient-rich patch, and how nutrient heterogeneity affects biomass allocation and total biomass before a patch is reached. Lolium perenne L. plants were grown in a factorial experiment with combinations of fertilization (heterogeneous and homogeneous) and day of harvest (14, 28, 42, or 56 days after transplanting). The plant in the heterogeneous treatment was smaller in its mean total biomass, and allocated more biomass to roots. The distributions of root length and root biomass in the heterogeneous treatment did not favor the nutrient-rich patch, and did not correspond to the patchy distribution of inorganic nitrogen. Specific root length (length/biomass) was higher and root elongation was more extensive both laterally and vertically in the heterogeneous treatment. These characteristics may enable plants to acquire nutrients efficiently and increase the probability of encountering nutrient-rich patches in a heterogeneous soil. However, heterogeneity of soil nutrients would hold back plant growth before a patch was reached. Therefore, although no significant selective root placement in the nutrient-rich patch was observed, plant growth before reaching nutrient-rich patches differed between heterogeneous and homogeneous environments.

  6. Hyperaccumulation of nickel by hairy roots of alyssum species: comparison with whole regenerated plants.

    Science.gov (United States)

    Nedelkoska, T V; Doran, P M

    2001-01-01

    Hairy roots were used to investigate nickel uptake by the hyperaccumulator species, Alyssum bertolonii, A. tenium, and A. troodii. The Ni biosorption capacity of A. tenium hairy roots was lower than for other types of biomass such as bacteria and algae; in short-term (9-h) equilibrium studies, the highest Ni content measured in the roots was 17 500 microg g(-1) dry weight at a liquid concentration of about 4000 ppm. Using long-term hairy root cultures, it was demonstrated that Ni tolerance and hyperaccumulation do not necessarily depend on the presence of shoots or root-shoot translocation. A. bertolonii hairy roots remained healthy in appearance and continued to grow in the presence of 20-100 ppm Ni, accumulating up to 7200 microg g(-1) dry weight Ni. In contrast, hairy roots of Nicotiana tabacum turned dark brown at 20 ppm Ni and growth was negligible. The ability to grow at high external Ni concentrations allowed hyperaccumulator hairy roots to remove much greater amounts of heavy metals from the culture liquid than nonhyperaccumulator hairy roots, even though biomass Ni concentrations were similar. Although hairy roots proved to be a useful tool for investigating Ni hyperaccumulation, there were significant differences in the Ni uptake capacity of hairy roots and whole plants. Regenerated plants of A. tenium were much more tolerant of Ni and capable of accumulating higher Ni concentrations than hairy roots of this species.

  7. Arbuscular mycorrhizal fungal colonization of Glycyrrhiza glabra roots enhances plant biomass, phosphorus uptake and concentration of root secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    HongLing LIU; Yong TAN; Monika NELL; Karin ZITTER-EGLSEER; Chris WAWSCRAH; Brigitte KOPP; ShaoMing WANG; Johannes NOVAK

    2014-01-01

    Arbuscular mycorrhizal (AM) fungi penetrate the cortical cells of the roots of vascular plants, and are widely distributed in soil. The formation of these symbiotic bodies accelerates the absorption and utilization of min-eral elements, enhances plant resistance to stress, boosts the growth of plants, and increases the survival rate of transplanted seedlings. We studied the effects of various arbuscular mycorrhizae fungi on the growth and devel-opment of licorice (Glycyrrhiza glabra). Several species of AM, such as Glomus mosseae, Glomus intraradices, and a mixture of fungi (G. mosseae, G. intraradices, G. cladoideum, G. microagregatum, G. caledonium and G. etunica-tum) were used in our study. Licorice growth rates were determined by measuring the colonization rate of the plants by the fungi, plant dry biomass, phosphorus concentration and concentration of secondary metabolites. We estab-lished two cloned strains of licorice, clone 3 (C3) and clone 6 (C6) to exclude the effect of genotypic variations. Our results showed that the AM fungi could in fact increase the leaf and root biomass, as well as the phosphorus con-centration in each clone. Furthermore, AM fungi significantly increased the yield of certain secondary metabolites in clone 3. Our study clearly demonstrated that AM fungi play an important role in the enhancement of growth and development of licorice plants. There was also a significant improvement in the secondary metabolite content and yield of medicinal compounds from the roots.

  8. Genotype and Planting Density Effects on Rooting Traits and Yield in Cotton (Gossypium hirsutum L.)

    Institute of Scientific and Technical Information of China (English)

    Li-Zhen Zhang; Bao-Guo Li; Gen-Tu Yan; Wopke van der Werf; JHJ Spiertz; Si-Ping Zhang

    2006-01-01

    Root density distribution of plants is a major indicator of competition between plants and determines resource capture from the soil. This experiment was conducted in 2005 at Anyang, located in the Yellow River region, Henan Province, China. Three cotton (Gossypium hirsutum L.) cultivars were chosen: hybrid Bt-cultivar CRI46, conventional Bt-cultivars CRI44 and CRI45. Six planting densities were designed, ranging from 1.5 to 12.0 plants/m2. Root parameters such as surface area, diameter and length were analyzed by using the DT-SCAN image analysis method. The root length density (RLD), root average diameter and root area index (RAI), root surface area per unit land area, were studied. The results showed that RLD and RAI differed between genotypes; hybrid CRI46 had significantly higher (P < 0.05) RLD and RAI values than conventional cultivars, especially under low planting densities, less than 3.0 plants/m2. The root area index (RAI) of hybrid CRI46 was 61% higher than of CRI44 and CRI45 at the flowering stage. The RLD and RAI were also significantly different (P= 0.000) between planting densities. The depth distribution of RAI showed that at increasing planting densities RAI was increasingly distributed in the soil layers below 50 cm. The RAI of hybrid CRI46 was for all planting densities, obviously higher than other cultivars during the flowering and boll stages. It was concluded that the hybrid had a strong advantage in root maintenance preventing premature senescence of roots. The root diameter of hybrid CRI46 had a genetically higher root diameter at planting densities lower than 6.0 plants/m2. Good associations were found between yield and RAI in different stages. The optimum planting density ranged from 4.50 plants/m2 to 6.75 plants/m2 for conventional cultivars and around 4.0-5.0 plants/m2 for hybrids.

  9. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation.

    Science.gov (United States)

    Kaiser, Christina; Kilburn, Matt R; Clode, Peta L; Fuchslueger, Lucia; Koranda, Marianne; Cliff, John B; Solaiman, Zakaria M; Murphy, Daniel V

    2015-03-01

    Plants rapidly release photoassimilated carbon (C) to the soil via direct root exudation and associated mycorrhizal fungi, with both pathways promoting plant nutrient availability. This study aimed to explore these pathways from the root's vascular bundle to soil microbial communities. Using nanoscale secondary ion mass spectrometry (NanoSIMS) imaging and (13) C-phospho- and neutral lipid fatty acids, we traced in-situ flows of recently photoassimilated C of (13) CO2 -exposed wheat (Triticum aestivum) through arbuscular mycorrhiza (AM) into root- and hyphae-associated soil microbial communities. Intraradical hyphae of AM fungi were significantly (13) C-enriched compared to other root-cortex areas after 8 h of labelling. Immature fine root areas close to the root tip, where AM features were absent, showed signs of passive C loss and co-location of photoassimilates with nitrogen taken up from the soil solution. A significant and exclusively fresh proportion of (13) C-photosynthates was delivered through the AM pathway and was utilised by different microbial groups compared to C directly released by roots. Our results indicate that a major release of recent photosynthates into soil leave plant roots via AM intraradical hyphae already upstream of passive root exudations. AM fungi may act as a rapid hub for translocating fresh plant C to soil microbes.

  10. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging.

    Science.gov (United States)

    van Dusschoten, Dagmar; Metzner, Ralf; Kochs, Johannes; Postma, Johannes A; Pflugfelder, Daniel; Bühler, Jonas; Schurr, Ulrich; Jahnke, Siegfried

    2016-03-01

    Precise measurements of root system architecture traits are an important requirement for plant phenotyping. Most of the current methods for analyzing root growth require either artificial growing conditions (e.g. hydroponics), are severely restricted in the fraction of roots detectable (e.g. rhizotrons), or are destructive (e.g. soil coring). On the other hand, modalities such as magnetic resonance imaging (MRI) are noninvasive and allow high-quality three-dimensional imaging of roots in soil. Here, we present a plant root imaging and analysis pipeline using MRI together with an advanced image visualization and analysis software toolbox named NMRooting. Pots up to 117 mm in diameter and 800 mm in height can be measured with the 4.7 T MRI instrument used here. For 1.5 l pots (81 mm diameter, 300 mm high), a fully automated system was developed enabling measurement of up to 18 pots per day. The most important root traits that can be nondestructively monitored over time are root mass, length, diameter, tip number, and growth angles (in two-dimensional polar coordinates) and spatial distribution. Various validation measurements for these traits were performed, showing that roots down to a diameter range between 200 μm and 300 μm can be quantitatively measured. Root fresh weight correlates linearly with root mass determined by MRI. We demonstrate the capabilities of MRI and the dedicated imaging pipeline in experimental series performed on soil-grown maize (Zea mays) and barley (Hordeum vulgare) plants.

  11. An assessment of models that predict soil reinforcement by plant roots

    Science.gov (United States)

    Hallett, P. D.; Loades, K. W.; Mickovski, S.; Bengough, A. G.; Bransby, M. F.; Davies, M. C. R.; Sonnenberg, R.

    2009-04-01

    Predicting soil reinforcement by plant roots is fraught with uncertainty because of spatio-temporal variability, the mechanical complexity of roots and soil, and the limitations of existing models. In this study, the validity of root-reinforcement models was tested with data from numerous controlled laboratory tests of both fibrous and woody root systems. By using pot experiments packed with homogeneous soil, each planted with one plant species and grown in glasshouses with controlled water and temperature regimes, spatio-temporal variability was reduced. After direct shear testing to compare the mechanical behaviour of planted versus unplanted samples, the size distribution of roots crossing the failure surface was measured accurately. Separate tensile tests on a wide range of root sizes for each test series provided information on the scaling of root strength and stiffness, which was fitted using power-law relationships. These data were used to assess four root-reinforcement models: (1) Wu et al.'s (1979) root-reinforcement model, (2) Rip-Root fibre bundle model (FBM) proposed by Pollen & Simon (2005), (3) a stress-based FBM and (4) a strain-based FBM. For both fibrous (barley) and woody (willow) root systems, all of the FBMs provided a better prediction of reinforcement than Wu's root-reinforcement model. As FBMs simulate progressive failure of roots, they reflect reality better than the Wu model which assumes all roots break (and contribute to increased shear strength) simultaneously. However, all of the FBMs contain assumptions about the distribution of the applied load within the bundle of roots and the failure criterion. The stress-based FBM assumes the same stiffness for different sized roots, resulting in progressive failure from the largest to smallest roots. This is not observed in testing where the smallest roots fail first. The Rip-Root FBM predicts failure from smallest to largest roots, but the distribution of load between different sized roots is

  12. Regeneration of plants from callus tissues of hairy roots induced by Agrobacterium rhizogenes on Alhagi pseudoalhagi

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The legume forage Alhagi pseudoalhagi was transformed by the Agrobacterium rhizogenes strain A4 using cotyledon and hypocotyl segments as infection materials. Regenerated plants were achieved from sterile calli derived from hairy roots, which occurred at or near the infection sites. The regenerated plants from hairy root were characterized by normal leaf morphology and stem growth but a shallow and more extensive root system than normal plants. Opine synthesis, PCR and Southern blot confirmed that TDNA had been integrated into the A. pseudoalhagi genome. Acetosyringone (AS) was found to be vital for successful transformation of A. pseudoalhagi.

  13. The response of the root apex in plant adaptation to iron heterogeneity in soil

    Directory of Open Access Journals (Sweden)

    Guangjie eLi

    2016-03-01

    Full Text Available Iron (Fe is an essential micronutrient for plant growth and development, and is frequently limiting. By contrast, over-accumulation of iron in plant tissues leads to toxicity. In soils, the distribution of Fe is highly heterogeneous. To cope with this heterogeneity, plant roots engage an array of adaptive responses to adjust their morphology and physiology. In this article, we review root morphological and physiological changes in response to low- and high-Fe conditions and highlight differences between these responses. We especially focus on the role of the root apex in dealing with the stresses resulting from Fe shortage and excess.

  14. Inoculation effects on root-colonizing arbuscular mycorrhizal fungal communities spread beyond directly inoculated plants.

    Science.gov (United States)

    Janoušková, Martina; Krak, Karol; Vosátka, Miroslav; Püschel, David; Štorchová, Helena

    2017-01-01

    Inoculation with arbuscular mycorrhizal fungi (AMF) may improve plant performance at disturbed sites, but inoculation may also suppress root colonization by native AMF and decrease the diversity of the root-colonizing AMF community. This has been shown for the roots of directly inoculated plants, but little is known about the stability of inoculation effects, and to which degree the inoculant and the inoculation-induced changes in AMF community composition spread into newly emerging seedlings that were not in direct contact with the introduced propagules. We addressed this topic in a greenhouse experiment based on the soil and native AMF community of a post-mining site. Plants were cultivated in compartmented pots with substrate containing the native AMF community, where AMF extraradical mycelium radiating from directly inoculated plants was allowed to inoculate neighboring plants. The abundances of the inoculated isolate and of native AMF taxa were monitored in the roots of the directly inoculated plants and the neighboring plants by quantitative real-time PCR. As expected, inoculation suppressed root colonization of the directly inoculated plants by other AMF taxa of the native AMF community and also by native genotypes of the same species as used for inoculation. In the neighboring plants, high abundance of the inoculant and the suppression of native AMF were maintained. Thus, we demonstrate that inoculation effects on native AMF propagate into plants that were not in direct contact with the introduced inoculum, and are therefore likely to persist at the site of inoculation.

  15. Stacked propagation: a new way to grow native plants from root cuttings

    Science.gov (United States)

    David R. Dreesen; Thomas D. Landis; Jeremy R. Pinto

    2006-01-01

    Stacked propagation is a novel method of growing quaking aspen (Populus tremuloides Michx. [Salicaceae]) and other plants that reproduce from underground stems or root cuttings. Because the mother plant is not damaged, it is particularly well suited for rare plants or those that can’t be propagated by normal methods. Our initial trials indicate that...

  16. Responses of young maize plants to root temperatures

    NARCIS (Netherlands)

    Grobbelaar, W.P.

    1963-01-01

    The effect of root temperatures on growth, water uptake and ion uptake of the maize single cross K 64r X E 184 has been studied during the early vegetative phase in culture solution in temperature-controlled rooms. A root temperature range of 5°-40°C with 5°C increments, a cons

  17. Plant root exudates mediate neighbour recognition and trigger complex behavioural changes.

    Science.gov (United States)

    Semchenko, Marina; Saar, Sirgi; Lepik, Anu

    2014-11-01

    Some plant species are able to distinguish between neighbours of different genetic identity and attempt to pre-empt resources through root proliferation in the presence of unrelated competitors, but avoid competition with kin. However, studies on neighbour recognition have met with some scepticism because the mechanisms by which plants identify their neighbours have remained unclear. In order to test whether root exudates could mediate neighbour recognition in plants, we performed a glasshouse experiment in which plants of Deschampsia caespitosa were subjected to root exudates collected from potential neighbours of different genetic identities, including siblings and individuals belonging to the same or a different population or species. Our results show that root exudates can carry specific information about the genetic relatedness, population origin and species identity of neighbours, and trigger different responses at the whole root system level and at the level of individual roots in direct contact with locally applied exudates. Increased root density was mainly achieved through changes in morphology rather than biomass allocation, suggesting that plants are able to limit the energetic cost of selfish behaviour. This study reveals a new level of complexity in the ability of plants to interpret and react to their surroundings.

  18. Modulation of Root Signals in Relation to Stomatal Sensitivity to Root-sourced Abscisic Acid in Drought-affected Plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Stomatal sensitivity to root signals induced by soil drying may vary between environments and plant species. This is likely central role in root to shoot signaling. pH and hydraulic signals may interact with ABA signals and thus, jointly regulate stomatal responses to changed soil water status. pH itself can be modified by several factors, among which the chemical compositions In the xylem stream and the live cells surrounding the vessels play crucial roles. In addition to the xylem pH,more attention should be paid to the direct modulation of leaf apoplastic pH, because many chemical compositions might strongly modify the leaf apoplastlc pH while having no significant effect on the xylem pH. The direct modulation of the ABA signal intensity may be more important for the regulation of stomatal responses to soil drying than the ABA signal per se.The ABA signal is also regulated by the ABA catabolism and the supply of precursors to the roots If a sustained root to shoot communication of soil drying operates at the whole plant level. More importantly, ABA catabolism could play crucial roles In the determination of the fate of the ABA signal and thereby control the stomatal behavior of the root-sourced ABA signal.

  19. Inhibiting Cadmium Transport Process in Root Cells of Plants: A Review

    Directory of Open Access Journals (Sweden)

    ZHAO Yan-ling

    2016-05-01

    Full Text Available Cadmium(Cd is the most common element found in the heavy-metal contaminated soils in China. Roots of rice and vegetables can concentrate Cd from acid soils, and then transport Cd to above-ground parts. Cd in edible part of plants directly influences the food safety. Cellwall, plasma membrane and organells of root cells in plant can discriminate Cd from other elements. A lot of Cd can be fixed in root cells by precipitation, complexation, compartmentation, and so on, to inhibit its transport from roots to shoot and guarantee the physiological activities in above-ground parts carrying out normally. This paper summarized recent advance on inhibiting Cd transport process in subcellular fractions of root cells of plants, which is in advantage of exploring excellent germplasms and gene resources in the future.

  20. Plant Roots Increase Bacterivorous Nematode Dispersion through Nonuniform Glass-bead Media.

    Science.gov (United States)

    Trap, Jean; Bernard, Laetitia; Brauman, Alain; Pablo, Anne-Laure; Plassard, Claude; Ranoarisoa, Mahafaka Patricia; Blanchart, Eric

    2015-12-01

    Dispersion of bacterivorous nematodes in soil is a crucial ecological process that permits settlement and exploitation of new bacterial-rich patches. Although plant roots, by modifying soil structure, are likely to influence this process, they have so far been neglected. In this study, using an original three-compartment microcosm experimental design and polyvinyl chloride (PVC) bars to mimic plant roots, we tested the ability of roots to improve the dispersion of bacterivorous nematode populations through two wet, nonuniform granular (glass bead) media imitating contrasting soil textures. We showed that artificial roots increased migration time of bacterivorous nematode populations in the small-bead medium, suggesting that plant roots may play an important role in nematode dispersion in fine-textured soils or when soil compaction is high.

  1. Plant Functional Traits Associated with Mycorrhizal Root Foraging in Arbuscular Mycorrhizal and Ectomycorrhizal Trees

    Science.gov (United States)

    Eissenstat, D. M.; Chen, W.; Cheng, L.; Liu, B.; Koide, R. T.; Guo, D.

    2016-12-01

    Root foraging for nutrient "hot spots" is a key strategy by which some plants maximize nutrient gain from their carbon investment in root and mycorrhizal hyphae. Foraging strategies may depend on costs of root construction, with thick roots generally costing more per unit length than thin roots. Investment in mycorrhizal hyphae, which are considerably thinner than roots, may represent an alternative strategy for cost-effective nutrient foraging, especially for thick-root species. Type of mycorrhiza may matter, as ectomycorrhizal (EM) fungi are more associated with longer hyphae and ability to mineralize organic matter than arbuscular mycorrhizal (AM) fungi. Among AM trees in both subtropical forests in SE China and in temperate forests in central Pennsylvania, USA, we found that tree species with thin roots proliferated their roots in soil patches enriched with mineral nutrients to a greater extent than species with thick roots. In addition, thick-root species were consistently colonized more heavily with mycorrhizal fungi than thin root species, although nutrient addition tended to diminish colonization. In a common garden in central Pennsylvania of both AM and EM tree species, we found that nutrient patches enriched with organic materials resulted in greater root and mycorrhizal fungal proliferation compared to those enriched with inorganic nutrients and that thick-root species proliferated more with their mycorrhizal fungi whereas thin-root species proliferated more with their roots. We further examined with many more species, patterns of root and mycorrhizal fungal proliferation in organic-nutrient-enriched patches. Foraging precision, or the extent that roots or mycorrhizal hyphae grew in the enriched patch relative to the unenriched patch, was related to both root thickness and type of mycorrhiza. In both AM and EM trees, thick-root species were not selective foragers of either their roots or hyphae. In thin-root species, there was strong selectivity in

  2. Community- Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance

    OpenAIRE

    Ilja Sonnemann; Hans Pfestorf; Florian Jeltsch; Susanne Wurst

    2015-01-01

    Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calc...

  3. [Some peculiar features of liquid supply to the root medium of plants growing in microgravity

    Science.gov (United States)

    Podol'skii, I. G.; Sychev, V. N.; Levinskikh, M. A.; Strugov, O. M.; Bingham, G. E.; Salisbury, F. B. (Principal Investigator)

    1998-01-01

    Sixteen point probes monitored moisture level in the root medium of the wheat plants grown in greenhouse SVET on the MIR/NASA space science program. The article outlines types of water migration in the absence of gravity. Hydrophysical characteristics of perspective root media have been explored. Results of the water supply monitoring and control in the course of experiment are reported. The authors put forward porous root media to facilitate water migration and aeration.

  4. Optical methods for creating delivery systems of chemical compounds to plant roots

    Science.gov (United States)

    Kuznetsov, Pavel E.; Rogacheva, Svetlana M.; Arefeva, Oksana A.; Minin, Dmitryi V.; Tolmachev, Sergey A.; Kupadze, Machammad S.

    2004-08-01

    Spectrophotometric and fluorescence methods have been used for creation and investigation of various systems of target delivery of chemical compounds to roots of plants. The possibility of using liposomes, incrusted by polysaccharides of the external surface of nitrogen-fixing rizospheric bacteria Azospirillum brasilense SP 245, and nanoparticles incrusted by polysaccharides of wheat roots, as the named systems has been shown. The important role of polysaccharide-polysaccharide interaction in the adsorption processes of bacteria on wheat roots has been demonstrated.

  5. Preliminary study on interaction between plant frictional root and rock-soil mass

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The interaction between lateral root system of woody plant and soil mass is similar to the one between shrub, herbage and soil mass, and has the effect of frictional reinforcement on slope soil. It plays an important role in reinforcing soil strength in shallow slope. Therefore, slope soil mass can be considered as a composite of soil and plant roots and the soil strength and stability of shallow slope soil mass are improved. However, current researches still remain on the level of qualitatively analyzing the relation between root and soil mass. In this paper, some exploratory researches on quantitative analysis of the interaction mechanism between root and soil mass are conducted. With the study of interaction between herbage root system (lateral root system of woody plants) and soil mass, the mechanical model of interaction between frictional root and soil mass is established. The accuracy of the model is verified by field experiments of Pinus Yunnanensis. The mechanical model provides a crucial theoretical guidance to quantitatively analyzing the interaction between plant root and soil mass; it also has certain values in application.

  6. Thick root of cucumber: other susceptible plants and the effect of pH

    NARCIS (Netherlands)

    Gaag, van der D.J.; Paternotte, P.; Hamelink, R.

    2002-01-01

    Thick root is a relatively new disorder of cucumber grown in artificial substrates. Plants of cucumber, tomato, sweet pepper, lupin, anthurium, Cucurbita ficifolia, C. maxima and two lines from crosses between C. maxima and C. moschata were grown in thick root disease (TRD)-infested nutrient solutio

  7. From lifting to planting: Root dip treatments affect survival of loblolly pine (Pinus taeda)

    Science.gov (United States)

    Tom E. Starkey; David B. South

    2009-01-01

    Hydrogels and clay slurries are the materials most commonly applied to roots of pines in the southern United States. Most nursery managers believe such applications offer a form of "insurance" against excessive exposure during planting. The objective of this study was to examine the ability of root dip treatments to: (1) support fungal growth; and (2) protect...

  8. Long distance root-shoot signalling in plant-insect community interactions

    NARCIS (Netherlands)

    Soler, R.; Erb, M.; Kaplan, I.

    2013-01-01

    Plants mediate interactions between insects, including leaf- and root-feeders; yet the underlying mechanisms and connection with ecological theory remain unresolved. In this review, based on novel insights into long-distance (i.e., leaf-leaf, root-shoot) defence signalling, we explore the role of ph

  9. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum.

    Science.gov (United States)

    Ricigliano, Vincent; Chitaman, Javed; Tong, Jingjing; Adamatzky, Andrew; Howarth, Dianella G

    2015-01-01

    Roots of the medicinal plant Valeriana officinalis are well-studied for their various biological activities. We applied genetically transformed V. officinalis root biomass to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of bioactive compounds. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold's surface electrical activity. We propose that manipulation of P. polycephalum with the plant root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere.

  10. Plant hairy root cultures as plasmodium modulators of the slime mold emergent computing substrate Physarum polycephalum

    Directory of Open Access Journals (Sweden)

    Vincent eRicigliano

    2015-07-01

    Full Text Available Roots of the medicinal plant Valeriana officinalis are well studied for their various biological activities. We applied genetically transformed V. officinalis root cultures to exert control of Physarum polycephalum, an amoeba-based emergent computing substrate. The plasmodial stage of the P. polycephalum life cycle constitutes a single, multinucleate cell visible by unaided eye. The plasmodium modifies its network of oscillating protoplasm in response to spatial configurations of attractants and repellents, a behavior that is interpreted as biological computation. To program the computing behavior of P. polycephalum, a diverse and sustainable library of plasmodium modulators is required. Hairy roots produced by genetic transformation with Agrobacterium rhizogenes are a metabolically stable source of plant natural products. Adventitious roots were induced on in vitro V. officinalis plants following infection with A. rhizogenes. A single hairy root clone was selected for massive propagation and the biomass was characterized in P. polycephalum chemotaxis, maze-solving, and electrical activity assays. The Agrobacterium-derived roots of V. officinalis elicited a positive chemotactic response and augmented maze-solving behavior. In a simple plasmodium circuit, introduction of hairy root biomass stimulated the oscillation patterns of slime mold’s surface electrical potential. We propose that manipulation of P. polycephalum with the V. officinalis root culture platform can be applied to the development of slime mold microfluidic devices as well as future models for engineering the plant rhizosphere.

  11. Maintenance error reduction strategies in nuclear power plants, using root cause analysis.

    Science.gov (United States)

    Wu, T M; Hwang, S L

    1989-06-01

    This study proposes a conceptual model of maintenance tasks to facilitate the identification of root causes of human errors in carrying out such tasks in nuclear power plants. Based on this model, an external/internal classification scheme was developed to discover the root causes of human errors. As a consequence, certain policies pertaining to human error prevention or correction were proposed.

  12. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance.

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Tohge, Takayuki; Takayuki, Tohge; Fernie, Alisdair R; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-03-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity.

  13. Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Takayuki, Tohge; Fernie, Alisdair R.; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-01-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity

  14. Root exudates: the hidden part of plant defense.

    Science.gov (United States)

    Baetz, Ulrike; Martinoia, Enrico

    2014-02-01

    The significance of root exudates as belowground defense substances has long been underestimated, presumably due to being buried out of sight. Nevertheless, this chapter of root biology has been progressively addressed within the past decade through the characterization of novel constitutively secreted and inducible phytochemicals that directly repel, inhibit, or kill pathogenic microorganisms in the rhizosphere. In addition, the complex transport machinery involved in their export has been considerably unraveled. It has become evident that the profile of defense root exudates is not only diverse in its composition, but also strikingly dynamic. In this review, we discuss current knowledge of the nature and regulation of root-secreted defense compounds and the role of transport proteins in modulating their release. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Iron Oxide and Titanium Dioxide Nanoparticle Effects on Plant Performance and Root Associated Microbes

    Directory of Open Access Journals (Sweden)

    David J. Burke

    2015-10-01

    Full Text Available In this study, we investigated the effect of positively and negatively charged Fe3O4 and TiO2 nanoparticles (NPs on the growth of soybean plants (Glycine max. and their root associated soil microbes. Soybean plants were grown in a greenhouse for six weeks after application of different amounts of NPs, and plant growth and nutrient content were examined. Roots were analyzed for colonization by arbuscular mycorrhizal (AM fungi and nodule-forming nitrogen fixing bacteria using DNA-based techniques. We found that plant growth was significantly lower with the application of TiO2 as compared to Fe3O4 NPs. The leaf carbon was also marginally significant lower in plants treated with TiO2 NPs; however, leaf phosphorus was reduced in plants treated with Fe3O4. We found no effects of NP type, concentration, or charge on the community structure of either rhizobia or AM fungi colonizing plant roots. However, the charge of the Fe3O4 NPs affected both colonization of the root system by rhizobia as well as leaf phosphorus content. Our results indicate that the type of NP can affect plant growth and nutrient content in an agriculturally important crop species, and that the charge of these particles influences the colonization of the root system by nitrogen-fixing bacteria.

  16. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    OpenAIRE

    Chantal ePlanchamp; Gaetan eGlauser; Brigitte eMauch-Mani

    2015-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization b...

  17. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    OpenAIRE

    Chantal ePlanchamp; Gaetan eGlauser; Brigitte eMauch-Mani

    2015-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization b...

  18. Mapping Soil Carbon from Cradle to Grave: C Transformations of Root Exudates and Plant Litter

    Science.gov (United States)

    Pett-Ridge, J.; Keiluweit, M.; Nuccio, E.; Bougoure, J.; Weber, P. K.; Brodie, E.; Mayali, X.; Shi, S.; Hwang, M.; Thelen, M.; Firestone, M.; Kleber, M.; Nico, P. S.

    2013-12-01

    Carbon cycling in the rhizosphere is a nexus of biophysical interactions between plant roots, microorganisms, and the soil organo-mineral matrix. Plant roots provide 30-40% of soil organic C inputs, accelerate the rate of organic matter mineralization by ~10X, and support an active microhabitat for microbial transformation of soil C. Our research on how roots influence decomposition of soil organic matter in both simplified and complex microcosms uses geochemical characterization, molecular microbiology, isotope tracing, metabolomics and novel imaging approaches (';ChipSIP' and ';STXM-SIMS') to trace the fate of isotopically labelled root exudates and plant tissues. Our previous work suggests root exudates drive O2 limitation, alter metal chemistry and mineralogy, and influence the availability of SOM. Our most recent experiments using synthetic rhizospheres were designed to identify the role of root exudates on ligno-cellulose decomposition in soils. Cultures of 13C/15N-labeled single plant cells (lignin-rich tracheary elements) were added to rhizosphere microcosm soils, and their decomposition followed under the influence of different root exudates using the dual imaging approach ';STXM-SIMS'. Using this combination of X-ray spectromicroscopy and NanoSIMS, we imaged the deconstruction of 13C/15N-labeled ligno-cellulose in situ, and mapped associations of plant cell-derived decomposition products with specific soil minerals. We've also looked at microbial community function in the more complex rhizospheres surrounding roots of the annual grass Avena fatua. Using an isotope array that allows us to follow root C into bacterial, fungal, and microfaunal communities, we tracked the movement of 13C from labeled exudates and 15N from labeled root litter into the soil microbial community. Our results indicate that the microbial communities involved in litter decomposition differ in rhizosphere versus bulk soils, which may have implications for carbon stabilization in soil.

  19. The effects of fungal root endophytes on plant growth: a meta-analysis.

    Science.gov (United States)

    Mayerhofer, Michael S; Kernaghan, Gavin; Harper, Karen A

    2013-02-01

    Fungal root endophytes are plant associates that colonize root tissue internally without causing any obvious harm to their host. Although ubiquitous, this relationship is not well understood. Our objectives were to determine the effects of fungal root endophyte inoculation on plant biomass and nitrogen concentration by conducting an extensive meta-analysis. We also explored the effects of experimental conditions on the host-endophyte relationship. We performed analyses weighted with non-parametric variance on plant response to root endophytes from the Ascomycetes (excluding the Clavacipitaceae), including categorical analyses of 21 experimental factors, ranging from the identity of the host and the endophyte, to the composition of the growing medium. The response of total biomass to endophyte inoculation was 18% lower than non-inoculated controls, while individually, root biomass, shoot biomass, and nitrogen concentration responses to endophyte inoculation were neutral. The identities of both the host and the endophyte had an influence, as did the original source of the endophyte (whether or not the isolate used originated from the same host species). Experimental conditions also influenced the plant-endophyte relationship, with the most important being the availability and sources of carbon and organic nitrogen, particularly peat moss. Although our analysis demonstrates that overall plant biomass and nitrogen concentration responses to ascomycetous root endophyte inoculation is neutral to negative, these results are somewhat confounded by among-study differences in experimental conditions, which undoubtedly contribute to the high levels of variability in plant response seen in the literature.

  20. The tropic response of plant roots to oxygen: oxytropism in Pisum sativum L

    Science.gov (United States)

    Porterfield, D. M.; Musgrave, M. E.

    1998-01-01

    Plant roots are known to orient growth through the soil by gravitropism, hydrotropism, and thigmotropism. Recent observations of plant roots that developed in a microgravity environment in space suggested that plant roots may also orient their growth toward oxygen (oxytropism). Using garden pea (Pisum sativum L. cv. Weibul's Apollo) and an agravitropic mutant (cv. Ageotropum), root oxytropism was studied in the controlled environment of a microrhizotron. A series of channels in the microrhizotron allowed establishment of an oxygen gradient of 0.8 mmol mol-1 mm-1. Curvature of seedling roots was determined prior to freezing the roots for subsequent spectrophotometric determinations of alcohol dehydrogenase activity. Oxytropic curvature was observed all along the gradient in both cultivars of pea. The normal gravitropic cultivar showed a maximal curvature of 45 degrees after 48 h, while the agravitropic mutant curved to 90 degrees. In each cultivar, the amount of curvature declined as the oxygen concentration decreased, and was linearly related to the root elongation rate. Since oxytropic curvature occurred in roots exposed to oxygen concentrations that were not low enough to induce the hypoxically responsive protein alcohol dehydrogenase, we suspect that the oxygen sensor associated with oxytropism does not control the induction of hypoxic metabolism. Our results indicate that oxygen can play a critical role in determining root orientation as well as impacting root metabolic status. Oxytropism allows roots to avoid oxygen-deprived soil strata and may also be the basis of an auto-avoidance mechanism, decreasing the competition between roots for water and nutrients as well as oxygen.

  1. Soil Penetration by Earthworms and Plant Roots--Mechanical Energetics of Bioturbation of Compacted Soils.

    Science.gov (United States)

    Ruiz, Siul; Or, Dani; Schymanski, Stanislaus J

    2015-01-01

    We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip). The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities.

  2. Effect of planting density on root lodging resistance and its relationship to nodal root growth characteristics in maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Liu, Shengqun; Song, Fengbin; Liu, Fulai

    2012-01-01

    Increase of planting density has been widely used to increase grain yield in maize. However, it may lead to higher risk of root lodging hence causing significant yield loss of the crop. The objective of this study was to investigate the effect of planting density on maize nodal root growth...

  3. Root exudate cocktails: the link between plant diversity and soil microorganisms?

    Science.gov (United States)

    Steinauer, Katja; Chatzinotas, Antonis; Eisenhauer, Nico

    2016-10-01

    Higher plant diversity is often associated with higher soil microbial biomass and diversity, which is assumed to be partly due to elevated root exudate diversity. However, there is little experimental evidence that diversity of root exudates shapes soil microbial communities. We tested whether higher root exudate diversity enhances soil microbial biomass and diversity in a plant diversity gradient, thereby negating significant plant diversity effects on soil microbial properties. We set up plant monocultures and two- and three-species mixtures in microcosms using functionally dissimilar plants and soil of a grassland biodiversity experiment in Germany. Artificial exudate cocktails were added by combining the most common sugars, organic acids, and amino acids found in root exudates. We applied four different exudate cocktails: two exudate diversity levels (low- and high-diversity) and two nutrient-enriched levels (carbon- and nitrogen-enriched), and a control with water only. Soil microorganisms were more carbon- than nitrogen-limited. Cultivation-independent fingerprinting analysis revealed significantly different soil microbial communities among exudate diversity treatments. Most notably and according to our hypothesis, adding diverse exudate cocktails negated the significant plant diversity effect on soil microbial properties. Our findings provide the first experimental evidence that root exudate diversity is a crucial link between plant diversity and soil microorganisms.

  4. PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa.

    Science.gov (United States)

    Lebeis, Sarah L; Paredes, Sur Herrera; Lundberg, Derek S; Breakfield, Natalie; Gehring, Jase; McDonald, Meredith; Malfatti, Stephanie; Glavina del Rio, Tijana; Jones, Corbin D; Tringe, Susannah G; Dangl, Jeffery L

    2015-08-21

    Immune systems distinguish "self" from "nonself" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community. We established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome. Salicylic acid modulates colonization of the root by specific bacterial families. Thus, plant immune signaling drives selection from the available microbial communities to sculpt the root microbiome.

  5. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect.

    Science.gov (United States)

    Rostás, Michael; Cripps, Michael G; Silcock, Patrick

    2015-02-01

    Plants emit specific blends of volatile organic compounds (VOCs) that serve as multitrophic, multifunctional signals. Fungi colonizing aboveground (AG) or belowground (BG) plant structures can modify VOC patterns, thereby altering the information content for AG insects. Whether AG microbes affect the emission of root volatiles and thus influence soil insect behaviour is unknown. The endophytic fungus Neotyphodium uncinatum colonizes the aerial parts of the grass hybrid Festuca pratensis × Lolium perenne and is responsible for the presence of insect-toxic loline alkaloids in shoots and roots. We investigated whether endophyte symbiosis had an effect on the volatile emission of grass roots and if the root herbivore Costelytra zealandica was able to recognize endophyte-infected plants by olfaction. In BG olfactometer assays, larvae of C. zealandica were more strongly attracted to roots of uninfected than endophyte-harbouring grasses. Combined gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry revealed that endophyte-infected roots emitted less VOCs and more CO2. Our results demonstrate that symbiotic fungi in plants may influence soil insect distribution by changing their behaviour towards root volatiles. The well-known defensive mutualism between grasses and Neotyphodium endophytes could thus go beyond bioactive alkaloids and also confer protection by being chemically less apparent for soil herbivores.

  6. Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence.

    Science.gov (United States)

    Tomilov, Alexey; Tomilova, Natalya; Yoder, John I

    2007-04-01

    Parasitic plants in the Orobanchaceae invade roots of neighboring plants to rob them of water and nutrients. Triphysaria is facultative parasite that parasitizes a broad range of plant species including maize and Arabidopsis. In this paper we describe transient and stable transformation systems for Triphysaria versicolor Fischer and C. Meyer. Agrobacterium tumefaciens and Agrobacterium rhizogenes were both able to transiently express a GUS reporter in Triphysaria seedlings following vacuum infiltration. There was a correlation between the length of time seedlings were conditioned in the dark prior to infiltration and the tissue type transformed. In optimized experiments, nearly all of the vacuum infiltrated seedlings transiently expressed GUS activity in some tissue. Calluses that developed from transformed tissues were selected using non-destructive GUS staining and after several rounds of in vivo GUS selection, we recovered uniformly staining GUS calluses from which roots were subsequently induced. The presence and expression of the transgene in Triphysaria was verified using genomic PCR, RT PCR and Southern hybridizations. Transgenic roots were also obtained by inoculating A. rhizogenes into wounded Triphysaria seedlings. Stable transformed roots were identified using GUS staining or fluorescent microscopy following transformation with vectors containing GFP, dsRED or EYFP. Transgenic roots derived from both A. tumefaciens and A. rhizogenes transformations were morphologically normal and developed haustoria that attached to and invaded lettuce roots. Transgenic roots also remained competent to form haustoria in response to purified inducing factors. These transformation systems will allow an in planta assessment of genes predicted to function in plant parasitism.

  7. Root strength of tropical plants - An investigation in the Western Ghats of Kerala, India

    Science.gov (United States)

    Lukose Kuriakose, S.; van Beek, L. P. H.; van Westen, C. J.

    2009-04-01

    Earlier research on debris flows in the Tikovil River basin of the Western Ghats concluded that root cohesion is significant in maintaining the overall stability of the region. In this paper we present the most recent results (December 2008) of root tensile strength tests conducted on nine species of plants that are commonly found in the region. They are 1) Rubber (Hevea Brasiliensis), 2) Coconut Palm (Cocos nucifera), 3) Jackfruit trees (Artocarpus heterophyllus), 4) Teak (Tectona grandis), 5) Mango trees (Mangifera indica), 6) Lemon grass (Cymbopogon citratus), 7) A variety of Tamarind (Garcinia gummigutta), 8) Coffee (Coffea Arabica) and Tea (Camellia sinensis). About 1500 samples were collected of which only 380 could be tested (in the laboratory) due to breakage of roots during the tests. In the successful tests roots failed in tension. Roots having diameters between 2 mm and 12 mm were tested. Each sample tested has a length of 15 cm. Results indicate that the roots of Coffee, Tamarind, Lemon grass and Jackfruit are the strongest of the nine plant types tested whereas Tea and Teak plants had the most fragile roots. Coconut roots behaved atypical to the others, as the bark of the roots was crushed and slipped from the clamp when tested whereas its internal fiber was the strongest of all tested. Root tensile strength decreases with increasing diameters, Rubber showing more ductile behaviour than Coffee and Tamarind that behaved more brittle, root tensile strength increasing exponentially for finer roots. Teak and Tea showed almost a constant root tensile strength over the range of diameters tested and little variability. Jack fruit and mango trees showed the largest variability, which may be explained by the presence of root nodules, preventing the derivation of an unequivocal relationship between root diameters and tensile strength. This results in uncertainty of root strength estimates that are applicable. These results provide important information to

  8. Fungal root endophyte associations of plants endemic to the Pamir Alay Mountains of Central Asia.

    Science.gov (United States)

    Zubek, Szymon; Nobis, Marcin; Błaszkowski, Janusz; Mleczko, Piotr; Nowak, Arkadiusz

    2011-06-01

    The fungal root endophyte associations of 16 species from 12 families of plants endemic to the Pamir Alay Mountains of Central Asia are presented. The plants and soil samples were collected in Zeravshan and Hissar ranges within the central Pamir Alay mountain system. Colonization by arbuscular mycorrhizal fungi (AMF) was found in 15 plant species; in 8 species it was of the Arum type and in 4 of the Paris type, while 3 taxa revealed intermediate arbuscular mycorrhiza (AM) morphology. AMF colonization was found to be absent only in Matthiola integrifolia, the representative of the Brassicaceae family. The AM status and morphology are reported for the first time for all the species analyzed and for the genera Asyneuma, Clementsia, and Eremostachys. Mycelia of dark septate endophytes (DSE) accompanied the AMF colonization in ten plant species. The frequency of DSE occurrence in the roots was low in all the plants, with the exception of Spiraea baldschuanica. However, in the case of both low and higher occurrence, the percentage of DSE root colonization was low. Moreover, the sporangia of Olpidium spp. were sporadically found inside the root epidermal cells of three plant species. Seven AMF species (Glomeromycota) found in the trap cultures established with soils surrounding roots of the plants being studied were reported for the first time from this region of Asia. Our results provide information that might well be of use to the conservation and restoration programmes of these valuable plant species. The potential application of beneficial root-inhabiting fungi in active plant protection projects of rare, endemic and endangered plants is discussed.

  9. High temperatures limit plant growth but hasten flowering in root chicory (Cichorium intybus) independently of vernalisation.

    Science.gov (United States)

    Mathieu, Anne-Sophie; Lutts, Stanley; Vandoorne, Bertrand; Descamps, Christophe; Périlleux, Claire; Dielen, Vincent; Van Herck, Jean-Claude; Quinet, Muriel

    2014-01-15

    An increase in mean and extreme summer temperatures is expected as a consequence of climate changes and this might have an impact on plant development in numerous species. Root chicory (Cichorium intybus L.) is a major crop in northern Europe, and it is cultivated as a source of inulin. This polysaccharide is stored in the tap root during the first growing season when the plant grows as a leafy rosette, whereas bolting and flowering occur in the second year after winter vernalisation. The impact of heat stress on plant phenology, water status, photosynthesis-related parameters, and inulin content was studied in the field and under controlled phytotron conditions. In the field, plants of the Crescendo cultivar were cultivated under a closed plastic-panelled greenhouse to investigate heat-stress conditions, while the control plants were shielded with a similar, but open, structure. In the phytotrons, the Crescendo and Fredonia cultivars were exposed to high temperatures (35°C day/28°C night) and compared to control conditions (17°C) over 10 weeks. In the field, heat reduced the root weight, the inulin content of the root and its degree of polymerisation in non-bolting plants. Flowering was observed in 12% of the heat stressed plants during the first growing season in the field. In the phytotron, the heat stress increased the total number of leaves per plant, but reduced the mean leaf area. Photosynthesis efficiency was increased in these plants, whereas osmotic potential was decreased. High temperature was also found to induced flowering of up to 50% of these plants, especially for the Fredonia cultivar. In conclusion, high temperatures induced a reduction in the growth of root chicory, although photosynthesis is not affected. Flowering was also induced, which indicates that high temperatures can partly substitute for the vernalisation requirement for the flowering of root chicory.

  10. Evolving technologies for growing, imaging and analyzing 3D root system architecture of crop plants

    Institute of Scientific and Technical Information of China (English)

    Miguel A Pineros; Pierre-Luc Pradier; Nathanael M Shaw; Ithipong Assaranurak; Susan R McCouch; Craig Sturrock; Malcolm Bennett; Leon V Kochian; Brandon G Larson; Jon E Shaff; David J Schneider; Alexandre Xavier Falcao; Lixing Yuan; Randy T Clark; Eric J Craft; Tyler W Davis

    2016-01-01

    A plant’s ability to maintain or improve its yield under limiting conditions, such as nutrient deficiency or drought, can be strongly influenced by root system architec-ture (RSA), the three-dimensional distribution of the different root types in the soil. The ability to image, track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyp-ing software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimen-sional RSA of the plant root system, while allowing for aeration, solution replenishment and the imposition of nutrient treatments, as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modifications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity (detection of fine roots and other root details), higher efficiency, and a broad array of growing conditions for plants that more closely mimic those found under field conditions.

  11. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Ye, Z.H., E-mail: lssyzhh@mail.sysu.edu.c [State Key Laboratory for Bio-control, and School of Life Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wei, Z.J. [School of Information and Technology, Guangdong University of Foreign Studies, Guangzhou 510275 (China); Wong, M.H., E-mail: mhwong@hkbu.edu.h [Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2011-01-15

    The rates of radial oxygen loss (ROL), root porosity, concentrations of arsenic (As), iron (Fe) and manganese (Mn) in shoot and root tissues and on root surfaces, As tolerances, and their relationships in different wetland plants were investigated based on a hydroponic experiment (control, 0.8, 1.6 mg As L{sup -1}) and a soil pot trail (control, 60 mg As kg{sup -1}). The results revealed that wetland plants showed great differences in root porosity (9-64%), rates of ROL (55-1750 mmo1 O{sub 2} kg{sup -1} root d.w. d{sup -1}), As uptake (e.g., 8.8-151 mg kg{sup -1} in shoots in 0.8 mg As L{sup -1} treatment), translocation factor (2.1-47% in 0.8 mg As L{sup -1}) and tolerance (29-106% in 0.8 mg As L{sup -1}). Wetland plants with higher rates of ROL and root porosity tended to form more Fe/Mn plaque, possess higher As tolerance, higher concentrations of As on root surfaces and a lower As translocation factor so decreasing As toxicity. - Research highlights: There is significant correlation between the porosity of roots and rates of ROL. The rates of ROL are significantly correlated with tolerance indices and concentrations of As, Fe, Mn on root surface. The rates of ROL is negatively correlated with As translocation factor. - Wetland plants with high rates of ROL tended to form more Fe plaque on root surfaces and possess higher As tolerance.

  12. Longitudinal zonation pattern in plant roots: conflicts and solutions.

    Science.gov (United States)

    Ivanov, Victor B; Dubrovsky, Joseph G

    2013-05-01

    Despite the relative simplicity of Arabidopsis root organization, there is no general agreement regarding the terminology used to describe the longitudinal zonation pattern (LZP) of this model system. In this opinion article, we examine inconsistencies in the terminology and provide a conceptual framework for the LZP that may be applied to all angiosperms. We propose that the root apical meristem (RAM) consists of the cell-proliferation domain where cells maintain a high probability to divide and the transition domain with a low probability of cell division; in both domains cells grow at the same, relatively low, rate. Owing to stochastic termination of cell proliferation in the RAM, the border between the domains is 'fuzzy'. Molecular markers analyzed together with quantitative growth and cell analyses could help to identify developmental zones along the root and lead to a better understanding of the LZP in angiosperms.

  13. A meta-analysis of plant responses to dark septate root endophytes.

    Science.gov (United States)

    Newsham, K K

    2011-05-01

    • Dark septate endophytes (DSE) frequently colonize roots in the natural environment, but the effects of these fungi on plants are obscure, with previous studies indicating negative, neutral or positive effects on plant performance. • In order to reach a consensus for how DSE influence plant performance, meta-analyses were performed on data from 18 research articles, in which plants had been inoculated with DSE in sterile substrates. • Negative effects of DSE on plant performance were not recorded. Positive effects were identified on total, shoot and root biomass, and on shoot nitrogen (N) and phosphorus contents, with increases of 26-103% in these parameters for plants inoculated with DSE, relative to uninoculated controls. Inoculation increased total, shoot and root biomass by 52-138% when plants had not been supplied with additional inorganic N, or when all, or the majority, of N was supplied in organic form. Inoculation with the DSE Phialocephala fortinii was found to increase shoot and root biomass, shoot P concentration and shoot N content by 44-116%, relative to uninoculated controls. • The analyses here suggest that DSE enhance plant performance under controlled conditions, particularly when all, or the majority, of N is available in organic form.

  14. Effects of Mycorrhizal Fungi on Rooting of Stem Cuttings and In Vitro Shoots of Woody Plants

    Science.gov (United States)

    Plants with roots colonized by mycorrhizal fungi are potentially more effective at nutrient and water acquisition, less susceptible to disease, and can be more productive under certain stressful environmental growing conditions than plants without mycorrhizae. Although a great deal of research has b...

  15. Different gymnosperm outgroups have (mostly) congruent signal regarding the root of flowering plant phylogeny.

    Science.gov (United States)

    Graham, Sean W; Iles, William J D

    2009-01-01

    We examined multiple plastid genes from a diversity of gymnosperm lineages to explore the consistency of signal among different outgroups for rooting flowering plant phylogeny. For maximum parsimony (MP), most outgroups attach on a branch of the underlying ingroup tree that leads to Amborella. Maximum likelihood (ML) analyses either root angiosperms on a nearby branch or find split support for these neighboring root placements, depending on the outgroup. The inclusion of two species of Hydatellaceae, recently recognized as an ancient line of angiosperms, does not aid in inference of the root. Cost profiles for placing the root in suboptimal locations are highly correlated across most outgroup comparisons, even comparing MP and ML profiles. Those for Gnetales are the most deviant of all those considered. This divergent outgroup either attaches on a long eudicot branch with moderate bootstrap support in MP analyses or supports no particular root location in ML analysis. Removing the most rapidly evolving sites in rate classifications based on two divergent angiosperm root placements with Gnetales yields strongly conflicting root placements in MP analysis, despite substantial overlap in the estimated sets of conservative sites. However, the generally high consistency in rooting signal among distantly related gymnosperm clades suggests that the long branch connecting angiosperms to their extant relatives may not interfere substantially with inference of the angiosperm root.

  16. Modelling metal accumulation using humic acid as a surrogate for plant roots.

    Science.gov (United States)

    Le, T T Yen; Swartjes, Frank; Römkens, Paul; Groenenberg, Jan E; Wang, Peng; Lofts, Stephen; Hendriks, A Jan

    2015-04-01

    Metal accumulation in roots was modelled with WHAM VII using humic acid (HA) as a surrogate for root surface. Metal accumulation was simulated as a function of computed metal binding to HA, with a correction term (E(HA)) to account for the differences in binding site density between HA and root surface. The approach was able to model metal accumulation in roots to within one order of magnitude for 95% of the data points. Total concentrations of Mn in roots of Vigna unguiculata, total concentrations of Ni, Zn, Cu and Cd in roots of Pisum sativum, as well as internalized concentrations of Cd, Ni, Pb and Zn in roots of Lolium perenne, were significantly correlated to the computed metal binding to HA. The method was less successful at modelling metal accumulation at low concentrations and in soil experiments. Measured concentrations of Cu internalized in L. perenne roots were not related to Cu binding to HA modelled and deviated from the predictions by over one order of magnitude. The results indicate that metal uptake by roots may under certain conditions be influenced by conditional physiological processes that cannot simulated by geochemical equilibrium. Processes occurring in chronic exposure of plants grown in soil to metals at low concentrations complicate the relationship between computed metal binding to HA and measured metal accumulation in roots.

  17. Plant Phenotypic and Transcriptional Changes Induced by Volatiles from the Fungal Root Pathogen Rhizoctonia solani

    Science.gov (United States)

    Cordovez, Viviane; Mommer, Liesje; Moisan, Kay; Lucas-Barbosa, Dani; Pierik, Ronald; Mumm, Roland; Carrion, Victor J.; Raaijmakers, Jos M.

    2017-01-01

    Beneficial soil microorganisms can affect plant growth and resistance by the production of volatile organic compounds (VOCs). Yet, little is known on how VOCs from soil-borne plant pathogens affect plant growth and resistance. Here we show that VOCs released from mycelium and sclerotia of the fungal root pathogen Rhizoctonia solani enhance growth and accelerate development of Arabidopsis thaliana. Seedlings briefly exposed to the fungal VOCs showed similar phenotypes, suggesting that enhanced biomass and accelerated development are primed already at early developmental stages. Fungal VOCs did not affect plant resistance to infection by the VOC-producing pathogen itself but reduced aboveground resistance to the herbivore Mamestra brassicae. Transcriptomics of A. thaliana revealed that genes involved in auxin signaling were up-regulated, whereas ethylene and jasmonic acid signaling pathways were down-regulated by fungal VOCs. Mutants disrupted in these pathways showed similar VOC-mediated growth responses as the wild-type A. thaliana, suggesting that other yet unknown pathways play a more prominent role. We postulate that R. solani uses VOCs to predispose plants for infection from a distance by altering root architecture and enhancing root biomass. Alternatively, plants may use enhanced root growth upon fungal VOC perception to sacrifice part of the root biomass and accelerate development and reproduction to survive infection. PMID:28785271

  18. Starting points in plant-bacteria nitrogen-fixing symbioses: intercellular invasion of the roots.

    Science.gov (United States)

    Ibáñez, Fernando; Wall, Luis; Fabra, Adriana

    2017-04-01

    Agricultural practices contribute to climate change by releasing greenhouse gases such as nitrous oxide that are mainly derived from nitrogen fertilizers. Therefore, understanding biological nitrogen fixation in farming systems is beneficial to agriculture and environmental preservation. In this context, a better grasp of nitrogen-fixing systems and nitrogen-fixing bacteria-plant associations will contribute to the optimization of these biological processes. Legumes and actinorhizal plants can engage in a symbiotic interaction with nitrogen-fixing rhizobia or actinomycetes, resulting in the formation of specialized root nodules. The legume-rhizobia interaction is mediated by a complex molecular signal exchange, where recognition of different bacterial determinants activates the nodulation program in the plant. To invade plants roots, bacteria follow different routes, which are determined by the host plant. Entrance via root hairs is probably the best understood. Alternatively, entry via intercellular invasion has been observed in many legumes. Although there are common features shared by intercellular infection mechanisms, differences are observed in the site of root invasion and bacterial spread on the cortex reaching and infecting a susceptible cell to form a nodule. This review focuses on intercellular bacterial invasion of roots observed in the Fabaceae and considers, within an evolutionary context, the different variants, distribution and molecular determinants involved. Intercellular invasion of actinorhizal plants and Parasponia is also discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Plant ectoparasitic nematodes prefer roots without their microbial enemies

    NARCIS (Netherlands)

    Piskiewicz, A.M.; Milliano, de M.J.K.; Duyts, H.; Putten, van der W.H.

    2009-01-01

    Root-feeding nematodes are major soil-borne pests in agriculture. In natural ecosystems, their abundance can be strongly controlled by natural enemies. In coastal foredune soil, the abundance of the ectoparasitic nematode Tylenchorhynchus ventralis is controlled by local interactions with soil

  20. Plant ectoparasitic nematodes prefer roots without their microbial enemies

    NARCIS (Netherlands)

    Piskiewicz, A.M.; Milliano, de M.J.K.; Duyts, H.; Putten, van der W.H.

    2009-01-01

    Root-feeding nematodes are major soil-borne pests in agriculture. In natural ecosystems, their abundance can be strongly controlled by natural enemies. In coastal foredune soil, the abundance of the ectoparasitic nematode Tylenchorhynchus ventralis is controlled by local interactions with soil micro

  1. Bacteria from Wheat and Cucurbit Plant Roots Metabolize PAHs and Aromatic Root Exudates: Implications for Rhizodegradation

    DEFF Research Database (Denmark)

    Ely, Cairn S; Smets, Barth F.

    2017-01-01

    for growth on anthracene and chrysene on PAH-amended plates. Rhizosphere isolates metabolized 3- and 4-ring PAHs and PAH catabolic intermediates in liquid incubations. Aromatic root exudate compounds, namely flavonoids and simple phenols, were also substrates for isolated rhizobacteria. In particular...

  2. Genetic Control of Plant Root Colonization by the Biocontrol agent, Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Benjamin J.; Fletcher, Meghan; Waters, Jordan; Wetmore, Kelly; Blow, Matthew J.; Deutschbauer, Adam M.; Dangl, Jeffry L.; Visel, Axel

    2015-03-19

    Plant growth promoting rhizobacteria (PGPR) are a critical component of plant root ecosystems. PGPR promote plant growth by solubilizing inaccessible minerals, suppressing pathogenic microorganisms in the soil, and directly stimulating growth through hormone synthesis. Pseudomonas fluorescens is a well-established PGPR isolated from wheat roots that can also colonize the root system of the model plant, Arabidopsis thaliana. We have created barcoded transposon insertion mutant libraries suitable for genome-wide transposon-mediated mutagenesis followed by sequencing (TnSeq). These libraries consist of over 105 independent insertions, collectively providing loss-of-function mutants for nearly all genes in the P.fluorescens genome. Each insertion mutant can be unambiguously identified by a randomized 20 nucleotide sequence (barcode) engineered into the transposon sequence. We used these libraries in a gnotobiotic assay to examine the colonization ability of P.fluorescens on A.thaliana roots. Taking advantage of the ability to distinguish individual colonization events using barcode sequences, we assessed the timing and microbial concentration dependence of colonization of the rhizoplane niche. These data provide direct insight into the dynamics of plant root colonization in an in vivo system and define baseline parameters for the systematic identification of the bacterial genes and molecular pathways using TnSeq assays. Having determined parameters that facilitate potential colonization of roots by thousands of independent insertion mutants in a single assay, we are currently establishing a genome-wide functional map of genes required for root colonization in P.fluorescens. Importantly, the approach developed and optimized here for P.fluorescens>A.thaliana colonization will be applicable to a wide range of plant-microbe interactions, including biofuel feedstock plants and microbes known or hypothesized to impact on biofuel-relevant traits including biomass productivity

  3. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture.

    Science.gov (United States)

    Kiba, Takatoshi; Krapp, Anne

    2016-04-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability.

  4. Ideal root architecture for phosphorus acquisition of plants under water and phosphorus coupled stresses: From simulation to application

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Under water and phosphorus (P) coupledstresses, root architecture may be related to P acquisition efficiency of plants. Understanding the relationship between root architecture and P acquisition efficiency may provide basic information for improving P acquisition efficiency of plants. In the present study, we quantitatively described the effects of root architecture on P acquisition efficiency by computer simulation together with controlled biological experiments so as to determine an ideal root architecture for efficient P acquisition under water and P coupled stresses.Our results indicate that under given soil water conditions,the ideal root architecture for P acquisition efficiency of a tap root plant (as represented by common bean) is an "umbrella-shape'' root system whose basal roots tend to be shallow in the P-rich topsoil and tap roots tend to be deep for water in the subsoil. Meanwhile, the ideal root architecture for a fibrous root plant (as represented by upland rice) is a "beard-shape" root system with the moderately dispersed yet uniformly distributed adventitious and lateral roots so as to keep most roots in the topsoil for P and a few roots in the subsoil for water.

  5. Mechanosensitivity below Ground: Touch-Sensitive Smell-Producing Roots in the Shy Plant Mimosa pudica.

    Science.gov (United States)

    Musah, Rabi A; Lesiak, Ashton D; Maron, Max J; Cody, Robert B; Edwards, David; Fowble, Kristen L; Dane, A John; Long, Michael C

    2016-02-01

    The roots of the shy plant Mimosa pudica emit a cocktail of small organic and inorganic sulfur compounds and reactive intermediates into the environment, including SO2, methanesulfinic acid, pyruvic acid, lactic acid, ethanesulfinic acid, propanesulfenic acid, 2-aminothiophenol, S-propyl propane 1-thiosulfinate, phenothiazine, and thioformaldehyde, an elusive and highly unstable compound that, to our knowledge, has never before been reported to be emitted by a plant. When soil around the roots is dislodged or when seedling roots are touched, an odor is detected. The perceived odor corresponds to the emission of higher amounts of propanesulfenic acid, 2-aminothiophenol, S-propyl propane 1-thiosulfinate, and phenothiazine. The mechanosensitivity response is selective. Whereas touching the roots with soil or human skin resulted in odor detection, agitating the roots with other materials such as glass did not induce a similar response. Light and electron microscopy studies of the roots revealed the presence of microscopic sac-like root protuberances. Elemental analysis of these projections by energy-dispersive x-ray spectroscopy revealed them to contain higher levels of K(+) and Cl(-) compared with the surrounding tissue. Exposing the protuberances to stimuli that caused odor emission resulted in reductions in the levels of K(+) and Cl(-) in the touched area. The mechanistic implications of the variety of sulfur compounds observed vis-à-vis the pathways for their formation are discussed. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. Phenotypic plasticity of fine root growth increases plant productivity in pine seedlings

    Directory of Open Access Journals (Sweden)

    Grissom James E

    2004-09-01

    Full Text Available Abstract Background The plastic response of fine roots to a changing environment is suggested to affect the growth and form of a plant. Here we show that the plasticity of fine root growth may increase plant productivity based on an experiment using young seedlings (14-week old of loblolly pine. We use two contrasting pine ecotypes, "mesic" and "xeric", to investigate the adaptive significance of such a plastic response. Results The partitioning of biomass to fine roots is observed to reduce with increased nutrient availability. For the "mesic" ecotype, increased stem biomass as a consequence of more nutrients may be primarily due to reduced fine-root biomass partitioning. For the "xeric" ecotype, the favorable influence of the plasticity of fine root growth on stem growth results from increased allocation of biomass to foliage and decreased allocation to fine roots. An evolutionary genetic analysis indicates that the plasticity of fine root growth is inducible, whereas the plasticity of foliage is constitutive. Conclusions Results promise to enhance a fundamental understanding of evolutionary changes of tree architecture under domestication and to design sound silvicultural and breeding measures for improving plant productivity.

  7. Hairy Root Induction in Linum mucronatum ssp. mucronatum, an Anti-Tumor Lignans Producing Plant

    Directory of Open Access Journals (Sweden)

    Afsaneh SAMADI

    2012-05-01

    Full Text Available Transgenic hairy root system is a promising source of secondary metabolites in medicinal plants with high pharmaceutical value.For the first time, hairy roots were established in different explants of Linum mucronatum, an anti-cancer agent producing plant, via amikimopine type strain of Agrobacterium rhizogenes, ‘A13’. The percentage of hairy root induction varied from 0 to 60% depended onthe explants and hypocotyl (including cotyledonary node explants were found to be highly susceptible to A. rhizogenes infection withthe highest (60% rate of hairy root induction. four different Murashige and Skoog (MS-based liquid culture media were used for wellestablishment of hairy roots. Hairy root growth medium D (HRGM-D containing hormone-free MS basal medium with an extra oneday pre-incubation period at 35°C was found to be more efficient for profuse growth (fresh weight; 8500 mg per 25 ml culture mediumof hairy roots. Hairy root system presented in this study may offer a suitable platform for optimization and production of satisfactorylevel of aryltetralin lignans like podophyllotoxin and its derivatives from L. mucronatum.

  8. [Study on the growth characteristics and root exudates of three wetlands plants at different culture conditions].

    Science.gov (United States)

    Lu, Song-Liu; Hu, Hong-Ying; Sun, Ying-Xue; Yang, Jia

    2009-07-15

    Wetland plants are the important component of constructed wetlands and their root exudates provide the interior hydrocarbon for denitrification. In this study, the growth characteristics and root exudates of Canna indica, Zizania caduciflora and Lythrum salicari in different culture conditions were researched. The results showed that the average biomass initial/biomass in 120 days growth of Canna indica, Zizania caduciflora and Lythrum salicari were 9.1, 3.7, and 4.7, respectively. There was a positive correlation between the root exudates and the biomass of plants, but the release rate of root exudates decreased with the biomass increase. The root exudates release rates of unit biomass were 0.92, 0.47, 0.43 mg x (g x d)(-1) for Lythrum salicari, Canna indica and Zizania caduciflora, respectively. And the root exudates of those three plants are mainly organic acids and arylprotein based on the three-dimensional fluorescence spectrum analysis. The results ofthis study also indicate that Canna indiea and Lythrum salicari are befitting wetlands plants.

  9. Woody plant roots fail to penetrate a clay-lined landfill: Managment implications

    Science.gov (United States)

    Robinson, George R.; Handel, Steven N.

    1995-01-01

    In many locations, regulatory agencies do not permit tree planting above landfills that are sealed with a capping clay, because roots might penetrate the clay barrier and expose landfill contents to leaching. We find, however, no empirical or theoretical basis for this restriction, and instead hypothesize that plant roots of any kind are incapable of penetrating the dense clays used to seal landfills. As a test, we excavated 30 trees and shrubs, of 12 species, growing over a clay-lined municipal sanitary landfill on Staten Island, New York. The landfill had been closed for seven years, and featured a very shallow (10 to 30-cm) soil layer over a 45-cm layer of compacted grey marl (Woodbury series) clay. The test plants had invaded naturally from nearby forests. All plants examined—including trees as tall as 6 m—had extremely shallow root plates, with deformed tap roots that grew entirely above and parallel to the clay layer. Only occasional stubby feeder roots were found in the top 1 cm of clay, and in clay cracks at depths to 6 cm, indicating that the primary impediment to root growth was physical, although both clay and the overlying soil were highly acidic. These results, if confirmed by experimental research should lead to increased options for the end use of many closed sanitary landfills.

  10. Plant Roots: The Hidden Half. Chapter 16; Calcium and Gravitropism; Revised

    Science.gov (United States)

    Poovaiah, B. W.; Reedy, A. S. N.

    1995-01-01

    Environmental signals such as light and gravity control many aspects of plant growth and development. In higher plants, the directional growth of an organ in response to stimuli such as gravity and light is considered a tropic movement. Such movement could be either positive or negative with respect to a specific stimulus. In general, stems show a positive response to light and negative response to gravity. In contrast, most roots show a positive response to gravity and a negative response to light. Investigations on plant tropism date back a century when Darwin studied the phototropic responses of maize seedlings (Darwin). Although the precise mechanism of signal perception and transduction in roots is not understood, Darwin recognized over 100 years ago that the root cap is the probable site of signal perception. He discovered that the removal of the root cap eliminates the ability of roots to respond to gravity. Other investigators have since confirmed Darwin's observation (Konings; Evans et al.). In recent years, especially with the advent of the U.S. Space Program, there has been a renewed interest in understanding how plants respond to extracellular signals such as gravity (Halstead and Dutcher). Studies on the mechanisms involved in perception and transduction of gravity signal by roots would ultimately help us to better understand gravitropism and also to grow plants under microgravity conditions as in space. In this chapter, we restrict ourselves to the role of calcium in transduction of the gravity signal. In doing so, emphasis is given to the role of calcium-modulated proteins and their role in signal transduction in gravitropism. Detailed reviews on various other aspects of gravitropism (Scott, Torrey, Wilkins, Fim and Digby, Feldman, Pickard, Moore and Evans, Halstead and Dutcher, Poovaiah et al.) and on the role of calcium as a messenger in signal transduction in general have been published (Helper and Wayne, Poovaiah and Reddy, Roberts and Hartnon

  11. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria.

    Science.gov (United States)

    Bent, E; Tuzun, S; Chanway, C P; Enebak, S

    2001-09-01

    The presence of other soil microorganisms might influence the ability of rhizobacterial inoculants to promote plant growth either by reducing contact between the inoculant and the plant root or by interfering with the mechanism(s) involved in rhizobacterially mediated growth promotion. We conducted the following experiments to determine whether reductions in the extent of growth promotion of lodgepole pine mediated by Paenibacillus polymyxa occur in the presence of a forest soil isolate (Pseudomonas fluorescens M20) and whether changes in plant growth promotion mediated by P. polymyxa (i) are related to changes in P. polymyxa density in the rhizosphere or (ii) result from alterations in root hormone levels. The extent of plant growth, P. polymyxa rhizosphere density, and root hormone concentrations were determined for lodgepole pine treated with (i) a single growth-promoting rhizobacterial strain (P. polymyxa L6 or Pw-2) or (ii) a combination of bacteria: strain L6 + strain M20 or strain Pw-2 + strain M20. There was no difference in the growth of pines inoculated with strain L6 and those inoculated with strain L6 + strain M20. However, seedlings inoculated with strain Pw-2 had more lateral roots and greater root mass at 12 weeks after inoculation than plants inoculated with strain Pw-2 + strain M20. The extent of growth promotion mediated by P. polymyxa L6 and Pw-2 in each treatment was not correlated to the average population density of each strain in the rhizosphere. Bacterial species-specific effects were observed in root hormone levels: indole-3-acetic acid concentration was elevated in roots inoculated with P. polymyxa L6 or Pw-2, while dihydrozeatin riboside concentration was elevated in roots inoculated with P. fluorescens M20.

  12. Dynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances

    Science.gov (United States)

    Couvreur, V.; Vanderborght, J.; Draye, X.; Javaux, M.

    2014-11-01

    Soil water availability for plant transpiration is a key concept in agronomy. The objective of this study is to revisit this concept and discuss how it may be affected by processes locally influencing root hydraulic properties. A physical limitation to soil water availability in terms of maximal flow rate available to plant leaves (Qavail) is defined. It is expressed for isohydric plants, in terms of plant-centered variables and properties (the equivalent soil water potential sensed by the plant, ψs eq; the root system equivalent conductance, Krs; and a threshold leaf water potential, ψleaf lim). The resulting limitation to plant transpiration is compared to commonly used empirical stress functions. Similarities suggest that the slope of empirical functions might correspond to the ratio of Krs to the plant potential transpiration rate. The sensitivity of Qavail to local changes of root hydraulic conductances in response to soil matric potential is investigated using model simulations. A decrease of radial conductances when the soil dries induces earlier water stress, but allows maintaining higher night plant water potentials and higher Qavail during the last week of a simulated 1 month drought. In opposition, an increase of radial conductances during soil drying provokes an increase of hydraulic redistribution and Qavail at short term. This study offers a first insight on the effect of dynamic local root hydraulic properties on soil water availability. By better understanding complex interactions between hydraulic processes involved in soil-plant hydrodynamics, better prospects on how root hydraulic traits mitigate plant water stress might be achieved.

  13. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    Science.gov (United States)

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties.

  14. Plant response to alternative matrices for in vitro root induction

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... water, nutrients, and exchange various growth sub- stances with the shoots. ... the soil and thus affect its structure, aeration, and bio- ... dates back to the time when plants or plant parts were ..... such type of cultures as subculturing takes place only in ... mechanical and light stimuli often oscillated in their ap-.

  15. Plants : Adaptive behavior, root-brains, and minimal cognition

    NARCIS (Netherlands)

    Calvo Garzon, Paco; Keijzer, Fred

    2011-01-01

    Plant intelligence has gone largely unnoticed within the field of animal and human adaptive behavior. In this context, we will introduce current work on plant intelligence as a new set of relevant phenomena that deserves attention and also discuss its potential relevance for the study of adaptive be

  16. Towards quantitative root hydraulic phenotyping: novel mathematical functions to calculate plant-scale hydraulic parameters from root system functional and structural traits.

    Science.gov (United States)

    Meunier, F; Couvreur, V; Draye, X; Vanderborght, J; Javaux, M

    2017-03-02

    Predicting root water uptake and plant transpiration is crucial for managing plant irrigation and developing drought-tolerant root system ideotypes (i.e. ideal root systems). Today, three-dimensional structural functional models exist, which allows solving the water flow equation in the soil and in the root systems under transient conditions and in heterogeneous soils. Yet, these models rely on the full representation of the three-dimensional distribution of the root hydraulic properties, which is not always easy to access. Recently, new models able to represent this complex system without the full knowledge of the plant 3D hydraulic architecture and with a limited number of parameters have been developed. However, the estimation of the macroscopic parameters a priori still requires a numerical model and the knowledge of the full three-dimensional hydraulic architecture. The objective of this study is to provide analytical mathematical models to estimate the values of these parameters as a function of local plant general features, like the distance between laterals, the number of primaries or the ratio of radial to axial root conductances. Such functions would allow one to characterize the behaviour of a root system (as characterized by its macroscopic parameters) directly from averaged plant root traits, thereby opening new possibilities for developing quantitative ideotypes, by linking plant scale parameters to mean functional or structural properties. With its simple form, the proposed model offers the chance to perform sensitivity and optimization analyses as presented in this study.

  17. Mathematical modelling study for water uptake of steadily growing plant root

    Science.gov (United States)

    Chu, Jiaqing; Jiao, Weiping; Xu, Jianjun

    2008-02-01

    The root system of plant is a vitally important organ for living plant. One of the major functions of the root system is uptaking water and nutrients from the soil. The present paper analyzes the whole process of water uptake from soil by a steadily growing plant with a single slender root. We start from the basic principles of physics and fluid-dynamics, consider the structure characteristics of the water transport channel formed by the tiny xylems tubes inside plant, and establish a simplified coherent mathematical model to describe the water transport in the complete system consisting of soil, individual plant, including root, stem and leaves-atmosphere, on the basis of the plant physiology. Moreover, we resolve the proposed mathematical model for a simple artificial plant model under a variety of conditions, in terms of the numerical approach as well as analytical approach. It is shown that the results obtained by both approaches are in very good agreement; the theoretical predictions are qualitatively consistent with the practical experiences very well. The simplified mathematical model established in the present paper may provide a basis for the further investigations on the more sophisticated mathematical model.

  18. Mathematical modelling study for water uptake of steadily growing plant root

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The root system of plant is a vitally important organ for living plant. One of the major functions of the root system is uptaking water and nutrients from the soil. The present paper analyzes the whole process of water uptake from soil by a steadily growing plant with a single slender root. We start from the basic principles of physics and fluid-dynamics, consider the structure characteristics of the water transport channel formed by the tiny xylems tubes inside plant, and establish a simplified coherent mathematical model to describe the water transport in the complete system consisting of soil, individual plant, including root, stem and leaves-atmosphere, on the basis of the plant physiology. Moreover, we resolve the proposed mathematical model for a simple artificial plant model under a variety of conditions, in terms of the numerical approach as well as analytical approach. It is shown that the results obtained by both approaches are in very good agreement; the theoretical predictions are qualitatively consistent with the practical experi-ences very well. The simplified mathematical model established in the present pa-per may provide a basis for the further investigations on the more sophisticated mathematical model.

  19. Plant clinics must take root in poor countries

    DEFF Research Database (Denmark)

    Danielsen, Solveig; Matsiko, Frank

    2010-01-01

    Food security, the production of safe food and the provision of quality products for domestic and export markets are all dependent on the ability to grow healthy plants. But pests and diseases destroy millions of tons of crops every year across the world, preventing families, communities...... and nations from fully exploiting their potential to produce food and create wealth. Timely access to information and advice about how to manage plant health problems can make the difference between success and failure. Since 2003, 12 countries in Africa, Asia and Latin America, have introduced community......-based plant health clinics as a way of providing this advice to small-scale farmers. Plant clinics have spread rapidly because they offer a cheap and practical alternative to more conventional approaches that can help only limited numbers of farmers. Effective plant healthcare requires a permanent...

  20. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

    Directory of Open Access Journals (Sweden)

    Richard R Rodrigues

    Full Text Available The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum, another by a shrub (Rhamnus davurica, and the third by a tree (Ailanthus altissima. The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME. Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that

  1. Plant Invasions Associated with Change in Root-Zone Microbial Community Structure and Diversity.

    Science.gov (United States)

    Rodrigues, Richard R; Pineda, Rosana P; Barney, Jacob N; Nilsen, Erik T; Barrett, John E; Williams, Mark A

    2015-01-01

    The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen

  2. Archaea and bacteria mediate the effects of native species root loss on fungi during plant invasion.

    Science.gov (United States)

    Mamet, Steven D; Lamb, Eric G; Piper, Candace L; Winsley, Tristrom; Siciliano, Steven D

    2017-05-01

    Although invasive plants can drive ecosystem change, little is known about the directional nature of belowground interactions between invasive plants, native roots, bacteria, archaea and fungi. We used detailed bioinformatics and a recently developed root assay on soils collected in fescue grassland along a gradient of smooth brome (Bromus inermis Leyss) invasion to examine the links between smooth brome shoot litter and root, archaea, bacteria and fungal communities. We examined (1) aboveground versus belowground influences of smooth brome on soil microbial communities, (2) the importance of direct versus microbe-mediated impacts of plants on soil fungal communities, and (3) the web of roots, shoots, archaea, bacteria and fungi interactions across the A and B soil horizons in invaded and non-invaded sites. Archaea and bacteria influenced fungal composition, but not vice versa, as indicated by redundancy analyses. Co-inertia analyses suggested that bacterial-fungal variance was driven primarily by 12 bacterial operational taxonomic units (OTUs). Brome increased bacterial diversity via smooth brome litter in the A horizon and roots in the B horizon, which then reduced fungal diversity. Archaea increased abundance of several bacterial OTUs, and the key bacterial OTUs mediated changes in the fungi's response to invasion. Overall, native root diversity loss and bacterial mediation were more important drivers of fungal composition than were the direct effects of increases in smooth brome. Critically, native plant species displacement and root loss appeared to be the most important driver of fungal composition during invasion. This causal web likely gives rise to the plant-fungi feedbacks, which are an essential factor determining plant diversity in invaded grassland ecosystems.

  3. Gamma ray irradiation to roots of tea-plants and induced mutant system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yoshiyuki; Nekaku, Koji; Wada, Mitsumasa (National Research Inst. of Vegetables, Ornamental Plants and Tea, Ano, Mie (Japan))

    1990-11-01

    In order to utilize the useful mutation which is induced by irradiation for the breeding of tea-plants, the gamma-ray irradiation to the roots of tea-plants was carried out. The samples were the roots of tea-plants of four varieties dug up in February, 1984, and were adjusted to about 20 cm, then, put in the cold storage at 5degC for 9 months till the time of irradiation in November, 1984. However, a part of them was taken out in August, and planted in a field for 76 days to germinate, thereafter, used as the samples. The gamma-ray from a Co-60 source was irradiated in the radiation breeding laboratory of Agriculture Bioresources Research Institute at the total dose of 1, 2 and 3 kR and the dose rate of 500 R/h. The irradiated roots were planted as they are or in the state of being cut, and the rate of germination, the number of buds and the induced mutation were examined. Clear difference was not observed in the rate of germination and the number of buds between the irradiated samples and those without irradiation. The long roots were superior to the short roots regarding these items. The types of the induced mutation were mostly thin leaves, and also yellowing, mottling, fascination and so on occurred. The mutant system lacking trichomes on the back of new leaves is considered to be strong against tea anthracnose, and is valuable. (K.I.).

  4. How does vineyard management intensity affect inter-row plant diversity and associated root parameters

    Science.gov (United States)

    Winter, Silvia; Labuda, Thomas; Probus, Sandra; Penke, Nicole; Himmelbauer, Margarita; Loiskandl, Willibald; Strauss, Peter; Bauer, Thomas; Popescu, Daniela; Comsa, Maria; Bunea, Claudiu-Ioan; Zaller, Johann G.; Kriechbaum, Monika

    2017-04-01

    Vineyard management has changed dramatically in the last 50 years. In many wine-growing regions, vineyard inter-rows are kept clean of vegetation by frequent tillage or use of herbicides to establish bare soil systems. In the last thirty years, policy-makers and several winegrowers have realized that temporary or permanent vegetation cover between the vine rows may increase ecosystem services like soil erosion mitigation, soil fertility and biodiversity conservation. The inter-row area of a vineyard can host a diverse flora providing habitat and food resources for pollinating insects and natural enemies of pests. The goal of this study was to analyze the influence of different soil management intensities on plant diversity and root parameters in the vineyard inter-rows. We investigated 15 vineyards in Romania and 14 in Austria to study the effects of three different management intensities on plant diversity, above and below-ground plant biomass, total root length and surface area of roots. Management intensity ranged from bare soil inter-rows to alternative soil tillage every second year to permanent vegetation cover for more than five years. In each vineyard inter-row, six soil samples (7 cm diameter and 10 cm height) of the upper soil layer were extracted for root analyses. Root were separated from the soil, stained and finally scanned and analyzed with the WinRHIZO software. Finally, roots were dried at 70°C to obtain dry matter of the root samples. Vegetation cover and vascular plant diversity was recorded in four 1 m2 plots within each vineyard inter-row two times a year. The most intensive bare soil management regime in Romania significantly reduced root biomass, total root length and surface area in comparison to the alternative and permanent vegetation cover management. Plant biodiversity was also reduced by intensive management, but differences were not significant. While alternative tillage every second year showed the highest values of plant species

  5. Rescue of a Plant Negative-Strand RNA Virus from Cloned cDNA: Insights into Enveloped Plant Virus Movement and Morphogenesis

    OpenAIRE

    Qiang Wang; Xiaonan Ma; ShaSha Qian; Xin Zhou; Kai Sun; Xiaolan Chen; Xueping Zhou; Jackson, Andrew O.; Zhenghe Li

    2015-01-01

    Reverse genetics systems have been established for all major groups of plant DNA and positive-strand RNA viruses, and our understanding of their infection cycles and pathogenesis has benefitted enormously from use of these approaches. However, technical difficulties have heretofore hampered applications of reverse genetics to plant negative-strand RNA (NSR) viruses. Here, we report recovery of infectious virus from cloned cDNAs of a model plant NSR, Sonchus yellow net rhabdovirus (SYNV). The ...

  6. Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions

    Science.gov (United States)

    2012-01-01

    Background Striga species are noxious root hemi-parasitic weeds that debilitate cereal production in sub-Saharan Africa (SSA). Control options for Striga are limited and developing Striga resistant crop germplasm is regarded as the best and most sustainable control measure. Efforts to improve germplasm for Striga resistance by a non-Genetic Modification (GM) approach, for example by exploiting natural resistance, or by a GM approach are constrained by limited information on the biological processes underpinning host-parasite associations. Additionaly, a GM approach is stymied by lack of availability of candidate resistance genes for introduction into hosts and robust transformation methods to validate gene functions. Indeed, a majority of Striga hosts, the world’s most cultivated cereals, are recalcitrant to genetic transformation. In maize, the existing protocols for transformation and regeneration are tedious, lengthy, and highly genotype-specific with low efficiency of transformation. Results We used Agrobacterium rhizogenes strain K599 carrying a reporter gene construct, Green Fluorescent Protein (GFP), to generate transgenic composite maize plants that were challenged with the parasitic plant Striga hermonthica. Eighty five percent of maize plants produced transgenic hairy roots expressing GFP. Consistent with most hairy roots produced in other species, transformed maize roots exhibited a hairy root phenotype, the hallmark of A. rhizogenes mediated transformation. Transgenic hairy roots resulting from A. rhizogenes transformation were readily infected by S. hermonthica. There were no significant differences in the number and size of S. hermonthica individuals recovered from either transgenic or wild type roots. Conclusions This rapid, high throughput, transformation technique will advance our understanding of gene function in parasitic plant-host interactions. PMID:22720750

  7. Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions

    Directory of Open Access Journals (Sweden)

    Runo Steven

    2012-06-01

    Full Text Available Abstract Background Striga species are noxious root hemi-parasitic weeds that debilitate cereal production in sub-Saharan Africa (SSA. Control options for Striga are limited and developing Striga resistant crop germplasm is regarded as the best and most sustainable control measure. Efforts to improve germplasm for Striga resistance by a non-Genetic Modification (GM approach, for example by exploiting natural resistance, or by a GM approach are constrained by limited information on the biological processes underpinning host-parasite associations. Additionaly, a GM approach is stymied by lack of availability of candidate resistance genes for introduction into hosts and robust transformation methods to validate gene functions. Indeed, a majority of Striga hosts, the world’s most cultivated cereals, are recalcitrant to genetic transformation. In maize, the existing protocols for transformation and regeneration are tedious, lengthy, and highly genotype-specific with low efficiency of transformation. Results We used Agrobacterium rhizogenes strain K599 carrying a reporter gene construct, Green Fluorescent Protein (GFP, to generate transgenic composite maize plants that were challenged with the parasitic plant Striga hermonthica. Eighty five percent of maize plants produced transgenic hairy roots expressing GFP. Consistent with most hairy roots produced in other species, transformed maize roots exhibited a hairy root phenotype, the hallmark of A. rhizogenes mediated transformation. Transgenic hairy roots resulting from A. rhizogenes transformation were readily infected by S. hermonthica. There were no significant differences in the number and size of S. hermonthica individuals recovered from either transgenic or wild type roots. Conclusions This rapid, high throughput, transformation technique will advance our understanding of gene function in parasitic plant-host interactions.

  8. Ecophysiology of wetland plant roots: A modelling comparison of aeration in relation to species distribution

    Science.gov (United States)

    Sorrell, B.K.; Mendelssohn, I.A.; McKee, K.L.; Woods, R.A.

    2000-01-01

    This study examined the potential for inter-specific differences in root aeration to determine wetland plant distribution in nature. We compared aeration in species that differ in the type of sediment and depth of water they colonize. Differences in root anatomy, structure and physiology were applied to aeration models that predicted the maximum possible aerobic lengths and development of anoxic zones in primary adventitious roots. Differences in anatomy and metabolism that provided higher axial fluxes of oxygen allowed deeper root growth in species that favour more reducing sediments and deeper water. Modelling identified factors that affected growth in anoxic soils through their effects on aeration. These included lateral root formation, which occurred at the expense of extension of the primary root because of the additional respiratory demand they imposed, reducing oxygen fluxes to the tip and stele, and the development of stelar anoxia. However, changes in sediment oxygen demand had little detectable effect on aeration in the primary roots due to their low wall permeability and high surface impedance, but appeared to reduce internal oxygen availability by accelerating loss from laterals. The development of pressurized convective gas flow in shoots and rhizomes was also found to be important in assisting root aeration, as it maintained higher basal oxygen concentrations at the rhizome-root junctions in species growing into deep water. (C) 2000 Annals of Botany Company.

  9. [Induction and in vitro culture of hairy roots of Dianthus caryophyllus and its plant regeneration].

    Science.gov (United States)

    Shi, Heping; Zhu, Yuanfeng; Wang, Bei; Sun, Jiangbing; Huang, Shengqin

    2014-11-01

    To use Agrobacterium rhizogenes-induced hairy roots to create new germplasm of Dianthus caryophyllus, we transformed D. caryophyllus with A. rhizogenes by leaf disc for plant regeneration from hairy roots. The white hairy roots could be induced from the basal surface of leaf explants of D. caryophyllus 12 days after inoculation with A. rhizogenes ATCC15834. The percentage of the rooting leaf explants was about 90% 21 days after inoculation. The hairy roots could grow rapidly and autonomously in liquid or solid phytohormone-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and silica gel thin-layer chromatography of opines from D. caryophyllus hairy roots. Hairy roots could form light green callus after cultured on MS+6-BA 1.0-3.0 mg/L + NAA 0.1-0.2 mg/L for 15 days. The optimum medium for adventitious shoots formation was MS + 6-BA 2.0 mg/L + NAA 0.02 mg/L, where the rate of adventitious shoot induction was 100% after cultured for 6 weeks. The mean number of adventitious shoot per callus was 30-40. The adventitious shoots can form roots when cultured on phytohormone-free 1/2 MS or 1/2 MS +0.5 mg/L NAA for 10 days. When the rooted plantlets transplanted in the substrate mixed with perlite sand and peat (volume ratio of 1:2), the survival rate was above 95%.

  10. Rooting of Mugo pine (Pinus mugo cuttings as affected by IBA, NAA and planting substrate

    Directory of Open Access Journals (Sweden)

    Shahram Sedaghathoor

    2016-07-01

    Full Text Available Aim of study: The effect of planting substrate and concentrations of indole-3-butyric acid (IBA and naphthaleneacetic acid (NAA hormones was studied on the rooting of mugo pine cuttings. Area of study: The research was carried out in Rasht city, Guilan province, Iran. Material and Methods: Both hormones (IBA and NAA were applied at four concentrations of 0, 1000, 2000 and 4000 mg/l. Planting substrates included sand, perlite, cocopeat, sand + perlite, and sand + cocopeat (1:1. Main results: The highest rooting percentage (55% was obtained under the trilateral treatment a2b4c1 (sand × 4000 mg/l NAA × 1000 mg/l IBA. Sand + cocopeat was found to be the best rooting substrate. Research highlights: It is recommended to apply sand with 4000 mg/l and 1000mg/l concentration of experimental hormones (NAA and IBA, respectively. Keywords: auxin; rooting; Pinus mugo; vegetative propagation.

  11. A plant microRNA regulates the adaptation of roots to drought stress

    KAUST Repository

    Chen, Hao

    2012-06-01

    Plants tend to restrict their horizontal root proliferation in response to drought stress, an adaptive response mediated by the phytohormone abscisic acid (ABA) in antagonism with auxin through unknown mechanisms. Here, we found that stress-regulated miR393-guided cleavage of the transcripts encoding two auxin receptors, TIR1 and AFB2, was required for inhibition of lateral root growth by ABA or osmotic stress. Unlike in the control plants, the lateral root growth of seedlings expressing miR393-resistant TIR1 or AFB2 was no longer inhibited by ABA or osmotic stress. Our results indicate that miR393-mediated attenuation of auxin signaling modulates root adaptation to drought stress. © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. 'Prepackaged symbioses': propagules on roots of the myco-heterotrophic plant Arachnitis uniflora.

    Science.gov (United States)

    Domínguez, Laura; Sérsic, Alicia; Melville, Lewis; Peterson, R Larry

    2006-01-01

    Arachnitis uniflora, a myco-heterotrophic plant species, has fleshy tuberous roots colonized by the arbuscular mycorrhizal fungal genus Glomus (Phylum Glomeromycota). These roots produce apical and lateral propagules, both reported here for the first time. The objective of the study was to characterize the ontogeny and structure of the propagules, and to determine their function. Scanning electron microscopy, laser scanning confocal microscopy and light microscopy were used to study the ontogeny and structure of the propagules. Propagules developed either from cortical parenchyma cells or from cells immediately beneath the root cap; they developed a shoot meristem and cells in the basal region which were colonized by various fungal structures including hyphae and vesicles. These propagules may detach from the roots, establishing new plants.

  13. Study on Vegetation Root Strength of Pioneer Plants for Forest Areas in Taiwan

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-bin; LIANG Da-qing; YE Xu-rong

    2005-01-01

    Forest plant roots may restrain the occurrence of shallow landslides for forest land and pioneer tree species can also reduce runoff and soil erosion;thus they are useful practical ecological materials for landslide control and erosion control.In this study,two important pioneer plant species;Formosan Alder (Alnus formosana Makino) and Roxburgh Sumac (Rhus chinensis Mill.Var.roxburghi i(DC.) Rehd.) were selected at landslide areas under vegetation treatments for soil and water conservation.In order to obtain the root strength model for the factors affecting pulling resistance and root tensile strength,experimental materials were tested and the data were analyzed using regression techniques.These models could be used to provide the index of slope stability and to quantify the root-strength using non-destructive methods.

  14. [Microbial complexes from apogeotropic roots and from rhizosphere of cycad plants].

    Science.gov (United States)

    Lobakova, E S; Orazova, M Kh; Dobrovol'skaia, T G

    2003-01-01

    The microbial complexes of soil, the rhizosphere, and the rhizoplane of the apogeotropic (coralloid) roots of cycad plants were comparatively studied. The aseptically prepared homogenates of the surface-sterilized coralloid roots did not contain bacterial microsymbiont, indicating that it was absent in the root tissues. At the same time, associated bacteria belonging to different taxonomic groups were detected in increasing amounts in the cycad rhizoplane, rhizosphere, and the surrounding soil. The bacterial communities found in the cycad rhizoplane and the surrounding soil were dominated by bacteria from the genus Bacillus. The saprotrophic bacteria and fungi colonizing the cycad rhizosphere and rhizoplane were dominated by microorganisms capable of degrading the plant cell walls. The local degradation of the cell wall was actually observed on the micrographs of the thin sections of cycad roots in the form of channels, through which symbiotic cyanobacterial filaments can penetrate into the cortical parenchyma.

  15. Pectins, ROS homeostasis and UV-B responses in plant roots.

    Science.gov (United States)

    Yokawa, Ken; Baluška, František

    2015-04-01

    Light from the sun contains far-red, visible and ultra violet (UV) wavelength regions. Almost all plant species have been evolved under the light environment. Interestingly, several photoreceptors, expressing both in shoots and roots, process the light information during the plant life cycle. Surprisingly, Arabidopsis root apices express besides the UVR8 UV-B receptor, also root-specific UV-B sensing proteins RUS1 and RUS2 linked to the polar cell-cell transport of auxin. In this mini-review, we focus on reactive oxygen species (ROS) signaling and possible roles of pectins internalized via endocytic vesicle recycling system in the root-specific UV-B perception and ROS homeostasis.

  16. Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera.

    Science.gov (United States)

    Prasad, Ram; Kamal, Shwet; Sharma, Pradeep K; Oelmüller, Ralf; Varma, Ajit

    2013-12-01

    Unorganized collections and over exploitation of naturally occurring medicinal plant Bacopa monniera is leading to rapid depletion of germplasm and is posing a great threat to its survival in natural habitats. The species has already been listed in the list of highly threatened plants of India. This calls for micropropagation based multiplication of potential accessions and understanding of their mycorrhizal associations for obtaining plants with enhanced secondary metabolite contents. The co-cultivation of B. monniera with axenically cultivated root endophyte Piriformospora indica resulted in growth promotion, increase in bacoside content, antioxidant activity and nuclear hypertrophy of this medicinal plant.

  17. Potential of Root Exudates from Wetland Plants and Their Potential Role for Denitrification and Allelopathic Interactions

    DEFF Research Database (Denmark)

    Zhai, Xu

    vary among different Phragmites haplotypes and consequently affect their invasion potential. The studies presented in this dissertation aimed at investigating the quantity and composition of the organic carbon released in root exudates from three common wetland species as affected by temperature...... wetlands. Furthermore, environmental factors such as temperature and light-regime affect the photosynthetic carbon fixation, which continuously influence the compositions and quantity of root exudates released into rhizosphere. Conversely, root exudates from invasive species might contain some phytotoxic...... and light-regime and how the root exudates potentially affect the nitrogen removal by denitrification in constructed wetlands. Also, the studies aimed at further elucidating the potential allelopathic interaction between the plants. The findings of the research suggest that the root exudates from wetland...

  18. Natural attenuation potential of tricholoroethene in wetland plant roots: role of native ammonium-oxidizing microorganisms.

    Science.gov (United States)

    Qin, Ke; Struckhoff, Garrett C; Agrawal, Abinash; Shelley, Michael L; Dong, Hailiang

    2015-01-01

    Bench-scale microcosms with wetland plant roots were investigated to characterize the microbial contributions to contaminant degradation of trichloroethene (TCE) with ammonium. The batch system microcosms consisted of a known mass of wetland plant roots in aerobic growth media where the roots provided both an inoculum of root-associated ammonium-oxidizing microorganisms and a microbial habitat. Aqueous growth media, ammonium, and TCE were replaced weekly in batch microcosms while retaining roots and root-associated biomass. Molecular biology results indicated that ammonium-oxidizing bacteria (AOB) were enriched from wetland plant roots while analysis of contaminant and oxygen concentrations showed that those microorganisms can degrade TCE by aerobic cometabolism. Cometabolism of TCE, at 29 and 46 μg L(-1), was sustainable over the course of 9 weeks, with 20-30 mg L(-1) ammonium-N. However, at 69 μg L(-1) of TCE, ammonium oxidation and TCE cometabolism were completely deactivated in two weeks. This indicated that between 46 and 69 μg L(-1) TCE with 30 mg L(-1) ammonium-N there is a threshold [TCE] below which sustainable cometabolism can be maintained with ammonium as the primary substrate. However, cometabolism-induced microbial deactivation of ammonium oxidation and TCE degradation at 69 μg L(-1) TCE did not result in a lower abundance of the amoA gene in the microcosms, suggesting that the capacity to recover from TCE inhibition was still intact, given time and removal of stress. Our study indicates that microorganisms associated with wetland plant roots can assist in the natural attenuation of TCE in contaminated aquatic environments, such as urban or treatment wetlands, and wetlands impacted by industrial solvents.

  19. Performance comparison of plant root biofilm, gravel attached ...

    African Journals Online (AJOL)

    Keywords: biofilm; constructed wetland; gravel; microbial activity; phenol. INTRODUCTION ... Microorganisms and natural physico-chemical processes are responsible for ..... (1986) Role of aquatic plants in wastewater treatment by artificial ...

  20. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria.

    Science.gov (United States)

    Suzaki, Takuya; Yoro, Emiko; Kawaguchi, Masayoshi

    2015-01-01

    Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Hydroponics--Studies in Plant Culture With Historical Roots.

    Science.gov (United States)

    Lopez, Luz Maria

    1981-01-01

    Presents methods for demonstrating and applying scientific principles by growing plants through water culture (hydroponics), including a review of the history of hydroponics, re-creating some early experiments, and setting up a modern hydroponic system. (CS)

  2. Hydroponics--Studies in Plant Culture With Historical Roots.

    Science.gov (United States)

    Lopez, Luz Maria

    1981-01-01

    Presents methods for demonstrating and applying scientific principles by growing plants through water culture (hydroponics), including a review of the history of hydroponics, re-creating some early experiments, and setting up a modern hydroponic system. (CS)

  3. Root uptake of organic contaminants into plants: Species differences

    OpenAIRE

    Orita, Naho

    2012-01-01

    Trace amounts of xenobiotic organic contaminants have been frequently identified in the environment, including surface water and wastewater streams, and some are even in drinking water. The concern of unintended ingestion by humans or wildlife of such compounds resulting from the uptake by plants has risen in recent years. Although the uptake of a variety of xenobiotic organic contaminants by plants has been reported and the contaminants are found in the fruits in some cases, the differences ...

  4. Evaluation of allelopathic impact of aqueous extract of root and aerial root of Tinospora cordifolia (Willd. miers on some weed plants

    Directory of Open Access Journals (Sweden)

    K. M. Abdul RAOOF

    2012-05-01

    Full Text Available The present laboratory experimental study was conducted to evaluate the allelopathic potential of Tinospora cordifolia (Willd. Miers on seed germination and seedling growth of weed plants (Chenopodium album L. Chenopodium murale L., Cassia tora L. and Cassia sophera L.. Root and aerial root aqueous extracts of Tinospora at 0.5, 1.0, 2.0 and 4.0% concentrations were applied to determine their effect on seed germination and seedling growth of test plants under laboratory conditions. Germination was observed for 15 days after that the root length and shoot length was measured. Dry weight was measured after oven drying the seedlings. The aqueous extracts from root and aerial root had inhibitory effect on seed germination of test plants. Aqueous extracts from root and aerial root significantly inhibited not only germination and seedling growth but also reduced dry weight of the seedlings. Root length, shoot length of weed species decreased progressively when plants were exposed to increasing concentration (0.5, 1, 2 and 4%. Aqueous extract of aerial root shows the least inhibition. The pH of aqueous extracts of different parts of T. cordifolia does not show any major change when the concentration increases.

  5. Root-induced decomposer growth and plant N uptake are not positively associated among a set of grassland plants

    DEFF Research Database (Denmark)

    Saj, S.; Mikola, J.; Ekelund, Flemming

    2008-01-01

    lanceolata and a leguminous herb Lotus corniculatus. We further predicted that (2) in terms of litter-N uptake those plant species that induce lower abundance of decomposers benefit from sharing soil with species inducing higher decomposer abundance. To test this, we grew the three plant species in two....... corniculatus induced the highest abundance of decomposers, H. lanatus had the highest uptake of N from the litter, which refuted our first prediction. Since this prediction was falsified, we could not properly test the second one, but we found that litter-N uptake of H. lanatus and P. lanceolata were...... not significantly affected by the presence of L. corniculatus and the higher abundance of decomposers induced by L. corniculatus roots. Our results show that among the three plant species tested root-induced decomposer growth and plant N uptake from soil organic matter were not positively associated. It appears...

  6. Extracellular Trapping of Soil Contaminants by Root Border Cells: New Insights into Plant Defense

    Directory of Open Access Journals (Sweden)

    Martha C. Hawes

    2016-01-01

    Full Text Available Soil and water pollution by metals and other toxic chemicals is difficult to measure and control, and, as such, presents an ongoing global threat to sustainable agriculture and human health. Efforts to remove contaminants by plant-mediated pathways, or “phytoremediation”, though widely studied, have failed to yield consistent, predictable removal of biological and chemical contaminants. Emerging research has revealed that one major limitation to using plants to clean up the environment is that plants are programmed to protect themselves: Like white blood cells in animals, border cells released from plant root tips carry out an extracellular trapping process to neutralize threats and prevent injury to the host. Variability in border cell trapping has been found to be correlated with variation in sensitivity of roots to aluminum, and removal of border cell results in increased Al uptake into the root tip. Studies now have implicated border cells in responses of diverse plant roots to a range of heavy metals, including arsenic, copper, cadmium, lead, mercury, iron, and zinc. A better understanding of border cell extracellular traps and their role in preventing toxin uptake may facilitate efforts to use plants as a nondestructive approach to neutralize environmental threats.

  7. Sensitivity of greenhouse summer dryness to changes in plant rooting characteristics

    Science.gov (United States)

    Milly, P.C.D.

    1997-01-01

    A possible consequence of increased concentrations of greenhouse gases in Earth's atmosphere is "summer dryness," a decrease of summer plant-available soil water in middle latitudes, caused by increased availability of energy to drive evapotranspiration. Results from a numerical climate model indicate that summer dryness and related changes of land-surface water balances are highly sensitive to possible concomitant changes of plant-available water-holding capacity of soil, which depends on plant rooting depth and density. The model suggests that a 14% decrease of the soil volume whose water is accessible to plant roots would generate the same summer dryness, by one measure, as an equilibrium doubling of atmospheric carbon dioxide. Conversely, a 14% increase of that soil volume would be sufficient to offset the summer dryness associated with carbon-dioxide doubling. Global and regional changes in rooting depth and density may result from (1) plant and plant-community responses to greenhouse warming, to carbon-dioxide fertilization, and to associated changes in the water balance and (2) anthropogenic deforestation and desertification. Given their apparently critical role, heretofore ignored, in global hydroclimatic change, such changes of rooting characteristics should be carefully evaluated using ecosystem observations, theory, and models.

  8. A mathematical model for investigating the effect of cluster roots on plant nutrient uptake

    KAUST Repository

    Zygalakis, K. C.

    2012-04-01

    Cluster roots are thought to play an important role in mediating nutrient uptake by plants. In this paper we develop a mathematical model for the transport and uptake of phosphate by a single root. Phosphate is assumed to diffuse in the soil fluid phase and can also solubilised due to citrate exudation. Using multiple scale homogenisation techniques we derive an effective model that accounts for the cumulative effect of citrate exudation and phosphate uptake by cluster roots whilst still retaining all the necessary information about the microscale geometry and effects. © 2012 EDP Sciences and Springer.

  9. A mathematical model for investigating the effect of cluster roots on plant nutrient uptake

    Science.gov (United States)

    Zygalakis, K. C.; Roose, T.

    2012-04-01

    Cluster roots are thought to play an important role in mediating nutrient uptake by plants. In this paper we develop a mathematical model for the transport and uptake of phosphate by a single root. Phosphate is assumed to diffuse in the soil fluid phase and can also solubilised due to citrate exudation. Using multiple scale homogenisation techniques we derive an effective model that accounts for the cumulative effect of citrate exudation and phosphate uptake by cluster roots whilst still retaining all the necessary information about the microscale geometry and effects.

  10. Molecular responses in root-associative rhizospheric bacteria to variations in plant exudates

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2015-04-01

    Plant exudates are a major factor in the interface of plant-soil-microbe interactions and it is well documented that the microbial community structure in the rhizosphere is largely influenced by the particular exudates excreted by various plants. Azospirillum brasilense is a plant growth promoting rhizobacterium that is known to interact with a large number of plants, including important food crops. The regulatory gene flcA has an important role in this interaction as it controls morphological differentiation of the bacterium that is essential for attachment to root surfaces. Being a response regulatory gene, flcA mediates the response of the bacterial cell to signals from the surrounding rhizosphere. This makes this regulatory gene a good candidate for analysis of the response of bacteria to rhizospheric alterations, in this case, variations in root exudates. We will report on our studies on the response of Azospirillum, an ecologically, scientifically and agriculturally important bacterial genus, to variations in the rhizosphere.

  11. Long distance root-shoot signalling in plant-insect community interactions.

    Science.gov (United States)

    Soler, Roxina; Erb, Matthias; Kaplan, Ian

    2013-03-01

    Plants mediate interactions between insects, including leaf- and root-feeders; yet the underlying mechanisms and connection with ecological theory remain unresolved. In this review, based on novel insights into long-distance (i.e., leaf-leaf, root-shoot) defence signalling, we explore the role of phytohormones in driving broad-scale patterns of aboveground-belowground interactions that can be extrapolated to general plant-insect relationships. We propose that the outcome of intra-feeding guild interactions is generally negative due to induction of similar phytohormonal pathways, whereas between-guild interactions are often positive due to negative signal crosstalk. However, not all outcomes could be explained by feeding guild; we argue that future studies should target ecologically representative plant-insect systems, distinguish subguilds, and include plant growth hormones to improve our understanding of plant-mediated interactions.

  12. Function of root border cells in plant health: pioneers in the rhizosphere.

    Science.gov (United States)

    Hawes, M C; Brigham, L A; Wen, F; Woo, H H; Zhu, Y

    1998-01-01

    Plants dedicate a large amount of energy to the regulated production of living cells programmed to separate from roots into the external environment. This unusual process may be worth the cost because it enables the plant to dictate which species will share its ecological niche. For example, border cells can rapidly attract and stimulate growth in some microorganisms and repel and inhibit the growth of others. Such specificity may provide a way to control the dynamics of adjacent microbial populations in the soil to foster beneficial associations and inhibit pathogenic invasion. Plant genes controlling the delivery of border cells and the expression of their unique properties provide tools to genetically engineer plants with altered border cell quality and quantity. Such variants are being used to test the hypothesis that the function of border cells is to protect plant health by controlling the ecology of the root system.

  13. Hormonal Regulation of Leaf Morphogenesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Lin-Chuan Li; Ding-Ming Kang; Zhang-Liang Chen; Li-Jia Qu

    2007-01-01

    Leaf morphogenesis is strictly controlled not only by intrinsic genetic factors, such as transcriptional factors, but also by environmental cues, such as light, water and pathogens. Nevertheless, the molecular mechanism of how leaf rnorphogenesis is regulated by genetic programs and environmental cues is far from clear. Numerous series of events demonstrate that plant hormones, mostly small and simple molecules,play crucial roles in plant growth and development, and in responses of plants to environmental cues such as light. With more and more genetics and molecular evidence obtained from the model plant Arabidopsis,several fundamental aspects of leaf rnorphogenesis including the initiation of leaf primordia, the determination of leaf axes, the regulation of cell division and expansion in leaves have been gradually unveiled.Among these phytohormones, auxin is found to be essential in the regulation of leaf morphogenesis.

  14. Promise for plant pest control: root-associated pseudomonads with insecticidal activities

    Directory of Open Access Journals (Sweden)

    Peter eKupferschmied

    2013-07-01

    Full Text Available Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/ Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.

  15. Promise for plant pest control: root-associated pseudomonads with insecticidal activities.

    Science.gov (United States)

    Kupferschmied, Peter; Maurhofer, Monika; Keel, Christoph

    2013-01-01

    Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.

  16. Total Soluble Protein Extraction for Improved Proteomic Analysis of Transgenic Rice Plant Roots.

    Science.gov (United States)

    Raorane, Manish L; Narciso, Joan O; Kohli, Ajay

    2016-01-01

    With the advent of high-throughput platforms, proteomics has become a powerful tool to search for plant gene products of agronomic relevance. Protein extractions using multistep protocols have been shown to be effective to achieve better proteome profiles than simple, single-step extractions. These protocols are generally efficient for above ground tissues such as leaves. However, each step leads to loss of some amount of proteins. Additionally, compounds such as proteases in the plant tissues lead to protein degradation. While protease inhibitor cocktails are available, these alone do not seem to suffice when roots are included in the plant sample. This is obvious given the lack of high molecular weight (HMW) proteins obtained from samples that include root tissue. For protein/proteome analysis of transgenic plant roots or of seedlings, which include root tissue, such pronounced protein degradation is especially undesirable. A facile protein extraction protocol is presented, which ensures that despite the inclusion of root tissues there is minimal loss in total protein components.

  17. The roots of defense: plant resistance and tolerance to belowground herbivory.

    Directory of Open Access Journals (Sweden)

    Sean M Watts

    Full Text Available BACKGROUND: There is conclusive evidence that there are fitness costs of plant defense and that herbivores can drive selection for defense. However, most work has focused on above-ground interactions, even though belowground herbivory may have greater impacts on individual plants than above-ground herbivory. Given the role of belowground plant structures in resource acquisition and storage, research on belowground herbivores has much to contribute to theories on the evolution of plant defense. Pocket gophers (Geomyidae provide an excellent opportunity to study root herbivory. These subterranean rodents spend their entire lives belowground and specialize on consuming belowground plant parts. METHODOLOGY AND PRINCIPAL FINDINGS: We compared the root defenses of native forbs from mainland populations (with a history of gopher herbivory to island populations (free from gophers for up to 500,000 years. Defense includes both resistance against herbivores and tolerance of herbivore damage. We used three approaches to compare these traits in island and mainland populations of two native California forbs: 1 Eschscholzia californica populations were assayed to compare alkaloid deterrents, 2 captive gophers were used to test the palatability of E. californica roots and 3 simulated root herbivory assessed tolerance to root damage in Deinandra fasciculata and E. californica. Mainland forms of E. californica contained 2.5 times greater concentration of alkaloids and were less palatable to gophers than island forms. Mainland forms of D. fasciculata and, to a lesser extent, E. californica were also more tolerant of root damage than island conspecifics. Interestingly, undamaged island individuals of D. fasciculata produced significantly more fruit than either damaged or undamaged mainland individuals. CONCLUSIONS AND SIGNIFICANCE: These results suggest that mainland plants are effective at deterring and tolerating pocket gopher herbivory. Results also suggest

  18. Leaf proteomic analysis in cassava (Manihot esculenta, Crantz) during plant development, from planting of stem cutting to storage root formation.

    Science.gov (United States)

    Mitprasat, Mashamon; Roytrakul, Sittiruk; Jiemsup, Surasak; Boonseng, Opas; Yokthongwattana, Kittisak

    2011-06-01

    Tuberization in cassava (Manihot esculenta Crantz) occurs simultaneously with plant development, suggesting competition of photoassimilate partitioning between the shoot and the root organs. In potato, which is the most widely studied tuber crop, there is ample evidence suggesting that metabolism and regulatory processes in leaf may have an impact on tuber formation. To search for leaf proteins putatively involved in regulating tuber generation and/or development in cassava, comparative proteomic approaches have been applied to monitor differentially expressed leaf proteins during root transition from fibrous to tuberous. Stringent cross comparison and statistical analysis between two groups with different plant ages using Student's t test with 95% significance level revealed a number of protein spots whose abundance were significantly altered (P cassava leaves may be involved in storage root development.

  19. The organization of roots of dicotyledonous plants and the positions of control points.

    Science.gov (United States)

    Rost, Thomas L

    2011-05-01

    The structure of roots has been studied for many years, but despite their importance to the growth and well-being of plants, most researchers tend to ignore them. This is unfortunate, because their simple body plan makes it possible to study complex developmental pathways without the complications sometimes found in the shoot. In this illustrated essay, my objective is to describe the body plan of the root and the root apical meristem (RAM) and point out the control points where differentiation and cell cycle decisions are made. Hopefully this outline will assist plant biologists in identifying the structural context for their observations. This short paper outlines the types of RAM, i.e. basic-open, intermediate-open and closed, shows how they are similar and different, and makes the point that the structure and shape of the RAM are not static, but changes in shape, size and organization occur depending on root growth rate and development stage. RAMs with a closed organization lose their outer root cap layers in sheets of dead cells, while those with an open organization release living border cells from the outer surfaces of the root cap. This observation suggests a possible difference in the mechanisms whereby roots with different RAM types communicate with soil-borne micro-organisms. The root body is organized in cylinders, sectors (xylem and phloem in the vascular cylinder), cell files, packets and modules, and individual cells. The differentiation in these root development units is regulated at control points where genetic regulation is needed, and the location of these tissue-specific control points can be modulated as a function of root growth rate. In Arabidopsis thaliana the epidermis and peripheral root cap develop through a highly regulated series of steps starting with a periclinal division of an initial cell, the root cap/protoderm (RCP) initial. The derivative cells from the RCP initial divide into two cells, the inner cell divides again to renew the

  20. Implementing small scale processes at the soil-plant interface – the role of root architectures for calculating root water uptake profiles

    Directory of Open Access Journals (Sweden)

    A. Hildebrandt

    2010-02-01

    Full Text Available In this paper, we present a stand alone root water uptake model called aRoot, which calculates the sink term for any bulk soil water flow model taking into account water flow within and around a root network. The boundary conditions for the model are the atmospheric water demand and the bulk soil water content. The variable determining the plant regulation for water uptake is the soil water potential at the soil-root interface. In the current version, we present an implementation of aRoot coupled to a 3-D Richards model. The coupled model is applied to investigate the role of root architecture on the spatial distribution of root water uptake. For this, we modeled root water uptake for an ensemble (50 realizations of root systems generated for the same species (one month old Sorghum. The investigation was divided into two Scenarios for aRoot, one with comparatively high (A and one with low (B root radial resistance. We compared the results of both aRoot Scenarios with root water uptake calculated using the traditional Feddes model. The vertical rooting density profiles of the generated root systems were similar. In contrast the vertical water uptake profiles differed considerably between individuals, and more so for Scenario B than A. Also, limitation of water uptake occurred at different bulk soil moisture for different modeled individuals, in particular for Scenario A. Moreover, the aRoot model simulations show a redistribution of water uptake from more densely to less densely rooted layers with time. This behavior is in agreement with observation, but was not reproduced by the Feddes model.

  1. Hydraulic resistance of a plant root to water-uptake: A slender-body theory.

    Science.gov (United States)

    Chen, Kang Ping

    2016-05-07

    A slender-body theory for calculating the hydraulic resistance of a single plant root is developed. The work provides an in-depth discussion on the procedure and the assumptions involved in calculating a root׳s internal hydraulic resistance as well as the physical and the mathematical aspects of the external three-dimensional flow around the tip of a root in a saturated soil and how this flow pattern enhances uptake and reduces hydraulic resistance. Analytical solutions for the flux density distribution on the stele-cortex interface, local water-uptake profile inside the stele core, the overall water-uptake at the base of the stele, and the total hydraulic resistance of a root are obtained in the slender-body limit. It is shown that a key parameter controlling a root's hydraulic resistance is the dimensionless axial conductivity in the stele, which depends on the permeabilities of the stele and the cortex as well as the root's radial and axial dimensions. Three-dimensional tip effect reduces a root's hydraulic resistance by as much as 36% when compared to the radial flow theory of Landsberg and Fowkes. In addition, the total hydraulic resistance cannot be generally decomposed into the direct sum of a radial resistance and an axial resistance.

  2. Artificial macropores attract crop roots and enhance plant productivity on compacted soils.

    Science.gov (United States)

    Colombi, Tino; Braun, Serge; Keller, Thomas; Walter, Achim

    2017-01-01

    The structure of compacted soils is characterised by decreased (macro-)porosity, which leads to increased mechanical impedance and decreased fluid transport rates, resulting in reduced root growth and crop productivity. Particularly in soils with high mechanical impedance, macropores can be used by roots as pathways of least resistance. This study investigated how different soil physical states relate to whole plant growth and whether roots grow towards spots with favourable soil physical conditions. Experiments were conducted under controlled and field conditions. Soybean (Glycine max L.), wheat (Triticum aestivum L.) and maize (Zea mays L.) were grown on uncompacted soil, compacted soil and compacted soil with artificial macropores. The interactions between roots and artificial macropores were quantified using X-ray computed tomography. Active growth of roots towards artificial macropores was observed for all three species. Roots grew either into macropores (predominantly in maize) or crossed them (predominantly in wheat). The presence of artificial macropores in compacted soil enabled all three species to compensate for decreased early vigour at later developmental stages. These results show that roots sense their physical environment, enabling them to grow towards spots with favourable soil conditions. The different kinds of root-macropore interaction indicated that macropores serve as a path of least resistance and a source of oxygen, both resulting in increased crop productivity on compacted soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants.

    Science.gov (United States)

    Calvo-Polanco, Monica; Molina, Sonia; Zamarreño, Angel María; García-Mina, Jose María; Aroca, Ricardo

    2014-05-01

    It is known that the presence of arbuscular mycorrhizal fungi within the plant roots enhances the tolerance of the host plant to different environmental stresses, although the positive effect of the fungi in plants under waterlogged conditions has not been well studied. Tolerance of plants to flooding can be achieved through different molecular, physiological and anatomical adaptations, which will affect their water uptake capacity and therefore their root hydraulic properties. Here, we investigated the root hydraulic properties under non-flooded and flooded conditions in non-mycorrhizal tomato plants and plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. Only flooded mycorrhizal plants increased their root hydraulic conductivity, and this effect was correlated with a higher expression of the plant aquaporin SlPIP1;7 and the fungal aquaporin GintAQP1. There was also a higher abundance of the PIP2 protein phoshorylated at Ser280 in mycorrhizal flooded plants. The role of plant hormones (ethylene, ABA and IAA) in root hydraulic properties was also taken into consideration, and it was concluded that, in mycorrhizal flooded plants, ethylene has a secondary role regulating root hydraulic conductivity whereas IAA may be the key hormone that allows the enhancement of root hydraulic conductivity in mycorrhizal plants under low oxygen conditions.

  4. Plant clinics must take root in poor countries

    DEFF Research Database (Denmark)

    Danielsen, Solveig; Matsiko, Frank

    2010-01-01

    Food security, the production of safe food and the provision of quality products for domestic and export markets are all dependent on the ability to grow healthy plants. But pests and diseases destroy millions of tons of crops every year across the world, preventing families, communities...

  5. Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: a Review.

    Science.gov (United States)

    Vatansever, Recep; Ozyigit, Ibrahim Ilker; Filiz, Ertugrul

    2017-01-01

    The essentiality of 14 mineral elements so far have been reported in plant nutrition. Eight of these elements were known as micronutrients due to their lower concentrations in plants (usually ≤100 mg/kg/dw). However, it is still challenging to mention an exact number of plant micronutrients since some elements have not been strictly proposed yet either as essential or beneficial. Micronutrients participate in very diverse metabolic processes, including from the primary and secondary metabolism to the cell defense, and from the signal transduction to the gene regulation, energy metabolism, and hormone perception. Thus, the attempt to understand the molecular mechanism(s) behind their transport has great importance in terms of basic and applied plant sciences. Moreover, their deficiency or toxicity also caused serious disease symptoms in plants, even plant destruction if not treated, and many people around the world suffer from the plant-based dietary deficiencies or metal toxicities. In this sense, shedding some light on this issue, the 13 mineral elements (Fe, B, Cu, Mn, Mo, Si, Zn, Ni, Cl, Se, Na, Al, and Co), required by plants at trace amounts, has been reviewed with the primary focus on the transport proteins (transporters/channels) in plant roots. So, providing the compiled but extensive information about the structural and functional roles of micronutrient transport genes/proteins in plant roots.

  6. Root phototropism: how light and gravity interact in shaping plant form.

    Science.gov (United States)

    Kiss, John Z; Correll, Melanie J; Mullen, Jack L; Hangarter, Roger P; Edelmann, Richard E

    2003-06-01

    The interactions among tropisms can be critical in determining the final growth form of plants and plant organs. We have studied tropistic responses in roots as an example of these type of interactions. While gravitropism is the predominant tropistic response in roots, phototropism also plays a role in the oriented growth in this organ in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism. In the flowering plant Arabidopsis, the photosensitive pigments phytochrome A (phyA) and phytochrome B (phyB) mediate this positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. While blue-light-based negative phototropism is primarily mediated by the phototropin family of photoreceptors, the phyA and phyAB mutants (but not phyB) were inhibited in this response relative to the WT. The differences observed in phototropic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in plants and that phytochrome plays a key role in integrating multiple environmental stimuli.

  7. Root phototropism: how light and gravity interact in shaping plant form

    Science.gov (United States)

    Kiss, John Z.; Correll, Melanie J.; Mullen, Jack L.; Hangarter, Roger P.; Edelmann, Richard E.

    2003-01-01

    The interactions among tropisms can be critical in determining the final growth form of plants and plant organs. We have studied tropistic responses in roots as an example of these type of interactions. While gravitropism is the predominant tropistic response in roots, phototropism also plays a role in the oriented growth in this organ in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism. In the flowering plant Arabidopsis, the photosensitive pigments phytochrome A (phyA) and phytochrome B (phyB) mediate this positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. While blue-light-based negative phototropism is primarily mediated by the phototropin family of photoreceptors, the phyA and phyAB mutants (but not phyB) were inhibited in this response relative to the WT. The differences observed in phototropic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in plants and that phytochrome plays a key role in integrating multiple environmental stimuli.

  8. [Effect of NO3- supply on lateral root growth in maize plants].

    Science.gov (United States)

    Guo, Ya-Fen; Mi, Guo-Hua; Chen, Fan-Jun; Zhang, Fu-Suo

    2005-02-01

    Growth of lateral roots is regulated by both environmental factors and nitrate (NO(-)(3)) content of the plant. The mechanism involved is not clearly understood. Two maize (Zea mays L.) inbred lines (478 and Wu312) were used to study the effect of different nitrate supply on lateral root (LR) growth by a whole plants agar culture. The results showed that increasing NO(-)(3)concentration in nutrient solution from 0.01 to 1.0 mmol/L significantly increased the LR length and root biomass. Lateral root density changed little with NO(-)(3) increase up to 5x10(-3) mol/L (for Wu312) - 10x10(-3) mol/L (for 478), then decreased significantly with increasing NO(-)(3). The inhibitory effect of high NO(-)(3) on root growth was weaker in 478 than in Wu312. The growth of lateral roots in Wu312 was completely inhibited by NO(-)(3) at a concentration of 10x10(-3) mol/L, whereas LR density of 478 could reach 30% (axial) and 50% (radicle) of its maximum even at NO(-)(3) 20x10(-3) mol/L. Both the shoot total N and shoot nitrate content increased with increasing NO(-)(3) level. They had similar mathematic functions with shoot/root ratio (Exponential Decay), LR density (Gaussian) and LR length (Parabola). When shoot N content exceed about 1.6 mol/kg and NO(-)(3) content exceed 0.22 mol/kg, shoot/root ratio increased rapidly; when the shoot N content exceed about 1.5 and NO(-)(3) exceed 0.16 mol/kg, LR densities began to decrease; when shoot N content reached about 1 mol/kg and NO(-)(3) content reached 0.10 mol/kg, the LR lengths began to decrease. The possible relationship between shoot NO(-)(3) content and lateral root growth was discussed.

  9. Effect of Mulch Surface Color on Root-knot of Tomato Grown in Simulated Planting Beds

    OpenAIRE

    Fortnum, B. A.; Kasperbauer, M. J.; Decoteau, D. R.

    2000-01-01

    The effect of different-colored polyethylene mulches on quantity and spectra of reflected light, plant morphology, and root-knot disease was studied in tomato (Lycopersicon esculentum) grown in simulated planting beds. Tomato plants were inoculated with Meloidogyne incognita at initial populations (Pi) of 0, 1,000, 10,000, or 50,000 eggs/plant, and grown in a greenhouse for 50 days over white, red, or black mulch. Soil temperature was kept constant among the mulch treatments by placing an ins...

  10. Craniofacial morphogenesis workshop report.

    Science.gov (United States)

    Solursh, M; Murray, J

    1994-05-01

    The following report highlights the discussions and interaction at the workshop on craniofacial morphogenesis, sponsored by The Human Frontier Science Program, held in April 1993 at the University of Iowa. A brief summary of selected sessions is included to exemplify the benefits of bringing together individuals from various disciplines and backgrounds in order to establish a unified theory of craniofacial morphogenesis. The synthesis of information and experience of a wide range of approaches made the 4-day period an invaluable experience for the participants from nine different countries.

  11. AGROBACTERIUM-MEDIATED TRANSFORMATION OF COMPOSITAE PLANTS. I. CONSTRUCTION OF TRANSGENIC PLANTS AND «HAIRY» ROOTS WITH NEW PROPERTIES

    Directory of Open Access Journals (Sweden)

    N. A.Matvieieva

    2013-02-01

    Full Text Available The review explores some of the recent advances and the author's own researchs concerning biotechnological approaches for Agrobacterium tumefaciens- and A. rhizogenes-mediated transformation of Compositae family plants. This paper reviews the results of genetic transformation of Compositae plants, including edible (Cichorium intybus, Lactuca sativa, oil (Helianthus annuus, decorative (Gerbera hybrida, medical (Bidens pilosa, Artemisia annua, Artemisia vulgaris, Calendula officinalis, Withania somnifera etc. plant species. Some Compositae genetic engineering areas are considered including creation of plants, resistant to pests, diseases and herbicides, to the effect of abiotic stress factors as well as plants with altered phenotype. The article also presents the data on the development of biotechnology for Compositae plants Cynara cardunculus, Arnica montana, Cichorium intybus, Artemisia annua "hairy" roots construction.

  12. Change of soil organic matter quality and quantity by deep-rooting plants - a molecular approach

    Science.gov (United States)

    Gocke, Martina; Derenne, Sylvie; Anquetil, Christelle; Huguet, Arnaud; Dignac, Marie-France; Rumpel, Cornelia; Wiesenberg, Guido L. B.

    2015-04-01

    Under predicted rising atmospheric CO2 concentration, soils are discussed to potentially act as C sinks. Stability and long-term storage of soil OM are affected by both molecular structure of incorporated organic remains and environmental factors. It is increasingly accepted that roots contribute to significant portions of topsoil OM, whereas their role for C cycling is less known for depths >> 1 m, i.e. the deep subsoil and underlying soil parent material like terrestrial sediments. To trace root-related features and organic remains, transects were sampled from ancient (3-10 ky) and recent calcified roots (rhizoliths) via surrounding sediment towards sediment free of visible root remains, at two sites. At the Nussloch loess-paleosol sequence (SW Germany), transects were collected as intact cores and scanned by X-ray microtomography for visualization of rhizoliths and rhizosphere. Afterwards, cores were cut into concentric slices and, similar to rhizolith and sediment samples from the sandy deep subsoil at Sopron (NW Hungary), analyzed for suberin molecular markers. Suberin biomarkers were found in both recent and ancient root systems, demonstrating their suitability to identify root-derived OM in terrestrial sediments with ages of several tens of ky. Varying relative portions of the respective suberin markers enabled the attribution of Sopron rhizoliths to oak origin, and assessment of the rhizosphere, which extended up to several cm. This confirms recent studies which demonstrated the possible postsedimentary incorporation of considerable amounts of root and rhizomicrobial remains in loess, based on biomarkers deriving either from plants and microorganisms (alkanes, fatty acids) or solely from microorganisms (GDGTs). 3D scanning of Nussloch rhizoliths and surrounding loess showed large channels of former root growth, whereas the root tissue was commonly degraded. Additionally, microtomography enabled assessment of abundant fine calcified roots as well as biopores

  13. Root secreted metabolites and proteins are involved in the early events of plant-plant recognition prior to competition.

    Directory of Open Access Journals (Sweden)

    Dayakar V Badri

    Full Text Available The mechanism whereby organisms interact and differentiate between others has been at the forefront of scientific inquiry, particularly in humans and certain animals. It is widely accepted that plants also interact, but the degree of this interaction has been constricted to competition for space, nutrients, water and light. Here, we analyzed the root secreted metabolites and proteins involved in early plant neighbor recognition by using Arabidopsis thaliana Col-0 ecotype (Col as our focal plant co-cultured in vitro with different neighbors [A. thaliana Ler ecotype (Ler or Capsella rubella (Cap]. Principal component and cluster analyses revealed that both root secreted secondary metabolites and proteins clustered separately between the plants grown individually (Col-0, Ler and Cap grown alone and the plants co-cultured with two homozygous individuals (Col-Col, Ler-Ler and Cap-Cap or with different individuals (Col-Ler and Col-Cap. In particularly, we observed that a greater number of defense- and stress-related proteins were secreted when our control plant, Col, was grown alone as compared to when it was co-cultured with another homozygous individual (Col-Col or with a different individual (Col-Ler and Col-Cap. However, the total amount of defense proteins in the exudates of the co-cultures was higher than in the plant alone. The opposite pattern of expression was identified for stress-related proteins. These data suggest that plants can sense and respond to the presence of different plant neighbors and that the level of relatedness is perceived upon initial interaction. Furthermore, the role of secondary metabolites and defense- and stress-related proteins widely involved in plant-microbe associations and abiotic responses warrants reassessment for plant-plant interactions.

  14. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants.

    Science.gov (United States)

    Vályi, Kriszta; Rillig, Matthias C; Hempel, Stefan

    2015-03-01

    We studied the effect of host plant identity and land-use intensity (LUI) on arbuscular mycorrhizal fungi (AMF, Glomeromycota) communities in roots of grassland plants. These are relevant factors for intraradical AMF communities in temperate grasslands, which are habitats where AMF are present in high abundance and diversity. In order to focus on fungi that directly interact with the plant at the time, we investigated root-colonizing communities. Our study sites represent an LUI gradient with different combinations of grazing, mowing, and fertilization. We used massively parallel multitag pyrosequencing to investigate AMF communities in a large number of root samples, while being able to track the identity of the host. We showed that host plants significantly differed in AMF community composition, while land use modified this effect in a plant species-specific manner. Communities in medium and low land-use sites were subsets of high land-use communities, suggesting a differential effect of land use on the dispersal of AMF species with different abundances and competitive abilities. We demonstrate that in these grasslands, there is a small group of highly abundant, generalist fungi which represent the dominating species in the AMF community.

  15. Reciprocal trade of Carbon and Nitrogen at the root-fungus interface in ectomycorrhizal beech plants

    Science.gov (United States)

    Kaiser, Christina; Mayerhofer, Werner; Dietrich, Marlies; Gorka, Stefan; Schintlmeister, Arno; Reipert, Siegfried; Schweiger, Peter; Weidinger, Marieluise; Wiesenbauer, Julia; Martin, Victoria; Richter, Andreas; Woebken, Dagmar

    2017-04-01

    Plants deliver recently assimilated carbon (C) to mycorrhizal fungi, and receive nutrients, such as N and P, in exchange. A reciprocal exchange of C and nutrients between plants and mycorrhizal fungi (i.e., fungi which deliver more nutrients receive more plant C in return and vice versa) has been suggested for arbuscular mycorrhizal symbioses by some studies, but challenged by others. For ectomycorrhizal associations even less is known on how the exchange of C for nutrients is regulated, and whether it is based on reciprocity, or other controls. The aim of this study was to test the concept of reciprocal rewards between beech (Fagus sylvatica) and their associated ectomycorrhizal fungi on different scales, namely (a) across associations between individual root tips of beech and different fungal partners, and (b) at the subcellular scale at the plant-fungus interface. We exposed young beech trees associated with natural mycorrhizal fungal communities to a 13CO2 atmosphere and added 15N-labelled amino acids to a 'litter compartment', that mycorrhizal hyphae, but not plant roots could access. Plants were harvested within 2 days after application of 15N and less than one day after applying 13CO2. If the trading of C for N was reciprocal, we expect that 13C would be correlated to 15N across individual plant-fungal connections and at the subcellular scale within one mycorrhizal root tip, respectively. We collected individual mycorrhizal root-tips from 8 plants right after harvest, analyzed their 13C and 15N content by isotope-ratio mass spectrometry (EA-IRMS) and performed ITS sequencing to identify fungal communities associated with individual root tips. Selected mycorrhizal root tips were also prepared for nano-scale secondary ion mass spectrometry (NanoSIMS) to visualize the spatial distribution of 13C and 15N in cross-sections of mycorrhizal root-tips at the subcellular scale. Our results showed a significant, albeit weak correlation between 13C and 15N across

  16. [Difference of anti-fracture mechanical characteristics between lateral-root branches and adjacent upper straight roots of four plant species in vigorous growth period].

    Science.gov (United States)

    Liu, Peng-fei; Liu, Jing; Zhu, Hong-hui; Zhang, Xin; Zhang, Ge; Li, You-fang; Su, Yu; Wang, Chen-jia

    2016-01-01

    Taking four plant species, Caragana korshinskii, Salix psammophila, Hippophae rhamnides and Artemisia sphaerocephala, which were 3-4 years old and in vigorous growth period, as test materials, the anti-fracture forces of lateral-root branches and adjacent upper straight roots were measured with the self-made fixture and the instrument of TY 8000. The lateral-root branches were vital and the diameters were 1-4 mm. The results showed that the anti-fracture force and anti-fracture strength of lateral-root branches were lesser than those of the adjacent upper straight roots even though the average diameter of lateral-root branches was greater. The ratios of anti-fracture strength of lateral-root branches to the adjacent upper straight roots were 71.5% for C. korshinskii, 62.9% for S. psammophila, 45.4% for H. rhamnides and 35.4% for A. sphaerocephala. For the four plants, the anti-fracture force positively correlated with the diameter in a power function, while the anti-fracture strength negatively correlated with diameter in a power function. The anti-fracture strengths of lateral-root branches and adjacent upper straight roots for the four species followed the sequence of C. korshinskii (33.66 and 47.06 MPa) > S. psammophila (17.31 and 27.54 MPa) > H. rhamnides (3.97 and 8.75 MPa) > A. sphaerphala (2.18 and 6.15 MPa).

  17. Chemical induction of hairpin RNAi molecules to silence vital genes in plant roots.

    Science.gov (United States)

    Liu, Siming; Yoder, John I

    2016-11-29

    Understanding the functions encoded by plant genes can be facilitated by reducing transcript levels by hairpin RNA (hpRNA) mediated silencing. A bottleneck to this technology occurs when a gene encodes a phenotype that is necessary for cell viability and silencing the gene inhibits transformation. Here we compared the use of two chemically inducible plant promoter systems to drive hpRNA mediated gene silencing in transgenic, hairy roots. We cloned the gene encoding the Yellow Fluorescence Protein (YFP) into the dexamethasone inducible vector pOpOff2 and into the estradiol induced vector pER8. We then cloned a hpRNA targeting YFP under the regulation of the inducible promoters, transformed Medicago truncatula roots, and quantified YFP fluorescence and mRNA levels. YFP fluorescence was normal in pOpOff2 transformed roots without dexamethasone but was reduced with dexamethasone treatment. Interestingly, dexamethasone removal did not reverse YFP inhibition. YFP expression in roots transformed with pER8 was low even in the absence of inducer. We used the dexamethasone system to silence acetyl-CoA carboxylase gene and observed prolific root growth when this construct was transformed into Medicago until dexamethasone was applied. Our study shows that dexamethasone inducibility can be useful to silence vital genes in transgenic roots.

  18. Root Canal Irrigation: Chemical Agents and Plant Extracts Against Enterococcus faecalis

    Science.gov (United States)

    Borzini, Letizia; Condò, Roberta; De Dominicis, Paolo; Casaglia, Adriano; Cerroni, Loredana

    2016-01-01

    Background: There are various microorganisms related to intra and extra-radicular infections and many of these are involved in persistent infections. Bacterial elimination from the root canal is achieved by means of the mechanical action of instruments and irrigation as well as the antibacterial effects of the irrigating solutions. Enterococcus faecalis can frequently be isolated from root canals in cases of failed root canal treatments. Antimicrobial agents have often been developed and optimized for their activity against endodontic bacteria. An ideal root canal irrigant should be biocompatible, because of its close contact with the periodontal tissues during endodontic treatment. Sodium hypoclorite (NaOCl) is one of the most widely recommended and used endodontic irrigants but it is highly toxic to periapical tissues. Objectives: To analyze the literature on the chemotherapeutic agent and plant extracts studied as root canal irrigants. In particularly, the study is focused on their effect on Enterococcus faecalis. Method: Literature search was performed electronically in PubMed (PubMed Central, MEDLINE) for articles published in English from 1982 to April 2015. The searched keywords were “endodontic irrigants” and “Enterococcus faecalis” and “essential oil” and “plant extracts”. Results: Many of the studied chemotherapeutic agents and plant extracts have shown promising results in vitro. Conclusion: Some of the considered phytotherapic substances, could be a potential alternative to NaOCl for the biomechanical treatment of the endodontic space. PMID:28217184

  19. Effects of root-zone acidity on utilization of nitrate and ammonium in tobacco plants

    Science.gov (United States)

    Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    Tobacco (Nicotiana tabacum L., cv. 'Coker 319') plants were grown for 28 days in flowing nutrient culture containing either 1.0 mM NO3- or 1.0 mM NH4+ as the nitrogen source in a complete nutrient solution. Acidities of the solutions were controlled at pH 6.0 or 4.0 for each nitrogen source. Plants were sampled at intervals of 6 to 8 days for determination of dry matter and nitrogen accumulation. Specific rates of NO3- or NH4+ uptake (rate of uptake per unit root mass) were calculated from these data. Net photosynthetic rates per unit leaf area were measured on attached leaves by infrared gas analysis. When NO3- [correction of NO-] was the sole nitrogen source, root growth and nitrogen uptake rate were unaffected by pH of the solution, and photosynthetic activity of leaves and accumulation of dry matter and nitrogen in the whole plant were similar. When NH4+ was the nitrogen source, photosynthetic rate of leaves and accumulation of dry matter and nitrogen in the whole plant were not statistically different from NO3(-) -fed plants when acidity of the solution was controlled at pH 6.0. When acidity for NH4(+) -fed plants was increased to pH 4.0, however, specific rate of NH4+ uptake decreased by about 50% within the first 6 days of treatment. The effect of acidity on root function was associated with a decreased rate of accumulation of nitrogen in shoots that was accompanied by a rapid cessation of leaf development between days 6 and 13. The decline in leaf growth rate of NH4(+) -fed plants at pH 4.0 was followed by reductions in photosynthetic rate per unit leaf area. These responses of NH4(+) -fed plants to increased root-zone acidity are characteristic of the sequence of responses that occur during onset of nitrogen stress.

  20. Evidence for preferential depths of metal retention in roots of salt marsh plants.

    Science.gov (United States)

    Caetano, Miguel; Vale, Carlos; Cesário, Rute; Fonseca, Nuno

    2008-02-15

    Depth variation (2-cm resolution) of Fe, Mn, Zn, Cr, Ni, Cu, As and Cd concentrations were determined in belowground biomass of Spartina maritima and Sarcocornia fruticosa and in sediments between roots from two marshes in Tagus (Rosário) and Guadiana (Castro Marim) estuaries in Portugal with different anthropogenic pressures. Levels of metals were also determined in aboveground plant parts. Metal concentrations in belowground material were 2-4 orders of magnitude greater than levels in aboveground plant parts providing evidence of weak upward translocation. Although both studied species showed poor extraction of Cr and Ni from sediments, S. fruticosa exhibited a large capability to remove Zn, Cu, As and Cd from contaminated sediments and stabilised them in belowground biomass. Accumulated metals showed a sub-surface concentration maximum or increase to basal roots. To evaluate whether these preferential layers of accumulation resulted from availability in sediments or controlled by plant activity, Enrichment Factors (EF=[Me](root)/[Metal](sediment)) were calculated for each sediment layer. Maximum values in Rosário plant species (Zn=9.3, Cu=18, As=20, Cd=46) exceeded those obtained in Castro Marim (Zn=1.3, Cu=4.3, As=6.1, Cd=18). Moreover, EFs varied with the depth indicating the presence of preferential layers of metal accumulation in roots of both plants, but depth zonation was not the same as in the sediments. These results suggested that levels in belowground biomass either integrated in time changes that occurred in solid sediments and pore water, or metal uptake by roots was not proportional to levels in sediments. The same sequence of metals transferred from sediment to belowground biomass for the two plants was obtained for the two marshes (Cd > As > Cu, Zn), although metals differed from mining ore to industrial/urban sources.

  1. Influence of plant roots on electrical resistivity measurements of cultivated soil columns

    Science.gov (United States)

    Maloteau, Sophie; Blanchy, Guillaume; Javaux, Mathieu; Garré, Sarah

    2016-04-01

    Electrical resistivity methods have been widely used for the last 40 years in many fields: groundwater investigation, soil and water pollution, engineering application for subsurface surveys, etc. Many factors can influence the electrical resistivity of a media, and thus influence the ERT measurements. Among those factors, it is known that plant roots affect bulk electrical resistivity. However, this impact is not yet well understood. The goals of this experiment are to quantify the effect of plant roots on electrical resistivity of the soil subsurface and to map a plant roots system in space and time with ERT technique in a soil column. For this research, it is assumed that roots system affect the electrical properties of the rhizosphere. Indeed the root activity (by transporting ions, releasing exudates, changing the soil structure,…) will modify the rhizosphere electrical conductivity (Lobet G. et al, 2013). This experiment is included in a bigger research project about the influence of roots system on geophysics measurements. Measurements are made on cylinders of 45 cm high and a diameter of 20 cm, filled with saturated loam on which seeds of Brachypodium distachyon (L.) Beauv. are sowed. Columns are equipped with electrodes, TDR probes and temperature sensors. Experiments are conducted at Gembloux Agro-Bio Tech, in a growing chamber with controlled conditions: temperature of the air is fixed to 20° C, photoperiod is equal to 14 hours, photosynthetically active radiation is equal to 200 μmol m-2s-1, and air relative humidity is fixed to 80 %. Columns are fully saturated the first day of the measurements duration then no more irrigation is done till the end of the experiment. The poster will report the first results analysis of the electrical resistivity distribution in the soil columns through space and time. These results will be discussed according to the plant development and other controlled factors. Water content of the soil will also be detailed

  2. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    Science.gov (United States)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify

  3. Crop systems and plant roots can modify the soil water holding capacity

    Science.gov (United States)

    Doussan, Claude; Cousin, Isabelle; Berard, Annette; Chabbi, Abad; Legendre, Laurent; Czarnes, Sonia; Toussaint, Bruce; Ruy, Stéphane

    2015-04-01

    At the interface between atmosphere and deep sub-soil, the root zone plays a major role in regulating the flow of water between major compartments: groundwater / surface / atmosphere (drainage, runoff, evapotranspiration). This role of soil as regulator/control of water fluxes, but also as a supporting medium to plant growth, is strongly dependent on the hydric properties of the soil. In turn, the plant roots growing in the soil can change its structure; both in the plow layer and in the deeper horizons and, therefore, could change the soil properties, particularly hydric properties. Such root-related alteration of soil properties can be linked to direct effect of roots such as soil perforation during growth, aggregation of soil particles or indirect effects such as the release of exudates by roots that could modify the properties of water or of soil particles. On an another hand, the rhizosphere, the zone around roots influenced by the activity of root and associated microorganisms, could have a high influence on hydric properties, particularly the water retention. To test if crops and plant roots rhizosphere may have a significant effect on water retention, we conducted various experiment from laboratory to field scales. In the lab, we tested different soil and species for rhizospheric effect on soil water retention. Variation in available water content (AWC) between bulk and rhizospheric soil varied from non-significant to a significant increase (to about 16% increase) depending on plant species and soil type. In the field, the alteration of water retention by root systems was tested in different pedological settings for a Maize crop inoculated or not with the bacteria Azospirillum spp., known to alter root structure, growth and morphology. Again, a range of variation in AWC was evidenced, with significant increase (~30%) in some soil types, but more linked to innoculated/non-innoculated plants rather than to a difference between rhizospheric and bulk soil

  4. Interactive effects of mycorrhizae and a root hemiparasite on plant community productivity and diversity.

    Science.gov (United States)

    Stein, Claudia; Rissmann, Cornelia; Hempel, Stefan; Renker, Carsten; Buscot, François; Prati, Daniel; Auge, Harald

    2009-02-01

    Plant communities can be affected both by arbuscular mycorrhizal fungi (AMF) and hemiparasitic plants. However, little is known about the interactive effects of these two biotic factors on the productivity and diversity of plant communities. To address this question, we set up a greenhouse study in which different AMF inocula and a hemiparasitic plant (Rhinanthus minor) were added to experimental grassland communities in a fully factorial design. In addition, single plants of each species in the grassland community were grown with the same treatments to distinguish direct AMF effects from indirect effects via plant competition. We found that AMF changed plant community structure by influencing the plant species differently. At the community level, AMF decreased the productivity by 15-24%, depending on the particular AMF treatment, mainly because two dominant species, Holcus lanatus and Plantago lanceolata, showed a negative mycorrhizal dependency. Concomitantly, plant diversity increased due to AMF inoculation and was highest in the treatment with a combination of two commercial AM strains. AMF had a positive effect on growth of the hemiparasite, and thereby induced a negative impact of the hemiparasite on host plant biomass which was not found in non-inoculated communities. However, the hemiparasite did not increase plant diversity. Our results highlight the importance of interactions with soil microbes for plant community structure and that these indirect effects can vary among AMF treatments. We conclude that mutualistic interactions with AMF, but not antagonistic interactions with a root hemiparasite, promote plant diversity in this grassland community.

  5. Rooting of Mugo pine (Pinus mugo) cuttings as affected by IBA, NAA and planting substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sedaghathoor, S.; Kayghobadi, S.; Tajva, Y.

    2016-07-01

    Aim of the study. The effect of planting substrate and concentrations of indole-3-butyric acid (Ia) and naphthaleneacetic acid (Naca) hormones was studied on the rooting of mugo pine cuttings. Area of study: The research was carried out in Rasht city, Guilan province, Iran. Material and Methods: Both hormones (IBA and NAA) were applied at four concentrations of 0, 1000, 2000 and 4000 mg/l. Planting substrates included sand, perlite, cocopeat, sand + perlite, and sand + cocopeat (1:1). Main results: The highest rooting percentage (55%) was obtained under the trilateral treatment a2b4c1 (sand × 4000 mg/l NAA × 1000 mg/l IBA). Sand + cocopeat was found to be the best rooting substrate. Research highlights: It is recommended to apply sand with 4000 mg/l and 1000mg/l concentration of experimental hormones (NAA and IBA, respectively). (Author)

  6. Inhibition of Nitrification by Root Exudates and Plant Materials fromBrachiaria humidicola

    Directory of Open Access Journals (Sweden)

    M.K Suri

    2011-02-01

    Full Text Available Abstract Nitrification inhibitors are synthetic or natural compounds highly specific in inhibiting ammonium oxidation to nitrate. Therefore, they are widely used in combination with ammonium fertilizers. Among plants, grasses always are interested for their role in controlling nitrification, and recently the form of nitrogen (ammonium vs. nitrate was shown to be an important factor in release of natural nitrification inhibitors (NNI from grasses. In this study production and release of natural nitrification inhibitors in Brachiaria humidicola was investigated. To study the effects of nitrogen forms on production and release of NNIs, brachiaria seedlings were grown in nutrient solution culture with either ammonium or nitrate, under controlled conditions. Root exudates were collected in two different mediums, distilled water or ammonium chloride, and with shoot and root homogenates were applied separately for their potential nitrification inhibition effect. The results, however, showed that when root exudates were collected in distilled water, there was no inhibitory effect on nitrification, but when root exudates were collected in a medium containing 1 mM NH4Cl, it showed significant nitrification inhibition in our soil nitrification test (bioassay. Leaf but not root homogenates also showed significant nitrification inhibition, independent of N form. This in turn suggests that synthesis of natural nitrification inhibitors in this grass is independent of nitrogen form. Keywords: Nitrification, Root exudates, Ammonium, Nitrate, Brachiaria humidicola, Leaf and root homogenates

  7. Reproduction of Meloidogyne javanica on Plant Roots Genetically Transformed by Agrobacterium rhizogenes.

    Science.gov (United States)

    Verdejo, S; Jaffee, B A; Mankau, R

    1988-10-01

    Reproduction of Meloidogyne javanica was compared on several Agrobacterium rhizogenes-transformed root cultures under monoxenic conditions. M. javanica reproduced on all transformed roots tested; however, more females and eggs were obtained on potato and South Australian Early Dwarf Red tomato than on bindweed, Tropic tomato, lima bean, or carrot. Roots that grew at moderate rates into the agar and produced many secondary roots supported the highest reproduction. Numbers of females produced in cultures of transformed potato roots increased with increasing nematode inoculum levels, whether inoculum was dispersed eggs or juveniles. Females appeared smaller, produced fewer eggs, and were found in coalesced galls at the higher inoculum levels. The ratio between the final and initial population decreased sharply as the juvenile inoculum increased. The second-stage juvenile was preferred to dispersed eggs or egg masses for inoculation of tissue culture systems because quantity and viability of inoculum were easily assessed. Meloidogyne javanica reared on transformed root cultures were able to complete their life cycles on new transformed root cultures or greenhouse tomato plants.

  8. Calonectria spp. causing leaf spot, crown and root rot of ornamental plants in Tunisia

    NARCIS (Netherlands)

    Lombard, L.; Polizzi, G.; Guarnaccia, V.; Vitale, A.; Crous, P.W.

    2012-01-01

    Calonectria spp. are important pathogens of ornamental plants in nurseries, especially in the Northern Hemisphere. They are commonly associated with a wide range of disease symptoms of roots, leaves and shoots. During a recent survey in Tunisia, a number of Calonectria spp. were isolated from tissue

  9. Calonectria spp. causing leaf spot, crown and root rot of ornamental plants in Tunisia

    NARCIS (Netherlands)

    Lombard, L.; Polizzi, G.; Guarnaccia, V.; Vitale, A.; Crous, P.W.

    2011-01-01

    Calonectria spp. are important pathogens of ornamental plants in nurseries, especially in the Northern Hemisphere. They are commonly associated with a wide range of disease symptoms of roots, leaves and shoots. During a recent survey in Tunisia, a number of Calonectria spp. were isolated from tissue

  10. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    Directory of Open Access Journals (Sweden)

    Adam Barrada

    2015-08-01

    Full Text Available Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth.

  11. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    Science.gov (United States)

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-01-01

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth. PMID:26295391

  12. Rooting with neighbours : Detection affects growth and reproductive strategies of plants

    NARCIS (Netherlands)

    Chen, B.

    2015-01-01

    Evolutionary game-theoretical studies have indicated that plant populations with maximum seed production per unit area can be invaded by a mutant or intruder that grows more leaves, is taller or produces more roots, and that an evolutionarily stable vegetation is therefore less than maximally produc

  13. Surprising spectra of root-associated fungi in submerged aquatic plants.

    Science.gov (United States)

    Kohout, Petr; Sýkorová, Zuzana; Ctvrtlíková, Martina; Rydlová, Jana; Suda, Jan; Vohník, Martin; Sudová, Radka

    2012-04-01

    Similarly to plants from terrestrial ecosystems, aquatic species harbour wide spectra of root-associated fungi (RAF). However, comparably less is known about fungal diversity in submerged roots. We assessed the incidence and diversity of RAF in submerged aquatic plants using microscopy, culture-dependent and culture-independent techniques. We studied RAF of five submerged isoetid species collected in four oligotrophic freshwater lakes in Norway. Levels of dark septate endophytes (DSE) colonization differed among the lakes and were positively related to the organic matter content and negatively related to pH. In total, we identified 41 fungal OTUs using culture-dependent and culture-independent techniques, belonging to Mucoromycotina, Chytridiomycota, Glomeromycota, Ascomycota as well as Basidiomycota. Sequences corresponding to aquatic hyphomycetes (e.g. Nectria lugdunensis, Tetracladium furcatum and Varicosporium elodeae) were obtained. Eight arbuscular mycorrhizal taxa belonging to the orders Archaeosporales, Diversisporales and Glomerales were also detected. However, the vast majority of the fungal species detected (e.g. Ceratobasidium sp., Cryptosporiopsis rhizophila, Leptodontidium orchidicola, and Tuber sp.) have previously been known only from roots of terrestrial plants. The abundance and phylogenetic distribution of mycorrhizal as well as nonmycorrhizal fungi in the roots of submerged plants have reshaped our views on the fungal diversity in aquatic environment.

  14. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective.

    Science.gov (United States)

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-08-19

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth.

  15. Rooting with neighbours : Detection affects growth and reproductive strategies of plants

    NARCIS (Netherlands)

    Chen, B.

    2015-01-01

    Evolutionary game-theoretical studies have indicated that plant populations with maximum seed production per unit area can be invaded by a mutant or intruder that grows more leaves, is taller or produces more roots, and that an evolutionarily stable vegetation is therefore less than maximally produc

  16. Post-Plant nematicides for the control of root lesion nematode in red raspberry

    Science.gov (United States)

    There are currently few registered post-plant nematicides available to control root lesion nematode (Pratylenchus penetrans, RLN) in red raspberry (Rubus ideaus). The rate of raspberry decline due to RLN depends upon the nematode population density but usually occurs over a 3- to 4-year period. To ...

  17. Reactions of Lotus japonicus ecotypes and mutants to root parasitic plants.

    Science.gov (United States)

    Kubo, Mie; Ueda, Hiroaki; Park, Pyoyun; Kawaguchi, Masayoshi; Sugimoto, Yukihiro

    2009-03-01

    Witchweeds (Striga spp.) and broomrapes (Orobanche spp.) are obligate root parasitic plants on economically important field and horticultural crops. The parasites' seeds are induced to germinate by root-derived chemical signals. The radicular end is transformed into a haustorium which attaches, penetrates the host root and establishes connection with the vascular system of the host. Reactions of Lotus japonicus, a model legume for functional genomics, were studied for furthering the understanding of host-parasite interactions. Lotus japonicus was compatible with Orobanche aegyptiaca, but not with Orobanche minor, Striga hermonthica and Striga gesnerioides. Orobanche minor successfully penetrated Lotus japonicus roots, but failed to establish connections with the vascular system. Haustoria in Striga hermonthica attached to the roots, but penetration and subsequent growth of the endophyte in the cortex were restricted. Striga gesnerioides did not parasitize Lotus japonicus. Among seven mutants of Lotus japonicus (castor-5, har1-5, alb1-1, ccamk-3, nup85-3, nfr1-3 and nsp2-1) with altered characteristics in relation to rhizobial nodulation and mycorrhizal colonization, castor-5 and har1-5 were parasitized by Orobanche aegyptiaca with higher frequency than the wild type. In contrast, Orobanche aegyptiaca tubercle development was delayed on the mutants nup85-3, nfr1-3 and nsp2-1. These results suggest that nodulation, mycorrhizal colonization and infection by root parasitic plants in Lotus japonicus may be modulated by similar mechanisms and that Lotus japonicus is a potential model legume for studying plant-plant parasitism.

  18. Genotype Response of Soybean (Glycine max) Whole Plants and Hairy Roots to Fusarium solani f. sp. glycines Infection

    Science.gov (United States)

    Fusarium solani f. sp. Glycines, a soilborne fungus, infects soybean roots and causes sudden death syndrome. The response of 13 soybean genotypes to the pathogen infection was tested with potted greenhouse grown plants and with cultured hairy roots. The taproots of all genotypes grown plants measure...

  19. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition.

    Science.gov (United States)

    Guo, Jingqi; McCulley, Rebecca L; McNear, David H

    2015-01-01

    Tall fescue [Lolium arundinaceum (Schreb.)] is a cool-season perennial grass used in pastures throughout the Southeastern United States. The grass can harbor a shoot-specific fungal endophyte (Epichloë coenophiala) thought to provide the plant with enhanced resistance to biotic and abiotic stresses. Because alkaloids produced by the common variety of the endophyte cause severe animal health issues, focus has been on replacing the common-toxic strain with novel varieties that do not produce the mammal-toxic alkaloids but maintain abiotic and biotic stress tolerance benefits. Little attention has been given to the influence of the plant-fungal symbiosis on rhizosphere processes. Therefore, our objective was to study the influence of this relationship on plant biomass production and root exudate composition in tall fescue cultivars PDF and 97TF1, which were either not infected with the endophyte (E-), infected with the common toxic endophyte (CTE+) strain or with one of two novel endophytes (AR542E+, AR584E+). Plants were grown sterile for 3 weeks after which plant biomass, total organic carbon, total phenolic content and detailed chemical composition of root exudates were determined. Plant biomass production and exudate phenolic and organic carbon content were influenced by endophyte status, tall fescue cultivar, and their interaction. GC-TOF MS identified 132 compounds, including lipids, carbohydrates and carboxylic acids. Cluster analysis showed that the interaction between endophyte and cultivar resulted in unique exudate profiles. This is the first detailed study to assess how endophyte infection, notably with novel endophytes, and tall fescue cultivar interact to influence root exudate composition. Our results illustrate that tall fescue cultivar and endophyte status can influence plant growth and root exudate composition, which may help explain the observed influence of this symbiosis on rhizosphere biogeochemical processes.

  20. Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition

    Directory of Open Access Journals (Sweden)

    Jingqi eGuo

    2015-04-01

    Full Text Available Tall fescue (Lolium arundinaceum (Schreb. is a cool-season perennial grass used in pastures throughout the Southeastern United States. The grass can harbor a shoot-specific fungal endophyte (Epichloë coenophiala thought to provide the plant with enhanced resistance to biotic and abiotic stresses. Because alkaloids produced by the common variety of the endophyte cause severe animal health issues, focus has been on replacing the common-toxic strain with novel varieties that do not produce the mammal-toxic alkaloids but maintain abiotic and biotic stress tolerance benefits. Little attention has been given to the influence of the plant-fungal symbiosis on rhizosphere processes. Therefore, our objective was to study the influence of this relationship on plant biomass production and root exudate composition in tall fescue cultivars PDF and 97TF1, which were either not infected with the endophyte (E-, infected with the common toxic endophyte (CTE+ strain or with one of two novel endophytes (AR542E+, AR584E+. Plants were grown sterile for three weeks after which plant biomass, total organic carbon, total phenolic content and detailed chemical composition of root exudates were determined. Plant biomass production and exudate phenolic and organic carbon content were influenced by endophyte status, tall fescue cultivar, and their interaction. GC-TOF MS identified 132 compounds, including lipids, carbohydrates and carboxylic acids. Cluster analysis showed that the interaction between endophyte and cultivar resulted in unique exudate profiles. This is the first detailed study to assess how endophyte infection, notably with novel endophytes, and tall fescue cultivar interact to influence root exudate composition. Our results illustrate that tall fescue cultivar and endophyte status can influence plant growth and root exudate composition, which may help explain the observed influence of this symbiosis on rhizosphere biogeochemical processes.

  1. Evaluation of the interaction between plant roots and preferential flow paths

    Science.gov (United States)

    Zhang, Yinghu; Niu, Jianzhi; Zhang, Mingxiang; Xiao, Zixing; Zhu, Weili

    2017-04-01

    Introduction Preferential flow causing environmental issues by carrying contaminants to the groundwater resources level, occurs throughout the world. Soil water flow and solute transportation via preferential flow paths with little resistance could bypass soil matrix quickly. It is necessary to characterize preferential flow phenomenon because of its understanding of ecological functions of soil, including the degradation of topsoil, the low activity of soil microorganisms, the loss of soil nutrients, and the serious source of pollution of groundwater resources (Brevik et al., 2015; Singh et al., 2015). Studies on the interaction between plant roots and soil water flow in response to preferential flow is promising increasingly. However, it is complicated to evaluate soil hydrology when plant roots are associated with the mechanisms of soil water flow and solute transportation, especially preferential flow (Ola et al., 2015). Root channels formed by living/decayed plant roots and root-soil interfaces affect soil hydrology (Tracy et al., 2011). For example, Jørgensen et al. (2002) stated that soil water flow was more obvious in soil profiles with plant roots than in soil profiles without plant roots. The present study was conducted to investigate the interaction between plant roots and soil water flow in response to preferential flow in stony soils. Materials and methods Field experiments: field dye tracing experiments centered on experimental plants (S. japonica Linn, P. orientalis (L.) Franco, and Q. dentata Thunb) were conducted to characterize the root length density, preferential flow paths (stained areas), and soil matrix (unstained areas). Brilliant Blue FCF (C.I. Food Blue 2) as dye solution (50 L) was applied to the experimental plots. Laboratory analyses: undisturbed soil columns (7-cm diameter, 10 cm high) obtained from soil depths of 0-20, 20-40, and 40-60 cm, respectively, were conducted with breakthrough curves experiments under different conditions

  2. Homologs of SCAR/WAVE complex components are required for epidermal cell morphogenesis in rice.

    Science.gov (United States)

    Zhou, Wenqi; Wang, Yuchuan; Wu, Zhongliang; Luo, Liang; Liu, Ping; Yan, Longfeng; Hou, Suiwen

    2016-07-01

    Filamentous actins (F-actins) play a vital role in epidermal cell morphogenesis. However, a limited number of studies have examined actin-dependent leaf epidermal cell morphogenesis events in rice. In this study, two recessive mutants were isolated: less pronounced lobe epidermal cell2-1 (lpl2-1) and lpl3-1, whose leaf and stem epidermis developed a smooth surface, with fewer serrated pavement cell (PC) lobes, and decreased papillae. The lpl2-1 also exhibited irregular stomata patterns, reduced plant height, and short panicles and roots. Molecular genetic studies demonstrated that LPL2 and LPL3 encode the PIROGI/Specifically Rac1-associated protein 1 (PIR/SRA1)-like and NCK-associated protein 1 (NAP1)-like proteins, respectively, two components of the suppressor of cAMP receptor/Wiskott-Aldrich syndrome protein-family verprolin-homologous protein (SCAR/WAVE) regulatory complex involved in actin nucleation and function. Epidermal cells exhibited abnormal arrangement of F-actins in both lpl2 and lpl3 expanding leaves. Moreover, the distorted trichomes of Arabidopsis pir could be partially restored by an overexpression of LPL2 A yeast two-hybrid assay revealed that LPL2 can directly interact with LPL3 in vitro Collectively, the results indicate that LPL2 and LPL3 are two functionally conserved homologs of the SCAR/WAVE complex components, and that they play an important role in controlling epidermal cell morphogenesis in rice by organising F-actin.

  3. The influence of arbuscular mycorrhizae on root precision nutrient foraging of two pioneer plant species during early reclamation

    Science.gov (United States)

    Boldt-Burisch, Katja; Naeth, M. Anne

    2017-04-01

    On many post mining sites in the Lusatian Mining District (East Germany) soil heterogeneity consists of sandy soil with embedded clay-silt fragments. Those clays silt fragments might act as nutrient hotspots. Arbuscular mycorrhizal fungi in an infertile ecosystem could enhance a plant's ability to selectively forage for those nutrients and thus to improve plants nutrient supply. In our study we investigated whether silt-clay fragments within a sandy soil matrix induced preferential root growth of Lotus corniculatus and Calamagrostis epigeios, whether arbuscular mycorrhizae influenced root foraging patterns, and to what extent selective rooting in clay silt fragments influenced plant growth were addressed in this research. Soil types were sterile and non-sterile sandy soil and clay-silt fragments. Treatments were with and without arbuscular mycorrhizae, with and without soil solution, and soil solution and mycorrhizal inoculum combined. Root biomass, root density and intraradical fungal alkaline phosphatase activity and frequency were determined in fragments relative to sandy soil. Furthermore, temporal relationship of number of roots in fragments and plant height was assessed. Lotus corniculatus showed strong selective rooting into fragments especially with those plants treated with commercial cultivated arbuscular mycorrhizae; Calamagrostis epigeios did not. Without arbuscular mycorrhizae, L. corniculatus growth was significantly reduced and selective rooting did not occur. Selective rooting induced significant growth spurts of L. corniculatus. Roots in fragments had higher fungal alkaline phosphatase activity suggesting that mycorrhizal efficiency and related plants phosphorus supply is enhanced in roots in fragments. The application of cultivated arbuscular mycorrhizal fungi significantly and quickly influenced root foraging patterns, especially those of L. corniculatus, suggesting mycorrhizae may also enhance the ability of other plants to selectively forage

  4. Some effects of high- gradient magnetic field on tropism of roots of higher plants

    Science.gov (United States)

    Kondrachuk, A.; Belyavskaya, N.

    The perception of gravity in living organisms is mostly based on the response of the gravisensing system to displacement of some specific mass caused by gravitational force. According to the starch-statolith hypothesis the amyloplasts play the role of specific mass in gravisensing cells of higher plants. Kuznetsov & Hasenstein (1996) have demonstrated that the high-gradient magnetic field (HGMF) exerts a directional ponderomotive force on diamagnetic substances, in particular, statoliths. This effect of the HGMF causes root response similar to that produced by the change in gravity vector. Their studies supported the starch-statolith hypothesis and showed that ponderomotive force can be used to modify force acting on statoliths by manipulating statolith locations within gravisensing cells. We have designed the HGMF facility that allows for generating the HGMF and analyzing its effects on higher plants' roots. It records by videosystem and measures with the help of image analysis software the parameters of kinetics of root bending under both the HGMF action and gravistimulation. Two species of plants (pea and cress) have been examined. The main results of the work are the following: 1) The magnetotropic effect of HGMF on root growth was found for both species. 2) The critical value of ponderomotive force that caused the magnetotropic effect was estimated by modeling the magnetic field spatial distribution in the region of root apex. 3) The electron-microscopic analysis of statocytes after the HGMF treatment was carried out. The displacement of amyloplasts in root statocytes of two species of plants in HGMF was firstly demonstrated at the ultrastructural level. 4) Spatial distribution of exogenous proton fluxes (pH) along the roots was studied. The changes in pH distribution along curvature zone and apices of roots were revealed in the HGMF. It is known that application of HGMFs or strong uniform magnetic fields may influence ion transport due to Ampere force. It

  5. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    Science.gov (United States)

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  6. Incorporation of plant materials in the control of root pathogens in muskmelon

    Directory of Open Access Journals (Sweden)

    Andréa Mirne de Macêdo Dantas

    2013-12-01

    Full Text Available The effect of plant materials[Sunn Hemp (Crotalaria juncea, Castor Bean (Ricinus communis L., Cassava (Manihot esculenta Crantz and Neem (Azadirachta indica] and the times of incorporation of these materials in regards to the incidence of root rot in melon was evaluated in Ceará state, Brazil. The experiment was conducted in a commercial area with a history of root pathogens in cucurbitaceae. The randomized block design was used, in a 5 x 3 factorial arrangement with four repetitions. The treatments consisted of a combination of four plant materials (sunn hemp, castor beans, cassava and neem and a control with no soil incorporation of plant material and three times of incorporation (28, 21, and 14 days before the transplanting of the seedlings. Lower incidence of root rot was observed in practically all of the treatments where materials were incorporated at different times, with variation between the materials, corresponding with the time of incorporation, in relation to the soil without plant material. The pathogens isolated from the symptomatic muskmelon plants were Fusarium solani, Macrophomina phaseolina, Monosporascus cannonballus and Rhizoctonia solani, F. solani being encountered most frequently.

  7. Concept for Sustained Plant Production on ISS Using VEGGIE Capillary Mat Rooting System

    Science.gov (United States)

    Stutte, Gary W.; Newsham, Gerard; Morrow, Robert M.; Wheeler, Raymond M.

    2011-01-01

    Plant growth in microgravity presents unique challenges associated with maintaining appropriate conditions for seed germination, seedling establishment, maturation and harvest. They include maintaining appropriate soil moisture content, nutrient balance, atmospheric mixing and containment. Sustained production imposes additional challenges of harvesting, replanting, and safety. The VEGGIE is a deployable (collapsible) plant growth chamber developed as part of a NASA SBIR Phase II by Orbitec, Madison, WI. The intent of VEGGIE is to provide a low-resource system to produce fresh vegetables for the crew on long duration missions. The VEGGIE uses and LED array for lighting, an expandable bellows for containment, and a capillary matting system for nutrient and water delivery. The project evaluated a number of approaches to achieve sustained production, and repeated plantings, using the capillary rooting system. A number of different root media, seed containment, and nutrient delivery systems were evaluated and effects on seed germination and growth were evaluated. A number of issues limiting sustained production, such as accumulation of nutrients, uniform water, elevated vapor pressure deficit, and media containment were identified. A concept using pre-planted rooting packs shown to effectively address a number of those issues and is a promising approach for future development as a planting system for microgravity conditions.

  8. Formin homology 1 (OsFH1) regulates submergence-dependent root hair development in rice plants.

    Science.gov (United States)

    Huang, Jin; Liu, Jingmiao; Han, Chang-Deok

    2013-08-01

    By using a forward genetic approach, a formin homology 1 gene (OsFH1) was identified as a critical regulator of rice root hair development. The phenotypic effect of OsFH1 on root hair development was verified by using three independent mutants, one point mutation and two T-DNA insertions. The study showed that OsFH1 is required for the elongation of root-hairs. However, Osfh1 exhibited growth defect of root hairs only when roots were grown submerged in solution. To understand how OsFH1 impinges on plant responses to root submergence, the growth responses of Osfh1 root hairs to anoxia, carbohydrate supplementation and exogenous hormones (auxin and ethylene) and nutrients (Fe and Pi) were examined. However, none of these treatments rescued the growth defects of Osfhl1 root hairs. This study demonstrates that OsFH1 could be involved in preventing submergence-induced inhibition of root hair growth.

  9. Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent

    Science.gov (United States)

    Hiruma, Kei; Gerlach, Nina; Sacristán, Soledad; Nakano, Ryohei Thomas; Hacquard, Stéphane; Kracher, Barbara; Neumann, Ulla; Ramírez, Diana; Bucher, Marcel; O’Connell, Richard J.; Schulze-Lefert, Paul

    2016-01-01

    Summary A staggering diversity of endophytic fungi associate with healthy plants in nature, but it is usually unclear whether these represent stochastic encounters or provide host fitness benefits. Although most characterized species of the fungal genus Colletotrichum are destructive pathogens, we show here that C. tofieldiae (Ct) is an endemic endophyte in natural Arabidopsis thaliana populations in central Spain. Colonization by Ct initiates in roots but can also spread systemically into shoots. Ct transfers the macronutrient phosphorus to shoots, promotes plant growth, and increases fertility only under phosphorus-deficient conditions, a nutrient status that might have facilitated the transition from pathogenic to beneficial lifestyles. The host’s phosphate starvation response (PSR) system controls Ct root colonization and is needed for plant growth promotion (PGP). PGP also requires PEN2-dependent indole glucosinolate metabolism, a component of innate immune responses, indicating a functional link between innate immunity and the PSR system during beneficial interactions with Ct. PMID:26997485

  10. Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent.

    Science.gov (United States)

    Hiruma, Kei; Gerlach, Nina; Sacristán, Soledad; Nakano, Ryohei Thomas; Hacquard, Stéphane; Kracher, Barbara; Neumann, Ulla; Ramírez, Diana; Bucher, Marcel; O'Connell, Richard J; Schulze-Lefert, Paul

    2016-04-01

    A staggering diversity of endophytic fungi associate with healthy plants in nature, but it is usually unclear whether these represent stochastic encounters or provide host fitness benefits. Although most characterized species of the fungal genus Colletotrichum are destructive pathogens, we show here that C. tofieldiae (Ct) is an endemic endophyte in natural Arabidopsis thaliana populations in central Spain. Colonization by Ct initiates in roots but can also spread systemically into shoots. Ct transfers the macronutrient phosphorus to shoots, promotes plant growth, and increases fertility only under phosphorus-deficient conditions, a nutrient status that might have facilitated the transition from pathogenic to beneficial lifestyles. The host's phosphate starvation response (PSR) system controls Ct root colonization and is needed for plant growth promotion (PGP). PGP also requires PEN2-dependent indole glucosinolate metabolism, a component of innate immune responses, indicating a functional link between innate immunity and the PSR system during beneficial interactions with Ct.

  11. Effects of plant roots on the hydraulic performance during the clogging process in mesocosm vertical flow constructed wetlands.

    Science.gov (United States)

    Hua, G F; Zhao, Z W; Kong, J; Guo, R; Zeng, Y T; Zhao, L F; Zhu, Q D

    2014-11-01

    The aim of this study was to evaluate the effects of plant roots (Typha angustifolia roots) on the hydraulic performance during the clogging process from the perspective of time and space distributions in mesocosm vertical flow-constructed wetlands with coarse sand matrix. For this purpose, a pair of lab-scale experiments was conducted to compare planted and unplanted systems by measuring the effective porosity and hydraulic conductivity of the substrate within different operation periods. Furthermore, the flow pattern of the clogging process in the planted and unplanted wetland systems were evaluated by their hydraulic performance (e.g., mean residence time, short circuiting, volumetric efficiency, number of continuously stirred tank reactors, and hydraulic efficiency factor) in salt tracer experiments. The results showed that the flow conditions would change in different clogging stages, which indicated that plants played different roles related to time and space. In the early clogging stages, plant roots restricted the flow of water, while in the middle and later clogging stages, especially the later stage, growing roots opened new pore spaces in the substrate. The roots played an important role in affecting the hydraulic performance in the upper layer (0-30 cm) where the sand matrix had a larger root volume fraction. Finally, the causes of the controversy over plant roots' effects on clogging were discussed. The results helped further understand the effects of plant roots on hydraulic performance during the clogging process.

  12. Simple and efficient methods to generate split roots and grafted plants useful for long-distance signaling studies in Medicago truncatula and other small plants

    Directory of Open Access Journals (Sweden)

    Kassaw Tessema K

    2012-09-01

    Full Text Available Abstract Background Long distance signaling is a common phenomenon in animal and plant development. In plants, lateral organs such as nodules and lateral roots are developmentally regulated by root-to-shoot and shoot-to-root long distance signaling. Grafting and split root experiments have been used in the past to study the systemic long distance effect of endogenous and environmental factors, however the potential of these techniques has not been fully realized because data replicates are often limited due to cumbersome and difficult approaches and many plant species with soft tissue are difficult to work with. Hence, developing simple and efficient methods for grafting and split root inoculation in these plants is of great importance. Results We report a split root inoculation system for the small legume M. truncatula as well as robust and reliable techniques of inverted-Y grafting and reciprocal grafting. Although the split root technique has been historically used for a variety of experimental purposes, we made it simple, efficient and reproducible for M. truncatula. Using our split root experiments, we showed the systemic long distance suppression of nodulation on a second wild type root inoculated after a delay, as well as the lack of this suppression in mutants defective in autoregulation. We demonstrated inverted-Y grafting as a method to generate plants having two different root genotypes. We confirmed that our grafting method does not affect the normal growth and development of the inserted root; the composite plants maintained normal root morphology and anatomy. Shoot-to-root reciprocal grafts were efficiently made with a modification of this technique and, like standard grafts, demonstrate that the regulatory signal defective in rdn1 mutants acts in the root. Conclusions Our split root inoculation protocol shows marked improvement over existing methods in the number and quality of the roots produced. The dual functions of the

  13. Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants.

    Science.gov (United States)

    Lovelli, Stella; Scopa, Antonio; Perniola, Michele; Di Tommaso, Teodoro; Sofo, Adriano

    2012-02-15

    Salinization is one of the most important causes of crop productivity reduction in many areas of the world. Mechanisms that control leaf growth and shoot development under the osmotic phase of salinity are still obscure, and opinions differ regarding the Abscisic acid (ABA) role in regulation of biomass allocation under salt stress. ABA concentration in roots and leaves was analyzed in a genotype of processing tomato under two increasing levels of salinity stress for five weeks: 100 mM NaCl (S10) and 150 mM NaCl (S15), to study the effect of ABA changes on leaf gas exchange and dry matter partitioning of this crop under salinity conditions. In S15, salinization decreased dry matter by 78% and induced significant increases of Na(+) and Cl(-) in both leaves and roots. Dry matter allocated in different parts of plant was significantly different in salt-stressed treatments, as salinization increased root/shoot ratio 2-fold in S15 and 3-fold in S15 compared to the control. Total leaf water potential (Ψ(w)) decreased from an average value of approximately -1.0 MPa, measured on control plants and S10, to -1.17 MPa in S15. In S15, photosynthesis was reduced by 23% and stomatal conductance decreased by 61%. Moreover, salinity induced ABA accumulation both in tomato leaves and roots of the more stressed treatment (S15), where ABA level was higher in roots than in leaves (550 and 312 ng g(-1) fresh weight, respectively). Our results suggest that the dynamics of ABA and ion accumulation in tomato leaves significantly affected both growth and gas exchange-related parameters in tomato. In particular, ABA appeared to be involved in the tomato salinity response and could play an important role in dry matter partitioning between roots and shoots of tomato plants subjected to salt stress.

  14. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    Science.gov (United States)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  15. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots.

    Science.gov (United States)

    Powell, C L; Goltz, M N; Agrawal, A

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~1.9mgL(-1), and initial aqueous [CAH] ~150μgL(-1); cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12±0.01 and 0.59±0.07d(-1), respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  16. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants.

    Science.gov (United States)

    Hao, Yu-Jun; Wei, Wei; Song, Qing-Xin; Chen, Hao-Wei; Zhang, Yu-Qin; Wang, Fang; Zou, Hong-Feng; Lei, Gang; Tian, Ai-Guo; Zhang, Wan-Ke; Ma, Biao; Zhang, Jin-Song; Chen, Shou-Yi

    2011-10-01

    NAC transcription factors play important roles in plant growth, development and stress responses. Previously, we identified multiple NAC genes in soybean (Glycine max). Here, we identify the roles of two genes, GmNAC11 and GmNAC20, in stress responses and other processes. The two genes were differentially induced by multiple abiotic stresses and plant hormones, and their transcripts were abundant in roots and cotyledons. Both genes encoded proteins that localized to the nucleus and bound to the core DNA sequence CGT[G/A]. In the protoplast assay system, GmNAC11 acts as a transcriptional activator, whereas GmNAC20 functions as a mild repressor; however, the C-terminal end of GmANC20 has transcriptional activation activity. Over-expression of GmNAC20 enhances salt and freezing tolerance in transgenic Arabidopsis plants; however, GmNAC11 over-expression only improves salt tolerance. Over-expression of GmNAC20 also promotes lateral root formation. GmNAC20 may regulate stress tolerance through activation of the DREB/CBF-COR pathway, and may control lateral root development by altering auxin signaling-related genes. GmNAC11 probably regulates DREB1A and other stress-related genes. The roles of the two GmNAC genes in stress tolerance were further analyzed in soybean transgenic hairy roots. These results provide a basis for genetic manipulation to improve the agronomic traits of important crops.

  17. Bacillus thuringiensis colonises plant roots in a phylogeny-dependent manner.

    Science.gov (United States)

    Vidal-Quist, J Cristian; Rogers, Hilary J; Mahenthiralingam, Eshwar; Berry, Colin

    2013-12-01

    Although much is known about the pathology of Bacillus thuringiensis against invertebrates, current understanding of its natural ecology is limited. This study evaluated the biodiversity of B. thuringiensis in relation to its interaction with plants. Phylogenetic relationships between 44 reference and field-collected strains, determined using 16S rRNA and gyrB gene sequences, revealed a high degree of variability, similar to that found in databases. An Arabidopsis thaliana in vitro inoculation model was developed to screen the ability of B. thuringiensis to colonise roots. Significant colonisation differences up to 91-fold were observed between strains, and correlation between strain phylogeny and colonisation was found. The genetics and biochemistry of auxin production; presence of the gene encoding indole pyruvate decarboxylase; and the abilities of Bt strains to swarm, grow in rich/minimal media and affect root growth differed between the strains, but only auxin production correlated significantly with ability to colonise roots. Co-inoculation with Burkholderia phytofirmans PsJN or Pseudomonas fluorescens SBW25 produced no effect on B. thuringiensis colonisation levels, regardless of the co-inoculant. Similarly, root colonisation of A. thaliana mutants impaired in plant defences was not significantly higher compared with controls. This is the first systematic and phylogenetic evaluation of B. thuringiensis interaction with plants.

  18. Genetic Based Plant Resistance and Susceptibility Traits to Herbivory Influence Needle and Root Litter Nutrient Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Aimee T [ORNL; Chapman, Samantha K. [Smithsonian Environmental Research Center, Edgewater, MD; Whitham, Thomas G [Northern Arizona University; Hart, Stephen C [Northern Arizona University; Koch, George W [Northern Arizona University

    2007-01-01

    It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimental removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting carbon and

  19. Mathematical models of morphogenesis

    Directory of Open Access Journals (Sweden)

    Dilão Rui

    2015-01-01

    Full Text Available Morphogenesis is the ensemble of phenomena that generates the form and shape of organisms. Organisms are classified according to some of its structural characteristics, to its metabolism and to its form. In particular, the empirical classification associated with the phylum concept is related with the form and shape of organisms. In the first part of this talk, we introduce the class of mathematical models associated the Turing approach to pattern formation. In the Turing approach, morphogenesis models are described by reaction-diffusion parabolic partial differential equations. Based on this formalism, we present a mathematical model describing the first two hours of development of the fruit fly Drosophila. In the second part of this talk, we present results on Pareto optimality to calibrate and validate mathematical models.

  20. Predicting the Plant Root-Associated Ecological Niche of 21 Pseudomonas Species Using Machine Learning and Metabolic Modeling

    OpenAIRE

    Chien, Jennifer; Larsen, Peter

    2017-01-01

    Plants rarely occur in isolated systems. Bacteria can inhabit either the endosphere, the region inside the plant root, or the rhizosphere, the soil region just outside the plant root. Our goal is to understand if using genomic data and media dependent metabolic model information is better for training machine learning of predicting bacterial ecological niche than media independent models or pure genome based species trees. We considered three machine learning techniques: support vector machin...

  1. Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density.

    Science.gov (United States)

    Schroeder, M S; Janos, D P

    2005-05-01

    We examined the effects of arbuscular mycorrhizas (AM), phosphorus fertilization, intraspecific density, and their interaction, on the growth, phosphorus uptake, and root morphology of three facultative mycotrophic crops (Capsicum annuum, Zea mays, and Cucurbita pepo). Plants were grown in pots with or without AM at three densities and four phosphorus availabilities for 10 weeks. AM colonization, plant weight, and shoot phosphorus concentration were measured at harvest. Root morphology was assessed for C. annuum and Z. mays. Phosphorus fertilization reduced but did not eliminate AM colonization of all species. AM, phosphorus, and density interacted significantly to modify growth of C. annuum and C. pepo such that increased density and phosphorus diminished beneficial effects of AM. Increased density reduced positive effects of AM on C. annuum and C. pepo shoot phosphorus concentrations. AM altered both Z. mays and C. annuum root morphology in ways that complemented potential phosphorus uptake by mycorrhizas, but increased density and phosphorus diminished these effects. We infer that increased density predominantly influenced plant responses by affecting whether or not carbon (photosynthate) or phosphorus limited plant growth. By exacerbating carbon limitation, high density reduced the benefit/cost ratio of mycorrhizas and minimized their effects.

  2. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms.

    Science.gov (United States)

    Nieves-Cordones, Manuel; Alemán, Fernando; Martínez, Vicente; Rubio, Francisco

    2014-05-15

    Potassium (K(+)) is an essential macronutrient for plants. It is taken into the plant by the transport systems present in the plasma membranes of root epidermal and cortical cells. The identity of these systems and their regulation is beginning to be understood and the systems of K(+) transport in the model species Arabidopsis thaliana remain far better characterized than in any other plant species. Roots can activate different K(+) uptake systems to adapt to their environment, important to a sessile organism that needs to cope with a highly variable environment. The mechanisms of K(+) acquisition in the model species A. thaliana are the best characterized at the molecular level so far. According to the current model, non-selective channels are probably the main pathways for K(+) uptake at high concentrations (>10mM), while at intermediate concentrations (1mM), the inward rectifying channel AKT1 dominates K(+) uptake. Under lower concentrations of external K(+) (100μM), AKT1 channels, together with the high-affinity K(+) uptake system HAK5 contribute to K(+) acquisition, and at extremely low concentrations (root K(+) uptake are shared by other organisms, whilst others are specific to plants. This indicates that some crucial properties of the ancestral of K(+) transport systems have been conserved through evolution while others have diverged among different kingdoms.

  3. Root growth, mycorrhization and physiological effects of plants growing on oil tailing sands

    Science.gov (United States)

    Boldt-Burisch, Katja M.; Naeth, Anne M.; Schneider, Bernd Uwe; Hüttl, Reinhard F.

    2015-04-01

    Surface mining creates large, intense disturbances of soils and produces large volumes of by-products and waste materials. After mining processes these materials often provide the basis for land reclamation and ecosystem restoration. In the present study, tailing sands (TS) and processed mature fine tailings (pMFT) from Fort McMurray (Alberta, Canada) were used. They represent challenging material for ecosystem rebuilding because of very low nutrient contents of TS and oil residuals, high density of MFT material. In this context, little is known about the interactions of pure TS, respectively mixtures of TS and MFT and root growth, mycorrhization and plant physiological effects. Four herbaceous plant species (Elymus trachycaulus, Koeleria macrantha, Deschampsia cespitosa, Lotus corniculatus) were chosen to investigate root development, chlorophyll fluorescence and mycorrhization intensity with and without application of Glomus mosseae (arbuscular mycorrhizae) on mainly tailing sands. Surprisingly both, plants growing on pure TS and plants growing on TS with additional AM-application showed mycorrhization of roots. In general, the mycorrhization intensity was lower for plants growing on pure tailings sands, but it is an interesting fact that there is a potential for mycorrhization available in tailing sands. The mycorrhizal intensity strongly increased with application of G. mosseae for K. macrantha and L. corniculatus and even more for E. trachycaulus. For D. cespitosa similar high mycorrhiza infection frequency was found for both variants, with and without AM-application. By the application of G. mosseae, root growth of E. trachycaulus and K. macrantha was significantly positively influenced. Analysis of leaf chlorophyll fluorescence showed no significant differences for E. trachycaulus but significant positive influence of mycorrhizal application on the physiological status of L. corniculatus. However, this effect could not be detected when TS was mixed with MFT

  4. Effect of IAA on in vitro growth and colonization of Nostoc in plant roots

    Science.gov (United States)

    Hussain, Anwar; Shah, Syed T.; Rahman, Hazir; Irshad, Muhammad; Iqbal, Amjad

    2015-01-01

    Nostoc is widely known for its ability to fix atmospheric nitrogen and the establishment of symbiotic relationship with a wide range of plants from various taxonomic groups. Several strains of Nostoc produce phytohormones that promote growth of its plant partners. Nostoc OS-1 was therefore selected for study because of the presence of putative ipdC gene that encodes a key enzyme to produce Indole-3-acetic acid (IAA). The results indicated that both cellular and released IAA was found high with increasing incubation time and reached to a peak value (i.e., 21 pmol mg-1ch-a) on the third week as determined by UPLC-ESI-MS/MS. Also the Nostoc OS-1 strain efficiently colonized the roots and promoted the growth of rice as well as wheat under axenic conditions and induced ipdC gene that suggested the possible involvement of IAA in these phenotypes. To confirm the impact of IAA on root colonization efficiency and plant promoting phenotypes of Nostoc OS-1, an ipdC knockout mutant was generated by homologous recombinant method. The amount of releasing IAA, in vitro growth, root colonization, and plant promoting efficiency of the ipdC knockout mutant was observed significantly lower than wild type strain under axenic conditions. Importantly, these phenotypes were restored to wild-type levels when the ipdC knockout mutant was complemented with wild type ipdC gene. These results together suggested that ipdC and/or synthesized IAA of Nostoc OS-1 is required for its efficient root colonization and plant promoting activity. PMID:25699072

  5. Concentration of Petroleum-Hydrocarbon Contamination Shapes Fungal Endophytic Community Structure in Plant Roots.

    Science.gov (United States)

    Bourdel, Guillaume; Roy-Bolduc, Alice; St-Arnaud, Marc; Hijri, Mohamed

    2016-01-01

    Plant-root inhabiting fungi are a universal phenomenon found in all ecosystems where plants are able to grow, even in harsh environments. Interactions between fungi and plant roots can vary widely from mutualism to parasitism depending on many parameters. The role of fungal endophytes in phytoremediation of polluted sites, and characterization of the endophytic diversity and community assemblages in contaminated areas remain largely unexplored. In this study, we investigated the composition of endophytic fungal communities in the roots of two plant species growing spontaneously in petroleum-contaminated sedimentation basins of a former petro-chemical plant. The three adjacent basins showed a highly heterogeneous pattern of pollutant concentrations. We combined a culture-based isolation approach with the pyrosequencing of fungal ITS ribosomal DNA. We selected two species, Eleocharis erythropoda Steud. and Populus balsamifera L., and sampled three individuals of each species from each of three adjacent basins, each with a different concentration of petroleum hydrocarbons. We found that contamination level significantly shaped endophytic fungal diversity and community composition in E. erythropoda, with only 9.9% of these fungal Operational Taxonomic Units (OTUs) retrieved in all three basins. However, fungal community structure associated with P. balsamifera remained unaffected by the contamination level with 28.2% of fungal OTUs shared among all three basins. This could be explained by the smaller differences of pollutant concentrations in the soil around our set of P. balsamifera sampless compared to that around our set of E. erythropoda samples. Our culture-based approach allowed isolation of 11 and 30 fungal endophytic species from surface-sterilized roots of E. erythropoda and P. balsamifera, respectively. These isolates were ribotyped using ITS, and all were found in pyrosequensing datasets. Our results demonstrate that extreme levels of pollution reduce fungal

  6. Experimental chronic periodontitis morphogenesis

    OpenAIRE

    Schneider S.A.

    2011-01-01

    Morphogenesis of periodontium tissue in a model of chronic periodontitis was studied. Adult Wistar rats wereused in a model; chronic periodontitis was developed through mastication-related loading decrease. Histological assessmentof periodontium tissue was conducted at Days 7, 14, 21 and 30. It was demonstrated that dystrophic tissue changes prevailover the inflammatory one in this particular experimental model. The structural elements of periodontium were involved intothe pathologic process ...

  7. Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes.

    Science.gov (United States)

    McCormack, M Luke; Guo, Dali; Iversen, Colleen M; Chen, Weile; Eissenstat, David M; Fernandez, Christopher W; Li, Le; Ma, Chengen; Ma, Zeqing; Poorter, Hendrik; Reich, Peter B; Zadworny, Marcin; Zanne, Amy

    2017-07-01

    Trait-based approaches provide a useful framework to investigate plant strategies for resource acquisition, growth, and competition, as well as plant impacts on ecosystem processes. Despite significant progress capturing trait variation within and among stems and leaves, identification of trait syndromes within fine-root systems and between fine roots and other plant organs is limited. Here we discuss three underappreciated areas where focused measurements of fine-root traits can make significant contributions to ecosystem science. These include assessment of spatiotemporal variation in fine-root traits, integration of mycorrhizal fungi into fine-root-trait frameworks, and the need for improved scaling of traits measured on individual roots to ecosystem-level processes. Progress in each of these areas is providing opportunities to revisit how below-ground processes are represented in terrestrial biosphere models. Targeted measurements of fine-root traits with clear linkages to ecosystem processes and plant responses to environmental change are strongly needed to reduce empirical and model uncertainties. Further identifying how and when suites of root and whole-plant traits are coordinated or decoupled will ultimately provide a powerful tool for modeling plant form and function at local and global scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Temperature and wetland plant species effects on wastewater treatment and root zone oxidation.

    Science.gov (United States)

    Allen, Winthrop C; Hook, Paul B; Biederman, Joel A; Stein, Otto R

    2002-01-01

    Constructed wetlands are widely used for wastewater treatment, but there is little information on processes affecting their performance in cold climates, effects of plants on seasonal performance, or plant selection for cold regions. We evaluated the effects of three plant species on seasonal removal of dissolved organic matter (OM) (measured by chemical oxygen demand and dissolved organic carbon) and root zone oxidation status (measured by redox potential [Eh] and sulfate [SO4(2-)]) in subsurface-flow wetland (SSW) microcosms. A series of 20-d incubations of simulated wastewater was conducted during a 28-mo greenhouse study at temperatures from 4 to 24 degrees C. Presence and species of plants strongly affected seasonal differences in OM removal and root zone oxidation. All plants enhanced OM removal compared with unplanted controls, but plant effects and differences among species were much greater at 4 degrees C, during dormancy, than at 24 degrees C, during the growing season. Low temperatures were associated with decreased OM removal in unplanted controls and broadleaf cattail (Typha latifolia L.) microcosms and with increased removal in beaked sedge (Carex rostrata Stokes) and hardstem bulrush [Schoenoplectus acutus (Muhl. ex Bigelow) A. & D. Löve var. acutus] microcosms. Differences in OM removal corresponded to species' apparent abilities to increase root zone oxygen supply. Sedge and bulrush significantly raised Eh values and SO4(2-) concentrations, particularly at 4 degrees C. These results add to evidence that SSWs can be effective in cold climates and suggest that plant species selection may be especially important to optimizing SSW performance in cold climates.

  9. Morphogenesis of Chaos

    CERN Document Server

    Akhmet, Marat

    2012-01-01

    Morphogenesis, as it is understood in a wide sense by Ren\\'e Thom, is considered for various types of chaos. That is, those, obtained by period-doubling cascade, Devaney's and Li-Yorke chaos. Moreover, in discussion form we consider inheritance of intermittency, the double-scroll Chua's attractor and quasiperiodical motions as a possible skeleton of a chaotic attractor. To make our introduction of the paper more clear, we have to say that one may consider other various accompanying concepts of chaos such that a structure of the chaotic attractor, its fractal dimension, form of the bifurcation diagram, the spectra of Lyapunov exponents, etc. We make comparison of the main concept of our paper with Turing's morphogenesis and John von Neumann automata, considering that this may be not only formal one, but will give ideas for the chaos development in the morphogenesis of Turing and for self-replicating machines. To provide rigorous study of the subject, we introduce new definitions such as chaotic sets of functio...

  10. Bioreactor technology: a novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots.

    Science.gov (United States)

    Sivakumar, Ganapathy

    2006-12-01

    Plants are the richest source for different bioactive molecules. Because of the vast number of side effects associated with synthetic pharmaceuticals, medical biotechnologists turned to nature to provide new promising therapeutic molecules from plant biofactories. The large-scale availability of the disease- and pesticide-free raw material is, however, restricted in vivo. Many bioactive plant secondary metabolites are accumulated in roots. Engineered plants can also produce human therapeutic proteins. Vaccines and diagnostic monoclonal antibodies can be won from their roots, so that engineered plants hold immense potential for the biopharmaceutical industry. To obtain sufficient amounts of the plant bioactive molecules for application in human therapy, adventitious and hairy roots have to be cultured in in vitro systems. High-tech pilot-scale bioreactor technology for the establishment of a long-term adventitious root culture from biopharmaceutical plants has recently been established. In this review, I briefly discuss a technology for cultivating bioactive molecule-rich adventitious and hairy roots from plants using a high-tech bioreactor system, as well as the principles and application of genome-restructuring mechanisms for plant-based biopharmaceutical production from roots. High-tech bioreactor-derived bioactive phytomolecules and biopharmaceuticals hold the prospect of providing permanent remedies for improving human well-being.

  11. Community Structures of Arbuscular Mycorrhizal Fungi in Soils and Plant Roots Inhabiting Abandoned Mines of Korea

    Science.gov (United States)

    Park, Hyeok; Lee, Eun-Hwa; Ka, Kang-Hyeon

    2016-01-01

    In this study, we collected rhizosphere soils and root samples from a post-mining area and a natural forest area in Jecheon, Korea. We extracted spores of arbuscular mycorrhizal fungi (AMF) from rhizospheres, and then examined the sequences of 18S rDNA genes of the AMF from the collected roots of plants. We compared the AMF communities in the post-mining area and the natural forest area by sequence analysis of the AMF spores from soils and of the AMF clones from roots. Consequently, we confirmed that the structure of AMF communities varied between the post-mining area and the natural forest area and showed significant relationship with heavy metal contents in soils. These results suggest that heavy metal contamination by mining activity significantly affects the AMF community structure. PMID:28154485

  12. The ability on hydraulic-lift from deeper rooted plants with a phytoassay of rice (Oryza sativa L.)

    OpenAIRE

    2009-01-01

    Hydraulic lift(HL), the exudation of water from root system of deeper rooted plants under soil desiccated conditions is considered as a potential irrigation system in drought areas. The ability of HL in sorghum(Sorghum bicolor(L.)Moench)was evaluated by a split root experiment with mixed-cropped rice(Oryza sativa L.)as an indicator plant for phytoassay. Growth parameters of rice and soil water conditions are measured after withholding irrigation with or without sorghum root connection between...

  13. Isotopic discrimination of zinc during root-uptake and cellular incorporation in higher plants

    Science.gov (United States)

    Mason, T. F.; Weiss, D. J.; Coles, B. J.; Horstwood, M.; Parrish, R. R.; Zhao, F. J.; Kirk, G. J.

    2003-04-01

    Introduction: Isotopic variability of terrestrial zinc offers a unique tool for studying the geochemical and biochemical cycling of zinc through natural ecosystems. However, to realise this potential, the mechanisms controlling the isotopic composition of zinc during geosphere-biosphere interactions must first be understood. The uptake of zinc by plants involves a variety of abiotic and biochemical reactions, and can provide insights into the types of processes that may fractionate zinc isotopes within living systems. We therefore present an experimental study to quantify if and how zinc isotopes are fractionated during uptake in higher plants. Methodology: Two experimental approaches were taken: (1) a hydroponic study in which rice, lettuce, and tomato cultivars were grown in one of two nutrient solutions (a HEDTA + NTA buffered system, and an EDTA buffered system), and (2) a field-based study in which rice plants were grown in experimental paddy fields under both zinc-sufficient and zinc-deficient conditions. Upon harvest, roots, shoots, nutrient solutions and soils were acid digested, and matrix components were removed from the zinc fraction using anion exchange procedures. For soils the 'bioavailble' zinc fraction was abstracted using a 1 N HCl leaching step. Zinc isotopic compositions were determined on a ThermoElemental Axiom MC-ICP-MS, using copper as an internal reference to correct for mass discrimination effects. Combined measurement errors based on repeated analyses of ultra-pure standards and plant reference materials were EDTA nutrient solutions, the depletion from root to shoot is significantly larger with the former (at -0.15 to -0.25 ppm pamu compared with -0.13 to -0.18 ppm pamu). For rice plants cultivated on zinc-sufficient soils, isotopic enrichment from soil to root (+0.25 ppm pamu), and depletion from root to shoot (-0.11 ppm pamu) were observed. However, under zinc-deficient conditions no significant isotopic shifts between soil, root and

  14. Determination of increase in shear strength of soil reinforced with plant roots

    Science.gov (United States)

    Sudan Acharya, Madhu; Alvarez Suarez, Sandra Patricia; Rauchecker, Markus

    2013-04-01

    The stability of a slope depends on the strength of the soil material comprising of the slope, the triggering factors and slope geometry. Vegetation growing on the slope can have mechanical, biological and hydrological roles which influence the strength characteristics of the material on the slope. The mechanical contributions arise from the physical interactions of either the foliage or the root system of the plant with the slope (Gray & Sotir, 1996). The plant roots increase the soil suction reducing pore water pressures, which significantly increases the cohesion (c) and also the friction angle (φ) to some extent. In an experimental investigation carried out in a highway embankment in Germany, an increase of effective cohesion from 1.1 kN/m² to 6.3 kN/m² and friction angle from 33.1° to 34.7° were observed. (Katzenbach & Werner, 2005). Considering the complex nature of influences of plants on slope stability, more field oriented experimental research works on different vegetative systems are required to quantify the role of different plants in slope stability. In the above context, in order to observe the increase in the shear strength of soil by different types of plant roots, an experiment has been carried out at the University of Natural Resources and Life Sciences (BOKU). This experiment consist of 10 wooden boxes of size 50x50x60 cm and 5 boxes of size 50x50x40 cm filled with normal soil suitable for growth of plants. The ten number of bigger size boxes are planted with acer campestre plants. In the other five boxes of smaller size, a mixed seed of 21 different grass species has been sowed. All the boxes are kept in an experimental field and regular take care is being done. The grass will be cut each year and the biomass will be measured. The undisturbed soil samples from each of these boxes in first and second year will be taken to the large frame (50x50cm) direct shear test equipment and tested for direct shear. A comparison of shear strength of soil

  15. Seed and Root Endophytic Fungi in a Range Expanding and a Related Plant Species

    Directory of Open Access Journals (Sweden)

    Stefan Geisen

    2017-08-01

    Full Text Available Climate change is accelerating the spread of plants and their associated species to new ranges. The differences in range shift capacity of the various types of species may disrupt long-term co-evolved relationships especially those belowground, however, this may be less so for seed-borne endophytic microbes. We collected seeds and soil of the range-expanding Centaurea stoebe and the congeneric Centaurea jacea from three populations growing in Slovenia (native range of both Centaurea species and the Netherlands (expanded range of C. stoebe, native range of C. jacea. We isolated and identified endophytic fungi directly from seeds, as well as from roots of the plants grown in Slovenian, Dutch or sterilized soil to compare fungal endophyte composition. Furthermore, we investigated whether C. stoebe hosts a reduced community composition of endophytes in the expanded range due to release from plant-species specific fungi while endophyte communities in C. jacea in both ranges are similar. We cultivated 46 unique and phylogenetically diverse endophytes. A majority of the seed endophytes resembled potential pathogens, while most root endophytes were not likely to be pathogenic. Only one endophyte was found in both roots and seeds, but was isolated from different plant species. Unexpectedly, seed endophyte diversity of southern C. stoebe populations was lower than of populations from the north, while the seed endophyte community composition of northern C. stoebe populations was significantly different southern C. stoebe as well as northern and southern C. jacea populations. Root endophyte diversity was considerably lower in C. stoebe than in C. jacea independent of plant and soil origin, but this difference disappeared when plants were grown in sterile soils. We conclude that the community composition of fungal endophytes not only differs between related plant species but also between populations of plants that expand their range compared to their native

  16. Mathematical Modeling of the Dynamics of Shoot-Root Interactions and Resource Partitioning in Plant Growth.

    Directory of Open Access Journals (Sweden)

    Chrystel Feller

    Full Text Available Plants are highly plastic in their potential to adapt to changing environmental conditions. For example, they can selectively promote the relative growth of the root and the shoot in response to limiting supply of mineral nutrients and light, respectively, a phenomenon that is referred to as balanced growth or functional equilibrium. To gain insight into the regulatory network that controls this phenomenon, we took a systems biology approach that combines experimental work with mathematical modeling. We developed a mathematical model representing the activities of the root (nutrient and water uptake and the shoot (photosynthesis, and their interactions through the exchange of the substrates sugar and phosphate (Pi. The model has been calibrated and validated with two independent experimental data sets obtained with Petunia hybrida. It involves a realistic environment with a day-and-night cycle, which necessitated the introduction of a transitory carbohydrate storage pool and an endogenous clock for coordination of metabolism with the environment. Our main goal was to grasp the dynamic adaptation of shoot:root ratio as a result of changes in light and Pi supply. The results of our study are in agreement with balanced growth hypothesis, suggesting that plants maintain a functional equilibrium between shoot and root activity based on differential growth of these two compartments. Furthermore, our results indicate that resource partitioning can be understood as the emergent property of many local physiological processes in the shoot and the root without explicit partitioning functions. Based on its encouraging predictive power, the model will be further developed as a tool to analyze resource partitioning in shoot and root crops.

  17. Mathematical Modeling of the Dynamics of Shoot-Root Interactions and Resource Partitioning in Plant Growth.

    Science.gov (United States)

    Feller, Chrystel; Favre, Patrick; Janka, Ales; Zeeman, Samuel C; Gabriel, Jean-Pierre; Reinhardt, Didier

    2015-01-01

    Plants are highly plastic in their potential to adapt to changing environmental conditions. For example, they can selectively promote the relative growth of the root and the shoot in response to limiting supply of mineral nutrients and light, respectively, a phenomenon that is referred to as balanced growth or functional equilibrium. To gain insight into the regulatory network that controls this phenomenon, we took a systems biology approach that combines experimental work with mathematical modeling. We developed a mathematical model representing the activities of the root (nutrient and water uptake) and the shoot (photosynthesis), and their interactions through the exchange of the substrates sugar and phosphate (Pi). The model has been calibrated and validated with two independent experimental data sets obtained with Petunia hybrida. It involves a realistic environment with a day-and-night cycle, which necessitated the introduction of a transitory carbohydrate storage pool and an endogenous clock for coordination of metabolism with the environment. Our main goal was to grasp the dynamic adaptation of shoot:root ratio as a result of changes in light and Pi supply. The results of our study are in agreement with balanced growth hypothesis, suggesting that plants maintain a functional equilibrium between shoot and root activity based on differential growth of these two compartments. Furthermore, our results indicate that resource partitioning can be understood as the emergent property of many local physiological processes in the shoot and the root without explicit partitioning functions. Based on its encouraging predictive power, the model will be further developed as a tool to analyze resource partitioning in shoot and root crops.

  18. Effects of Local Nitrogen Supply on Water Uptake of Bean Plants in a Split Root System

    Institute of Scientific and Technical Information of China (English)

    Shiwei Guo; Qirong Shen; Holger Brueck

    2007-01-01

    To study the effects of local nitrogen supply on water and nutrient absorption, French bean (Phaseolus vulgaris L.)plants were grown in a split root system. Five treatments supplied with different nitrogen forms were compared:homogeneous nitrate (NN) and homogenous ammonium (AA) supply, spatially separated supply of nitrate and ammonium (NA), half of the root system supplied with N-free nutrient solution, the other half with either nitrate (NO) or ammonium (AO). The results showed that 10 d after onset of treatments, root dry matter (DM) in the nitratesupplied vessels treated with NA was more than two times higher than that in the ammonium-supplied vessels.Water uptake from the nitrate-supplied vessels treated with NA was 281% higher than under ammonium supply. In treatments NO and AO, the local supply of N resulted in clearly higher root DM, and water uptake from the nitratesupplied vessels was 82% higher than in the -N vessels. However, in AO plants, water uptake from the -N nutrient solution was 129% higher than from the ammonium-supplied vessels. This indicates a compensatory effect, which resulted in almost identical rates of total water uptake of treatments AA and AO, which had comparable shoot DM and leaf area. Ammonium supply reduced potassium and magnesium absorption. Water uptake was positively correlated with N, Mg and K uptake.

  19. A Potassium-Dependent Oxygen Sensing Pathway Regulates Plant Root Hydraulics.

    Science.gov (United States)

    Shahzad, Zaigham; Canut, Matthieu; Tournaire-Roux, Colette; Martinière, Alexandre; Boursiac, Yann; Loudet, Olivier; Maurel, Christophe

    2016-09-22

    Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios.

  20. Water flow and solute transport in the soil-plant-atmosphere continuum: Upscaling from rhizosphere to root zone

    Science.gov (United States)

    Lazarovitch, Naftali; Perelman, Adi; Guerra, Helena; Vanderborght, Jan; Pohlmeier, Andreas

    2016-04-01

    Root water and nutrient uptake are among the most important processes considered in numerical models simulating water content and fluxes in the subsurface, as they control plant growth and production as well as water flow and nutrient transport out of the root zone. Root water uptake may lead to salt accumulation at the root-soil interface, resulting in rhizophere salt concentrations much higher than in the bulk soil. This salt accumulation is caused by soluble salt transport towards the roots by mass flow through the soil, followed by preferential adsorption of specific nutrients by active uptake, thereby excluding most other salts at the root-soil interface or in the root apoplast. The salinity buildup can lead to large osmotic pressure gradients across the roots thereby effectively reducing root water uptake. The initial results from rhizoslides (capillary paper growth system) show that sodium concentration is decreasing with distance from the root, compared with the bulk that remained more stable. When transpiration rate was decreased under high salinity levels, sodium concentration was more homogenous compared with low salinity levels. Additionally, sodium and gadolinium distributions were measured nondestructively around tomato roots using magnetic resonance imaging (MRI). This technique could also observe the root structure and water content around single roots. Results from the MRI confirm the solutes concentration pattern around roots and its relation to their initial concentration. We conclude that local water potentials at the soil-root interface differ from bulk potentials. These relative differences increase with decreasing root density, decreasing initial salt concentration and increasing transpiration rate. Furthermore, since climate may significantly influence plant response to salinity a dynamic climate-coupled salinity reduction functions are critical in while using macroscopic numerical models.

  1. The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review

    Science.gov (United States)

    Horst, Walter J.; Wang, Yunxia; Eticha, Dejene

    2010-01-01

    Background Aluminium (Al) toxicity is the most important soil constraint for plant growth and development in acid soils. The mechanism of Al-induced inhibition of root elongation is still not well understood, and it is a matter of debate whether the primary lesions of Al toxicity are apoplastic or symplastic. Scope The present review focuses on the role of the apoplast in Al toxicity and resistance, summarizing evidence from our own experimental work and other evidence published since 1995. Conclusions The binding of Al in the cell wall particularly to the pectic matrix and to the apoplastic face of the plasma membrane in the most Al-sensitive root zone of the root apex thus impairing apoplastic and symplastic cell functions is a major factor leading to Al-induced inhibition of root elongation. Although symplastic lesions of Al toxicity cannot be excluded, the protection of the root apoplast appears to be a prerequisite for Al resistance in both Al-tolerant and Al-accumulating plant species. In many plant species the release of organic acid anions complexing Al, thus protecting the root apoplast from Al binding, is a most important Al resistance mechanism. However, there is increasing physiological, biochemical and, most recently also, molecular evidence showing that the modification of the binding properties of the root apoplast contributes to Al resistance. A further in-depth characterization of the Al-induced apoplastic reaction in the most Al-sensitive zone of the root apex is urgently required, particularly to understand the Al resistance of the most Al-resistant plant species. PMID:20237112

  2. [Effects of nitrogen fertilization and root separation on the plant growth and grain yield of maize and its rhizosphere microorganisms].

    Science.gov (United States)

    Zhang, Xiang-Qian; Huang, Guo-Qin; Bian, Xin-Min; Zhao, Qi-Guo

    2012-12-01

    A field experiment with root separation was conducted to study the effects of root interaction in maize-soybean intercropping system on the plant growth and grain yield of maize and its rhizosphere microorganisms under different nitrogen fertilization levels (0.1, 0.3, 0.5, and 0.7 g x kg(-1)). Root interaction and nitrogen fertilization had positive effects on the plant height, leaf length and width, and leaf chlorophyll content of maize. Less difference was observed in the root dry mass of maize at maturing stage between the treatments root separation and no root separation. However, as compared with root separation, no root separation under the nitrogen fertilization levels 0.1, 0.3, 0.5, and 0.7 g x kg(-1) increased the biomass per maize plant by 8.8%, 6.3%, 3.6%, and 0.7%, and the economic yield per maize plant by 17.7%, 10.0%, 8.2%, and 0.9%, respectively. No root separation increased the quantity of rhizosphere fungi and azotobacteria significantly, as compared with root separation. With increasing nitrogen fertilization level, the quantity of rhizosphere bacteria, fungi, and actinomycetes presented an increasing trend, while that of rhizosphere azotobacteria decreased after an initial increase. The root-shoot ratio of maize at maturing stage was significantly negatively correlated with the quantity of rhizosphere bacteria, fungi, and actinomycetes, but less correlated with the quantity of rhizosphere azotobacteria. It was suggested that the root interaction in maize-soybean intercropping system could improve the plant growth of maize and increase the maize yield and rhizosphere microbial quantity, but the effect would be decreased with increasing nitrogen fertilization level.

  3. Wheat root colonization and nitrogenase activity by Azospirillum isolates from crop plants in Korea.

    Science.gov (United States)

    Kim, Chungwoo; Kecskés, Mihály L; Deaker, Rosalind J; Gilchrist, Kate; New, Peter B; Kennedy, Ivan R; Kim, Seunghwan; Sa, Tongmin

    2005-11-01

    Nitrogen-fixing bacteria were isolated from the rhizosphere of different crops of Korea. A total of 16 isolates were selected and characterized. Thirteen of the isolates produced characteristics similar to those of the reference strains of Azospirillum, and the remaining 3 isolates were found to be Enterobacter spp. The isolates could be categorized into 3 groups based on their ARDRA patterns, and the first 2 groups comprised Azospirillum brasilense and Azospirillum lipoferum. The acetylene reduction activity (ARA) of these isolates was determined for free cultures and in association with wheat roots. There was no correlation between pure culture and plant-associated nitrogenase activity of the different strains. The isolates that showed higher nitrogenase activities in association with wheat roots in each group were selected and sequenced. Isolates of Azospirillum brasilense CW301, Azospirillum brasilense CW903, and Azospirillum lipoferum CW1503 were selected to study colonization in association with wheat roots. We observed higher expression of beta-galactosidase activity in A. brasilense strains than in A. lipoferum strains, which could be attributed to their higher population in association with wheat roots. All strains tested colonized and exhibited the strongest beta-galactosidase activity at the sites of lateral roots emergence.

  4. Contrasts between whole-plant and local nutrient levels determine root growth and death in Ailanthus altissima (Simaroubaceae).

    Science.gov (United States)

    Hu, Fengqin; Mou, Paul P; Weiner, Jacob; Li, Shuo

    2014-05-01

    • There is an ongoing debate about the importance of whole-plant control vs. local modular mechanisms for root growth. We conducted a split-root experiment with different patch/background levels of nitrogen to examine whether local root growth and death are controlled by local resource levels or at the whole-plant level.• Three microrhizotrons with 0, 10, and 100 µg N/g growth medium levels (74 g growth medium each) were attached to pots of high or low soil N in which one Ailanthus altissima individual was growing. One fine root was guided into each of the microrhizotrons and photographed every 4 d. Plants were harvested after 28 d; root growth and mortality in the microrhizotrons were recorded. Changes in root length, number of laterals, and interlateral length were determined from the photos and analyzed.• While overall plant growth was influenced by background N level, both patch and background N levels influenced root growth and mortality in patches. Local roots proliferated most when the patch N level was high and background level low, and they proliferated least and showed highest mortality when patch N was low and the background level high.• The fate of roots growing in a patch is influenced by the resource environment of the plant's other roots as well as the resource levels in the patch itself. Thus, the growth and death of roots in patches is determined by both modular and whole-plant mechanisms. © 2014 Botanical Society of America, Inc.

  5. Root ABA Accumulation in Long-Term Water-Stressed Plants is Sustained by Hormone Transport from Aerial Organs.

    Science.gov (United States)

    Manzi, Matías; Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2015-12-01

    The reduced pool of the ABA precursors, β,β-carotenoids, in roots does not account for the substantial increase in ABA content in response to water stress (WS) conditions, suggesting that ABA could be transported from other organs. Basipetal transport was interrupted by stem-girdling, and ABA levels were determined in roots after two cycles of WS induced by transplanting plants to dry perlite. Leaf applications of isotope-labeled ABA and reciprocal grafting of ABA-deficient tomato mutants were used to confirm the involvement of aerial organs on root ABA accumulation. Disruption of basipetal transport reduced ABA accumulation in roots, and this decrease was more severe after two consecutive WS periods. This effect was linked to a sharp decrease in the β,β-carotenoid pool in roots in response to water deficit. Significant levels of isotope-labeled ABA were transported from leaves to roots, mainly in plants subjected to water dehydration. Furthermore, the use of different ABA-deficient tomato mutants in reciprocal grafting combinations with wild-type genotypes confirmed the involvement of aerial organs in the ABA accumulation in roots. In conclusion, accumulation of ABA in roots after long-term WS periods largely relies on the aerial organs, suggesting a reduced ability of the roots to synthesize ABA from carotenoids. Furthermore, plants are able to transport ABA basipetally to sustain high hormone levels in roots.

  6. In vitro thrombolytic potential of root extracts of four medicinal plants available in Bangladesh

    Science.gov (United States)

    Hussain, Fahad; Islam, Ariful; Bulbul, Latifa; Moghal, Mizanur Rahman; Hossain, Mohammad Salim

    2014-01-01

    Context: Thrombus formation inside the blood vessels obstructs blood flow through the circulatory system leading hypertension, stroke to the heart, anoxia, and so on. Thrombolytic drugs are widely used for the management of cerebral venous sinus thrombosis patients, but they have certain limitations. Medicinal plants and their components possessing antithrombotic activity have been reported before. However, plants that could be used for thrombolysis has not been reported so far. Aims: This study's aim was to evaluate the thrombolytic potential of selected plants’ root extracts. Settings and Design: Plants were collected, dried, powdered and extracted by methanol and then fractionated by n-hexane for getting the sample root extracts. Venous blood samples were drawn from 10 healthy volunteers for the purposes of investigation. Subjects and Methods: An in vitro thrombolytic model was used to check the clot lysis potential of four n-hexane soluble roots extracts viz., Acacia nilotica, Justicia adhatoda, Azadirachta indica, and Lagerstroemia speciosa along with streptokinase as a positive control and saline water as a negative control. Statistical Analysis Used: Dunnett t-test analysis was performed using SPSS is a statistical analysis program developed by IBM Corporation, USA. on Windows. Results: Using an in vitro thrombolytic model, A. nilotica, L. speciosa, A. indica, and J. adhatoda at 5 mg extract/ml NaCl solution concentration showed 15.1%, 15.49%, 21.26%, and 19.63% clot lysis activity respectively. The reference streptokinase showed 47.21%, and 24.73% clot lysis for 30,000 IU and 15,000 IU concentrations, respectively whereas 0.9% normal saline showed 5.35% clot lysis. Conclusions: The selected extracts of the plant roots possess marked thrombolytic properties that could lyse blood clots in vitro; however, in vivo clot dissolving properties and active components responsible for clot lysis are yet to be discovered. PMID:25538351

  7. In vitro thrombolytic potential of root extracts of four medicinal plants available in Bangladesh

    Directory of Open Access Journals (Sweden)

    Fahad Hussain

    2014-01-01

    Full Text Available Context: Thrombus formation inside the blood vessels obstructs blood flow through the circulatory system leading hypertension, stroke to the heart, anoxia, and so on. Thrombolytic drugs are widely used for the management of cerebral venous sinus thrombosis patients, but they have certain limitations. Medicinal plants and their components possessing antithrombotic activity have been reported before. However, plants that could be used for thrombolysis has not been reported so far. Aims: This study′s aim was to evaluate the thrombolytic potential of selected plants′ root extracts. Settings and Design: Plants were collected, dried, powdered and extracted by methanol and then fractionated by n-hexane for getting the sample root extracts. Venous blood samples were drawn from 10 healthy volunteers for the purposes of investigation. Subjects and Methods: An in vitro thrombolytic model was used to check the clot lysis potential of four n-hexane soluble roots extracts viz., Acacia nilotica, Justicia adhatoda, Azadirachta indica, and Lagerstroemia speciosa along with streptokinase as a positive control and saline water as a negative control. Statistical Analysis Used: Dunnett t-test analysis was performed using SPSS is a statistical analysis program developed by IBM Corporation, USA. on Windows. Results: Using an in vitro thrombolytic model, A. nilotica, L. speciosa, A. indica, and J. adhatoda at 5 mg extract/ml NaCl solution concentration showed 15.1%, 15.49%, 21.26%, and 19.63% clot lysis activity respectively. The reference streptokinase showed 47.21%, and 24.73% clot lysis for 30,000 IU and 15,000 IU concentrations, respectively whereas 0.9% normal saline showed 5.35% clot lysis. Conclusions: The selected extracts of the plant roots possess marked thrombolytic properties that could lyse blood clots in vitro; however, in vivo clot dissolving properties and active components responsible for clot lysis are yet to be discovered.

  8. Casuarina root exudates alter the physiology, surface properties, and plant infectivity of Frankia sp. strain CcI3.

    Science.gov (United States)

    Beauchemin, Nicholas J; Furnholm, Teal; Lavenus, Julien; Svistoonoff, Sergio; Doumas, Patrick; Bogusz, Didier; Laplaze, Laurent; Tisa, Louis S

    2012-01-01

    The actinomycete genus Frankia forms nitrogen-fixing symbioses with 8 different families of actinorhizal plants, representing more than 200 different species. Very little is known about the initial molecular interactions between Frankia and host plants in the rhizosphere. Root exudates are important in Rhizobium-legume symbiosis, especially for initiating Nod factor synthesis. We measured differences in Frankia physiology after exposure to host aqueous root exudates to assess their effects on actinorhizal symbioses. Casuarina cunninghamiana root exudates were collected from plants under nitrogen-sufficient and -deficient conditions and tested on Frankia sp. strain CcI3. Root exudates increased the growth yield of Frankia in the presence of a carbon source, but Frankia was unable to use the root exudates as a sole carbon or energy source. Exposure to root exudates caused hyphal "curling" in Frankia cells, suggesting a chemotrophic response or surface property change. Exposure to root exudates altered Congo red dye binding, which indicated changes in the bacterial surface properties at the fatty acid level. Fourier transform infrared spectroscopy (FTIR) confirmed fatty acid changes and revealed further carbohydrate changes. Frankia cells preexposed to C. cunninghamiana root exudates for 6 days formed nodules on the host plant significantly earlier than control cells. These data support the hypothesis of early chemical signaling between actinorhizal host plants and Frankia in the rhizosphere.

  9. Plant root-driven hydraulic redistribution, root nutrient uptake and carbon exudation interact with soil properties to generate rhizosphere resource hotspots that vary in space and time

    Science.gov (United States)

    Espeleta, J. F.; Neumann, R. B.; Cardon, Z. G.; Mayer, K. U.; Rastetter, E. B.

    2014-12-01

    Hydraulic redistribution (HR) of soil water by plants occurs in seasonally dry ecosystems worldwide. During drought, water flows from deep moist soil, through plant roots, into dry (often litter-rich) upper soil layers. Using modeling, we explored how physical transport processes driven by transpiration and hydraulic redistribution interact with root physiology (nutrient uptake and carbon exudation) and soil properties (soil texture and cation exchange) to influence nitrogen and carbon concentrations in the rhizosphere. At the single root scale, we modeled a 10-cm radial soil domain, and simulated solute transport, soil cation exchange, and root exudation and nutrient uptake under two water flow patterns: daytime transpiration without nighttime HR, and daytime transpiration with nighttime HR. During HR, water efflux flushed solutes away from the root, diluting the concentrations of key nutrients like nitrate. The transport of cations by transpiration in the day and their accumulation near the root led to competitive desorption of ammonium from soil further from the root and generation of hotspots of ammonium availability at night. HR influenced the spatial and temporal patterns of these hotspots and their intensity. They were also influenced by soil properties of texture and cation exchange capacity. This dynamic resource landscape caused by diel cycling between transpiration and hydraulic redistribution presents a stage for greater complexity of microbial interactions. We are currently embedding a microbial community and small food web into this rhizosphere model in order to explore how organisms responsible for nutrient and soil carbon cycling respond to these fluctuating resource regimes.

  10. In vitro plant development and root colonization of Coleus forskohlii by Piriformospora indica.

    Science.gov (United States)

    Das, Aparajita; Tripathi, Swati; Varma, Ajit

    2014-03-01

    The present study was conducted for optimization of in vitro substrates under aseptic conditions for interaction of Piriformospora indica with the medicinal plant Coleus forskohlii. It aims to test the effects of different substrates on P. indica colonization as well as growth parameters of the in vitro raised C. forskohlii. Interaction of in vitro C. forskohlii with root endophyte P. indica under aseptic condition resulted in increase in growth parameters in fungus colonized plants. It was observed that P. indica promoted the plant's growth in all irrespective of substrates used for co-culture study. The growth was found inferior in liquid compared to semisolid medium as well as there was problem of hyperhydricity in liquid medium. P. indica treated in vitro plantlets were better adapted for establishment under green house compared to the non treated plants due to fungal intervention.

  11. Cytotoxic Effects of (5 Medicinal Plants on Mitosis in Allium cepa Root Tips

    Directory of Open Access Journals (Sweden)

    I.J. Udo

    2014-03-01

    Full Text Available The study was conducted to investigate the effects that plant extracts from 5 medicinal plants may have on mitosis in Allium cepa. Root of A .cepa were immersed in alcoholic extracts at the concentrations of 0, 25, 50, 75 and 100 mg/mL, respectively for each of the following plants: Gnetum africanum Welw., Lasianther aafricana P. Beauv, Ocimum gratissimum Linn., Telfairia occidentalis Hook F. and Vernonia amygdalina Del. Leafy vegetable which are commonly used in herbal medicine. Results obtained show that the various concentrations of the extracts from test plants had toxic effects on the cells, which caused significant reduction (p<0.05 in the mitotic index when compared with the control. Other effects were prophase inhibition, the delay of mitosis and nuclear lesion. The cytotoxic effect makes a case for a precaution in the use of the leafy extracts in herbal medicine practice.

  12. Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants.

    Science.gov (United States)

    Kia, Sevda Haghi; Glynou, Kyriaki; Nau, Thomas; Thines, Marco; Piepenbring, Meike; Maciá-Vicente, Jose G

    2017-03-01

    Plants associate through their roots with fungal assemblages that impact their abundance and productivity. Non-mycorrhizal endophytes constitute an important component of such fungal diversity, but their implication in ecosystem processes is little known. Using a selection of 128 root-endophytic strains, we defined functional groups based on their traits and plant interactions with potential to predict community assembly and symbiotic association processes. In vitro tests of the strains' interactions with Arabidopsis thaliana, Microthlaspi erraticum and Hordeum vulgare showed a net negative effect of fungal colonization on plant growth. The effects partly depended on the phylogenetic affiliation of strains, but also varied considerably depending on the plant-strain combination. The variation was partly explained by fungal traits shared by different lineages, like growth rates or melanization. The origin of strains also affected their symbioses, with endophytes isolated from Microthlaspi spp. populations being more detrimental to M. erraticum than strains from other sources. Our findings suggest that plant-endophyte associations are subject to local processes of selection, in which particular combinations of symbionts are favored across landscapes. We also show that different common endophytic taxa have differential sets of traits found to affect interactions, hinting to a functional complementarity that can explain their frequent co-existence in natural communities.

  13. Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism.

    Science.gov (United States)

    Niu, Junhai; Liu, Pei; Liu, Qian; Chen, Changlong; Guo, Quanxin; Yin, Junmei; Yang, Guangsui; Jian, Heng

    2016-01-22

    Root-knot nematodes (RKNs) are obligate biotrophic parasites that invade plant roots and engage in prolonged and intimate relationships with their hosts. Nematode secretions, some of which have immunosuppressing activity, play essential roles in successful parasitism; however, their mechanisms of action remain largely unknown. Here, we show that the RKN-specific gene MiMsp40, cloned from Meloidogyne incognita, is expressed exclusively in subventral oesophageal gland cells and is strongly upregulated during early parasitic stages. Arabidopsis plants overexpressing MiMsp40 were more susceptible to nematode infection than were wild type plants. Conversely, the host-derived MiMsp40 RNAi suppressed nematode parasitism and/or reproduction. Moreover, overexpression of MiMsp40 in plants suppressed the deposition of callose and the expression of marker genes for bacterial elicitor elf18-triggered immunity. Transient expression of MiMsp40 prevented Bax-triggered defence-related programmed cell death. Co-agroinfiltration assays indicated that MiMsp40 also suppressed macroscopic cell death triggered by MAPK cascades or by the ETI cognate elicitors R3a/Avr3a. Together, these results demonstrate that MiMsp40 is a novel Meloidogyne-specific effector that is injected into plant cells by early parasitic stages of the nematode and that plays a role in suppressing PTI and/or ETI signals to facilitate RKN parasitism.

  14. Detection of carbon nanotubes in plant roots through microwave-induced heating

    Science.gov (United States)

    Irin, Fahmida; Shrestha, Babina; Canas, Jaclyn; Saed, Mohammad; Green, Micah

    2012-02-01

    We demonstrate a novel technique for quantitative detection of CNTs in biological samples by utilizing the thermal response of CNTs under microwave irradiation. In particular, rapid heating of CNTs due to microwave absorption was employed to quantify the amount of CNTs present in alfalfa plant roots. Alfalfa roots were prepared by injecting a known amount of CNTs (single walled and multi walled) and exposed to 30-50 W microwave power to generate calibration curves (temperature rise vs. CNT mass). These calibration curves serve as a characterization tool to determine the unknown amount of CNTs absorbed by alfalfa plant roots grown in CNT-laden soil with superior accuracy and sensitivity. Moreover, the threshold for detectable CNT concentration is much lower than common analytical methods of detecting nanomaterials, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Considering the lack of effective detection methods for CNT uptake in plants, this method is not only unique but also practical, as it addresses a major problem in the field of nanotoxicology risk assessment.

  15. Modeling regulation of zinc uptake via ZIP transporters in yeast and plant roots.

    Directory of Open Access Journals (Sweden)

    Juliane Claus

    Full Text Available In yeast (Saccharomyces cerevisiae and plant roots (Arabidopsis thaliana zinc enters the cells via influx transporters of the ZIP family. Since zinc is both essential for cell function and toxic at high concentrations, tight regulation is essential for cell viability. We provide new insight into the underlying mechanisms, starting from a general model based on ordinary differential equations and adapting it to the specific cases of yeast and plant root cells. In yeast, zinc is transported by the transporters ZRT1 and ZRT2, which are both regulated by the zinc-responsive transcription factor ZAP1. Using biological data, parameters were estimated and analyzed, confirming the different affinities of ZRT1 and ZRT2 reported in the literature. Furthermore, our model suggests that the positive feedback in ZAP1 production has a stabilizing function at high influx rates. In plant roots, various ZIP transporters play a role in zinc uptake. Their regulation is largely unknown, but bZIP transcription factors are thought to be involved. We set up three putative models based on: an activator only, an activator with dimerization and an activator-inhibitor pair. These were fitted to measurements and analyzed. Simulations show that the activator-inhibitor model outperforms the other two in providing robust and stable homeostasis at reasonable parameter ranges.

  16. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities

    Directory of Open Access Journals (Sweden)

    Bachir Iffis

    2017-08-01

    Full Text Available Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate

  17. Petroleum Contamination and Plant Identity Influence Soil and Root Microbial Communities While AMF Spores Retrieved from the Same Plants Possess Markedly Different Communities.

    Science.gov (United States)

    Iffis, Bachir; St-Arnaud, Marc; Hijri, Mohamed

    2017-01-01

    Phytoremediation is a promising in situ green technology based on the use of plants to cleanup soils from organic and inorganic pollutants. Microbes, particularly bacteria and fungi, that closely interact with plant roots play key roles in phytoremediation processes. In polluted soils, the root-associated microbes contribute to alleviation of plant stress, improve nutrient uptake and may either degrade or sequester a large range of soil pollutants. Therefore, improving the efficiency of phytoremediation requires a thorough knowledge of the microbial diversity living in the rhizosphere and in close association with plant roots in both the surface and the endosphere. This study aims to assess fungal ITS and bacterial 16S rRNA gene diversity using high-throughput sequencing in rhizospheric soils and roots of three plant species (Solidago canadensis, Populus balsamifera, and Lycopus europaeus) growing spontaneously in three petroleum hydrocarbon polluted sedimentation basins. Microbial community structures of rhizospheric soils and roots were compared with those of microbes associated with arbuscular mycorrhizal fungal (AMF) spores to determine the links between the root and rhizosphere communities and those associated with AMF. Our results showed a difference in OTU richness and community structure composition between soils and roots for both bacteria and fungi. We found that petroleum hydrocarbon pollutant (PHP) concentrations have a significant effect on fungal and bacterial community structures in both soils and roots, whereas plant species identity showed a significant effect only on the roots for bacteria and fungi. Our results also showed that the community composition of bacteria and fungi in soil and roots varied from those associated with AMF spores harvested from the same plants. This let us to speculate that in petroleum hydrocarbon contaminated soils, AMF may release chemical compounds by which they recruit beneficial microbes to tolerate or degrade the

  18. Plant-Microbe Communication Enhances Auxin Biosynthesis by a Root-Associated Bacterium, Bacillus amyloliquefaciens SQR9.

    Science.gov (United States)

    Liu, Yunpeng; Chen, Lin; Zhang, Nan; Li, Zunfeng; Zhang, Guishan; Xu, Yu; Shen, Qirong; Zhang, Ruifu

    2016-04-01

    Mechanisms by which beneficial rhizobacteria promote plant growth include tryptophan-dependent indole-3-acetic acid (IAA) synthesis. The abundance of tryptophan in the rhizosphere, however, may influence the level of benefit provided by IAA-producing rhizobacteria. This study examined the cucumber-Bacillus amyloliquefaciens SQR9 system and found that SQR9, a bacterium previously shown to enhance the growth of cucumber, increased root secretion of tryptophan by three- to fourfold. Using a split-root system, SQR9 colonization of roots in one chamber not only increased tryptophan secretion from the noninoculated roots but also increased the expression of the cucumber tryptophan transport gene but not the anthranilate synthesis gene in those roots. The increased tryptophan in isolated rhizosphere exudates was sufficient to support increased IAA production by SQR9. Moreover, SQR9 colonization of roots in one chamber in the split-root system resulted in sufficient tryptophan production by the other roots to upregulate SQR9 IAA biosynthesis genes, including a 27-fold increase in the indole-3-acetonitrilase gene yhcX during subsequent colonization of those roots. Deletion of yhcX eliminated SQR9-mediated increases in root surface area, likely by reducing IAA-stimulated lateral root growth. This study demonstrates a chemical dialogue between B. amyloliquefaciens and cucumber in which this communication contributes to bacteria-mediated plant-growth enhancement.

  19. Plant NF-Y transcription factors: Key players in plant-microbe interactions, root development and adaptation to stress.

    Science.gov (United States)

    Zanetti, María Eugenia; Rípodas, Carolina; Niebel, Andreas

    2017-05-01

    NF-Ys are heterotrimeric transcription factors composed by the NF-YA, NF-YB and NF-YC subunits. In plants, NF-Y subunits are encoded by multigene families whose members show structural and functional diversifications. An increasing number of NF-Y genes has been shown to play key roles during different stages of root nodule and arbuscular mycorrhizal symbiosis, as well as during the interaction of plants with pathogenic microorganisms. Individual members of the NF-YA and NF-YB families have also been implicated in the development of primary and lateral roots. In addition, different members of the NF-YA and NF-YB gene families from mono- and di-cotyledonous plants have been involved in plant responses to water and nutrient scarcity. This review presents the most relevant and striking results concerning these NF-Y subunits. A phylogenetic analysis of the functionally characterized NF-Y genes revealed that, across plant species, NF-Y proteins functioning in the same biological process tend to belong to common phylogenetic groups. Finally, we discuss the forthcoming challenges of plant NF-Y research, including the detailed dissection of expression patterns, the elucidation of functional specificities as well as the characterization of the potential NF-Y-mediated epigenetic mechanisms by which they control the expression of their target genes. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms

    NARCIS (Netherlands)

    Pangesti, N.P.D.; Pineda Gomez, A.M.; Pieterse, C.M.J.; Dicke, M.; Loon, van J.J.A.

    2013-01-01

    Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the hos

  1. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Rentz, Jeremy A. [Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242 (United States); Alvarez, Pedro J.J. [Civil and Environmental Engineering, Rice University, Houston, TX 77251 (United States); Schnoor, Jerald L. [Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242 (United States)]. E-mail: jerald-schnoor@uiowa.edu

    2005-08-15

    Benzo[a]pyrene, a high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) was removed from solution by Sphingomonas yanoikuyae JAR02 while growing on root products as a primary carbon and energy source. Plant root extracts of osage orange (Maclura pomifera), hybrid willow (Salix albaxmatsudana), or kou (Cordia subcordata), or plant root exudates of white mulberry (Morus alba) supported 15-20% benzo[a]pyrene removal over 24 h that was similar to a succinate grown culture and an unfed acetonitrile control. No differences were observed between the different root products tested. Mineralization of {sup 14}C-7-benzo[a]pyrene by S. yanoikuyae JAR02 yielded 0.2 to 0.3% {sup 14}CO{sub 2} when grown with plant root products. Collectively, these observations were consistent with field observations of enhanced phytoremediation of HMW PAH and corroborated the hypothesis that co-metabolism may be a plant/microbe interaction important to rhizoremediation. However, degradation and mineralization was much less for root product-exposed cultures than salicylate-induced cultures, and suggested the rhizosphere may not be an optimal environment for HMW PAH degradation by Sphingomonas yanoikuyae JAR02. - Bacterial benzo[a]pyrene cometabolism, a plant-microbe interaction affecting polycyclic aromatic hydrocarbon phytoremediation was demonstrated with Sphingomonas yanoikuyae JAR02 that utilized plant root extracts and exudates as primary substrates.

  2. A fungal symbiont of plant-roots modulates mycotoxin gene expression in the pathogen Fusarium sambucinum.

    Directory of Open Access Journals (Sweden)

    Youssef Ismail

    Full Text Available Fusarium trichothecenes are fungal toxins that cause disease on infected plants and, more importantly, health problems for humans and animals that consume infected fruits or vegetables. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens. In this study, we isolated and characterized sixteen Fusarium strains from naturally infected potato plants in the field. Pathogenicity tests were carried out in the greenhouse to evaluate the virulence of the strains on potato plants as well as their trichothecene production capacity, and the most aggressive strain was selected for further studies. This strain, identified as F. sambucinum, was used to determine if trichothecene gene expression was affected by the symbiotic Arbuscular mycorrhizal fungus (AMF Glomus irregulare. AMF form symbioses with plant roots, in particular by improving their mineral nutrient uptake and protecting plants against soil-borne pathogens. We found that that G. irregulare significantly inhibits F. sambucinum growth. We also found, using RT-PCR assays to assess the relative expression of trichothecene genes, that in the presence of the AMF G. irregulare, F. sambucinum genes TRI5 and TRI6 were up-regulated, while TRI4, TRI13 and TRI101 were down-regulated. We conclude that AMF can modulate mycotoxin gene expression by a plant fungal pathogen. This previously undescribed effect may be an important mechanism for biological control and has fascinating implications for advancing our knowledge of plant-microbe interactions and controlling plant pathogens.

  3. A fungal symbiont of plant-roots modulates mycotoxin gene expression in the pathogen Fusarium sambucinum.

    Science.gov (United States)

    Ismail, Youssef; McCormick, Susan; Hijri, Mohamed

    2011-03-24

    Fusarium trichothecenes are fungal toxins that cause disease on infected plants and, more importantly, health problems for humans and animals that consume infected fruits or vegetables. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens. In this study, we isolated and characterized sixteen Fusarium strains from naturally infected potato plants in the field. Pathogenicity tests were carried out in the greenhouse to evaluate the virulence of the strains on potato plants as well as their trichothecene production capacity, and the most aggressive strain was selected for further studies. This strain, identified as F. sambucinum, was used to determine if trichothecene gene expression was affected by the symbiotic Arbuscular mycorrhizal fungus (AMF) Glomus irregulare. AMF form symbioses with plant roots, in particular by improving their mineral nutrient uptake and protecting plants against soil-borne pathogens. We found that that G. irregulare significantly inhibits F. sambucinum growth. We also found, using RT-PCR assays to assess the relative expression of trichothecene genes, that in the presence of the AMF G. irregulare, F. sambucinum genes TRI5 and TRI6 were up-regulated, while TRI4, TRI13 and TRI101 were down-regulated. We conclude that AMF can modulate mycotoxin gene expression by a plant fungal pathogen. This previously undescribed effect may be an important mechanism for biological control and has fascinating implications for advancing our knowledge of plant-microbe interactions and controlling plant pathogens.

  4. The arbuscular mycorrhizal host status of plant cannot be linked with the Striga seed-germination-activity of plant root exudates

    NARCIS (Netherlands)

    Lendzemo, V.W.; Kuyper, T.W.; Urban, A.; Vegvari, G.; Puschenreiter, M.; Schickmann, S.; Langer, I.; Steinkellner, S.; Vierheilig, H.

    2009-01-01

    Root exudates from sorghum, a Striga and arbuscular mycorrhizal fungal (AMF) host plant, and a number of Striga non-host plants which are AM host or AM non-host plants were collected and their effect on seed germination of Striga hermonthica was tested. Striga seeds germinate exclusively in presence

  5. [Plants regeneration from genetically transformed root and callus cultures of periwinkle Vinca minor L. and foxglove purple Digitalis purpurea L].

    Science.gov (United States)

    Leshina, L G; Bulko, O V

    2014-01-01

    Plants regenerated from hairy roots and calluses of foxglove purple and periwinkle have been obtained. It was found that organogenesis in hairy root culture occurs spontaneously on hormone-free medium but with different efficiencies. The frequency of direct shoot formation from root cultures was up to 60% in Digitalis and 3.7% in Vinca. Addition of 1 mg/l BA, 0.1 mg/l NAA and 5% sucrose to B5 medium increased regenerative capacity of Vinca roots up to 19.1%. Regenerated plants showed morphological features typically seen in Ri-transgenic plants. They include growth and plagiotropism of the root system, increased shoot formation, changed leaf morphology and short internodes.

  6. Plant responses to heterogeneous salinity: growth of the halophyte Atriplex nummularia is determined by the root-weighted mean salinity of the root zone.

    Science.gov (United States)

    Bazihizina, Nadia; Barrett-Lennard, Edward G; Colmer, Timothy D

    2012-11-01

    Soil salinity is generally spatially heterogeneous, but our understanding of halophyte physiology under such conditions is limited. The growth and physiology of the dicotyledonous halophyte Atriplex nummularia was evaluated in split-root experiments to test whether growth is determined by: (i) the lowest; (ii) the highest; or (iii) the mean salinity of the root zone. In two experiments, plants were grown with uniform salinities or horizontally heterogeneous salinities (10-450 mM NaCl in the low-salt side and 670 mM in the high-salt side, or 10 mM NaCl in the low-salt side and 500-1500 mM in the high-salt side). The combined data showed that growth and gas exchange parameters responded most closely to the root-weighted mean salinity rather than to the lowest, mean, or highest salinity in the root zone. In contrast, midday shoot water potentials were determined by the lowest salinity in the root zone, consistent with most water being taken from the least negative water potential source. With uniform salinity, maximum shoot growth was at 120-230 mM NaCl; ~90% of maximum growth occurred at 10 mM and 450 mM NaCl. Exposure of part of the roots to 1500 mM NaCl resulted in an enhanced (+40%) root growth on the low-salt side, which lowered root-weighted mean salinity and enabled the maintenance of shoot growth. Atriplex nummularia grew even with extreme salinity in part of the roots, as long as the root-weighted mean salinity of the root zone was within the 10-450 mM range.

  7. Indoor-biofilter growth and exposure to airborne chemicals drive similar changes in plant root bacterial communities.

    Science.gov (United States)

    Russell, Jacob A; Hu, Yi; Chau, Linh; Pauliushchyk, Margarita; Anastopoulos, Ioannis; Anandan, Shivanthi; Waring, Michael S

    2014-08-01

    Due to the long durations spent inside by many humans, indoor air quality has become a growing concern. Biofiltration has emerged as a potential mechanism to clean indoor air of harmful volatile organic compounds (VOCs), which are typically found at concentrations higher indoors than outdoors. Root-associated microbes are thought to drive the functioning of plant-based biofilters, or biowalls, converting VOCs into biomass, energy, and carbon dioxide, but little is known about the root microbial communities of such artificially grown plants, how or whether they differ from those of plants grown in soil, and whether any changes in composition are driven by VOCs. In this study, we investigated how bacterial communities on biofilter plant roots change over time and in response to VOC exposure. Through 16S rRNA amplicon sequencing, we compared root bacterial communities from soil-grown plants with those from two biowalls, while also comparing communities from roots exposed to clean versus VOC-laden air in a laboratory biofiltration system. The results showed differences in bacterial communities between soil-grown and biowall-grown plants and between bacterial communities from plant roots exposed to clean air and those from VOC-exposed plant roots. Both biowall-grown and VOC-exposed roots harbored enriched levels of bacteria from the genus Hyphomicrobium. Given their known capacities to break down aromatic and halogenated compounds, we hypothesize that these bacteria are important VOC degraders. While different strains of Hyphomicrobium proliferated in the two studied biowalls and our lab experiment, strains were shared across plant species, suggesting that a wide range of ornamental houseplants harbor similar microbes of potential use in living biofilters.

  8. Indoor-Biofilter Growth and Exposure to Airborne Chemicals Drive Similar Changes in Plant Root Bacterial Communities

    Science.gov (United States)

    Hu, Yi; Chau, Linh; Pauliushchyk, Margarita; Anastopoulos, Ioannis; Anandan, Shivanthi; Waring, Michael S.

    2014-01-01

    Due to the long durations spent inside by many humans, indoor air quality has become a growing concern. Biofiltration has emerged as a potential mechanism to clean indoor air of harmful volatile organic compounds (VOCs), which are typically found at concentrations higher indoors than outdoors. Root-associated microbes are thought to drive the functioning of plant-based biofilters, or biowalls, converting VOCs into biomass, energy, and carbon dioxide, but little is known about the root microbial communities of such artificially grown plants, how or whether they differ from those of plants grown in soil, and whether any changes in composition are driven by VOCs. In this study, we investigated how bacterial communities on biofilter plant roots change over time and in response to VOC exposure. Through 16S rRNA amplicon sequencing, we compared root bacterial communities from soil-grown plants with those from two biowalls, while also comparing communities from roots exposed to clean versus VOC-laden air in a laboratory biofiltration system. The results showed differences in bacterial communities between soil-grown and biowall-grown plants and between bacterial communities from plant roots exposed to clean air and those from VOC-exposed plant roots. Both biowall-grown and VOC-exposed roots harbored enriched levels of bacteria from the genus Hyphomicrobium. Given their known capacities to break down aromatic and halogenated compounds, we hypothesize that these bacteria are important VOC degraders. While different strains of Hyphomicrobium proliferated in the two studied biowalls and our lab experiment, strains were shared across plant species, suggesting that a wide range of ornamental houseplants harbor similar microbes of potential use in living biofilters. PMID:24878602

  9. Trade-Offs between Silicon and Phenolic Defenses may Explain Enhanced Performance of Root Herbivores on Phenolic-Rich Plants.

    Science.gov (United States)

    Frew, Adam; Powell, Jeff R; Sallam, Nader; Allsopp, Peter G; Johnson, Scott N

    2016-08-01

    Phenolic compounds play a role in plant defense against herbivores. For some herbivorous insects, particularly root herbivores, host plants with high phenolic concentrations promote insect performance and tissue consumption. This positive relationship between some insects and phenolics, however, could reflect a negative correlation with other plant defenses acting against insects. Silicon is an important element for plant growth and defense, particularly in grasses, as many grass species take up large amounts of silicon. Negative impact of a high silicon diet on insect herbivore performance has been reported aboveground, but is unreported for belowground herbivores. It has been hypothesized that some silicon accumulating plants exhibit a trade-off between carbon-based defense compounds, such as phenolics, and silicon-based defenses. Here, we investigated the impact of silicon concentrations and total phenolic concentrations in sugarcane roots on the performance of the root-feeding greyback canegrub (Dermolepida albohirtum). Canegrub performance was positively correlated with root phenolics, but negatively correlated with root silicon. We found a negative relationship in the roots between total phenolics and silicon concentrations. This suggests the positive impact of phenolic compounds on some insects may be the effect of lower concentrations of silicon compounds in plant tissue. This is the first demonstration of plant silicon negatively affecting a belowground herbivore.

  10. [Influence of root module design on growth and development of plants].

    Science.gov (United States)

    Krivobok, N M; Berkovich, Iu A; Krivobok, S M; Smolianina, S O

    2000-01-01

    Wheat crop was grown in various root modules (RM) in which nutritional solution was injected through porous membrane (2-6 microns). Seeds were laid on the surface of membrane or in pearlite covering the membrane. Root modules 1 and 3 contained ceramic porous tubes 10 mm and 22 mm in diameter, respectively. RM 2 was outfitted with a porous titanium plate, RM 4--with a porous ceramic tube (Ø 10 mm) buried in pearlite, and RM 5--with a porous titanium plate under the 2.5 cm thick layer of pearlite. The area of membrane surface per one plant was equal to 3 cm2 in RM 1 and about 17 cm2 RM 2 and 3. Pearlite volume per a plant made up about 40 cm2 in RM 4.5. The object of study was Triticum aestivum L., sp. Super Dwarf. The plants grew for 49 days under the white light of luminescent lamps at water potential (WP) = -0.4, -3.0 and -5.0 kPa. WP of pearlite equal, dry mass and anticipated productivity of the crop were much higher as compared to RM without pearlite. Significant reduction of these parameters was reflective of WP drop no matter the RM type. However, it was more expressed at -5 kPa. In RM filled with pearlite the mass and productivity of crop reduced at -5.0 kPa. Design of RM essentially altered the volumetric spread of roots. Thus, root math was formed immediately on flat porous plates, commonly below the bare tubes and both on top and on the bottom of RM with pearlite. These data can help development of RM for space greenhouses.

  11. Differential contributions of plant Dicer-like proteins to antiviral defences against potato virus X in leaves and roots.

    Science.gov (United States)

    Andika, Ida Bagus; Maruyama, Kazuyuki; Sun, Liying; Kondo, Hideki; Tamada, Tetsuo; Suzuki, Nobuhiro

    2015-03-01

    Members of the plant Dicer-like (DCL) protein family are the critical components of the RNA-silencing pathway that mediates innate antiviral defence. The distinct antiviral role of each individual DCL protein has been established with mostly based on observations of aerial parts of plants. Thus, although the roots are closely associated with the life cycle of many plant viruses, little is known about the antiviral activities of DCL proteins in roots. We observed that antiviral silencing strongly inhibits potato virus X (PVX) replication in roots of some susceptible Solanaceae species. Silencing of the DCL4 homolog in Nicotiana benthamiana partially elevated PVX replication levels in roots. In Arabidopsis thaliana, which was originally considered a non-host plant of PVX, high levels of PVX accumulation in inoculated leaves were achieved by inactivation of DCL4, while in the upper leaves and roots, it required the additional inactivation of DCL2. In transgenic A. thaliana carrying the PVX amplicon with a green fluorescent protein (GFP) gene insertion in the chromosome (AMP243 line), absence of DCL4 enabled high levels of PVX-GFP accumulation in various aerial organs but not in the roots, suggesting that DCL4 is critical for intracellular antiviral silencing in shoots but not in roots, where it can be functionally compensated by other DCL proteins. Together, the high level of functional redundancies among DCL proteins may contribute to the potent antiviral activities against PVX replication in roots.

  12. Comparative effects of partial root-zone irrigation and deficit irrigation on phosphorus uptake in tomato plants

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Liu, Fulai; Jensen, Christian Richardt

    2012-01-01

    The comparative effects of partial root-zone irrigation (PRI) and deficit irrigation (DI) on phosphorus (P) uptake in tomato (Lycopersicon esculentum Mill.) plants were investigated in a split-root pot experiment. The results showed that PRI treatment improved water-use efficiency (WUE) compared...

  13. Effect of Plant Roots on Penetrability and Anti-Scouri bility of Red Soil Derived from Granite

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Distribution of plant roots in a red soil derived from granite was investigated to study the effect of plant roots on intensifying soil penetrability and anti-scouribility by the double-cutting-ring and the undisturbed soil-flume methods, respectively. The plant roots system consisting mostly of fibrils, < 1 mm in diameter, was mainly distributed in the upper surface soil 30 cm in depth. It can remarkably increase the penetrability and anti-scouribility of the red soil derived from granite. When the root density was > 0.35 root cm-2, the intensifying effect of roots on both the penetrability and the anti-scouribility could be described by exponent equations, △Ks = 0.0021RD1.4826 (R2 = 0.9313) and △As = 0.0003RD1.8478 (R2 = 0.9619), where △Ks is the value of intensified soil penetrability, △ As the value of intensified soil anti-scouribility and RD the root density, especially in the top soils within 30 cm in depth where plant roots were concentrated.

  14. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals.

    Directory of Open Access Journals (Sweden)

    Muhammad Tariq

    Full Text Available Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores, their parasitoids, and a dipteran species (root herbivore.We tested the hypotheses that: (1 high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2 drought stress and root herbivory change the profile of volatile organic chemicals (VOCs emitted by the host plant; (3 parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference, plant volatile emissions, parasitism success (performance, and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial

  15. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities

    Directory of Open Access Journals (Sweden)

    Ewa Skała

    2016-01-01

    Full Text Available The essential oils were isolated by hydrodistillation from the hairy roots (HR and roots of soil-grown plants (SGR of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55–62% dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5,11(12-diene, and cadalene while aplotaxene, nardosina-1(10,11-diene, and dauca-4(11,8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212 and Pseudomonas aeruginosa (ATCC 27853 (MIC value = 125 µg/mL. HR and SGR essential oils also decreased the expression of IL-1β, IL-6, and TNF-α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants.

  16. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities

    Science.gov (United States)

    Rijo, Patrícia; Garcia, Catarina; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Śliwiński, Tomasz

    2016-01-01

    The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55–62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125 µg/mL). HR and SGR essential oils also decreased the expression of IL-1β, IL-6, and TNF-α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants. PMID:28074117

  17. The Essential Oils of Rhaponticum carthamoides Hairy Roots and Roots of Soil-Grown Plants: Chemical Composition and Antimicrobial, Anti-Inflammatory, and Antioxidant Activities.

    Science.gov (United States)

    Skała, Ewa; Rijo, Patrícia; Garcia, Catarina; Sitarek, Przemysław; Kalemba, Danuta; Toma, Monika; Szemraj, Janusz; Pytel, Dariusz; Wysokińska, Halina; Śliwiński, Tomasz

    2016-01-01

    The essential oils were isolated by hydrodistillation from the hairy roots (HR) and roots of soil-grown plants (SGR) of Rhaponticum carthamoides and were analyzed by GC-MS method. In the both essential oils 62 compounds were identified. The root essential oils showed the differences in the qualitative and quantitative composition. The sesquiterpene hydrocarbons (55-62%) dominated in both essential oils. The major compounds of HR essential oil were cyperene, 13-norcypera-1(5),11(12)-diene, and cadalene while aplotaxene, nardosina-1(10),11-diene, and dauca-4(11),8-diene dominated in SGR essential oil. Both essential oils showed antibacterial activity especially against Enterococcus faecalis (ATCC 29212) and Pseudomonas aeruginosa (ATCC 27853) (MIC value = 125 µg/mL). HR and SGR essential oils also decreased the expression of IL-1β, IL-6, and TNF-α and the ROS level in LPS-treatment astrocytes. This is the first report to describe the chemical composition of R. carthamoides essential oil from hairy roots, its protective effect against LPS-induced inflammation and ROS production in astrocytes, and its antimicrobial potential. The results show that R. carthamoides hairy roots may be a valuable source of the essential oil and may be an alternative to the roots of soil-grown plants.

  18. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Eva [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France); Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse (France); Dappe, Vincent [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Sarret, Géraldine [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Sobanska, Sophie [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna [Department of Chemistry, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718 Lublin (Poland); Magnin, Valérie [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Ranieri, Vincent [CEA-INAC, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Dumat, Camille, E-mail: camille.dumat@ensat.fr [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France)

    2014-04-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO{sub 4}, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO{sub 3}. In rye-grass, the changes in Pb speciation were even more egregious: Pb–cell wall and Pb–organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to

  19. Temperature conditioning in ornamental plant production with a prototype device: root zone cooling in protected environments

    Directory of Open Access Journals (Sweden)

    Gianluca Burchi

    2013-09-01

    Full Text Available One of the greatest growing costs in greenhouse floriculture is for energy. To reduce energy costs for thermal conditioning was projected an innovative root zone cooling system characterized by two coaxial pipes with hydraulic countercurrent flows. This new system was compared with a traditional system with hydraulic flows cocurrent. The plants were equipped with coolers for obtaining flowering in the summer period by a culture of Alstroemeria spp and were measured energy consumption in each root zone cooling system. The tests also focused on a particular change, made during the tests of previous years, which allows the coaxial system in turning his operation from countercurrent flows to cocurrent flows. The results obtained show that the root zone coaxial cooling system allows to obtain, in comparison to the traditional type, a better temperature uniformity of the root zone ground, both when it is used with countercurrent flows both when it is used with cocurrent flow. The system also allows a slight overall reduction in energy consumption.

  20. Origin of the concept of the quiescent centre of plant roots.

    Science.gov (United States)

    Barlow, Peter W

    2016-09-01

    Concepts in biology feed into general theories of growth, development and evolution of organisms and how they interact with the living and non-living components of their environment. A well-founded concept clarifies unsolved problems and serves as a focus for further research. One such example of a constructive concept in the plant sciences is that of the quiescent centre (QC). In anatomical terms, the QC is an inert group of cells maintained within the apex of plant roots. However, the evidence that established the presence of a QC accumulated only gradually, making use of strands of different types of observations, notably from geometrical-analytical anatomy, radioisotope labelling and autoradiography. In their turn, these strands contributed to other concepts: those of the mitotic cell cycle and of tissue-related cell kinetics. Another important concept to which the QC contributed was that of tissue homeostasis. The general principle of this last-mentioned concept is expressed by the QC in relation to the recovery of root growth following a disturbance to cell proliferation; the resulting activation of the QC provides new cells which not only repair the root meristem but also re-establish a new QC.

  1. Novel quantitative metabolomic approach for the study of stress responses of plant root metabolism.

    Science.gov (United States)

    Li, Kefeng; Wang, Xu; Pidatala, Venkataramana R; Chang, Chi-Peng; Cao, Xiaohong

    2014-12-01

    Quantitative metabolomics (qMetabolomics) is a powerful tool for understanding the intricate metabolic processes involved in plant abiotic stress responses. qMetabolomics is hindered by the limited coverage and high cost of isotopically labeled standards. In this study, we first selected 271 metabolites which might play important roles in abiotic stress responses as the targets and established a comprehensive LC-MS/MS based qMetabolomic method. We then developed a novel metabolic labeling method using E. coli-Saccharomyces cerevisiae two-step cultivation for the production of uniformly (13)C-labeled metabolites as internal standards. Finally, we applied the developed qMetabolomic method to investigate the influence of Pb stress on maize root metabolism. The absolute concentration of 226 metabolites in maize roots was accurately quantified in a single run within 30 min. Our study also revealed that glycolysis, purine, pyrimidine, and phospholipids were the main metabolic pathways in maize roots involved in Pb stress response. To our knowledge, this is the most comprehensive qMetabolomic method for plant metabolomics thus far. We developed a simple and inexpensive metabolic labeling method which dramatically expanded the availability of uniformly (13)C labeled metabolites. Our findings also provided new insights of maize metabolic responses to Pb stress.

  2. The nucleus of differentiated root plant cells: modifications induced by arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    G Lingua

    2009-12-01

    Full Text Available The nuclei of plant cells show marked differences in chromatin organisation, related to their DNA content, which ranges from the type with large strands of condensed chromatin (reticulate or chromonematic nuclei to one with mostly decondensed chromatin (chromocentric or diffuse nuclei. A loosening of the chromatin structure generally occurs in actively metabolising cells, such as differentiating and secretory cells, in relation to their high transcriptional activity. Endoreduplication may occur, especially in plants with a small genome, which increases the availability of nuclear templates, the synthesis of DNA, and probably regulates gene expression. Here we describe structural and quantitative changes of the chromatin and their relationship with transcription that occur in differentiated cells following an increase of their metabolism. The nuclei of root cortical cells of three plants with different 2C DNA content (Allium porrum, Pisum sativum and Lycopersicon esculentm and their modifications induced by arbuscular mycorrhization, which strongly increase the metabolic activity of colonised cells, are taken as examples.

  3. Antibacterial compounds from the root of the indigenous Australian medicinal plant Carissa lanceolata R.Br.

    Science.gov (United States)

    Hettiarachchi, Dhanushka S; Locher, Cornelia; Longmore, Robert B

    2011-09-01

    The conkerberry, Carissa lanceolata R.Br. (Apocynaceae), is commonly used by many indigenous Australian communities across Northern Australia for the treatment of a variety of conditions such as chest pain, toothache, colds and flu. Indigenous uses of this plant strongly argue for an antibacterial bioactivity. The aim is to identify antibacterial compounds from root material of C. lanceolata, therefore confirming the indigenous use of the plant. Antibacterial activity was examined against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Bacillus subtilis using a micro broth dilution technique. Three compounds demonstrating considerable activity were isolated. The volatile phenolic compound 2'-hydroxyacetophenone and the lignan carinol both were reported for the first time from C. lanceolata, whereas this is the second account of the occurrence of carissone. All three compounds showed activity, with 2'-hydroxyacetophenone and carinol having a minimum inhibitory concentration of plant.

  4. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation

    Directory of Open Access Journals (Sweden)

    Benoît eDrogue

    2014-11-01

    Full Text Available Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defence and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyses of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post inoculation with A. lipoferum 4B (isolated from Cigalon or Azospirillum sp. B510 (isolated from Nipponbare and compared to the respective non-inoculated condition. A total of 7,384 genes were significantly regulated, which represent about 16 % of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83 % of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defence, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signalling highlight the complexity of hormone signalling networks in the Azospirillum

  5. Tall or short? Slender or thick? A plant strategy for regulating elongation growth of roots by low concentrations of gibberellin.

    Science.gov (United States)

    Tanimoto, Eiichi

    2012-07-01

    Since the plant hormone gibberellin (GA) was discovered as a fungal toxin that caused abnormal elongation of rice shoots, the physiological function of GA has mainly been investigated in relation to the regulation of plant height. However, an indispensable role for GA in root growth has been elucidated by using severely GA-depleted plants, either with a gene mutation in GA biosynthesis or which have been treated by an inhibitor of GA biosynthesis. The molecular sequence of GA signalling has also been studied to understand GA functions in root growth. This review addresses research progress on the physiological functions of GA in root growth. Concentration-dependent stimulation of elongation growth by GA is important for the regulation of plant height and root length. Thus the endogenous level of GA and/or the GA sensitivity of shoots and roots plays a role in determining the shoot-to-root ratio of the plant body. Since the shoot-to-root ratio is an important parameter for agricultural production, control of GA production and GA sensitivity may provide a strategy for improving agricultural productivity. The sequence of GA signal transduction has recently been unveiled, and some component molecules are suggested as candidate in planta regulatory sites and as points for the artificial manipulation of GA-mediated growth control. This paper reviews: (1) the breakthrough dose-response experiments that show that root growth is regulated by GA in a lower concentration range than is required for shoot growth; (2) research on the regulation of GA biosynthesis pathways that are known predominantly to control shoot growth; and (3) recent research on GA signalling pathways, including GA receptors, which have been suggested to participate in GA-mediated growth regulation. This provides useful information to suggest a possible strategy for the selective control of shoot and root growth, and to explain how GA plays a role in rosette and liana plants with tall or short, and slender

  6. Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress.

    Science.gov (United States)

    Larrainzar, Estíbaliz; Wienkoop, Stefanie; Weckwerth, Wolfram; Ladrera, Rubén; Arrese-Igor, Cesar; González, Esther M

    2007-07-01

    Drought is one of the environmental factors most affecting crop production. Under drought, symbiotic nitrogen fixation is one of the physiological processes to first show stress responses in nodulated legumes. This inhibition process involves a number of factors whose interactions are not yet understood. This work aims to further understand changes occurring in nodules under drought stress from a proteomic perspective. Drought was imposed on Medicago truncatula 'Jemalong A17' plants grown in symbiosis with Sinorhizobium meliloti strain 2011. Changes at the protein level were analyzed using a nongel approach based on liquid chromatography coupled to tandem mass spectrometry. Due to the complexity of nodule tissue, the separation of plant and bacteroid fractions in M. truncatula root nodules was first checked with the aim of minimizing cross contamination between the fractions. Second, the protein plant fraction of M. truncatula nodules was profiled, leading to the identification of 377 plant proteins, the largest description of the plant nodule proteome so far. Third, both symbiotic partners were independently analyzed for quantitative differences at the protein level during drought stress. Multivariate data mining allowed for the classification of proteins sets that were involved in drought stress responses. The isolation of the nodule plant and bacteroid protein fractions enabled the independent analysis of the response of both counterparts, gaining further understanding of how each symbiotic member is distinctly affected at the protein level under a water-deficit situation.

  7. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots

    Science.gov (United States)

    Picard, Christine; Bosco, Marco

    2008-01-01

    Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

  8. Root uptake of uranium by a higher plant model (Phaseolus vulgaris) bioavailability from soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, L.; Henner, P.; Camilleri, V.; Garnier-Laplace, J. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    Uranium behaviour in soils is controlled by actions and interactions between physicochemical and biological processes that also determine its bioavailability. In soil solution, uranium(+VI) aqueous speciation undergoes tremendous changes mainly depending on pH, carbonates, phosphates and organic matter. In a first approach to identify bioavailable species of U to plants, cultures were performed using hydroponics, to allow an easy control of the composition of the exposure media. The latter, here an artificial soil solution, was designed to control the uranium species in solution. The geochemical speciation code JCHESS using a database compiled from the OECD/NEA thermochemical database project and verified was used to perform the solution speciation calculations. On this theoretical basis, three domains were defined for short-duration well-defined laboratory experiments in simplified conditions: pH 4.9, 5.8 and 7 where predicted dominant species are uranyl ions, hydroxyl complexes and carbonates respectively. For these domains, biokinetics and characterization of transmembrane transport according to a classical Michaelis Menten approach were investigated. The Free Ion Model (or its derived Biotic Ligand Model) was tested to determine if U uptake is governed by the free uranyl species or if other metal complexes can be assimilated. The effect of different variables on root assimilation efficiency and phyto-toxicity was explored: presence of ligands such as phosphates or carbonates and competitive ions such as Ca{sup 2+} at the 3 pH. According to previous experiments, uranium was principally located in roots whatever the pH and no difference in uranium uptake was evidenced between the main growth stages of the plant. Within the 3 studied chemical domains, results from short-term kinetics evidenced a linear correlation between total uranium concentration in bean roots and that in exposure media, suggesting that total uranium in soil solution could be a good predictor

  9. Rooting of hybrid clones of Populus tremula L. x P. tremuloides Michx. by stem cuttings derived from micropropagated plants

    Energy Technology Data Exchange (ETDEWEB)

    Qibin Yu [Univ. of Helsinki (Finland). Dept. of Plant Biology; Maentylae, N. [Univ. of Turku (Finland). Dept. of Biology, Plant Physiology and Molecular Biology; Salonen, M. [Finnish Forest Research Inst., Laeyliaeinen (Finland). Haapastensyrjae Breeding Station

    2001-07-01

    Propagation costs could be cut by replacing part of the micropropagation process with steps involving more traditional techniques. This study explored possibilities for improving existing vegetative propagation techniques for aspen using stem cuttings obtained from micropropagated plants. Vegetative propagation through stem cuttings was studied in 10 micropropagated hybrid aspen clones (Populus tremula L. x P. tremuloides Michx). Cuttings containing one axillary bud were harvested from the same donor plants twice during the growing season: the first harvest in May and the second harvest in July. Rooting percentage was correlated positively with root length, number of roots and height of cutting plant but negatively with length of rooting. The average rooting percentage was 53% in the first harvest and 27% in second harvest. Indole-3-butyric acid treatments (1.2 mM) significantly improved rooting in the second harvest, but not in the first harvest, suggesting different endogenous auxin levels in the cuttings. A significant variation for most traits related to rooting ability was found among the clones, indicating that clonal effects play an important role in the propagation of aspen. Thus, clones with a good response in shoot growth and rooting could be exploited in large-scale propagation using stem cuttings.

  10. Root hairs

    NARCIS (Netherlands)

    Grierson, C.; Nielsen, E.; Ketelaar, T.; Schiefelbein, J.

    2014-01-01

    Roots hairs are cylindrical extensions of root epidermal cells that are important for acquisition of nutrients, microbe interactions, and plant anchorage. The molecular mechanisms involved in the specification, differentiation, and physiology of root hairs in Arabidopsis are reviewed here. Root hair

  11. Gall-forming root-knot nematodes hijack key plant cellular functions to induce multinucleate and hypertrophied feeding cells.

    Science.gov (United States)

    Favery, Bruno; Quentin, Michaël; Jaubert-Possamai, Stéphanie; Abad, Pierre

    2016-01-01

    Among plant-parasitic nematodes, the root-knot nematodes (RKNs) of the Meloidogyne spp. are the most economically important genus. RKN are root parasitic worms able to infect nearly all crop species and have a wide geographic distribution. During infection, RKNs establish and maintain an intimate relationship with the host plant. This includes the creation of a specialized nutritional structure composed of multinucleate and hypertrophied giant cells, which result from the redifferentiation of vascular root cells. Giant cells constitute the sole source of nutrients for the nematode and are essential for growth and reproduction. Hyperplasia of surrounding root cells leads to the formation of the gall or root-knot, an easily recognized symptom of plant infection by RKNs. Secreted effectors produced in nematode salivary glands and injected into plant cells through a specialized feeding structure called the stylet play a critical role in the formation of giant cells. Here, we describe the complex interactions between RKNs and their host plants. We highlight progress in understanding host plant responses, focusing on how RKNs manipulate key plant processes and functions, including cell cycle, defence, hormones, cellular scaffold, metabolism and transport.

  12. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar.

    Science.gov (United States)

    Rees, Frédéric; Sterckeman, Thibault; Morel, Jean Louis

    2016-01-01

    Biochar may be used as an amendment in contaminated soils in phytoremediation processes. The mechanisms controlling plant metal uptake in biochar-amended soils remain however unclear. This work aimed at evaluating the influence of biochar on root development and its consequence on plant metal uptake, for two non-hyperaccumulating plants (Zea mays and Lolium perenne) and one hyperaccumulator of Cd and Zn (Noccaea caerulescens). We conducted rhizobox experiments using one acidic and one alkaline soil contaminated with Cd, Pb and Zn. Biochar was present either homogeneously in the whole soil profile or localized in specific zones. A phenomenon of root proliferation specific to biochar-amended zones was seen on the heterogeneous profiles of the acidic soil and interpreted by a decrease of soil phytotoxicity in these zones. Biochar amendments also favored root growth in the alkaline soil as a result of the lower availability of certain nutrients in the amended soil. This increase of root surface led to a higher accumulation of metals in roots of Z.mays in the acidic soil and in shoots of N. caerulescens in the alkaline soil. In conclusion, biochar can have antagonist effects on plant metal uptake by decreasing metal availability, on one hand, and by increasing root surface and inducing root proliferation, on the other hand.

  13. Effect of plant growth regulators in the rooting of Pinus cuttings

    Directory of Open Access Journals (Sweden)

    Henrique Andréia

    2006-01-01

    Full Text Available This work evaluated the rooting of Pinus caribaea var. hondurensis Morelet cuttings under the action of different levels of plant growth regulators. The cuttings consisted of 4-6 cm long shoots of P. caribaea var. hondurensis Morelet with their basal needles removed. The basal part of the cuttings were treated for 2 seconds with the following treatments: 1- NAA 2000mg L-1; 2- NAA 4000mg L-1; 3- NAA 6000mg L-1; 4- NAA 2000mg L-1 + PBZ 100mg L-1; 5- NAA 4000mg L-1 + PBZ; 6- NAA 6000mg L-1 + PBZ; 7- IBA 2000mg L-1; 8- IBA 4000mg L-1; 9- IBA 6000mg L-1; 10-IBA 2000mg L-1 + PBZ; 11- IBA 4000mg L-1 + PBZ; 12- IBA 6000mg L-1 + PBZ; and a control. After receiving the treatment, the cuttings were planted in tubes containing 50% carbonized rice hulls and 50% vermiculite. The evaluations, performed 60 days after planting, showed that P. caribaea var. hondurensis cuttings treated with IBA produced a higher percentage of rooted cuttings than those treated with NAA; the most effective treatment was IBA 4000mg L-1 plus 100mg L-1 paclobutrazol.

  14. Arbuscular mycorrhizal associations and occurrence of dark septate endophytes in the roots of Brazilian weed plants.

    Science.gov (United States)

    Massenssini, André Marcos; Bonduki, Víctor Hugo Araújo; Tótola, Marcos Rogério; Ferreira, Francisco Affonso; Costa, Maurício Dutra

    2014-02-01

    The ecology of weed plants includes their interactions with soil microorganisms, such as mutualistic partners that may contribute to their adaptation and competitive success in the agricultural fields. Despite the importance of microorganisms to plant growth, knowledge on weed-symbiont associations is still incipient compared to crops. Thus, a survey for the presence of arbuscular mycorrhiza (AM) and dark septate endophyte (DSE) associations in the roots of 50 weed species was done in three distinct areas during the dry and rainy seasons. We found that 41 and 29 out of the 50 species were associated with AM fungi and DSE, respectively, and 27 species presented both associations. All the plant species not forming AM belong to families thought to be nonmycorrhizal, such as Amaranthaceae, Commelinaceae, Brassicaceae, and Cyperaceae. The most common morphotype of AM observed was the Arum-type. No significant differences were found in root length colonization between the areas or seasons. For 19 species surveyed, this is the first report on their mycorrhizal status.

  15. Distribution, host plants and natural enemies of sugar beet root aphid (Pemphigus fuscicornis In Slovakia

    Directory of Open Access Journals (Sweden)

    Tóth Peter

    2006-01-01

    Full Text Available During 2003-2004, field surveys were realized to observe the distribution of sugar beet aphid, Pemphigus fuscicornis (K o c h (Sternorrhyncha Pemphigidae in southwestern Slovakia. The research was carried out at 60 different localities with altitudes 112-220 m a. s. l. Sugar beet root aphid was recorded at 30 localities. The aphid was recorded in Slovakia for the first time, but its occurrence was predicted and symptoms and harmfulness overlooked by now. The presence of P. fuscicornis was investigated on roots of various plants from Chenopodiaceae. The most important host plants were various species of lambsquarters (above all Chenopodium album. Furthermore sugar beet (Beta vulgaris provar. altissima, red beet (B. vulgaris provar. conditiva and oraches (Atriplex spp act as host plants. Infestation of sugar beet by P. fuscicornis never exceeded 5% at single locality in Slovakia. Dry and warm weather create presumptions for strong harmfulness. In Slovakia, Chenopodium album is a very important indicator of sugar beet aphid presence allowing evaluation of control requirements. During the study, the larvae of Thaumatomyia glabra (Diptera: Chloropidae were detected as important natural enemies of sugar beet aphid. The species occurred at each location evaluated.

  16. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants.

    Science.gov (United States)

    Planchamp, Chantal; Glauser, Gaetan; Mauch-Mani, Brigitte

    2014-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers.

  17. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    Directory of Open Access Journals (Sweden)

    Chantal ePlanchamp

    2015-01-01

    Full Text Available Pseudomonas putida KT2440 (KT2440 rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots and systemic (leaves early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots three days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal development in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as

  18. Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates.

    Science.gov (United States)

    Mwita, Liberata; Chan, Wai Yin; Pretorius, Theresa; Lyantagaye, Sylvester L; Lapa, Svitlana V; Avdeeva, Lilia V; Reva, Oleg N

    2016-09-15

    Despite successful use of Plant Growth Promoting Rhizobacteria (PGPR) in agriculture, little is known about specific mechanisms of gene regulation facilitating the effective communication between bacteria and plants during plant colonization. Active PGPR strain Bacillus atrophaeus UCMB-5137 was studied in this research. RNA sequencing profiles were generated in experiments where root exudate stimulations were used to mimic interactions between bacteria and plants. It was found that the gene regulation in B. atrophaeus UCMB-5137 in response to the root exudate stimuli differed from the reported gene regulation at similar conditions in B. amyloliquefaciens FZB42, which was considered as a paradigm PGPR. This difference was explained by hypersensitivity of UCMB-5137 to the root exudate stimuli impelling it to a sessile root colonization behavior through the CcpA-CodY-AbrB regulation. It was found that the transcriptional factor DegU also could play an important role in gene regulations during plant colonization. A significant stress caused by the root exudates on in vitro cultivated B. atrophaeus UCMB-5137 was noticed and discussed. Multiple cases of conflicted gene regulations showed scantiness of our knowledge on the regulatory network in Bacillus. Some of these conflicted regulations could be explained by interference of non-coding RNA (ncRNA). Search through differential expressed intergenic regions revealed 49 putative loci of ncRNA regulated by the root exudate stimuli. Possible target mRNA were predicted and a general regulatory network of B. atrophaeus UCMB-5137 genome was designed.

  19. Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Olsrud, Maria; Michelsen, Anders

    2010-01-01

    During the last decade, culture-independent identification tools have widened our knowledge of fungi colonizing ericaceous roots including ericoid mycorrhizal fungi. One focal interest has been to identify fungi, which simultaneously can establish ericoid and ectomycorrhiza, while knowledge about......, was studied. From each of these plants, in each of five plots, clone libraries were established using fungal specific ITS-PCR followed by cloning, PCR–RFLP and sequencing. The clone libraries were dominated by potential ericoid mycorrhizal fungi, particularly Rhizoscyphus ericae, fungi belonging...

  20. New calorimetric system and some results of water phase transition research in plant roots.

    Science.gov (United States)

    Bakradze, N; Kiziria, E; Sokhadze, V; Gogichaishvili, Sh; Vardidze, E

    2007-01-01

    The principle of operation and main parameters of the recently created scanning differential reverse microcalorimeter of the new generation are presented. The microcalorimeter is destined for studying water crystallization and ice melting processes in heterogeneous systems, including plant and animal cells and tissues in the temperature range of 20 to -55 degrees C. In order to obtain maximum information from the experimental results respective algorithms and applied software package were developed. The results of studies of water crystallization and ice melting processes in different parts of common plantain (Plantago major L.) root, as a certain model system, can give us information on the peculiarities of the studied processes in complex, heterogeneous systems.

  1. Diversity of frankia strains in root nodules of plants from the families elaeagnaceae and rhamnaceae

    Science.gov (United States)

    Clawson; Caru; Benson

    1998-09-01

    Partial 16S ribosomal DNAs (rDNAs) were PCR amplified and sequenced from Frankia strains living in root nodules of plants belonging to the families Elaeagnaceae and Rhamnaceae, including Colletia hystrix, Elaeagnus angustifolia, an unidentified Elaeagnus sp., Talguenea quinquenervia, and Trevoa trinervis. Nearly full-length 16S rDNAs were sequenced from strains of Frankia living in nodules of Ceanothus americanus, C. hystrix, Coriaria arborea, and Trevoa trinervis. Partial sequences also were obtained from Frankia strains isolated and cultured from the nodules of C. hystrix, Discaria serratifolia, D. trinervis, Retanilla ephedra, T. quinquenervia, and T. trinervis (Rhamnaceae). Comparison of these sequences and other published sequences of Frankia 16S rDNA reveals that the microsymbionts and isolated strains from the two plant families form a distinct phylogenetic clade, except for those from C. americanus. All sequences in the clade have a common 2-base deletion compared with other Frankia strains. Sequences from C. americanus nodules lack the deletion and cluster with Frankia strains infecting plants of the family Rosaceae. Published plant phylogenies (based on chloroplast rbcL sequences) group the members of the families Elaeagnaceae and Rhamnaceae together in the same clade. Thus, with the exception of C. americanus, actinorhizal plants of these families and their Frankia microsymbionts share a common symbiotic origin.

  2. Effects of ten antibiotics on seed germination and root elongation in three plant species.

    Science.gov (United States)

    Hillis, Derek G; Fletcher, James; Solomon, Keith R; Sibley, Paul K

    2011-02-01

    We applied a screening-level phytotoxicity assay to evaluate the effects of 10 antibiotics (at concentrations ranging from 1 to 10,000 μg/L) on germination and early plant growth using three plant species: lettuce (Lactuca sativa), alfalfa (Medicago sativa), and carrot (Daucus carota). The range of phytotoxicity of the antibiotics was large, with EC₂₅s ranging from 3.9 μg/L to >10,000 μg/L. Chlortetracycline, levofloxacin, and sulfamethoxazole were the most phytotoxic antibiotics. D. carota was the most sensitive plant species, often by an order of magnitude or more, followed by L. sativa and then M. sativa. Plant germination was insensitive to the antibiotics, with no significant decreases up to the highest treatment concentration of 10,000 μg/L. Compared with shoot and total length measurements, root elongation was consistently the most sensitive end point. Overall, there were few instances where measured soil concentrations, if available in the publicly accessible literature, would be expected to exceed the effect concentrations of the antibiotics evaluated in this study. The use of screening assays as part of a tiered approach for evaluating environmental impacts of antibiotics can provide insight into relative species sensitivity and serve as a basis by which to screen the potential for toxic effects of novel compounds to plants.

  3. Geometric control of tissue morphogenesis

    Science.gov (United States)

    Nelson, Celeste M.

    2009-01-01

    Summary Morphogenesis is the dynamic and regulated change in tissue form that leads to creation of the body plan and development of mature organs. Research over the past several decades has uncovered a multitude of genetic factors required for morphogenesis in animals. The behaviors of individual cells within a developing tissue are determined by combining these genetic signals with information from the surrounding microenvironment. At any point in time, the local microenvironment is influenced by macroscale tissue geometry, which sculpts long range signals by affecting gradients of morphogens and mechanical stresses. The geometry of a tissue thus acts as both a template and instructive cue for further morphogenesis. PMID:19167433

  4. Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection

    NARCIS (Netherlands)

    Hase, S.; Pelt, J.A. van; Loon, L.C. van; Pieterse, C.M.J.

    2003-01-01

    Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of non-pathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salic

  5. A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits?

    NARCIS (Netherlands)

    Riva, de la E.G.; Tosto, A.; Perez-Ramos, I.M.; Navarro-Fernandez, C.M.; Olmos, M.; Anten, N.P.R.; Maranon, T.; Villar, R.

    2016-01-01

    Questions: Is there any evidence of coordination among leaf, stem and root traits, and thereby of the existence of a plant economics spectrum at the species and community level in Mediterranean forests? Are these traits related to plant size and seedmass? Location: Mediterranean forests and shrublan

  6. Effect of biosolids-derived triclosan and triclocarban on the colonization of plant roots by arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Prosser, R S; Lissemore, L; Shahmohamadloo, R S; Sibley, P K

    2015-03-01

    Arbuscular mycorrhizal fungi (AMF) form a symbiotic relationship with the majority of crop plants. AMF provide plants with nutrients (e.g., P), modulate the effect of metal and pathogen exposure, and increase tolerance to moisture stress. The benefits of AMF to plant growth make them important to the development of sustainable agriculture. The land application of biosolids is becoming an increasingly common practice in sustainable agriculture, as a source of nutrients. However, biosolids have been found to contain numerous pharmaceutical and personal care products including antimicrobial chemicals such as triclosan and triclocarban. The potential risks that these two compounds may pose to plant-AMF interactions are poorly understood. The current study investigated whether biosolids-derived triclosan and triclocarban affect the colonization of the roots of lettuce and corn plants by AMF. Plants were grown in soil amended with biosolids that contained increasing concentrations of triclosan (0 to 307 μg/g dw) or triclocarban (0 to 304 μg/g dw). A relationship between the concentration of triclosan or triclocarban and colonization of plants roots by AMF was not observed. The presence of biosolids did not have a significant (p>0.05) effect on percent colonization of corn roots but had a significant, positive effect (ptriclosan and triclocarban did not inhibit the colonization of crop plant roots by AMF.

  7. A plant economics spectrum in Mediterranean forests along environmental gradients: is there coordination among leaf, stem and root traits?

    NARCIS (Netherlands)

    Riva, de la E.G.; Tosto, A.; Perez-Ramos, I.M.; Navarro-Fernandez, C.M.; Olmos, M.; Anten, N.P.R.; Maranon, T.; Villar, R.

    2016-01-01

    Questions: Is there any evidence of coordination among leaf, stem and root traits, and thereby of the existence of a plant economics spectrum at the species and community level in Mediterranean forests? Are these traits related to plant size and seedmass? Location: Mediterranean forests and

  8. Affects N fertilization intensity and composition of root exudation from two plant species differing in their exploitation strategy?

    Science.gov (United States)

    Kotas, Petr; Kastovska, Eva

    2017-04-01

    The rhizosphere represents one of the most important hotspots of microbial activity in soil. As such, it controls soil element cycling and significantly contributes to important ecosystem processes like C and N sequestration. The close plant-microbe-soil interactions in the rhizosphere are mediated by the input of labile exudates into the surroundings of plant roots. Thus microbial performance is constrained by the intensity and composition of root exudation. However, it is poorly understood how closely root exudation corresponds with the plant metabolome and how it is related to plant traits and changing environmental conditions. To fill this gap, we determined the composition of the root metabolic pool and root exudates in two plant species differing in their exploitation type (conservative Carex acuta versus competitive Glyceria maxima) grown for two months in controlled conditions and treated weekly by two levels of foliar N fertilization. Based on previous studies, we knew that Glyceria has, compared to Carex, a lower tissue C:N ratio, higher photosynthetic rate, higher allocation belowground and also larger investment to exudation. Prior to extraction, the roots were cleaned by water and immediately frozen in liquid N2. The root exudates were collected from carefully cleaned roots of living plants encased in glass vials with water and subsequently lyophilised. Both sample types were silylated and analysed for their metabolic profiles using GC-MS/MS. Our results revealed that the metabolite content in root tissue (DW basis) of Glyceria was on average lower compared to Carex, but increased with fertilization, while the root tissue of Carex was characterized by significantly higher metabolite content in the low intensity fertilization treatment compared to both the control and high N fertilization intensity. In contrast, the amount of exuded compounds was much higher in Glyceria compared to Carex in the control plants, but decreased for Glyceria and increased

  9. Degradation of proteins by enzymes exuded by Allium porrum roots - a potentially important strategy for acquiring organic nitrogen by plants.

    Science.gov (United States)

    Adamczyk, Bartosz; Godlewski, Mirosław; Smolander, Aino; Kitunen, Veikko

    2009-10-01

    Nitrogen is one of the crucial elements that regulate plant growth and development. It is well-established that plants can acquire nitrogen from soil in the form of low-molecular-mass compounds, namely nitrate and ammonium, but also as amino acids. Nevertheless, nitrogen in the soil occurs mainly as proteins or proteins complexed with other organic compounds. Proteins are believed not to be available to plants. However, there is increasing evidence to suggest that plants can actively participate in proteolysis by exudation of proteases by roots and can obtain nitrogen from digested proteins. To gain insight into the process of organic nitrogen acquisition from proteins by leek roots (Allium porrum L. cv. Bartek), casein, bovine serum albumin and oxidized B-chain of insulin were used; their degradation products, after exposure to plant culture medium, were studied using liquid chromatography-mass spectrometry (LC-MS). Casein was degraded to a great extent, but the level of degradation of bovine serum albumin and the B-chain of insulin was lower. Proteases exuded by roots cleaved proteins, releasing low-molecular-mass peptides that can be taken up by roots. Various peptide fragments produced by digestion of the oxidized B-chain of insulin suggested that endopeptidase, but also exopeptidase activity was present. After identification, proteases were similar to cysteine protease from Arabidopsis thaliana. In conclusion, proteases exuded by roots may have great potential in the plant nitrogen nutrition.

  10. Release from belowground enemies and shifts in root traits as interrelated drivers of alien plant invasion success: a hypothesis.

    Science.gov (United States)

    Dawson, Wayne

    2015-10-01

    Our understanding of the interrelated mechanisms driving plant invasions, such as the interplay between enemy release and resource-acquisition traits, is biased by an aboveground perspective. To address this bias, I hypothesize that plant release from belowground enemies (especially fungal pathogens) will give invasive plant species a fitness advantage in the alien range, via shifts in root traits (e.g., increased specific root length and branching intensity) that increase resource uptake and competitive ability compared to native species in the alien range, and compared to plants of the invader in its native range. Such root-trait changes could be ecological or evolutionary in nature. I explain how shifts in root traits could occur as a consequence of enemy release and contribute to invasion success of alien plants, and how they could be interrelated with other potential belowground drivers of invasion success (allelopathy, mutualist enhancement). Finally, I outline the approaches that could be taken to test whether belowground enemy release results in increased competitive ability and nutrient uptake by invasive alien plants, via changes in root traits in the alien range.

  11. Draft Genome Sequence of Pantoea ananatis GB1, a Plant-Growth-Promoting Hydrocarbonoclastic Root Endophyte, Isolated at a Diesel Fuel Phytoremediation Site Planted with Populus.

    Science.gov (United States)

    Gkorezis, Panagiotis; Van Hamme, Jonathan D; Bottos, Eric M; Thijs, Sofie; Balseiro-Romero, Maria; Monterroso, Carmela; Kidd, Petra Suzan; Rineau, Francois; Weyens, Nele; Vangronsveld, Jaco

    2016-02-25

    We report the 4.76-Mb draft genome of Pantoea ananatis GB1, a Gram-negative bacterium of the family Enterobacteriaceae, isolated from the roots of poplars planted for phytoremediation of a diesel-contaminated plume at the Ford Motor Company site in Genk, Belgium. Strain GB1 promotes plant growth in various hosts and metabolizes hydrocarbons.

  12. Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition

    DEFF Research Database (Denmark)

    Smith, S.E.; Jakobsen, Iver; Grønlund, Mette

    2011-01-01

    In this Update, we review new findings about the roles of the arbuscular mycorrhizas (mycorrhiza = fungus plus root) in plant growth and phosphorus (P) nutrition. We focus particularly on the function of arbuscular mycorrhizal (AM) symbioses with different outcomes for plant growth (from positive...

  13. Use of auxin, fungicides and rooting cofactors to induce adventitious root formation in softwood cuttings of apple, gooseberry and some ornamental plants

    Directory of Open Access Journals (Sweden)

    M. G. Piątkowski

    2015-06-01

    Full Text Available Cuttings of apple rootstocks MM 106, Alnarp 2, M VII and M 26, of the ornamental plants Pyracantha coccinea Roem., Syringa Meyeri Schneid., and Weigela cv. Vanhouttei formed a larger numbers of adventitious roots with a mixture of naphthaleneacetic acid and the fungicide Captan than with auxin alone. Boric acid, vitamin B1 as well as pyrogallol and vanilic acid in rather high concentrations showed no effect on rooting when used separately or in a mixture with an auxin. Intermittent mist and bottom heat were used.

  14. The incidence of Pyrenochaeta terrestris in root of different plant species in Serbia

    Directory of Open Access Journals (Sweden)

    Lević Jelena T.

    2013-01-01

    Full Text Available Root samples of cereals (oats, wheat, barley, maize and sorghum, vegetables (garlic, onion, pepper, cucumber, pumpkin, carrot and tomato, industrial plant (soya bean and weeds (Johnson grass, barnyard grass and green bristle-grass collected in different agroecological conditions in Serbia were analysed for the presence of Pyrenochaeta terrestris. The fungus was found in 42 out of 51 samples (82.4%, while the incidence varied from 2.5 to 72.5%. The highest incidence was detected in cereals (average 30.3%, and then in weeds of the Poaceae family (average 14.2%. Considering single species, maize (up to 72.5% in root and Johnson grass (up to 37.5% were mostly attacked by this fungus. The lowest incidence of the fungus was determined in vegetable crops (average 6.7%. Red to reddish discoloration of root was correlated with the incidence of the fungus. Obtained data indicate that P. terrestris is widespread in Serbia and conditions for its development are favourable. [Projekat Ministarstva nauke Republike Srbije, br. TR-31023

  15. Plant hormone homeostasis, signaling and function during adventitious root formation in cuttings

    Directory of Open Access Journals (Sweden)

    Uwe eDruege

    2016-03-01

    Full Text Available Adventitious root (AR formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF- and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis and signaling via ERFs and early

  16. Developmental patterns of jicama (Pachyrhizus erosus (L.) Urban) plant and the chemical constituents of roots grown in Sonora, Mexico.

    Science.gov (United States)

    Fernandez, M V; Warid, W A; Loaiza, J M; Montiel, A

    1997-01-01

    The developmental pattern of jicama (Pachyrhizus erosus (L.) Urban) was studied by sampling plants aged 20 to 36 weeks at weekly intervals. There was an increase in all characteristics of foliage: fresh and dry weight, number of leaves per plant, main stem length, number of leaves, nodes and internodes of the main stem; and in all root characteristics: fresh and dry weight, diameter and length. The chemical analysis was determined for roots at different plant ages. The range values for dry matter were 16.19-22.28%, protein 1.11-1.62%, fat 0.553-0.867%, crude fiber 0.3048-0.3943%, and ash 0.669-1.089%. The chemical constituents fluctuated with age but without specific trends. These values are considered the first record of roots produced by plants grown in Mexico.

  17. Succession of root-associated fungi in Pisum sativum during a plant growth cycle as examined by 454 pyrosequencing

    DEFF Research Database (Denmark)

    Yu, L.; Nicolaisen, M.; Larsen, J.

    2012-01-01

    was to examine succession patterns of root-associated fungi in pea during a full plant growth cycle. Methods Plants were grown in pots with field soil in a growth chamber under controlled conditions. Fungal communities in pea roots were analyzed at different plant growth stages including the vegetative growth......Purpose Roots are inhabited by a broad range of fungi, including pathogens and mycorrhizal fungi, with functional traits related to plant health and nutrition. Management of these fungi in agroecosystems requires profound knowledge about their ecology. The main objective of this study......, flowering and senescence, using 454 pyrosequencing. Results One hundred and twenty one non-singleton operational taxonomic units (OTUs) representing fungal species were detected. Pathogenic and arbuscular mycorrhizal fungi dominated during the vegetative growth stage, whereas saprotrophic fungi dominated...

  18. Expression of a plant expansin is involved in the establishment of root knot nematode parasitism in tomato.

    Science.gov (United States)

    Gal, Tali Z; Aussenberg, Elitsur R; Burdman, Saul; Kapulnik, Yoram; Koltai, Hinanit

    2006-06-01

    A group of plant proteins, expansins, have been identified as wall-loosening factors and as facilitators of cell expansion in vivo. The