WorldWideScience

Sample records for plant resistance gene

  1. The evolution of resistance gene in plants

    Institute of Scientific and Technical Information of China (English)

    BEN Haiyan; LIU Xuemin; LI Lijun; LIU Li

    2007-01-01

    Resistance genes enable plants to fight against plant pathogens. Plant resistance genes (R gene) are organized complexly in genome. Some resistance gene sequence data enable an insight into R gene structure and gene evolution. Some sites like Leucine-Rich Repeat (LRR) are of specific interest since homologous recombination can happen. Crossing over, transposon insertion and excision and mutation can produce new specificity. Three models explaining R gene evolution were discussed. More information needed for dissection of R gene evolution though some step can be inferred from genetic and sequence analysis.

  2. Disease Resistance Gene Analogs (RGAs in Plants

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Sekhwal

    2015-08-01

    Full Text Available Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs, as resistance (R gene candidates, have conserved domains and motifs that play specific roles in pathogens’ resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed.

  3. Disease Resistance Gene Analogs (RGAs) in Plants.

    Science.gov (United States)

    Sekhwal, Manoj Kumar; Li, Pingchuan; Lam, Irene; Wang, Xiue; Cloutier, Sylvie; You, Frank M

    2015-08-14

    Plants have developed effective mechanisms to recognize and respond to infections caused by pathogens. Plant resistance gene analogs (RGAs), as resistance (R) gene candidates, have conserved domains and motifs that play specific roles in pathogens' resistance. Well-known RGAs are nucleotide binding site leucine rich repeats, receptor like kinases, and receptor like proteins. Others include pentatricopeptide repeats and apoplastic peroxidases. RGAs can be detected using bioinformatics tools based on their conserved structural features. Thousands of RGAs have been identified from sequenced plant genomes. High-density genome-wide RGA genetic maps are useful for designing diagnostic markers and identifying quantitative trait loci (QTL) or markers associated with plant disease resistance. This review focuses on recent advances in structures and mechanisms of RGAs, and their identification from sequenced genomes using bioinformatics tools. Applications in enhancing fine mapping and cloning of plant disease resistance genes are also discussed.

  4. Exploring Antibiotic Resistance Genes and Metal Resistance Genes in Plasmid Metagenomes from Wastewater Treatment Plants

    Directory of Open Access Journals (Sweden)

    An-Dong eLi

    2015-09-01

    Full Text Available Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer, they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge and digested sludge of two wastewater treatment plants. Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs database and a metal resistance genes (MRGs database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes and metal resistance genes (23 out of a total 23 types on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs than the activated sludge and the digested sludge metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in wastewater treatment plants could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes.

  5. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants.

    Science.gov (United States)

    Li, An-Dong; Li, Li-Guan; Zhang, Tong

    2015-01-01

    Plasmids operate as independent genetic elements in microorganism communities. Through horizontal gene transfer (HGT), they can provide their host microorganisms with important functions such as antibiotic resistance and heavy metal resistance. In this study, six metagenomic libraries were constructed with plasmid DNA extracted from influent, activated sludge (AS) and digested sludge (DS) of two wastewater treatment plants (WWTPs). Compared with the metagenomes of the total DNA extracted from the same sectors of the wastewater treatment plant, the plasmid metagenomes had significantly higher annotation rates, indicating that the functional genes on plasmids are commonly shared by those studied microorganisms. Meanwhile, the plasmid metagenomes also encoded many more genes related to defense mechanisms, including ARGs. Searching against an antibiotic resistance genes (ARGs) database and a metal resistance genes (MRGs) database revealed a broad-spectrum of antibiotic (323 out of a total 618 subtypes) and MRGs (23 out of a total 23 types) on these plasmid metagenomes. The influent plasmid metagenomes contained many more resistance genes (both ARGs and MRGs) than the AS and the DS metagenomes. Sixteen novel plasmids with a complete circular structure that carried these resistance genes were assembled from the plasmid metagenomes. The results of this study demonstrated that the plasmids in WWTPs could be important reservoirs for resistance genes, and may play a significant role in the horizontal transfer of these genes.

  6. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Directory of Open Access Journals (Sweden)

    Masayoshi Hashimoto

    2016-10-01

    Full Text Available The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.

  7. Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors

    Science.gov (United States)

    Hashimoto, Masayoshi; Neriya, Yutaro; Yamaji, Yasuyuki; Namba, Shigetou

    2016-01-01

    The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant’s resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species. PMID:27833593

  8. Genes Expressed Differentially in Hessian Fly Larvae Feeding in Resistant and Susceptible Plants

    Directory of Open Access Journals (Sweden)

    Ming-Shun Chen

    2016-08-01

    Full Text Available The Hessian fly, Mayetiola destructor, is a destructive pest of wheat worldwide and mainly controlled by deploying resistant cultivars. In this study, we investigated the genes that were expressed differentially between larvae in resistant plants and those in susceptible plants through RNA sequencing on the Illumina platform. Informative genes were 11,832, 14,861, 15,708, and 15,071 for the comparisons between larvae in resistant versus susceptible plants for 0.5, 1, 3, and 5 days, respectively, after larvae had reached the feeding site. The transcript abundance corresponding to 5401, 6902, 8457, and 5202 of the informative genes exhibited significant differences (p ≤ 0.05 in the respective paired comparisons. Overall, genes involved in nutrient metabolism, RNA and protein synthesis exhibited lower transcript abundance in larvae from resistant plants, indicating that resistant plants inhibited nutrient metabolism and protein production in larvae. Interestingly, the numbers of cytochrome P450 genes with higher transcript abundance in larvae from resistant plants were comparable to, or higher than those with lower transcript abundance, indicating that toxic chemicals from resistant plants may have played important roles in Hessian fly larval death. Our study also identified several families of genes encoding secreted salivary gland proteins (SSGPs that were expressed at early stage of 1st instar larvae and with more genes with higher transcript abundance in larvae from resistant plants. Those SSGPs are candidate effectors with important roles in plant manipulation.

  9. Construction of a new plant expression vector containing two insect resistant genes and its expression in transgenic tobacco plants

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new plant expression vector (pBS29K-BA) containing two insect resistant genes, a synthetic chimeric gene BtS29K encoding the activated insecticidal protein Cry1Ac and a gene API-BA encoding the arrowhead (Sagittaria sagittifolia L.) proteinase inhibitor (API) A and B, is constructed. Transgenic tobacco plants expressing these two genes are obtained through Agrobacterium-mediated transformation of tobacco leaf discs. The average expression levels of Cry1Ac and API-BA proteins in transgenic plants are of 3.2 μg and 4.9 μg per gram fresh leaf respectively. The results of insecticidal assay of transgenic plants indicate that the pBS29K-BA transformed plants are more resistant to insect damage than the plants expressing the Cry1Ac gene or API-BA gene alone.

  10. Modified cellulose synthase gene from Arabidopsis thaliana confers herbicide resistance to plants

    Science.gov (United States)

    Somerville, Chris R.; Scheible, Wolf

    2007-07-10

    Cellulose synthase ("CS"), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl)phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  11. Antibiotic Resistant Bacteria And Their Associated Resistance Genes in a Conventional Municipal Wastewater Treatment Plant

    KAUST Repository

    Aljassim, Nada I.

    2013-12-01

    With water scarcity as a pressing issue in Saudi Arabia and other Middle Eastern countries, the treatment and reuse of municipal wastewater is increasingly being used as an alternative water source to supplement country water needs. Standards are in place to ensure a safe treated wastewater quality, however they do not regulate pathogenic bacteria and emerging contaminants. Information is lacking on the levels of risk to public health associated with these factors, the efficiency of conventional treatment strategies in removing them, and on wastewater treatment in Saudi Arabia in general. In this study, a municipal wastewater treatment plant in Saudi Arabia is investigated to assess the efficiency of conventional treatment in meeting regulations and removing pathogens and emerging contaminants. The study found pathogenic bacterial genera, antibiotic resistance genes and antibiotic resistant bacteria, many of which were multi-resistant in plant discharges. It was found that although the treatments are able to meet traditional quality guidelines, there remains a risk from the discussed contaminants with wastewater reuse. A deeper understanding of this risk, and suggestions for more thorough guidelines and monitoring are needed.

  12. Suppression of plant resistance gene-based immunity by a fungal effector

    NARCIS (Netherlands)

    Houterman, P.M.; Cornelissen, B.J.C.; Rep, M.

    2008-01-01

    The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R) genes that mediate recognition of effectors, proteins secreted

  13. Biological Effects of Potato Plants Transformation with Glucose Oxidase Gene and their Resistance to Hyperthermia

    Directory of Open Access Journals (Sweden)

    O.I. Grabelnych

    2017-02-01

    Full Text Available It is known that regulation of plant tolerance to adverse environmental factors is connected with short term increase of the concentration of endogenous reactive oxygen species (ROS, which are signalling molecules for the induction of protective mechanisms. Introduction and expression of heterologous gox gene, which encodes glucose oxidase enzyme in plant genome, induce constantly higher content of hydrogen peroxide in plant tissues. It is not known how the introduction of native or modified gox gene affects the plant resistance to high-temperature stress, one of the most commonly used model for the study of stress response and thermal tolerance. In this study, we investigated biological effects of transformation and evaluated the resistance to temperature stress of potato plants with altered levels of glucose oxidase expression. Transformation of potato plants by gox gene led to the more early coming out from tuber dormancy of transformed plants and slower growth rate. Transformants containing the glucose oxidase gene were more sensitive to lethal thermal shock (50 °C, 90 min than the transformant with the empty vector (pBI or untransformed plants (CK. Pre-heating of plants at 37 °C significantly weakened the damaging effect of lethal thermal shock. This attenuation was more significant in the non-transformed plants.

  14. Class 1 integrase, sulfonamide and tetracycline resistance genes in wastewater treatment plant and surface water.

    Science.gov (United States)

    Makowska, Nicoletta; Koczura, Ryszard; Mokracka, Joanna

    2016-02-01

    Wastewater treatment plants are considered hot spots for multiplication and dissemination of antibiotic-resistant bacteria and resistance genes. In this study, we determined the presence of class 1 integron integrase and genes conferring resistance to tetracyclines and sulfonamides in the genomes of culturable bacteria isolated from a wastewater treatment plant and the river that receives the treated wastewater. Moreover, using PCR-based metagenomic approach, we quantified intI1, tet and sul genes. Wastewater treatment caused the decrease in the total number of culturable heterotrophs and bacteria resistant to tetracycline and sulfonamides, along with the decrease in the number of intI1, sul and tet gene copies per ml, with significant reduction of tet(B). On the other hand, the treatment process increased both the frequency of tetracycline- and sulfonamide-resistant bacteria and intI1-positive strains, and the relative abundance of all quantified antibiotic resistance genes (ARGs) and intI1 gene; in the case of tet(A) and sul2 significantly. The discharge of treated wastewater increased the number of intI1, tet and sul genes in the receiving river water both in terms of copy number per ml and relative abundance. Hence, despite the reduction of the number of ARGs and ARBs, wastewater treatment selects for bacteria with ARGs in effluent.

  15. Suppression of plant resistance gene-based immunity by a fungal effector.

    Directory of Open Access Journals (Sweden)

    Petra M Houterman

    2008-05-01

    Full Text Available The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R genes that mediate recognition of effectors, proteins secreted by pathogens to suppress or evade basal resistance. Here, we show that a plant-pathogenic fungus secretes an effector that can both trigger and suppress R gene-based immunity. This effector, Avr1, is secreted by the xylem-invading fungus Fusarium oxysporum f.sp. lycopersici (Fol and triggers disease resistance when the host plant, tomato, carries a matching R gene (I or I-1. At the same time, Avr1 suppresses the protective effect of two other R genes, I-2 and I-3. Based on these observations, we tentatively reconstruct the evolutionary arms race that has taken place between tomato R genes and effectors of Fol. This molecular analysis has revealed a hitherto unpredicted strategy for durable disease control based on resistance gene combinations.

  16. Data mining and influential analysis of gene expression data for plant resistance gene identification in tomato (Solanum lycopersicum)

    OpenAIRE

    Torres-Avilés,Francisco; Romeo,José S; López-Kleine, Liliana

    2014-01-01

    Background Molecular mechanisms of plant-pathogen interactions have been studied thoroughly but much about them is still unknown. A better understanding of these mechanisms and the detection of new resistance genes can improve crop production and food supply. Extracting this knowledge from available genomic data is a challenging task. Results Here, we evaluate the usefulness of clustering, data-mining and regression to identify potential new resistance genes. Three types of analyses were cond...

  17. Enhancement of resistance to aphids by introducing the snowdrop lectin gene gna into maize plants.

    Science.gov (United States)

    Wang, Zhaoyu; Zhang, Kewei; Sun, Xiaofen; Tang, Kexuan; Zhang, Juren

    2005-12-01

    In order to enhance the resistance to pests, transgenic maize (Zea mays L.) plants from elite inbred lines containing the gene encoding snowdrop lectin (Galanthus nivalis L. agglutinin; GNA) under control of a phloem-specific promoter were generated through the Agrobacterium tumefaciens-mediated method. The toxicity of GNA-expressing plants to aphids has also been studied. The independently derived plants were subjected to molecular analyses. Polymerase chain reaction (PCR) and Southern blot analyses confirmed that the gna gene was integrated into maize genome and inherited to the following generations. The typical Mendelian patterns of inheritance occurred in most cases. The level of GNA expression at 0.13%-0.28% of total soluble protein was observed in different transgenic plants. The progeny of nine GNA-expressing independent transformants that were derived separately from the elite inbred lines DH4866, DH9942, and 8902, were selected for examination of resistance to aphids. These plants synthesized GNA at levels above 0.22% total soluble protein, and enhanced resistance to aphids was demonstrated by exposing the plants to corn leaf aphid (Rhopalosiphum maidis Fitch) under greenhouse conditions. The nymph production was significantly reduced by 46.9% on GNA-expressing plants. Field evaluation of the transgenic plants supported the results from the inoculation trial. After a series of artificial self-crosses, some homozygous transgenic maize lines expressing GNA were obtained. In the present study, we have obtained new insect-resistant maize material for further breeding work.

  18. Enhancement of resistance to aphids by introducing the snowdrop lectin gene gna into maize plants

    Indian Academy of Sciences (India)

    Zhaoyu Wang; Kewei Zhang; Xiaofen Sun; Kexuan Tang; Juren Zhang

    2005-12-01

    In order to enhance the resistance to pests, transgenic maize (Zea mays L.) plants from elite inbred lines containing the gene encoding snowdrop lectin (Galanthus nivalis L. agglutinin; GNA) under control of a phloemspecific promoter were generated through the Agrobacterium tumefaciens-mediated method. The toxicity of GNA-expressing plants to aphids has also been studied. The independently derived plants were subjected to molecular analyses. Polymerase chain reaction (PCR) and Southern blot analyses confirmed that the gna gene was integrated into maize genome and inherited to the following generations. The typical Mendelian patterns of inheritance occurred in most cases. The level of GNA expression at 0.13%–0.28% of total soluble protein was observed in different transgenic plants. The progeny of nine GNA-expressing independent transformants that were derived separately from the elite inbred lines DH4866, DH9942, and 8902, were selected for examination of resistance to aphids. These plants synthesized GNA at levels above 0.22% total soluble protein, and enhanced resistance to aphids was demonstrated by exposing the plants to corn leaf aphid (Rhopalosiphum maidis Fitch) under greenhouse conditions. The nymph production was significantly reduced by 46.9% on GNA-expressing plants. Field evaluation of the transgenic plants supported the results from the inoculation trial. After a series of artificial self-crosses, some homozygous transgenic maize lines expressing GNA were obtained. In the present study, we have obtained new insect-resistant maize material for further breeding work.

  19. Controversy Associated With the Common Component of Most Transgenic Plants – Kanamycin Resistance Marker Gene

    Directory of Open Access Journals (Sweden)

    Srećko Jelenić

    2003-01-01

    Full Text Available Plant genetic engineering is a powerful tool for producing crops resistant to pests, diseases and abiotic stress or crops with improved nutritional value or better quality products. Currently over 70 genetically modified (GM crops have been approved for use in different countries. These cover a wide range of plant species with significant number of different modified traits. However, beside the technology used for their improvement, the common component of most GM crops is the neomycin phosphotransferase II gene (nptII, which confers resistance to the antibiotics kanamycin and neomycin. The nptII gene is present in GM crops as a marker gene to select transformed plant cells during the first steps of the transformation process. The use of antibiotic-resistance genes is subject to controversy and intense debate, because of the likelihood that clinical therapy could be compromised due to inactivation of the oral dose of the antibiotic from consumption of food derived from the transgenic plant, and because of the risk of gene transfer from plants to gut and soil microorganisms or to consumer’s cells. The present article discusses these possibilities in the light of current scientific knowledge.

  20. Transgenic rice plants expressing cry1Ia5 gene are resistant to stem borer (Chilo agamemnon).

    Science.gov (United States)

    Moghaieb, Reda E A

    2010-01-01

    The stem borer, Chilo agamemnon Bles., is the most serious insect pest in rice fields of the Egyptian Nile Delta. To induce rice plant resistance to Chilo agamemnon, the cry1Ia5 gene was introduced to rice plants (Oryza sativa L.). The integration of the cry1Ia5 gene into the plant genome was confirmed using PCR and Southern blot analyses. The obtained plantlets were transferred to the greenhouse until seeds were collected. Northern blot analysis of the T1 plants confirmed the expression of the cry1Ia5 gene. The insecticidal activity of the transgenic plants against the rice stem borer Chilo agamemnon were tested. The third larval instars were fed on stem cuts from three transgenic lines (L1, L2 and L3) as well as cuts from the control (gfp-transgenic) plants for one week and the mortality percentage was daily recorded. Transgenic line-3 showed the highest mortality percentage after one day (50%) followed by L2 (25%) then L1 (0%). Two days post treatment the mortality percentage increased to 70, 45 and 25% for transgenic lines 1, 2 and 3 respectively. Mortality of 100% was recorded four days post treatment, while those fed on the gfp-transgenic rice (control) showed 0% mortality. Thus, transgenic plants showed high resistance to stem borers and can serve as a novel genetic resource in breeding programs. Transgenic plants expressing BT protein were normal in phenotype with as good seed setting as the nontransgenic control plants.

  1. Identification of plant genes for abiotic stress resistance

    OpenAIRE

    Dixit, S.A.

    2008-01-01

    As water and salt stresses occur frequently and can affect many habitats, plants have developed several strategies to cope with these challenges: either adaptation mechanisms, which allow them to survive the adverse conditions, or specific growth habits to avoid stress conditions. Stress-tolerant plants have evolved certain adaptive mechanisms to display different degrees of tolerance, which are largely determined by genetic plasticity. Differential stress tolerance could be attributed to dif...

  2. Transcriptome Analysis of an Anthracnose-Resistant Tea Plant Cultivar Reveals Genes Associated with Resistance to Colletotrichum camelliae.

    Science.gov (United States)

    Wang, Lu; Wang, Yuchun; Cao, Hongli; Hao, Xinyuan; Zeng, Jianming; Yang, Yajun; Wang, Xinchao

    2016-01-01

    Tea plant breeding is a topic of great economic importance. However, disease remains a major cause of yield and quality losses. In this study, an anthracnose-resistant cultivar, ZC108, was developed. An infection assay revealed different responses to Colletotrichum sp. infection between ZC108 and its parent cultivar LJ43. ZC108 had greater resistance than LJ43 to Colletotrichum camelliae. Additionally, ZC108 exhibited earlier sprouting in the spring, as well as different leaf shape and plant architecture. Microarray data revealed that the genes that are differentially expressed between LJ43 and ZC108 mapped to secondary metabolism-related pathways, including phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis pathways. In addition, genes involved in plant hormone biosynthesis and signaling as well as plant-pathogen interaction pathways were also changed. Quantitative real-time PCR was used to examine the expression of 27 selected genes in infected and uninfected tea plant leaves. Genes encoding a MADS-box transcription factor, NBS-LRR disease-resistance protein, and phenylpropanoid metabolism pathway components (CAD, CCR, POD, beta-glucosidase, ALDH and PAL) were among those differentially expressed in ZC108.

  3. Modified cellulose synthase gene from 'Arabidopsis thaliana' confers herbicide resistance to plants

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, Chris R.; Scieble, Wolf

    2000-10-11

    Cellulose synthase ('CS'), a key enzyme in the biosynthesis of cellulose in plants is inhibited by herbicides comprising thiazolidinones such as 5-tert-butyl-carbamoyloxy-3-(3-trifluromethyl) phenyl-4-thiazolidinone (TZ), isoxaben and 2,6-dichlorobenzonitrile (DCB). Two mutant genes encoding isoxaben and TZ-resistant cellulose synthase have been isolated from isoxaben and TZ-resistant Arabidopsis thaliana mutants. When compared with the gene coding for isoxaben or TZ-sensitive cellulose synthase, one of the resistant CS genes contains a point mutation, wherein glycine residue 998 is replaced by an aspartic acid. The other resistant mutation is due to a threonine to isoleucine change at amino acid residue 942. The mutant CS gene can be used to impart herbicide resistance to a plant; thereby permitting the utilization of the herbicide as a single application at a concentration which ensures the complete or substantially complete killing of weeds, while leaving the transgenic crop plant essentially undamaged.

  4. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant.

    Science.gov (United States)

    Karkman, Antti; Johnson, Timothy A; Lyra, Christina; Stedtfeld, Robert D; Tamminen, Manu; Tiedje, James M; Virta, Marko

    2016-03-01

    Antibiotic resistance among bacteria is a growing problem worldwide, and wastewater treatment plants have been considered as one of the major contributors to the dissemination of antibiotic resistance to the environment. There is a lack of comprehensive quantitative molecular data on extensive numbers of antibiotic resistance genes (ARGs) in different seasons with a sampling strategy that would cover both incoming and outgoing water together with the excess sludge that is removed from the process. In order to fill that gap we present a highly parallel quantitative analysis of ARGs and horizontal gene transfer potential over four seasons at an urban wastewater treatment plant using a high-throughput qPCR array. All analysed transposases and two-thirds of primer sets targeting ARGs were detected in the wastewater. The relative abundance of most of the genes was highest in influent and lower in effluent water and sludge. The resistance profiles of the samples cluster by sample location with a shift from raw influent through the final effluents and dried sludge to the sediments. Wastewater discharge enriched only a few genes, namely Tn25 type transposase gene and clinical class 1 integrons, in the sediment near the discharge pipe, but those enriched genes may indicate a potential for horizontal gene transfer.

  5. Obtaining High Pest-resistant Tobacco Plants Carrying B.t. insecticidal Gene

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To increase the expression level of CryIA(c) gene in transgenic plants, a plant expression vector pBinMoBc carrying the CryIA(c) gene under control of chimeric OM promoter and Ω factor was constructed. As a control, pBinoBc carrying the CryIA(c) gene with the CaMV 35S promoter was also constructed. The vectors were transferred into tobacco plants respectively via Agrobacterium-mediated transformation. ELISA assay showed that the expression level of the CryIA(c) gene in pBinMoBc transgenic tobacco plants was 2.44-times that in pBinoBc transgenic tobacco plants, and it could be up to 0.255% of total soluble proteins. Bioassay showed that pBinMoBc transgenic tobacco plants had more notable insecticidal effect than pBinoBc transgenic tobacco plants. The above results showed that the chimeric OM promoter was a stronger promoter than CaMV 35S promoter that was widely used in plant genetic engineering, and this is very useful in pest-resistant plant genetic engineering.

  6. Identification of plant genes for abiotic stress resistance

    NARCIS (Netherlands)

    Dixit, S.A.

    2008-01-01

    As water and salt stresses occur frequently and can affect many habitats, plants have developed several strategies to cope with these challenges: either adaptation mechanisms, which allow them to survive the adverse conditions, or specific growth habits to avoid stress conditions. Stress-tolerant pl

  7. Comparative Genomics of Non-TNL Disease Resistance Genes from Six Plant Species.

    Science.gov (United States)

    Nepal, Madhav P; Andersen, Ethan J; Neupane, Surendra; Benson, Benjamin V

    2017-09-30

    Disease resistance genes (R genes), as part of the plant defense system, have coevolved with corresponding pathogen molecules. The main objectives of this project were to identify non-Toll interleukin receptor, nucleotide-binding site, leucine-rich repeat (nTNL) genes and elucidate their evolutionary divergence across six plant genomes. Using reference sequences from Arabidopsis, we investigated nTNL orthologs in the genomes of common bean, Medicago, soybean, poplar, and rice. We used Hidden Markov Models for sequence identification, performed model-based phylogenetic analyses, visualized chromosomal positioning, inferred gene clustering, and assessed gene expression profiles. We analyzed 908 nTNL R genes in the genomes of the six plant species, and classified them into 12 subgroups based on the presence of coiled-coil (CC), nucleotide binding site (NBS), leucine rich repeat (LRR), resistance to Powdery mildew 8 (RPW8), and BED type zinc finger domains. Traditionally classified CC-NBS-LRR (CNL) genes were nested into four clades (CNL A-D) often with abundant, well-supported homogeneous subclades of Type-II R genes. CNL-D members were absent in rice, indicating a unique R gene retention pattern in the rice genome. Genomes from Arabidopsis, common bean, poplar and soybean had one chromosome without any CNL R genes. Medicago and Arabidopsis had the highest and lowest number of gene clusters, respectively. Gene expression analyses suggested unique patterns of expression for each of the CNL clades. Differential gene expression patterns of the nTNL genes were often found to correlate with number of introns and GC content, suggesting structural and functional divergence.

  8. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Zhu Wang

    Full Text Available Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs and mobile genetic elements (MGEs in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP. Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.

  9. Testing Transgenic Aspen Plants with bar Gene for Herbicide Resistance under Semi-natural Conditions.

    Science.gov (United States)

    Lebedev, V G; Faskhiev, V N; Kovalenko, N P; Shestibratov, K A; Miroshnikov, A I

    2016-01-01

    Obtaining herbicide resistant plants is an important task in the genetic engineering of forest trees. Transgenic European aspen plants (Populus tremula L.) expressing the bar gene for phosphinothricin resistance have been produced using Agrobacterium tumefaciens-mediated transformation. Successful genetic transformation was confirmed by PCR analysis for thirteen lines derived from two elite genotypes. In 2014-2015, six lines were evaluated for resistance to herbicide treatment under semi-natural conditions. All selected transgenic lines were resistant to the herbicide Basta at doses equivalent to 10 l/ha (twofold normal field dosage) whereas the control plants died at 2.5 l/ha. Foliar NH4-N concentrations in transgenic plants did not change after treatment. Extremely low temperatures in the third ten-day period of October 2014 revealed differences in freeze tolerance between the lines obtained from Pt of f2 aspen genotypes. Stable expression of the bar gene after overwintering outdoors was confirmed by RT-PCR. On the basis of the tests, four transgenic aspen lines were selected. The bar gene could be used for retransformation of transgenic forest trees expressing valuable traits, such as increased productivity.

  10. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany.

    Science.gov (United States)

    Hembach, Norman; Schmid, Ferdinand; Alexander, Johannes; Hiller, Christian; Rogall, Eike T; Schwartz, Thomas

    2017-01-01

    Seven wastewater treatment plants (WWTPs) with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.

  11. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany

    Science.gov (United States)

    Hembach, Norman; Schmid, Ferdinand; Alexander, Johannes; Hiller, Christian; Rogall, Eike T.; Schwartz, Thomas

    2017-01-01

    Seven wastewater treatment plants (WWTPs) with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded. PMID:28744270

  12. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany

    Directory of Open Access Journals (Sweden)

    Norman Hembach

    2017-07-01

    Full Text Available Seven wastewater treatment plants (WWTPs with different population equivalents and catchment areas were screened for the prevalence of the colistin resistance gene mcr-1 mediating resistance against last resort antibiotic polymyxin E. The abundance of the plasmid-associated mcr-1 gene in total microbial populations during water treatment processes was quantitatively analyzed by qPCR analyses. The presence of the colistin resistance gene was documented for all of the influent wastewater samples of the seven WWTPs. In some cases the mcr-1 resistance gene was also detected in effluent samples of the WWTPs after conventional treatment reaching the aquatic environment. In addition to the occurrence of mcr-1 gene, CTX-M-32, blaTEM, CTX-M, tetM, CMY-2, and ermB genes coding for clinically relevant antibiotic resistances were quantified in higher abundances in all WWTPs effluents. In parallel, the abundances of Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli were quantified via qPCR using specific taxonomic gene markers which were detected in all influent and effluent wastewaters in significant densities. Hence, opportunistic pathogens and clinically relevant antibiotic resistance genes in wastewaters of the analyzed WWTPs bear a risk of dissemination to the aquatic environment. Since many of the antibiotic resistance gene are associated with mobile genetic elements horizontal gene transfer during wastewater treatment can't be excluded.

  13. Transgenic tobacco plants harboring tomato proteinase inhibitor II gene and their insect resistance

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The plant expression vectors pBCT2 and pBT2 were constructed with the cDNA sequence (tin2) and genomic DNA sequence (tin2i) of tomato proteinase inhibitor II gene respectively. Then the two expression vectors were transferred into tobacco via the Agrobacterium tumefaciens strain LBA4404, and transgenic tobacco plants were generated. Molecular analysis and trypsin activity assay showed that both cDNA and genomic DNA were expressed properly in the transgenic plants. Insecticidal activities in these transgenic plants indicated that transgenic tobacco plants carrying tin2i sequence were more resistant to 2-instar larvae of Heliothis armigera Hubner than those carrying tin2 sequence. Therefore the intron of tin2i sequence might be a contributor to insecticidal activity of the transgenic tobacco.

  14. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant

    Science.gov (United States)

    Li, Jing; Zhou, Liantong; Zhang, Xiangyu; Xu, Caijia; Dong, Liming; Yao, Maosheng

    2016-01-01

    Air samples from twelve sampling sites (including seven intra-plant sites, one upwind site and four downwind sites) from a wastewater treatment plant (WWTP) in Beijing were collected using a Reuter Centrifugal Sampler High Flow (RCS); and their microbial fractions were studied using culturing and high throughput gene sequence. In addition, the viable (fluorescent) bioaerosol concentrations for 7 intra-plant sites were also monitored for 30 min each using an ultraviolet aerodynamic particle sizer (UV-APS). Both air and water samples collected from the plant were investigated for possible bacterial antibiotic resistance genes and integrons using polymerase chain reaction (PCR) coupled with gel electrophoresis. The results showed that the air near sludge thickening basin was detected to have the highest level of culturable bacterial aerosols (up to 1697 CFU/m3) and fungal aerosols (up to 930 CFU/m3). For most sampling sites, fluorescent peaks were observed at around 3-4 μm, except the office building with a peak at 1.5 μm, with a number concentration level up to 1233-6533 Particles/m3. About 300 unique bacterial species, including human opportunistic pathogens, such as Comamonas Testosteroni and Moraxella Osloensis, were detected from the air samples collected over the biological reaction basin. In addition, we have detected the sul2 gene resistant to cotrimoxazole (also known as septra, bactrim and TMP-SMX) and class 1 integrase gene from the air samples collected from the screen room and the biological reaction basin. Overall, the screen room, sludge thickening basin and biological reaction basin imposed significant microbial exposure risks, including those from airborne antibiotic resistance genes.

  15. Engineered plant virus resistance.

    Science.gov (United States)

    Galvez, Leny C; Banerjee, Joydeep; Pinar, Hasan; Mitra, Amitava

    2014-11-01

    Virus diseases are among the key limiting factors that cause significant yield loss and continuously threaten crop production. Resistant cultivars coupled with pesticide application are commonly used to circumvent these threats. One of the limitations of the reliance on resistant cultivars is the inevitable breakdown of resistance due to the multitude of variable virus populations. Similarly, chemical applications to control virus transmitting insect vectors are costly to the farmers, cause adverse health and environmental consequences, and often result in the emergence of resistant vector strains. Thus, exploiting strategies that provide durable and broad-spectrum resistance over diverse environments are of paramount importance. The development of plant gene transfer systems has allowed for the introgression of alien genes into plant genomes for novel disease control strategies, thus providing a mechanism for broadening the genetic resources available to plant breeders. Genetic engineering offers various options for introducing transgenic virus resistance into crop plants to provide a wide range of resistance to viral pathogens. This review examines the current strategies of developing virus resistant transgenic plants.

  16. Detection of antibiotic resistance genes in wastewater treatment plant – molecular and classical approach

    Directory of Open Access Journals (Sweden)

    Ziembińska-Buczyńska Aleksandra

    2015-12-01

    Full Text Available Antibiotics are a group of substances potentially harmful to the environment. They can play a role in bacterial resistance transfer among pathogenic and non-pathogenic bacteria. In this experiment three representatives of medically important chemotherapeutics, confirmed to be present in high concentrations in wastewater treatment plants with HPLC analysis were used: erythromycin, sulfamethoxazole and trimethoprim. Erythromycin concentration in activated sludge was not higher than 20 ng L−1. N-acetylo-sulfamethoxazole concentration was 3349 ± 719 in winter and 2933 ± 429 ng L−1 in summer. Trimethoprim was present in wastewater at concentrations 400 ± 22 and 364 ± 60 ng L−1, respectively in winter and summer. Due to a wide variety of PCR-detectable resistance mechanisms towards these substances, the most common found in literature was chosen. For erythromycin: erm and mef genes, for sulfamethoxazole: sul1, sul2, sul3 genes, in the case of trimethoprim resistance dhfrA1 and dhfr14 were used in this study. The presence of resistance genes were analyzed in pure strains isolated from activated sludge and in the activated sludge sample itself. The research revealed that the value of minimal inhibitory concentration (MIC did not correspond with the expected presence of more than one resistance mechanisms. Most of the isolates possessed only one of the genes responsible for a particular chemotherapeutic resistance. It was confirmed that it is possible to monitor the presence of resistance genes directly in activated sludge using PCR. Due to the limited isolates number used in the experiment these results should be regarded as preliminary.

  17. Expression of a chitinase gene from Metarhizium anisopliae in tobacco plants confers resistance against Rhizoctonia solani.

    Science.gov (United States)

    Kern, Marcelo Fernando; Maraschin, Simone de Faria; Vom Endt, Débora; Schrank, Augusto; Vainstein, Marilene Henning; Pasquali, Giancarlo

    2010-04-01

    The chit1 gene from the entomopathogenic fungus Metarhizium anisopliae, encoding the endochitinase CHIT42, was placed under the control of the CaMV 35S promoter, and the resulting construct was transferred to tobacco. Seventeen kanamycin-resistant transgenic lines were recovered, and the presence of the transgene was confirmed by polymerase chain reactions and Southern blot hybridization. The number of chit1 copies was determined to be varying from one to four. Copy number had observable effects neither on plant growth nor development. Substantial heterogeneity concerning production of the recombinant chitinase, and both general and specific chitinolytic activities were detected in leaf extracts from primary transformants. The highest chitinase activities were found in plants harboring two copies of chit1 inserts at different loci. Progeny derived from self-pollination of the primary transgenics revealed a stable inheritance pattern, with transgene segregation following a mendelian dihybrid ratio. Two selected plants expressing high levels of CHIT42 were consistently resistant to the soilborne pathogen Rhizoctonia solani, suggesting a direct relationship between enzyme activity and reduction of foliar area affected by fungal lesions. To date, this is the first report of resistance to fungal attack in plants mediated by a recombinant chitinase from an entomopathogenic and acaricide fungus.

  18. Acquiring transgenic tobacco plants with insect resistance and glyphosate tolerance by fusion gene transformation.

    Science.gov (United States)

    Sun, He; Lang, Zhihong; Zhu, Li; Huang, Dafang

    2012-10-01

    The advantages of gene 'stacking' or 'pyramiding' are obvious in genetically modified (GM) crops, and several different multi-transgene-stacking methods are available. Using linker peptides for multiple gene transformation is considered to be a good method to meet a variety of needs. In our experiment, the Bt cry1Ah gene, which encodes the insect-resistance protein, and the mG ( 2 ) -epsps gene, which encodes the glyphosate-tolerance protein, were connected by a 2A or LP4/2A linker. Linker 2A is a peptide from the foot-and-mouth disease virus (FMDV) that has self-cleavage activity. LP4 is a peptide from Raphanus sativus seeds that has a recognition site and is cleaved by a protease. LP4/2A is a hybrid peptide that contains the first 9 amino acids of LP4 and 20 amino acids from 2A. We used the linker peptide to construct four coordinated expression vectors: pHAG, pHLAG, pGAH and pGLAH. Two single gene expression vectors, pSAh and pSmG(2), were used as controls. The six expression vectors and the pCAMBIA2301 vector were transferred into tobacco by Agrobacterium tumefaciens-mediated transformation, and 529 transformants were obtained. Molecular detection and bioassay detection data demonstrated that the transgenic tobaccos possessed good pest resistance and glyphosate tolerance. The two genes in the fusion vector were expressed simultaneously. The plants with the genes linked by the LP4/2A peptide showed better pest resistance and glyphosate tolerance than the plants with the genes linked by 2A. The expression level of the two genes linked by LP4/2A was not significantly different from the single gene vector. Key message The expression level of the two genes linked by LP4/2A was higher than those linked by 2A and was not significantly different from the single gene vector.

  19. [Construction of plant expression vectors harboring a peptide antibiotic-apidaecin gene and resistance analysis of the transgenic tobacco].

    Science.gov (United States)

    Wang, H; Sun, C; Peng, X X

    2001-07-01

    Two plant expression vectors(pBinPRHbI and pBinPRSIHbI) were constructed: Firstly, apidaecin gene were fused to the signal peptide coding sequencing of a PR-protein, and cloned into a binary vector pBin438 to form pBinPRHbI. Then, the cassette consisting of 35S promoter, PR signal peptide coding sequencing and apidaecin gene was cut off from pBinPRHbI and inserted into another plant expression vector pBinPRSI to produce a bivalent plant expression vector pBinPRSIHbI. pBinPRSI was constructed previously in our lab and contained PR signal peptide and Shiva-I fusion gene under control of 35S promoter. The three plant expression vectors were introduced into tobacco by Agrobacterium-mediated transformation. The positive rate of PCR was 95% in all putative transgenic plants. Results from Southern blot indicated that foreign genes were integrated into tobacco genome and RT-PCR analysis proved that the foreign gene was transcribed in transgenic tobacco. The transgenic tobacco showed higher resistance to P. syringae pv tabaci, the causal agent of tobacco wild fire disease, than their original cultivars. From the disease index, the transgenic plants carrying apidaecin and Shiva-I genes had highest resistance among three kinds of transgenic plants, and the plants carrying Shiva-I gene alone had lowest resistance.

  20. Plant defense gene promoter enhances the reliability of shiva-1 gene-induced resistance to soft rot disease in potato.

    Science.gov (United States)

    Yi, Jung Yoon; Seo, Hyo Won; Yang, Moon Sik; Robb, E Jane; Nazar, Ross N; Lee, Shin Woo

    2004-11-01

    PAL5, a tomato (Lycopersicon esculentum Mill.) plant defense gene that encodes phenylalanine ammonia-lyase, is known to respond to a variety of environmental stresses including pathogen infection and wounding. A shiva-1 gene recombinant that encodes a small synthetic antibacterial peptide under the PAL5 gene promoter was transformed into potato (Solanum tuberosum L.) and its ability to induce resistance to Erwinia carotovora was compared with a construct under the control of the constitutive and widely used cauliflower mosaic virus (CaMV) 35S promoter. The shiva-1 peptide, an analog of natural cecropin B, was shown previously to have high bactericidal activity in vitro, but when expressed in vivo under the control of the CaMV 35S promoter, the effects were very inconsistent. As observed previously, in the present studies a few transformants with the CaMV 35S promoter were highly resistant when assayed for susceptibility to soft rot disease. In marked contrast the majority of transformants with the PAL5 gene promoter were highly resistant. More-detailed analyses of the incorporated DNA indicated that most of the transformants with the CaMV 35S promoter contained multiple copies of the transforming DNA while all of the PAL5 recombinants contained single copies. The highly resistant CaMV 35S recombinant also was present as a single copy. The results indicate that, at least in this instance, a constitutive promoter may not be ideal for the effective expression of a foreign gene and suggest that multiple insertions may have negative consequences.

  1. Identification of maize genes associated with host plant resistance or susceptibility to Aspergillus flavus infection and aflatoxin accumulation.

    Science.gov (United States)

    Kelley, Rowena Y; Williams, W Paul; Mylroie, J Erik; Boykin, Deborah L; Harper, Jonathan W; Windham, Gary L; Ankala, Arunkanth; Shan, Xueyan

    2012-01-01

    Aspergillus flavus infection and aflatoxin contamination of maize pose negative impacts in agriculture and health. Commercial maize hybrids are generally susceptible to this fungus. Significant levels of host plant resistance have been observed in certain maize inbred lines. This study was conducted to identify maize genes associated with host plant resistance or susceptibility to A. flavus infection and aflatoxin accumulation. Genome wide gene expression levels with or without A. flavus inoculation were compared in two resistant maize inbred lines (Mp313E and Mp04:86) in contrast to two susceptible maize inbred lines (Va35 and B73) by microarray analysis. Principal component analysis (PCA) was used to find genes contributing to the larger variances associated with the resistant or susceptible maize inbred lines. The significance levels of gene expression were determined by using SAS and LIMMA programs. Fifty candidate genes were selected and further investigated by quantitative RT-PCR (qRT-PCR) in a time-course study on Mp313E and Va35. Sixteen of the candidate genes were found to be highly expressed in Mp313E and fifteen in Va35. Out of the 31 highly expressed genes, eight were mapped to seven previously identified quantitative trait locus (QTL) regions. A gene encoding glycine-rich RNA binding protein 2 was found to be associated with the host hypersensitivity and susceptibility in Va35. A nuclear pore complex protein YUP85-like gene was found to be involved in the host resistance in Mp313E. Maize genes associated with host plant resistance or susceptibility were identified by a combination of microarray analysis, qRT-PCR analysis, and QTL mapping methods. Our findings suggest that multiple mechanisms are involved in maize host plant defense systems in response to Aspergillus flavus infection and aflatoxin accumulation. These findings will be important in identification of DNA markers for breeding maize lines resistant to aflatoxin accumulation.

  2. Identification of maize genes associated with host plant resistance or susceptibility to Aspergillus flavus infection and aflatoxin accumulation.

    Directory of Open Access Journals (Sweden)

    Rowena Y Kelley

    Full Text Available BACKGROUND: Aspergillus flavus infection and aflatoxin contamination of maize pose negative impacts in agriculture and health. Commercial maize hybrids are generally susceptible to this fungus. Significant levels of host plant resistance have been observed in certain maize inbred lines. This study was conducted to identify maize genes associated with host plant resistance or susceptibility to A. flavus infection and aflatoxin accumulation. RESULTS: Genome wide gene expression levels with or without A. flavus inoculation were compared in two resistant maize inbred lines (Mp313E and Mp04:86 in contrast to two susceptible maize inbred lines (Va35 and B73 by microarray analysis. Principal component analysis (PCA was used to find genes contributing to the larger variances associated with the resistant or susceptible maize inbred lines. The significance levels of gene expression were determined by using SAS and LIMMA programs. Fifty candidate genes were selected and further investigated by quantitative RT-PCR (qRT-PCR in a time-course study on Mp313E and Va35. Sixteen of the candidate genes were found to be highly expressed in Mp313E and fifteen in Va35. Out of the 31 highly expressed genes, eight were mapped to seven previously identified quantitative trait locus (QTL regions. A gene encoding glycine-rich RNA binding protein 2 was found to be associated with the host hypersensitivity and susceptibility in Va35. A nuclear pore complex protein YUP85-like gene was found to be involved in the host resistance in Mp313E. CONCLUSION: Maize genes associated with host plant resistance or susceptibility were identified by a combination of microarray analysis, qRT-PCR analysis, and QTL mapping methods. Our findings suggest that multiple mechanisms are involved in maize host plant defense systems in response to Aspergillus flavus infection and aflatoxin accumulation. These findings will be important in identification of DNA markers for breeding maize lines

  3. Abundance of antibiotic resistance genes in five municipal wastewater treatment plants in the Monastir Governorate, Tunisia.

    Science.gov (United States)

    Rafraf, Ikbel Denden; Lekunberri, Itziar; Sànchez-Melsió, Alexandre; Aouni, Mahjoub; Borrego, Carles M; Balcázar, José Luis

    2016-12-01

    Antimicrobial resistance is a growing and significant threat to global public health, requiring better understanding of the sources and mechanisms involved in its emergence and spread. We investigated the abundance of antibiotic resistance genes (ARGs) before and after treatment in five wastewater treatment plants (WWTPs) located in different areas of the Monastir Governorate (Tunisia). Three of these WWTPs (Frina, Sahline and Zaouiet) use a conventional activated sludge process as secondary treatment, whereas the WWTP located in Beni Hassen applies an ultraviolet disinfection step after the activated sludge process and the WWTP located in Moknine treats wastewater using naturally aerated lagoons as a secondary treatment process. The abundance of six ARGs (blaCTX-M, blaTEM, qnrA, qnrS, sul I and ermB) and the class 1 integron-integrase gene (intI1) were determined by quantitative PCR. All ARGs and the intI1 gene were detected in the wastewater samples, except the blaCTX-M gene, which was not detected in both influent and effluent samples from Sahline and Beni Hassen WWTPs, and the qnrS gene, which was not detected neither in the WWTP influent in Moknine nor in the WWTP effluent in Beni Hassen. Although the relative concentration of ARGs was generally found to be similar between samples collected before and after the wastewater treatment, the abundance of blaCTX-M, blaTEM, and qnrS genes was higher in the effluent of the Frina WWTP which, unlike other WWTPs, not only receives domestic or industrial sewage but also untreated hospital waste. To the best of our knowledge, this study quantified for the first time the abundance of ARGs in different Tunisian WWTPs, and the results agree with previous studies suggesting that conventional wastewater treatment does not efficiently reduce ARGs. Therefore, these findings could be useful to improve the design or operation of WWTPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [Study on transformation of snowdrop lectin gene to chrysanthemum and aphid resistance of the transgenic plants].

    Science.gov (United States)

    Wang, Guan-Lin; Liu, Yan-Hong; Guo, Shao-Hua; Wang, Yu; Ji, Yan; Fang, Hong-Jun

    2004-12-01

    Agrobacterium-mediated transformation in chrysanthemum was studied to prevent the insect pest of aphid (Mizus persicae). The gna gene was successfully transferred into chrysanthemum by leaf dish, and 93 transgenic clones were obtained. The highest transformation frequency 11.21% was achieved on the optimization facts, which were medium YEB with pH5.6, bacterial concentration OD600 = 0.4, precultivation for one day, cocultivation for four days, the cocultivation media supplemented with GA3 0.5 mg/L and leaf explants growed for 45 days. The results from PCR and FQ-PCR analysis confirmed that gna gene was integrated into the genome of chrysanthemum plants. The insect bioassay with aphid showed that the aphid resistance of different transgenic plants was difference, and the rate of aphid population inhibition of them were from 10% to 84% with an average rate of 39.4%. The leaf-extracts from different transgenic plants showed varying actinties in red-blood cell bioassay.

  5. Cytochrome b gene structure and consequences for resistance to Qo inhibitor fungicides in plant pathogens.

    Science.gov (United States)

    Grasso, Valeria; Palermo, Simona; Sierotzki, Helge; Garibaldi, Angelo; Gisi, Ulrich

    2006-06-01

    The cytochrome b (cyt b) gene structure was characterized for different agronomically important plant pathogens, such as Puccinia recondita f sp tritici (Erikss) CO Johnston, P graminis f sp tritici Erikss and Hennings, P striiformis f sp tritici Erikss, P coronata f sp avenae P Syd & Syd, P hordei GH Otth, P recondita f sp secalis Roberge, P sorghi Schwein, P horiana Henn, Uromyces appendiculatus (Pers) Unger, Phakopsora pachyrhizi Syd & P Syd, Hemileia vastatrix Berk & Broome, Alternaria solani Sorauer, A alternata (Fr) Keissl and Plasmopara viticola (Berk & Curt) Berlese & de Toni. The sequenced fragment included the two hot spot regions in which mutations conferring resistance to QoI fungicides may occur. The cyt b gene structure of these pathogens was compared with that of other species from public databases, including the strobilurin-producing fungus Mycena galopoda (Pers) P Kumm, Saccharomyces cerevisiae Meyer ex Hansen, Venturia inaequalis (Cooke) Winter and Mycosphaerella fijiensis Morelet. In all rust species, as well as in A solani, resistance to QoI fungicides caused by the mutation G143A has never been reported. A type I intron was observed directly after the codon for glycine at position 143 in these species. This intron was absent in pathogens such as A alternata, Blumeria graminis (DC) Speer, Pyricularia grisea Sacc, Mycosphaerella graminicola (Fuckel) J Schröt, M fijiensis, V inaequalis and P viticola, in which resistance to QoI fungicides has occurred and the glycine is replaced by alanine at position 143 in the resistant genotype. The present authors predict that a nucleotide substitution in codon 143 would prevent splicing of the intron, leading to a deficient cytochrome b, which is lethal. As a consequence, the evolution of resistance to QoI fungicides based on G143A is not likely to evolve in pathogens carrying an intron directly after this codon.

  6. High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems.

    Science.gov (United States)

    Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong

    2016-06-01

    Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China.

  7. [Enhanced resistance to phytopathogenic bacteria in transgenic tobacco plants with synthetic gene of antimicrobial peptide cecropin P1].

    Science.gov (United States)

    Zakharchenko, N S; Rukavtsova, E B; Gudkov, A T; Bur'ianov, Ia I

    2005-11-01

    Plasmids with a synthetic gene of the mammalian antimicrobial peptide cecropin P1 (cecP1) controlled by the constitutive promoter 35S RNA of cauliflower mosaic virus were constructed. Agrobacterial transformation of tobacco plants was conducted using the obtained recombinant binary vector. The presence of gene cecP1 in the plant genome was confirmed by PCR. The expression of gene cecP1 in transgenic plants was shown by Northern blot analysis. The obtained transgenic plants exhibit enhanced resistance to phytopathogenic bacteria Pseudomonas syringae, P. marginata, and Erwinia carotovora. The ability of transgenic plants to express cecropin P1 was transmitted to the progeny. F1 and F2 plants had the normal phenotype (except for a changed coloration of flowers) and retained the ability to produce normal viable seeds upon self-pollination. Lines of F1 plants with Mendelian segregation of transgenic traits were selected.

  8. EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia scoparia

    OpenAIRE

    Gaines, Todd A.; Barker, Abigail L.; Patterson, Eric L.; Westra, Philip; Westra, Eric P.; Wilson, Robert G.; Jha, Prashant; Kumar, Vipan; Andrew R Kniss

    2016-01-01

    Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebrask...

  9. Genes Expressed Differentially in Hessian Fly Larvae Feeding in Resistant and Susceptible Plants

    Science.gov (United States)

    The Hessian fly, Mayetiola destructor, is a destructive pest of wheat worldwide and mainly controlled by deploying resistant cultivars. Hessian fly larvae manipulate susceptible plants extensively, but are unable to manipulate resistant plants and thus die in them. The mechanisms for Hessian fly l...

  10. Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load

    DEFF Research Database (Denmark)

    Laht, Mailis; Karkman, Antti; Voolaid, Veiko

    2014-01-01

    Antibiotics and antibiotic resistant bacteria enter wastewater treatment plants (WWTPs), an environment where resistance genes can potentially spread and exchange between microbes. Several antibiotic resistance genes (ARGs) were quantified using qPCR in three WWTPs of decreasing capacity located...... conclude that there is neither considerable enrichment nor purification of antibiotic resistance genes in studied conventional WWTPs....... in Helsinki, Tallinn, and Tartu, respectively: sulphonamide resistance genes (sul1 and sul2), tetracycline resistance genes (tetM and tetC), and resistance genes for extended spectrum beta-lactams (blaoxa-58, blashv-34, and blactx-m-32). To avoid inconsistencies among qPCR assays we normalised the ARG...

  11. Reference genes to study herbicide stress response in Lolium sp.: up-regulation of P450 genes in plants resistant to acetolactate-synthase inhibitors.

    Directory of Open Access Journals (Sweden)

    Arnaud Duhoux

    Full Text Available Variation in the expression of numerous genes is at the basis of plant response to environmental stresses. Non-target-site-based resistance to herbicides (NTSR, the major threat to grass weed chemical control, is governed by a subset of the genes involved in herbicide stress response. Quantitative PCR assays allowing reliable comparison of gene expression are thus key to identify genes governing NTSR. This work aimed at identifying a set of reference genes with a stable expression to be used as an internal standard for the normalisation of quantitative PCR data in studies investigating NTSR to herbicides inhibiting acetolactate synthase (ALS in the major grass weed Lolium sp. Gene expression stability was assessed in plants resistant or sensitive to two ALS inhibitors, subjected or not to herbicide stress. Using three complementary approaches implemented in the programs BestKeeper, NormFinder and geNorm, cap-binding protein, glyceraldehyde-3-phosphate-dehydrogenase and ubiquitin were identified as the most suitable reference genes. This reference gene set can probably be used to study herbicide response in other weed species. It was used to compare the expression of the genes encoding two herbicide target enzymes (ALS and acetyl-coenzyme A carboxylase and five cytochromes P450 (CYP with potential herbicide-degrading activity between plants resistant or sensitive to ALS inhibitors. Overall, herbicide application enhanced CYP gene expression. Constitutive up-regulation of all CYP genes observed in resistant plants compared to sensitive plants suggested enhanced secondary metabolism in the resistant plants. Comprehensive transcriptome studies associated to gene expression analyses using the reference gene set validated here are required to unravel NTSR genetic determinants.

  12. Transportin-SR is required for proper splicing of resistance genes and plant immunity.

    Directory of Open Access Journals (Sweden)

    Shaohua Xu

    2011-06-01

    Full Text Available Transportin-SR (TRN-SR is a member of the importin-β super-family that functions as the nuclear import receptor for serine-arginine rich (SR proteins, which play diverse roles in RNA metabolism. Here we report the identification and cloning of mos14 (modifier of snc1-1, 14, a mutation that suppresses the immune responses conditioned by the auto-activated Resistance (R protein snc1 (suppressor of npr1-1, constitutive 1. MOS14 encodes a nuclear protein with high similarity to previously characterized TRN-SR proteins in animals. Yeast two-hybrid assays showed that MOS14 interacts with AtRAN1 via its N-terminus and SR proteins via its C-terminus. In mos14-1, localization of several SR proteins to the nucleus was impaired, confirming that MOS14 functions as a TRN-SR. The mos14-1 mutation results in altered splicing patterns of SNC1 and another R gene RPS4 and compromised resistance mediated by snc1 and RPS4, suggesting that nuclear import of SR proteins by MOS14 is required for proper splicing of these two R genes and is important for their functions in plant immunity.

  13. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species.

    Science.gov (United States)

    Chen, Jun; Ying, Guang-Guo; Wei, Xiao-Dong; Liu, You-Sheng; Liu, Shuang-Shuang; Hu, Li-Xin; He, Liang-Ying; Chen, Zhi-Feng; Chen, Fan-Rong; Yang, Yong-Qiang

    2016-11-15

    This study aims to investigate the removal of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale constructed wetlands (CWs) with different flow configurations or plant species including the constructed wetland with or without plant. Six mesocosm-scale CWs with three flow types (surface flow, horizontal subsurface flow and vertical subsurface flow) and two plant species (Thaliadealbata Fraser and Iris tectorum Maxim) were set up in the outdoor. 8 antibiotics including erythromycin-H2O (ETM-H2O), monensin (MON), clarithromycin (CTM), leucomycin (LCM), sulfamethoxazole (SMX), trimethoprim (TMP), sulfamethazine (SMZ) and sulfapyridine (SPD) and 12 genes including three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), two chloramphenicol resistance genes (cmlA and floR) and 16S rRNA (bacteria) were determined in different matrices (water, particle, substrate and plant phases) from the mesocosm-scale systems. The aqueous removal efficiencies of total antibiotics ranged from 75.8 to 98.6%, while those of total ARGs varied between 63.9 and 84.0% by the mesocosm-scale CWs. The presence of plants was beneficial to the removal of pollutants, and the subsurface flow CWs had higher pollutant removal than the surface flow CWs, especially for antibiotics. According to the mass balance analysis, the masses of all detected antibiotics during the operation period were 247,000, 4920-10,600, 0.05-0.41 and 3500-60,000μg in influent, substrate, plant and effluent of the mesocosm-scale CWs. In the CWs, biodegradation, substrate adsorption and plant uptake all played certain roles in reducing the loadings of nutrients, antibiotics and ARGs, but biodegradation was the most important process in the removal of these pollutants.

  14. Characterization of the Soluble NSF Attachment Protein gene family identifies two members involved in additive resistance to a plant pathogen

    Science.gov (United States)

    Lakhssassi, Naoufal; Liu, Shiming; Bekal, Sadia; Zhou, Zhou; Colantonio, Vincent; Lambert, Kris; Barakat, Abdelali; Meksem, Khalid

    2017-01-01

    Proteins with Tetratricopeptide-repeat (TPR) domains are encoded by large gene families and distributed in all plant lineages. In this study, the Soluble NSF-Attachment Protein (SNAP) subfamily of TPR containing proteins is characterized. In soybean, five members constitute the SNAP gene family: GmSNAP18, GmSNAP11, GmSNAP14, GmSNAP02, and GmSNAP09. Recently, GmSNAP18 has been reported to mediate resistance to soybean cyst nematode (SCN). Using a population of recombinant inbred lines from resistant and susceptible parents, the divergence of the SNAP gene family is analysed over time. Phylogenetic analysis of SNAP genes from 22 diverse plant species showed that SNAPs were distributed in six monophyletic clades corresponding to the major plant lineages. Conservation of the four TPR motifs in all species, including ancestral lineages, supports the hypothesis that SNAPs were duplicated and derived from a common ancestor and unique gene still present in chlorophytic algae. Syntenic analysis of regions harbouring GmSNAP genes in soybean reveals that this family expanded from segmental and tandem duplications following a tetraploidization event. qRT-PCR analysis of GmSNAPs indicates a co-regulation following SCN infection. Finally, genetic analysis demonstrates that GmSNAP11 contributes to an additive resistance to SCN. Thus, GmSNAP11 is identified as a novel minor gene conferring resistance to SCN. PMID:28338077

  15. Proportional odds model applied to mapping of disease resistance genes in plants

    Directory of Open Access Journals (Sweden)

    Maria Helena Spyrides-Cunha

    2000-03-01

    Full Text Available Molecular markers have been used extensively to map quantitative trait loci (QTL controlling disease resistance in plants. Mapping is usually done by establishing a statistical association between molecular marker genotypes and quantitative variations in disease resistance. However, most statistical approaches require a continuous distribution of the response variable, a requirement not always met since evaluation of disease resistance is often done using visual ratings based on an ordinal scale of disease severity. This paper discusses the application of the proportional odds model to the mapping of disease resistance genes in plants amenable to expression as ordinal data. The model was used to map two resistance QTL of maize to Puccinia sorghi. The microsatellite markers bngl166 and bngl669, located on chromosomes 2 and 8, respectively, were used to genotype F2 individuals from a segregating population. Genotypes at each marker locus were then compared by assessing disease severity in F3 plants derived from the selfing of each genotyped F2 plant based on an ordinal scale severity. The residual deviance and the chi-square score statistic indicated a good fit of the model to the data and the odds had a constant proportionality at each threshold. Single-marker analyses detected significant differences among marker genotypes at both marker loci, indicating that these markers were linked to disease resistance QTL. The inclusion of the interaction term after single-marker analysis provided strong evidence of an epistatic interaction between the two QTL. These results indicate that the proportional odds model can be used as an alternative to traditional methods in cases where the response variable consists of an ordinal scale, thus eliminating the problems of heterocedasticity, non-linearity, and the non-normality of residuals often associated with this type of data.Marcadores moleculares têm sido extensivamente usados para o mapeamento de loci de

  16. EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia scoparia.

    Science.gov (United States)

    Gaines, Todd A; Barker, Abigail L; Patterson, Eric L; Westra, Philip; Westra, Eric P; Wilson, Robert G; Jha, Prashant; Kumar, Vipan; Kniss, Andrew R

    2016-01-01

    Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number.

  17. Characterization of a mitogen-activated protein kinase gene from cucumber required for trichoderma-conferred plant resistance.

    Science.gov (United States)

    Shoresh, Michal; Gal-On, Amit; Leibman, Diana; Chet, Ilan

    2006-11-01

    The fungal biocontrol agent Trichoderma asperellum has been recently shown to induce systemic resistance in plants through a mechanism that employs jasmonic acid and ethylene signal transduction pathways. Mitogen-activated protein kinase (MAPK) proteins have been implicated in the signal transduction of a wide variety of plant stress responses. Here we report the identification and characterization of a Trichoderma-induced MAPK (TIPK) gene function in cucumber (Cucumis sativus). Similar to its homologs, wound-induced protein kinase, MPK3, and MPK3a, TIPK is also induced by wounding. Normally, preinoculation of roots with Trichoderma activates plant defense mechanisms, which result in resistance to the leaf pathogen Pseudomonas syringae pv lachrymans. We used a unique attenuated virus vector, Zucchini yellow mosaic virus (ZYMV-AGII), to overexpress TIPK protein and antisense (AS) RNA. Plants overexpressing TIPK were more resistant to pathogenic bacterial attack than control plants, even in the absence of Trichoderma preinoculation. On the other hand, plants expressing TIPK-AS revealed increased sensitivity to pathogen attack. Moreover, Trichoderma preinoculation could not protect these AS plants against subsequent pathogen attack. We therefore demonstrate that Trichoderma exerts its protective effect on plants through activation of the TIPK gene, a MAPK that is involved in signal transduction pathways of defense responses.

  18. Altered gene regulation and potential association with metabolic resistance development to imidacloprid in the tarnished plant bug, Lygus lineolaris.

    Science.gov (United States)

    Zhu, Yu Cheng; Luttrell, Randall

    2015-01-01

    Chemical spray on cotton is almost an exclusive method for controlling tarnished plant bug (TPB), Lygus lineolaris. Frequent use of imidacloprid is a concern for neonicotinoid resistance in this key pest. Information of how and why TPB becomes less susceptible to imidacloprid is essential for effective monitoring and managing resistance. Microarray analysis of 6688 genes in imidacloprid-selected TPB (Im1500FF) revealed 955 upregulated and 1277 downregulated (≥twofold) genes in Im1500FF, with 369 and 485 of them annotated. Five P450 and nine esterase genes were significantly upregulated, and only one esterase gene and no P450 genes were downregulated. Other upregulated genes include helicases, phosphodiesterases, ATPases and kinases. Pathway analyses identified 65 upregulated cDNAs that encode 51 different enzymes involved in 62 different pathways, including P450 and esterase genes for drug and xenobiotic metabolisms. Sixty-four downregulated cDNAs code only 17 enzymes that are associated with only 23 pathways mostly related to food digestion. This study demonstrated a significant change in gene expression related to metabolic processes in imidacloprid-selected TPB, resulting in overexpression of P450 and esterase genes for potential excess detoxification and cross/multiple resistance development. The identification of these and other enzyme genes establishes a foundation to explore the complicity of potential imidacloprid resistance in TPB. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  19. Resistance to Fusarium oxysporum f. sp. gladioli in transgenic Gladiolus plants expressing either a bacterial chloroperoxidase or fungal chitinase genes

    Science.gov (United States)

    Three antifungal genes, a non-heme chloroperoxidase from Pseudomonas pyrrocinia, and an exochitinase and endochitinase from Fusarium venetanum under regulation by the CaMV 35S promoter, were used to transform Gladiolus for resistance to Fusarium oxysporum f. sp. gladioli. Gladiolus plants were conf...

  20. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance.

    Science.gov (United States)

    Meng, Xiangzong; Xu, Juan; He, Yunxia; Yang, Kwang-Yeol; Mordorski, Breanne; Liu, Yidong; Zhang, Shuqun

    2013-03-01

    Arabidopsis thaliana MPK3 and MPK6, two mitogen-activated protein kinases (MAPKs or MPKs), play critical roles in plant disease resistance by regulating multiple defense responses. Previously, we characterized the regulation of phytoalexin biosynthesis by Arabidopsis MPK3/MPK6 cascade and its downstream WRKY33 transcription factor. Here, we report another substrate of MPK3/MPK6, ETHYLENE RESPONSE FACTOR6 (ERF6), in regulating Arabidopsis defense gene expression and resistance to the necrotrophic fungal pathogen Botrytis cinerea. Phosphorylation of ERF6 by MPK3/MPK6 in either the gain-of-function transgenic plants or in response to B. cinerea infection increases ERF6 protein stability in vivo. Phospho-mimicking ERF6 is able to constitutively activate defense-related genes, especially those related to fungal resistance, including PDF1.1 and PDF1.2, and confers enhanced resistance to B. cinerea. By contrast, expression of ERF6-EAR, in which ERF6 was fused to the ERF-associated amphiphilic repression (EAR) motif, strongly suppresses B. cinerea-induced defense gene expression, leading to hypersusceptibility of the ERF6-EAR transgenic plants to B. cinerea. Different from ERF1, the regulation and function of ERF6 in defensin gene activation is independent of ethylene. Based on these data, we conclude that ERF6, another substrate of MPK3 and MPK6, plays important roles downstream of the MPK3/MPK6 cascade in regulating plant defense against fungal pathogens.

  1. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene.

    Directory of Open Access Journals (Sweden)

    Nidhi Thakur

    Full Text Available BACKGROUND: Expression of double strand RNA (dsRNA designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi, thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci upon oral feeding. The v-ATPase subunit A (v-ATPaseA coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. METHODOLOGY/PRINCIPAL FINDINGS: Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. CONCLUSIONS/SIGNIFICANCE: Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops.

  2. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene.

    Science.gov (United States)

    Thakur, Nidhi; Upadhyay, Santosh Kumar; Verma, Praveen C; Chandrashekar, Krishnappa; Tuli, Rakesh; Singh, Pradhyumna K

    2014-01-01

    Expression of double strand RNA (dsRNA) designed against important insect genes in transgenic plants have been shown to give protection against pests through RNA interference (RNAi), thus opening the way for a new generation of insect-resistant crops. We have earlier compared the efficacy of dsRNAs/siRNAs, against a number of target genes, for interference in growth of whitefly (Bemisia tabaci) upon oral feeding. The v-ATPase subunit A (v-ATPaseA) coding gene was identified as a crucial target. We now report the effectiveness of transgenic tobacco plants expressing siRNA to silence v-ATPaseA gene expression for the control of whitefly infestation. Transgenic tobacco lines were developed for the expression of long dsRNA precursor to make siRNA and knock down the v-ATPaseA mRNA in whitefly. Molecular analysis and insecticidal properties of the transgenic plants established the formation of siRNA targeting the whitefly v-ATPaseA, in the leaves. The transcript level of v-ATPaseA in whiteflies was reduced up to 62% after feeding on the transgenic plants. Heavy infestation of whiteflies on the control plants caused significant loss of sugar content which led to the drooping of leaves. The transgenic plants did not show drooping effect. Host plant derived pest resistance was achieved against whiteflies by genetic transformation of tobacco which generated siRNA against the whitefly v-ATPaseA gene. Transgenic tobacco lines expressing dsRNA of v-ATPaseA, delivered sufficient siRNA to whiteflies feeding on them, mounting a significant silencing response, leading to their mortality. The transcript level of the target gene was reduced in whiteflies feeding on transgenic plants. The strategy can be taken up for genetic engineering of plants to control whiteflies in field crops.

  3. Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load

    DEFF Research Database (Denmark)

    Laht, Mailis; Karkman, Antti; Voolaid, Veiko;

    2014-01-01

    Antibiotics and antibiotic resistant bacteria enter wastewater treatment plants (WWTPs), an environment where resistance genes can potentially spread and exchange between microbes. Several antibiotic resistance genes (ARGs) were quantified using qPCR in three WWTPs of decreasing capacity located...... in the relative abundance of resistance genes, while the raw abundances fell by several orders of magnitude. Standard water quality variables (biological oxygen demand, total phosphorus and nitrogen, etc.) were weakly related or unrelated to the relative abundance of resistance genes. Based on our results we...... conclude that there is neither considerable enrichment nor purification of antibiotic resistance genes in studied conventional WWTPs....

  4. Human Management of a Wild Plant Modulates the Evolutionary Dynamics of a Gene Determining Recessive Resistance to Virus Infection

    Science.gov (United States)

    Poulicard, Nils; Pacios, Luis Fernández; Gallois, Jean-Luc; Piñero, Daniel; García-Arenal, Fernando

    2016-01-01

    This work analyses the genetic variation and evolutionary patterns of recessive resistance loci involved in matching-allele (MA) host-pathogen interactions, focusing on the pvr2 resistance gene to potyviruses of the wild pepper Capsicum annuum glabriusculum (chiltepin). Chiltepin grows in a variety of wild habitats in Mexico, and its cultivation in home gardens started about 25 years ago. Potyvirus infection of Capsicum plants requires the physical interaction of the viral VPg with the pvr2 product, the translation initiation factor eIF4E1. Mutations impairing this interaction result in resistance, according to the MA model. The diversity of pvr2/eIF4E1 in wild and cultivated chiltepin populations from six biogeographical provinces in Mexico was analysed in 109 full-length coding sequences from 97 plants. Eleven alleles were found, and their interaction with potyvirus VPg in yeast-two-hybrid assays, plus infection assays of plants, identified six resistance alleles. Mapping resistance mutations on a pvr2/eIF4E1 model structure showed that most were around the cap-binding pocket and strongly altered its surface electrostatic potential, suggesting resistance-associated costs due to functional constraints. The pvr2/eIF4E1 phylogeny established that susceptibility was ancestral and resistance was derived. The spatial structure of pvr2/eIF4E1 diversity differed from that of neutral markers, but no evidence of selection for resistance was found in wild populations. In contrast, the resistance alleles were much more frequent, and positive selection stronger, in cultivated chiltepin populations, where diversification of pvr2/eIF4E1 was higher. This analysis of the genetic variation of a recessive resistance gene involved in MA host-pathogen interactions in populations of a wild plant show that evolutionary patterns differ according to the plant habitat, wild or cultivated. It also demonstrates that human management of the plant population has profound effects on the

  5. Human Management of a Wild Plant Modulates the Evolutionary Dynamics of a Gene Determining Recessive Resistance to Virus Infection.

    Directory of Open Access Journals (Sweden)

    Nils Poulicard

    2016-08-01

    Full Text Available This work analyses the genetic variation and evolutionary patterns of recessive resistance loci involved in matching-allele (MA host-pathogen interactions, focusing on the pvr2 resistance gene to potyviruses of the wild pepper Capsicum annuum glabriusculum (chiltepin. Chiltepin grows in a variety of wild habitats in Mexico, and its cultivation in home gardens started about 25 years ago. Potyvirus infection of Capsicum plants requires the physical interaction of the viral VPg with the pvr2 product, the translation initiation factor eIF4E1. Mutations impairing this interaction result in resistance, according to the MA model. The diversity of pvr2/eIF4E1 in wild and cultivated chiltepin populations from six biogeographical provinces in Mexico was analysed in 109 full-length coding sequences from 97 plants. Eleven alleles were found, and their interaction with potyvirus VPg in yeast-two-hybrid assays, plus infection assays of plants, identified six resistance alleles. Mapping resistance mutations on a pvr2/eIF4E1 model structure showed that most were around the cap-binding pocket and strongly altered its surface electrostatic potential, suggesting resistance-associated costs due to functional constraints. The pvr2/eIF4E1 phylogeny established that susceptibility was ancestral and resistance was derived. The spatial structure of pvr2/eIF4E1 diversity differed from that of neutral markers, but no evidence of selection for resistance was found in wild populations. In contrast, the resistance alleles were much more frequent, and positive selection stronger, in cultivated chiltepin populations, where diversification of pvr2/eIF4E1 was higher. This analysis of the genetic variation of a recessive resistance gene involved in MA host-pathogen interactions in populations of a wild plant show that evolutionary patterns differ according to the plant habitat, wild or cultivated. It also demonstrates that human management of the plant population has profound

  6. Non-host Plant Resistance against Phytophthora capsici Is Mediated in Part by Members of the I2 R Gene Family in Nicotiana spp.

    Science.gov (United States)

    Vega-Arreguín, Julio C.; Shimada-Beltrán, Harumi; Sevillano-Serrano, Jacobo; Moffett, Peter

    2017-01-01

    The identification of host genes associated with resistance to Phytophthora capsici is crucial to developing strategies of control against this oomycete pathogen. Since there are few sources of resistance to P. capsici in crop plants, non-host plants represent a promising source of resistance genes as well as excellent models to study P. capsici – plant interactions. We have previously shown that non-host resistance to P. capsici in Nicotiana spp. is mediated by the recognition of a specific P. capsici effector protein, PcAvr3a1 in a manner that suggests the involvement of a cognate disease resistance (R) genes. Here, we have used virus-induced gene silencing (VIGS) and transgenic tobacco plants expressing dsRNA in Nicotiana spp. to identify candidate R genes that mediate non-host resistance to P. capsici. Silencing of members of the I2 multigene family in the partially resistant plant N. edwardsonii and in the resistant N. tabacum resulted in compromised resistance to P. capsici. VIGS of two other components required for R gene-mediated resistance, EDS1 and SGT1, also enhanced susceptibility to P. capsici in N. edwardsonii, as well as in the susceptible plants N. benthamiana and N. clevelandii. The silencing of I2 family members in N. tabacum also compromised the recognition of PcAvr3a1. These results indicate that in this case, non-host resistance is mediated by the same components normally associated with race-specific resistance. PMID:28261255

  7. Plant Genetic Background Increasing the Efficiency and Durability of Major Resistance Genes to Root-knot Nematodes Can Be Resolved into a Few Resistance QTLs

    Science.gov (United States)

    Barbary, Arnaud; Djian-Caporalino, Caroline; Marteu, Nathalie; Fazari, Ariane; Caromel, Bernard; Castagnone-Sereno, Philippe; Palloix, Alain

    2016-01-01

    With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs) in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes). However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a quantitative trait loci (QTL) analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, Meloidogyne incognita, M. arenaria, and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS–LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes. PMID:27242835

  8. Plant genetic background increasing the efficiency and durability of major resistance genes to root-knot nematodes can be resolved into a few resistance QTLs

    Directory of Open Access Journals (Sweden)

    Arnaud eBarbary

    2016-05-01

    Full Text Available With the banning of most chemical nematicides, the control of root-knot nematodes (RKNs in vegetable crops is now based essentially on the deployment of single, major resistance genes (R-genes. However, these genes are rare and their efficacy is threatened by the capacity of RKNs to adapt. In pepper, several dominant R-genes are effective against RKNs, and their efficacy and durability have been shown to be greater in a partially resistant genetic background. However, the genetic determinants of this partial resistance were unknown. Here, a QTL analysis was performed on the F2:3 population from the cross between Yolo Wonder, an accession considered partially resistant or resistant, depending on the RKN species, and Doux Long des Landes, a susceptible cultivar. A genetic linkage map was constructed from 130 F2 individuals, and the 130 F3 families were tested for resistance to the three main RKN species, M. incognita, M. arenaria and M. javanica. For the first time in the pepper-RKN pathosystem, four major QTLs were identified and mapped to two clusters. The cluster on chromosome P1 includes three tightly linked QTLs with specific effects against individual RKN species. The fourth QTL, providing specific resistance to M. javanica, mapped to pepper chromosome P9, which is known to carry multiple NBS-LRR repeats, together with major R-genes for resistance to nematodes and other pathogens. The newly discovered cluster on chromosome P1 has a broad spectrum of action with major additive effects on resistance. These data highlight the role of host QTLs involved in plant-RKN interactions and provide innovative potential for the breeding of new pepper cultivars or rootstocks combining quantitative resistance and major R-genes, to increase both the efficacy and durability of RKN control by resistance genes.

  9. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily.

    Science.gov (United States)

    Meyers, B C; Dickerman, A W; Michelmore, R W; Sivaramakrishnan, S; Sobral, B W; Young, N D

    1999-11-01

    The nucleotide binding site (NBS) is a characteristic domain of many plant resistance gene products. An increasing number of NBS-encoding sequences are being identified through gene cloning, PCR amplification with degenerate primers, and genome sequencing projects. The NBS domain was analyzed from 14 known plant resistance genes and more than 400 homologs, representing 26 genera of monocotyledonous, dicotyle-donous and one coniferous species. Two distinct groups of diverse sequences were identified, indicating divergence during evolution and an ancient origin for these sequences. One group was comprised of sequences encoding an N-terminal domain with Toll/Interleukin-1 receptor homology (TIR), including the known resistance genes, N, M, L6, RPP1 and RPP5. Surprisingly, this group was entirely absent from monocot species in searches of both random genomic sequences and large collections of ESTs. A second group contained monocot and dicot sequences, including the known resistance genes, RPS2, RPM1, I2, Mi, Dm3, Pi-B, Xa1, RPP8, RPS5 and Prf. Amino acid signatures in the conserved motifs comprising the NBS domain clearly distinguished these two groups. The Arabidopsis genome is estimated to contain approximately 200 genes that encode related NBS motifs; TIR sequences were more abundant and outnumber non-TIR sequences threefold. The Arabidopsis NBS sequences currently in the databases are located in approximately 21 genomic clusters and 14 isolated loci. NBS-encoding sequences may be more prevalent in rice. The wide distribution of these sequences in the plant kingdom and their prevalence in the Arabidopsis and rice genomes indicate that they are ancient, diverse and common in plants. Sequence inferences suggest that these genes encode a novel class of nucleotide-binding proteins.

  10. Gene Expression of Stress Proteins and Identification of Molecular Markers of Plant Resistance to High Temperatures and Drought

    OpenAIRE

    L.P. Khokhlova

    2016-01-01

    Molecular biomarkers of plant resistance to both individual and combined action of high tempera-tures (42 °C) and drought have been identified. For this purpose, correlation between gene expression of four stress proteins (non-photosynthetic malic enzyme (TaNADP-ME2), serine-threonine kinase (W55a), dehydrin (DHN14), and lipocalin (TaTIL)) and resistance of eight spring wheat cultivars has been determined for the first time. Gene expression has been studied using the RT-PCR method based on th...

  11. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture

    Science.gov (United States)

    Genetic solutions to protect crops against pests and pathogens are preferable to agrichemicals 1. Wild crop relatives carry immense diversity of disease resistance (R) genes that could enable more sustainable disease control. However, recruiting R genes for crop improvement typically involves long b...

  12. Gene Expression of Stress Proteins and Identification of Molecular Markers of Plant Resistance to High Temperatures and Drought

    Directory of Open Access Journals (Sweden)

    L.P. Khokhlova

    2016-06-01

    Full Text Available Molecular biomarkers of plant resistance to both individual and combined action of high tempera-tures (42 °C and drought have been identified. For this purpose, correlation between gene expression of four stress proteins (non-photosynthetic malic enzyme (TaNADP-ME2, serine-threonine kinase (W55a, dehydrin (DHN14, and lipocalin (TaTIL and resistance of eight spring wheat cultivars has been determined for the first time. Gene expression has been studied using the RT-PCR method based on the content of transcripts on electrophoregrams. The absence of species-specific responses of two genes, TaNADP-ME2 and W55a, the gene activity of which did not depend on the resistance of cultivars to heat shock and water deficit, has been shown. However, gene expression of two other genes, DHN14 and TaTIL, was genotypically determined and positively correlated with the high resistance of particular cultivars. It has been concluded that the activities of DHN14 and TaTIL are potential molecular markers of heat and drought resistance in spring wheat and, therefore, can be used in transgenic selection technologies to create new phenotypes of agricultural crops that would be better adapted to the environmental conditions.

  13. Isolation and Identification of Aerobic Bacteria Carrying Tetracycline and Sulfonamide Resistance Genes Obtained from a Meat Processing Plant.

    Science.gov (United States)

    Li, Lili; Ye, Lei; Zhang, Sen; Meng, Hecheng

    2016-06-01

    Microbial contamination in food-processing plants can play a fundamental role in food quality and safety. The purpose of this study was to investigate aerobic bacteria carrying tetracycline and sulfonamide resistance genes from a meat processing plant as possible sources of meat contamination. One hundred swab samples from surfaces of conveyor belts, meat slicers, meat knives, benches, plastic trays, gloves, and aprons were analyzed. A total of 168 isolates belonging to 10 genera were obtained, including Pseudomonas sp. (n = 35), Acinetobacter sp. (n = 30), Aeromonas sp. (n = 20), Myroides sp. (n = 15), Serratia sp. (n = 15), Staphylococcus sp. (n = 14), Enterobacter sp. (n = 11), Escherichia coli (n = 10), Lactococcus sp. (n = 10), and Klebsiella sp. (n = 8). Of the 168 isolates investigated, 60.7% showed resistance to tetracycline and 57.7% to trimethoprim/sulfamethoxazole. The tetracycline resistance genes tetL, tetA, tetB, tetC, tetE, tetM, tetS, tetK, and tetX were found in the frequency of 7.7%, 6.0%, 4.8%, 4.8%, 3.6%, 3.6%, 3.6%, 1.2%, and 0.6%, respectively. Sulfonamide resistance genes sul1 and sul2 were observed in the frequency of 17.9% and 38.1%, respectively. The tetracycline resistance genes tetX was first found in Myroides sp. This investigation demonstrated that food contact surfaces in a meat processing plant may be sources of contamination of aerobic bacteria carrying tetracycline and sulfonamide antibiotic resistance genes. © 2016 Institute of Food Technologists®

  14. A New Israeli Tobamovirus Isolate Infects Tomato Plants Harboring Tm-22 Resistance Genes.

    Science.gov (United States)

    Luria, Neta; Smith, Elisheva; Reingold, Victoria; Bekelman, Ilana; Lapidot, Moshe; Levin, Ilan; Elad, Nadav; Tam, Yehudit; Sela, Noa; Abu-Ras, Ahmad; Ezra, Nadav; Haberman, Ami; Yitzhak, Liron; Lachman, Oded; Dombrovsky, Aviv

    2017-01-01

    An outbreak of a new disease infecting tomatoes occurred in October-November 2014 at the Ohad village in Southern Israel. Symptomatic plants showed a mosaic pattern on leaves accompanied occasionally by narrowing of leaves and yellow spotted fruit. The disease spread mechanically and rapidly reminiscent of tobamovirus infection. Epidemiological studies showed the spread of the disease in various growing areas, in the South and towards the Southeast and Northern parts of the country within a year. Transmission electron microscope (TEM) analysis showed a single rod-like form characteristic to the Tobamovirus genus. We confirmed Koch's postulates for the disease followed by partial host range determination and revealed that tomato cultivars certified to harbor the Tm-22 resistance gene are susceptible to the new viral disease. We further characterized the viral source of the disease using a range of antisera for serological detection and analyzed various virus genera and families for cross-reactivity with the virus. In addition, next generation sequencing of total small RNA was performed on two cultivars grown in two different locations. In samples collected from commercial cultivars across Israel, we found a single virus that caused the disease. The complete genome sequence of the new Israeli tobamovirus showed high sequence identity to the Jordanian isolate of tomato brown rugose fruit virus.

  15. Dominant resistance against plant viruses

    NARCIS (Netherlands)

    Ronde, de D.; Butterbach, P.B.E.; Kormelink, R.J.M.

    2014-01-01

    To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified agains

  16. The dissection and SSR mapping of a high-temperature adult-plant stripe rust resistance gene in American spring wheat cultivar Alturas

    Science.gov (United States)

    Stripe rust is one of major diseases in wheat production worldwide. The best economic and efficient method is to utilize resistant varieties. Alturas has high-temperature adult-plant resistance. In order to determine stripe rust resistance characteristics, resistance gene combination and molecular m...

  17. Controversy Associated With the Common Component of Most Transgenic Plants – Kanamycin Resistance Marker Gene

    OpenAIRE

    Jelenić, Srećko

    2003-01-01

    Plant genetic engineering is a powerful tool for producing crops resistant to pests, diseases and abiotic stress or crops with improved nutritional value or better quality products. Currently over 70 genetically modified (GM) crops have been approved for use in different countries. These cover a wide range of plant species with significant number of different modified traits. However, beside the technology used for their improvement, the common component of most GM crops is the neomycin phosp...

  18. Establishment of a Gene Expression System in Rice Chloroplast and Obtainment of PPT-Resistant Rice Plants

    Institute of Scientific and Technical Information of China (English)

    LI Yi-nü; SUN Bing-yao; SU Ning; MENG Xiang-xun; ZHANG Zhi-fang; SHEN Gui-fang

    2009-01-01

    In contrast to the situation of random integration of foreign genes in nuclear transformation,the introduction of genes via chloroplast genetic engineering is characterized by site-specific pattern via homologous recombination.To establish an expression system for alien genes in rice chloroplast,the intergenic region of ndhF and trnL was selected as target for sitespecific integration of PPT-resistant bar gene in this study.Two DNA fragments suitable for homologous recombination were cloned from rice chloroplast genome DNA using PCR technique,and the chloroplast-specific expression vector pRB was constructed by fusing a modified 16S rRNA gene promoter to bar gene together with terminator of psbA gene 3'sequence.Chloroplast transformation was carried out by biolistic bombardment of sterile rice calli with the pRB construct.Subsequently,the regenerated plantlets and seeds of progeny arising from reciprocal cross to the wild-type lines were obtained.Molecular analysis suggested that the bar gene has been integrated into rice chloroplast genome.Genetic analysis revealed that bar gene could be transmitted and expressed normally in chloroplast genome.Thus,the bar gene conferred not only selection pressure for the transformation of rice chloroplast genome,but PPT-resistant trait for rice plants as well.It is suggested that an efficient gene expression system in the rice chloroplast has been established by chloroplast transformation technique.

  19. Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants

    Directory of Open Access Journals (Sweden)

    Ji-Seong Kim

    2015-06-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding β-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.

  20. Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage.

    Science.gov (United States)

    Mirete, Salvador; de Figueras, Carolina G; González-Pastor, Jose E

    2007-10-01

    Metal resistance determinants have traditionally been found in cultivated bacteria. To search for genes involved in nickel resistance, we analyzed the bacterial community of the rhizosphere of Erica andevalensis, an endemic heather which grows at the banks of the Tinto River, a naturally metal-enriched and extremely acidic environment in southwestern Spain. 16S rRNA gene sequence analysis of rhizosphere DNA revealed the presence of members of five phylogenetic groups of Bacteria and the two main groups of Archaea mostly associated with sites impacted by acid mine drainage (AMD). The diversity observed and the presence of heavy metals in the rhizosphere led us to construct and screen five different metagenomic libraries hosted in Escherichia coli for searching novel nickel resistance determinants. A total of 13 positive clones were detected and analyzed. Insights about their possible mechanisms of resistance were obtained from cellular nickel content and sequence similarities. Two clones encoded putative ABC transporter components, and a novel mechanism of metal efflux is suggested. In addition, a nickel hyperaccumulation mechanism is proposed for a clone encoding a serine O-acetyltransferase. Five clones encoded proteins similar to well-characterized proteins but not previously reported to be related to nickel resistance, and the remaining six clones encoded hypothetical or conserved hypothetical proteins of uncertain functions. This is the first report documenting nickel resistance genes recovered from the metagenome of an AMD environment.

  1. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes

    Science.gov (United States)

    Dutta, Tushar K.; Papolu, Pradeep K.; Banakar, Prakash; Choudhary, Divya; Sirohi, Anil; Rao, Uma

    2015-01-01

    Root-knot nematodes (Meloidogyne incognita) cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco, and soybean) that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1), was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60–80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants. PMID:25883594

  2. Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes

    Directory of Open Access Journals (Sweden)

    Tushar Kanti Dutta

    2015-04-01

    Full Text Available Root-knot nematodes (Meloidogyne incognita cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco and soybean that exhibited resistance against root-knot and cyst nematodes. Herein, a M. incognita-specific protease gene, cathepsin L cysteine proteinase (Mi-cpl-1, was targeted to generate tomato transgenic lines to evaluate the genetically modified nematode resistance. In vitro knockdown of Mi-cpl-1 gene led to the reduced attraction and penetration of M. incognita in tomato, suggesting the involvement of Mi-cpl-1 in nematode parasitism. Transgenic expression of the RNAi construct of Mi-cpl-1 gene resulted in 60-80% reduction in infection and multiplication of M. incognita in tomato. Evidence for in vitro and in vivo silencing of Mi-cpl-1 was confirmed by expression analysis using quantitative PCR. Our study demonstrates that Mi-cpl-1 plays crucial role during plant-nematode interaction and plant-mediated downregulation of this gene elicits detrimental effect on M. incognita development, reinforcing the potential of RNAi technology for management of phytonematodes in crop plants.

  3. Prevalence of sulfonamide and tetracycline resistance genes in drinking water treatment plants in the Yangtze River Delta, China.

    Science.gov (United States)

    Guo, Xueping; Li, Jing; Yang, Fan; Yang, Jie; Yin, Daqiang

    2014-09-15

    The occurrence and distribution of antibiotic resistance genes (ARGs) in drinking water treatment plants (DWTPs) and finished water are not well understood, and even less is known about the contribution of each treatment process to resistance gene reduction. The prevalence of ten commonly detected sulfonamide and tetracycline resistance genes, namely, sul I, sul II, tet(C), tet(G), tet(X), tet(A), tet(B), tet(O), tet(M) and tet(W) as well as 16S-rRNA genes, were surveyed in seven DWTPs in the Yangtze River Delta, China, with SYBR Green I-based real-time quantitative polymerase chain reaction. All of the investigated ARGs were detected in the source waters of the seven DWTPs, and sul I, sul II, tet(C) and tet(G) were the four most abundant ARGs. Total concentrations of ARGs belonging to either the sulfonamide or tetracycline resistance gene class were above 10(5) copies/mL. The effects of a treatment process on ARG removal varied depending on the overall treatment scheme of the DWTP. With combinations of the treatment procedures, however, the copy numbers of resistance genes were reduced effectively, but the proportions of ARGs to bacteria numbers increased in several cases. Among the treatment processes, the biological treatment tanks might serve as reservoirs of ARGs. ARGs were found in finished water of two plants, imposing a potential risk to human health. The results presented in this study not only provide information for the management of antibiotics and ARGs but also facilitate improvement of drinking water quality.

  4. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river.

    Science.gov (United States)

    Xu, Jian; Xu, Yan; Wang, Hongmei; Guo, Changsheng; Qiu, Huiyun; He, Yan; Zhang, Yuan; Li, Xiaochen; Meng, Wei

    2015-01-01

    The extensive use of antibiotics has caused the contamination of both antibiotics and antibiotic resistance genes (ARGs) in the environment. In this study, the abundance and distribution of antibiotics and ARGs from a sewage treatment plant (STP) and its effluent-receiving river in Beijing China were characterized. Three classes of antibiotics including tetracycline, sulfonamide and quinolone were quantified by LC-MS/MS. In the secondary effluent they were detected at 195, 2001 and 3866 ng L(-1), respectively, which were higher than in the receiving river water. A total of 13 ARGs (6 tet genes: tetA, tetB, tetE, tetW, tetM and tetZ, 3 sulfonamide genes: sul1, sul2 and sul3, and 4 quinolone genes: gryA, parC, qnrC and qnrD) were determined by quantitative PCR. For all ARGs, sulfonamide resistance genes were present at relatively high concentrations in all samples, with the highest ARG concentration above 10(-1). ARGs remained relatively stable along each sewage treatment process. The abundances of detected ARGs from the STP were also higher than its receiving river. Bivariate correlation analysis showed that relative tet gene copies (tetB/16S-rRNA and tetW/16S-rRNA) were strongly correlated with the concentrations of tetracycline residues (r(2)>0.8, presistance gene (qnrC/16S-rRNA) and the concentrations of enrofloxacin (ENR) was also determined. The difference of ARGs levels in the raw influent and secondary effluent suggested that the STP treatment process may induce to increase the abundance of resistance genes. The results showed that the sewage was an important repository of the resistance genes, which need to be effectively treated before discharge into the natural water body.

  5. [Transgenic tobacco plants with ribosome inactivating protein gene cassin from Cassia occidentalis and their resistance to tobacco mosaic virus].

    Science.gov (United States)

    Ruan, Xiao-Lei; Liu, Li-Fang; Li, Hua-Ping

    2007-12-01

    Cassin, the new gene of ribosome-inactivating protein (RIP) isolated from Cassia occidentalis, was inserted into expression vector pBI121 to produce plant expression vector pBI121-cassin (Figs.1, 2). pBI121-cassin was introduced into tobacco cultivar 'K326' by the Agrobacteriurm tumefaciens transformation method and more than 100 independent transformants were obtained. Southern blot hybridization analysis showed that a single gene locus was inserted into the chromosome of the transgenic tobacco lines (Fig.5) and PCR analysis of segregation population of progeny indicated that the inheritance of transgene was dominant in transgenic lines (Fig.4, Table 1). Results of RT-PCR and Northern blot hybridization analysis showed that transgene could be transcribed correctly (Figs.5, 6) . Three self-pollination lines of transgenic T(1) and T(2) were challenged with TMV at different concentration titers by mechanical inoculation. The transgenic lines exhibited different levels of resistance to TMV with the nontransgenic plants. After both titers of TMV concentration were inoculated, transgenic lines were considered as the highly resistant type with a delay of 4-13 d in development of symptoms and 10%-25% of test plants were infected, while nontransgenic control plants were susceptible typical symptoms on the newly emerged leaves (Table 2). One T(2) line, T(2)-8-2-1, was regarded as an immune type because it did not show any symptoms during 70 d and all plants were shown to be virus free by ELISA tests.

  6. TRANSGENIC PLANTS OF RAPE (BRASSICA NAPUS L. WITH GENE OSMYB4 HAVE INCREASED RESISTANCE TO SALTS OF HEAVY METALS

    Directory of Open Access Journals (Sweden)

    Raldugina G.N.

    2012-08-01

    fact that at very high concentrations of salts non-transformed plants died after 12-13 days, whereas the transgenic oilseed rape remained alive long enough time. Thus, the incorporation of the plant gene transcription factor OSMYB4 increased the resistance of transgenic plants to the stress effect of HM.

  7. A novel approach for multi-domain and multi-gene family identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants.

    Science.gov (United States)

    Hofberger, Johannes A; Zhou, Beifei; Tang, Haibao; Jones, Jonathan D G; Schranz, M Eric

    2014-11-08

    Recent advances in DNA sequencing techniques resulted in more than forty sequenced plant genomes representing a diverse set of taxa of agricultural, energy, medicinal and ecological importance. However, gene family curation is often only inferred from DNA sequence homology and lacks insights into evolutionary processes contributing to gene family dynamics. In a comparative genomics framework, we integrated multiple lines of evidence provided by gene synteny, sequence homology and protein-based Hidden Markov Modelling to extract homologous super-clusters composed of multi-domain resistance (R)-proteins of the NB-LRR type (for NUCLEOTIDE BINDING/LEUCINE-RICH REPEATS), that are involved in plant innate immunity. To assess the diversity of R-proteins within and between species, we screened twelve eudicot plant genomes including six major crops and found a total of 2,363 NB-LRR genes. Our curated R-proteins set shows a 50% average for tandem duplicates and a 22% fraction of gene copies retained from ancient polyploidy events (ohnologs). We provide evidence for strong positive selection and show significant differences in molecular evolution rates (Ka/Ks-ratio) among tandem- (mean = 1.59), ohnolog (mean = 1.36) and singleton (mean = 1.22) R-gene duplicates. To foster the process of gene-edited plant breeding, we report species-specific presence/absence of all 140 NB-LRR genes present in the model plant Arabidopsis and describe four distinct clusters of NB-LRR "gatekeeper" loci sharing syntenic orthologs across all analyzed genomes. By curating a near-complete set of multi-domain R-protein clusters in an eudicot-wide scale, our analysis offers significant insight into evolutionary dynamics underlying diversification of the plant innate immune system. Furthermore, our methods provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from any plant species.

  8. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China.

    Science.gov (United States)

    Xie, Pin; Hao, Xiuli; Herzberg, Martin; Luo, Yantao; Nies, Dietrich H; Wei, Gehong

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China. Copyright © 2014. Published by Elsevier B.V.

  9. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China

    Institute of Scientific and Technical Information of China (English)

    Pin Xie; Xiuli Hao; Martin Herzberg; Yantao Luo; Dietrich H.Nies; Gehong Wei

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China,a highly elevated level of heavy metal containing region,genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB).It shows that:Mesorhizobium amorphae CCNWGS0123 contains metal ~nsporters from P-type ATPase,CDF (Cation Diffusion Facilitator),HupE/UreJ and CHR (chromate ion transporter) family involved in copper,zinc,nickel as well as chromate resistance and homeostasis.Meanwhile,the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter,assisted with putative CzcD,determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286.The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion,indicating a potential in-site phytoremediation usage in the mining tailing regions of China.

  10. Sequence modification of merB gene and high organo-mercurial resistance of transgenic tobacco plants

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Mercury pollution has caused severe damage to environment and great attention has been paid to its control. Phytoremediation may become one of the most efficient measures to recover the polluted soil since it is economical, highly efficient and friendly to environment. In this report, plant genetic engineering methods were employed to modify the DNA sequence of merB genes that catalyze the conversion of organomercurals into ionic mercury. The modified merBhe genes were introduced into tobacco by Agrobacterium, and the resultant transgenic plants were verified by Southern and Northern hybridization. High level of organomercurial resistance was detected on progenies of transgenic plants, some of which were resistant to PMA (phenyl mercury acetate) of 2.5 ?mol/L whereas 0.1 ?mol/L PMA killed the seedlings of wild-type tobacco in soiless culrure. With the increase of PMA concentration, the inhibition of the seedling growth became apparent. This result makes it possible to breed mercury-resistant tobacco for phytoremediation of mercury-polluted soil.

  11. Metabolic Engineering of Plant-derived (E)-β-farnesene Synthase Genes for a Novel Type of Aphid-resistant Genetically Modified Crop Plants

    Institute of Scientific and Technical Information of China (English)

    Xiu-Dao Yu; John Pickett; You-Zhi Ma; Toby Bruce; Johnathan Napier; Huw D.Jones; Lan-Qin Xia

    2012-01-01

    Aphids are major agricultural pests that cause significant yield losses of crop plants each year.Excessive dependence on insecticides for long-term aphid control is undesirable because of the development of insecticide resistance,the potential negative effects on non-target organisms and environmental pollution.Transgenic crops engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy.(E)-β-Farnesene (EβF) synthases catalyze the formation of EβF,which for many pest aphids is the main component of the alarm pheromone involved in the chemical communication within these species.EβF can also be synthesized by certain plants but is then normally contaminated with inhibitory compounds.Engineering of crop plants capable of synthesizing and emitting EβF could cause repulsion of aphids and also the attraction of natural enemies that use EβF as a foraging cue,thus minimizing aphid infestation.In this review,the effects of aphids on host plants,plants' defenses against aphid herbivory and the recruitment of natural enemies for aphid control in an agricultural setting are briefly introduced.Furthermore,the plant-derived EβF synthase genes cloned to date along with their potential roles in generating novel aphid resistance via genetically modified approaches are discussed.

  12. Recessive resistance to plant viruses.

    Science.gov (United States)

    Truniger, V; Aranda, M A

    2009-01-01

    About half of the approximately 200 known virus resistance genes in plants are recessively inherited, suggesting that this form of resistance is more common for viruses than for other plant pathogens. The use of such genes is therefore a very important tool in breeding programs to control plant diseases caused by pathogenic viruses. Over the last few years, the detailed analysis of many host/virus combinations has substantially advanced basic research on recessive resistance mechanisms in crop species. This type of resistance is preferentially expressed in protoplasts and inoculated leaves, influencing virus multiplication at the single-cell level as well as cell-to-cell movement. Importantly, a growing number of recessive resistance genes have been cloned from crop species, and further analysis has shown them all to encode translation initiation factors of the 4E (eIF4E) and 4G (eIF4G) families. However, not all of the loss-of-susceptibility mutants identified in collections of mutagenized hosts correspond to mutations in eIF4E and eIF4G. This, together with other supporting data, suggests that more extensive characterization of the natural variability of resistance genes may identify new host factors conferring recessive resistance. In this chapter, we discuss the recent work carried out to characterize loss-of-susceptibility and recessive resistance genes in crop and model species. We review actual and probable recessive resistance mechanisms, and bring the chapter to a close by summarizing the current state-of-the-art and offering perspectives on potential future developments.

  13. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens.

    Science.gov (United States)

    Campos, Laura; Granell, Pablo; Tárraga, Susana; López-Gresa, Pilar; Conejero, Vicente; Bellés, José María; Rodrigo, Ismael; Lisón, Purificación

    2014-04-01

    We have observed that treatments with salicylic acid (SA) or gentisic acid (GA) induced resistance to RNA pathogens such as ToMV and CEVd in tomato and Gynura auriantiaca, respectively. Accumulation of SA and GA has been found to occur in plants infected by these pathogens, thus pointing out a possible defence role of both molecules. To study the molecular basis of the observed induced resistance to RNA pathogens the induction of silencing-related genes by SA and GA was considered. For that purpose, we searched for tomato genes which were orthologous to those described in Arabidopsis thaliana, such as AtDCL1, AtDCL2, AtDCL4, AtRDR1, AtRDR2 and AtRDR6, and we tracked their induction in tomato along virus and viroid infections. We observed that CEVd significantly induced all these genes in tomato, with the exception of ToRDR6, being the induction of ToDCL4 the most outstanding. Regarding the ToMV asymptomatic infection, with the exception of ToRDR2, we observed a significant induction of all the indicated silencing-related genes, being ToDCL2 the most induced gene. Subsequently, we analyzed their transcriptional activation by SA and at the time when ToMV was inoculated on plants. ToDCL2, ToRDR1 and ToRDR2 were significantly induced by both SA and GA, whereas ToDCL1 was only induced by SA. Such an induction resulted more effective by SA treatment, which is in agreement with the stronger SA-induced resistance observed. Our results suggest that the observed delay in the RNA pathogen accumulation could be due to the pre-induction of RNA silencing-related genes by SA or GA.

  14. Pathogen corruption and site-directed recombination at a plant disease resistance gene cluster

    Science.gov (United States)

    Nagy, Ervin D.; Bennetzen, Jeffrey L.

    2008-01-01

    The Pc locus of sorghum (Sorghum bicolor) determines dominant sensitivity to a host-selective toxin produced by the fungal pathogen Periconia circinata. The Pc region was cloned by a map-based approach and found to contain three tandemly repeated genes with the structures of nucleotide binding site–leucine-rich repeat (NBS–LRR) disease resistance genes. Thirteen independent Pc-to-pc mutations were analyzed, and each was found to remove all or part of the central gene of the threesome. Hence, this central gene is Pc. Most Pc-to-pc mutations were associated with unequal recombination. Eight recombination events were localized to different sites in a 560-bp region within the ∼3.7-kb NBS–LRR genes. Because any unequal recombination located within the flanking NBS–LRR genes would have removed Pc, the clustering of cross-over events within a 560-bp segment indicates that a site-directed recombination process exists that specifically targets unequal events to generate LRR diversity in NBS–LRR loci. PMID:18719093

  15. Distribution of tetracycline resistance genes and AmpC β-lactamase genes in representative non-urban sewage plants and correlations with treatment processes and heavy metals.

    Science.gov (United States)

    Xu, Yan-Bin; Hou, Mao-Yu; Li, Ya-Fei; Huang, Lu; Ruan, Jing-Jing; Zheng, Li; Qiao, Qing-Xia; Du, Qing-Ping

    2017-03-01

    The mixed development of livestock breeding and industry in non-urban zones is a very general phenomenon in China. Distribution of antibiotic resistance genes (ARGs) in non-urban sewage treatment systems has not been paid enough attentions. In this study, eleven tetracycline resistance genes (tetA, tetB, tetC, tetE, tetG, tetL, tetM, tetO, tetQ, tetS and tetX), four AmpC β-lactamase genes (EBC, MOX, FOX and CIT) and four heavy metals (Cu, Zn, Cd and Pb) were detected and analyzed in four non-urban sewage plants with different sewage sources and different treatment processes in Guangzhou. The results showed that tetA and tetC were the most prevalent tetracycline resistance genes with the same detection frequency of 85% and EBC was the most prevalent AmpC β-lactamase gene with a detection frequency of 75%. The relative abundance of tetracycline resistance genes was approximately 1.6 orders of magnitudes higher than that of AmpC β-lactamase genes in all samples. A/O was the most effective process for the non-urban sewage plant receiving industrial or agricultural wastewater. Sedimentation was the most key process to eliminate ARGs from liquid phase. Most ARGs were carried in excess sludge rather than effluent. Significant correlation was found between the tet gene and Zn (r = 0.881, p pollution of ARGs in the sewage treatment systems of non-urban zones co-polluted by heavy metals should be paid more attentions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs with different waste load.

    Directory of Open Access Journals (Sweden)

    Mailis Laht

    Full Text Available Antibiotics and antibiotic resistant bacteria enter wastewater treatment plants (WWTPs, an environment where resistance genes can potentially spread and exchange between microbes. Several antibiotic resistance genes (ARGs were quantified using qPCR in three WWTPs of decreasing capacity located in Helsinki, Tallinn, and Tartu, respectively: sulphonamide resistance genes (sul1 and sul2, tetracycline resistance genes (tetM and tetC, and resistance genes for extended spectrum beta-lactams (blaoxa-58, blashv-34, and blactx-m-32. To avoid inconsistencies among qPCR assays we normalised the ARG abundances with 16S rRNA gene abundances while assessing if the respective genes increased or decreased during treatment. ARGs were detected in most samples; sul1, sul2, and tetM were detected in all samples. Statistically significant differences (adjusted p<0.01 between the inflow and effluent were detected in only four cases. Effluent values for blaoxa-58 and tetC decreased in the two larger plants while tetM decreased in the medium-sized plant. Only blashv-34 increased in the effluent from the medium-sized plant. In all other cases the purification process caused no significant change in the relative abundance of resistance genes, while the raw abundances fell by several orders of magnitude. Standard water quality variables (biological oxygen demand, total phosphorus and nitrogen, etc. were weakly related or unrelated to the relative abundance of resistance genes. Based on our results we conclude that there is neither considerable enrichment nor purification of antibiotic resistance genes in studied conventional WWTPs.

  17. Improvement of pest resistance in transgenic tobacco plants expressing dsRNA of an insect-associated gene EcR.

    Directory of Open Access Journals (Sweden)

    Jin-Qi Zhu

    Full Text Available The adoption of pest-resistant transgenic plants to reduce yield loss and pesticide utilization has been successful in the past three decades. Recently, transgenic plant expressing double-stranded RNA (dsRNA targeting pest genes emerges as a promising strategy for improving pest resistance in crops. The steroid hormone, 20-hydroxyecdysone (20E, predominately controls insect molting via its nuclear receptor complex, EcR-USP. Here we report that pest resistance is improved in transgenic tobacco plants expressing dsRNA of EcR from the cotton bollworm, Helicoverpa armigera, a serious lepidopteran pest for a variety of crops. When H. armigera larvae were fed with the whole transgenic tobacco plants expressing EcR dsRNA, resistance to H. armigera was significantly improved in transgenic plants. Meanwhile, when H. armigera larvae were fed with leaves of transgenic tobacco plants expressing EcR dsRNA, its EcR mRNA level was dramatically decreased causing molting defects and larval lethality. In addition, the transgenic tobacco plants expressing H. armigera EcR dsRNA were also resistant to another lepidopteran pest, the beet armyworm, Spodoptera exigua, due to the high similarity in the nucleotide sequences of their EcR genes. This study provides additional evidence that transgenic plant expressing dsRNA targeting insect-associated genes is able to improve pest resistance.

  18. The Physiological and Biochemical Mechanisms Providing the Increased Constitutive Cold Resistance in the Potato Plants, Expressing the Yeast SUC2 Gene Encoding Apoplastic Invertase

    Directory of Open Access Journals (Sweden)

    A.N. Deryabin

    2016-05-01

    Full Text Available The expression of heterologous genes in plants is an effective method to improve our understanding of plant resistance mechanisms. The purpose of this work was to investigate the involvement of cell-wall invertase and apoplastic sugars into constitutive cold resistance of potato (Solanum tuberosum L., cv. Dйsirйe plants, which expressed the yeast SUC2 gene encoding apoplastic invertase. WT-plants of a potato served as the control. The increase in the essential cell-wall invertase activity in the leaves of transformed plants indicates significant changes in the cellular carbohydrate metabolism and regulatory function of this enzyme. The activity of yeast invertase changed the composition of intracellular sugars in the leaves of the transformed potato plant. The total content of sugars (sucrose, glucose, fructose in the leaves and apoplast was higher in the transformants, in comparison by WT-plants. Our data indicate higher constitutive resistance of transformants to severe hypothermia conditions compared to WT-plants. This fact allows us to consider cell-wall invertase as a enzyme of carbohydrate metabolism playing an important regulatory role in the metabolic signaling upon forming increased plant resistance to low temperature. Thus, the potato line with the integrated SUC2 gene is a convenient tool to study the role of the apoplastic invertase and the products of its activity during growth, development and formation constitutive resistance to hypothermia.

  19. Detection of bar gene encoding phosphinothricin herbicide resistance in plants by electrochemical biosensor.

    Science.gov (United States)

    Ligaj, Marta; Tichoniuk, Mariusz; Filipiak, Marian

    2008-11-01

    An electrochemical biosensor for the detection of bar gene coding phosphinothricin herbicide resistance is presented. The detection was based on hybridization reaction between the specific to bar gene 19-mer probe immobilized on the electrode surface and complementary DNA in a sample. Single-stranded DNA probe specific to bar gene was covalently attached by 5'-phosphate end to the surface of carbon paste electrode. Outer layer of a conventional CPE was provided with carboxyl groups of stearic acid. ssDNA was coupled to the electrode through ethylenediamine with the use of water-soluble 1-ethyl-3(3'-dimethylaminopropyl)-carbodiimide and N-hydroxy-sulfosuccinimide as activating reagents. Hybridization reaction at the electrode surface was detected via Co(bpy)(3)(3+), which possess a much higher affinity to the resulting DNA duplex compared to ssDNA probe. Detection limit of the sensor was 0.1 microM of target DNA fragments and its response was linear from 5 to 20 microM. Hybridization event was also detected by measuring guanine peak but this approach presented distinctly higher detection limit (1 muM) and lower reproducibility. Complete time of one measurement with the use of the biosensor including covalent attachment of ethylenediamine (linker) and ssDNA probe to the electrode, hybridization with target and interaction with electroactive indicator was about 70 min.

  20. Cadmium resistance in transgenic tobacco plants enhanced by expressing bean heavy metal-responsive gene PvSR2

    Institute of Scientific and Technical Information of China (English)

    CHAI; Tuanyao; (柴团耀); CHEN; Qiong; (陈琼); ZHANG; Yuxiu; (张玉秀); DONG; Juan; (董娟); AN; Chengcai; (安成才)

    2003-01-01

    PvSR2 (Phaseolus vulgaris stress-related gene) has been cloned from French bean and shown to be expressed specifically upon heavy metal treatment. In order to investigate the role of PvSR2 in plant, PvSR2 gene under the control of cauliflower mosaic virus 35S promoter was introduced into tobacco mediated with Agrobacterium tumefaciens LBA4404. The regenerated plantlets were selected on medium with 100 mg/L kanamycin. PCR and Southern blot analysis showed PvSR2 gene was integrated in tobacco genome. Gus and Northern blot analysis indicated PvSR2 gene was expressed in transgenic seedling. The heavy metal resistance assay showed that the transgenic tobacco seedlings with the PvSR2 coding sequence exhibited higher tolerance to Cd compared with wild-type (WT) under Cd exposure. The Cd content accumulated in root between transgenic and WT seedlings had no obvious difference at lower Cd external concentration (0.05-0.075 mmol/L CdCl2), whereas transgenic plant showed a lower root Cd content than the control at higher external Cd concentration (0.1 mmol/L CdCl2). These results suggested that the expression of PvSR2 can enhance the Cd tolerance, and PvSR2 may be involved in Cd transportation and accumulation at the test concentration of 0.1 mmol/L Cd.

  1. Plant pathogen resistance

    Science.gov (United States)

    Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

    2012-11-27

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  2. Plant pathogen resistance

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Jean T.; Jung, Ho Won; Tschaplinski, Timothy

    2015-10-20

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  3. Rice transformation with cell wall degrading enzyme genes from Trichoderma atroviride and its effect on plant growth and resistance to fungal pathogens

    Institute of Scientific and Technical Information of China (English)

    Liu Mei; Sun Zong-Xiu; Zhu Jie; Xu Tong; Gary E Harman; Matteo Lorito; Sheri Woo

    2004-01-01

    @@ Three genes encoding for fungal cell wall degrading enzymes (CWDE), ech42, nag70 and gluc78from the biocontrol fungus Trichoderma atroviride were inserted into the binary vector pCAMBIA1305. 2 singly and in all possible combinations. The coding sequences were placed downstream of the rice actin promoter and all vectors were used to transform rice plants. A total of more than 1,800 independently regenerated plantlets in seven different populations (for each of the three genes and each of the four gene combinations) were obtained. Expression in plant was obtained for all the fungal genes used singly or in combinations. The ech42 gene encoding for an endochitinase increased resistance to sheath blight caused by Rhizoctonia solani, while the exochitinase-encoding gene, nag70, had a lesser effect. The expression level of endochitinase but not of the exochitinase was correlated with disease resistance. Nevertheless, exochitinase enhanced the positive effect of endochitinase on disease resistance when two genes were co-expressed in transgenic rice. Improved resistance to Magnaporthe grisea was found in all types of regenerated plants, including those with the gluc78 gene alone, while a few lines expressing either ech42 or nag70 appeared to be immune to this pathogen. Transgenic plants expressing the gluc78 gene alone were stunted and only few of them survived, even though they showed resistance to M. grisea. However, combination with either one of the two other genes ( ech42, nag70 ) as included in the same T-DNA region, reduced the negative effect of gluc78 on plant growth. This is the first report of single or multiple of expression of transgens encoding CWDEs that results in resistance to blast and sheath blight in rice.

  4. Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load.

    Science.gov (United States)

    Laht, Mailis; Karkman, Antti; Voolaid, Veiko; Ritz, Christian; Tenson, Tanel; Virta, Marko; Kisand, Veljo

    2014-01-01

    Antibiotics and antibiotic resistant bacteria enter wastewater treatment plants (WWTPs), an environment where resistance genes can potentially spread and exchange between microbes. Several antibiotic resistance genes (ARGs) were quantified using qPCR in three WWTPs of decreasing capacity located in Helsinki, Tallinn, and Tartu, respectively: sulphonamide resistance genes (sul1 and sul2), tetracycline resistance genes (tetM and tetC), and resistance genes for extended spectrum beta-lactams (blaoxa-58, blashv-34, and blactx-m-32). To avoid inconsistencies among qPCR assays we normalised the ARG abundances with 16S rRNA gene abundances while assessing if the respective genes increased or decreased during treatment. ARGs were detected in most samples; sul1, sul2, and tetM were detected in all samples. Statistically significant differences (adjusted pwater quality variables (biological oxygen demand, total phosphorus and nitrogen, etc.) were weakly related or unrelated to the relative abundance of resistance genes. Based on our results we conclude that there is neither considerable enrichment nor purification of antibiotic resistance genes in studied conventional WWTPs.

  5. EFFECTS OF LATE BLIGHT RESISTANT POTATO CONTAINING RB GENE ON THE SOIL MICROBES, PESTS AND PLANT DISEASES

    Directory of Open Access Journals (Sweden)

    Eny Ida Riyanti

    2014-10-01

    Full Text Available Late blight caused by Phytophthora infestans is an important disease on potato.  Several potato hybrids have been generated by crossing local varieties (Atlantic and Granola with Katahdin SP951 which contains late blight resistance gene RB.  Prior to release, these hybrids need to be evaluated for their environ-mental effects on non-target organisms and natural pests and diseases. The objectives of the study were to investigate the effect of LBR potato hybrids on beneficial soil microbes, pests and diseases. The trial was conducted in the confined field trial (CFT in Lembang, West Java. The parental non-transgenic (NT clones (Granola, Atlantic and Katahdin and LBR hybrids (four clones of Atlantic x Katahdin SP951 hybrids; 10 clones of Granola x Katahdin SP951 were planted at a plant spacing of 30 cm x 70 cm. Fungicide applications were used as treat-ments (no spray, five and twenty times sprays. The experi-ment was arranged in a randomized completely block design with three replications. The parameters determined were popula-tions of N2 fixing and P solubilizing bacteria, soil C/N ratio as well as natural pests and diseases. The results showed that the transgenic LBR potato hybrids did not have negative effect on N fixing bacteria. The bacterial populations were around 1010-11 cells g-1 soil before planting, 1012 cells at 1.5 months after planting (MAP and 108 cells after harvest. For P- solubilizing bacteria, their populations were 1010 cells before planting, 1012 cells at 1.5 MAP and 1011 cells g-1  soil after harvest. The soil C/N ratio of the transgenic plot was not statistically different compared to non-transgenic plot, i.e. 12-15 before planting, 10-11 at 1.5 MAP, and 10 after harvest in non-spray plot. Pests and diseases such as Alternaria solani, Liriomyza, potato tubber moth, aphid and mites on the transgenic and non-transgenic plots were statistically not different. The resistance score for A. solani was 7.2 (parental tansgenic and

  6. Strategies for antiviral resistance in transgenic plants

    NARCIS (Netherlands)

    Prins, M.W.; Laimer, M.; Noris, E.; Schubert, J.; Wassenegger, M.; Tepfer, M.

    2008-01-01

    Genetic engineering offers a means of incorporating new virus resistance traits into existing desirable plant cultivars. The initial attempts to create transgenes conferring virus resistance were based on the pathogen-derived resistance concept. The expression of the viral coat protein gene in

  7. Transgenic plants of Petunia hybrida harboring the CYP2E1 gene efficiently remove benzene and toluene pollutants and improve resistance to formaldehyde

    Directory of Open Access Journals (Sweden)

    Daoxiang Zhang

    2011-01-01

    Full Text Available The CYP2E1 protein belongs to the P450 enzymes family and plays an important role in the metabolism of small molecular and organic pollutants. In this study we generated CYP2E1 transgenic plants of Petunia using Agrobacterium rhizogenes K599. PCR analysis confirmed that the regenerated plants contained the CYP2E1 transgene and the rolB gene of the Ri plasmid. Southern blotting revealed the presence of multiple copies of CYP2E1 in the genome of transgenic plants. Fluorescent quantitative PCR revealed exogenous CYP2E1 gene expression in CYP2E1 transgenic plants at various levels, whereas no like expression was detected in either GUS transgenic plants or wild-types. The absorption of benzene and toluene by transgenic plants was analyzed through quantitative gas chromatography. Transgenic plants with high CYP2E1 expression showed a significant increase in absorption capacity of environmental benzene and toluene, compared to control GUS transgenic and wild type plants. Furthermore, these plants also presented obvious improved resistance to formaldehyde. This study, besides being the first to reveal that the CYP2E1 gene enhances plant resistance to formaldehyde, also furnishes a new method for reducing pollutants, such as benzene, toluene and formaldehyde, by using transgenic flowering horticultural plants.

  8. Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant.

    Directory of Open Access Journals (Sweden)

    Elisabet Marti

    Full Text Available Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs, their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B, sul(I, sul(II, tet(O and tet(W were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river.

  9. Transgenic banana plants expressing Xanthomonas wilt resistance genes revealed a stable non-target bacterial colonization structure.

    Science.gov (United States)

    Nimusiima, Jean; Köberl, Martina; Tumuhairwe, John Baptist; Kubiriba, Jerome; Staver, Charles; Berg, Gabriele

    2015-12-10

    Africa is among the continents where the battle over genetically modified crops is currently being played out. The impact of GM in Africa could potentially be very positive. In Uganda, researchers have developed transgenic banana lines resistant to banana Xanthomonas wilt. The transgenic lines expressing hrap and pflp can provide a timely solution to the pandemic. However, the impact of the transgenes expression on non-target microorganisms has not yet been investigated. To study this effect, transgenic and control lines were grown under field conditions and their associated microbiome was investigated by 16S rRNA gene profiling combining amplicon sequencing and molecular fingerprinting. Three years after sucker planting, no statistically significant differences between transgenic lines and their non-modified predecessors were detected for their associated bacterial communities. The overall gammaproteobacterial rhizosphere microbiome was highly dominated by Xanthomonadales, while Pseudomonadales and Enterobacteriales were accumulated in the pseudostem. Shannon indices revealed much higher diversity in the rhizosphere than in the pseudostem endosphere. However, the expression of the transgenes did not result in changes in the diversity of Gammaproteobacteria, the closest relatives of the target pathogen. In this field experiment, the expression of the resistance genes appears to have no consequences for non-target rhizobacteria and endophytes.

  10. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants.

    Science.gov (United States)

    Di Cesare, Andrea; Eckert, Ester M; D'Urso, Silvia; Bertoni, Roberto; Gillan, David C; Wattiez, Ruddy; Corno, Gianluca

    2016-05-01

    The impact of human activities on the spread and on the persistence of antibiotic resistances in the environment is still far from being understood. The natural background of resistances is influenced by human activities, and the wastewater treatment plants (WWTPs) are among the main sources of the release of antibiotic resistance into the environment. The various treatments of WWTPs provide a number of different environmental conditions potentially favoring the selection of antibiotic resistance genes (ARGs) and thereby their well-documented spread in the environment. Although the distribution of different ARGs in WWTPs has been deeply investigated, very little is known on the ecology and on the molecular mechanisms underlying the selection of specific ARGs. This study investigates the fate of diverse ARGs, heavy metal resistance genes (HMRGs) and of a mobile element (the class I integron) in three WWTPs. Abundances of the different genetic markers were correlated to each other and their relation to biotic and abiotic factors (total organic carbon, total nitrogen, prokaryotic cell abundance and its relative distribution in single cells and aggregates) influencing the microbial communities in the different treatment phases in three WWTPs, were investigated. Water samples were analyzed for the abundance of six ARGs (tetA, sulII, blaTEM, blaCTXM,ermB, and qnrS), two HMRGs (czcA and arsB), and of the class I integron (int1). The measured variables clustered in two well-defined groups, the first including tetA, ermB, qnrS and the different biotic and abiotic factors, and a second group around the genes sulII, czcA, arsB and int1. Moreover, the dynamics of sulII, HMRGs, and int1 correlated strongly. Our results suggest a potentially crucial role of HMRGs in the spread, mediated by mobile elements, of some ARGs, i.e. sulII. The possibility of a relation between heavy metal contamination and the spread of ARGs in WWTPs calls for further research to clarify the mechanisms

  11. Removal of bacterial cells, antibiotic resistance genes and integrase genes by on-site hospital wastewater treatment plants: surveillance of treated hospital effluent quality

    KAUST Repository

    Timraz, Kenda

    2016-12-15

    This study aims to evaluate the removal efficiency of microbial contaminants, including total cell counts, antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs, e.g. tetO, tetZ, sul1 and sul2) and integrase genes (e.g. intl1 and intl2), by wastewater treatment plants (WWTPs) operated on-site of two hospitals (i.e., SH WWTP and IH WWTP). Both SH and IH WWTPs utilize the conventional activated sludge process but differences in the removal efficiencies were observed. Over the 2 week sampling period, IH WWTP outperformed SH WWTP, and achieved an approximate 0.388 to 2.49-log log removal values (LRVs) for total cell counts compared to the 0.010 to 0.162-log removal in SH WWTP. Although ARB were present in the hospital influent, the treatment process of both hospitals effectively removed ARB from most of the effluent samples. In instances where ARB were recovered in the effluent, none of the viable isolates were identified to be opportunistic pathogenic species based on 16S rRNA gene sequencing. However, sul1 and intl1 genes remained detectable at up to 105 copies per mL or 8 x 10(-1) copies per 16S rRNA gene in the treated effluent, with an LRV of less than 1.2. When the treated effluent is discharged from hospital WWTPs into the public sewer for further treatment as per requirement in many countries, the detected amount of ARGs and integrase genes in the hospital effluent can become a potential source of horizontal gene dissemination in the municipal WWTP. Proper on-site wastewater treatment and surveillance of the effluent quality for emerging contaminants are therefore highly recommended.

  12. Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou, China.

    Science.gov (United States)

    Chen, Hong; Zhang, Mingmei

    2013-08-06

    This study aimed at quantifying the concentration and removal of antibiotic resistance genes (ARGs) in three municipal wastewater treatment plants (WWTPs) employing different advanced treatment systems [biological aerated filter, constructed wetland, and ultraviolet (UV) disinfection]. The concentrations of tetM, tetO, tetQ, tetW, sulI, sulII, intI1, and 16S rDNA genes were examined in wastewater and biosolid samples. In municipal WWTPs, ARG reductions of 1-3 orders of magnitude were observed, and no difference was found among the three municipal WWTPs with different treatment processes (p > 0.05). In advanced treatment systems, 1-3 orders of magnitude of reductions in ARGs were observed in constructed wetlands, 0.6-1.2 orders of magnitude of reductions in ARGs were observed in the biological aerated filter, but no apparent decrease by UV disinfection was observed. A significant difference was found between constructed wetlands and biological filter (p constructed wetlands and UV disinfection (p constructed wetlands, significant correlations were observed in the removal of ARGs and 16S rDNA genes (R(2) = 0.391-0.866; p Constructed wetlands not only have the comparable ARG removal values with WWTP (p > 0.05) but also have the advantage in ARG relative abundance removal, and it should be given priority to be an advanced treatment system for further ARG attenuation from WWTP.

  13. 植物来源的镰刀菌抗性相关基因%Resistance-related Genes for Fusarium in Plants

    Institute of Scientific and Technical Information of China (English)

    饶健; 刘迪秋; 葛锋; 陈朝银; 周阿涛; 丁为群

    2011-01-01

    镰刀菌是植物的重要病原真菌,其入侵植物体可引起镰刀菌病害,给农作物和其它植物的生产带来极大的危害.植物是抗性基因的重要来源之一,随着分子生物学技术的飞速发展,大量的镰刀菌相关抗性基因和抗性候选基因从不同的植物中被分离和鉴定,并应用于抗镰刀菌基因工程育种.对植物来源的镰刀菌抗性基因的种类及其作用机理、抗病候选基因、拟南芥-镰刀菌互作机制及基因调控进行了概述.%Fusarium is an important genus of fungal pathogen, its intrusion into plant causes fungal diseases, which results in a huge damage to the production of crop and other plants. Plant is one major source of resistance genes. With the rapid development of molecular biotechnology, a large number of resistance genes and resistance candidate genes for Fusarium have been isolated and identified from different plants, and applied to genetic engineering breeding for plant resistance to Fusarium. The resistance candidate genes as well as the classes and mechanism of resistance genes for Fusarium have been summarized, and the interaction mechanism and gene regulation between Arabidopsis and Fusarium were reviewed.

  14. Analysis of a plant complex resistance gene locus underlying immune-related hybrid incompatibility and its occurrence in nature.

    Directory of Open Access Journals (Sweden)

    Rubén Alcázar

    2014-12-01

    Full Text Available Mechanisms underlying speciation in plants include detrimental (incompatible genetic interactions between parental alleles that incur a fitness cost in hybrids. We reported on recessive hybrid incompatibility between an Arabidopsis thaliana strain from Poland, Landsberg erecta (Ler, and many Central Asian A. thaliana strains. The incompatible interaction is determined by a polymorphic cluster of Toll/interleukin-1 receptor-nucleotide binding-leucine rich repeat (TNL RPP1 (Recognition of Peronospora parasitica1-like genes in Ler and alleles of the receptor-like kinase Strubbelig Receptor Family 3 (SRF3 in Central Asian strains Kas-2 or Kond, causing temperature-dependent autoimmunity and loss of growth and reproductive fitness. Here, we genetically dissected the RPP1-like Ler locus to determine contributions of individual RPP1-like Ler (R1-R8 genes to the incompatibility. In a neutral background, expression of most RPP1-like Ler genes, except R3, has no effect on growth or pathogen resistance. Incompatibility involves increased R3 expression and engineered R3 overexpression in a neutral background induces dwarfism and sterility. However, no individual RPP1-like Ler gene is sufficient for incompatibility between Ler and Kas-2 or Kond, suggesting that co-action of at least two RPP1-like members underlies this epistatic interaction. We find that the RPP1-like Ler haplotype is frequent and occurs with other Ler RPP1-like alleles in a local population in Gorzów Wielkopolski (Poland. Only Gorzów individuals carrying the RPP1-like Ler haplotype are incompatible with Kas-2 and Kond, whereas other RPP1-like alleles in the population are compatible. Therefore, the RPP1-like Ler haplotype has been maintained in genetically different individuals at a single site, allowing exploration of forces shaping the evolution of RPP1-like genes at local and regional population scales.

  15. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment.

    Science.gov (United States)

    Li, Jianan; Cheng, Weixiao; Xu, Like; Jiao, Yanan; Baig, Shams Ali; Chen, Hong

    2016-04-01

    In this study, the occurrence of 8 antibiotics [3 tetracyclines (TCs), 4 sulfonamides, and 1 trimethoprim (TMP)], 12 antibiotic resistance genes (ARGs) (10 tet, 2 sul), 4 types of bacteria [no antibiotics, anti-TC, anti-sulfamethoxazole (SMX), and anti-double], and intI1 in two wastewater treatment plants (WWTPs) were assessed and their influences in downstream lake were investigated. Both WWTPs' effluent demonstrated some similarities, but the abundance and removal rate varied significantly. Results revealed that biological treatment mainly removed antibiotics and ARGs, whereas physical techniques were found to eliminate antibiotic resistance bacteria (ARBs) abundance (about 1 log for each one). UV disinfection did not significantly enhance the removal efficiency, and the release of the abundantly available target contaminants from the excess sludge may pose threats to human and the environment. Different antibiotics showed diverse influences on the downstream lake, and the concentrations of sulfamethazine (SM2) and SMX were observed to increase enormously. The total ARG abundance ascended about 0.1 log and some ARGs (e.g., tetC, intI1, tetA) increased due to the high input of the effluent. In addition, the abundance of ARB variation in the lake also changed, but the abundance of four types of bacteria remained stable in the downstream sampling sites.

  16. Transgenic Nicotiana tabacum cultivar Samsun plants carrying the wild sugar beet Hs1pro1 gene have resistance to root-knot nematodes

    OpenAIRE

    SÖNMEZ, Çağla; ELEKCİOĞLU, İbrahim Halil; YÜCEL, Ayşe Meral; ÖKTEM, Hüseyin Avni

    2014-01-01

    Nematodes are the principal animal parasites of plants, causing annual crop losses of more than US100 billion worldwide. Conventional control measures against nematode infection include toxic nematicide application to soil, crop rotation practices, and classical breeding approaches. However, due to the limitations of each technique, biotechnology presents itself as an effective alternative in nematode control. To date, several resistance genes against nematodes have been cloned. One such gene...

  17. Transgenic apple plants overexpressing the Lc gene of maize show an altered growth habit and increased resistance to apple scab and fire blight.

    Science.gov (United States)

    Flachowsky, Henryk; Szankowski, Iris; Fischer, Thilo C; Richter, Klaus; Peil, Andreas; Höfer, Monika; Dörschel, Claudia; Schmoock, Sylvia; Gau, Achim E; Halbwirth, Heidrun; Hanke, Magda-Viola

    2010-02-01

    Transgenic apple plants (Malus x domestica cv. 'Holsteiner Cox') overexpressing the Leaf Colour (Lc) gene from maize (Zea mays) exhibit strongly increased production of anthocyanins and flavan-3-ols (catechins, proanthocyanidins). Greenhouse plants investigated in this study exhibit altered phenotypes with regard to growth habit and resistance traits. Lc-transgenic plants show reduced size, transversal gravitropism of lateral shoots, reduced trichome development, and frequently reduced shoot diameter and abnormal leaf development with fused leaves. Such phenotypes seem to be in accordance with a direct or an indirect effect on polar-auxin-transport in the transgenic plants. Furthermore, leaves often develop necrotic lesions resembling hypersensitive response lesions. In tests, higher resistance against fire blight (caused by the bacterium Erwinia amylovora) and against scab (caused by the fungus Venturia inaequalis) is observed. These phenotypes are discussed with respect to the underlying altered physiology of the Lc-transgenic plants. The results are expected to be considered in apple breeding strategies.

  18. Enhanced disease resistance to Botrytis cinerea in myb46 Arabidopsis plants is associated to an early down-regulation of CesA genes.

    Science.gov (United States)

    Ramírez, Vicente; García-Andrade, Javier; Vera, Pablo

    2011-06-01

    The cell wall is a protective barrier of paramount importance for the survival of plant cells. Monitoring the integrity of cell wall allows plants to quickly activate defence pathways to minimize pathogen entry and reduce the spread of disease. Counterintuitively, however, pharmacological effects as well as genetic lesions that affect cellulose biosynthesis and content confer plants with enhanced resistance against necrotrophic fungi. This kind of pathogens target cellulose for degradation to facilitate penetration and to generate glucose units as a food source. Our results points towards the existence of a transcriptional reprogramming mechanism in genes encoding cellulose synthases (CesAs) that occurs very soon after Botrytis cinerea attack and that results in a temporarily shut down of some CesA genes. Interestingly, the observed coordinated down-regulation of CesA genes is more pronounced, and occurs earlier, in myb46 mutant plants. In the resistant myb46 plants, pathogen infection induces transient down-regulation of CesA genes that concurs with a selective transcriptional reprogramming in a set of genes encoding structural cell wall proteins and extracellular remodelling enzymes. Together with previous indications, our results favour the hypothesis that CesAs are part of a surveillance system of the cell wall integrity that senses the presence of a pathogen and transduces that signal into a rapid transcriptional reprogramming of the affected cell.

  19. Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants.

    Directory of Open Access Journals (Sweden)

    Angela P Van de Wouw

    Full Text Available Brassica napus (canola cultivars and isolates of the blackleg fungus, Leptosphaeria maculans interact in a 'gene for gene' manner whereby plant resistance (R genes are complementary to pathogen avirulence (Avr genes. Avirulence genes encode proteins that belong to a class of pathogen molecules known as effectors, which includes small secreted proteins that play a role in disease. In Australia in 2003 canola cultivars with the Rlm1 resistance gene suffered a breakdown of disease resistance, resulting in severe yield losses. This was associated with a large increase in the frequency of virulence alleles of the complementary avirulence gene, AvrLm1, in fungal populations. Surprisingly, the frequency of virulence alleles of AvrLm6 (complementary to Rlm6 also increased dramatically, even though the cultivars did not contain Rlm6. In the L. maculans genome, AvrLm1 and AvrLm6 are linked along with five other genes in a region interspersed with transposable elements that have been degenerated by Repeat-Induced Point (RIP mutations. Analyses of 295 Australian isolates showed deletions, RIP mutations and/or non-RIP derived amino acid substitutions in the predicted proteins encoded by these seven genes. The degree of RIP mutations within single copy sequences in this region was proportional to their proximity to the degenerated transposable elements. The RIP alleles were monophyletic and were present only in isolates collected after resistance conferred by Rlm1 broke down, whereas deletion alleles belonged to several polyphyletic lineages and were present before and after the resistance breakdown. Thus, genomic environment and exposure to resistance genes in B. napus has affected the evolution of these linked avirulence genes in L. maculans.

  20. Fate and proliferation of typical antibiotic resistance genes in five full-scale pharmaceutical wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilu [College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071 (China); Mao, Daqing, E-mail: mao@tju.edu.cn [School of Environmental Science and Engineering, Tianjin University, Tianjin 300072 (China); Mu, Quanhua [College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071 (China); Luo, Yi, E-mail: luoy@nankai.edu.cn [College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071 (China)

    2015-09-01

    This study investigated the characteristics of 10 subtypes of antibiotic resistance genes (ARGs) for sulfonamide, tetracycline, β-lactam and macrolide resistance and the class 1 integrase gene (intI1). In total, these genes were monitored in 24 samples across each stage of five full-scale pharmaceutical wastewater treatment plants (PWWTPs) using qualitative and real-time quantitative polymerase chain reactions (PCRs). The levels of typical ARG subtypes in the final effluents ranged from (2.08 ± 0.16) × 10{sup 3} to (3.68 ± 0.27) × 10{sup 6} copies/mL. The absolute abundance of ARGs in effluents accounted for only 0.6%–59.8% of influents of the five PWWTPs, while the majority of the ARGs were transported to the dewatered sludge with concentrations from (9.38 ± 0.73) × 10{sup 7} to (4.30 ± 0.81) × 10{sup 10} copies/g dry weight (dw). The total loads of ARGs discharged through dewatered sludge was 7–308 folds higher than that in the raw influents and 16–638 folds higher than that in the final effluents. The proliferation of ARGs mainly occurs in the biological treatment processes, such as conventional activated sludge, cyclic activated sludge system (CASS) and membrane bio-reactor (MBR), implying that significant replication of certain subtypes of ARGs may be attributable to microbial growth. High concentrations of antibiotic residues (ranging from 0.14 to 92.2 mg/L) were detected in the influents of selected wastewater treatment systems and they still remain high residues in the effluents. Partial correlation analysis showed significant correlations between the antibiotic concentrations and the associated relative abundance of ARG subtypes in the effluent. Although correlation does not prove causation, this study demonstrates that in addition to bacterial growth, the high antibiotic residues within the pharmaceutical WWTPs may influence the proliferation and fate of the associated ARG subtypes. - Highlights: • The ARGs in final discharges were 7

  1. Gene discovery using mutagen-induced polymorphisms and deep sequencing: application to plant disease resistance.

    Science.gov (United States)

    Zhu, Ying; Mang, Hyung-gon; Sun, Qi; Qian, Jun; Hipps, Ashley; Hua, Jian

    2012-09-01

    Next-generation sequencing technologies are accelerating gene discovery by combining multiple steps of mapping and cloning used in the traditional map-based approach into one step using DNA sequence polymorphisms existing between two different accessions/strains/backgrounds of the same species. The existing next-generation sequencing method, like the traditional one, requires the use of a segregating population from a cross of a mutant organism in one accession with a wild-type (WT) organism in a different accession. It therefore could potentially be limited by modification of mutant phenotypes in different accessions and/or by the lengthy process required to construct a particular mapping parent in a second accession. Here we present mapping and cloning of an enhancer mutation with next-generation sequencing on bulked segregants in the same accession using sequence polymorphisms induced by a chemical mutagen. This method complements the conventional cloning approach and makes forward genetics more feasible and powerful in molecularly dissecting biological processes in any organisms. The pipeline developed in this study can be used to clone causal genes in background of single mutants or higher order of mutants and in species with or without sequence information on multiple accessions.

  2. Expression of the maize proteinase inhibitor (mpi) gene in rice plants enhances resistance against the striped stem borer (Chilo suppressalis): effects on larval growth and insect gut proteinases.

    Science.gov (United States)

    Vila, Laura; Quilis, Jordi; Meynard, Donaldo; Breitler, Jean Christophe; Marfà, Victoria; Murillo, Isabel; Vassal, Jean Michel; Messeguer, Joaquima; Guiderdoni, Emmanuel; San Segundo, Blanca

    2005-03-01

    The maize proteinase inhibitor (mpi) gene was introduced into two elite japonica rice varieties. Both constitutive expression of the mpi gene driven by the maize ubiquitin 1 promoter and wound-inducible expression of the mpi gene driven by its own promoter resulted in the accumulation of MPI protein in the transgenic plants. No effect on plant phenotype was observed in mpi-expressing lines. The stability of transgene expression through successive generations of mpi rice lines (up to the T(4) generation) and the production of functional MPI protein were confirmed. Expression of the mpi gene in rice enhanced resistance to the striped stem borer (Chilo suppressalis), one of the most important pests of rice. In addition, transgenic mpi plants were evaluated in terms of their effects on the growth of C. suppressalis larvae and the insect digestive proteolytic system. An important dose-dependent reduction of larval weight of C. suppressalis larvae fed on mpi rice, compared with larvae fed on untransformed rice plants, was observed. Analysis of the digestive proteolytic activity from the gut of C. suppressalis demonstrated that larvae adapted to mpi transgene expression by increasing the complement of digestive proteolytic activity: the serine and cysteine endoproteinases as well as the exopeptidases leucine aminopeptidase and carboxypeptidases A and B. However, the induction of such proteolytic activity did not prevent the deleterious effects of MPI on larval growth. The introduction of the mpi gene into rice plants can thus be considered as a promising strategy to protect rice plants against striped stem borer.

  3. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water.

    Science.gov (United States)

    Tang, Junying; Bu, Yuanqing; Zhang, Xu-Xiang; Huang, Kailong; He, Xiwei; Ye, Lin; Shan, Zhengjun; Ren, Hongqiang

    2016-10-01

    The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Transgenic Tobacco Plants With Efficient Insect Resistance

    Institute of Scientific and Technical Information of China (English)

    李太元; 田颖川; 秦晓峰; 莽克强; 李文谷; 何永刚; 沈蕾

    1994-01-01

    Insecticidal protein gene CryIA(c)from Bacillus thuringiensis HD-1(B.t.toxin gene)with 5’-end modified and 3’-end deleted to 4 different lengths were inserted downstream of 35S promoterwith double enhancer and"Ω’"fragment of TMV-RNA cDNA in the binary vector pBin438 to constructthe chimeric expression vector of B.t.toxin gene.Leave stripes of tobacco plant var.NC89 widelygrown in China were transformed with A.tumefaciens LBA4404 harbouring the above expression vectorsrespectively,and kanamycin resistant tobacco plants were regenerated.Insect test with tobacco budwormH.assulta showed that insect-resistant transform.ants could be obtained from the regenerated plantstransformed with B.t.genes of different lengths though highest percentage(~50%)of plants with ahigh morality(90%-100%)to the testing insects is among those transformed with 1.8-kb toxin gene.Genetic,molecular and biological analyses of T1 and T2 progenies of plants with high efficient insect re-sistance showed that B.t.toxin gene and the character of insect resistance have been inherited in the pro-genies.Insect-resistant homozygotes D8-14 and D19-8 have been selected for small-scale field tests.

  5. Antibody-mediated resistance against plant pathogens.

    Science.gov (United States)

    Safarnejad, Mohammad Reza; Jouzani, Gholamreza Salehi; Tabatabaei, Meisam; Tabatabaie, Meisam; Twyman, Richard M; Schillberg, Stefan

    2011-01-01

    Plant diseases have a significant impact on the yield and quality of crops. Many strategies have been developed to combat plant diseases, including the transfer of resistance genes to crops by conventional breeding. However, resistance genes can only be introgressed from sexually-compatible species, so breeders need alternative measures to introduce resistance traits from more distant sources. In this context, genetic engineering provides an opportunity to exploit diverse and novel forms of resistance, e.g. the use of recombinant antibodies targeting plant pathogens. Native antibodies, as a part of the vertebrate adaptive immune system, can bind to foreign antigens and eliminate them from the body. The ectopic expression of antibodies in plants can also interfere with pathogen activity to confer disease resistance. With sufficient knowledge of the pathogen life cycle, it is possible to counter any disease by designing expression constructs so that pathogen-specific antibodies accumulate at high levels in appropriate sub-cellular compartments. Although first developed to tackle plant viruses and still used predominantly for this purpose, antibodies have been targeted against a diverse range of pathogens as well as proteins involved in plant-pathogen interactions. Here we comprehensively review the development and implementation of antibody-mediated disease resistance in plants.

  6. Enhanced Botrytis cinerea Resistance of Arabidopsis Plants Grown in Compost May Be Explained by Increased Expression of Defense-Related Genes, as Revealed by Microarray Analysis

    Science.gov (United States)

    Segarra, Guillem; Santpere, Gabriel; Elena, Georgina; Trillas, Isabel

    2013-01-01

    Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses. PMID:23405252

  7. Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis.

    Science.gov (United States)

    Segarra, Guillem; Santpere, Gabriel; Elena, Georgina; Trillas, Isabel

    2013-01-01

    Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.

  8. Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis.

    Directory of Open Access Journals (Sweden)

    Guillem Segarra

    Full Text Available Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.

  9. Transgenic rice plants expressing the snowdrop lectin gene (gna) exhibit high-level resistance to the whitebacked planthopper (Sogatella furcifera).

    Science.gov (United States)

    Nagadhara, D; Ramesh, S; Pasalu, I C; Rao, Y Kondala; Sarma, N P; Reddy, V D; Rao, K V

    2004-11-01

    Transgenic rice plants, expressing snowdrop lectin [Galanthus nivalis agglutinin (GNA)], obtained by Agrobacterium-mediated genetic transformation, were evaluated for resistance against the insect, the whitebacked planthopper (WBPH). The transgene gna was driven by the phloem-specific, rice-sucrose synthase promoter RSs1, and the bar was driven by the CaMV 35S promoter. In our previous study, the transgenic status of these lines was confirmed by Southern, Northern and Western blot analyses. Both the transgenes, gna and bar, were stably inherited and co-segregated into progenies in T1 to T5 generations. Insect bioassays on transgenic plants revealed the potent entomotoxic effects of GNA on the WBPH. Also, significant decreases were observed in the survival, development and fecundity of the insects fed on transgenic plants. Furthermore, intact GNA was detected in the total proteins of WBPHs fed on these plants. Western blot analysis revealed stable and consistent expression of GNA throughout the growth and development of transgenic plants. Transgenic lines expressing GNA exhibited high-level resistance against the WBPH. As reported earlier, these transgenics also showed substantial resistance against the brown planthopper and green leafhopper.

  10. 植物抗线虫基因与抗性机理研究进展%Advances in genes and mechanisms resistance to nematodes in plants

    Institute of Scientific and Technical Information of China (English)

    叶德友; 陈劲枫

    2012-01-01

    植物寄生线虫是严重危害农业生产的一类重要病原生物,对全球作物产量造成重大损失.抗线虫基因在植物抗线虫反应中发挥重要作用,发掘抗线虫基因并培育抗线虫品种是防治线虫病害的一条有效途径.抗线虫基因的定位与克隆对解析植物抗线虫性的分子机理做出了巨大贡献,明确线虫与寄主植物之间的互作关系及抗线虫机制,可以为制定和采取更加有效的防控策略提供借鉴.%Plant parasitic nematodes are important pathogens causing significant economic losses to crops all over the world. Nematode-resistant genes in plants play an important role against nematodes. The effective measure to control the pests is to investigate genes and screen varieties resistant to nematodes. Mapping and cloning of nema-tode-resistant genes have made a great contribution to clarifying molecular mechanisms involved in plant resistance to nematodes. Underlying interaction between nematodes and plants and its resistance mechanisms are of great interest, which can be helpful for making a more effective strategy for nematode management.

  11. Transformation of tobacco and Arabidopsis plants with Stellaria media genes encoding novel hevein-like peptides increases their resistance to fungal pathogens.

    Science.gov (United States)

    R Shukurov, Rahim; D Voblikova, Vera; Nikonorova, Alexandra K; Komakhin, Roman A; V Komakhina, Vera; A Egorov, Tsezi; V Grishin, Eugene; V Babakov, Alexey

    2012-04-01

    Two novel antifungal hevein-like peptides, SmAMP1.1a and SmAMP2.2a, were previously isolated from seeds of Stellaria media. It has been established that these peptides accumulate in this weed as a result of proteolysis of two propeptides, pro-SmAMP1 and pro-SmAMP2. The primary structure of these propeptides is unique; in addition to having a signal peptide and negatively charged C-terminus, each of these structures consists of two hevein-like peptides of different length separated by a space rather than a single peptide. In this work, we demonstrated that the expression of the pro-SmAMP1 and pro-SmAMP2 genes was tissue-specific and increased substantially under exposure to fungal infection. To elucidate whether S. media has any advantages in defending against phytopathogens due to its unusual structure of pro-SmAMP1 and pro-SmAMP2, on the basis of the pro-SmAMP1 gene, we created three genetic constructs. Arabidopsis and tobacco plants were subsequently transformed with these constructs. Transgenic plants bearing the full-length pro-SmAMP1 gene exhibited the best resistance to the phytopathogens Bipolaris sorokiniana and Thielaviopsis basicola. The resistance of S. media plants to phytopathogenic fungi was likely due to the fungal-inducible expression of pro-SmAMP1 and pro-SmAMP2 genes, and due to the specific features of the primary structure of the corresponding propeptides. As a result of the processing of these propeptides, two different antimicrobial peptides were released simultaneously. Based on our results, we conclude that the genes for antimicrobial peptides from S. media may be promising genetic tools for the improvement of plant resistance to fungal diseases.

  12. The Genetic and Molecular Basis of Plant Resistance to Pathogens

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Thomas Lubberstedt; Mingliang Xu

    2013-01-01

    Plant pathogens have evolved numerous strategies to obtain nutritive materials from their host,and plants in turn have evolved the preformed physical and chemical barriers as well as sophisticated two-tiered immune system to combat pathogen attacks.Genetically,plant resistance to pathogens can be divided into qualitative and quantitative disease resistance,conditioned by major gene(s) and multiple genes with minor effects,respectively.Qualitative disease resistance has been mostly detected in plant defense against biotrophic pathogens,whereas quantitative disease resistance is involved in defense response to all plant pathogens,from biotrophs,hemibiotrophs to necrotrophs.Plant resistance is achieved through interception of pathogen-derived effectors and elicitation of defense response.In recent years,great progress has been made related to the molecular basis underlying host-pathogen interactions.In this review,we would like to provide an update on genetic and molecular aspects of plant resistance to pathogens.

  13. GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development.

    Science.gov (United States)

    Shi, Jing; An, Hai-Long; Zhang, Liang; Gao, Zheng; Guo, Xing-Qi

    2010-09-01

    Mitogen-activated protein kinase (MAPK) cascades play a pivotal role in environmental responses and developmental processes in plants. Previous researches mainly focus on the MAPKs in groups A and B, and little is known on group C. In this study, we isolated and characterized GhMPK7, which is a novel gene from cotton belonging to the group C MAPK. RNA blot analysis indicated that GhMPK7 transcript was induced by pathogen infection and multiple defense-related signal molecules. Transgenic Nicotina benthamiana overexpressing GhMPK7 displayed significant resistance to fungus Colletotrichum nicotianae and virus PVY, and the transcript levels of SA pathway genes were more rapidly and strongly induced. Furthermore, the transgenic N. benthamiana showed reduced ROS-mediated injuries by upregulating expression of oxidative stress-related genes. Interestingly, the transgenic plants germinated earlier and grew faster in comparison to wild-type plants. beta-glucuronidase activity driven by the GhMPK7 promoter was detected in the apical meristem at the vegetative stage, and it was enhanced by treatments with signal molecules and phytohormones. These results suggest that GhMPK7 might play an important role in SA-regulated broad-spectrum resistance to pathogen infection, and that it is also involved in regulation of plant growth and development.

  14. Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis.

    Science.gov (United States)

    Osman, Gamal H; Assem, Shireen K; Alreedy, Rasha M; El-Ghareeb, Doaa K; Basry, Mahmoud A; Rastogi, Anshu; Kalaji, Hazem M

    2015-12-14

    Due to the importance of chitinolytic enzymes for insect, nematode and fungal growth, they are receiving attention concerning their development as biopesticides or chemical defense proteins in transgenic plants and as microbial biocontrol agents. Targeting chitin associated with the extracellular matrices or cell wall by insect chitinases may be an effective approach for controlling pest insects and pathogenic fungi. The ability of chitinases to attack and digest chitin in the peritrophic matrix or exoskeleton raises the possibility to use them as insect control method. In this study, an insect chitinase cDNA from cotton leaf worm (Spodoptera littoralis) has been synthesized. Transgenic maize plant system was used to improve its tolerance against insects. Insect chitinase transcripts and proteins were expressed in transgenic maize plants. The functional integrity and expression of chitinase in progenies of the transgenic plants were confirmed by insect bioassays. The bioassays using transgenic corn plants against corn borer (Sesamia cretica) revealed that ~50% of the insects reared on transgenic corn plants died, suggesting that transgenic maize plants have enhanced resistance against S. cretica.

  15. Antibody-based resistance to plant pathogens.

    Science.gov (United States)

    Schillberg, S; Zimmermann, S; Zhang, M Y; Fischer, R

    2001-01-01

    Plant diseases are a major threat to the world food supply, as up to 15% of production is lost to pathogens. In the past, disease control and the generation of resistant plant lines protected against viral, bacterial or fungal pathogens, was achieved using conventional breeding based on crossings, mutant screenings and backcrossing. Many approaches in this field have failed or the resistance obtained has been rapidly broken by the pathogens. Recent advances in molecular biotechnology have made it possible to obtain and to modify genes that are useful for generating disease resistant crops. Several strategies, including expression of pathogen-derived sequences or anti-pathogenic agents, have been developed to engineer improved pathogen resistance in transgenic plants. Antibody-based resistance is a novel strategy for generating transgenic plants resistant to pathogens. Decades ago it was shown that polyclonal and monoclonal antibodies can neutralize viruses, bacteria and selected fungi. This approach has been improved recently by the development of recombinant antibodies (rAbs). Crop resistance can be engineered by the expression of pathogen-specific antibodies, antibody fragments or antibody fusion proteins. The advantages of this approach are that rAbs can be engineered against almost any target molecule, and it has been demonstrated that expression of functional pathogen-specific rAbs in plants confers effective pathogen protection. The efficacy of antibody-based resistance was first shown for plant viruses and its application to other plant pathogens is becoming more established. However, successful use of antibodies to generate plant pathogen resistance relies on appropriate target selection, careful antibody design, efficient antibody expression, stability and targeting to appropriate cellular compartments.

  16. Inducing Fungus-Resistance into Plants through Biotechnology

    OpenAIRE

    Wani, Shabir Hussain

    2010-01-01

    Plant diseases are caused by a variety of plant pathogens including fungi, and their management requires the use of techniques like transgenic technology, molecular biology, and genetics. There have been attempts to use gene technology as an alternative method to protect plants from microbial diseases, in addition to the development of novel agrochemicals and the conventional breeding of resistant cultivars. Various genes have been introduced into plants, and the enhanced resistance against f...

  17. Monodehydroascorbate reductase gene, regulated by the wheat PN-2013 miRNA, contributes to adult wheat plant resistance to stripe rust through ROS metabolism.

    Science.gov (United States)

    Feng, Hao; Wang, Xiaojie; Zhang, Qiong; Fu, Yanping; Feng, Chuanxin; Wang, Bing; Huang, Lili; Kang, Zhensheng

    2014-01-01

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive wheat diseases worldwide. Varieties with adult plant resistance (APR) maintain effective and durable disease resistance. APR to stripe rust in wheat cultivar XZ9104 (XZ) is associated with extensive hypersensitive cell death and production of reactive oxygen species in the host. MDHAR is an important gene in the AsA-GSH cycle, and it plays an important role in maintaining the reduced pool of AsA scavenging hydrogen peroxide. microRNAs (miRNAs) were shown to engage in post-transcriptional regulation by degrading target mRNAs or repressing gene translation in plants responding to abiotic/biotic stresses. Previously, two novel miRNAs (1136-P3 and PN-2013) were isolated in wheat and the target gene of them was determined using degradome sequencing technology. In this study, the target gene was isolated and characterized as TaMDHAR, a monodehydroascorbate reductase gene. We first demonstrated that the target gene could be cleaved by these two miRNAs in tobacco leaves experimentally. However, TaMDHAR was regulated by PN-2013, not 1136-P3, in wheat-Pst adult incompatible interaction according to the expression patterns. The TaMDHAR knockdown resulted in improved wheat resistance to Pst at the seedling stage, with no influence on 1136-P3 and PN-2013 expression. The TaMDHAR knockdown resulted in a much greater H2O2 accumulation and lower APX and CAT activities together with higher expression in several PR genes. We deduced that TaMDHAR could contribute to the APR of XZ through ROS metabolism as regulated by the AsA-GSH cycle.

  18. Current Understandings of Plant Nonhost Resistance.

    Science.gov (United States)

    Lee, Hyun-Ah; Lee, Hye-Young; Seo, Eunyoung; Lee, Joohyun; Kim, Saet-Byul; Oh, Soohyun; Choi, Eunbi; Choi, Eunhye; Lee, So Eui; Choi, Doil

    2017-01-01

    Nonhost resistance, a resistance of plant species against all nonadapted pathogens, is considered the most durable and efficient immune system of plants but yet remains elusive. The underlying mechanism of nonhost resistance has been investigated at multiple levels of plant defense for several decades. In this review, we have comprehensively surveyed the latest literature on nonhost resistance in terms of preinvasion, metabolic defense, pattern-triggered immunity, effector-triggered immunity, defense signaling, and possible application in crop protection. Overall, we summarize the current understanding of nonhost resistance mechanisms. Pre- and postinvasion is not much deviated from the knowledge on host resistance, except for a few specific cases. Further insights on the roles of the pattern recognition receptor gene family, multiple interactions between effectors from nonadapted pathogen and plant factors, and plant secondary metabolites in host range determination could expand our knowledge on nonhost resistance and provide efficient tools for future crop protection using combinational biotechnology approaches. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

  19. Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses.

    Science.gov (United States)

    Chen, Peng-Jen; Senthilkumar, Rajendran; Jane, Wann-Neng; He, Yong; Tian, Zhihong; Yeh, Kai-Wun

    2014-05-01

    Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid-expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses.

  20. Tetraspanin genes in plants.

    Science.gov (United States)

    Wang, Feng; Vandepoele, Klaas; Van Lijsebettens, Mieke

    2012-07-01

    Tetraspanins represent a four-transmembrane protein superfamily with a conserved structure and amino acid residues that are present in mammals, insects, fungi and plants. Tetraspanins interact with each other or with other membrane proteins to form tetraspanin-enriched microdomains that play important roles in development, pathogenesis and immune responses via facilitating cell-cell adhesion and fusion, ligand binding and intracellular trafficking. Here, we emphasize evolutionary aspects within the plant kingdom based on genomic sequence information. A phylogenetic tree based on 155 tetraspanin genes of 11 plant species revealed ancient and fast evolving clades. Tetraspanins were only present in multicellular plants, were often duplicated in the plant genomes and predicted by the electronic Fluorescent Pictograph for gene expression analysis to be either functionally redundant or divergent. Tetraspanins contain a large extracellular loop with conserved cysteines that provide the binding sites for the interactions. The Arabidopsis thaliana TETRASPANIN1/TORNADO2/EKEKO has a function in leaf and root patterning and TETRASPANIN3 was identified in the plasmodesmatal proteome, suggesting a role in cell-cell communication during plant development.

  1. Signaling in Plant Disease Resistance and Symbiosis

    Institute of Scientific and Technical Information of China (English)

    Songzi Zhao; Xiaoquan Qi

    2008-01-01

    Interactions between plants and microbes result in plant disease and symbiosis. The former causes considerable economic damage in modern agriculture, while the latter has produced great beneficial effects to our agriculture system. Comparison of the two interactions has revealed that a common panel of signaling pathways might participate in the establishment of the equilibrium between plant and microbes or its break-up. Plants appear to detect both pathogenic and symbiotic microbes by a similar set of genes. All symbiotic microbes seem to produce effectors to overcome plant basal defenses and it is speculated that symbiotic effectors have functions similar to pathogenic ones. Signaling molecules, salicylic acid (SA),jasmonic acid (JA) and ethylene (ET), are involved in both plant defense and symbiosis. Switching off signals contributing to deterioration of disease symptom would establish a new equilibrium between plant and pathogenic microbes. This would facilitate the development of strategies for durable disease resistance.

  2. Engineering disease resistance in plants

    NARCIS (Netherlands)

    Custers, J.H.H.V.

    2007-01-01

    The genetic engineering of plants for increased pathogen resistance has engaged researchers and companies for decades. Until now, thenumberof crops with genetically engineered disease resistance traits which have entered the market are limited to products displaying virus an

  3. Gene flow from glyphosate-resistant crops.

    Science.gov (United States)

    Mallory-Smith, Carol; Zapiola, Maria

    2008-04-01

    Gene flow from transgenic glyphosate-resistant crops can result in the adventitious presence of the transgene, which may negatively impact markets. Gene flow can also produce glyphosate-resistant plants that may interfere with weed management systems. The objective of this article is to review the gene flow literature as it pertains to glyphosate-resistant crops. Gene flow is a natural phenomenon not unique to transgenic crops and can occur via pollen, seed and, in some cases, vegetative propagules. Gene flow via pollen can occur in all crops, even those that are considered to be self-pollinated, because all have low levels of outcrossing. Gene flow via seed or vegetative propagules occurs when they are moved naturally or by humans during crop production and commercialization. There are many factors that influence gene flow; therefore, it is difficult to prevent or predict. Gene flow via pollen and seed from glyphosate-resistant canola and creeping bentgrass fields has been documented. The adventitious presence of the transgene responsible for glyphosate resistance has been found in commercial seed lots of canola, corn and soybeans. In general, the glyphosate-resistant trait is not considered to provide an ecological advantage. However, regulators should consider the examples of gene flow from glyphosate-resistant crops when formulating rules for the release of crops with traits that could negatively impact the environment or human health.

  4. Consensus maps of cloned plant cuticle genes

    Institute of Scientific and Technical Information of China (English)

    Eviatar; Nevo

    2010-01-01

    Plant cuticle,which covers the plant surface,consists of waxes and cutins,and is associated with plant drought,cold,and salt resistance.Hitherto,at least 47 genes participating in the formation of plant cuticle have been cloned from Arabidopsis thaliana,Oryza sativa,Zea mays,Ricinus communis,Brassica napus,and Medicago truncatula;and about 85% of them encode proteins sharing above 50% identities with their rice homologous sequences.These cloned cuticle genes were mapped in silico on different chromosomes of rice and Arabidopsis,respectively.The mapping results revealed that plant cuticle genes were not evenly distributed in both genomes.About 40% of the mapped cuticle genes were located on chromosome 1 in Arabidopsis,while 20% of the mapped cuticle genes were located on chromosome 2 but none on chromosome 12 in rice.Some cloned plant cuticle genes have several rice homologous sequences,which might be produced by chromosomal segment duplication.The consensus map of cloned plant cuticle genes will provide important clues for the selection of candidate genes in a positional cloning of an unknown cuticle gene in plants.

  5. A novel approach for multi-domain and multi-gene famliy identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants

    NARCIS (Netherlands)

    Hofberger, J.A.; Zhou, B.; Tang, H.; Jones, J.; Schranz, M.E.

    2014-01-01

    Background Recent advances in DNA sequencing techniques resulted in more than forty sequenced plant genomes representing a diverse set of taxa of agricultural, energy, medicinal and ecological importance. However, gene family curation is often only inferred from DNA sequence homology and lacks

  6. Salt resistant crop plants

    KAUST Repository

    Roy, Stuart J.

    2014-04-01

    Soil salinity is a major constraint to agriculture. To improve salinity tolerance of crops, various traits can be incorporated, including ion exclusion, osmotic tolerance and tissue tolerance. We review the roles of a range of genes involved in salt tolerance traits. Different tissues and cells are adapted for specific and often diverse function, so it is important to express the genes in specific cell-types and to pyramid a range of traits. Modern biotechnology (marker- assisted selection or genetic engineering) needs to be increasingly used to introduce the correct combination of genes into elite crop cultivars. Importantly, the effects of introduced genes need to be evaluated in the field to determine their effect on salinity tolerance and yield improvement.

  7. Transposon tagging of disease resistance genes

    Energy Technology Data Exchange (ETDEWEB)

    Michelmore, R.W. (California Univ., Davis, CA (USA). Dept. of Physics)

    1989-01-01

    We are developing a transposon mutagenesis system for lettuce to clone genes for resistance to the fungal pathogen, Bremia lactucae. Activity of heterologous transposons is being studied in transgenic plants. Southern analysis of T{sub 1} and T{sub 2} plants containing Tam3 from Antirrhinum provided ambiguous results. Multiple endonuclease digests indicated that transposition had occurred; however, in no plant were all endonuclease digests consistent with a simple excision event. Southern or PCR analysis of over 50 plans containing Ac from maize have also failed to reveal clear evidence of transposition; this is contrast to experiments by others with the same constructs who have observed high rates of Ac excision in other plant species. Nearly all of 65 T{sub 2} families containing Ac interrupting a chimeric streptomycin resistance gene (Courtesy J. Jones, Sainsbury Lab., UK) clearly segregated for streptomycin resistance. Southern analyses, however, showed no evidence of transposition, indicating restoration of a functional message by other mechanisms, possibly mRNA processing. Transgenic plants have also been generated containing CaMV 35S or hsp70 promoters fused to transposase coding sequences or a Ds element interrupting a chimeric GUS gene (Courtesy M. Lassner, UC Davis). F{sub 1} plants containing both constructs were analyzed for transposition. Only two plants containing both constructs were obtained from 48 progeny, far fewer than expected, and neither showed evidence of transposition in Southerns and GUS assays. We are currently constructing further chimeric transposase fusions. To test for the stability of the targeted disease resistance genes, 50,000 F{sub 1} plants heterozygous for three resistance genes were generated; no mutants have been identified in the 5000 so far screened.

  8. TRANSGENIC PLANTS RESISTANT TO INSECTS

    Directory of Open Access Journals (Sweden)

    S. Kereša

    2009-09-01

    Full Text Available Proteinase inhibitors are secondary metabolites present in all plants and it seems that their major role is protection of plants against attacks of animals, insects and microorganisms. One of the family of proteinase inhibitors are squash inhibitors of serine proteinases purified from seeds belonging to genera Cucurbita, Cucumis and Momordica. Squash inhibitors consist of 29-32 amino acid residues and are considered to be the smallest inhibitors of the serine proteinases known. Because of shortness, genes for these inhibitors could be synthesised and modified at different ways. Modifications could lead to changes in inhibitor activity. Tobacco as a model plant was transformed with 12 different genes of squash inhibitors. Stable integration of transgenes in putative transgenic plants was determined by PCR analysis using genomic DNA and primers that anneal to promoter and terminator region. The first step of proteinase inhibitor gene expression in transgenic plants was revealed by RT-PCR analysis. In entomological tests where larvae were fed with leaves, influence of transgenic T0 plants, as well as non-transgenic control plants on retardation of larval growth of S. littoralis was examined. Results of entomological tests showed that it is possible to express squash proteinase inhibitors in plants at level that significantly reduces S. littoralis larval growth.

  9. Heterologous expression of the glucose oxidase gene in Trichoderma atroviride leads enhanced ability to attack phytopathogenic fungi and induction of plant systemic disease resistance

    Institute of Scientific and Technical Information of China (English)

    Robert L Mach; Brunner Kurt; Matteo Lorito; Susanne Zeilinger; Rosalia Ciliento; Sheridan Woo

    2004-01-01

    @@ A transgenic strain of Trichoderma atroviride that expresses the Aspergillus niger glucose oxidase gene goxA under a homologous pathogen-inducible promoter (nag1) has been constructed, with the aim of increasing the ability of this biocontrol agent (BCA) to attack phytopathogenic fungi and enhance plant systemic disease resistance. The sporulation and growth rate of the transgenic progenies were similar to the wild-type strain Pl. goxA expression occurred immediately after contact with the plant pathogen,and the glucose oxidase formed was secreted extracellularly. The transformed strain SJ3 4, containing 12-14 copies of the transgene, produced significantly less N-acetyl-glucosaminidase and endochitinase then wild type. However, the ability of its culture filtrate to inhibit the germination of Botrytis cinerea spores was increased by about 3-fold. In comparison to P1, the transgenic strain more quickly overgrew and lysed in vitro the pathogens Rhizoctonia solani and Pythium ultimum.

  10. Host plant resistance to parasitic weeds; recent progress and bottlenecks.

    Science.gov (United States)

    Yoder, John I; Scholes, Julie D

    2010-08-01

    Parasitic witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) directly invade the roots of crop plants connecting to the vascular system and abstracting nutrients and water. As a consequence they cause devastating losses in crop yield. Genetic resistance to parasitic weeds is a highly desirable component of any control strategy. Resistance to parasitic plants can occur at different stages of the parasite lifecycle: before attachment to the host, during penetration of the root or after establishment of vascular connections. New studies are beginning to shed light on the molecular mechanisms and signaling pathways involved in plant-plant resistance. The first resistance gene to Striga, encoding a CC-NBS-LRR Resistance protein (R) has been identified and cloned suggesting that host plants resist attack from parasitic plants using similar surveillance mechanisms as those used against fungal and bacterial pathogens. It is becoming clear that the salicylic acid (SA) signaling pathway plays an important role in resistance to parasitic plants and genes encoding pathogenesis-related (PR) proteins are upregulated in a number of the resistant interactions. New strategies for engineering resistance to parasitic plants are also being explored, including the expression of parasite-specific toxins in host roots and RNAi to silence parasite genes crucial for development.

  11. Mechanisms of resistance to paraquat in plants.

    Science.gov (United States)

    Hawkes, Timothy R

    2014-09-01

    The aim of this brief review is to draw information from studies of the mechanism of evolved resistance in weeds, together with information from laboratory studies of paraquat tolerance in model plants. Plants having mutations that limit paraquat uptake into cytoplasm, that confer various stress tolerances or that have transgenes that co-express two or more of the chloroplast Halliwell-Asada cycle enzymes can all exhibit enhanced tolerance to paraquat. However, none of these mechanisms correspond to the high-level resistances that have evolved naturally in weeds. Most, but not all, of the evidence from studies of paraquat-resistant biotypes of weeds can reasonably be reconciled with the proposal of a single major gene mechanism that sequesters paraquat away from chloroplasts and into the vacuole. However, the molecular details of this putative mechanism remain ill-defined.

  12. Introns in higher plant genes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The intron is an important component of eukaryotic gene. Extensive studies have been conducted to get a better understanding of its structure and function. This paper presents a brief review of the structure and function of introns in higher plant genes. It is shown that higher plant introns possess structural properties shared by all eukaryotic introns, however, they also exhibit a striking degree of diversity. The process of intron splicing in higher plant genes involves interaction between multiple cis-acting elements and trans-acting factors, such as 5′ splicing site, 3′ splicing site and many protein factors. The process of intron splicing is an important level at which gene expression is regulated. Especially alternative splicing of intron can regulate time and space of gene expression. In addition, some introns in higher plant genes also regulate gene expression by affecting the pattern of gene expression, enhancing the level of gene expression and driving the gene expression.

  13. Aluminium resistant, plant growth promoting bacteria induce overexpression of Aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against Aluminium stress.

    Science.gov (United States)

    Farh, Mohamed El-Agamy; Kim, Yeon-Ju; Sukweenadhi, Johan; Singh, Priyanka; Yang, Deok-Chun

    2017-07-01

    Panax ginseng is an important cash crop in the Asian countries due to its pharmaceutical effects, however the plant is exposed to various abiotic stresses, lead to reduction of its quality. One of them is the Aluminum (Al) accumulation. Plant growth promoting bacteria which able to tolerate heavy metals has been considered as a new trend for supporting the growth of many crops in heavy metal occupied areas. In this study, twelve bacteria strains were isolated from rhizosphere of diseased Korean ginseng roots located in Gochang province, Republic of Korea and tested for their ability to grow in Al-embedded broth media. Out of them, four strains (Pseudomonas simiae N3, Pseudomonas fragi N8, Chryseobacterium polytrichastri N10, and Burkholderia ginsengiterrae N11-2) were able to grow. The strains could also show other plant growth promoting activities e.g. auxins and siderophores production and phosphate solubilization. P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 strains were able to support the growth of Arabidopsis thaliana stressed by Al while P. fragi N8 could not. Plants inoculated with P. simiae N3, C. polytrichastri N10, and B. ginsengiterrae N11-2 showed higher expression level of Al-stress related genes, AtAIP, AtALS3 and AtALMT1, compared to non-bacterized plants. Expression profiles of the genes reveal the induction of external mechanism of Al resistance by P. simiae N3 and B. ginsengiterrae N11-2 and internal mechanism by C. polytrichastri N10. Korean ginseng seedlings treated with these strains showed higher biomass, particularly the foliar part, higher chlorophyll content than non-bacterized Al-stressed seedlings. According to the present results, these strains can be used in the future for the cultivation of ginseng in Al-persisted locations. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Transgenic Strategies for Enhancement of Nematode Resistance in Plants

    Directory of Open Access Journals (Sweden)

    Muhammad A. Ali

    2017-05-01

    Full Text Available Plant parasitic nematodes (PPNs are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.

  15. Transgenic Strategies for Enhancement of Nematode Resistance in Plants.

    Science.gov (United States)

    Ali, Muhammad A; Azeem, Farrukh; Abbas, Amjad; Joyia, Faiz A; Li, Hongjie; Dababat, Abdelfattah A

    2017-01-01

    Plant parasitic nematodes (PPNs) are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.

  16. Deep RNA-Seq profile reveals biodiversity, plant-microbe interactions and a large family of NBS-LRR resistance genes in walnut (Juglans regia) tissues.

    Science.gov (United States)

    Chakraborty, Sandeep; Britton, Monica; Martínez-García, P J; Dandekar, Abhaya M

    2016-03-01

    Deep RNA-Seq profiling, a revolutionary method used for quantifying transcriptional levels, often includes non-specific transcripts from other co-existing organisms in spite of stringent protocols. Using the recently published walnut genome sequence as a filter, we present a broad analysis of the RNA-Seq derived transcriptome profiles obtained from twenty different tissues to extract the biodiversity and possible plant-microbe interactions in the walnut ecosystem in California. Since the residual nature of the transcripts being analyzed does not provide sufficient information to identify the exact strain, inferences made are constrained to the genus level. The presence of the pathogenic oomycete Phytophthora was detected in the root through the presence of a glyceraldehyde-3-phosphate dehydrogenase. Cryptococcus, the causal agent of cryptococcosis, was found in the catkins and vegetative buds, corroborating previous work indicating that the plant surface supported the sexual cycle of this human pathogen. The RNA-Seq profile revealed several species of the endophytic nitrogen fixing Actinobacteria. Another bacterial species implicated in aerobic biodegradation of methyl tert-butyl ether (Methylibium petroleiphilum) is also found in the root. RNA encoding proteins from the pea aphid were found in the leaves and vegetative buds, while a serine protease from mosquito with significant homology to a female reproductive tract protease from Drosophila mojavensis in the vegetative bud suggests egg-laying activities. The comprehensive analysis of RNA-seq data present also unraveled detailed, tissue-specific information of ~400 transcripts encoded by the largest family of resistance (R) genes (NBS-LRR), which possibly rationalizes the resistance of the specific walnut plant to the pathogens detected. Thus, we elucidate the biodiversity and possible plant-microbe interactions in several walnut (Juglans regia) tissues in California using deep RNA-Seq profiling.

  17. Strong resistance against Rice grassy stunt virus is induced in transgenic rice plants expressing double-stranded RNA of the viral genes for nucleocapsid or movement proteins as targets for RNA interference.

    Science.gov (United States)

    Shimizu, Takumi; Ogamino, Takumi; Hiraguri, Akihiro; Nakazono-Nagaoka, Eiko; Uehara-Ichiki, Tamaki; Nakajima, Masami; Akutsu, Katsumi; Omura, Toshihiro; Sasaya, Takahide

    2013-05-01

    Rice grassy stunt virus (RGSV), a member of the genus Tenuivirus, causes significant economic losses in rice production in South, Southeast, and East Asian countries. Growing resistant varieties is the most efficient method to control RGSV; however, suitable resistance genes have not yet been found in natural rice resources. One of the most promising methods to confer resistance against RGSV is the use of RNA interference (RNAi). It is important to target viral genes that play important roles in viral infection and proliferation at an early stage of viral replication. Our recent findings obtained from an RNAi experiment with Rice stripe virus (RSV), a tenuivirus, revealed that the genes for nucleocapsid and movement proteins were appropriate targets for RNAi to confer resistance against RSV. In this study, we transformed rice plants by introducing an RNAi construct of the RGSV genes for the nucelocapsid protein pC5 or movement protein pC6. All progenies from self-fertilized transgenic plants had strong resistance against RGSV infection and did not allow the proliferation of RGSV. Thus, our strategy to target genes for nucleocapsid and movement proteins for conferring viral resistance might be applicable to the plant viruses in the genus Tenuivirus.

  18. Resistance to rice blast(Pyricularia oryzae) caused by the expression of trichosanthin gene in transgenic rice plants transferred through agrobacterium method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The gene of trichosanthin has been transferred into rice plants through agrobacterium method.The single copy insertion and the expression of foreign gene have been proved in regenerated plants.In antifungal assay the degrees of rice blast (Pyricularia oryzae) infection of the transgenic plants expressing trichosanthin and expressing GUS gene as control have been evaluated.The differences such as the time of disease symptom observed,the number of infected plants and damaged leaves,the growth of infected plants of the two transgenic plants after being inoculated by rice blast (Pyricularia oryzae) are significant.The transgenic plants with trichosanthin gene grew faster than the plants with GUS gene,even when humidity environment was removed.The results show that the transgenic plants that expressed trichosanthin are able to delay the infection of rice blast compared with the plants as control.In addition,no damage caused by the expression of trichosanthin gene in transgenic plants has been observed.

  19. Overexpression of the Synthetic Chimeric Native-T-phylloplanin-GFP Genes Optimized for Monocot and Dicot Plants Renders Enhanced Resistance to Blue Mold Disease in Tobacco (N. tabacum L.

    Directory of Open Access Journals (Sweden)

    Dipak K. Sahoo

    2014-01-01

    Full Text Available To enhance the natural plant resistance and to evaluate the antimicrobial properties of phylloplanin against blue mold, we have expressed a synthetic chimeric native-phylloplanin-GFP protein fusion in transgenic Nicotiana tabacum cv. KY14, a cultivar that is highly susceptible to infection by Peronospora tabacina. The coding sequence of the tobacco phylloplanin gene along with its native signal peptide was fused with GFP at the carboxy terminus. The synthetic chimeric gene (native-phylloplanin-GFP was placed between the modified Mirabilis mosaic virus full-length transcript promoter with duplicated enhancer domains and the terminator sequence from the rbcSE9 gene. The chimeric gene, expressed in transgenic tobacco, was stably inherited in successive plant generations as shown by molecular characterization, GFP quantification, and confocal fluorescent microscopy. Transgenic plants were morphologically similar to wild-type plants and showed no deleterious effects due to transgene expression. Blue mold-sensitivity assays of tobacco lines were performed by applying P. tabacina sporangia to the upper leaf surface. Transgenic lines expressing the fused synthetic native-phyllopanin-GFP gene in the leaf apoplast showed resistance to infection. Our results demonstrate that in vivo expression of a synthetic fused native-phylloplanin-GFP gene in plants can potentially achieve natural protection against microbial plant pathogens, including P. tabacina in tobacco.

  20. The BnALMT1 and BnALMT2 genes from rape encode aluminum-activated malate transporters that enhance the aluminum resistance of plant cells.

    Science.gov (United States)

    Ligaba, Ayalew; Katsuhara, Maki; Ryan, Peter R; Shibasaka, Mineo; Matsumoto, Hideaki

    2006-11-01

    The release of organic anions from roots can protect plants from aluminum (Al) toxicity and help them overcome phosphorus (P) deficiency. Our previous findings showed that Al treatment induced malate and citrate efflux from rape (Brassica napus) roots, and that P deficiency did not induce the efflux. Since this response is similar to the malate efflux from wheat (Triticum aestivum) that is controlled by the TaALMT1 gene, we investigated whether homologs of TaALMT1 are present in rape and whether they are involved in the release of organic anions. We isolated two TaALMT1 homologs from rape designated BnALMT1 and BnALMT2 (B. napus Al-activated malate transporter). The expression of these genes was induced in roots, but not shoots, by Al treatment but P deficiency had no effect. Several other cations (lanthanum, ytterbium, and erbium) also increased BnALMT1 and BnALMT2 expression in the roots. The function of the BnALMT1 and BnALMT2 proteins was investigated by heterologous expression in cultured tobacco (Nicotiana tabacum) cells and in Xenopus laevis oocytes. Both transfection systems showed an enhanced capacity for malate efflux but not citrate efflux, when exposed to Al. Smaller malate fluxes were also activated by ytterbium and erbium treatment. Transgenic tobacco cells grew significantly better than control cells following an 18 h treatment with Al, indicating that the expression of BnALMT1 and BnALMT2 increased the resistance of these plant cells to Al stress. This report demonstrates that homologs of the TaALMT1 gene from wheat perform similar functions in other species.

  1. Making a friend from a foe: expressing a GroEL gene from the whitefly Bemisia tabaci in the phloem of tomato plants confers resistance to tomato yellow leaf curl virus.

    Science.gov (United States)

    Akad, F; Eybishtz, A; Edelbaum, D; Gorovits, R; Dar-Issa, O; Iraki, N; Czosnek, H

    2007-01-01

    Some (perhaps all) plant viruses transmitted in a circulative manner by their insect vectors avoid destruction in the haemolymph by interacting with GroEL homologues, ensuring transmission. We have previously shown that the phloem-limited begomovirus tomato yellow leaf curl virus (TYLCV) interacts in vivo and in vitro with GroEL produced by the whitefly vector Bemisia tabaci. In this study, we have exploited this phenomenon to generate transgenic tomato plants expressing the whitefly GroEL in their phloem. We postulated that following inoculation, TYLCV particles will be trapped by GroEL in the plant phloem, thereby inhibiting virus replication and movement, thereby rendering the plants resistant. A whitefly GroEL gene was cloned in an Agrobacterium vector under the control of an Arabidopsis phloem-specific promoter, which was used to transform two tomato genotypes. During three consecutive generations, plants expressing GroEL exhibited mild or no disease symptoms upon whitefly-mediated inoculation of TYLCV. In vitro assays indicated that the sap of resistant plants contained GroEL-TYLCV complexes. Infected resistant plants served as virus source for whitefly-mediated transmission as effectively as infected non-transgenic tomato. Non-transgenic susceptible tomato plants grafted on resistant GroEL-transgenic scions remained susceptible, although GroEL translocated into the grafted plant and GroEL-TYLCV complexes were detected in the grafted tissues.

  2. Durable strategies to deploy plant resistance in agricultural landscapes.

    Science.gov (United States)

    Fabre, Frédéric; Rousseau, Elsa; Mailleret, Ludovic; Moury, Benoit

    2012-03-01

    The deployment of resistant crops often leads to the emergence of resistance-breaking pathogens that suppress the yield benefit provided by the resistance. Here, we theoretically explored how farmers' main leverages (resistant cultivar choice, resistance deployment strategy, landscape planning and cultural practices) can be best combined to achieve resistance durability while minimizing yield losses as a result of plant viruses. Assuming a gene-for-gene type of interaction, virus epidemics are modelled in a landscape composed of a mosaic of resistant and susceptible fields, subjected to seasonality, and a reservoir hosting viruses year-round. The model links the genetic and the epidemiological processes, shaping at nested scales the demogenetic dynamics of viruses. The choice of the resistance gene (characterized by the equilibrium frequency of the resistance-breaking virus at mutation-selection balance in a susceptible plant) is the most influential leverage of action. Our results showed that optimal strategies of resistance deployment range from 'mixture' (where susceptible and resistant cultivars coexist) to 'pure' strategies (with only resistant cultivar) depending on the resistance characteristics and the epidemiological context (epidemic incidence and landscape connectivity). We demonstrate and discuss gaps concerning virus epidemiology across the agro-ecological interface that must be filled to achieve sustainable disease management.

  3. Deciphering durable resistance one R gene at a time.

    Science.gov (United States)

    White, Frank F; Frommer, Wolf

    2015-12-01

    Characterizations of durable resistance genes in crop plants are coming to the fore. A new study characterizing the wheat gene Lr67 shows that how a plant manages sugar transport affects the ability of a broad group of fungal pathogens to colonize their host.

  4. Plant gene technology: social considerations

    African Journals Online (AJOL)

    Administrator

    African Journal of Biotechnology Vol. 3 (3), pp. 156-158 ... The genetic modification of plants by gene technology is of immense potential benefits, but there may ... this modern age. ... advantages over the current rate of food production and.

  5. Single amino acid substitution in the methyltransferase domain of Paprika mild mottle virus replicase proteins confers the ability to overcome the high temperature-dependent Hk gene-mediated resistance in Capsicum plants.

    Science.gov (United States)

    Matsumoto, Katsutoshi; Johnishi, Kousuke; Hamada, Hiroyuki; Sawada, Hiromasa; Takeuchi, Shigeharu; Kobayashi, Kappei; Suzuki, Kazumi; Kiba, Akinori; Hikichi, Yasufumi

    2009-03-01

    Capsicum plants harboring the Hk gene (Hk) show resistance to Paprika mild mottle virus (PaMMV) at 32 degrees C but not 24 degrees C. To identify the viral elicitor that activates the Hk-mediated resistance, several chimeric viral genomes were constructed between PaMMV and Tobacco mosaic virus-L. Infection patterns of these chimeric viruses in Hk-harboring plants revealed responsibility of PaMMV replicase genes for activation of the Hk-mediated resistance. The comparison of nucleotide sequence of replicase genes between PaMMV and PaHk1, an Hk-resistance-breaking strain of PaMMV, revealed that the adenine-to-uracil substitution at the nucleotide position 721 causes an amino acid change from threonine to serine at the 241st residue in the methyltransferase domain. Introduction of the A721U mutation into the replicase genes of parental PaMMV overcame the Hk resistance at 32 degrees C. The results indicate that Hk-mediated resistance is induced by PaMMV replicase proteins and that methyltransferase domain has a role in this elicitation.

  6. Transposon-mediated generation of marker free rice plants containing a Bt endotoxin gene for insect resistance

    NARCIS (Netherlands)

    Cotsaftis, O.; Sallaud, C.; Breitler, J.C.; Meynard, D.; Greco, R.; Pereira, A.; Guiderdoni, E.

    2002-01-01

    Transposon-mediated repositioning of transgenes is an attractive strategy to generate plants that are free of selectable markers and T-DNA inserts. By using a minimal number of transformation events a large number of transgene insertions in the genome can be obtained so as to benefit from position e

  7. Plant-pathogen interactions: toward development of next-generation disease-resistant plants.

    Science.gov (United States)

    Nejat, Naghmeh; Rookes, James; Mantri, Nitin L; Cahill, David M

    2017-03-01

    Briskly evolving phytopathogens are dire threats to our food supplies and threaten global food security. From the recent advances made toward high-throughput sequencing technologies, understanding of pathogenesis and effector biology, and plant innate immunity, translation of these means into new control tools is being introduced to develop durable disease resistance. Effectoromics as a powerful genetic tool for uncovering effector-target genes, both susceptibility genes and executor resistance genes in effector-assisted breeding, open up new avenues to improve resistance. TALENs (Transcription Activator-Like Effector Nucleases), engineered nucleases and CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats)/Cas9 systems are breakthrough and powerful techniques for genome editing, providing efficient mechanisms for targeted crop protection strategies in disease resistance programs. In this review, major advances in plant disease management to confer durable disease resistance and novel strategies for boosting plant innate immunity are highlighted.

  8. Characterization of two adult-plant stripe rust resistance genes on chromosomes 3BS and 4BL in soft red winter wheat

    Science.gov (United States)

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important foliar disease of soft red winter wheat (SRWW) in the eastern U.S. However, very few resistance genes have been characterized in the SRWW germplasm pool. The SRWW line VA96W-270 is known to be resistant to stripe rust race P...

  9. Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes

    NARCIS (Netherlands)

    Kim, H.I.; Lee, H.; Jo, K.R.; Mortazavian, S.M.M.; Huigen, D.J.; Evenhuis, A.; Kessel, G.J.T.; Visser, R.G.F.; Vossen, J.H.; Jacobsen, E.

    2012-01-01

    Phytophthora infestans is the causal agent of late blight in potato. The Mexican species Solanum demissum is well known as a good resistance source. Among the 11 R gene differentials, which were introgressed from S. demissum, especially R8 and R9 differentials showed broad spectrum resistance both u

  10. Plant Resistance to Virus Diseases through Genetic Engineering: Can a Similar Approach Control Plant-parasitic Nematodes?

    OpenAIRE

    Reimann-Philipp, Ulrich; Beachy, Roger N.

    1993-01-01

    Genetically engineered resistance against plant virus diseases has been achieved by transforming plants with gene constructs that encode viral sequences. Several successful field trials of virus-resistant transgenic plants have been carried out. Specific features of virus infection make it possible to interfere with different steps of the infection and disease cycle by accumulating products of chimeric genes introduced into transgenic plants. In this paper we describe the most common methods ...

  11. Systemic Acquired Resistance and Signal Transduction in Plant

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-qing; GUO Jian-bo

    2003-01-01

    Systemic acquired resistance (SAR), known as the broad-spectrum, inducible plant immunity,is a defense response triggered by pathogen infection. The response starts from the recognition of plant resist-ance (R) with the corresponding avirulence (avr) gene from the pathogen. There are some genes for conver-gence of signals downstream of different R/avr interacting partners into a single signaling pathway. Salicylicacid (SA) is required for the induction of SAR and involved in transducing the signal in target tissues. The SAsignal is transduced through NPR1, a nuclear-localized protein that interacts with transcription factors thatare involved in regulating SA-mediated gene expression. Some chemicals that mimic natural signaling com-pounds can also activate SAR. The application of biochemical activators to agriculture for plant protection is anovel idea for developing green chemical pesticide.

  12. Antibiotic-resistant soil bacteria in transgenic plant fields

    OpenAIRE

    Demaneche, S.; Sanguin, H.; Pote, J.; Navarro, Elisabeth; Bernillon, D.; Mavingui, P.; Wildi, W.; Vogel, T M; Simonet, P

    2008-01-01

    Understanding the prevalence and polymorphism of antibiotic resistance genes in soil bacteria and their potential to be transferred horizontally is required to evaluate the likelihood and ecological (and possibly clinical) consequences of the transfer of these genes from transgenic plants to soil bacteria. In this study, we combined culture-dependent and -independent approaches to study the prevalence and diversity of bla genes in soil bacteria and the potential impact that a 110-successive-y...

  13. Antibiotic-resistant soil bacteria in transgenic plant fields

    OpenAIRE

    Demanèche, Sandrine; Sanguin, Hervé; Poté, John; Navarro, Elisabeth; Bernillon, Dominique; Mavingui, Patrick; Wildi, Walter; Vogel, Timothy M.; Simonet, Pascal

    2008-01-01

    Understanding the prevalence and polymorphism of antibiotic resistance genes in soil bacteria and their potential to be transferred horizontally is required to evaluate the likelihood and ecological (and possibly clinical) consequences of the transfer of these genes from transgenic plants to soil bacteria. In this study, we combined culture-dependent and -independent approaches to study the prevalence and diversity of bla genes in soil bacteria and the potential impact that a 10-successive-ye...

  14. Antibiotic-resistant soil bacteria in transgenic plant fields

    OpenAIRE

    Demanèche, Sandrine; Sanguin, Hervé; Poté, John; Navarro, Elisabeth; Bernillon, Dominique; Mavingui, Patrick; Wildi, Walter; Vogel, Timothy,; Simonet, Pascal

    2008-01-01

    Understanding the prevalence and polymorphism of antibiotic resistance genes in soil bacteria and their potential to be transferred horizontally is required to evaluate the likelihood and ecological (and possibly clinical) consequences of the transfer of these genes from transgenic plants to soil bacteria. In this study, we combined culture-dependent and -independent approaches to study the prevalence and diversity of bla genes in soil bacteria and the potential impact that a 10-successive-y...

  15. [The problem of durable resistance of plants to different pests].

    Science.gov (United States)

    Odintsova, I G; Radchenko, E E; Tyryshkin, L G

    2002-01-01

    Different hypotheses concerning durable plant resistance against different pest were tested: 1) resistance is weak and polygenetically controlled; 2) resistance depends on "residual effect" of oligogenes that were overcome by pests. Contrast pair of plants and pests were used in experiments: wheat, barley--facultative parasite Bipolaris sorokiniana Shoem., wheat--obligate parasite Puccinia recondita Rob. ex Desm., sorghum--greenbug Schizaphis graminum Rond. Differential interaction between parasite and host plant resulted in their increased compatibility under long reproduction of parasite on resistant varieties were regarded as criteria of quick overcoming of resistance. The results did not support any hypothesis. The rate of adaptation of B. sorokiniana to the resistant varieties of wheat and barley did not depend on the level of resistance expression (weak, moderate or strong) and genetic control (oligogenic, polygenic or cytoplasmatic). It was shown by hybridological analysis that "residual effect" of oligogenes of sorghum resistance against greenbug depended on small resistance genes, that can be independent or weakly connected with marker oligogene. These data allows to doubt in phenomenon of "residual effect" of oligogenes. It was shown that non specific pathogenicity of parasitic fungi increased during their reproductions on sensitive varieties of plants. Thus, cultivation of sensitive varieties causes damage of crop culture non only because of their own losses, but also by increasing the infection of moderately resistant varieties.

  16. Relationship Between Resistance Gene Analogue and Blast Resistance in Rice

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-min; FAN Cheng-ming; YANG Yan; HE Yue-qiu

    2009-01-01

    DNA fragments of 43 rice varieties were amplified with 11 pairs of primers designed based on resistance gene analogue (RGA) of plants, and the blast resistance of the varieties was identified by inoculation with 33 isolates of Magnaporthe grisea collected from Yunnan Province, China. Clustering results revealed a significant correlation between the blast resistance and DNA bands with a correlation coefficient of 0.6117 (α=0.01), indicating that the resistance analysis based on RGA-PCR clustering analysis coincided with that based on inoculation. The correlation coefficients, ranging from 0.1701 to 0.535, however, depended on the primers. Five pairs of primers, S1/AS3, S1 INV/S2 INV, XLRR For/XLRR Rev, Pto-Kin1 IN/Pto-Kin2 IN, and NLRR For/NLRR Rev might be applied for blast resistance identification in consideration of their band numbers and polymorphisms, and their correlation coefficients with blast resistance were 0.5305, 0.4898, 0.4059, 0.3719 and 0.3524, respectively. Besides, indica and japonica rice except two highly susceptible varieties, CO39 and Lijiangxintuanheigu, could be well classified by the 11 pairs of primers.

  17. Antibiotic-resistant soil bacteria in transgenic plant fields.

    Science.gov (United States)

    Demanèche, Sandrine; Sanguin, Hervé; Poté, John; Navarro, Elisabeth; Bernillon, Dominique; Mavingui, Patrick; Wildi, Walter; Vogel, Timothy M; Simonet, Pascal

    2008-03-11

    Understanding the prevalence and polymorphism of antibiotic resistance genes in soil bacteria and their potential to be transferred horizontally is required to evaluate the likelihood and ecological (and possibly clinical) consequences of the transfer of these genes from transgenic plants to soil bacteria. In this study, we combined culture-dependent and -independent approaches to study the prevalence and diversity of bla genes in soil bacteria and the potential impact that a 10-successive-year culture of the transgenic Bt176 corn, which has a blaTEM marker gene, could have had on the soil bacterial community. The bla gene encoding resistance to ampicillin belongs to the beta-lactam antibiotic family, which is widely used in medicine but is readily compromised by bacterial antibiotic resistance. Our results indicate that soil bacteria are naturally resistant to a broad spectrum of beta-lactam antibiotics, including the third cephalosporin generation, which has a slightly stronger discriminating effect on soil isolates than other cephalosporins. These high resistance levels for a wide range of antibiotics are partly due to the polymorphism of bla genes, which occur frequently among soil bacteria. The blaTEM116 gene of the transgenic corn Bt176 investigated here is among those frequently found, thus reducing any risk of introducing a new bacterial resistance trait from the transgenic material. In addition, no significant differences were observed in bacterial antibiotic-resistance levels between transgenic and nontransgenic corn fields, although the bacterial populations were different.

  18. Modulation of Phytoalexin Biosynthesis in Engineered Plants for Disease Resistance

    Directory of Open Access Journals (Sweden)

    Sylvain Cordelier

    2013-07-01

    Full Text Available Phytoalexins are antimicrobial substances of low molecular weight produced by plants in response to infection or stress, which form part of their active defense mechanisms. Starting in the 1950’s, research on phytoalexins has begun with biochemistry and bio-organic chemistry, resulting in the determination of their structure, their biological activity as well as mechanisms of their synthesis and their catabolism by microorganisms. Elucidation of the biosynthesis of numerous phytoalexins has permitted the use of molecular biology tools for the exploration of the genes encoding enzymes of their synthesis pathways and their regulators. Genetic manipulation of phytoalexins has been investigated to increase the disease resistance of plants. The first example of a disease resistance resulting from foreign phytoalexin expression in a novel plant has concerned a phytoalexin from grapevine which was transferred to tobacco. Transformations were then operated to investigate the potential of other phytoalexin biosynthetic genes to confer resistance to pathogens. Unexpectedly, engineering phytoalexins for disease resistance in plants seem to have been limited to exploiting only a few phytoalexin biosynthetic genes, especially those encoding stilbenes and some isoflavonoids. Research has rather focused on indirect approaches which allow modulation of the accumulation of phytoalexin employing transcriptional regulators or components of upstream regulatory pathways. Genetic approaches using gain- or less-of functions in phytoalexin engineering together with modulation of phytoalexin accumulation through molecular engineering of plant hormones and defense-related marker and elicitor genes have been reviewed.

  19. Exploiting natural variation to identify insect-resistance genes.

    Science.gov (United States)

    Broekgaarden, Colette; Snoeren, Tjeerd A L; Dicke, Marcel; Vosman, Ben

    2011-10-01

    Herbivorous insects are widespread and often serious constraints to crop production. The use of insect-resistant crops is a very effective way to control insect pests in agriculture, and the development of such crops can be greatly enhanced by knowledge on plant resistance mechanisms and the genes involved. Plants have evolved diverse ways to cope with insect attack that has resulted in natural variation for resistance towards herbivorous insects. Studying the molecular genetics and transcriptional background of this variation has facilitated the identification of resistance genes and processes that lead to resistance against insects. With the development of new technologies, molecular studies are not restricted to model plants anymore. This review addresses the need to exploit natural variation in resistance towards insects to increase our knowledge on resistance mechanisms and the genes involved. We will discuss how this knowledge can be exploited in breeding programmes to provide sustainable crop protection against insect pests. Additionally, we discuss the current status of genetic research on insect-resistance genes. We conclude that insect-resistance mechanisms are still unclear at the molecular level and that exploiting natural variation with novel technologies will contribute greatly to the development of insect-resistant crop varieties.

  20. The relationship of host-mediated induced resistance to polymorphism in gene-for-gene relationships.

    Science.gov (United States)

    Tellier, Aurélien; Brown, James K M

    2008-01-01

    Gene-for-gene relationships are a common feature of plant-parasite interactions. Polymorphism at host resistance and parasite avirulence loci is maintained if there is negative, direct frequency-dependent selection on alleles of either gene. More specifically, selection of this kind is generated when the disease is polycyclic with frequent auto-infection. When an incompatible interaction occurs between a resistant host and an avirulent parasite, systemic defenses are triggered, rendering the plant more resistant to a later attack by another parasite. However, induced resistance (IR) incurs a fitness cost to the plant. Here, the effect of IR on polymorphism in gene-for-gene interactions is investigated. First, in an infinite population model in which parasites have two generations per host generation, increasing the fitness cost of IR increases selection for susceptible plants at low disease severity, while increasing the effectiveness of IR against further parasite attacks enhances selection for resistant plants at high disease severity. This reduces the possibility of polymorphism being maintained in host and parasite populations. In finite population models, the number of plants varies over time as a function of the disease burden of the population. Polymorphism in gene-for-gene relationships is then more stable at high disease prevalence and severity if IR reactions are more costly when there is competition for resources between plants.

  1. Genome-Editing Technologies for Enhancing Plant Disease Resistance

    Science.gov (United States)

    Andolfo, Giuseppe; Iovieno, Paolo; Frusciante, Luigi; Ercolano, Maria R.

    2016-01-01

    One of the greatest challenges for agricultural science in the 21st century is to improve yield stability through the progressive development of superior cultivars. The increasing numbers of infectious plant diseases that are caused by plant-pathogens make it ever more necessary to develop new strategies for plant disease resistance breeding. Targeted genome engineering allows the introduction of precise modifications directly into a commercial variety, offering a viable alternative to traditional breeding methods. Genome editing is a powerful tool for modifying crucial players in the plant immunity system. In this work, we propose and discuss genome-editing strategies and targets for improving resistance to phytopathogens. First of all, we present the opportunities to rewrite the effector-target sequence for avoiding effector-target molecular interaction and also to modify effector-target promoters for increasing the expression of target genes involved in the resistance process. In addition, we describe potential approaches for obtaining synthetic R-genes through genome-editing technologies (GETs). Finally, we illustrate a genome editing flowchart to modify the pathogen recognition sites and engineer an R-gene that mounts resistance to some phylogenetically divergent pathogens. GETs potentially mark the beginning of a new era, in which synthetic biology affords a basis for obtaining a reinforced plant defense system. Nowadays it is conceivable that by modulating the function of the major plant immunity players, we will be able to improve crop performance for a sustainable agriculture. PMID:27990151

  2. The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease.

    Science.gov (United States)

    Catanzariti, Ann-Maree; Lim, Ginny T T; Jones, David A

    2015-07-01

    Plant resistance proteins provide race-specific immunity through the recognition of pathogen effectors. The resistance genes I, I-2 and I-3 have been incorporated into cultivated tomato (Solanum lycopersicum) from wild tomato species to confer resistance against Fusarium oxysporum f. sp. lycopersici (Fol) races 1, 2 and 3, respectively. Although the Fol effectors corresponding to these resistance genes have all been identified, only the I-2 resistance gene has been isolated from tomato. To isolate the I-3 resistance gene, we employed a map-based cloning approach and used transgenic complementation to test candidate genes for resistance to Fol race 3. Here, we describe the fine mapping and sequencing of genes at the I-3 locus, which revealed a family of S-receptor-like kinase (SRLK) genes. Transgenic tomato lines were generated with three of these SRLK genes and one was found to confer Avr3-dependent resistance to Fol race 3, confirming it to be I-3. The finding that I-3 encodes an SRLK reveals a new pathway for Fol resistance and a new class of resistance genes, of which Pi-d2 from rice is also a member. The identification of I-3 also allows the investigation of the complex effector-resistance protein interaction involving Avr1-mediated suppression of I-2- and I-3-dependent resistance in tomato.

  3. Plant isoflavone and isoflavanone O-methyltransferase genes

    Science.gov (United States)

    Broeckling, Bettina E.; Liu, Chang-Jun; Dixon, Richard A.

    2014-08-19

    The invention provides enzymes that encode O-methyltransferases (OMTs) from Medicago truncatula that allow modification to plant (iso)flavonoid biosynthetic pathways. In certain aspects of the invention, the genes encoding these enzymes are provided. The invention therefore allows the modification of plants for isoflavonoid content. Transgenic plants comprising such enzymes are also provided, as well as methods for improving disease resistance in plants. Methods for producing food and nutraceuticals, and the resulting compositions, are also provided.

  4. Cladosporium fulvum CfHNNI1 induces hypersensitive necrosis, defence gene expression and disease resistance in both host and nonhost plants

    NARCIS (Netherlands)

    Cai, X.Z.; Zhou, X.; Xu, Y.P.; Joosten, M.H.A.J.; Wit, de P.J.G.M.

    2007-01-01

    Nonhost resistance as a durable and broad-spectrum defence strategy is of great potential for agricultural applications. We have previously isolated a cDNA showing homology with genes encoding bZIP transcription factors from tomato leaf mould pathogen Cladosporium fulvum. Upon expression, the cDNA r

  5. Cladosporium fulvum CfHNNI1 induces hypersensitive necrosis, defence gene expression and disease resistance in both host and nonhost plants

    NARCIS (Netherlands)

    Cai, X.Z.; Zhou, X.; Xu, Y.P.; Joosten, M.H.A.J.; Wit, de P.J.G.M.

    2007-01-01

    Nonhost resistance as a durable and broad-spectrum defence strategy is of great potential for agricultural applications. We have previously isolated a cDNA showing homology with genes encoding bZIP transcription factors from tomato leaf mould pathogen Cladosporium fulvum. Upon expression, the cDNA

  6. An Arabidopsis thaliana ABC transporter that confers kanamycin resistance in transgenic plants does not endow resistance to Escherichia coli

    OpenAIRE

    Burris, Kellie; Mentewab, Ayalew; Ripp, Steven; Stewart, C. Neal

    2007-01-01

    Summary Concerns have been raised about potential horizontal gene transfer (HGT) of antibiotic resistance markers (ARMs) from transgenic plants to bacteria of medical and environmental importance. All ARMs used in transgenic plants have been bacterial in origin, but it has been recently shown that an Arabidopsis thaliana ABC transporter, Atwbc19, confers kanamycin resistance when overexpressed in transgenic plants. Atwbc19 was evaluated for its ability to transfer kanamycin resistance to Esch...

  7. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses

    Science.gov (United States)

    Yan, Qiang; Cui, Xiaoxia; Lin, Shuai; Gan, Shuping; Xing, Han; Dou, Daolong

    2016-01-01

    The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes. PMID:27588421

  8. The plant ADH gene family.

    Science.gov (United States)

    Strommer, Judith

    2011-04-01

    The structures, evolution and functions of alcohol dehydrogenase gene families and their products have been scrutinized for half a century. Our understanding of the enzyme structure and catalytic activity of plant alcohol dehydrogenase (ADH-P) is based on the vast amount of information available for its animal counterpart. The probable origins of the enzyme from a simple β-coil and eventual emergence from a glutathione-dependent formaldehyde dehydrogenase have been well described. There is compelling evidence that the small ADH gene families found in plants today are the survivors of multiple rounds of gene expansion and contraction. To the probable original function of their products in the terminal reaction of anaerobic fermentation have been added roles in yeast-like aerobic fermentation and the production of characteristic scents that act to attract animals that serve as pollinators or agents of seed dispersal and to protect against herbivores.

  9. Obesity genes and insulin resistance

    Science.gov (United States)

    Belkina, Anna C.; Denis, Gerald V.

    2011-01-01

    Purpose of review The exploding prevalence of insulin resistance and Type 2 diabetes (T2D) linked to obesity has become an alarming public health concern. Worldwide, approximately 171 million people suffer from obesity-induced diabetes and public health authorities expect this situation to deteriorate rapidly. An interesting clinical population of ‘metabolically healthy but obese’ (MHO) cases is relatively protected from T2D and its associated cardiovascular risk. The molecular basis for this protection is not well understood but is likely to involve reduced inflammatory responses. The inflammatory cells and pathways that respond to overnutrition are the primary subject matter for this review. Recent findings The chance discovery of a genetic mutation in the Brd2 gene, which is located in the class II major histocompatibility complex and makes mice enormously fat but protects them from diabetes, offers revolutionary new insights into the cellular mechanisms that link obesity to insulin resistance and T2D. These Brd2-hypomorphic mice have reduced inflammation in fat that is normally associated with insulin resistance, and resemble MHO patients, suggesting novel therapeutic pathways for obese patients at risk for T2D. Summary Deeper understanding of the functional links between genes that control inflammatory responses to diet-induced obesity is crucial to the development of therapies for obese, insulin-resistant patients. PMID:20585247

  10. Resistance to Cucumber mosaic virus in Gladiolus plants transformed with either a defective replicase of coat protein subgroup II gene from Cucumber mosaic virus

    Science.gov (United States)

    Transgenic Gladiolus plants that contain either Cucumber mosaic virus (CMV) subgroup I coat protein, CMV subgroup II coat protein, CMV replicase, a combination of the CMV subgroups I and II coat proteins, or a combination of the CMV subgroup II coat protein and replicase genes were developed. These...

  11. Amplicon based RNA interference targeting V2 gene of cotton leaf curl Kokhran virus-Burewala strain can provide resistance in transgenic cotton plants

    Science.gov (United States)

    An RNAi based gene construct designated “C2” was used to target the V2 region of the cotton leaf curl virus (CLCuV) genome which is responsible for virus movement. The construct was transformed into two elite cotton varieties MNH-786 and VH-289. A shoot apex method of plant transformation using Agr...

  12. Editing plants for virus resistance using CRISPR-Cas.

    Science.gov (United States)

    Green, J C; Hu, J S

    This minireview summarizes recent advancements using the clustered regularly interspaced palindromic repeats-associated nuclease systems (CRISPR-Cas) derived from prokaryotes to breed plants resistant to DNA and RNA viruses. The CRISPR-Cas system represents a powerful tool able to edit and insert novel traits into plants precisely at chosen loci offering enormous advantages to classical breeding. Approaches to engineering plant virus resistance in both transgenic and non-transgenic plants are discussed. Iterations of the CRISPR-Cas system, FnCas9 and C2c2 capable of editing RNA in eukaryotic cells offer a particular advantage for providing resistance to RNA viruses which represent the great majority of known plant viruses. Scientists have obtained conflicting results using gene silencing technology to produce transgenic plants resistant to geminiviruses. CRISPR-Cas systems engineered in plants to target geminiviruses have consistently reduced virus accumulation providing increased resistance to virus infection. CRISPR-Cas may provide novel and reliable approaches to control geminiviruses and other ssDNA viruses such as Banana bunchy top virus (BBTV).

  13. Methylobacterium-plant interaction genes regulated by plant exudate and quorum sensing molecules

    Directory of Open Access Journals (Sweden)

    Manuella Nóbrega Dourado

    2013-12-01

    Full Text Available Bacteria from the genus Methylobacterium interact symbiotically (endophytically and epiphytically with different plant species. These interactions can promote plant growth or induce systemic resistance, increasing plant fitness. The plant colonization is guided by molecular communication between bacteria-bacteria and bacteria-plants, where the bacteria recognize specific exuded compounds by other bacteria (e.g. homoserine molecules and/or by the plant roots (e.g. flavonoids, ethanol and methanol, respectively. In this context, the aim of this study was to evaluate the effect of quorum sensing molecules (N-acyl-homoserine lactones and plant exudates (including ethanol in the expression of a series of bacterial genes involved in Methylobacterium-plant interaction. The selected genes are related to bacterial metabolism (mxaF, adaptation to stressful environment (crtI, phoU and sss, to interactions with plant metabolism compounds (acdS and pathogenicity (patatin and phoU. Under in vitro conditions, our results showed the differential expression of some important genes related to metabolism, stress and pathogenesis, thereby AHL molecules up-regulate all tested genes, except phoU, while plant exudates induce only mxaF gene expression. In the presence of plant exudates there is a lower bacterial density (due the endophytic and epiphytic colonization, which produce less AHL, leading to down regulation of genes when compared to the control. Therefore, bacterial density, more than plant exudate, influences the expression of genes related to plant-bacteria interaction.

  14. Cytogenetic Mapping of Disease Resistance Genes and Analysis of Their Distribution Features on Chromosomes in Maize

    Institute of Scientific and Technical Information of China (English)

    LiLi-jia; SongYun-chun

    2003-01-01

    Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plant species onto maize chromosomes, combining with data published before. These genes include Helminthosporium turcium Pass resistance genes Htl, Htnl and Ht2, Helminthosporium maydis Nisik resistance genes Rhml and Rhm2,maize dwarf mosaic virus resistance gene Mdml, wheat streak mosaic virus resistance gene Wsml, Helminthosporium carbonum ULLstrup resistance gene Hml and the cloned Xanthomonas oryzae pv. Oryzae resistance gene Xa21 of rice, Cladosporium fulvum resistance genes Cf-9 and Cf-2. 1 of tomato, and Pseudomonas syringae resistance gene RPS2 of Arabidopsis. Most of the tested disease resistance genes located on the four chromosomes, i. e. , chromosomesl, 3, 6 and 8, and they closely distributed at the interstitial regions of these chromosomal long arms with percentage distances ranging 31.44(±3.72)-72.40(±3. 25) except for genes Rhml, Rhm2, Mdml and Wsml which mapped on the satellites of the short arms of chromosome6. It showed that the tested RFLP markers and genes were duplicated or triplicated in maize genome. Homology and conservation of disease resistance genes among species, and relationship between distribution features and functions of the genes were discussed. The results provide important scientific basis for deeply understanding structure and function of disease resistance genes and breeding in maize.

  15. Development of a Triple Gene Cry1Ac-Cry2Ab-EPSPS Construct and Its Expression in Nicotiana benthamiana for Insect Resistance and Herbicide Tolerance in Plants

    Science.gov (United States)

    Naqvi, Rubab Z.; Asif, Muhammad; Saeed, Muhammad; Asad, Shaheen; Khatoon, Asia; Amin, Imran; Mukhtar, Zahid; Bashir, Aftab; Mansoor, Shahid

    2017-01-01

    Insect pest complex, cotton leaf curl disease and weeds pose major threat to crop production worldwide, including Pakistan. To address these problems, in the present study a triple gene construct harboring Cry1Ac, Cry2Ab, and EPSPS cassettes has been developed for plant specifically in cotton transformation against lepidopteron insect-pests and weeds. Nicotiana benthamiana (tobacco) was used as a model system for characterization of this triple gene construct. The construct has been assembled in plant expression vector and transformed in N. benthamiana. In six transgenic tobacco lines the integration of Cry1Ac-Cry2Ab-EPSPS in tobacco genome was checked by PCR, while successful protein expression of all the three genes was confirmed through immunostrip assay. Efficacy of Cry1Ac and Cry2Ab was evaluated through insect bioassay using armyworm (Spodoptera littoralis). These transgenic tobacco plants showed significant insect mortality as compared to control plants during insect bioassay. Three out of six tested transgenic lines L3, L5, and L9 exhibited 100% mortality of armyworm, while three other lines L1, L10, and L7 showed 86, 80, and 40% mortality, respectively. This construct can readily be used with confidence to transform cotton and other crops for the development of insect resistant and herbicide tolerant transgenic plants. The transgenic crop plants developed using this triple gene construct will provide an excellent germplasm resource for the breeders to improve their efficiency in developing stable homozygous lines as all the three genes being in a single T-DNA border will inherit together. PMID:28174591

  16. Development of a Triple Gene Cry1Ac-Cry2Ab-EPSPS Construct and Its Expression in Nicotiana benthamiana for Insect Resistance and Herbicide Tolerance in Plants.

    Science.gov (United States)

    Naqvi, Rubab Z; Asif, Muhammad; Saeed, Muhammad; Asad, Shaheen; Khatoon, Asia; Amin, Imran; Mukhtar, Zahid; Bashir, Aftab; Mansoor, Shahid

    2017-01-01

    Insect pest complex, cotton leaf curl disease and weeds pose major threat to crop production worldwide, including Pakistan. To address these problems, in the present study a triple gene construct harboring Cry1Ac, Cry2Ab, and EPSPS cassettes has been developed for plant specifically in cotton transformation against lepidopteron insect-pests and weeds. Nicotiana benthamiana (tobacco) was used as a model system for characterization of this triple gene construct. The construct has been assembled in plant expression vector and transformed in N. benthamiana. In six transgenic tobacco lines the integration of Cry1Ac-Cry2Ab-EPSPS in tobacco genome was checked by PCR, while successful protein expression of all the three genes was confirmed through immunostrip assay. Efficacy of Cry1Ac and Cry2Ab was evaluated through insect bioassay using armyworm (Spodoptera littoralis). These transgenic tobacco plants showed significant insect mortality as compared to control plants during insect bioassay. Three out of six tested transgenic lines L3, L5, and L9 exhibited 100% mortality of armyworm, while three other lines L1, L10, and L7 showed 86, 80, and 40% mortality, respectively. This construct can readily be used with confidence to transform cotton and other crops for the development of insect resistant and herbicide tolerant transgenic plants. The transgenic crop plants developed using this triple gene construct will provide an excellent germplasm resource for the breeders to improve their efficiency in developing stable homozygous lines as all the three genes being in a single T-DNA border will inherit together.

  17. KP4 to control Ustilago tritici in wheat: Enhanced greenhouse resistance to loose smut and changes in transcript abundance of pathogen related genes in infected KP4 plants.

    Science.gov (United States)

    Quijano, Carolina Diaz; Wichmann, Fabienne; Schlaich, Thomas; Fammartino, Alessandro; Huckauf, Jana; Schmidt, Kerstin; Unger, Christoph; Broer, Inge; Sautter, Christof

    2016-09-01

    Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale farmers use their own harvest as seed material. The killer protein 4 (KP4) is a virally encoded toxin from Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent. The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the expression of endogenous pathogen defense genes.

  18. KP4 to control Ustilago tritici in wheat: Enhanced greenhouse resistance to loose smut and changes in transcript abundance of pathogen related genes in infected KP4 plants

    Directory of Open Access Journals (Sweden)

    Carolina Diaz Quijano

    2016-09-01

    Full Text Available Ustilago tritici causes loose smut, which is a seed-borne fungal disease of wheat, and responsible for yield losses up to 40%. Loose smut is a threat to seed production in developing countries where small scale farmers use their own harvest as seed material. The killer protein 4 (KP4 is a virally encoded toxin from Ustilago maydis and inhibits growth of susceptible races of fungi from the Ustilaginales. Enhanced resistance in KP4 wheat to stinking smut, which is caused by Tilletia caries, had been reported earlier. We show that KP4 in genetically engineered wheat increased resistance to loose smut up to 60% compared to the non-KP4 control under greenhouse conditions. This enhanced resistance is dose and race dependent. The overexpression of the transgene kp4 and its effect on fungal growth have indirect effects on the expression of endogenous pathogen defense genes.

  19. A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance against Rhizoctonia solani and two oomycetes.

    Directory of Open Access Journals (Sweden)

    Orlando eBorras-Hidalgo

    2012-12-01

    Full Text Available We have tested whether a gene encoding a polygalacturonase-inhibiting protein (PGIP protects tobacco against a fungal pathogen (Rhizoctonia solani and two oomycetes (Phytophthora parasitica var. nicotianae and Peronospora hyoscyami f. sp. tabacina. The trials were performed in greenhouse conditions for R. solani and P. parasitica and in the field for P. hyoscyami. Our results show that expression of PGIP is a powerful way of engineering a broad-spectrum disease resistance.

  20. Plant genetics: gene transfer from parasitic to host plants.

    Science.gov (United States)

    Mower, Jeffrey P; Stefanović, Sasa; Young, Gregory J; Palmer, Jeffrey D

    2004-11-11

    Plant mitochondrial genes are transmitted horizontally across mating barriers with surprising frequency, but the mechanism of transfer is unclear. Here we describe two new cases of horizontal gene transfer, from parasitic flowering plants to their host flowering plants, and present phylogenetic and biogeographic evidence that this occurred as a result of direct physical contact between the two. Our findings complement the discovery that genes can be transferred in the opposite direction, from host to parasite plant.

  1. Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products.

    Science.gov (United States)

    Godziszewska, Jolanta; Guzek, Dominika; Głąbski, Krzysztof; Wierzbicka, Agnieszka

    2016-07-07

    In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance.

  2. Transgenic Cotton and Disease Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    RAJASEKARAN; Kanniah

    2008-01-01

    Success in conventional breeding for resistance to mycotoxin-producing or other phytopathogenic fungi is dependent on the availability of resistance gene(s) in the germplasm.Even when it is available,breeding for disease-resistant crops is very time consuming,especially in perennial crops such as

  3. Association mapping of plant resistance to insects.

    Science.gov (United States)

    Kloth, Karen J; Thoen, Manus P M; Bouwmeester, Harro J; Jongsma, Maarten A; Dicke, Marcel

    2012-05-01

    Association mapping is rapidly becoming an important method to explore the genetic architecture of complex traits in plants and offers unique opportunities for studying resistance to insect herbivores. Recent studies indicate that there is a trade-off between resistance against generalist and specialist insects. Most studies, however, use a targeted approach that will easily miss important components of insect resistance. Genome-wide association mapping provides a comprehensive approach to explore the whole array of plant defense mechanisms in the context of the generalist-specialist paradigm. As association mapping involves the screening of large numbers of plant lines, specific and accurate high-throughput phenotyping (HTP) methods are needed. Here, we discuss the prospects of association mapping for insect resistance and HTP requirements.

  4. Transgenic strategies to confer resistance against viruses in rice plants

    Directory of Open Access Journals (Sweden)

    Takahide eSasaya

    2014-01-01

    Full Text Available Rice (Oryza sativa L. is cultivated in more than 100 countries and supports nearly half of the world’s population. Developing efficient methods to control rice viruses is thus an urgent necessity because viruses cause serious losses in rice yield. Most rice viruses are transmitted by insect vectors, notably planthoppers and leafhoppers. Viruliferous insect vectors can disperse their viruses over relatively long distances, and eradication of the viruses is very difficult once they become widespread. Exploitation of natural genetic sources of resistance is one of the most effective approaches to protect crops from virus infection; however, only a few naturally occurring rice genes confer resistance against rice viruses. In an effort to improve control, many investigators are using genetic engineering of rice plants as a potential strategy to control viral diseases. Using viral genes to confer pathogen-derived resistance against crops is a well-established procedure, and the expression of various viral gene products has proved to be effective in preventing or reducing infection by various plant viruses since the 1990s. RNA-interference (RNAi, also known as RNA silencing, is one of the most efficient methods to confer resistance against plant viruses on their respective crops. In this article, we review the recent progress, mainly conducted by our research group, in transgenic strategies to confer resistance against tenuiviruses and reoviruses in rice plants. Our findings also illustrate that not all RNAi constructs against viral RNAs are equally effective in preventing virus infection and that it is important to identify the viral Achilles’ heel gene to target for RNAi attack when engineering plants.

  5. Tomato plant inheritance of antixenotic resistance to tomato leafminer

    Directory of Open Access Journals (Sweden)

    Adilson de Castro Antônio

    2011-01-01

    Full Text Available The objective of this work was to determine the inheritance of resistance by antixenosis in tomato plants (Lycopersicon esculentum to tomato leafminer [Tuta absoluta (Lepidoptera: Gelechiidae]. Evaluations were performed for tomato plants of the generations P1, P2, F1, F2, RC1 and RC2. The measured characteristic in the parents, BGH-1497 (P2 male and 'Santa Clara' (P1 female, and in the F1, F2, RC1 and RC2 generations was the number of eggs per plant. This number was converted to the oviposition nonpreference index. The inheritance of antixenosis resistance of genotype BGH-1497 is ruled by a gene of greater effect and polygenes in epistatic interactions, with a phenotypic proportion of 13:3 between susceptible and resistant genotypes, respectively.

  6. Putative resistance genes in the CitEST database

    Directory of Open Access Journals (Sweden)

    Simone Guidetti-Gonzalez

    2007-01-01

    Full Text Available Disease resistance in plants is usually associated with the activation of a wide variety of defense responses to prevent pathogen replication and/or movement. The ability of the host plant to recognize the pathogen and to activate defense responses is regulated by direct or indirect interaction between the products of plant resistance (R and pathogen avirulence (Avr genes. Attempted infection of plants by avirulent pathogens elicits a battery of defenses often followed by the collapse of the challenged host cells. Localized host cell death may help to prevent the pathogen from spreading to uninfected tissues, known as hypersensitive response (HR. When either the plant or the pathogen lacks its cognate gene, activation of the plant’s defense responses fails to occur or is delayed and does not prevent pathogen colonization. In the CitEST database, we identified 1,300 reads related to R genes in Citrus which have been reported in other plant species. These reads were translated in silico, and alignments of their amino acid sequences revealed the presence of characteristic domains and motifs that are specific to R gene classes. The description of the reads identified suggests that they function as resistance genes in citrus.

  7. Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity.

    Science.gov (United States)

    Chen, Tingting; Yang, Qingchuan; Gruber, Margaret; Kang, Junmei; Sun, Yan; Ding, Wang; Zhang, Tiejun; Zhang, Xinquan

    2012-05-01

    Ethylene response factors (ERF) play crucial roles in plant development and response to stresses. Here, a novel cDNA fragment (MsERF8) encoding an ERF protein with an AP2 domain was isolated and characterized from alfalfa. The MsERF8 cDNA has an open reading frame of 603 bp and encodes a nuclear protein of 201 amino acids. Q-RT-PCR analysis revealed that MsERF8 was strongly enriched in roots and leaves compared with stems, flower buds and flowers of mature alfalfa plants. Bioinformatic analysis of the MsERF8 promoter indicated a number of elements associated with stress-related responses, and MsERF8 transcripts in alfalfa seedlings were induced by NaCl, PEG6000, Al(2)(SO(4))(3) and five different hormones. Expression of MsERF8 in transgenic tobacco plants resulted in higher tolerance to salinity than with non-transgenic plants. This data shows that MsERF8 is a gene which prevents or alleviates salinity damage and has strong potential to impart salt tolerance to other crop plants.

  8. Acquired antibiotic resistance genes: an overview.

    Directory of Open Access Journals (Sweden)

    Angela H.A.M. van Hoek

    2011-09-01

    Full Text Available In this review an overview is given on antibiotic resistance mechanisms with special attentions to the antibiotic resistance genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is paid to mobile genetic elements such as plasmids, transposons and integrons, which are associated with antibiotic resistance genes, and involved in the dispersal of antimicrobial determinants between different bacteria.

  9. Acquired antibiotic resistance genes: an overview.

    OpenAIRE

    Hoek, Angela H.A.M. van; Dik eMevius; Beatriz eGuerra; Peter eMullany; Adam Paul Roberts; Aarts, Henk J. M.

    2011-01-01

    In this review an overview is given on antibiotic resistance mechanisms with special attentions to the antibiotic resistance genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is paid to mobile genetic elements such as plasmids, transposons and integrons, which are associated with antibiotic resistance genes, and involved in the dispersal of anti...

  10. Structure-based computational study of two disease resistance gene homologues (Hm1 and Hm2) in maize (Zea mays L.) with implications in plant-pathogen interactions.

    Science.gov (United States)

    Dehury, Budheswar; Patra, Mahesh Chandra; Maharana, Jitendra; Sahu, Jagajjit; Sen, Priyabrata; Modi, Mahendra Kumar; Choudhury, Manabendra Dutta; Barooah, Madhumita

    2014-01-01

    The NADPH-dependent HC-toxin reductases (HCTR1 and 2) encoded by enzymatic class of disease resistance homologous genes (Hm1 and Hm2) protect maize by detoxifying a cyclic tetrapeptide, HC-toxin, secreted by the fungus Cochliobolus carbonum race 1(CCR1). Unlike the other classes' resistance (R) genes, HCTR-mediated disease resistance is an inimitable mechanism where the avirulence (Avr) component from CCR1 is not involved in toxin degradation. In this study, we attempted to decipher cofactor (NADPH) recognition and mode of HC-toxin binding to HCTRs through molecular docking, molecular dynamics (MD) simulations and binding free energy calculation methods. The rationality and the stability of docked complexes were validated by 30-ns MD simulation. The binding free energy decomposition of enzyme-cofactor complex was calculated to find the driving force behind cofactor recognition. The overall binding free energies of HCTR1-NADPH and HCTR2-NADPH were found to be -616.989 and -16.9749 kJ mol-1 respectively. The binding free energy decomposition revealed that the binding of NADPH to the HCTR1 is mainly governed by van der Waals and nonpolar interactions, whereas electrostatic terms play dominant role in stabilizing the binding mode between HCTR2 and NADPH. Further, docking analysis of HC-toxin with HCTR-NADPH complexes showed a distinct mode of binding and the complexes were stabilized by a strong network of hydrogen bond and hydrophobic interactions. This study is the first in silico attempt to unravel the biophysical and biochemical basis of cofactor recognition in enzymatic class of R genes in cereal crop maize.

  11. Molecular and physiological strategies to increase aluminum resistance in plants.

    Science.gov (United States)

    Inostroza-Blancheteau, Claudio; Rengel, Zed; Alberdi, Miren; de la Luz Mora, María; Aquea, Felipe; Arce-Johnson, Patricio; Reyes-Díaz, Marjorie

    2012-03-01

    Aluminum (Al) toxicity is a primary limitation to plant growth on acid soils. Root meristems are the first site for toxic Al accumulation, and therefore inhibition of root elongation is the most evident physiological manifestation of Al toxicity. Plants may resist Al toxicity by avoidance (Al exclusion) and/or tolerance mechanisms (detoxification of Al inside the cells). The Al exclusion involves the exudation of organic acid anions from the root apices, whereas tolerance mechanisms comprise internal Al detoxification by organic acid anions and enhanced scavenging of free oxygen radicals. One of the most important advances in understanding the molecular events associated with the Al exclusion mechanism was the identification of the ALMT1 gene (Al-activated malate transporter) in Triticum aestivum root cells, which codes for a plasma membrane anion channel that allows efflux of organic acid anions, such as malate, citrate or oxalate. On the other hand, the scavenging of free radicals is dependent on the expression of genes involved in antioxidant defenses, such as peroxidases (e.g. in Arabidopsis thaliana and Nicotiana tabacum), catalases (e.g. in Capsicum annuum), and the gene WMnSOD1 from T. aestivum. However, other recent findings show that reactive oxygen species (ROS) induced stress may be due to acidic (low pH) conditions rather than to Al stress. In this review, we summarize recent findings regarding molecular and physiological mechanisms of Al toxicity and resistance in higher plants. Advances have been made in understanding some of the underlying strategies that plants use to cope with Al toxicity. Furthermore, we discuss the physiological and molecular responses to Al toxicity, including genes involved in Al resistance that have been identified and characterized in several plant species. The better understanding of these strategies and mechanisms is essential for improving plant performance in acidic, Al-toxic soils.

  12. Presence of Methicillin Resistant Staphylococcus aureus (MRSA) in sewage treatment plant.

    Science.gov (United States)

    Boopathy, Raj

    2017-09-01

    The presence of antibiotic resistant bacteria and antibiotic resistance genes in rural sewage treatment plants are not well reported in the literature. The aim of the present study was to study the frequency occurrence of Methicillin Resistant Staphylococcus aureus (MRSA) in a rural sewage treatment plant. This study was conducted using raw sewage as well as treated sewage from a small town sewage treatment plant in rural southeast Louisiana of USA. Results showed the presence of MRSA consistently in both raw and treated sewage. The presence of mecA gene responsible for methicillin resistance was confirmed in the raw and treated sewage water samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Control of fire blight (Erwinia amylovora on apple trees with trunk-injected plant resistance inducers and antibiotics and assessment of induction of pathogenesis-related protein genes

    Directory of Open Access Journals (Sweden)

    Srđan G. Aćimović

    2015-02-01

    Full Text Available Management of fire blight is complicated by limitations on use of antibiotics in agriculture, antibiotic resistance development, and limited efficacy of alternative control agents. Even though successful in control, preventive antibiotic sprays also affect non-target bacteria, aiding the selection for resistance which could ultimately be transferred to the pathogen Erwinia amylovora. Trunk injection is a target-precise pesticide delivery method that utilizes tree xylem to distribute injected compounds. Trunk injection could decrease antibiotic usage in the open environment and increase the effectiveness of compounds in fire blight control. In field experiments, after 1-2 apple tree injections of either streptomycin, potassium phosphites (PH or acibenzolar-S-methyl (ASM, significant reduction of blossom and shoot blight symptoms was observed compared to water- or non-injected control trees. Overall disease suppression with streptomycin was lower than typically observed following spray applications to flowers. Trunk injection of oxytetracycline resulted in excellent control of shoot blight severity, suggesting that injection is a superior delivery method for this antibiotic. Injection of both ASM and PH resulted in the significant induction of PR-1, PR-2 and PR-8 protein genes in apple leaves indicating induction of systemic acquired resistance (SAR under field conditions. The time separating SAR induction and fire blight symptom suppression indicated that various defensive compounds within the SAR response were synthesized and accumulated in the canopy. ASM and PH suppressed fire blight even after cessation of induced gene expression. With the development of injectable formulations and optimization of doses and injection schedules, the injection of protective compounds could serve as an effective option for fire blight control.

  14. Advances in Research on Genetically Engineered Plants for Metal Resistance

    Institute of Scientific and Technical Information of China (English)

    Ri-Qing Zhang; Chun-Fang Tang; Shi-Zhi Wen; Yun-Guo Liu; Ke-Lin Li

    2006-01-01

    The engineering application of natural hyperaccumulators in removing or inactivating metal pollutants from soil and surface water in field trials mostly presents the insurmountable shortcoming of low efficiency owing to their little biomass and slow growth. Based on further understanding of the molecular mechanism of metal uptake, translocation, and also the separation, identification, and cloning of some related functional genes, this article highlights and summarizes in detail the advances in research on transgenic techniques, such as Agrobacterium tumefaciens-mediated transformation and particle bombardment, in breeding of plants for metal resistance and accumulation, and points out that deepening the development of transgenic plants is one of the efficient approaches to improving phytoremediation efficiency of metal-contaminated environments. From the viewpoint of sustainable development, governments should strengthen support to the development of genetic engineering for metal resistance and accumulation in plants.

  15. The role of aluminum sensing and signaling in plant aluminum resistance

    Institute of Scientific and Technical Information of China (English)

    Jiping Liu; Miguel A. Piñeros; Leon V. Kochian

    2014-01-01

    As researchers have gained a better understanding in recent years into the physiological, molecular, and genetic basis of how plants deal with aluminum (Al) toxicity in acid soils prevalent in the tropics and sub-tropics, it has become clear that an important component of these responses is the triggering and regulation of cellular pathways and processes by Al. In this review of plant Al signaling, we begin by summarizing the understanding of physiological mechanisms of Al resis-tance, which first led researchers to realize that Al stress induces gene expression and modifies protein function during the activation of Al resistance responses. Subsequently, an overview of Al resistance genes and their function provides verification that Al induction of gene expression plays a major role in Al resistance in many plant species. More recent research into the mechanistic basis for Al-induced transcrip-tional activation of resistance genes has led to the identifica-tion of several transcription factors as wel as cis-elements in the promoters of Al resistance genes that play a role in greater Al-induced gene expression as wel as higher constitutive expression of resistance genes in some plant species. Final y, the post-transcriptional and translational regulation of Al resistance proteins is addressed, where recent research has shown that Al can both directly bind to and alter activity of certain organic acid transporters, and also influence Al resistance proteins indirectly, via protein phosphorylation.

  16. In silico survey of resistance (R genes in Eucalyptus transcriptome

    Directory of Open Access Journals (Sweden)

    Adriano Barbosa-da-Silva

    2005-01-01

    Full Text Available A major goal of plant genome research is to recognize genes responsible for important traits. Resistance genes are among the most important gene classes for plant breeding purposes being responsible for the specific immune response including pathogen recognition, and activation of plant defence mechanisms. These genes are quite abundant in higher plants, with 210 clusters found in Eucalyptus FOREST database presenting significant homology to known R-genes. All five gene classes of R-genes with their respective conserved domains are present and expressed in Eucalyptus. Most clusters identified (93 belong to the LRR-NBS-TIR (genes with three domains: Leucine-rich-repeat, Nucleotide-binding-site and Toll interleucine 1-receptor, followed by the serine-threonine-kinase class (49 clusters. Some new combinations of domains and motifs of R-genes may be present in Eucalyptus and could represent novel gene structures. Most alignments occurred with dicots (94.3%, with emphasis on Arabidopsis thaliana (Brassicaceae sequences. All best alignments with monocots (5.2% occurred with rice (Oryza sativa sequences and a single cluster aligned with the gymnosperm Pinus sylvestris (0.5%. The results are discussed and compared with available data from other crops and may bring useful evidences for the understanding of defense mechanisms in Eucalyptus and other crop species.

  17. Induced disease resistance signaling in plants

    NARCIS (Netherlands)

    Verhagen, B.W.M.; Loon, L.C. van; Pieterse, C.M.J.

    2006-01-01

    To protect themselves from disease, plants have evolved sophisticated inducible defense mechanisms in which the signal molecules salicylic acid, jasmonic acid and ethylene often play crucial roles. Elucidation of signaling pathways controlling induced disease resistance is a major objective in resea

  18. Multiple antibiotic resistance genes distribution in ten large-scale membrane bioreactors for municipal wastewater treatment.

    Science.gov (United States)

    Sun, Yanmei; Shen, Yue-Xiao; Liang, Peng; Zhou, Jizhong; Yang, Yunfeng; Huang, Xia

    2016-12-01

    Wastewater treatment plants are thought to be potential reservoirs of antibiotic resistance genes. In this study, GeoChip was used for analyzing multiple antibiotic resistance genes, including four multidrug efflux system gene groups and three β-lactamase genes in ten large-scale membrane bioreactors (MBRs) for municipal wastewater treatment. Results revealed that the diversity of antibiotic genes varied a lot among MBRs, but about 40% common antibiotic resistance genes were existent. The average signal intensity of each antibiotic resistance group was similar among MBRs, nevertheless the total abundance of each group varied remarkably and the dominant resistance gene groups were different in individual MBR. The antibiotic resistance genes majorly derived from Proteobacteria and Actinobacteria. Further study indicated that TN, TP and COD of influent, temperature and conductivity of mixed liquor were significant (Pantibiotic resistance genes distribution in MBRs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Transgenic Cotton and Disease Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    RAJASEKARAN Kanniah

    2008-01-01

    @@ Success in conventional breeding for resistance to mycotoxin-producing or other phytopathogenic fungi is dependent on the availability of resistance gene(s) in the germplasm.Even when it is available,breeding for disease-resistant crops is very time consuming,especially in perennial crops such as tree nut crops,and does not lend itself ready to combat the evolution of new virulent fungal races.

  20. Ultraviolet reduction of erythromycin and tetracycline resistant heterotrophic bacteria and their resistance genes in municipal wastewater.

    Science.gov (United States)

    Guo, Mei-Ting; Yuan, Qing-Bin; Yang, Jian

    2013-11-01

    Antibiotic resistance in wastewater is becoming a major public health concern, but poorly understood about impact of disinfection on antibiotic resistant bacteria and antibiotic resistance genes. The UV disinfection of antibiotic resistant heterotrophic bacteria and their relevant genes in the wastewater of a municipal wastewater treatment plant has been evaluated. Two commonly used antibiotics, erythromycin and tetracycline were selected because of their wide occurrences in regard to the antibiotic resistance problem. After UV treatment at a fluence of 5mJcm(-2), the log reductions of heterotrophic bacteria resistant to erythromycin and tetracycline in the wastewater were found to be 1.4±0.1 and 1.1±0.1, respectively. The proportion of tetracycline-resistant bacteria (5%) was nearly double of that before UV disinfection (3%). Tetracycline-resistant bacteria exhibited more tolerance to UV irradiation compared to the erythromycin-resistant bacteria (pUV treatment at a fluence of 5mJcm(-2) removed the total erythromycin- and tetracycline-resistance genes by 3.0±0.1 log and 1.9±0.1 log, respectively. UV treatment was effective in reducing antibiotic resistance in the wastewater.

  1. Frost resistance in alpine woody plants.

    Science.gov (United States)

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  2. The Resistance of Crops in Plant Protection

    Institute of Scientific and Technical Information of China (English)

    MIRZAEVA Gulnara

    2008-01-01

    @@ World crop production requires highly-productive varieties of agricultural crops,which are resistant to pest organisms.Such varieties are also of great importance for the Uzbekistan.Their deficiency may prove to be an obstacle to securing the production of foodstuffs and providing commerce with agricultural products.The cultivation of varieties,which are resistant to insects and mites,provides an opportunity to decrease the number of applied insecticides and acaricides.In addition to the considerable economic advantage,including energy consumption,the growing of resistant varieties is of great ecological importance,protecting environment and health (as a result the risk of chemical pollution becomes less and conditions for agricultural workers are improved).All this,allows us to state that exploration of the theoretical basis of plant resistance to pests and the selection of resistant arieties are a fundamental scientific and real national economic problems.It is known that an immunogenetic system of any organism is called up to protect their morpho-functional integrity.Plant resistance to in sects and mites,as well as other mesophauna,is characterized by many factors that reflect the essence of versatile interrelations that arose in the evolutionary process.

  3. Scab resistance in 'Geneva' apple is conditioned by a resistance gene cluster with complex genetic control.

    Science.gov (United States)

    Bastiaanse, Héloïse; Bassett, Heather C M; Kirk, Christopher; Gardiner, Susan E; Deng, Cecilia; Groenworld, Remmelt; Chagné, David; Bus, Vincent G M

    2016-02-01

    Apple scab, caused by the fungal pathogen Venturia inaequalis, is one of the most severe diseases of apple worldwide. It is the most studied plant-pathogen interaction involving a woody species using modern genetic, genomic, proteomic and bioinformatic approaches in both species. Although 'Geneva' apple was recognized long ago as a potential source of resistance to scab, this resistance has not been characterized previously. Differential interactions between various monoconidial isolates of V. inaequalis and six segregating F1 and F2 populations indicate the presence of at least five loci governing the resistance in 'Geneva'. The 17 chromosomes of apple were screened using genotyping-by-sequencing, as well as single marker mapping, to position loci controlling the V. inaequalis resistance on linkage group 4. Next, we fine mapped a 5-cM region containing five loci conferring both dominant and recessive scab resistance to the distal end of the linkage group. This region corresponds to 2.2 Mbp (from 20.3 to 22.5 Mbp) on the physical map of 'Golden Delicious' containing nine candidate nucleotide-binding site leucine-rich repeat (NBS-LRR) resistance genes. This study increases our understanding of the complex genetic basis of apple scab resistance conferred by 'Geneva', as well as the gene-for-gene (GfG) relationships between the effector genes in the pathogen and resistance genes in the host.

  4. Identifying resistance gene analogs associated with resistances to different pathogens in common bean.

    Science.gov (United States)

    López, Camilo E; Acosta, Iván F; Jara, Carlos; Pedraza, Fabio; Gaitán-Solís, Eliana; Gallego, Gerardo; Beebe, Steve; Tohme, Joe

    2003-01-01

    ABSTRACT A polymerase chain reaction approach using degenerate primers that targeted the conserved domains of cloned plant disease resistance genes (R genes) was used to isolate a set of 15 resistance gene analogs (RGAs) from common bean (Phaseolus vulgaris). Eight different classes of RGAs were obtained from nucleotide binding site (NBS)-based primers and seven from not previously described Toll/Interleukin-1 receptor-like (TIR)-based primers. Putative amino acid sequences of RGAs were significantly similar to R genes and contained additional conserved motifs. The NBS-type RGAs were classified in two subgroups according to the expected final residue in the kinase-2 motif. Eleven RGAs were mapped at 19 loci on eight linkage groups of the common bean genetic map constructed at Centro Internacional de Agricultura Tropical. Genetic linkage was shown for eight RGAs with partial resistance to anthracnose, angular leaf spot (ALS) and Bean golden yellow mosaic virus (BGYMV). RGA1 and RGA2 were associated with resistance loci to anthracnose and BGYMV and were part of two clusters of R genes previously described. A new major cluster was detected by RGA7 and explained up to 63.9% of resistance to ALS and has a putative contribution to anthracnose resistance. These results show the usefulness of RGAs as candidate genes to detect and eventually isolate numerous R genes in common bean.

  5. PlantRGDB: A Database of Plant Retrocopied Genes.

    Science.gov (United States)

    Wang, Yi

    2017-01-01

    RNA-based gene duplication, known as retrocopy, plays important roles in gene origination and genome evolution. The genomes of many plants have been sequenced, offering an opportunity to annotate and mine the retrocopies in plant genomes. However, comprehensive and unified annotation of retrocopies in these plants is still lacking. In this study I constructed the PlantRGDB (Plant Retrocopied Gene DataBase), the first database of plant retrocopies, to provide a putatively complete centralized list of retrocopies in plant genomes. The database is freely accessible at http://probes.pw.usda.gov/plantrgdb or http://aegilops.wheat.ucdavis.edu/plantrgdb. It currently integrates 49 plant species and 38,997 retrocopies along with characterization information. PlantRGDB provides a user-friendly web interface for searching, browsing and downloading the retrocopies in the database. PlantRGDB also offers graphical viewer-integrated sequence information for displaying the structure of each retrocopy. The attributes of the retrocopies of each species are reported using a browse function. In addition, useful tools, such as an advanced search and BLAST, are available to search the database more conveniently. In conclusion, the database will provide a web platform for obtaining valuable insight into the generation of retrocopies and will supplement research on gene duplication and genome evolution in plants.

  6. No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri.

    Science.gov (United States)

    Vila-Aiub, Martin M; Goh, Sou S; Gaines, Todd A; Han, Heping; Busi, Roberto; Yu, Qin; Powles, Stephen B

    2014-04-01

    Amplification of the EPSPS gene has been previously identified as the glyphosate resistance mechanism in many populations of Amaranthus palmeri, a major weed pest in US agriculture. Here, we evaluate the effects of EPSPS gene amplification on both the level of glyphosate resistance and fitness cost of resistance. A. palmeri individuals resistant to glyphosate by expressing a wide range of EPSPS gene copy numbers were evaluated under competitive conditions in the presence or absence of glyphosate. Survival rates to glyphosate and fitness traits of plants under intra-specific competition were assessed. Plants with higher amplification of the EPSPS gene (53-fold) showed high levels of glyphosate resistance, whereas less amplification of the EPSPS gene (21-fold) endowed a lower level of glyphosate resistance. Without glyphosate but under competitive conditions, plants exhibiting up to 76-fold EPSPS gene amplification exhibited similar height, and biomass allocation to vegetative and reproductive organs, compared to glyphosate susceptible A. palmeri plants with no amplification of the EPSPS gene. Both the additive effects of EPSPS gene amplification on the level of glyphosate resistance and the lack of associated fitness costs are key factors contributing to EPSPS gene amplification as a widespread and important glyphosate resistance mechanism likely to become much more evident in weed plant species.

  7. Entomic Resistance Genes for Genetic Engineering in Agricultural Furtherance

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar

    2015-02-01

    Full Text Available Genetic engineering for insect pest’s management in crop plants offers the potential of a user-friendly, environmentfriendly and consumer-friendly method of crop protection to meet the demands of sustainable agriculture. Food and energy insecurities are currently two foremost problems being faced worldwide. Losses due to pests and diseases have been estimated to be around 37% of the agricultural production worldwide, with 13% due to insects. Engineering insect resistance in transgenic plants has been achieved through the use of insect control protein genes of Bacillus thuringiensis. Till now, researchers have focused on the introduction of genes for expression of modified Bacillus thuringiensis (Bt toxins. Successful results on the control of Bt-susceptible pests have been achieved in the laboratory and finally in the field and now commercialized Bt transgenic crops are used worldwide. Other alternative methods exploit plant-derived insect control genes with promising results. Today insect-resistance transgenes, whether of plant, bacterial or other origin, can be introduced in to plants to increase the level of insect resistance so as to contribute to sustainable agricultural practices.

  8. Expression activity of the CpTI gene in transgenic rice plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Plant harboured protease inhibitor is a part of the natural plant defense system against insect predation. Plants transformed with foreign plant protease inhibitor genes can enhance resistance to insect pests. So far, at least 20 kinds of plants, including tobacco, rice, tomato, cotton et al., have been transformed with various plant protease inhibitor genes. We have transformed rice with CpTI (cowpea trypsin inhibitor) gene. To assess the range and stability of expression of the CpTI gene, CpTI protein activities were determined in various tissues and at different development stages of transgenic inbred lines.

  9. Hypergravity experiments to evaluate gravity resistance mechanisms in plants.

    Science.gov (United States)

    Soga, Kouichi; Yano, Sachiko; Matsumoto, Shouhei; Hoson, Takayuki

    2015-01-01

    Hypergravity generated by centrifugal acceleration is the only practical method to modify the magnitude of gravitational acceleration for a sufficient duration on Earth and has been used to analyze the nature and mechanism of graviresponse, particularly gravity resistance, in plants. Plant organs are generally resistant to gravitational acceleration. Hypergravity produced from centrifugation speeds in the range of 10-300 × g, which is easily produced by a benchtop centrifuge, is often used during plant experiments. After centrifugation, the plant material is fixed with suitable fixatives in appropriate sample storage containers such as the Chemical Fixation Bag. The material is then analyzed with a variety of methods, depending on the purpose of the experiment. Plant material fixed with the RNAlater(®) solution can be sequentially used for determining the mechanical properties of the cell wall, for RNA extraction (which is necessary for gene expression analysis), for estimating the enzyme activity of the cell wall proteins, and for determining the levels as well as the compositions of cell wall polysaccharides. The plant material can also be used directly for microscopic observation of cellular components such as cortical microtubules.

  10. Resistance gene management: concepts and practice

    Science.gov (United States)

    Christopher C. Mundt

    2012-01-01

    There is now a very long history of genetics/breeding for disease resistance in annual crops. These efforts have resulted in conceptual advances and frustrations, as well as practical successes and failures. This talk will review this history and its relevance to the genetics of resistance in forest species. All plant breeders and pathologists are familiar with boom-...

  11. "Active" refuges can inhibit the evolution of resistance in insects towards transgenic insect-resistant plants.

    Science.gov (United States)

    Pittendrigh, Barry R; Gaffney, Patrick J; Huesing, Joseph E; Onstad, David W; Roush, Richard T; Murdock, Larry L

    2004-12-21

    Negative cross-resistance (NCR) toxins that hitherto have not been thought to have practical uses may indeed be useful in the management of resistance alleles. Practical applications of NCR for pest management have been limited (i) by the scarcity of high toxicity NCR toxins among pesticides, (ii) by the lack of systematic methodologies to discover and develop such toxins, as well as (iii) by the lack of deployment tactics that would make NCR attractive. Here we present the concept that NCR toxins can improve the effectiveness of refuges in delaying the evolution of resistance by herbivorous insect pests to transgenic host plants containing insecticidal toxins. In our concept, NCR toxins are deployed in the refuge, and thus are physically separated from the transgenic plants containing the primary plant-protectant gene (PPPG) encoding an insecticidal toxin. Our models show: (i) that use of NCR toxins in the refuge dramatically delays the increase in the frequency of resistance alleles in the insect population; and (ii) that NCR toxins that are only moderately effective in killing insects resistant to the PPPG can greatly improve the durability of transgenic insecticidal toxins. Moderately toxic NCR toxins are more effective in minimizing resistance development in the field when they are deployed in the refuge than when they are pyramided with the PPPG. We explore the potential strengths and weaknesses of deploying NCR toxins in refuges.

  12. Arabidopsis PED2 positively modulates plant drought stress resistance

    Institute of Scientific and Technical Information of China (English)

    Haitao Shi; Tiantian Ye; Fan Yang; Zhulong Chan

    2015-01-01

    Abscisic acid (ABA) is an important phytohormone that functions in seed germination, plant development, and multiple stress responses. Arabidopsis Peroxisome defective 2 (AtPED2) (also known as AtPEXOXIN14, AtPEX14), is involved in the intracellular transport of thiolase from the cytosol to glyoxysomes, and perosisomal matrix protein import in plants. In this study, we assigned a new role for AtPED2 in drought stress resistance. The transcript level of AtPED2 was down-regulated by ABA and abiotic stress treatments. AtPED2 knockout mutants were insensitive to ABA-mediated seed germination, primary root elongation, and stomatal response, while AtPED2 over-expressing plants were sensitive to ABA in comparison to wide type (WT). AtPED2 also positively regulated drought stress resistance, as evidenced by the changes of water loss rate, electrolyte leakage, and survival rate. Notably, AtPED2 positively modulated expression of several stress-responsive genes (RAB18, RD22, RD29A, and RD29B), positively affected underlying antioxidant enzyme activities and negatively regulated reactive oxygen species (ROS) level under drought stress conditions. Moreover, multiple carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines were also positively regulated by AtPED2. Taken together, these results indicated a positive role for AtPED2 in drought resistance, through modulation of stress-responsive genes expression, ROS metabolism, and metabolic homeostasis, at least partially.

  13. Resistance identification of bivalent fungi-resistant genes transformed soybean to Phytophthora sojae

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soybean is one of the most important sources of edible oil and proteins in the world. However, it suffers from many kinds of fungal diseases which is a major limiting factor in soybean production. The fungal disease can be effectively controlled by breeding plant cultivars with genetic transformation. In this study, the resistance to Phytophthora sojae of five bivalent transgenic soybean line swas identified using the hypocotyls inoculation technique. The lines were the T2 of the transgenic soybean which were transformed with kidney bean chitinase gene and barley ribosome inactivating protein gene, and were positive by Southern Blot analysis. The resistance difference was studied through comparing the death percentage of transgenic soybean with the control. The results showed that four lines were more resistant to P. sojae, whereas other one had no significant difference in comparison with the control. These transgenic soybean lines with enhanced resistance to P. sojae will be useful in soybean resistance breeding.

  14. aiiA基因在植物软腐病研究中的应用进展%Progress on Applying aiiA Gene in Plant Resistance to Soft Rot Disease

    Institute of Scientific and Technical Information of China (English)

    韩丽伟; 屈淑平; 崔崇士

    2011-01-01

    N-acyl-homoserine lactones (AHLs) are signal molecules in many gram-negative bacterias' quorum sensing, called Autoinducer ( AI ). AiiA protein encoded by aiiA gene is involved in the degradation of AHLs, interfering the regulation process of bacterial quorum-sensing, restraining the induced expression of plant soft rot disease genes, and decreasing the virulence of bacterial pathogens.The essay summarizes the research situations of aiiA and AiiA, and the current application situations of aiiA in soft rot-resistant engineering bacteria and transgenic plant. The research directions are pointed out on the effective expression of AiiA proteins and improving plants' soft rot-resistance.%N-酰基高丝氨酸内酯(N-acyl-homoserine lactones,AHLs)是一类广泛存在于许多革兰氏阴性细菌群体感应系统中的信号分子,又称作自体诱导物(Autoinducer,AI).aiiA基因编码的AiiA蛋白能降解细菌产生的AHLs信号分子,干扰该信号分子参与细菌群体感应的调控过程,抑制多种植物病原菌致病基因的诱导表达,从而减轻或消除病原菌的致病性.本文介绍了aiiA基因、AiiA蛋白的研究情况,以及aiiA基因在抗软腐病工程菌和转基因植物研究上的应用现状,并提出了提高植物抗软腐病的研究方向.

  15. Inverted-repeat transgenic maize plants resistant to sugarcane mosaic virus

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    RNA silencing is a post-transcriptional genesilencing phenomenon induced by double-stranded RNA (dsRNA).In an attempt to generate dsRNA-mediated transgenic maize plants resistant to sugarcane mosaic virus (SCMV),we cloned SCMV Nib gene-specificsequences and inserted it into the binary vector p3301 in the sense and antisense orientations (named SCMVir-Nib),which could produce RNAs capable of duplex formation in plant cells.Maize immature embryos were co-cultured with Agrobacterium carrying two vectors,one marker-free vector harboring the SCMVirNIb and one vector harboring bar gene as the selective marker.Resistant calli were recovered by selection on medium containing Biolaphos.Among the regenerated plantlets from resistant calli,14 plants have been certified to contain SCMVirNIb by PCR amplification and DNA dot blot.T1 plants derived from the 14 plants were challenged in a greenhouse with SCMV inoculums and the percentages of resistant plants in 11 T1 lines were higher than 60%.One plant in the T1 line was found to carry SCMVirNIb without bar gene by PCR assay.T2 plants derived from T1 SCMV resistant transgenic plants were challenged with SCMV inoculums in field.The percentages of resistant plants from 3 lines,including the line derived from the marker-free transgenic plant,were higher than 85%.The non-transgenic control plants were all susceptible.Further molecular analysis confirmed that the resistant plants from the marker-free transgenic line contained SCMVirNIb but not the bar gene.

  16. A single recessive gene conferring short leaves in romaine x Latin type lettuce (Lactuca sativa L.) crosses, and its effect on plant morphology and resistance to lettuce drop caused by Sclerotinia minor Jagger.

    Science.gov (United States)

    Understanding the relationship between plant morphology and disease resistance is crucial to successful breeding, particularly resistance to lettuce drop caused by Sclerotinia minor. Latin type lettuce cultivars are small plants with upright leaves longer than they are wide, similar to romaine type...

  17. Tagging Blast Resistance Gene Pi 1 in Rice (Oryza sativa) Using Candidate Resistance Genes

    Institute of Scientific and Technical Information of China (English)

    LI Ai-hong; WU Jian-li; XU Xin-ping; Menchu BERNADO; DAI Zheng-yuan; ZHUANG Jie-yun; CHEN Zong-xiang; ZHENG Kang-le; LI Bao-jian; Hei LEUNG; ZHANG Hong-xi; PAN Xue-biao

    2004-01-01

    An F3 population derived from C101LAC/CO39 containing 90 lines was analyzed for blast resistance with 48 candidate genes developed from resistance gene analogs (RGA) and suppression subtractive library. Genetic analysis confirmed that blast resistance of the population was controlled by a single gene Pi 1. One of the candidate genes, R10 was identified as associated with the blast resistance gene on the long arm of chromosome 11 and mapped using a DH population derived from Azucena/IR64.A pair of PCR based primers was designed based on the sequence of R10 for marker-aided selection of the blast resistance gene.The recombination frequency between Pi 1 and the marker was estimated as 1.28%. It suggested that strategy of employing candidate genes is useful for gene identification and mapping. A new RFLP marker and the corresponding PCR marker for tagging of Pi 1 were provided.

  18. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding.

    Science.gov (United States)

    Hammond-Kosack, Kim E; Parker, Jane E

    2003-04-01

    Activation of local and systemic plant defences in response to pathogen attack involves dramatic cellular reprogramming. Over the past 10 years many novel genes, proteins and molecules have been discovered as a result of investigating plant-pathogen interactions. Most attempts to harness this knowledge to engineer improved disease resistance in crops have failed. Although gene efficacy in transgenic plants has often been good, commercial exploitation has not been possible because of the detrimental effects on plant growth, development and crop yield. Biotechnology approaches have now shifted emphasis towards marker-assisted breeding and the construction of vectors containing highly regulated transgenes that confer resistance in several distinct ways.

  19. Genetic Analysis ofcryIAC Gene in Transgenic Maize Plants and Its Effects on Insect-resistance%cryIAc基因在转基因玉米中的遗传规律及对抗虫性影响

    Institute of Scientific and Technical Information of China (English)

    王建军; 杨慧珍; 刘佼

    2015-01-01

    In order to analyse the genetic regularity of target genecryIAc in transgenic and their descendant plants(lines), and to study the effect of target gene on insect-resistant activity of transgenic plants at the same time, this research work was conducted. Firstly,cryIAc gene was transformed into maize inbred ‘Zheng 58’ and ‘Chang7-2’ separately by pollen-mediated transformation method. PCR, Southern, ELISA analysis and bioassay in the field of each generation transgenic plants were then conducted according to experimental requirements. Results showed that ⑴ A total of 24 and 41 transgenic plants were obtained through transformedcryIAc gene into maize inbred ‘Zheng 58’ and ‘Chang7-2’, respectively. ⑵ The molecular detection results of transgenic T2, hybridization F2 and backcross B1plants suggested that the segregation of target gene in these lines followed 3∶1, 3∶1 and 1∶1 segregation ratio of the Mendel laws of heredity, respectively. ⑶ The molecular detection results of T1 to T4 transgenic plants(lines)showed that the target gene could stably inherited and expressed effectively, the expression amount of the target gene was from 9.8 to 14.3 ng/gleaf fresh weight. ⑷ Moreover, the results of bioassay in the field indicated that in the case of high insect-susceptibility of negative control line, the transgenic lines still showed highly insect-resistant activity. ⑸ In addition, the target gene integrated into genomics of transgenic plants could inherit to the next generation plants by hybridization. ⑹ At last, 5 high insect-resistant transgenic lines, SZ003, SZ005, SC001, SC004 and SC007, was gained by screening. The pollen-mediated transformation method was a effective and shortcut tool used in plant transformation,cryIAcgene could confer and enhance insect-resistant activity of transgenic plants(lines) tansfomated with it.%旨在研究目的基因在转基因植株和后代植株(株系)中的遗传规律及其对转化植株抗

  20. Acquired Antibiotic Resistance Genes: An Overview

    OpenAIRE

    Hoek, Angela H.A.M. van; Mevius, Dik; Guerra, Beatriz; Mullany, Peter; Roberts, Adam Paul; Aarts, Henk J. M.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is also paid to mobile genetic elements such as plasmids, transposons, and integrons, which are associated with AR genes, and involved in the dispersal of antimicrobial determinants betw...

  1. Engineering resistance to plant viruses: Present status and future prospects

    Science.gov (United States)

    Plant viruses cause severe crop losses across the globe. Resistant cultivars together with pesticide application are commonly used to avoid the losses caused by plant viruses. However, very limited success has been achieved at diminishing the impact of plant viruses. Use of virus resistant plant is ...

  2. Identification of acquired antimicrobial resistance genes

    DEFF Research Database (Denmark)

    Zankari, Ea; Hasman, Henrik; Cosentino, Salvatore

    2012-01-01

    ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic laborato......ObjectivesIdentification of antimicrobial resistance genes is important for understanding the underlying mechanisms and the epidemiology of antimicrobial resistance. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available in routine diagnostic...... laboratories and is anticipated to substitute traditional methods for resistance gene identification. Thus, the current challenge is to extract the relevant information from the large amount of generated data.MethodsWe developed a web-based method, ResFinder that uses BLAST for identification of acquired...... antimicrobial resistance genes in whole-genome data. As input, the method can use both pre-assembled, complete or partial genomes, and short sequence reads from four different sequencing platforms. The method was evaluated on 1862 GenBank files containing 1411 different resistance genes, as well as on 23 de...

  3. Acquired antibiotic resistance genes:an overview

    NARCIS (Netherlands)

    Hoek, A.H. van; Mevius, D.; Guerra, B.; Mullany, P.; Robberts, A.P.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance,

  4. Acquired antibiotic resistance genes: an overview

    NARCIS (Netherlands)

    Hoek, van A.H.; Mevius, D.J.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance,

  5. Acquired antibiotic resistance genes:an overview

    NARCIS (Netherlands)

    Hoek, A.H. van; Mevius, D.; Guerra, B.; Mullany, P.; Robberts, A.P.

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance,

  6. Acquired antibiotic resistance genes: an overview

    NARCIS (Netherlands)

    Hoek, van A.H.; Mevius, D.J.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.

    2011-01-01

    In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance,

  7. Cytogenetic Mapping of Disease Resistance Genes and Analysis of Their Distribution Features on Chromosomes in Maize

    Institute of Scientific and Technical Information of China (English)

    Li Li-jia; Song Yun-chun

    2003-01-01

    Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plant species onto maize chromosomes, combining with data published before. These genes include Helminthosporium turcium Pass resistance genes Ht1, Htn1 and Ht2, Helminthosporium maydis Nisik resistance genes Rhm1 and Rhm2, maize dwarf mosaic virus resistance gene Mdm1, wheat streak mosaic virus resistance gene Wsm1, Helminthosporium carbonum ULLstrup resistance gene Hml and the cloned Xanthomonas oryzae pv. Oryzae resistance gene Xa21 of rice, Cladosporium fulvum resistance genes Cf-9 and Cf-2.1 of tomato,and Pseudomonas syringae resistance gene RPS2 of Arabidopsis. Most of the tested disease resistance genes located on the four chromosomes, i.e., chromosomes1, 3, 6 and 8, and they closely distributed at the interstitial regions of these chromosomal long arms with percentage distances ranging 31.44(±3.72)-72.40(±3.25) except for genes Rhm1, Rhm2, Mdm1 and Wsm1 which mapped on the satellites of the short arms of chromosome6. It showed that the tested RFLP markers and genes were duplicated or triplicated in maize genome. Homology and conservation of disease resistance genes among species, and relationship between distribution features and functions of the genes were discussed. The results provide important scientific basis for deeply understanding structure and function of disease resistance genes and breeding in maize.

  8. Genetically engineered virus-resistant plants in developing countries: current status and future prospects.

    Science.gov (United States)

    Reddy, D V R; Sudarshana, M R; Fuchs, M; Rao, N C; Thottappilly, G

    2009-01-01

    Plant viruses cause severe crop losses worldwide. Conventional control strategies, such as cultural methods and biocide applications against arthropod, nematode, and plasmodiophorid vectors, have limited success at mitigating the impact of plant viruses. Planting resistant cultivars is the most effective and economical way to control plant virus diseases. Natural sources of resistance have been exploited extensively to develop virus-resistant plants by conventional breeding. Non-conventional methods have also been used successfully to confer virus resistance by transferring primarily virus-derived genes, including viral coat protein, replicase, movement protein, defective interfering RNA, non-coding RNA sequences, and protease, into susceptible plants. Non-viral genes (R genes, microRNAs, ribosome-inactivating proteins, protease inhibitors, dsRNAse, RNA modifying enzymes, and scFvs) have also been used successfully to engineer resistance to viruses in plants. Very few genetically engineered (GE) virus resistant (VR) crops have been released for cultivation and none is available yet in developing countries. However, a number of economically important GEVR crops, transformed with viral genes are of great interest in developing countries. The major issues confronting the production and deregulation of GEVR crops in developing countries are primarily socio-economic and related to intellectual property rights, biosafety regulatory frameworks, expenditure to generate GE crops and opposition by non-governmental activists. Suggestions for satisfactory resolution of these factors, presumably leading to field tests and deregulation of GEVR crops in developing countries, are given.

  9. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance.

    Science.gov (United States)

    Manosalva, Patricia; Manohar, Murli; von Reuss, Stephan H; Chen, Shiyan; Koch, Aline; Kaplan, Fatma; Choe, Andrea; Micikas, Robert J; Wang, Xiaohong; Kogel, Karl-Heinz; Sternberg, Paul W; Williamson, Valerie M; Schroeder, Frank C; Klessig, Daniel F

    2015-07-23

    Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated protein kinases, as well as salicylic acid- and jasmonic acid-mediated defense signalling pathways. Ascr#18 perception increases resistance in Arabidopsis, tomato, potato and barley to viral, bacterial, oomycete, fungal and nematode infections. These results indicate that plants recognize ascarosides as a conserved molecular signature of nematodes. Using small-molecule signals such as ascarosides to activate plant immune responses has potential utility to improve economic and environmental sustainability of agriculture.

  10. Study on Insect-resistant Transgenic Cotton Harbouring Double-gene and Its Resistance to Insect Pests

    Institute of Scientific and Technical Information of China (English)

    LI Fu-guang; CUI Jin-jie; LIU Chuan-liang; WU Zhi-xia; LI Feng-lian; ZHOU Yong; LI Xiu-lan; GUO San-dui; CUI Hong-zhi

    2001-01-01

    By using the method of pollen tube pathway, the synthesized GFM CryIA gene and modified CpTI gene were transfered into the elite cotton( Gossypium hirsutun L. ) varieties(lines). Through the field and lab identifications, the insect-resistant transgenic plants were obtained. PCR analysis indicated that both the synthesized GFM CryIA gene and modified CpTI gene presented positive reaction. In R1 the boliworm resistance of each transformant was different, and the insect-resistance of R3 of ZGK9708 was stable.

  11. 植物抗病毒基因工程研究进展%Progress on Strategies of Plant Virus-resistance Gene Engineering

    Institute of Scientific and Technical Information of China (English)

    马丽; 周玉亮; 张春庆

    2006-01-01

    为了得到抗病毒的寄主植物,很多学者进行了大量研究,形成了许多行之有效的抗病毒育种策略.利用来源于病毒自身基因的一些抗病毒策略(Pathogen-derived resistance,PDR),如病毒外壳蛋白基因,复制酶基因,反义RNA、移动蛋白基因等,均可以获得一些抗病毒植物.近年来,对RNA介导的抗病毒策略机制进行了深入研究.基因沉默的发现使得人们对植物和病毒的相互关系有了一个新的认识.转录后基因沉默(Post-transcriptional gene silencing,PT-GS)现象是植物抵御病毒入侵,保持自身基因组完整性的一种防御机制.对于PTGS产生的机理,已经提出不少模型,但是都未能较全面地解释基因沉默中出现的各种实验现象.对转录后基因沉默的特点、发生机理和作为抗病毒防卫机制,在改良植物抗病性方面的应用和进展进行了综述.

  12. Plant genetics. A tomato gene weighs in.

    Science.gov (United States)

    Doebley, J

    2000-07-07

    What makes some people big and others small--obviously our genes, but which ones? Working out the complex of genes that control such quantitative traits in animals and plants is one of the big challenges facing geneticists. In his Perspective, Doebley discusses new results that identify the fw2.2 gene as one of the genes determining fruit size in the tomato (Frary et al.).

  13. Differential Expression of R-genes to Associate Leaf Spot Resistance in Cultivated Peanut

    Science.gov (United States)

    Breeding for acceptable levels of Early (ELS) or Late Leaf Spot (LLS) resistance in cultivated peanut has been elusive due to extreme variability of plant response in the field and the proper combinations of resistance (R)-genes in any particular peanut line. R-genes have been shown to be involved ...

  14. Cellular basis of gravity resistance in plants

    Science.gov (United States)

    Hoson, Takayuki; Matsumoto, Shouhei; Inui, Kenichi; Zhang, Yan; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi

    Mechanical resistance to the gravitational force is a principal gravity response in plants distinct from gravitropism. In the final step of gravity resistance, plants increase the rigidity of their cell walls via modifications to the cell wall metabolism and apoplastic environment. We studied cellular events that are related to the cell wall changes under hypergravity conditions produced by centrifugation. Hypergravity induced reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells of stem organs. In Arabidopsis tubulin mutants, the percentage of cells with longitudinal microtubules was high even at 1 g, and it was further increased by hypergravity. Hypocotyls of tubulin mutants also showed either left-handed or right-handed helical growth at 1 g, and the degree of twisting phenotype was intensified under hypergravity conditions. The left-handed helical growth mutants had right-handed microtubule arrays, whereas the right-handed mutant had left-handed arrays. There was a close correlation between the alignment angle of epidermal cell files and the alignment of cortical microtubules. Gadolinium ions suppressed both the twisting phenotype and reorientation of microtubules in tubulin mutants. These results support the hypothesis that cortical microtubules play an es-sential role in maintenance of normal growth phenotype against the gravitational force, and suggest that mechanoreceptors are involved in modifications to morphology and orientation of microtubule arrays by hypergravity. Actin microfilaments, in addition to microtubules, may be involved in gravity resistance. The nucleus of epidermal cells of azuki bean epicotyls, which is present almost in the center of the cell at 1 g, was displaced to the cell bottom by increasing the magnitude of gravity. Cytochalasin D stimulated the sedimentation by hypergravity of the nu-cleus, suggesting that the positioning of the nucleus is regulated by actin microfilaments, which is

  15. Resistance Genes in Global Crop Breeding Networks.

    Science.gov (United States)

    Garrett, K A; Andersen, K F; Asche, F; Bowden, R L; Forbes, G A; Kulakow, P A; Zhou, B

    2017-08-31

    Resistance genes are a major tool for managing crop diseases. The networks of crop breeders who exchange resistance genes and deploy them in varieties help to determine the global landscape of resistance and epidemics, an important system for maintaining food security. These networks function as a complex adaptive system, with associated strengths and vulnerabilities, and implications for policies to support resistance gene deployment strategies. Extensions of epidemic network analysis can be used to evaluate the multilayer agricultural networks that support and influence crop breeding networks. Here, we evaluate the general structure of crop breeding networks for cassava, potato, rice, and wheat. All four are clustered due to phytosanitary and intellectual property regulations, and linked through CGIAR hubs. Cassava networks primarily include public breeding groups, whereas others are more mixed. These systems must adapt to global change in climate and land use, the emergence of new diseases, and disruptive breeding technologies. Research priorities to support policy include how best to maintain both diversity and redundancy in the roles played by individual crop breeding groups (public versus private and global versus local), and how best to manage connectivity to optimize resistance gene deployment while avoiding risks to the useful life of resistance genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

  16. EXPRESSION OF CHITINASE GENE IN TRANSGENIC RAPE PLANTS

    Directory of Open Access Journals (Sweden)

    Lu Longdou

    2005-08-01

    Full Text Available The hypocotyl and cotyledon of Brassica napus L. H165 and Brassica juncea DB3 were transformed with chitinase gene and herbicide-resistance gene by co-culture with Agrobacterium tumefacients LBA4404, and rape plants were obtained which could grow on the medium containing herbicide. The PCR result showed that exotic genes were integrated in the genome of the rape. Further study was performed to determine the impact of temperature on the transgenic rate and the differentiation of explants.

  17. Bacterial Gibberellins Induce Systemic Resistance of Plants

    Directory of Open Access Journals (Sweden)

    I. N. FEKLISTOVA

    2014-06-01

    Full Text Available It is generally agreed today that some rhizosphere bacteria can ensure induced systemic resistance to pathogens. In this paper we tested the ability of gibberellins produced by rhizosphere non-pathogenic bacteria Pseudomonas aurantiaca to induce systemic resistance to alternariosis agent – Alternaria brassicicola – in oilseed rape plants.Oilseed rape (Brássica nápus is one of the most promising oil-bearing croppers. It allows improving the supply of population with vegetable oil, animal and poultry industries with high quality vegetable protein. It is used for biofuel production as well.Gibberellin preparation was isolated from liquid culture of strain Pseudomonas aurantiaca grown in 250 mL of M9 medium (48 h, 28 °C under darkroom conditions. Gibberellins were extracted according procedure described by Tien et al. (1979. Gibberellins concentration in the medium was determined by fluorometric method.Elicitor activity of bacterial metabolites – gibberellins – was analyzed in model system of artificial inoculation of oilseed rape germs with phytopathogenic fungi Alternaria brassicicola. The elicitor action efficiency was evaluated on the 15th day of oilseed rape cultivation based on the percentage of leaf surface covered by necrotic lesions.Gibberellins were shown to induce systemic resistance resulted in decreasing of oil seed plants   vulnerability by 52.7%.It is known that under the unfavorable conditions plants synthesis the reactive oxygen intermediates   which activate destructive processes. One of the first organism reactions to stress action is the change of the lipid peroxidation level. It was shown that treatment of the soil with gibberellins resulted in decreasing of the lipid peroxidation level twofold.Gibberellins were shown to have a similar effect on permeability of cell membranes for free nucleotides. The permeability of cell membranes in leaves decreased 2.8-fold at room temperature. We suggest that gibberellins

  18. 开花调控基因BpMADS4无抗性表达载体的构建%Construction of Non-resistance Plant Expression Vector of Flowering Regulatory Gene BpMADS4

    Institute of Scientific and Technical Information of China (English)

    李玉生; 吴永杰; 赵艳华; 吴雅琴; 程和禾; 陈龙

    2012-01-01

    为了构建含有报告基因GFP基因和BpMADS4基因的无抗性双元表达载体pCAMBIA1302-GFP-Bp,参考已发表的欧洲白桦(Betula pendula)开花调控基因(BpMADS4)序列,利用逆转录-聚合酶链式反应(RT-PCR)从欧洲白桦的幼嫩花序中克隆得到促进开花的BpMADS4基因。将该基因替换pCAMBIA1302载体中的潮霉素抗性基因,构建含有报告基因GFP基因和BpMADS4基因的无抗性双元表达载体pCAM-BIA1302-GFP-Bp。结果表明:成功构建了无抗性双元表达载体pCAMBIA1302-GFP-Bp。该表达载体在苹果遗传转化中不使用抗生素筛选,可以解决抗生素抗性筛选降低苹果转基因转化效率的问题以及转基因苹果中选择标记基因造成的生物安全性问题,用该载体转化苹果可以缩短苹果童期,有效提高其育种效率。本研究为筛选对环境安全的、具有易成花特性的苹果新种质奠定了基础。%To construct the non-resistance plant binary expression vector pCAMBIA1302-GFP-Bp containing GFP and BpMADS4 genes, according to the published flowering regulatory gene (BpMADS4) sequence of Betula pendula, we obtained BpMADS4 gene from the young inflorescence of B. pendula by RT-PCR method. The tide amphotericin resistance gene in pCAMBIA1302 vector was replaced by BpMADS4 gene. The results showed that PCR identification, restriction enzyme digestion and sequence analysis confirmed the non-resistance plant binary expression vector pCAMBIA1302-GFP-Bp was successfully constructed. Using pCAMBIA1302-GFP-Bp vector, antibiotic was not used in genetic transformation of apple. Some problems such as antibiotic resistance screening reducing the efficiency of apple transformation, and biological safety problems caused by using select marker genes in transgenie apple could be resolved. Transforming pCAMBIA1302-GFP-Bp vector into apple could shorten the juvenile stage, and effectively improve the breeding efficiency. This laid a foundation for

  19. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes.

    Directory of Open Access Journals (Sweden)

    Kyuha Choi

    2016-07-01

    Full Text Available Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr effectors by resistance (R genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1 R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.

  20. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes

    Science.gov (United States)

    Serra, Heïdi; Ziolkowski, Piotr A.; Yelina, Nataliya E.; Jackson, Matthew; Mézard, Christine; McVean, Gil; Henderson, Ian R.

    2016-01-01

    Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity. PMID:27415776

  1. Effects of ultraviolet disinfection on antibiotic-resistant Escherichia coli from wastewater: inactivation, antibiotic resistance profiles and antibiotic resistance genes.

    Science.gov (United States)

    Zhang, Chong-Miao; Xu, Li-Mei; Wang, Xiaochang C; Zhuang, Kai; Liu, Qiang-Qiang

    2017-04-29

    To evaluate the effect of ultraviolet (UV) disinfection on antibiotic-resistant Escherichia coli (E. coli). Antibiotic-resistant E. coli strains were isolated from a wastewater treatment plant and subjected to UV disinfection. The effect of UV disinfection on the antibiotic resistance profiles and the antibiotic resistance genes (ARGs) of antibiotic-resistant E. coli was evaluated by a combination of antibiotic susceptibility analysis and molecular methods. Results indicated that multiple-antibiotic-resistant (MAR) E. coli were more resistant at low UV doses and required a higher UV dose (20 mJ cm(-2) ) to enter the tailing phase compared with those of antibiotic-sensitive E. coli (8 mJ cm(-2) ). UV disinfection caused a selective change in the inhibition zone diameters of surviving antibiotic-resistant E. coli and a slight damage to ARGs. The inhibition zone diameters of the strains resistant to antibiotics were more difficult to alter than those susceptible to antibiotics because of the existence and persistence of corresponding ARGs. The resistance of MAR bacteria to UV disinfection at low UV doses and the changes in inhibition zone diameters could potentially contribute to the selection of ARB in wastewater treatment after UV disinfection. The risk of spread of antibiotic resistance still exists owing to the persistence of ARGs. Our study highlights the acquisition of other methods to control the spread of ARGs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Prevalence and antimicrobial resistance of Salmonella isolated from two pork processing plants in Alberta, Canada.

    Science.gov (United States)

    Sanchez-Maldonado, Alma Fernanda; Aslam, Mueen; Service, Cara; Narváez-Bravo, Claudia; Avery, Brent P; Johnson, Roger; Jones, Tineke H

    2017-01-16

    This study investigated the frequency of Salmonella serovars on pig carcasses at various processing steps in two commercial pork processing plants in Alberta, Canada and characterized phenotypic and genotypic antimicrobial resistance (AMR) and PFGE patterns of the Salmonella isolates. Over a one year period, 1000 swab samples were collected from randomly selected pigs at two slaughter plants. Sampling points were: carcass swabs after bleeding (CSAB), carcass swabs after de-hairing (CSAD, plant A) or skinning (CSASk, plant B), carcass swabs after evisceration (CSAE), carcass swabs after pasteurization (CSAP, plant A) or washing (CSAW, plants B) and retail pork (RP). For plant A, 87% of CSAB and 8% of CSAE were positive for Salmonella while at plant B, Salmonella was recovered from 94% of CSAB and 10% of CSAE. Salmonella was not recovered from the RP samples at either plant, indicating that the plants used effective control measures. Salmonella enterica serovar Derby was the most common serotype (23%, 29/127) recovered in plant A and plant B (61%, 76/124). For plant A, 35% (45/127) of isolates were resistant to at least one antimicrobial. Five isolates (3.9%), 4 serovar Ohio strains and one serovar I:Rough-O:I,v:-, strain were simultaneously resistant to antimicrobials of very high (Category I), high (Category II), and medium (Category III) importance to human medicine. The 4 S. Ohio isolates were recovered from 3 different steps of pork processing on the same sampling day and displayed resistance to 5-7 antimicrobials, with all of them displaying resistance to ceftiofur and ceftriaxone (Category I). An I:Rough-O:l,v:- isolate, recovered on a different sampling day, was resistant to 7 antimicrobials that included resistance to ampicillin/clavulanic acid, ceftiofur and ceftriaxone (Category I). Salmonella strains isolated from plant A harbored 12 different AMR genes. The most prevalent genes were sul1, sul2, tet(A), tet(B), aadA, strA/strB, aac(3)IV and aphA1. For

  3. Kanamycin resistance during in vitro development of pollen from transgenic tomato plants

    NARCIS (Netherlands)

    Bino, R.J.; Hille, J.; Franken, J.

    1987-01-01

    Effects of kanamycin on pollen germination and tube growth of pollen from non-transformed plants and from transgenic tomato plants containing a chimaeric kanamycin resistance gene were determined. Germination of pollen was not affected by the addition of kanamycin to the medium in both genotypes. Ka

  4. The wheat durable, multipathogen resistance gene Lr34 confers partial blast resistance in rice.

    Science.gov (United States)

    Krattinger, Simon G; Sucher, Justine; Selter, Liselotte L; Chauhan, Harsh; Zhou, Bo; Tang, Mingzhi; Upadhyaya, Narayana M; Mieulet, Delphine; Guiderdoni, Emmanuel; Weidenbach, Denise; Schaffrath, Ulrich; Lagudah, Evans S; Keller, Beat

    2016-05-01

    The wheat gene Lr34 confers durable and partial field resistance against the obligate biotrophic, pathogenic rust fungi and powdery mildew in adult wheat plants. The resistant Lr34 allele evolved after wheat domestication through two gain-of-function mutations in an ATP-binding cassette transporter gene. An Lr34-like fungal disease resistance with a similar broad-spectrum specificity and durability has not been described in other cereals. Here, we transformed the resistant Lr34 allele into the japonica rice cultivar Nipponbare. Transgenic rice plants expressing Lr34 showed increased resistance against multiple isolates of the hemibiotrophic pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Host cell invasion during the biotrophic growth phase of rice blast was delayed in Lr34-expressing rice plants, resulting in smaller necrotic lesions on leaves. Lines with Lr34 also developed a typical, senescence-based leaf tip necrosis (LTN) phenotype. Development of LTN during early seedling growth had a negative impact on formation of axillary shoots and spikelets in some transgenic lines. One transgenic line developed LTN only at adult plant stage which was correlated with lower Lr34 expression levels at seedling stage. This line showed normal tiller formation and more importantly, disease resistance in this particular line was not compromised. Interestingly, Lr34 in rice is effective against a hemibiotrophic pathogen with a lifestyle and infection strategy that is different from obligate biotrophic rusts and mildew fungi. Lr34 might therefore be used as a source in rice breeding to improve broad-spectrum disease resistance against the most devastating fungal disease of rice.

  5. Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants.

    Science.gov (United States)

    Schütte, Gesine; Eckerstorfer, Michael; Rastelli, Valentina; Reichenbecher, Wolfram; Restrepo-Vassalli, Sara; Ruohonen-Lehto, Marja; Saucy, Anne-Gabrielle Wuest; Mertens, Martha

    2017-01-01

    Farmland biodiversity is an important characteristic when assessing sustainability of agricultural practices and is of major international concern. Scientific data indicate that agricultural intensification and pesticide use are among the main drivers of biodiversity loss. The analysed data and experiences do not support statements that herbicide-resistant crops provide consistently better yields than conventional crops or reduce herbicide amounts. They rather show that the adoption of herbicide-resistant crops impacts agronomy, agricultural practice, and weed management and contributes to biodiversity loss in several ways: (i) many studies show that glyphosate-based herbicides, which were commonly regarded as less harmful, are toxic to a range of aquatic organisms and adversely affect the soil and intestinal microflora and plant disease resistance; the increased use of 2,4-D or dicamba, linked to new herbicide-resistant crops, causes special concerns. (ii) The adoption of herbicide-resistant crops has reduced crop rotation and favoured weed management that is solely based on the use of herbicides. (iii) Continuous herbicide resistance cropping and the intensive use of glyphosate over the last 20 years have led to the appearance of at least 34 glyphosate-resistant weed species worldwide. Although recommended for many years, farmers did not counter resistance development in weeds by integrated weed management, but continued to rely on herbicides as sole measure. Despite occurrence of widespread resistance in weeds to other herbicides, industry rather develops transgenic crops with additional herbicide resistance genes. (iv) Agricultural management based on broad-spectrum herbicides as in herbicide-resistant crops further decreases diversity and abundance of wild plants and impacts arthropod fauna and other farmland animals. Taken together, adverse impacts of herbicide-resistant crops on biodiversity, when widely adopted, should be expected and are indeed very hard

  6. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants.

    Science.gov (United States)

    Figueira, Vânia; Vaz-Moreira, Ivone; Silva, Márcia; Manaia, Célia M

    2011-11-01

    The taxonomic diversity and antibiotic resistance phenotypes of aeromonads were examined in samples from drinking and waste water treatment plants (surface, ground and disinfected water in a drinking water treatment plant, and raw and treated waste water) and tap water. Bacteria identification and intra-species variation were determined based on the analysis of the 16S rRNA, gyrB and cpn60 gene sequences. Resistance phenotypes were determined using the disc diffusion method. Aeromonas veronii prevailed in raw surface water, Aeromonas hydrophyla in ozonated water, and Aeromonas media and Aeromonas puntacta in waste water. No aeromonads were detected in ground water, after the chlorination tank or in tap water. Resistance to ceftazidime or meropenem was detected in isolates from the drinking water treatment plant and waste water isolates were intrinsically resistant to nalidixic acid. Most of the times, quinolone resistance was associated with the gyrA mutation in serine 83. The gene qnrS, but not the genes qnrA, B, C, D or qepA, was detected in both surface and waste water isolates. The gene aac(6')-ib-cr was detected in different waste water strains isolated in the presence of ciprofloxacin. Both quinolone resistance genes were detected only in the species A. media. This is the first study tracking antimicrobial resistance in aeromonads in drinking, tap and waste water and the importance of these bacteria as vectors of resistance in aquatic environments is discussed.

  7. First report of a resistance-breaking strain of Tomato spotted wilt virus infecting tomatoes with the Sw-5 tospovirus-resistance gene in California

    Science.gov (United States)

    Management of Tomato spotted wilt virus (TSWV) with the Sw-5 resistance gene in tomato is highly effective. However, in certain regions of the world where resistant tomatoes have been continually planted, resistance-breaking strains of TSWV have emerged. In spring 2016 resistant tomatoes were obse...

  8. NBS-LRR resistance gene homologues in rice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Twenty three DNA fragments with a size of about 520 bp have been cloned from rice genome by PCR amplification using primers designed according to the conserved region of most plant resistance (R) genes which have Nucleotide Binding Site (NBS) and Leucine-Rich Repeat (LRR) domains. Homologous comparison showed that these fragments contained typical motifs of the NBS-LRR resistance gene class, kinase 1a, kinase 2a, kinase 3a and domain 2. Thus they were named R gene homologous sequences (RS). These RS were divided into 4 groups by clustering analysis and mapped onto chromosomes 1, 3, 4, 7, 8, 9, 10 and 11, respectively, by genetic mapping. Ten RS were located in the chromosomal intervals where known R genes had been mapped. Further RFLP analysis of an RS, RS13, near the bacterial blight resistance gene Xa4 locus on chromosome 11 among near isogenic lines and pyramiding lines of Xa4 showed that RS13 was possibly amplified from the gene family of Xa4.

  9. Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? - A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21

    OpenAIRE

    Gao, Lifen; Cao, Yinghao; Xia, Zhihui; Jiang, Guanghuai; Liu, Guozhen; Zhang, Weixiong; Zhai, Wenxue

    2013-01-01

    Background The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB). Results Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by th...

  10. 污水处理厂削减耐药菌与抗性基因的研究进展%State-of-the-art removal of antibiotic resistance bacteria (ARB) and antibiotic resistance gene (ARG) in wastewater treatment plants (WWTPs)

    Institute of Scientific and Technical Information of China (English)

    佟娟; 魏源送

    2012-01-01

    长期滥用抗生素导致细菌耐药性增强,并使抗性广泛传播.污水处理厂既是耐药菌(antibiotic resistance bacteria,ARB)与抗性基因(antibiotic resistance gene,ARG)的储存库,排放的污水与污泥是向自然环境中传播抗性的重要污染源,也是削减ARB和ARG及控制抗性传播的重要环节.本文总结了天然水体中的耐药菌和抗性基因污染现状,分析了近年来耐药菌与抗性基因在污水/污泥处理过程中的转归与去除方面的研究进展,同时对将来的重点研究方向提出展望,以期为今后耐药菌和抗性基因的污染控制提供参考.%The abuse and overuse of antibiotics lead to increasing bacterial resistance to actibiotics and extensive dissemination of resistance. As a reservoir for antibiotic resistance bacteria (ARB) and antibiotic resistance gene (ARG) , the effluent and biosolids of wastewater treatment plants (WWTPs) are the important contamination sources for the antibiotic resistance dissemination. Meanwhile, WWTPs play an important role in controlling of resistance dissemination. The purpose of this paper is to summarize pollution status of antibiotic resistance in the aquatic environment, to thoroughly review the advances of removing ARB and ARG during WWTP treating processes, and to propose the future research direction.

  11. Recent Advances in Cloning and Characterization of Disease Resistance Genes in Rice

    Institute of Scientific and Technical Information of China (English)

    Liang-Ying Dai; Xiong-Lun Liu; Ying-Hui Xiao; Guo-Liang Wang

    2007-01-01

    Rice diseases caused by fungi, bacteria and viruses are one of the major constraints for sustainable rice (Oryza sativa L.) production worldwide. The use of resistant cultivars is considered the most economical and effective method to control rice diseases. In the last decade, a dozen resistance genes against the fungal pathogen Magnaporthe grisea and the bacterial pathogen Xanthomonas oryzae pv. oryzae have been cloned. Approximately half of them encode nuclear binding site (NBS) and leucine rich repeat (LRR)-containing proteins, the most common type of cloned plant resistance genes. Interestingly, four of them encode novel proteins which have not been identified in other plant species, suggesting that unique mechanisms might be involved in rice defense responses. This review summarizes the recent advances in cloning and characterization of disease resistance genes in rice and presents future perspectives for in-depth molecular analysis of the function and evolution of rice resistance genes and their interaction with avirulence genes in pathogens.

  12. Are Sewage Treatment Plants Promoting Antibiotic Resistance?

    Science.gov (United States)

    1. Introduction 1.1. How bacteria exhibit resistance 1.1.1. Resistance to -lactams 1.1.2. Resistance to sulphonamides and trimethoprim 1.1.3. Resistance to macrolides 1.1.4. Resistance to fluoroquinolones 1.1.5. Resistance to tetracyclines 1.1.6. Resistance to nitroimidaz...

  13. Are Sewage Treatment Plants Promoting Antibiotic Resistance?

    Science.gov (United States)

    1. Introduction 1.1. How bacteria exhibit resistance 1.1.1. Resistance to -lactams 1.1.2. Resistance to sulphonamides and trimethoprim 1.1.3. Resistance to macrolides 1.1.4. Resistance to fluoroquinolones 1.1.5. Resistance to tetracyclines 1.1.6. Resistance to nitroimidaz...

  14. EPSPS gene amplification conferring resistance to glyphosate in windmill grass (Chloris truncata) in Australia.

    Science.gov (United States)

    Ngo, The D; Malone, Jenna M; Boutsalis, Peter; Gill, Gurjeet; Preston, Christopher

    2017-03-20

    Five glyphosate-resistant populations of Chloris truncata originally collected from New South Wales were compared with one susceptible (S) population from South Australia to confirm glyphosate resistance and elucidate possible mechanisms of resistance. Based on the amounts of glyphosate required to kill 50% of treated plants (LD50 ), glyphosate resistance (GR) was confirmed in five populations of C. truncata (A536, A528, T27, A534 and A535.1). GR plants were 2.4-8.7-fold more resistant and accumulated less shikimate after glyphosate treatment than S plants. There was no difference in glyphosate absorption and translocation between GR and S plants. The EPSPS gene did not contain any point mutation that had previously been associated with resistance to glyphosate. The resistant plants (A528 and A536) contained up to 32-48 more copies of the EPSPS gene than the susceptible plants. This study has identified EPSPS gene amplification contributing to glyphosate resistance in C. truncata. In addition, a Glu-91-Ala mutation within EPSPS was identified that may contribute to glyphosate resistance in this species. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. JGI Plant Genomics Gene Annotation Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Shengqiang; Rokhsar, Dan; Goodstein, David; Hayes, David; Mitros, Therese

    2014-07-14

    Plant genomes vary in size and are highly complex with a high amount of repeats, genome duplication and tandem duplication. Gene encodes a wealth of information useful in studying organism and it is critical to have high quality and stable gene annotation. Thanks to advancement of sequencing technology, many plant species genomes have been sequenced and transcriptomes are also sequenced. To use these vastly large amounts of sequence data to make gene annotation or re-annotation in a timely fashion, an automatic pipeline is needed. JGI plant genomics gene annotation pipeline, called integrated gene call (IGC), is our effort toward this aim with aid of a RNA-seq transcriptome assembly pipeline. It utilizes several gene predictors based on homolog peptides and transcript ORFs. See Methods for detail. Here we present genome annotation of JGI flagship green plants produced by this pipeline plus Arabidopsis and rice except for chlamy which is done by a third party. The genome annotations of these species and others are used in our gene family build pipeline and accessible via JGI Phytozome portal whose URL and front page snapshot are shown below.

  16. [Generation of sugar beet transgenic plants expressing bar gene].

    Science.gov (United States)

    Mishutkina, Ia V; Kamionskaia, A M; Skriabin, K G

    2010-01-01

    The parameters of transformation using Agrobacterium tumefaciens EHA 105 for 5 domestic sorts and lines of sugar beet (Beta vulgaris L. var. saccharifera (Alef) Krass) were optimized. The system of transgenic tissue selection based on resistance to phosphinothricin, allowing to avoid the appearing of chimeric shoots among initial transformants was developed. The transgenic plants of sugar beet sorts Ramonskaya single seed 47, L'govskaya single seed 52 and RMS 73, and LBO 17 and LBO 19 lines expressing the gene of phosphinothricin acetyl transferase bar have been obtained. The resistance of these sorts and lines to the effect of phosphinothricin in vitro has been shown.

  17. Antibiotic resistance genes in the environment

    Directory of Open Access Journals (Sweden)

    Jianqiang Su

    2013-07-01

    Full Text Available Antibiotic resistance and its spread in bacteria are topics of great importance in global research. In this paper, we review recent progress in understanding sources, dissemination, distribution and discovery of novel antibiotics resistance genes (ARGs in the environment. Bacteria exhibiting intrinsic resistance and antibiotic resistant bacteria in feces from humans and animals are the major sources of ARGs occurring in the environment. A variety of novel ARGs have been discovered using functional metagenomics. Recently, the long-term overuse of antibotics in drug therapy and animal husbandry has led to an increase in diversity and abundance of ARGs, causing the environmental dissemination of ARGs in aquatic water, sewage treatmentplants, rivers, sediment and soil. Future research should focus on dissemination mechanisms of ARGs, the discovery of novel ARGs and their resistant mechanisms, and the establishment of environmental risk assessment systems for ARGs.

  18. Identification of genes required for nonhost resistance to Xanthomonas oryzae pv. oryzae reveals novel signaling components.

    Directory of Open Access Journals (Sweden)

    Wen Li

    Full Text Available BACKGROUND: Nonhost resistance is a generalized, durable, broad-spectrum resistance exhibited by plant species to a wide variety of microbial pathogens. Although nonhost resistance is an attractive breeding strategy, the molecular basis of this form of resistance remains unclear for many plant-microbe pathosystems, including interactions with the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzae (Xoo. METHODS AND FINDINGS: Virus-induced gene silencing (VIGS and an assay to detect the hypersensitive response (HR were used to screen for genes required for nonhost resistance to Xoo in N. benthamiana. When infiltrated with Xoo strain YN-1, N. benthamiana plants exhibited a strong necrosis within 24 h and produced a large amount of H(2O(2 in the infiltrated area. Expression of HR- and defense-related genes was induced, whereas bacterial numbers dramatically decreased during necrosis. VIGS of 45 ACE (Avr/Cf-elicited genes revealed identified seven genes required for nonhost resistance to Xoo in N. benthamiana. The seven genes encoded a calreticulin protein (ACE35, an ERF transcriptional factor (ACE43, a novel Solanaceous protein (ACE80, a hydrolase (ACE117, a peroxidase (ACE175 and two proteins with unknown function (ACE95 and ACE112. The results indicate that oxidative burst and calcium-dependent signaling pathways play an important role in nonhost resistance to Xoo. VIGS analysis further revealed that ACE35, ACE80, ACE95 and ACE175, but not the other three ACE genes, interfered with the Cf-4/Avr4-dependent HR. CONCLUSIONS/SIGNIFICANCE: N. benthamiana plants inoculated with Xoo respond by rapidly eliciting an HR and nonhost resistance. The oxidative burst and other signaling pathways are pivotal in Xoo-N. benthamiana nonhost resistance, and genes involved in this response partially overlap with those involved in Cf/Avr4-dependent HR. The seven genes required for N. benthamiana-mediated resistance to Xoo provide a basis for further dissecting

  19. Enhanced salt resistance in apple plants overexpressing a Malus vacuolar Na+/H+ antiporter gene is associated with differences in stomatal behavior and photosynthesis.

    Science.gov (United States)

    Li, Chao; Wei, Zhiwei; Liang, Dong; Zhou, Shasha; Li, Yonghong; Liu, Changhai; Ma, Fengwang

    2013-09-01

    High salinity is a major abiotic factor that limits crop production. The dwarfing apple rootstock M.26 is sensitive to such stress. To obtain an apple that is adaptable to saline soils, we transformed this rootstock with a vacuolar Na(+)/H(+) antiporter, MdNHX1. Differences in salt tolerance between transgenic and wild-type (WT) rootstocks were examined under field conditions. We also compared differences when 'Naganofuji No. 2' apple was grafted onto these transgenic or WT rootstocks. Plants on the transgenic rootstocks grew well during 60 d of mild stress (100 mM NaCl) while the WT exhibited chlorosis, inhibited growth and even death. Compared with the untreated control, the stomatal density was greater in both non-grafted and grafted WT plants exposed to 200 mM NaCl. In contrast, that density was significantly decreased in leaves from grafted transgenic plants. At 200 mM NaCl, net photosynthesis, stomatal conductance, intercellular CO2 concentration, and chlorophyll contents were markedly reduced in the WT, whereas the declines in those values were only minor in similarly stressed transgenic plants. Therefore, we conclude that overexpressing plants utilize a better protective mechanism for retaining higher photosynthetic capacity. Furthermore, this contrast in tolerance and adaptability to stress is linked to differences in stomatal behavior and photosynthetic rates. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1

    NARCIS (Netherlands)

    Humphry, M.; Reinstädler, A.; Ivanov, S.; Bisseling, T.; Panstruga, R.

    2011-01-01

    Loss-of-function alleles of plant-specific MLO (Mildew Resistance Locus O) genes confer broad-spectrum powdery mildew resistance in monocot (barley) and dicot (Arabidopsis thaliana, tomato) plants. Recessively inherited powdery mildew resistance in pea (Pisum sativum) er1 plants is, in many aspects,

  1. Breeding and Identification of Insect-Resistant Rice by Transferring Two Insecticidal Genes, sbk and sck

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qi-jun; LI Cong; LIU Shao-kui; LAI Dong; QI Qing-ming; LU Chuan-gen

    2013-01-01

    The plasmid of pCDMARUBA-Hyg,which contained two insect-resistance genes,sbk (modified from Cry1A(c)) and sck (modified from CpTI),was transformed into an Agrobacterium EHA105 for infection of the calli of a super japonica rice Nanjing 45.Primarily,using polymerase chain reaction (PCR) detection with the primers of sbk and sck genes,42 positive transgenic plants that were marker-free and contained the two target genes were selected from 97 regenerated plants.Results of southern-blotting indicated that 23,11,5,2 and 1 plants had one,two,three,four and five copies of the transformed genes,respectively.Analysis of reverse transcription PCR (RT-PCR) and Bt gene testing paper showed that 28 T3 generation plants derived from four transgenic plants having a single copy were insect-resistant.Feeding experiment with rice stem borer revealed that the insect resistance was greatly increased with the larva mortality ranging from 94% to 100%.In addition,among the transgenic plants,three T3 transgenic plants possessed some desirable characteristics for breeding and production,such as plant height,seed-setting rate,1000-grain weight and larva mortality.The mechanism of insect resistance of Bt gene and its application in rice transgenic research were also briefly discussed.

  2. The Lr46 gene conditions partial adult-plant resistance to yellow rust, stem rust, and powdery mildew in Thatcher wheat

    Science.gov (United States)

    Disease resistance is a critical goal for many wheat improvement programs. Wheat cultivars are often attacked by multiple diseases, including the rusts and powdery mildew. F6 recombinant inbred lines (RILs) derived from the cross of Thatcher*3/CI13227 that had been previously characterized as having...

  3. Plant improvement by known-function genes

    Directory of Open Access Journals (Sweden)

    Jesús Quiroz Chávez

    2012-09-01

    Full Text Available Plant molecular improvement by recombinant DNA technology represents an advantage to obtain new varieties or traits. This technique is promised for genetic improvement of crop plants. Lines with increased yield, quality, disease resistance, or tolerant to abiotic stress have been obtained, with clear advantages for producers, marketers and consumers. However, they have several limitations in its application to agriculture because of its risk and hazards. The aim of the document is to show the advantages and disadvantages of GM crop plant, to develop represent an opportunity to have new exotic traits.

  4. Rapid Phenotyping Adult Plant Resistance to Stem Rust in Wheat Grown under Controlled Conditions.

    Science.gov (United States)

    Riaz, Adnan; T Hickey, Lee

    2017-01-01

    Stem rust (SR) or black rust caused by Puccinia graminis f. sp. tritici is one of the most common diseases of wheat (Triticum aestivum L.) crops globally. Among the various control measures, the most efficient and sustainable approach is the deployment of genetically resistant cultivars. Traditionally, wheat breeding programs deployed genetic resistance in cultivars, but unknowingly this is often underpinned by a single seedling resistance gene, which is readily overcome by the pathogen. Nowadays, adult plant resistance (APR) is a widely adopted form of rust resistance because more durable mechanisms often underpin it. However, only a handful of SR APR genes are available, so breeders currently strive to combine seedling and APR genes. Phenotyping adult wheat plants for resistance to SR typically involves evaluation in the field. But establishing a rust nursery can be challenging, and screening is limited to once a year. This slows down research efforts to isolate new APR genes and breeding of genetically resistant cultivars.In this study, we report a protocol for rapid evaluation of adult wheat plants for resistance to stem rust. We demonstrate the technique by evaluating a panel of 16 wheat genotypes consisting of near isogenic lines (NILs) for known Sr genes (i.e., Sr2, Sr33, Sr45, Sr50, Sr55, Sr57, and Sr58) and three landraces carrying uncharacterized APR from the N. I. Vavilov Institute of Plant Genetic Resources (VIR). The method can be completed in just 10 weeks and involves two inoculations: first conducted at seedling stage and a second at the adult stage (using the same plants). The technique can detect APR, such as that conferred by APR gene Sr2, along with pseudo-black chaff (the morphological marker). Phenotyping can be conducted throughout the year, and is fast and resource efficient. Further, the phenotyping method can be applied to screen breeding populations or germplasm accessions using local or exotic races of SR.

  5. The role of ethylene perception in plant disease resistance

    NARCIS (Netherlands)

    Geraats, Bart Peter Johan

    2003-01-01

    Ethylene is a plant hormone that is involved in responses of the plant to various stress situations, such as pathogen attack. The role of ethylene in plant-pathogen interactions seems to be diverse. Exposure of plants to ethylene can induce disease resistance, but treatment with ethylene during

  6. Overexpression of a Modified Plant Thionin Enhances Disease Resistance to Citrus Canker and Huanglongbing (HLB).

    Science.gov (United States)

    Hao, Guixia; Stover, Ed; Gupta, Goutam

    2016-01-01

    Huanglongbing (HLB or citrus greening disease) caused by Candidatus Liberibacter asiaticus (Las) is a great threat to the US citrus industry. There are no proven strategies to eliminate HLB disease and no cultivar has been identified with strong HLB resistance. Citrus canker is also an economically important disease associated with a bacterial pathogen (Xanthomonas citri). In this study, we characterized endogenous citrus thionins and investigated their expression in different citrus tissues. Since no HLB-resistant citrus cultivars have been identified, we attempted to develop citrus resistant to both HLB and citrus canker through overexpression of a modified plant thionin. To improve effectiveness for disease resistance, we modified and synthesized the sequence encoding a plant thionin and cloned into the binary vector pBinPlus/ARS. The construct was then introduced into Agrobacterium strain EHA105 for citrus transformation. Transgenic Carrizo plants expressing the modified plant thionin were generated by Agrobacterium-mediated transformation. Successful transformation and transgene gene expression was confirmed by molecular analysis. Transgenic Carrizo plants expressing the modified thionin gene were challenged with X. citri 3213 at a range of concentrations, and a significant reduction in canker symptoms and a decrease in bacterial growth were demonstrated compared to nontransgenic plants. Furthermore, the transgenic citrus plants were challenged with HLB via graft inoculation. Our results showed significant Las titer reduction in roots of transgenic Carrizo compared with control plants and reduced scion Las titer 12 months after graft inoculation. These data provide promise for engineering citrus disease resistance against HLB and canker.

  7. [Cyclooxigenase-1 gene polymorphism and aspirin resistance].

    Science.gov (United States)

    Bondar', T N; Kravchenko, N A

    2012-01-01

    The literature data concerning structure of cyclo-oxigenase-1--the key enzyme in prostaglandin biosynthesis and the main target of anti-platelet therapy with the use of acetylsalicilic acid are presented in the review. The data on cyclooxigenase-1 gene polymorphism, distribution of the revealed variants in various populations and their possible correlation with biochemical and functional aspirin resistance are presented.

  8. [Transformation of common wheat (Triticum aestivum L.) with herbicide-resistant EPSPs gene].

    Science.gov (United States)

    Chen, L H; Wang, X W; Zhang, W J; Zhang, X D; Hu, D F; Liu, G T

    1999-01-01

    The herbicide-resistant EPSPs (5-enolpyruvylshikimate-3-phosphate synthase) gene was transformed into about 1,000 young spikes and 800 young embryos of wheat variety, Jinghua 1, with gene gun. Thirty-eight and four regenerated plants were obtained respectively screened with glyphosate. All regenerated plants were analysed by PCR and/or Southern blotting. The results indicated that EPSPs gene was integrated stably into the genome of Jinghua 1, and some of the transformants showed fertile. So herbicide-resistant EPSPs gene could be used as selective marker in the transformation of monocotyledon cereal crops, such as wheat.

  9. Resistance of Antimicrobial Peptide Gene Transgenic Rice to Bacterial Blight

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; WU Chao; LIU Mei; LIU Xu-ri; Hu Guo-cheng; SI Hua-min; SUN Zong-xiu; LIU Wen-zhen; Fu Ya-ping

    2011-01-01

    Antimierobial peptide is a polypeptide with antimicrobial activity.Antimicrobial peptide genes Np3 and Np5 from Chinese shrimp (Fenneropenaeus Chinensis) were integrated into Oryza sativa L.subsp.japonica cv.Aichi ashahi by Agrobacterium mediated transformation system.PCR analysis showed that the positive ratios of Np3 and Np5 were 36% and 45% in T0 generation,respectively.RT-PCR analysis showed that the antimicrobial peptide genes were expressed in T1 generation,and there was no obvious difference in agronomic traits between transgenic plants and non-transgenic plants.Four Np3 and Np5 transgenic lines in T1 generation were inoculated with ×anthomonas oryzae pv.oryzae strain CR4,and all the four transgenic lines had significantly enhanced resistance to bacterial blight caused by the strain CR4.The Np5 transgenic lines also showed higher resistance to bacterial blight caused by strains JS97-2,Zhe 173 and OS-225.It is suggested that transgenic lines with Np5 gene might possess broad spectrum resistance to rice bacterial blight.

  10. The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum.

    Science.gov (United States)

    Schnippenkoetter, Wendelin; Lo, Clive; Liu, Guoquan; Dibley, Katherine; Chan, Wai Lung; White, Jodie; Milne, Ricky; Zwart, Alexander; Kwong, Eunjung; Keller, Beat; Godwin, Ian; Krattinger, Simon G; Lagudah, Evans

    2017-11-01

    The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expressing the Lr34res ABC transporter. Transgenic sorghum lines that highly expressed the wheat Lr34res gene exhibited immunity to sorghum rust compared to the low-expressing single copy Lr34res genotype that conferred partial resistance. Pathogen-induced pigmentation mediated by flavonoid phytoalexins was evident on transgenic sorghum leaves following P. purpurea infection within 24-72 h, which paralleled Lr34res gene expression. Elevated expression of flavone synthase II, flavanone 4-reductase and dihydroflavonol reductase genes which control the biosynthesis of flavonoid phytoalexins characterized the highly expressing Lr34res transgenic lines 24-h post-inoculation with P. purpurea. Metabolite analysis of mesocotyls infected with C. sublineolum showed increased levels of 3-deoxyanthocyanidin metabolites were associated with Lr34res expression, concomitant with reduced symptoms of anthracnose. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Plant-mediated RNA interference of effector gene Mc16D10L confers resistance against Meloidogyne chitwoodi in diverse genetic backgrounds of potato and reduces pathogenicity of nematode offspring

    Science.gov (United States)

    Meloidogyne chitwoodi is a major problem for potato production in the Pacific Northwest of the USA. In spite of long-term breeding efforts no commercial potato cultivars with resistance to M. chitwoodi exist to date. The RMc1 resistance gene against M. chitwoodi has been introgressed from Solanum bu...

  12. Cultivation of vancomycin-resistant enterococci and methicillin-resistant staphylococci from input and output samples of German biogas plants.

    Science.gov (United States)

    Glaeser, Stefanie P; Sowinsky, Olivia; Brunner, Jana S; Dott, Wolfgang; Kämpfer, Peter

    2016-03-01

    Vancomycin-resistant enterococci (VRE) and methicillin-resistant staphylococci (MRS) were detected in two mesophilic German biogas plants (BGPs) using selective pre-enrichment methods combined with cultivation on CHROMagar media and antibiotic resistance gene screening. Genetic fingerprinting and 16S rRNA gene sequencing showed the presence of enterococci isolated by the VRE selective cultivation (67 isolates) in input and output samples of BGPs. In contrast, MRS (44 isolates) were detected in input, but in none of the output samples. Enterococcus isolates showed highest 16S rRNA gene sequence similarity (>99.8%) to E. lemanii, E. casseliflavus/E. gallinarium or E. devriesei/E. pseudoavium/E. viikkiensis and carried vanA, vanB and/or vanC1 genes. Enterococcus faecium and E. faecalis VRE were not detected, but isolates closely related to those species (>99.9% 16S rRNA gene sequence similarity) were detected by the MRS selective cultivation methods. Staphylococcus isolates shared highest 16S rRNA gene sequence similarity (>99.9%) with S. haemolyticus, S. lentus and S. sciuri and carried mecA genes. Methicillin-resistant S. aureus (MRSA) were not detected. In summary, manure from livestock husbandry contained both, VRE and MRS. VRE were also detected in output samples, indicating that enterococci with vancomycin resistance genes could be release into the environment by the application of BGP output material as biofertilizers.

  13. Synthetic gene networks in plant systems.

    Science.gov (United States)

    Junker, Astrid; Junker, Björn H

    2012-01-01

    Synthetic biology methods are routinely applied in the plant field as in other eukaryotic model systems. Several synthetic components have been developed in plants and an increasing number of studies report on the assembly into functional synthetic genetic circuits. This chapter gives an overview of the existing plant genetic networks and describes in detail the application of two systems for inducible gene expression. The ethanol-inducible system relies on the ethanol-responsive interaction of the AlcA transcriptional activator and the AlcR receptor resulting in the transcription of the gene of interest (GOI). In comparison, the translational fusion of GOI and the glucocorticoid receptor (GR) domain leads to the dexamethasone-dependent nuclear translocation of the GOI::GR protein. This chapter contains detailed protocols for the application of both systems in the model plants potato and Arabidopsis, respectively.

  14. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens.

    Science.gov (United States)

    Vleeshouwers, Vivianne G A A; Oliver, Richard P

    2014-03-01

    One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.

  15. Genetics of adult plant stripe rust resistance in CSP44, a selection from Australian wheat

    Indian Academy of Sciences (India)

    Renu Khanna; U. K. Bansal; R. G. Saini

    2005-12-01

    Wheat line CSP44, a selection from an Australian bread wheat cultivar Condor, has shown resistance to stripe rust in India since the last twenty years. Seedlings and adult plants of CSP44 showed susceptible infection types against stripe rust race 46S119 but displayed average terminal disease severity of 2.67 on adult plants against this race as compared to 70.33 of susceptible Indian cultivar, WL711. This suggests the presence of nonhypersensitive adult plant stripe rust resistance in the line CSP44. The evaluation of F1, F2 and F3 generations and F6 SSD families from the cross of CSP44 with susceptible wheat cultivar WL711 for stripe rust severity indicated that the resistance in CSP44 is based on two genes showing additive effect. One of these two genes is Yr18 and the second gene is not yet described.

  16. Characterization of resistance gene analogues (RGAs) in Apple (Malus 6domestica Borkh.) and their evolutionary history of the Rosaceae family

    Science.gov (United States)

    The family of resistance gene analogues (RGAs) with a nucleotide-binding site (NBS) domain accounts for the largest number of disease resistance genes and is one of the largest gene families in plants. We have identified 868 RGAs in the genome of the apple (Malus × domestica Borkh.) cultivar ‘Golden...

  17. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress.

    Science.gov (United States)

    Hsieh, Tsai-Hung; Lee, Jent-turn; Charng, Yee-yung; Chan, Ming-Tsair

    2002-10-01

    A DNA cassette containing an Arabidopsis C repeat/dehydration-responsive element binding factor 1 (CBF1) cDNA and a nos terminator, driven by a cauliflower mosaic virus 35S promoter, was transformed into the tomato (Lycopersicon esculentum) genome. These transgenic tomato plants were more resistant to water deficit stress than the wild-type plants. The transgenic plants exhibited growth retardation by showing dwarf phenotype, and the fruit and seed numbers and fresh weight of the transgenic tomato plants were apparently less than those of the wild-type plants. Exogenous gibberellic acid treatment reversed the growth retardation and enhanced growth of transgenic tomato plants, but did not affect the level of water deficit resistance. The stomata of the transgenic CBF1 tomato plants closed more rapidly than the wild type after water deficit treatment with or without gibberellic acid pretreatment. The transgenic tomato plants contained higher levels of Pro than those of the wild-type plants under normal or water deficit conditions. Subtractive hybridization was used to isolate the responsive genes to heterologous CBF1 in transgenic tomato plants and the CAT1 (CATALASE1) was characterized. Catalase activity increased, and hydrogen peroxide concentration decreased in transgenic tomato plants compared with the wild-type plants with or without water deficit stress. These results indicated that the heterologous Arabidopsis CBF1 can confer water deficit resistance in transgenic tomato plants.

  18. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  19. Nematode parasites of animals are more prone to develop xenobiotic resistance than nematode parasites of plants.

    Science.gov (United States)

    Silvestre, A; Cabaret, J

    2004-06-01

    In this paper, we concentrate on a comparison of plant and animal-parasitic nematodes, to gain insight into the factors that influence the acquisition of the drug resistance by nematodes. Comparing nematode parasite of domestic animals and cultivated plants, it appears that drug resistance threatens only domestic animal production. Does the paucity of report on nematicide field resistance reflect reality or, is nematicide resistance bypassed by other management practices, specific to cultivated plants (i.e. agricultural control)? First, it seems that selection pressure by treatments in plants is not as efficient as selection pressure in ruminants. Agronomic practices (i.e. sanitation, early planting, usage of nematodes resistant cultivar and crop rotation) are frequently used to control parasitic-plant nematodes. Although the efficiency of such measures is generally moderate to high, integrated approaches are developing successfully in parasitic-plant nematode models. Secondly, the majority of anthelmintic resistance cases recorded in animal-parasitic nematodes concern drug families that are not used in plant-parasitic nematodes control (i.e. benzimidazoles, avermectines and levamisole). Thirdly, particular life traits of parasitic-plant nematodes (low to moderate fecundity and reproductive strategy) are expected to reduce probability of appearance and transmission of drug resistance genes. It has been demonstrated that, for a large number of nematodes such as Meloidogyne spp., the mode of reproduction by mitotic parthenogenesis reduced genetic diversity of populations which may prevent a rapid drug resistance development. In conclusion, anthelmintic resistance develops in nematode parasite of animals as a consequence of an efficient selection pressure. Early detection of anthelmintic resistance is then crucial: it is not possible to avoid it, but only to delay its development in farm animal industry.

  20. Nematode parasites of animals are more prone to develop xenobiotic resistance than nematode parasites of plants

    Directory of Open Access Journals (Sweden)

    Silvestre A.

    2004-06-01

    Full Text Available In this paper, we concentrate on a comparison of plant and animal-parasitic nematodes, to gain insight into the factors that influence the acquisition of the drug resistance by nematodes. Comparing nematode parasite of domestic animals and cultivated plants, it appears that drug resistance threatens only domestic animal production. Does the paucity of report on nematicide field resistance reflect reality or, is nematicide resistance bypassed by other management practices, specific to cultivated plants (i.e. agricultural control ? First, it seems that selection pressure by treatments in plants is not as efficient as selection pressure in ruminants. Agronomic practices (i.e. sanitation, early planting, usage of nematodes resistant cultivar and crop rotation are frequently used to control parasitic-plant nematodes. Although the efficiency of such measures is generally moderate to high, integrated approaches are developing successfully in parasitic-plant nematode models. Secondly, the majority of anthelmintic resistance cases recorded in animal-parasitic nematodes concern drug families that are not used in plant-parasitic nematodes control (i.e. benzimidazoles, avermectines and levamisole. Thirdly, particular life traits of parasitic-plant nematodes (low to moderate fecundity and reproductive strategy are expected to reduce probability of appearance and transmission of drug resistance genes. It has been demonstrated that, for a large number of nematodes such as Meloidogyne spp., the mode of reproduction by mitotic parthenogenesis reduced genetic diversity of populations which may prevent a rapid drug resistance development. In conclusion, anthelmintic resistance develops in nematode parasite of animals as a consequence of an efficient selection pressure. Early detection of anthelmintic resistance is then crucial : it is not possible to avoid it, but only to delay its development in farm animal industry.

  1. Selection of tomato plants resistant to a local Polish isolate of tomato spotted wilt virus (TSWV).

    Science.gov (United States)

    Czech, Andrzej S; Szklarczyk, Marek; Gajewski, Zbigniew; Zukowska, Ewa; Michalik, Barbara; Kobyłko, Tadeusz; Strzałka, Kazimierz

    2003-01-01

    We found that the Sw-5 gene confers resistance to one of the Polish isolates of tomato spotted wilt virus (TSWV). A series of tomato breeding accessions was analysed along with standards of resistance and susceptibility to TSWV. The presence of the Sw-5 gene was determined using the available PCR marker. Subsequently plants from these accessions were grown in the presence of the TSWV isolate from Poland. Some of them developed severe symptoms of the TSWV disease. Expression of the virus proteins was also assayed in tissues of the investigated plants. We found general agreement between either lack or presence of the disease symptoms, virus proteins and resistance gene. Some observed discrepancies of these data are also discussed. Our results indicate that marker-assisted selection can be used for breeding of the TSWV-resistant tomato in Poland.

  2. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation.

    Science.gov (United States)

    Shcherbak, N; Kishchenko, O; Sakhno, L; Komarnytsky, I; Kuchuk, M

    2013-01-01

    Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants.

  3. Horizontal gene transfer from Agrobacterium to plants

    Directory of Open Access Journals (Sweden)

    Tatiana V. Matveeva

    2014-08-01

    Full Text Available Most genetic engineering of plants uses Agrobacterium mediated transformation to introduce novel gene content. In nature, insertion of T-DNA in the plant genome and its subsequent transfer via sexual reproduction has been shown in several species in the genera Nicotiana and Linaria. In these natural examples of horizontal gene transfer from Agrobacterium to plants, the T-DNA donor is assumed to be a mikimopine strain of A.rhizogenes. A sequence homologous to the T-DNA of the Ri plasmid of Agrobacterium rhizogenes was found in the genome of untransformed Nicotiana glauca about 30 years ago, and was named cellular T-DNA (cT-DNA. It represents an imperfect inverted repeat and contains homologues of several T-DNA oncogenes (NgrolB, NgrolC, NgORF13, NgORF14 and an opine synthesis gene (Ngmis. A similar cT-DNA has also been found in other species of the genus Nicotiana. These presumably ancient homologues of T-DNA genes are still expressed, indicating that they may play a role in the evolution of these plants. Recently T-DNA has been detected and characterized in Linaria vulgaris and L. dalmatica. In Linaria vulgaris the cT-DNA is present in two copies and organized as a tandem imperfect direct repeat, containing LvORF2, LvORF3, LvORF8, LvrolA, LvrolB, LvrolC, LvORF13, LvORF14, and the Lvmis genes. All L. vulgaris and L. dalmatica plants screened contained the same T-DNA oncogenes and the mis gene. Evidence suggests that there were several independent T-DNA integration events into the genomes of these plant genera. We speculate that ancient plants transformed by A. rhizogenes might have acquired a selective advantage in competition with the parental species. Thus, the events of T-DNA insertion in the plant genome might have affected their evolution, resulting in the creation of new plant species. In this review we focus on the structure and functions of cT-DNA in Linaria and Nicotiana and discuss their possible evolutionary role.

  4. Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology.

    Science.gov (United States)

    Lane, Thomas S; Rempe, Caroline S; Davitt, Jack; Staton, Margaret E; Peng, Yanhui; Soltis, Douglas Edward; Melkonian, Michael; Deyholos, Michael; Leebens-Mack, James H; Chase, Mark; Rothfels, Carl J; Stevenson, Dennis; Graham, Sean W; Yu, Jun; Liu, Tao; Pires, J Chris; Edger, Patrick P; Zhang, Yong; Xie, Yinlong; Zhu, Ying; Carpenter, Eric; Wong, Gane Ka-Shu; Stewart, C Neal

    2016-05-31

    The ATP-binding cassette (ABC) transporter gene superfamily is ubiquitous among extant organisms and prominently represented in plants. ABC transporters act to transport compounds across cellular membranes and are involved in a diverse range of biological processes. Thus, the applicability to biotechnology is vast, including cancer resistance in humans, drug resistance among vertebrates, and herbicide and other xenobiotic resistance in plants. In addition, plants appear to harbor the highest diversity of ABC transporter genes compared with any other group of organisms. This study applied transcriptome analysis to survey the kingdom-wide ABC transporter diversity in plants and suggest biotechnology applications of this diversity. We utilized sequence similarity-based informatics techniques to infer the identity of ABC transporter gene candidates from 1295 phylogenetically-diverse plant transcriptomes. A total of 97,149 putative (approximately 25 % were full-length) ABC transporter gene members were identified; each RNA-Seq library (plant sample) had 88 ± 30 gene members. As expected, simpler organisms, such as algae, had fewer unique members than vascular land plants. Differences were also noted in the richness of certain ABC transporter subfamilies. Land plants had more unique ABCB, ABCC, and ABCG transporter gene members on average (p plant groups (p plant groups. An increase in the number of gene family members present in the ABCB, ABCC, and ABCD transporter subfamilies may indicate an expansion of the ABC transporter superfamily among green land plants, which include all crop species. The striking difference between the number of ABCA subfamily transporter gene members between ferns and other plant taxa is surprising and merits further investigation. Discussed is the potential exploitation of ABC transporters in plant biotechnology, with an emphasis on crops.

  5. Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii.

    Science.gov (United States)

    Gygax, M; Gianfranceschi, L; Liebhard, R; Kellerhals, M; Gessler, C; Patocchi, A

    2004-11-01

    Breeding for scab-resistant apple cultivars by pyramiding several resistance genes in the same genetic background is a promising way to control apple scab caused by the fungus Venturia inaequalis. To achieve this goal, DNA markers linked to the genes of interest are required in order to select seedlings with the desired resistance allele combinations. For several apple scab resistance genes, molecular markers are already available; but until now, none existed for the apple scab resistance gene Vbj originating from the crab apple Malus baccata jackii. Using bulk segregant analysis, three RAPD markers linked to Vbj were first identified. These markers were transformed into more reliable sequence-characterised amplified region (SCAR) markers that proved to be co-dominant. In addition, three SSR markers and one SCAR were identified by comparing homologous linkage groups of existing genetic maps. Discarding plants showing genotype-phenotype incongruence (GPI plants) plants, a linkage map was calculated. Vbj mapped between the markers CH05e03 (SSR) and T6-SCAR, at 0.6 cM from CH05e03 and at 3.9 cM from T6-SCAR. Without the removal of the GPI plants, Vbj was placed 15 cM away from the closest markers. Problems and pitfalls due to GPI plants and the consequences for mapping the resistance gene accurately are discussed. Finally, the usefulness of co-dominant markers for pedigree analysis is also demonstrated.

  6. [Disease resistance signal transfer between roots of different tomato plants through common arbuscular mycorrhiza networks].

    Science.gov (United States)

    Xie, Li-Jun; Song, Yuan-Yuan; Zeng, Ren-Sen; Wang, Rui-Long; Wei, Xiao-Chen; Ye, Mao; Hu, Lin; Zhang, Hui

    2012-05-01

    Common mycorrhizal networks (CMNs) are the underground conduits of nutrient exchange between plants. However, whether the CMNs can serve as the underground conduits of chemical communication to transfer the disease resistance signals between plants are unknown. By inoculating arbuscular mycorrhizal fungus (AMF) Glomus mosseae to establish CMNs between 'donor' and 'receiver' tomato plants, and by inoculating Alternaria solani, the causal agent of tomato early blight disease, to the 'donor' plants, this paper studied whether the potential disease resistance signals can be transferred between the 'donor' and 'receiver' plants roots. The real time RT-PCR analysis showed that after inoculation with A. solani, the AMF-inoculated 'donor' plants had strong expression of three test defense-related genes in roots, with the transcript levels of the phenylalanine ammonia-lyase (PAL), lipoxygenase (LOX) and chitinase (PR3) being significantly higher than those in the roots of the 'donor' plants only inoculated with A. solani, not inoculated with both A. solani and AMF, and only inoculated with AMF. More importantly, in the presence of CMNs, the expression levels of the three genes in the roots of the 'receiver' plants were significantly higher than those of the 'receiver' plants without CMNs connection, with the connection blocking, and with the connection but the 'donor' plants not A. solani-inoculated. Compared with the control (without CMNs connection), the transcript level of the PAL, LOX and PR3 in the roots of the 'receiver' plants having CMNs connection with the 'donor' plants was 4.2-, 4.5- and 3.5-fold higher, respectively. In addition, the 'donor' plants activated their defensive responses more quickly than the 'receiver' plants (18 and 65 h vs. 100 and 140 h). These findings suggested that the disease resistance signals produced by the pathogen-induced 'donor' tomato plant roots could be transferred to the 'receiver' plant roots through CMNs.

  7. Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis

    DEFF Research Database (Denmark)

    Luo, Gang; Li, Bing; Li, Li-Guan

    2017-01-01

    Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce the susceptib......Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce...

  8. EPSPS Gene Amplification in Glyphosate-Resistant Italian Ryegrass (Lolium perenne ssp. multiflorum) Populations from Arkansas (United States).

    Science.gov (United States)

    Salas, Reiofeli A; Scott, Robert C; Dayan, Franck E; Burgos, Nilda R

    2015-07-01

    Glyphosate-resistant Italian ryegrass was detected in Arkansas (United States) in 2007. In 2014, 45 populations were confirmed resistant in eight counties across the state. The level of resistance and resistance mechanisms in six populations were studied to assess the severity of the problem and identify alternative management approaches. Dose-response bioassays, glyphosate absorption and translocation experiments, herbicide target (EPSPS) gene sequence analysis, and gene amplification assays were conducted. The dose causing 50% growth reduction (GR50) was 7-19 times higher for the resistant population than for the susceptible standard. Uptake and translocation of (14)C-glyphosate were similar in resistant and susceptible plants, and no mutation in the EPSPS gene known to be associated with resistance to glyphosate was detected. Resistant plants contained from 11- to >100-fold more copies of the EPSPS gene than the susceptible plants, whereas the susceptible plants had only one copy of EPSPS. Plants surviving the recommended dose of glyphosate contained at least 10 copies. The EPSPS copy number was positively related to glyphosate resistance level (r = 80). Therefore, resistance to glyphosate in these populations is due to multiplication of the target site. Resistance mechanisms could be location-specific. Suppressing the mechanism for gene amplification may overcome resistance.

  9. Retrotransposon vectors for gene delivery in plants

    Directory of Open Access Journals (Sweden)

    Hou Yi

    2010-08-01

    Full Text Available Abstract Background Retrotransposons are abundant components of plant genomes, and although some plant retrotransposons have been used as insertional mutagens, these mobile genetic elements have not been widely exploited for plant genome manipulation. In vertebrates and yeast, retrotransposons and retroviruses are routinely altered to carry additional genes that are copied into complementary (cDNA through reverse transcription. Integration of cDNA results in gene delivery; recombination of cDNA with homologous chromosomal sequences can create targeted gene modifications. Plant retrotransposon-based vectors, therefore, may provide new opportunities for plant genome engineering. Results A retrotransposon vector system was developed for gene delivery in plants based on the Tnt1 element from Nicotiana tabacum. Mini-Tnt1 transfer vectors were constructed that lack coding sequences yet retain the 5' and 3' long terminal repeats (LTRs and adjacent cis sequences required for reverse transcription. The internal coding region of Tnt1 was replaced with a neomycin phosphotransferase gene to monitor replication by reverse transcription. Two different mini-Tnt1 s were developed: one with the native 5' LTR and the other with a chimeric 5' LTR that had the first 233 bp replaced by the CaMV 35 S promoter. After transfer into tobacco protoplasts, both vectors undergo retrotransposition using GAG and POL proteins provided in trans by endogenous Tnt1 elements. The transposition frequencies of mini-Tnt1 vectors are comparable with native Tnt1 elements, and like the native elements, insertion sites are within or near coding sequences. In this paper, we provide evidence that template switching occurs during mini-Tnt1 reverse transcription, indicating that multiple copies of Tnt1 mRNA are packaged into virus-like particles. Conclusions Our data demonstrate that mini-Tnt1 vectors can replicate efficiently in tobacco cells using GAG and POL proteins provided in trans by

  10. Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L

    Science.gov (United States)

    The target leaf spot (TLS) is a very important fungal disease in cucumber. In this study, we conducted fine genetic mapping of a recessively inherited resistance gene, cca-2 against TLS with 1,083 F2 plants derived from the resistant cucumber inbred line D31 and the susceptible line D5. Initial mapp...

  11. Inheritance and molecular mapping of anthracnose resistance genes present in sorghum line SC112-14

    Science.gov (United States)

    Anthracnose (Colletotrichum sublineolum) is one of the most destructive diseases of sorghum (Sorghum bicolor L. Moench) affecting all aerial tissues of the plant. The most effective strategy for its control is the incorporation of resistance genes. Therefore, the anthracnose resistance response pr...

  12. Are PECTIN ESTERASE INHIBITOR Genes Involved in Mediating Resistance to Rhynchosporium commune in Barley?

    Science.gov (United States)

    Marzin, Stephan; Hanemann, Anja; Sharma, Shailendra; Hensel, Götz; Kumlehn, Jochen; Schweizer, Günther; Röder, Marion S

    2016-01-01

    A family of putative PECTIN ESTERASE INHIBITOR (PEI) genes, which were detected in the genomic region co-segregating with the resistance gene Rrs2 against scald caused by Rhynchosporium commune in barley, were characterized and tested for their possible involvement in mediating resistance to the pathogen by complementation and overexpression analysis. The sequences of the respective genes were derived from two BAC contigs originating from the susceptible cultivar 'Morex'. For the genes HvPEI2, HvPEI3, HvPEI4 and HvPEI6, specific haplotypes for 18 resistant and 23 susceptible cultivars were detected after PCR-amplification and haplotype-specific CAPS-markers were developed. None of the tested candidate genes HvPEI2, HvPEI3 and HvPEI4 alone conferred a high resistance level in transgenic over-expression plants, though an improvement of the resistance level was observed especially with OE-lines for gene HvPEI4. These results do not confirm but also do not exclude an involvement of the PEI gene family in the response to the pathogen. A candidate for the resistance gene Rrs2 could not be identified yet. It is possible that Rrs2 is a PEI gene or another type of gene which has not been detected in the susceptible cultivar 'Morex' or the full resistance reaction requires the presence of several PEI genes.

  13. Long distance pollen-mediated flow of herbicide resistance genes in Lolium rigidum.

    Science.gov (United States)

    Busi, Roberto; Yu, Qin; Barrett-Lennard, Robert; Powles, Stephen

    2008-11-01

    Gene flow promotes genetic exchange among plant populations mediating evolutionary dynamics; yet, the importance of gene flow at distance via pollen movement is poorly understood. A field experiment at the landscape level was conducted with Lolium rigidum herbicide-susceptible individuals (population VLR1) placed into an otherwise Lolium-free bushland environment at increasing distances from adjacent large commercial crop fields infested with herbicide-resistant L. rigidum. Herbicide resistance was used as a marker to quantify the distance and the rate of pollen-mediated gene flow. About 21,245 seeds were produced on the isolated, susceptible mother plants of which 3,303 seedlings were tested for herbicide resistance and 664 seedlings were found to be resistant. Pollen-mediated gene flow occurred at 3,000 m (maximum tested distance). Both Mendelian and molecular analyses (sequencing and CAPS markers) confirmed the introgression of herbicide resistance genes. This is the first documented case of long-distance gene flow in L. rigidum. The results are important for future modeling simulations of herbicide resistance evolution and subsequent mobility. The adoption of integrated agronomic strategies, the control of potential receptor plants on fields' margins and conservative use of herbicides can be realistic options to minimize herbicide resistance spread.

  14. Induced systemic resistance by plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Pelt, J.A. van; Verhagen, B.W.M.; Ton, J.; Wees, A.C.M. van; Léon-Kloosterziel, K.M.; Loon, L.C. van

    2003-01-01

    Rhizobacteria are present in large numbers on the root surface, where plant exudates and lysates provide nutrients. Selected strains of beneficial, plant growth-promoting rhizobacteria (PGPR) trigger a plant-mediated induced systemic resistance (ISR) response that is effective against a broad spectr

  15. Functional metagenomic analysis reveals rivers are a reservoir for diverse antibiotic resistance genes.

    Science.gov (United States)

    Amos, G C A; Zhang, L; Hawkey, P M; Gaze, W H; Wellington, E M

    2014-07-16

    The environment harbours a significant diversity of uncultured bacteria and a potential source of novel and extant resistance genes which may recombine with clinically important bacteria disseminated into environmental reservoirs. There is evidence that pollution can select for resistance due to the aggregation of adaptive genes on mobile elements. The aim of this study was to establish the impact of waste water treatment plant (WWTP) effluent disposal to a river by using culture independent methods to study diversity of resistance genes downstream of the WWTP in comparison to upstream. Metagenomic libraries were constructed in Escherichia coli and screened for phenotypic resistance to amikacin, gentamicin, neomycin, ampicillin and ciprofloxacin. Resistance genes were identified by using transposon mutagenesis. A significant increase downstream of the WWTP was observed in the number of phenotypic resistant clones recovered in metagenomic libraries. Common β-lactamases such as blaTEM were recovered as well as a diverse range of acetyltransferases and unusual transporter genes, with evidence for newly emerging resistance mechanisms. The similarities of the predicted proteins to known sequences suggested origins of genes from a very diverse range of bacteria. The study suggests that waste water disposal increases the reservoir of resistance mechanisms in the environment either by addition of resistance genes or by input of agents selective for resistant phenotypes. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata

    Directory of Open Access Journals (Sweden)

    Baldwin Ian T

    2008-10-01

    Full Text Available Abstract Background The adage from Shakespeare, "troubles, not as single spies, but in battalions come," holds true for Nicotiana attenuata, which is commonly attacked by both pathogens (Pseudomonas spp. and herbivores (Manduca sexta in its native habitats. Defense responses targeted against the pathogens can directly or indirectly influence the responses against the herbivores. Nadefensin is an effective induced defense gene against the bacterial pathogen Pseudomonas syringae pv tomato (PST DC3000, which is also elicited by attack from M. sexta larvae, but whether this defense protein influences M. sexta's growth and whether M. sexta-induced Nadefensin directly or indirectly influences PST DC3000 resistance are unknown. Results M. sexta larvae consumed less on WT and on Nadefensin-silenced N. attenuata plants that had previously been infected with PST DC3000 than on uninfected plants. WT plants infected with PST DC3000 showed enhanced resistance to PST DC3000 and decreased leaf consumption by M. sexta larvae, but larval mass gain was unaffected. PST DC3000-infected Nadefensin-silenced plants were less resistant to subsequent PST DC3000 challenge, and on these plants, M. sexta larvae consumed less and gained less mass. WT and Nadefensin-silenced plants previously damaged by M. sexta larvae were better able to resist subsequent PST DC3000 challenges than were undamaged plants. Conclusion These results demonstrate that Na-defensin directly mediates defense against PST DC3000 and indirectly against M. sexta in N. attenuata. In plants that were previously infected with PST DC3000, the altered leaf chemistry in PST DC3000-resistant WT plants and PST DC3000-susceptible Nadefensin-silenced plants differentially reduced M. sexta's leaf consumption and mass gain. In plants that were previously damaged by M. sexta, the combined effect of the altered host plant chemistry and a broad spectrum of anti-herbivore induced metabolomic responses was more

  17. Transposon tagging of disease resistance genes. Final report, May 1, 1988--April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Michelmore, R.

    1994-09-01

    The goal of this project was to develop a transposon mutagenesis system for lettuce and to clone and characterize disease resistance genes by transposon tagging. The majority of studies were conducted with the Ac/Ds System. Researchers made and tested several constructs as well as utilized constructions shown to be functional in other plant species. Researchers demonstrated movement of Ac and DS in lettuce; however, they transposed at much lower frequencies in lettuce than in other plant species. Therefore, further manipulation of the system, particularly for flower specific expression of transposase, is required before a routine transposon system is available for lettuce. Populations of lettuce were generated and screened to test for the stability of resistance genes and several spontaneous mutations were isolated. Researchers also identified a resistance gene mutant in plants transformed with a Ds element and chimeric transposase gene. This is currently being characterized in detail.

  18. Inheritance of Resistance to SMV3 and Identification of RAPD Marker Linked to the Resistant Gene in Soybean

    Institute of Scientific and Technical Information of China (English)

    ZHENG Cui-ming; CHANG Ru-zhen; QIU Li-juan

    2002-01-01

    One SMV resistant soybean line (95-5383) was crossed with four susceptible soybean varieties/line ( HB1, Tiefeng21, Amsoy, Williams) and one resistant introduced line PI486355. Their F1 and F2individuals were identified for SMV resistance by inoculation with SMV3. The results showed that in the four crosses of resistant × susceptible, F1 were susceptible and the ratio of F2 populations was 1 resistant : 3susceptible (mosaic and necrosis), indicating that 95-5383 carries one recessive gene that confer resistance to SMV3. There is segregation of susceptibility in F2 progenies from the cross of 95-5383 × PI486355, indicating that the SMV3 resistant gene in 95-5383 is located at different locus from PI486355. By bulked segregating analysis (BSA) in F2 populations of 95-5383 × HB1, one codominant RAPD marker OPN11980/1070 closely linked to SMV3 resistance gene amplified with RAPD primer OPN11 was identified. The DNA fragment OPN11980 was amplified in resistant parent 95-5383 and resistant bulk, and OPN111070 was amplified in susceptible parent HB1 and susceptible bulk. OPN11980/1070 was amplified in F1. Identification of the markers in F2 plants showed that the codominant marker OPN11980/1070 is closely linked to the SMV resistance locus in95-5383, with genetic distance of 2.1cM.

  19. Bipolar resistive switching in different plant and animal proteins

    KAUST Repository

    Bag, A.

    2014-06-01

    We report bipolar resistive switching phenomena observed in different types of plant and animal proteins. Using protein as the switching medium, resistive switching devices have been fabricated with conducting indium tin oxide (ITO) and Al as bottom and top electrodes, respectively. A clockwise bipolar resistive switching phenomenon is observed in all proteins. It is shown that the resistive switching phenomena originate from the local redox process in the protein and the ion exchange from the top electrode/protein interface.

  20. A transgenic wheat with a stilbene synthase gene resistant to powdery mildew obtained by biolistic method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Stilbene, a kind of phytoalexin, plays an important role in resistance to fungal and bacterial infection in plants. It strongly inhibits the growth of fungi and sprout of spore. Stilbene synthase gene (Vst1) obtained from grapevine has been transferred into common spring wheat Jinghong 5 by using the biolistic transformation method. Five transgenic plants (T0) were obtained from the bombarded 2014 immature embryos. One immune plantlet and 3 plantlets with mid-resistance to powdery mildew were identified from the transgenic plants of T3 generation which came from 2 T0 transgenic plants.

  1. Functional analysis of a wheat pleiotropic drug resistance gene involved in Fusarium head blight resistance

    Institute of Scientific and Technical Information of China (English)

    WANG Gui-ping; KONG Ling-rang; HOU Wen-qian; ZHANG Lei; WU Hong-yan; ZHAO Lan-fei; DU Xu-ye; MA Xin; LI An-fei; WANG Hong-wei

    2016-01-01

    The pleiotropic drug resistance (PDR) sub-family of adenosine triphosphate (ATP)-binding cassette (ABC) transporter had been reported to participate in diverse biological processes of plant. In this study, we cloned three novelPDR genes in Fusarium head blight (FHB) resistant wheat cultivar Ning 7840, which were located on wheat chromosomes 6A, 6B and 6D. In phylogeny, these genes were members of cluster I together with AePDR7 andBdPDR7. Subcelular localization analysis showed thatTaPDR7 was expressed on the plasmalemma. The quantitative real time PCR (RT-PCR) analysis showed that this gene and its probable orthologues in chromosomes 6B and 6D were both up-regulated sharply at 48 h after infected byFusarium graminearum and trichothecene deoxynivalenol (DON) in spike. When knocking down the transcripts of alTaPDR7 members by barely stripe mosaic virus-induced gene silencing (BSMV-VIGS) system, it could promote the F. graminearum hyphae growth and made larger pathogen inoculation points in Ning 7840, which suggested that TaPDR7 might play an important role in response toF. graminearum. Although salicylic acid (SA), methyl jasmonate (MeJA) and abscisic acid (ABA) had been reported to possibly regulate wheat FHB resistance, here, we found that the three members ofTaPDR7 were negatively regulated by these three hormones but positively regulated by indoleacetic acid (IAA).

  2. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants.

    Directory of Open Access Journals (Sweden)

    Annett Milling

    Full Text Available Ralstonia solanacearum, which causes bacterial wilt of diverse plants, produces copious extracellular polysaccharide (EPS, a major virulence factor. The function of EPS in wilt disease is uncertain. Leading hypotheses are that EPS physically obstructs plant water transport, or that EPS cloaks the bacterium from host plant recognition and subsequent defense. Tomato plants infected with R. solanacearum race 3 biovar 2 strain UW551 and tropical strain GMI1000 upregulated genes in both the ethylene (ET and salicylic acid (SA defense signal transduction pathways. The horizontally wilt-resistant tomato line Hawaii7996 activated expression of these defense genes faster and to a greater degree in response to R. solanacearum infection than did susceptible cultivar Bonny Best. However, EPS played different roles in resistant and susceptible host responses to R. solanacearum. In susceptible plants the wild-type and eps(- mutant strains induced generally similar defense responses. But in resistant Hawaii7996 tomato plants, the wild-type pathogens induced significantly greater defense responses than the eps(- mutants, suggesting that the resistant host recognizes R. solanacearum EPS. Consistent with this idea, purified EPS triggered significant SA pathway defense gene expression in resistant, but not in susceptible, tomato plants. In addition, the eps(- mutant triggered noticeably less production of defense-associated reactive oxygen species in resistant tomato stems and leaves, despite attaining similar cell densities in planta. Collectively, these data suggest that bacterial wilt-resistant plants can specifically recognize EPS from R. solanacearum.

  3. Risk assessment for Helicoverpa zea (Lepidoptera: Noctuidae) resistance on dual-gene versus single-gene corn.

    Science.gov (United States)

    Edwards, Kristine T; Caprio, Michael A; Allen, K Clint; Musser, Fred R

    2013-02-01

    Recent Environmental Protection Agency (EPA) decisions regarding resistance management in Bt-cropping systems have prompted concern in some experts that dual-gene Bt-corn (CrylA.105 and Cry2Ab2 toxins) may result in more rapid selection for resistance in Helicoverpa zea (Boddie) than single-gene Bacillus thuringiensis (Bt)-corn (CrylAb toxin). The concern is that Bt-toxin longevity could be significantly reduced with recent adoption of a natural refuge for dual-gene Bt-cotton (CrylAc and Cry2Ab2 toxins) and concurrent reduction in dual-gene corn refuge from 50 to 20%. A population genetics framework that simulates complex landscapes was applied to risk assessment. Expert opinions on effectiveness of several transgenic corn and cotton varieties were captured and used to assign probabilities to different scenarios in the assessment. At least 350 replicate simulations with randomly drawn parameters were completed for each of four risk assessments. Resistance evolved within 30 yr in 22.5% of simulations with single-gene corn and cotton with no volunteer corn. When volunteer corn was added to this assessment, risk of resistance evolving within 30 yr declined to 13.8%. When dual-gene Bt-cotton planted with a natural refuge and single-gene corn planted with a 50% structured refuge was simulated, simultaneous resistance to both toxins never occurred within 30 yr, but in 38.5% of simulations, resistance evolved to toxin present in single-gene Bt-corn (CrylAb). When both corn and cotton were simulated as dual-gene products, cotton with a natural refuge and corn with a 20% refuge, 3% of simulations evolved resistance to both toxins simultaneously within 30 yr, while 10.4% of simulations evolved resistance to CrylAb/c toxin.

  4. Gravity resistance, another graviresponse in plants - role of microtubule-membrane-cell wall continuum

    Science.gov (United States)

    Hoson, T.; Saito, Y.; Usui, S.; Soga, K.; Wakabayashi, K.

    Resistance to the gravitational force has been a serious problem for plants to survive on land, after they first went ashore more than 400 million years ago. Thus, gravity resistance is the principal graviresponse in plants comparable to gravitropism. Nevertheless, only limited information has been obtained for this second gravity response. We have examined the mechanism of gravity resistance using hypergravity conditions produced by centrifugation. The results led a hypothesis on the mechanism of plant resistance to the gravitational force that the plant constructs a tough body by increasing the cell wall rigidity, which are brought about by modification of the cell wall metabolism and cell wall environment, especially pH. The hypothesis was further supported by space experiments during the Space Shuttle STS-95 mission. On the other hand, we have shown that gravity signal may be perceived by mechanoreceptors (mechanosensitive ion channels) on the plasma membrane and amyloplast sedimentation in statocytes is not involved in gravity resistance. Moreover, hypergravity treatment increased the expression levels of genes encoding alpha-tubulin, a component of microtubules and 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of terpenoids such as membrane sterols. The expression of HMGR and alpha- and beta-tubulin genes increased within several hours after hypergravity treatment, depending on the magnitude of gravity. The determination of levels of gene products as well as the analysis with knockout mutants of these genes by T-DNA insertions in Arabidopsis supports the involvement of both membrane sterols and microtubules in gravity resistance. These results suggest that structural or physiological continuum of microtubule-cell membrane-cell wall is responsible for plant resistance to the gravitational force.

  5. Inactivation Effect of Antibiotic-Resistant Gene Using Chlorine Disinfection

    Directory of Open Access Journals (Sweden)

    Takashi Furukawa

    2017-07-01

    Full Text Available The aim of this study was to elucidate the inactivation effects on the antibiotic-resistance gene (vanA of vancomycin-resistant enterococci (VRE using chlorination, a disinfection method widely used in various water treatment facilities. Suspensions of VRE were prepared by adding VRE to phosphate-buffered saline, or the sterilized secondary effluent of a wastewater treatment plant. The inactivation experiments were carried out at several chlorine concentrations and stirring time. Enterococci concentration and presence of vanA were determined. The enterococci concentration decreased as chlorine concentrations and stirring times increased, with more than 7.0 log reduction occurring under the following conditions: 40 min stirring at 0.5 mg Cl2/L, 20 min stirring at 1.0 mg Cl2/L, and 3 min stirring at 3.0 mg Cl2/L. In the inactivation experiment using VRE suspended in secondary effluent, the culturable enterococci required much higher chlorine concentration and longer treatment time for complete disinfection than the cases of suspension of VRE. However, vanA was detected in all chlorinated suspensions of VRE, even in samples where no enterococcal colonies were present on the medium agar plate. The chlorine disinfection was not able to destroy antibiotic-resistance genes, though it can inactivate and decrease bacterial counts of antibiotic-resistant bacteria (ARB. Therefore, it was suggested that remaining ARB and/or antibiotic-resistance gene in inactivated bacterial cells after chlorine disinfection tank could be discharged into water environments.

  6. Engineered resistance against fungal plant pathogens

    NARCIS (Netherlands)

    Honée, G.

    1999-01-01

    Development of genetic engineering technology and molecular characterization of plant defense responses have provided strategies for controlling plant diseases additional to those based on chemical control or classical breeding programs. Most of these alternative strategies are based on the overprod

  7. Pollen-mediated gene flow from glyphosate-resistant common waterhemp (Amaranthus rudis Sauer): consequences for the dispersal of resistance genes

    Science.gov (United States)

    Sarangi, Debalin; Tyre, Andrew J.; Patterson, Eric L.; Gaines, Todd A.; Irmak, Suat; Knezevic, Stevan Z.; Lindquist, John L.; Jhala, Amit J.

    2017-01-01

    Gene flow is an important component in evolutionary biology; however, the role of gene flow in dispersal of herbicide-resistant alleles among weed populations is poorly understood. Field experiments were conducted at the University of Nebraska-Lincoln to quantify pollen-mediated gene flow (PMGF) from glyphosate-resistant (GR) to -susceptible (GS) common waterhemp using a concentric donor-receptor design. More than 130,000 common waterhemp plants were screened and 26,199 plants were confirmed resistant to glyphosate. Frequency of gene flow from all distances, directions, and years was estimated with a double exponential decay model using Generalized Nonlinear Model (package gnm) in R. PMGF declined by 50% at pollen source, whereas 90% reduction was found at 88 m (maximum) depending on the direction of the pollen-receptor blocks. Amplification of the target site gene, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), was identified as the mechanism of glyphosate resistance in parent biotype. The EPSPS gene amplification was heritable in common waterhemp and can be transferred via PMGF, and also correlated with glyphosate resistance in pseudo-F2 progeny. This is the first report of PMGF in GR common waterhemp and the results are critical in explaining the rapid dispersal of GR common waterhemp in Midwestern United States. PMID:28327669

  8. Organization of a resistance gene cluster linked to rhizomania resistance in sugar beet

    Science.gov (United States)

    Genetic resistance to rhizomania has been in use for over 40 years. Characterization of the molecular basis for susceptibility and resistance has proved challenging. Nucleotide-binding leucine-rich-repeat-containing (NB-LRR) genes have been implicated in numerous gene-for-gene resistance interaction...

  9. Cloning and Sequence Analysis of Disease Resistance Gene Analogues from Three Wild Rice Species in Yunnan

    Institute of Scientific and Technical Information of China (English)

    LIU Ji-mei; CHENG Zai-quan; YANG Ming-zhi; WU Cheng-jun; WANG Ling-xian; SUN Yi-ding; HUANG Xing-qi

    2003-01-01

    Two sets of degenerate oligonucleotide primers were designed according to amino acid conservedregions of reported plant disease resistance genes which encode proteins that contain nucleotide-binding site andleucine-rich repeats(NBS-LRR), and the plant disease resistance genes which encode serine/threonine proteinkinase(STK). By polymerase chain reaction(PCR), disease resistance gene analogues have been amplified fromthree wild rice species in Yunnan Province, China. The DNA fragments from amplification have been clonedinto the pGEM-T vector respectively. Sequencing of the DNA fragments indicated that 7 classes, 2 classes and6 classes NBS-LRR disease resistance gene analogues from Oryza rufipogon Griff. , Oryza officinalis Wall. ,and Oryza meyeriana Baill. were obtained respectively. The two representative fragments of TO12 from Ory-za officinalis Wall. and TR19 from Oryza rufipogon Griff. belong to the same class and homology of theirsequences are 100%. The result shows that the sequences of the same class disease resistance gene analogueshave no difference among different species of wild rice. 5 classes STK disease resistance gene analogues werealso obtained among which 4 classes from Oryza rufipogon Griff. , 1 class from Oryza officinalis Wall. Bycomparison analysis of amino acid sequences, we found that the obtained disease resistance gene analogues havevery iow identity(low to 25%) with the reported disease resistance gene L6, N, Bs2, Prf, Pto, Lr10 and Xa21etc. The finding suggests that the obtained disease resistance gene analogues are analogues of putative diseaseresistance genes that have not been isolated so far.

  10. Expression of Cryptogein in tobacco plants exhibits enhanced disease resistance and tolerance to salt stress

    Institute of Scientific and Technical Information of China (English)

    JIANG Donghua; CHEN Xujun; WU Kunlu; GUO Zejian

    2004-01-01

    Cryptogein (Crypt), an elicitin secreted from Phytophthora cryptogea, was used for genetic engineering of biotic and abiotic resistance plants. We generated transgenic tobacco plants harboring a rice phenylalanine ammonia-lyase (PAL) promoter and Crypt fusion gene (PAL::Crypt) or the mutated Crypt (mutation of the lysine at the position 13 to valine) under the control CaMV35S promoter (CaMV35S::CryK13V). T2 progeny of the transgenic plants showed significantly enhanced disease resistance to pathogens of fungal Phytophthora parasitica var nicotiana (Ppn) and Alternaria alternata, and bacterial Pseudomonas syringae pv tabaci. The amount of mRNA accumulation of Crypt and CryK13V was quite low in the transgenic lines analyzed by Northern blot, and was detected by a reverse transcription PCR method. Plants harboring PAL::Crypt construct showed faster and stronger induction of PR-1a gene after Ppn inoculation than that in the wild-type plants. The results suggested that the inducible PAL promoter could rapidly respond to pathogen attack and efficiently suppress the pathogen infection. Furthermore, the enhanced tolerance to salt stress in both of the Crypt and CryK13V expressing tobacco plants was also observed compared with that in the control plants. The constitutive expression of PR and transcription factor genes in the transformants was probably associated with the salt tolerance. The above observations suggested that a cross-talk between biotic and abiotic stresses existed in tobacco plants.

  11. Gravity-Induced Gene Expression in Plants.

    Science.gov (United States)

    Sederoff, Heike; Heber, Steffen; Howard, Brian; Myburg-Nichols, Henrietta; Hammond, Rebecca; Salinas-Mondragon, Raul; Brown, Christopher S.

    Plants sense changes in their orientation towards the vector of gravity and respond with directional growth. Several metabolites in the signal transduction cascade have been identified. However, very little is known about the interaction between these sensing and signal transduction events and even less is known about their role in the differential growth response. Gravity induced changes in transcript abundance have been identified in Arabidopsis whole seedlings and root apices (Moseyko et al. 2002; Kimbrough et al. 2004). Gravity induced transcript abundance changes can be observed within less than 1 min after stimulation (Salinas-Mondragon et al. 2005). Gene expression however requires not only transcription but also translation of the mRNA. Translation can only occur when mRNA is associated with ribosomes, even though not all mRNA associated with ribosomes is actively translated. To approximate translational capacity we quantified whole genome transcript abundances in corn stem pulvini during the first hour after gravity stimulation in total and poly-ribosomal fractions. As in Arabidopsis root apices, transcript abundances of several clusters of genes responded to gravity stimulation. The vast majority of these transcripts were also found to associate with polyribosomes in the same temporal and quantitative pattern. These genes are transcriptionally regulated by gravity stimulation, but do not exhibit translational regulation. However, a small group of genes showed increased transcriptional regulation after gravity stimulation, but no association with polysomes. These transcripts likely are translationally repressed. The mechanism of translational repression for these transcripts is unknown. Based on the hypothesis that the genes essential for gravitropic responses should be expressed in most or all species, we compared the temporal gravity induced expression pattern of all orthologs identified between maize and Arabidopsis. A small group of genes showed high

  12. Inoculation of Transgenic Resistant Potato by Phytophthora infestans Affects Host Plant Choice of a Generalist Moth.

    Science.gov (United States)

    Abreha, Kibrom B; Alexandersson, Erik; Vossen, Jack H; Anderson, Peter; Andreasson, Erik

    2015-01-01

    Pathogen attack and the plant's response to this attack affect herbivore oviposition preference and larval performance. Introduction of major resistance genes against Phytophthora infestans (Rpi-genes), the cause of the devastating late blight disease, from wild Solanum species into potato changes the plant-pathogen interaction dynamics completely, but little is known about the effects on non-target organisms. Thus, we examined the effect of P. infestans itself and introduction of an Rpi-gene into the crop on host plant preference of the generalist insect herbivore, Spodoptera littoralis (Lepidoptera: Noctuidae). In two choice bioassays, S. littoralis preferred to oviposit on P. infestans-inoculated plants of both the susceptible potato (cv. Desiree) and an isogenic resistant clone (A01-22: cv. Desiree transformed with Rpi-blb1), when compared to uninoculated plants of the same genotype. Both cv. Desiree and clone A01-22 were equally preferred for oviposition by S. littoralis when uninoculated plants were used, while cv. Desiree received more eggs compared to the resistant clone when both were inoculated with the pathogen. No significant difference in larval and pupal weight was found between S. littoralis larvae reared on leaves of the susceptible potato plants inoculated or uninoculated with P. infestans. Thus, the herbivore's host plant preference in this system was not directly associated with larval performance. The results indicate that the Rpi-blb1 based resistance in itself does not influence insect behavior, but that herbivore oviposition preference is affected by a change in the plant-microbe interaction.

  13. Inoculation of Transgenic Resistant Potato by Phytophthora infestans Affects Host Plant Choice of a Generalist Moth.

    Directory of Open Access Journals (Sweden)

    Kibrom B Abreha

    Full Text Available Pathogen attack and the plant's response to this attack affect herbivore oviposition preference and larval performance. Introduction of major resistance genes against Phytophthora infestans (Rpi-genes, the cause of the devastating late blight disease, from wild Solanum species into potato changes the plant-pathogen interaction dynamics completely, but little is known about the effects on non-target organisms. Thus, we examined the effect of P. infestans itself and introduction of an Rpi-gene into the crop on host plant preference of the generalist insect herbivore, Spodoptera littoralis (Lepidoptera: Noctuidae. In two choice bioassays, S. littoralis preferred to oviposit on P. infestans-inoculated plants of both the susceptible potato (cv. Desiree and an isogenic resistant clone (A01-22: cv. Desiree transformed with Rpi-blb1, when compared to uninoculated plants of the same genotype. Both cv. Desiree and clone A01-22 were equally preferred for oviposition by S. littoralis when uninoculated plants were used, while cv. Desiree received more eggs compared to the resistant clone when both were inoculated with the pathogen. No significant difference in larval and pupal weight was found between S. littoralis larvae reared on leaves of the susceptible potato plants inoculated or uninoculated with P. infestans. Thus, the herbivore's host plant preference in this system was not directly associated with larval performance. The results indicate that the Rpi-blb1 based resistance in itself does not influence insect behavior, but that herbivore oviposition preference is affected by a change in the plant-microbe interaction.

  14. Fitness costs associated with evolved herbicide resistance alleles in plants.

    Science.gov (United States)

    Vila-Aiub, Martin M; Neve, Paul; Powles, Stephen B

    2009-12-01

    Predictions based on evolutionary theory suggest that the adaptive value of evolved herbicide resistance alleles may be compromised by the existence of fitness costs. There have been many studies quantifying the fitness costs associated with novel herbicide resistance alleles, reflecting the importance of fitness costs in determining the evolutionary dynamics of resistance. However, many of these studies have incorrectly defined resistance or used inappropriate plant material and methods to measure fitness. This review has two major objectives. First, to propose a methodological framework that establishes experimental criteria to unequivocally evaluate fitness costs. Second, to present a comprehensive analysis of the literature on fitness costs associated with herbicide resistance alleles. This analysis reveals unquestionable evidence that some herbicide resistance alleles are associated with pleiotropic effects that result in plant fitness costs. Observed costs are evident from herbicide resistance-endowing amino acid substitutions in proteins involved in amino acid, fatty acid, auxin and cellulose biosynthesis, as well as enzymes involved in herbicide metabolism. However, these resistance fitness costs are not universal and their expression depends on particular plant alleles and mutations. The findings of this review are discussed within the context of the plant defence trade-off theory and herbicide resistance evolution.

  15. Resistência de plantas aos herbicidas inibidores da acetolactato sintase Plant resistance to acetolactate synthase-inhibiting herbicides

    Directory of Open Access Journals (Sweden)

    M.A. Rizzardi

    2002-04-01

    Full Text Available A resistência de plantas aos herbicidas é conseqüência, na maioria das vezes, de mutação ou da preexistência de genes que conferem resistência à população. No caso dos herbicidas inibidores da acetolactato sintase (ALS ocorreram casos de resistência tanto em plantas daninhas quanto em culturas. Essa revisão foi realizada com o objetivo de discutir aspectos bioquímicos, genéticos e moleculares da resistência de plantas aos herbicidas inibidores da ALS, sendo destacados também os efeitos na ecofisiologia das plantas daninhas e em mutações que conferem resistência em plantas daninhas e a possibilidade de utilizá-las para o desenvolvimento de culturas resistentes aos inibidores da ALS. Em plantas daninhas, a resistência aos herbicidas inibidores da ALS resulta de uma ou mais mutações no gene que codifica a ALS; quando a herança desse gene é monogênica, ele possui característica dominante a semidominante. As substituições em uma única seqüência nucleotídica ocasionam alteração na ALS, conferindo resistência aos herbicidas inibidores dessa enzima. Embora o biótipo resistente apresente alteração genética e enzimática quando comparado com biótipo suscetível, o comportamento ecofisiológico dos biótipos resistentes e suscetíveis é similar. Essa característica tem implicações muito importantes no estabelecimento das populações resistentes. Já foram desenvolvidos cultivares resistentes para diversas culturas, incluindo arroz e milho, as quais variam no nível de resistência aos diferentes grupos químicos de herbicidas inibidores da ALS.Herbicide resistance in plants arises mostly through mutation or pre-existence of genes that confer resistance to the population. When using herbicides inhibitors of the acetolactate synthase (ALS, resistance has occurred in weeds as well as in crops. This literature review was conducted to discuss biochemical, genetic, and molecular aspects of plant resistance to ALS

  16. AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth.

    Science.gov (United States)

    Yu, Qin; Han, Heping; Vila-Aiub, Martin M; Powles, Stephen B

    2010-09-01

    Twenty-two amino acid substitutions at seven conserved amino acid residues in the acetohydroxyacid synthase (AHAS) gene have been identified to date that confer target-site resistance to AHAS-inhibiting herbicides in biotypes of field-evolved resistant weed species. However, the effect of resistance mutations on AHAS functionality and plant growth has been investigated for only a very few mutations. This research investigates the effect of various AHAS resistance mutations in Lolium rigidum on AHAS functionality and plant growth. The enzyme kinetics of AHAS from five purified L. rigidum populations, each homozygous for the resistance mutations Pro-197-Ala, Pro-197-Arg, Pro-197-Gln, Pro-197-Ser or Trp-574-Leu, were characterized and the pleiotropic effect of three mutations on plant growth was assessed via relative growth rate analysis. All these resistance mutations endowed a herbicide-resistant AHAS and most resulted in higher extractable AHAS activity, with no-to-minor changes in AHAS kinetics. The Pro-197-Arg mutation slightly (but significantly) increased the K(m) for pyruvate and remarkably increased sensitivity to feedback inhibition by branched chain amino acids. Whereas the Pro-197-Ser and Trp-574-Leu mutations exhibited no significant effects on plant growth, the Pro-197-Arg mutation resulted in lower growth rates. It is clear that, at least in L. rigidum, these five AHAS resistance mutations have no major impact on AHAS functionality and hence probably no plant resistance costs. These results, in part, explain why so many Pro-197 AHAS resistance mutations in AHAS have evolved and why the Pro-197-Ser and the Trp-574-Leu AHAS resistance mutations are frequently found in many weed species.

  17. Isolation and characterization of NBS-LRR- resistance gene candidates in turmeric (Curcuma longa cv. surama).

    Science.gov (United States)

    Joshi, R K; Mohanty, S; Subudhi, E; Nayak, S

    2010-09-08

    Turmeric (Curcuma longa), an important asexually reproducing spice crop of the family Zingiberaceae is highly susceptible to bacterial and fungal pathogens. The identification of resistance gene analogs holds great promise for development of resistant turmeric cultivars. Degenerate primers designed based on known resistance genes (R-genes) were used in combinations to elucidate resistance gene analogs from Curcuma longa cultivar surama. The three primers resulted in amplicons with expected sizes of 450-600 bp. The nucleotide sequence of these amplicons was obtained through sequencing; their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. The finding of conserved domains, viz., kinase-1a, kinase-2 and hydrophobic motif, provided evidence that the sequences belong to the NBS-LRR class gene family. The presence of tryptophan as the last residue of kinase-2 motif further qualified them to be in the non-TIR-NBS-LRR subfamily of resistance genes. A cluster analysis based on the neighbor-joining method was carried out using Curcuma NBS analogs together with several resistance gene analogs and known R-genes, which classified them into two distinct subclasses, corresponding to clades N3 and N4 of non-TIR-NBS sequences described in plants. The NBS analogs that we isolated can be used as guidelines to eventually isolate numerous R-genes in turmeric.

  18. Role of the plant cell wall in gravity resistance.

    Science.gov (United States)

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants.

  19. Review on distribution and removal of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs)%污水处理厂抗生素抗性基因分布和去除研究进展

    Institute of Scientific and Technical Information of China (English)

    窦春玲; 郭雪萍; 尹大强

    2013-01-01

    Low concentrations of persistent antibiotics lead to increasing bacterial resistance in the environment. Antibiotic resistance genes ( ARGs) are a serious threat to ecology and human health. In wastewater treatment plants (WWTPs), ARGs from various pollutant sources, discharging into natural water and soils, are the major emission source. The purpose of this paper is to summarize the research work on distribution and removal of ARGs in the WWTPs. Several studies show that the distribution of ARGs is relevant to the ARGs species, region and the concentrations of antibiotics, and the removal efficiency is highly dependant on the treatment processes, even influenced by the process parameters. However, traditional processes are not effective. In addition, future the research on ARGs in the WWTPs is proposed.%环境中低浓度抗生素的持续存在导致细菌抗性增强,严重威胁生态与人类健康。污水处理厂接收各污染源排放的抗性基因( ARGs),并通过不同途径排放到自然水体和土壤中,是环境中主要的抗性基因排放源。本文总结了近来污水处理厂中抗性基因分布和去除研究进展。已有的研究表明,污水处理厂中抗性基因的分布与抗性基因种类、区域以及抗生素浓度有关,抗性基因的去除效果与工艺有很大关系,甚至受系统参数影响,而传统污水处理系统去除效果不佳。最后,对污水处理厂抗生素抗性基因研究进行了展望。

  20. Overexpression of a Chitinase Gene from Trichoderma asperellum Increases Disease Resistance in Transgenic Soybean.

    Science.gov (United States)

    Zhang, Fuli; Ruan, Xianle; Wang, Xian; Liu, Zhihua; Hu, Lizong; Li, Chengwei

    2016-12-01

    In the present study, a chi gene from Trichoderma asperellum, designated Tachi, was cloned and functionally characterized in soybean. Firstly, the effects of sodium thiosulfate on soybean Agrobacterium-mediated genetic transformation with embryonic tip regeneration system were investigated. The transformation frequency was improved by adding sodium thiosulfate in co-culture medium for three soybean genotypes. Transgenic soybean plants with constitutive expression of Tachi showed increased resistance to Sclerotinia sclerotiorum compared to WT plants. Meanwhile, overexpression of Tachi in soybean exhibited increased reactive oxygen species (ROS) level as well as peroxidase (POD) and catalase (SOD) activities, decreased malondialdehyde (MDA) content, along with diminished electrolytic leakage rate after S. sclerotiorum inoculation. These results suggest that Tachi can improve disease resistance in plants by enhancing ROS accumulation and activities of ROS scavenging enzymes and then diminishing cell death. Therefore, Tachi represents a candidate gene with potential application for increasing disease resistance in plants.

  1. eIF4E Resistance: Natural Variation Should Guide Gene Editing.

    Science.gov (United States)

    Bastet, Anna; Robaglia, Christophe; Gallois, Jean-Luc

    2017-02-28

    eIF4E translation initiation factors have emerged as major susceptibility factors for RNA viruses. Natural eIF4E-based resistance alleles are found in many species and are mostly variants that maintain the translation function of the protein. eIF4E genes represent major targets for engineering viral resistance, and gene-editing technologies can be used to make up for the lack of natural resistance alleles in some crops, often by knocking out eIF4E susceptibility factors. However, we report here how redundancy among eIF4E genes can restrict the efficient use of knockout alleles in breeding. We therefore discuss how gene-editing technologies can be used to design de novo functional alleles, using knowledge about the natural evolution of eIF4E genes in different species, to drive resistance to viruses without affecting plant physiology.

  2. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation.

    Science.gov (United States)

    van der Zaal, B J; Neuteboom, L W; Pinas, J E; Chardonnens, A N; Schat, H; Verkleij, J A; Hooykaas, P J

    1999-03-01

    We describe the isolation of an Arabidopsis gene that is closely related to the animal ZnT genes (Zn transporter). The protein encoded by the ZAT (Zn transporter of Arabidopsis thaliana) gene has 398 amino acid residues and is predicted to have six membrane-spanning domains. To obtain evidence for the postulated function of the Arabidopsis gene, transgenic plants with the ZAT coding sequence under control of the cauliflower mosaic virus 35S promoter were analyzed. Plants obtained with ZAT in the sense orientation exhibited enhanced Zn resistance and strongly increased Zn content in the roots under high Zn exposure. Antisense mRNA-producing plants were viable, with a wild-type level of Zn resistance and content, like plants expressing a truncated coding sequence lacking the C-terminal cytoplasmic domain of the protein. The availability of ZAT can lead to a better understanding of the mechanism of Zn homeostasis and resistance in plants.

  3. Molecular communications between plant heat shock responses and disease resistance.

    Science.gov (United States)

    Lee, Jae-Hoon; Yun, Hye Sup; Kwon, Chian

    2012-08-01

    As sessile, plants are continuously exposed to potential dangers including various abiotic stresses and pathogen attack. Although most studies focus on plant responses under an ideal condition to a specific stimulus, plants in nature must cope with a variety of stimuli at the same time. This indicates that it is critical for plants to fine-control distinct signaling pathways temporally and spatially for simultaneous and effective responses to various stresses. Global warming is currently a big issue threatening the future of humans. Reponses to high temperature affect many physiological processes in plants including growth and disease resistance, resulting in decrease of crop yield. Although plant heat stress and defense responses share important mediators such as calcium ions and heat shock proteins, it is thought that high temperature generally suppresses plant immunity. We therefore specifically discuss on interactions between plant heat and defense responses in this review hopefully for an integrated understanding of these responses in plants.

  4. Host-Induced Silencing of Pathogenicity Genes Enhances Resistance to Fusarium oxysporum Wilt in Tomato.

    Science.gov (United States)

    Bharti, Poonam; Jyoti, Poonam; Kapoor, Priya; Sharma, Vandana; Shanmugam, V; Yadav, Sudesh Kumar

    2017-08-01

    This study presents a novel approach of controlling vascular wilt in tomato by RNAi expression directed to pathogenicity genes of Fusarium oxysporum f. sp. lycopersici. Vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici leads to qualitative and quantitative loss of the crop. Limitation in the existing control measures necessitates the development of alternative strategies to increase resistance in the plants against pathogens. Recent findings paved way to RNAi, as a promising method for silencing of pathogenicity genes in fungus and provided effective resistance against fungal pathogens. Here, two important pathogenicity genes FOW2, a Zn(II)2Cys6 family putative transcription regulator, and chsV, a putative myosin motor and a chitin synthase domain, were used for host-induced gene silencing through hairpinRNA cassettes of these genes against Fusarium oxysporum f. sp. lycopersici. HairpinRNAs were assembled in appropriate binary vectors and transformed into tomato plant targeting FOW2 and chsV genes, for two highly pathogenic strains of Fusarium oxysporum viz. TOFOL-IHBT and TOFOL-IVRI. Transgenic tomatoes were analyzed for possible attainment of resistance in transgenic lines against fungal infection. Eight transgenic lines expressing hairpinRNA cassettes showed trivial disease symptoms after 6-8 weeks of infection. Hence, the host-induced posttranscriptional gene silencing of pathogenicity genes in transgenic tomato plants has enhanced their resistance to vascular wilt disease caused by Fusarium oxysporum.

  5. Disease-tolerance of transgenic tobacco plants expressing Ah-AMP gene of Amaranthus hypochondriacus

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    An antimicrobial peptide gene from Amaranthus hypochondriacus, Ah-AMP, was amplified by PCR and cloned. Sequence analysis results revealed that this gene is 261 bp in length encoding a precursor polypeptide of 87 amino acid residues. Ah-AMP gene was inserted in the binary vector pBin438 to construct a plant expression vector pBinAH916. Leave explants of Nicotiana tabacum var. SR1 were transformed with Agrobacterium tumefaciens LBA4404 harboring the above expression vector. Results from PCR, Southern and Northern blot analyses confirmed that the Ah-AMP gene had been integrated into the tobacco genome and was transcribed at mRNA level. Two bacterial-resistant transgenic plants were selected by inoculating the plants with Pseudomonas solanacearum and statistic analysis of two T1 lines showed that the resistance increased by 2.24 and 1.62 grade and the disease index decreased by 49.6% and 37.3% respectively when compared with the non-transformed control plants SR1. The results from challenging the plants with inoculums of Phytophthora parasitica showed that the symptom development was delayed and disease index was significantly reduced. These results suggest that Ah-AMP gene may be a potentially valuable gene for genetic engineering of plant for disease-resistance.

  6. Cloning and characterization of gene-resistant analogs (RGAs) involved in rust (Puccinia psidii) resistance in Eucalyptus grandis

    Institute of Scientific and Technical Information of China (English)

    Marcelo Luiz Laia; Acelino Couto Alfenas; Sergio Hermnio Brommonschenkel; Shinitiro Oda; Eduardo Jose de Melo; Inae Marie de Arau jo Silva; Janana Fernandes Goncalves; Ariadne Marques

    2015-01-01

    Disease-resistant genes play an important role in defending against a variety of pathogens and insect pests in plants. Most of the disease-resistant genes encode pro-teins with conserved leucine rich repeat and nucleotide binding site domains. In this study, we cloned and char-acterized gene-resistant analogs (RGAs) from Eucalyptus grandis using degenerate PCR, with primers specifically targeting these two domains. The amplified fragments were cloned into the pGEM-T vector and transformed into Escherichia coli. Among the 90 clones obtained, 13 were sequenced and compared with each other and with previ-ously identified gene-resistant diseases. A BLASTX search in GenBank revealed high similarities among the con-served domains of these cloned genes with RGA genes. Some clones, however, showed no significant similarity with DNA sequences in GenBank. Southern blotting ana-lysis identified several polymorphic RFLP loci between distinct genotypes. However, none of them co-segregated with the Puccinia psidii Winter resistance gene 1 (Ppr1) in a population study.

  7. Genetic characteristics of vancomycin resistance gene cluster in Enterococcus spp.

    Science.gov (United States)

    Chunhui, Chen; Xiaogang, Xu

    2015-05-01

    Vancomycin resistant enterococci has become an important nosocomial pathogen since it is discovered in late 1980s. The products, encoded by vancomycin resistant gene cluster in enterococci, catalyze the synthesis of peptidoglycan precursors with low affinity with glycopeptide antibiotics including vancomycin and teicoplanin and lead to resistance. These vancomycin resistant gene clusters are classified into nine types according to their gene sequences and organization, or D-Ala:D-Lac (VanA, VanB, VanD and VanM) and D-Ala:D-Ser (VanC, VanE, VanG, VanL and VanN) ligase gene clusters based on the differences of their encoded ligases. Moreover, these gene clusters are characterized by their different resistance levels and infection models. In this review, we summarize the classification, gene organization and infection model of vancomycin resistant gene cluster in Enterococcus spp.

  8. Functional Characterization of Mi, a Root-knot Nematode Resistance Gene from Tomato( Lycopersicon esculentum L.)

    Institute of Scientific and Technical Information of China (English)

    Ru-Gang Chen; Li-Ying Zhang; Jun-Hong Zhang; Wei Zhang; Xue Wang; Bo Ouyang; Han-Xia Li; Zhi-Biao Ye

    2006-01-01

    Root-knot nematodes (Meloidogyne spp.) cause major economic damage to numerous crop species around the world. Plant resistance is the most important attribute that is able to suppress invasion by the rootknot nematodes. In the present study, a candidate root-knot nematode resistance gene (Mi) was isolated from the resistant tomato (Lycopersicon esculentum L.) line RN-1. Expression profiling analysis revealed that this gene was expressed specifically in the roots, stems, and leaves, but not in the flowers or fruits.To verify the real function of this candidate gene, both sense and inteference RNA (RNAi) vectors were constructed. We obtained 31 transgenic plants with between one and seven copies of T-DNA inserts of sense Mi from two nematode-susceptible tomato cultivars as assayed by polymerase chain reaction (PCR)and Southern blotting analysis. Reverse transcription-PCR analysis revealed that expression levels of the Mi gene varied in different transgenic plants. Nematode assays showed that the resistance to root-knot nematodes was significantly improved in some transgenic lines compared with untransformed susceptible controls and that the resistance was heritable in selfed progeny. Loss of function via RNAi further confirmed the role of the Mi gene and the original resistant lines became susceptible to root-knot nematodes.

  9. Fungicide resistance assays for fungal plant pathogens.

    Science.gov (United States)

    Secor, Gary A; Rivera, Viviana V

    2012-01-01

    Fungicide resistance assays are useful to determine if a fungal pathogen has developed resistance to a fungicide used to manage the disease it causes. Laboratory assays are used to determine loss of sensitivity, or resistance, to a fungicide and can explain fungicide failures and for developing successful fungicide recommendations in the field. Laboratory assays for fungicide resistance are conducted by measuring reductions in growth or spore germination of fungi in the presence of fungicide, or by molecular procedures. This chapter describes two techniques for measuring fungicide resistance, using the sugarbeet leaf spot fungus Cercospora beticola as a model for the protocol. Two procedures are described for fungicides from two different classes; growth reduction for triazole (sterol demethylation inhibitor; DMI) fungicides, and inhibition of spore germination for quinone outside inhibitor (QoI) fungicides.

  10. Identification of I-7 expands the repertoire of genes for resistance to Fusarium wilt in tomato to three resistance gene classes.

    Science.gov (United States)

    Gonzalez-Cendales, Yvonne; Catanzariti, Ann-Maree; Baker, Barbara; Mcgrath, Des J; Jones, David A

    2016-04-01

    The tomato I-3 and I-7 genes confer resistance to Fusarium oxysporum f. sp. lycopersici (Fol) race 3 and were introgressed into the cultivated tomato, Solanum lycopersicum, from the wild relative Solanum pennellii. I-3 has been identified previously on chromosome 7 and encodes an S-receptor-like kinase, but little is known about I-7. Molecular markers have been developed for the marker-assisted breeding of I-3, but none are available for I-7. We used an RNA-seq and single nucleotide polymorphism (SNP) analysis approach to map I-7 to a small introgression of S. pennellii DNA (c. 210 kb) on chromosome 8, and identified I-7 as a gene encoding a leucine-rich repeat receptor-like protein (LRR-RLP), thereby expanding the repertoire of resistance protein classes conferring resistance to Fol. Using an eds1 mutant of tomato, we showed that I-7, like many other LRR-RLPs conferring pathogen resistance in tomato, is EDS1 (Enhanced Disease Susceptibility 1) dependent. Using transgenic tomato plants carrying only the I-7 gene for Fol resistance, we found that I-7 also confers resistance to Fol races 1 and 2. Given that Fol race 1 carries Avr1, resistance to Fol race 1 indicates that I-7-mediated resistance, unlike I-2- or I-3-mediated resistance, is not suppressed by Avr1. This suggests that Avr1 is not a general suppressor of Fol resistance in tomato, leading us to hypothesize that Avr1 may be acting against an EDS1-independent pathway for resistance activation. The identification of I-7 has allowed us to develop molecular markers for marker-assisted breeding of both genes currently known to confer Fol race 3 resistance (I-3 and I-7). Given that I-7-mediated resistance is not suppressed by Avr1, I-7 may be a useful addition to I-3 in the tomato breeder's toolbox.

  11. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae.

    Science.gov (United States)

    Dermauw, Wannes; Wybouw, Nicky; Rombauts, Stephane; Menten, Björn; Vontas, John; Grbic, Miodrag; Clark, Richard M; Feyereisen, René; Van Leeuwen, Thomas

    2013-01-08

    Plants produce a wide range of allelochemicals to defend against herbivore attack, and generalist herbivores have evolved mechanisms to avoid, sequester, or detoxify a broad spectrum of natural defense compounds. Successful arthropod pests have also developed resistance to diverse classes of pesticides and this adaptation is of critical importance to agriculture. To test whether mechanisms to overcome plant defenses predispose the development of pesticide resistance, we examined adaptation of the generalist two-spotted spider mite, Tetranychus urticae, to host plant transfer and pesticides. T. urticae is an extreme polyphagous pest with more than 1,100 documented hosts and has an extraordinary ability to develop pesticide resistance. When mites from a pesticide-susceptible strain propagated on bean were adapted to a challenging host (tomato), transcriptional responses increased over time with ~7.5% of genes differentially expressed after five generations. Whereas many genes with altered expression belonged to known detoxification families (like P450 monooxygenases), new gene families not previously associated with detoxification in other herbivores showed a striking response, including ring-splitting dioxygenase genes acquired by horizontal gene transfer. Strikingly, transcriptional profiles of tomato-adapted mites resembled those of multipesticide-resistant strains, and adaptation to tomato decreased the susceptibility to unrelated pesticide classes. Our findings suggest key roles for both an expanded environmental response gene repertoire and transcriptional regulation in the life history of generalist herbivores. They also support a model whereby selection for the ability to mount a broad response to the diverse defense chemistry of plants predisposes the evolution of pesticide resistance in generalists.

  12. Characterization of glyphosate resistance in cloned Amaranthus palmeri plants

    Science.gov (United States)

    Glyphosate resistant Palmer amaranth from Georgia (GA) possesses multiple copies of the target site, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of this herbicide. Cloned plants of glyphosate-resistant Palmer amaranth biotypes from Mississippi (MS) were compared with GA populations using le...

  13. Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants.

    Science.gov (United States)

    Gómez-Ariza, Jorge; Campo, Sonia; Rufat, Mar; Estopà, Montserrat; Messeguer, Joaquima; San Segundo, Blanca; Coca, María

    2007-07-01

    Expression of pathogenesis-related (PR) genes is part of the plant's natural defense response against pathogen attack. The PRms gene encodes a fungal-inducible PR protein from maize. Here, we demonstrate that expression of PRms in transgenic rice confers broad-spectrum protection against pathogens, including fungal (Magnaporthe oryzae, Fusarium verticillioides, and Helminthosporium oryzae) and bacterial (Erwinia chrysanthemi) pathogens. The PRms-mediated disease resistance in rice plants is associated with an enhanced capacity to express and activate the natural plant defense mechanisms. Thus, PRms rice plants display a basal level of expression of endogenous defense genes in the absence of the pathogen. PRms plants also exhibit stronger and quicker defense responses during pathogen infection. We also have found that sucrose accumulates at higher levels in leaves of PRms plants. Sucrose responsiveness of rice defense genes correlates with the pathogen-responsive priming of their expression in PRms rice plants. Moreover, pretreatment of rice plants with sucrose enhances resistance to M. oryzae infection. Together, these results support a sucrose-mediated priming of defense responses in PRms rice plants which results in broad-spectrum disease resistance.

  14. Enhanced methanol production in plants provides broad spectrum insect resistance.

    Directory of Open Access Journals (Sweden)

    Sameer Dixit

    Full Text Available Plants naturally emit methanol as volatile organic compound. Methanol is toxic to insect pests; but the quantity produced by most of the plants is not enough to protect them against invading insect pests. In the present study, we demonstrated that the over-expression of pectin methylesterase, derived from Arabidopsis thaliana and Aspergillus niger, in transgenic tobacco plants enhances methanol production and resistance to polyphagous insect pests. Methanol content in the leaves of transgenic plants was measured using proton nuclear spectroscopy (1H NMR and spectra showed up to 16 fold higher methanol as compared to control wild type (WT plants. A maximum of 100 and 85% mortality in chewing insects Helicoverpa armigera and Spodoptera litura larvae was observed, respectively when fed on transgenic plants leaves. The surviving larvae showed less feeding, severe growth retardation and could not develop into pupae. In-planta bioassay on transgenic lines showed up to 99 and 75% reduction in the population multiplication of plant sap sucking pests Myzus persicae (aphid and Bemisia tabaci (whitefly, respectively. Most of the phenotypic characters of transgenic plants were similar to WT plants. Confocal microscopy showed no deformities in cellular integrity, structure and density of stomata and trichomes of transgenic plants compared to WT. Pollen germination and tube formation was also not affected in transgenic plants. Cell wall enzyme transcript levels were comparable with WT. This study demonstrated for the first time that methanol emission can be utilized for imparting broad range insect resistance in plants.

  15. Transgenic tobacco simultaneously overexpressing glyphosate N-acetyltransferase and 5-enolpyruvylshikimate-3-phosphate synthase are more resistant to glyphosate than those containing one gene.

    Science.gov (United States)

    Liu, Yunjun; Cao, Gaoyi; Chen, Rongrong; Zhang, Shengxue; Ren, Yuan; Lu, Wei; Wang, Jianhua; Wang, Guoying

    2015-08-01

    5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) and glyphosate N-acetyltransferase (GAT) can detoxify glyphosate by alleviating the suppression of shikimate pathway. In this study, we obtained transgenic tobacco plants overexpressing AM79 aroA, GAT, and both of them, respectively, to evaluate whether overexpression of both genes could confer transgenic plants with higher glyphosate resistance. The transgenic plants harboring GAT or AM79 aroA, respectively, showed good glyphosate resistance. As expected, the hybrid plants containing both GAT and AM79 aroA exhibited improved glyphosate resistance than the transgenic plants overexpressing only a single gene. When grown on media with high concentration of glyphosate, seedlings containing a single gene were severely inhibited, whereas plants expressing both genes were affected less. When transgenic plants grown in the greenhouse were sprayed with glyphosate, less damage was observed for the plants containing both genes. Metabolomics analysis showed that transgenic plants containing two genes could maintain the metabolism balance better than those containing one gene after glyphosate treatment. Glyphosate treatment did not lead to a huge increase of shikimate contents of tobacco leaves in transgenic plants overexpressing two genes, whereas significant increase of shikimate contents in transgenic plants containing only a single gene was observed. These results demonstrated that pyramiding both aroA and GAT in transgenic plants can enhance glyphosate resistance, and this strategy can be used for the development of transgenic glyphosate-resistant crops.

  16. Allele mining in barley genetic resources reveals genes of race-nonspecific powdery mildew resistance

    Directory of Open Access Journals (Sweden)

    Annika eSpies

    2012-01-01

    Full Text Available Race-nonspecific, or quantitative, pathogen resistance is of high importance to plant breeders due to its expected durability. However, it is usually controlled by multiple quantitative trait loci (QTL and therefore difficult to handle in practice. Knowing the genes that underlie race-nonspecific resistance would allow its exploitation in a more targeted manner. Here, we performed an association-genetic study in a customized worlwide collection of spring barley accessions for candidate genes of race-nonspecific resistance to the powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh and combined data with results from QTL-mapping- as well as functional-genomics approaches. This led to the idenfication of 11 associated genes with converging evidence for an important role in race-nonspecific resistance in the presence of the Mlo-gene for basal susceptibility. Outstanding in this respect was the gene encoding the transcription factor WRKY2. The results suggest that unlocking plant genetic resources and integrating functional-genomic with genetic approaches accelerates the discovery of genes underlying race-nonspecific resistance in barley and other crop plants.

  17. Metal resistant plants and phytoremediation of environmental contamination

    Science.gov (United States)

    Meagher, Richard B.; Li, Yujing; Dhankher, Om P.

    2010-04-20

    The present disclosure provides a method of producing transgenic plants which are resistant to at least one metal ion by transforming the plant with a recombinant DNA comprising a nucleic acid encoding a bacterial arsenic reductase under the control of a plant expressible promoter, and a nucleic acid encoding a nucleotide sequence encoding a phytochelatin biosynthetic enzyme under the control of a plant expressible promoter. The invention also relates a method of phytoremediation of a contaminated site by growing in the site a transgenic plant expressing a nucleic acid encoding a bacterial arsenate reductase and a nucleic acid encoding a phytochelatin biosynthetic enzyme.

  18. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the extracell

  19. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the

  20. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the extracell

  1. Selection of Homozygous Cotton Lines Transformed with Two Insect-Resistant Genes

    Institute of Scientific and Technical Information of China (English)

    WU Jia-he; TIAN Ying-chuan; LUO Xiao-li; GUO Hong-nian; SHI Yue-jin; CHEN Xiao-ying; JIA Yan-tao; XIAO Juan-li; ZHANG Xian-long

    2003-01-01

    A plant expression vector containing a chimeric Bt29K gene coding for the activated Cry1Ac protein and the arrowhead proteinase inhibitior gene API-B were introduced into the cotton cultivar Jihe321 mediated by Agrobactertium tumefaciens. Based on the results of kanamycin resistant testing, PCR detection for both foreign genes and insect bioassay using Heliethis armigera, nine transgenic homozygous cotton lines with insect-resistance of more than 90% and better agronomic traits were bred through six generations from the original transgenic plants. Results from insect bioassay and sequence analysis of the PCR products of plants from some homozygous lines indicated that the chimeric Bt29K gene was stably inherited in these transgenic cotton lines. The main agronomic characters of these homozygous cotton lines, such as boll productivity and fibre strength, were better than that of the original cotton cv. Jihe321.

  2. Development of resistant tomato population with bacterial canker resistance genes from interspecific hybrids by the support of embryo rescue

    Directory of Open Access Journals (Sweden)

    Aylin KABAŞ

    2016-06-01

    Full Text Available Bacterial canker is one of the most important diseases causing economic yield loss in tomato production areas in the world. The best way to control for this disease is to use resistant varieties. However, there are few studies on variety breeding studies of this disease compared with other disease resistant breeding studies. In this study we aimed to improve inbred lines carrying bacterial canker resistance genes to use in the breeding of resistant varieties. Susceptible inbred line AK1 (S. esculentum and resistant LA2157 (S. peruvianum were crossed. Embryo rescue and ovule culture techniques were applied in 30 fruits to get F1 hybrids. Rescued embryos and immature ovules were cultured in petri dishes containing solidified MS medium without hormone. 30 healty embryos were excised and cultured from 30 fruits 27-61 day old (1 embryo fruit-1 in embryo rescue method. The two surviving plants from acclimatization were transferred to the greenhouse to get their BC1 progenies. Resistance tests were performed according to the stem inoculation method in the BC1 and BC2 progenies. The mixture of 14 aggressive Turkish Cmm strains were used to confirm the resistance. The plants were valued by 0-4 scale. Plants with 0 and 1 scale values were used to obtain next progenies. A total of 80 BC3 resistant progenies were transferred to our variety breeding programme.

  3. Overexpression of a modified plant thionin enhances disease resistance to citrus canker and Huanglongbing (HLB

    Directory of Open Access Journals (Sweden)

    Guixia Hao

    2016-07-01

    Full Text Available Huanglongbing (HLB or citrus greening disease caused by Candidatus Liberibacter asiaticus (Las is a great threat to the US citrus industry. There are no proven strategies to eliminate HLB disease and no cultivar has been identified with strong HLB resistance. Citrus canker is also an economically important disease associated with a bacterial pathogen (Xanthomonas citri. In this study, we characterized endogenous citrus thionins and investigated their expression in different citrus tissues. Since no HLB-resistant citrus cultivars have been identified, we attempted to develop citrus resistant to both HLB and citrus canker through overexpression of a modified plant thionin. To improve effectiveness for disease resistance, we modified and synthesized the sequence encoding a plant thionin and cloned into the binary vector pBinPlus/ARS. The construct was then introduced into Agrobacterium strain EHA105 for citrus transformation. Transgenic Carrizo plants expressing the modified plant thionin were generated by Agrobacterium-mediated transformation. Successful transformation and transgene gene expression was confirmed by molecular analysis. Transgenic Carrizo plants expressing the modified thionin gene were challenged with X. citri 3213 at a range of concentrations, and a significant reduction in canker symptoms and a decrease in bacterial growth were demonstrated compared to nontransgenic plants. Furthermore the transgenic citrus plants were challenged with HLB via graft inoculation. Our results showed significant Las titer reduction in roots of transgenic Carrizo compared with control plants and reduced scion Las titer twelve months after graft inoculation. These data provide promise for engineering citrus disease resistance against HLB and canker.

  4. Silencing of the AV2 gene by antisense RNA protects transgenic plants against a bipartite begomovirus

    Directory of Open Access Journals (Sweden)

    Zafar Yusuf

    2007-01-01

    Full Text Available Abstract Whitefly-transmitted geminiviruses (genus Begomovirus are phytopathogens that cause heavy losses to crops worldwide. Efforts to engineer resistance against these viruses are focused mainly on silencing of complementary-sense virus genes involved in virus replication. Here we have targeted a virion-sense gene (AV2 to develop resistance against Tomato leaf curl New Delhi virus, a bipartite begomovirus prevalent throughout the Indian subcontinent. We show that tobacco plants transformed with an antisense construct targeting this gene are resistant to the virus. Following challenged with the virus, transgenic plants remained symptomless, although viral DNA could be detected in some plants by PCR. This is the first report of transgenic resistance against a bipartite begomovirus obtained by targeting a virion-sense gene. The relatively conserved nature of the gene suggests that the technology may be useful to develop broad-spectrum resistance which is required because of the fact that plants are often infected with multiple begomoviruses in the field.

  5. The genetic architecture of disease resistance in plants and the maintenance of recombination by parasites.

    Science.gov (United States)

    Kover, P X; Caicedo, A L

    2001-01-01

    Parasites represent strong selection on host populations because they are ubiquitous and can drastically reduce host fitness. It has been hypothesized that parasite selection could explain the widespread occurrence of recombination because it is a coevolving force that favours new genetic combinations in the host. A review of deterministic models for the maintenance of recombination reveals that for recombination to be favoured, multiple genes that interact with each other must be under selection. To evaluate whether parasite selection can explain the maintenance of recombination, we review 85 studies that investigated the genetic architecture of plant disease resistance and discuss whether they conform to the requirements that emerge from theoretical models. General characteristics of disease resistance in plants and problems in evaluating resistance experimentally are also discussed. We found strong evidence that disease resistance in plants is determined by multiple loci. Furthermore, in most cases where loci were tested for interactions, epistasis between loci that affect resistance was found. However, we found weak support for the idea that specific allelic combinations determine resistance to different host genotypes and there was little data on whether epistasis between resistance genes is negative or positive. Thus, the current data indicate that it is possible that parasite selection can favour recombination, but more studies in natural populations that specifically address the nature of the interactions between resistance genes are necessary. The data summarized here suggest that disease resistance is a complex trait and that environmental effects and fitness trade-offs should be considered in future models of the coevolutionary dynamics of host and parasites.

  6. Major gene for field stem rust resistance co-locates with resistance gene Sr12 in "Thatcher" wheat

    Science.gov (United States)

    Stem rust, caused by Puccinia graminis (Pgt), is a damaging disease of wheat that can be controlled by utilizing effecting stem rust resistance genes. "Thatcher" wheat carries complex resistance to stem rust that is enhanced in the presence of the resistance gene Lr34. The purpose of this study was ...

  7. Caspases in plants: metacaspase gene family in plant stress responses.

    Science.gov (United States)

    Fagundes, David; Bohn, Bianca; Cabreira, Caroline; Leipelt, Fábio; Dias, Nathalia; Bodanese-Zanettini, Maria H; Cagliari, Alexandro

    2015-11-01

    Programmed cell death (PCD) is an ordered cell suicide that removes unwanted or damaged cells, playing a role in defense to environmental stresses and pathogen invasion. PCD is component of the life cycle of plants, occurring throughout development from embryogenesis to the death. Metacaspases are cysteine proteases present in plants, fungi, and protists. In certain plant-pathogen interactions, the PCD seems to be mediated by metacaspases. We adopted a comparative genomic approach to identify genes coding for the metacaspases in Viridiplantae. We observed that the metacaspase was divided into types I and II, based on their protein structure. The type I has a metacaspase domain at the C-terminus region, presenting or not a zinc finger motif in the N-terminus region and a prodomain rich in proline. Metacaspase type II does not feature the prodomain and the zinc finger, but has a linker between caspase-like catalytic domains of 20 kDa (p20) and 10 kDa (p10). A high conservation was observed in the zinc finger domain (type I proteins) and in p20 and p10 subunits (types I and II proteins). The phylogeny showed that the metacaspases are divided into three principal groups: type I with and without zinc finger domain and type II metacaspases. The algae and moss are presented as outgroup, suggesting that these three classes of metacaspases originated in the early stages of Viridiplantae, being the absence of the zinc finger domain the ancient condition. The study of metacaspase can clarify their assignment and involvement in plant PCD mechanisms.

  8. Theoretical model of the three-dimensional structure of a disease resistance gene homolog encoding resistance protein in Vigna mungo.

    Science.gov (United States)

    Basak, Jolly; Bahadur, Ranjit P

    2006-10-01

    Plant disease resistance (R) genes, the key players of innate immunity system in plants encode 'R' proteins. 'R' protein recognizes product of avirulance gene from the pathogen and activate downstream signaling responses leading to disease resistance. No three dimensional (3D) structural information of any 'R' proteins is available as yet. We have reported a 'R' gene homolog, the 'VMYR1', encoding 'R' protein in Vigna mungo. Here, we describe the homology modeling of the 'VMYR1' protein. The model was created by using the 3D structure of an ATP-binding cassette transporter protein from Vibrio cholerae as a template. The strategy for homology modeling was based on the high structural conservation in the superfamily of P-loop containing nucleoside triphosphate hydrolase in which target and template proteins belong. This is the first report of theoretical model structure of any 'R' proteins.

  9. Mycorrhiza-induced resistance and priming of plant defenses.

    Science.gov (United States)

    Jung, Sabine C; Martinez-Medina, Ainhoa; Lopez-Raez, Juan A; Pozo, Maria J

    2012-06-01

    Symbioses between plants and beneficial soil microorganisms like arbuscular-mycorrhizal fungi (AMF) are known to promote plant growth and help plants to cope with biotic and abiotic stresses. Profound physiological changes take place in the host plant upon root colonization by AMF affecting the interactions with a wide range of organisms below- and above-ground. Protective effects of the symbiosis against pathogens, pests, and parasitic plants have been described for many plant species, including agriculturally important crop varieties. Besides mechanisms such as improved plant nutrition and competition, experimental evidence supports a major role of plant defenses in the observed protection. During mycorrhiza establishment, modulation of plant defense responses occurs thus achieving a functional symbiosis. As a consequence of this modulation, a mild, but effective activation of the plant immune responses seems to occur, not only locally but also systemically. This activation leads to a primed state of the plant that allows a more efficient activation of defense mechanisms in response to attack by potential enemies. Here, we give an overview of the impact on interactions between mycorrhizal plants and pathogens, herbivores, and parasitic plants, and we summarize the current knowledge of the underlying mechanisms. We focus on the priming of jasmonate-regulated plant defense mechanisms that play a central role in the induction of resistance by arbuscular mycorrhizas.

  10. Gene enrichment in plant genomic shotgun libraries.

    Science.gov (United States)

    Rabinowicz, Pablo D; McCombie, W Richard; Martienssen, Robert A

    2003-04-01

    The Arabidopsis genome (about 130 Mbp) has been completely sequenced; whereas a draft sequence of the rice genome (about 430 Mbp) is now available and the sequencing of this genome will be completed in the near future. The much larger genomes of several important crop species, such as wheat (about 16,000 Mbp) or maize (about 2500 Mbp), may not be fully sequenced with current technology. Instead, sequencing-analysis strategies are being developed to obtain sequencing and mapping information selectively for the genic fraction (gene space) of complex plant genomes.

  11. Identification of virus and nematode resistance genes in the Chilota Potato Genebank of the Universidad Austral de Chile

    Directory of Open Access Journals (Sweden)

    Marlon López

    2015-09-01

    Full Text Available Potato Genebank of the Universidad Austral de Chile (UACh is an important gene bank in Chile. The accessions collected all over the country possess high genetic diversity, present interesting agronomic and cooking traits, and show resistance to biotic and abiotic stress. A particularly interesting subgroup of the gene bank includes the accessions collected in the South of Chile, the Chilota Potato Genebank. The focus of this study is the identification of virus and nematode resistant genes in potatoes (Solatium tuberosum L., using the RYSC3 and YES3-3B molecular markers. The Potato virus Y(PVY resistance genes Ry adg and Ry sto were identified. Furthermore, the CP60 marker was used to assess the Rx resistance gene that confers resistance to Potato virus X (PVX. In addition, the HC and GRO1-4 markers were utilized to identify the GpaVvrn_QTL and Gro1-4, resistance genes of Globodera pallida and Globodera rostochiensis, respectively. Both G. pallida and G. rostochiensis are Potato Cyst Nematodes (PCN. The plant material used in this study included leaves from 271 accessions of the gene bank. These samples were collected in the field where natural pathogen pressure of potential viruses and diseases exists. ELISA assays were run for field detection of PVY and PVX. However, there have been no previous reports of nematode presence in the plant material. The results herein presented indicate presence of virus and nematode resistance genes in accessions of the Chilota Potato Genebank. In terms of virus resistance, 99 accessions out of the 271 tested possess the Ry adg resistance gene and 17 accessions of these 271 tested have the Ry sto resistance gene. Also, 10 accessions showed positive amplification of the Rxl resistant gene marker. As to nematode resistance, 99 accessions have possible resistance to G. pallida and 54 accessions show potential resistance to G. rostochiensis as detected using the available molecular markers.

  12. Transgenic Rice Plants Harboring Genomic DNA from Zizania latifolia Confer Bacterial Blight Resistance

    Institute of Scientific and Technical Information of China (English)

    SHEN Wei-wei; SONG Cheng-li; CHEN Jie; Fu Ya-ping; Wu Jian-li; JIANG Shao-mei

    2011-01-01

    Based on the sequence of a resistance gene analog FZ14 derived from Zizania latifolia (Griseb.),a pair of specific PCR primers FZ14P1/FZ14P2 was designed to isolate candidate disease resistance gene.The pooled-PCR approach was adopted using the primer pair to screen a genomic transformation-competent artificial chromosome (TAC) library derived from Z.latifolia.A positive TAC clone (ZR1) was obtained and confirmed by sequence analysis.The results indicated that ZR1 consisted of conserved motifs similar to P-loop (kinase 1a),kinase 2,kinase 3a and GLPL (Gly-Leu-Pro-Leu),suggesting that it could be a portion of NBS-LRR type of resistance gene.Using Agrobacterium-mediated transformation of Nipponbare mature embryo,a total of 48 independent transgenic T0 plants were obtained.Among them,36 plants were highly resistant to the virulent bacterial blight strain P×O71.The results indicate that ZR1 contains at least one functional bacterial blight resistance gene.

  13. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance

    National Research Council Canada - National Science Library

    Manosalva, Patricia; Manohar, Murli; von Reuss, Stephan H; Chen, Shiyan; Koch, Aline; Kaplan, Fatma; Choe, Andrea; Micikas, Robert J; Wang, Xiaohong; Kogel, Karl-Heinz; Sternberg, Paul W; Williamson, Valerie M; Schroeder, Frank C; Klessig, Daniel F

    2015-01-01

    .... Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated...

  14. Comparative transcriptomic analysis indicates genes associated with local and systemic resistance to Colletotrichum graminicola in maize.

    Science.gov (United States)

    Miranda, Vívian de Jesus; Porto, William Farias; Fernandes, Gabriel da Rocha; Pogue, Robert; Nolasco, Diego Oliveira; Araujo, Ana Claudia Guerra; Cota, Luciano Viana; Freitas, Camila Guimarães de; Dias, Simoni Campos; Franco, Octavio Luiz

    2017-05-30

    The hemibiotrophic fungus Colletotrichum graminicola may cause severe damage to maize, affecting normal development of the plant and decreasing grain yield. In this context, understanding plant defense pathways at the inoculation site and systemically in uninoculated tissues can help in the development of genetic engineering of resistance against this pathogen. Previous work has discussed the molecular basis of maize - C. graminicola interaction. However, many genes involved in defense have not yet been exploited for lack of annotation in public databases. Here, changes in global gene expression were studied in root, male and female inflorescences of maize under local and systemic fungal infection treatments, respectively. RNA-Seq with qPCR was used to indicate genes involved in plant defense. We found that systemic acquired resistance induction in female inflorescences mainly involves accumulation of salicylic acid (SA)-inducible defense genes (ZmNAC, ZmHSF, ZmWRKY, ZmbZIP and PR1) and potential genes involved in chromatin modification. Furthermore, transcripts involved in jasmonic acid (JA) and ethylene (ET) signaling pathways were also accumulated and may participate in plant immunity. Moreover, several genes were functionally re-annotated based on domain signature, indicating novel candidates to be tested in strategies involving gene knockout and overexpression in plants.

  15. Inheritance of partial resistance against Colletotrichum lindemuthianum in Phaseolus vulgaris and co-localization of quantitative trait loci with genes involved in specific resistance.

    Science.gov (United States)

    Geffroy, V; Sévignac, M; De Oliveira, J C; Fouilloux, G; Skroch, P; Thoquet, P; Gepts, P; Langin, T; Dron, M

    2000-03-01

    Anthracnose, one of the most important diseases of common bean (Phaseolus vulgaris), is caused by the fungus Colletotrichum lindemuthianum. A "candidate gene" approach was used to map anthracnose resistance quantitative trait loci (QTL). Candidate genes included genes for both pathogen recognition (resistance genes and resistance gene analogs [RGAs]) and general plant defense (defense response genes). Two strains of C. lindemuthianum, identified in a world collection of 177 strains, displayed a reproducible and differential aggressiveness toward BAT93 and JaloEEP558, two parental lines of P. vulgaris representing the two major gene pools of this crop. A reliable test was developed to score partial resistance in aerial organs of the plant (stem, leaf, petiole) under controlled growth chamber conditions. BAT93 was more resistant than JaloEEP558 regardless of the organ or strain tested. With a recombinant inbred line (RIL) population derived from a cross between these two parental lines, 10 QTL were located on a genetic map harboring 143 markers, including known defense response genes, anthracnose-specific resistance genes, and RGAs. Eight of the QTL displayed isolate specificity. Two were co-localized with known defense genes (phenylalanine ammonia-lyase and hydroxyproline-rich glycoprotein) and three with anthracnose-specific resistance genes and/or RGAs. Interestingly, two QTL, with different allelic contribution, mapped on linkage group B4 in a 5.0 cM interval containing Andean and Mesoamerican specific resistance genes against C. lindemuthianum and 11 polymorphic fragments revealed with a RGA probe. The possible relationship between genes underlying specific and partial resistance is discussed.

  16. The impact of R1and R3a genes on tuber resistance to late blight of the potato breeding clones

    Directory of Open Access Journals (Sweden)

    Zoteyeva Nadezhda

    2016-04-01

    Full Text Available Potato breeding clones were evaluated for resistance to late blight (agent Phytophthora infestans using tuber inoculation tests and for presence of the resistance alleles of R1 and R3a genes in polymerase chain reaction tests. Among clones tested those expressing high, moderate and low resistance were identified. The data were analysed for the impact of R1 and R3a genes on tuber resistance to late blight in tested plant material. In previous evaluations performed on smaller amount of clones the tuber resistance levels significantly depended on presence/absence of the resistance allele of R3a gene and did not depend on presence of R1 gene allele. In the current study the statistical analyses did not prove the significant difference in resistance levels depending on presence of the resistance alleles, neither of R1 gene, nor of R3a gene. Tuber resistant clones bearing R3a gene resistance alleles still noticeably prevailed over the clones bearing the alleles of R1 gene as well as over the clones bearing the no resistance alleles of both genes. In several cases the resistance of clones with detected resistance allele of R1 gene was higher compared to those derived from the same crosses and showing amplification of the allele of R3a gene or those with no resistance alleles. Clones accumulating the resistance alleles of both (R1 and R3a genes expressed high tuber resistance accompanied by necrotic reaction.

  17. Detection of the common resistance genes in Gram-negative bacteria using gene chip technology

    Directory of Open Access Journals (Sweden)

    C Ting

    2013-01-01

    Full Text Available Objective: To design a resistance gene detection chip that could, in parallel, detect common clinical drug resistance genes of Gram-negative bacteria. Materials and Methods: Seventy clinically significant Gram-negative bacilli (Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, Pseudomonas aeruginosa, Acinetobacter baumannii were collected. According to the known resistance gene sequences, we designed and synthesized primers and probes, which were used to prepare resistance gene detection chips, and finally we hybridized and scanned the gene detection chips. Results: The results between the gene chip and polymerase chain reaction (PCR were compared. The rate was consistently 100% in the eight kinds of resistance genes tested (TEM, SHV, CTX-M, DHA, CIT, VIM, KPC, OXA-23. One strain of Pseudomonas aeruginosa had the IMP, but it was not found by gene chip. Conclusion: The design of Gram-negative bacteria-resistant gene detection chip had better application value.

  18. Induced systemic resistance (ISR) in plants: mechanism of action.

    Science.gov (United States)

    Choudhary, Devendra K; Prakash, Anil; Johri, B N

    2007-12-01

    Plants possess a range of active defense apparatuses that can be actively expressed in response to biotic stresses (pathogens and parasites) of various scales (ranging from microscopic viruses to phytophagous insect). The timing of this defense response is critical and reflects on the difference between coping and succumbing to such biotic challenge of necrotizing pathogens/parasites. If defense mechanisms are triggered by a stimulus prior to infection by a plant pathogen, disease can be reduced. Induced resistance is a state of enhanced defensive capacity developed by a plant when appropriately stimulated. Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are two forms of induced resistance wherein plant defenses are preconditioned by prior infection or treatment that results in resistance against subsequent challenge by a pathogen or parasite. Selected strains of plant growth-promoting rhizobacteria (PGPR) suppress diseases by antagonism between the bacteria and soil-borne pathogens as well as by inducing a systemic resistance in plant against both root and foliar pathogens. Rhizobacteria mediated ISR resembles that of pathogen induced SAR in that both types of induced resistance render uninfected plant parts more resistant towards a broad spectrum of plant pathogens. Several rhizobacteria trigger the salicylic acid (SA)-dependent SAR pathway by producing SA at the root surface whereas other rhizobacteria trigger different signaling pathway independent of SA. The existence of SA-independent ISR pathway has been studied in Arabidopsis thaliana, which is dependent on jasmonic acid (JA) and ethylene signaling. Specific Pseudomonas strains induce systemic resistance in viz., carnation, cucumber, radish, tobacco, and Arabidopsis, as evidenced by an enhanced defensive capacity upon challenge inoculation. Combination of ISR and SAR can increase protection against pathogens that are resisted through both pathways besides extended protection to a

  19. Mosaic tetracycline resistance genes encoding ribosomal protection proteins.

    Science.gov (United States)

    Warburton, Philip J; Amodeo, Nina; Roberts, Adam P

    2016-12-01

    First reported in 2003, mosaic tetracycline resistance genes are a subgroup of the genes encoding ribosomal protection proteins (RPPs). They are formed when two or more RPP-encoding genes recombine resulting in a functional chimera. To date, the majority of mosaic genes are derived from sections of three RPP genes, tet(O), tet(W) and tet(32), with others comprising tet(M) and tet(S). In this first review of mosaic genes, we report on their structure, diversity and prevalence, and suggest that these genes may be responsible for an under-reported contribution to tetracycline resistance in bacteria.

  20. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater.

    Science.gov (United States)

    McKinney, Chad W; Pruden, Amy

    2012-12-18

    Disinfection of wastewater treatment plant effluent may be an important barrier for limiting the spread of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). While ideally disinfection should destroy ARGs, to prevent horizontal gene transfer to downstream bacteria, little is known about the effect of conventional water disinfection technologies on ARGs. This study examined the potential of UV disinfection to damage four ARGs, mec(A), van(A), tet(A), and amp(C), both in extracellular form and present within a host ARBs: methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), Escherichia coli SMS-3-5, and Pseudomonas aeruginosa 01, respectively. An extended amplicon-length quantitative polymerase chain reaction assay was developed to enhance capture of ARG damage events and also to normalize to an equivalent length of target DNA (∼1000 bp) for comparison. It was found that the two Gram-positive ARBs (MRSA and VRE) were more resistant to UV disinfection than the two Gram-negative ARBs (E. coli and P. aeruginosa). The two Gram-positive organisms also possessed smaller total genome sizes, which could also have reduced their susceptibility to UV because of fewer potential pyrimidine dimer targets. An effect of cell type on damage to ARGs was only observed in VRE and P. aeruginosa, the latter potentially because of extracellular polymeric substances. In general, damage of ARGs required much greater UV doses (200-400 mJ/cm² for 3- to 4-log reduction) than ARB inactivation (10-20 mJ/cm² for 4- to 5-log reduction). The proportion of amplifiable ARGs following UV treatment exhibited a strong negative correlation with the number of adjacent thymines (Pearson r 0.85; p disinfection technologies should be explored.

  1. Developing transgenic maize (Zea mays L.) with insect resistance and glyphosate tolerance by fusion gene transformation

    Institute of Scientific and Technical Information of China (English)

    SUN He; LANG Zhi-hong; LU Wei; ZHANG Jie; HE Kang-lai; ZHU Li; LIN Min; HUANG Da-fang

    2015-01-01

    Using linker peptide LP4/2A for multiple gene transformation is considered to be an effective method to stack or pyramid several traits in plants. Bacil us thuringiensis (Bt) cry gene and epsps (5-enolpyruvylshikimate-3-phosphate synthase) gene are two important genes for culturing pest-resistant and glyphosate-tolerant crops. We used linker peptide LP4/2A to connect the Bt cry1Ah gene with the 2mG2-epsps gene and combined the wide-used manA gene as a selective marker to construct one coordinated expression vector cal ed p2EPUHLAGN. The expression vector was transferred into maize by Agrobacterium tumefaciens-mediated transformation, and 60 plants were obtained, 40%of which were positive transformants. Molecular detection demonstrated that the two genes in the fusion vector were expressed simultaneously and spliced correctly in translation processing;meanwhile bioassay detection proved the transgenic maize had preferable pest resistance and glyphosate tolerance. Therefore, linker peptide LP4/2A provided a simple and reliable strategy for producing gene stacking in maize and the result showed that the fusion gene transformation system of LP4/2A was feasible in monocot plants.

  2. Antibiotic resistance gene discovery in food-producing animals.

    Science.gov (United States)

    Allen, Heather K

    2014-06-01

    Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in agricultural animals. Two types of antibiotic resistance gene discoveries will be discussed: the use of classic microbiological and molecular techniques, such as culturing and PCR, to identify known genes not previously reported in animals; and the application of high-throughput technologies, such as metagenomics, to identify novel genes and gene transfer mechanisms. These discoveries confirm that antibiotics should be limited to prudent uses.

  3. Identification of Resistance Gene to PVY and Its Relation to Marketable Tuber Yield of PVY Resistant Potato Genotypes

    Directory of Open Access Journals (Sweden)

    Hassan Hassanabadi

    2016-10-01

    Full Text Available In this study, the Rysto gene, originaly found in wild potato (Solanum stoloniferum, confers extreme resistance against PVY. It was identified in 21 potato clones and varieties and they were evaluated for some agronomic traits. For this purpose five trials were conducted. In first trial 320 potato genotypes were planted on the farm and 55 symptomless clone and cultivars were selected. In second trial, 55 genotypes along with sensitive control genotype (Desireh were planted in 20 cm pots in the greenhouse at 15-20 °C with three replications. After five weeks, upper leaves were infected artificially with sap from tobacco fresh leaves checked for infection with PVYNTN and additional infections were repeated after 48 hours. Symptoms were recorded and all plants were tested by enzyme-linked immunosorbent assay (ELISA about 4 weeks after inoculation. Plants that showed visual symptoms or/and gave at least a positive ELISA result were considered as susceptible and symptomless response with negative ELISA results were considered as resistant. In third trial, 23 genotypes were planted in the greenhouse and the PVY infected young tobacco shoots were grafted to symptomless genotypes with negative ELISA results with three replications and were selected as resistance genotypes. In fourth trial, all the PVY resistant genotypes were checked by molecular marker (STM0003 for detection of Rysto gene. Finally four potato varieties (Jelly, Sante, White Lady and Savalan cultivars and 19 advanced clones were regarded as carriers of Rysto gene. In the fifth experiment genotypes were evaluated for marketable tuber yield of varieties and clones resistant to virus PVY in field conditions and 397009-8 clone was selected as high-yielding and tolerant genotype to PVY virus. Also, This clone did also have appropriate quality traits like oval-round tuber shape, uniform tubers, short stolon length, light yellow flesh color, yellow skin color, good tuber dry matter percent

  4. Identification of genes contributing to quantitative disease resistance in rice

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Despite the importance of quantitative disease resistance during a plant’s life, little is known about the molecular basis of this type of host-pathogen interaction, because most of the genes underlying resistance quantitative trait loci (QTLs) are unknown. To identify genes contributing to resistance QTLs in rice, we analyzed the colocalization of a set of characterized rice defense-responsive genes and resistance QTLs against different pathogens. We also examined the expression patterns of these genes in response to pathogen infection in the parents of the mapping populations, based on the strategy of validation and functional analysis of the QTLs. The results suggest that defense-responsive genes are important resources of resistance QTLs in rice. OsWRKY45-1 is the gene contributing to a major resistance QTL.NRR,OsGH3-1,and OsGLP members on chromosome 8 contribute alone or collectively to different minor resistance QTLs. These genes function in a basal resistance pathway or in major disease resistance gene-mediated race-specific pathways.

  5. Genetics of insect resistance to plant defence

    NARCIS (Netherlands)

    Vermeer, K.M.C.A.

    2014-01-01

      Plants are chemically defended against insect herbivory in various ways. They produce a broad range of secondary metabolites that may be toxic or deterrent to insects. Specialist insects, however, are often capable of overcoming these defences. The yellow striped flea beetle (Phyllotreta nem

  6. Genetics of insect resistance to plant defence

    NARCIS (Netherlands)

    Vermeer, K.M.C.A.

    2014-01-01

      Plants are chemically defended against insect herbivory in various ways. They produce a broad range of secondary metabolites that may be toxic or deterrent to insects. Specialist insects, however, are often capable of overcoming these defences. The yellow striped flea beetle (Phyllotreta nem

  7. Genetics of insect resistance to plant defence

    NARCIS (Netherlands)

    Vermeer, K.M.C.A.

    2014-01-01

      Plants are chemically defended against insect herbivory in various ways. They produce a broad range of secondary metabolites that may be toxic or deterrent to insects. Specialist insects, however, are often capable of overcoming these defences. The yellow striped flea beetle (Phyllotreta

  8. Achieving Durable Resistance Against Plant Diseases: Scenario Analyses with a National-Scale Spatially Explicit Model for a Wind-Dispersed Plant Pathogen.

    Science.gov (United States)

    Elisabeth Lof, Marjolein; de Vallavieille-Pope, Claude; van der Werf, Wopke

    2017-05-01

    Genetic resistance in crops is a cornerstone of disease management in agriculture. Such genetic resistance is often rapidly broken due to selection for virulence in the pathogen population. Here, we ask whether there are strategies that can prolong the useful life of plant resistance genes. In a modeling study, we compared four deployment strategies: gene pyramiding, sequential use, simultaneous use, and a mixed strategy. We developed a spatially explicit model for France and parameterized it for the fungal pathogen Puccinia striiformis f. sp. tritici (causing wheat yellow rust) to test management strategies in a realistic spatial setting. We found that pyramiding two new resistance genes in one variety was the most durable solution only when the virulent genotype had to emerge by mutation. Deploying single-gene-resistant varieties concurrently with the pyramided variety eroded the durability of the gene pyramid. We found that continuation of deployment of varieties with broken-down resistance prolonged the useful life of simultaneous deployment of four single-gene-resistant varieties versus sequential use. However, when virulence was already present in the pathogen population, durability was low and none of the deployment strategies had effect. These results provide guidance on effective strategies for using resistance genes in crop protection practice.

  9. Resistance inducers modulate Pseudomonas syringae pv. tomato strain DC3000 response in tomato plants.

    Directory of Open Access Journals (Sweden)

    Loredana Scalschi

    Full Text Available The efficacy of hexanoic acid (Hx as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour. This work provides the first demonstration of the response of the pathogen to the changes observed in plants after Hx application in terms of not only the population size but also the transcriptional levels of genes involved in quorum sensing establishment and pathogenesis. Therefore, it is possible that Hx treatment attenuates the virulence and survival of bacteria by preventing or diminishing the appearance of symptoms and controlling the growth of the bacteria in the mesophyll. It is interesting to note that the gene transcriptional changes in the bacteria from the treated plants occur at the same time as the changes in the plants. Hx is able to alter bacteria pathogenesis and survival only when it is applied as a resistance inducer because the changes that it promotes in plants affect the bacteria.

  10. Resistance Inducers Modulate Pseudomonas syringae pv. Tomato Strain DC3000 Response in Tomato Plants

    Science.gov (United States)

    Scalschi, Loredana; Camañes, Gemma; Llorens, Eugenio; Fernández-Crespo, Emma; López, María M.; García-Agustín, Pilar; Vicedo, Begonya

    2014-01-01

    The efficacy of hexanoic acid (Hx) as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour. This work provides the first demonstration of the response of the pathogen to the changes observed in plants after Hx application in terms of not only the population size but also the transcriptional levels of genes involved in quorum sensing establishment and pathogenesis. Therefore, it is possible that Hx treatment attenuates the virulence and survival of bacteria by preventing or diminishing the appearance of symptoms and controlling the growth of the bacteria in the mesophyll. It is interesting to note that the gene transcriptional changes in the bacteria from the treated plants occur at the same time as the changes in the plants. Hx is able to alter bacteria pathogenesis and survival only when it is applied as a resistance inducer because the changes that it promotes in plants affect the bacteria. PMID:25244125

  11. Origin of the plant Tm-1-like gene via two independent horizontal transfer events and one gene fusion event.

    Science.gov (United States)

    Yang, Zefeng; Liu, Li; Fang, Huimin; Li, Pengcheng; Xu, Shuhui; Cao, Wei; Xu, Chenwu; Huang, Jinling; Zhou, Yong

    2016-01-01

    The Tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a direct inhibitor of ToMV RNA replication to protect tomato from infection. The plant Tm-1-like (Tm-1L) protein is predicted to contain an uncharacterized N-terminal UPF0261 domain and a C-terminal TIM-barrel signal transduction (TBST) domain. Homologous searches revealed that proteins containing both of these two domains are mainly present in charophyte green algae and land plants but absent from glaucophytes, red algae and chlorophyte green algae. Although Tm-1 homologs are widely present in bacteria, archaea and fungi, UPF0261- and TBST-domain-containing proteins are generally encoded by different genes in these linages. A co-evolution analysis also suggested a putative interaction between UPF0261- and TBST-domain-containing proteins. Phylogenetic analyses based on homologs of these two domains revealed that plants have acquired UPF0261- and TBST-domain-encoding genes through two independent horizontal gene transfer (HGT) events before the origin of land plants from charophytes. Subsequently, gene fusion occurred between these two horizontally acquired genes and resulted in the origin of the Tm-1L gene in streptophytes. Our results demonstrate a novel evolutionary mechanism through which the recipient organism may acquire genes with functional interaction through two different HGT events and further fuse them into one functional gene.

  12. Horizontal gene transfer—emerging multidrug resistance in hospital bacteria

    Institute of Scientific and Technical Information of China (English)

    SenkaDZIDIC; VladimirBEDEKOVIC

    2003-01-01

    The frequency and spectrum of antibiotic resistant infections have increased worldwide during the past few decades. This increase has been attributed to a combination of microbial characteristics, the selective pressure of antimicrobial use, and social and technical changes that enhance the transmission of resistant organisms. The resistance is acquired by mutational changer or by the acquisition of resistance-encoding genetic material which is transfered from another bacteria. The spread of antibiotic resistance genes may be causally related to the overuse of antibiotics in human health care and in animal feeds, increased use of invasive devices and procedures, a greater number of susceptible hosts, and lapses in infection control practices leading to increased transmission of resistant organisms. The resistance gene sequences are integrated by recombination into several classes of naturally occurring gene expression cassettes and disseminated within the microbial population by horizontal gene transfer mechanisms: transformation, conjugation or transduction. In the hospital, widespread use of antimicrobials in the intensive care units (ICU) and for immunocompromised patients has resulted in the selection of multidrug-resistant organisms. Methicilin-resistant Staphylococci, vancomycin resistant Enterococci and extended-spectrum betalactamase(ESBL) producing Gram negative bacilli are identified as major phoblem in nosocomial infections. Recent surveillance studies have demonstrated trend towares more seriously ill patients suffering from multidrug-resistant nosocomial infections. Emergence of multiresistant bacteria and spread of resistance genes should enforce the aplication of strict prevention strategies, including changes in antibiotic treatment regimens, hygiene measures, infection prevention and control of horizontal nosocomial transmission of organisms.

  13. Discovery of clubroot-resistant genes in Brassica napus by transcriptome sequencing.

    Science.gov (United States)

    Chen, S W; Liu, T; Gao, Y; Zhang, C; Peng, S D; Bai, M B; Li, S J; Xu, L; Zhou, X Y; Lin, L B

    2016-01-01

    Clubroot significantly affects plants of the Brassicaceae family and is one of the main diseases causing serious losses in B. napus yield. Few studies have investigated the clubroot-resistance mechanism in B. napus. Identification of clubroot-resistant genes may be used in clubroot-resistant breeding, as well as to elucidate the molecular mechanism behind B. napus clubroot-resistance. We used three B. napus transcriptome samples to construct a transcriptome sequencing library by using Illumina HiSeq™ 2000 sequencing and bioinformatic analysis. In total, 171 million high-quality reads were obtained, containing 96,149 unigenes of N50-value. We aligned the obtained unigenes with the Nr, Swiss-Prot, clusters of orthologous groups, and gene ontology databases and annotated their functions. In the Kyoto encyclopedia of genes and genomes database, 25,033 unigenes (26.04%) were assigned to 124 pathways. Many genes, including broad-spectrum disease-resistance genes, specific clubroot-resistant genes, and genes related to indole-3-acetic acid (IAA) signal transduction, cytokinin synthesis, and myrosinase synthesis in the Huashuang 3 variety of B. napus were found to be related to clubroot-resistance. The effective clubroot-resistance observed in this variety may be due to the induced increased expression of these disease-resistant genes and strong inhibition of the IAA signal transduction, cytokinin synthesis, and myrosinase synthesis. The homology observed between unigenes 0048482, 0061770 and the Crr1 gene shared 94% nucleotide similarity. Furthermore, unigene 0061770 could have originated from an inversion of the Crr1 5'-end sequence.

  14. Use of NAP gene to manipulate leaf senescence in plants

    Science.gov (United States)

    Gan, Susheng; Guo, Yongfeng

    2013-04-16

    The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.

  15. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Sagar Banerjee

    2017-05-01

    Full Text Available Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.

  16. RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes.

    Science.gov (United States)

    Banerjee, Sagar; Banerjee, Anamika; Gill, Sarvajeet S; Gupta, Om P; Dahuja, Anil; Jain, Pradeep K; Sirohi, Anil

    2017-01-01

    Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi) to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.

  17. Convergently Evolved Toxic Secondary Metabolites in Plants Drive the Parallel Molecular Evolution of Insect Resistance.

    Science.gov (United States)

    Petschenka, Georg; Wagschal, Vera; von Tschirnhaus, Michael; Donath, Alexander; Dobler, Susanne

    2017-08-01

    Natural selection imposed by natural toxins has led to striking levels of convergent evolution at the molecular level. Cardiac glycosides represent a group of plant toxins that block the Na,K-ATPase, a vital membrane protein in animals. Several herbivorous insects have convergently evolved resistant Na,K-ATPases, and in some species, convergent gene duplications have also arisen, likely to cope with pleiotropic costs of resistance. To understand the genetic basis and predictability of these adaptations, we studied five independent lineages of leaf-mining flies (Diptera: Agromyzidae). These flies have colonized host plants in four botanical families that convergently evolved cardiac glycosides of two structural types: cardenolides and bufadienolides. We compared each of six fly species feeding on such plants to a phylogenetically related but nonadapted species. Irrespective of the type of cardiac glycoside in the host plant, five out of six exposed species displayed substitutions in the cardiac glycoside-binding site of the Na,K-ATPase that were previously described in other insect orders; in only one species was the gene duplicated. In vitro assays of nervous tissue extractions confirmed that the substitutions lead to increased resistance of the Na,K-ATPase. Our results demonstrate that target site insensitivity of Na,K-ATPase is a common response to dietary cardiac glycosides leading to highly predictable amino acid changes; nonetheless, convergent evolution of gene duplication for this multifunctional enzyme appears more constrained.

  18. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...

  19. Gene Expression Analysis of Plum pox virus (Sharka Susceptibility/Resistance in Apricot (Prunus armeniaca L..

    Directory of Open Access Journals (Sweden)

    Manuel Rubio

    Full Text Available RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, "Rojo Pasión" and "Z506-7", resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925, which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein PPVres region could also be involved in the resistance.

  20. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.).

    Science.gov (United States)

    Rubio, Manuel; Ballester, Ana Rosa; Olivares, Pedro Manuel; Castro de Moura, Manuel; Dicenta, Federico; Martínez-Gómez, Pedro

    2015-01-01

    RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, "Rojo Pasión" and "Z506-7", resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance.

  1. Research progress on isolation and cloning of functional genes in tea plants

    Institute of Scientific and Technical Information of China (English)

    MA Chunlei; CHEN Liang

    2007-01-01

    Tea,which has many sanitarian functions,is one of the most popular non-alcoholic soft and healthy beverages in the world.In many countries,as well as in China,tea (Camellia sinensis) is an important cash crop.It has great value as a source of secondary metabolic products.Molecular biology of tea plants has been one of the most active and kinetic research fields of tea science for the last decade.Isolation and cloning of important functional genes of tea plants have a critical significance on elucidating the molecular mechanism of high quality,yield and resistance,as well as genetic manipulating via biotechnological approaches for tea plants.In this paper,we introduced the research progress on the isolation and cloning of functional genes in tea plants.In addition,the brief prospect on the research of functional genes of tea plants in the near future is also given out.

  2. A Comprehensive Insight into Tetracycline Resistant Bacteria and Antibiotic Resistance Genes in Activated Sludge Using Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Kailong Huang

    2014-06-01

    Full Text Available In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB and antibiotic resistance genes (ARGs in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera consisting of Sulfuritalea, Armatimonas, Prosthecobacter, Hyphomicrobium, Azonexus, Longilinea, Paracoccus, Novosphingobium and Rhodobacter were identified as potential TRB in the sludge. Results of qPCR, molecular cloning and metagenomic analysis consistently indicated that tetracycline treatment could increase both the abundance and diversity of the tet genes, but decreased the occurrence and diversity of non-tetracycline ARG, especially sulfonamide resistance gene sul2. Cluster analysis showed that tetracycline treatment at subinhibitory concentrations (5 mg/L was found to pose greater effects on the bacterial community composition, which may be responsible for the variations of the ARGs abundance. This study indicated that joint use of 454 pyrosequencing and Illumina high-throughput sequencing can be effectively used to explore ARB and ARGs in the environment, and future studies should include an in-depth investigation of the relationship between microbial community, ARGs and antibiotics in sewage treatment plant (STP sludge.

  3. Creation of glyphosate-resistant Brassica napus L. plants expressing DesC desaturase of cyanobacterium Synechococcus vulcanus

    Directory of Open Access Journals (Sweden)

    Goldenkova-Pavlova I. V.

    2012-12-01

    Full Text Available Aim. Creation of glyphosate-resistant canola plants expressing bifunctional hybrid desC::licBM3 gene. In the hybrid gene the sequence of DesC desaturase of cyanobacterium S. vulcanus without plastid targeting was fused with the sequence of thermostable lichenase reporter LicBM3 gene. Methods. Agrobacterium tumefaciens-mediated transformation, PCR, quantitative and qualitative determination of lichenase activity, genetic analysis. Results. Transgenic canola plants, carring the enolpyruvat shikimat phosphate syntase gene (epsps, conferring on plants resistance to phosphonomethyl glycine herbicides (Roundup, as well as the desC::licBM3 gene, were selected. The presence of transgenes was confimed by multiplex PCR. The epsps gene expression in canola was shown at the transcription level, during in vitro growth and after greenhouse herbicide treatment. Activity of the licBM3 gene product as a part of hybrid protein allowed quantitative and qualitative estimation of the desaturase gene expression. Inheritance of heterologous genes and their expression in the first generation were investigated. Conclusions. Transgenic canola plants were obtained, the presence of trangenes in plant genome was proved and expression of the target genes was detected.

  4. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants.

    Science.gov (United States)

    Kaiser, Bettina; Vogg, Gerd; Fürst, Ursula B; Albert, Markus

    2015-01-01

    By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato.

  5. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants

    Directory of Open Access Journals (Sweden)

    Bettina eKaiser

    2015-02-01

    Full Text Available By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialogue between Cuscuta spp. and its host plants focuses on the incompatible interaction of Cuscuta reflexa with tomato.

  6. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.

    Science.gov (United States)

    Kochian, Leon V; Piñeros, Miguel A; Liu, Jiping; Magalhaes, Jurandir V

    2015-01-01

    Aluminum (Al) toxicity in acid soils is a significant limitation to crop production worldwide, as approximately 50% of the world's potentially arable soil is acidic. Because acid soils are such an important constraint to agriculture, understanding the mechanisms and genes conferring resistance to Al toxicity has been a focus of intense research interest in the decade since the last article on crop acid soil tolerance was published in this journal. An impressive amount of progress has been made during that time that has greatly increased our understanding of the diversity of Al resistance genes and mechanisms, how resistance gene expression is regulated and triggered by Al and Al-induced signals, and how the proteins encoded by these genes function and are regulated. This review examines the state of our understanding of the physiological, genetic, and molecular bases for crop Al tolerance, looking at the novel Al resistance genes and mechanisms that have been identified over the past ten years. Additionally, it examines how the integration of molecular and genetic analyses of crop Al resistance is starting to be exploited for the improvement of crop plants grown on acid soils via both molecular-assisted breeding and biotechnology approaches.

  7. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat.

    Science.gov (United States)

    Cao, Aizhong; Xing, Liping; Wang, Xiaoyun; Yang, Xueming; Wang, Wei; Sun, Yulei; Qian, Chen; Ni, Jinlong; Chen, Yaping; Liu, Dajun; Wang, Xiue; Chen, Peidu

    2011-05-10

    Powdery mildew resistance gene Pm21, located on the chromosome 6V short arm of Haynaldia villosa and transferred to wheat as a 6VS·6AL translocation (T6VS·6AL), confers durable and broad-spectrum resistance to wheat powdery mildew. Pm21 has become a key gene resource for powdery mildew resistance breeding all over the world. In China, 12 wheat varieties containing Pm21 have been planted on more than 3.4 million hectares since 2002. Pm21 has been intractable to molecular genetic mapping because the 6VS does not pair and recombine with the 6AS. Moreover, all known accessions of H. villosa are immune to powdery mildew fungus. Pm21 is still defined by cytogenetics as a locus. In the present study, a putative serine and threonine protein kinase gene Stpk-V was cloned and characterized with an integrative strategy of molecular and cytogenetic techniques. Stpk-V is located on the Pm21 locus. The results of a single cell transient expression assay showed that Stpk-V could decrease the haustorium index dramatically. After the Stpk-V was transformed into a susceptible wheat variety Yangmai158, the characterized transgenic plants showed high and broad-spectrum powdery mildew resistance similar to T6VS·6AL. Silencing of the Stpk-V by virus-induced gene silencing in both T6VS·6AL and H. villosa resulted in their increased susceptibility. Stpk-V could be induced by Bgt and exogenous H(2)O(2), but it also mediated the increase of endogenous H(2)O(2), leading to cell death and plant resistance when the plant was attacked by Bgt.

  8. Mapping of stripe rust resistance gene in an Aegilops caudata introgression line in wheat and its genetic association with leaf rust resistance

    Indian Academy of Sciences (India)

    PUNEET INDER TOOR; SATINDER KAUR; MITALY BANSAL; BHARAT YADAV; PARVEEN CHHUNEJA

    2016-12-01

    A pair of stripe rust and leaf rust resistance genes was introgressed from Aegilops caudata, a nonprogenitor diploid species with the CC genome, to cultivated wheat. Inheritance and genetic mapping of stripe rust resistance gene in backcrossrecombinant inbred line (BC-RIL) population derived from the cross of a wheat–Ae. caudata introgression line (IL) T291-2(pau16060) with wheat cv. PBW343 is reported here. Segregation of BC-RILs for stripe rust resistance depicted a single major gene conditioning adult plant resistance (APR) with stripe rust reaction varying from TR-20MS in resistant RILs signifying the presence of some minor genes as well. Genetic association with leaf rust resistance revealed that two genes are located at a recombination distance of 13%. IL T291-2 had earlier been reported to carry introgressions on wheat chromosomes 2D, 3D, 4D, 5D, 6D and 7D. Genetic mapping indicated the introgression of stripe rust resistance gene on wheat chromosome 5DS in the region carrying leaf rust resistance gene LrAc, but as an independent introgression. Simple sequence repeat (SSR) and sequence-tagged site (STS) markers designed from the survey sequence data of 5DS enriched the target region harbouring stripe and leaf rust resistance genes. Stripe rust resistance locus, temporarily designated as YrAc, mapped at the distal most end of 5DS linked with a group of four colocated SSRs and two resistance gene analogue (RGA)-STS markers at a distanceof 5.3 cM. LrAc mapped at a distance of 9.0 cM from the YrAc and at 2.8 cM from RGA-STS marker Ta5DS_2737450, YrAc and LrAc appear to be the candidate genes for marker-assisted enrichment of the wheat gene pool for rust resistance.

  9. Occurrence of integrons and resistance genes among sulphonamide-resistant Shigella spp. from Brazil

    DEFF Research Database (Denmark)

    Peirano, G.; Agersø, Yvonne; Aarestrup, Frank Møller

    2005-01-01

    Objectives: To determine the occurrence of class 1 and 2 integrons and antimicrobial resistance genes among sulphonamide-resistant Shigella strains isolated in Brazil during 1999-2003. Methods: Sixty-two Shigella (Shigella flexneri, n = 47 and Shigella sonnei, n = 15) were tested against 21....... Conclusions: The detection of class 1 and 2 integrons and additional antimicrobial resistance genes allowed us to identify the most frequent antimicrobial resistance patterns of Shigella spp. isolated in Brazil....

  10. Antimicrobial resistance gene distribution: a socioeconomic and sociocultural perspective

    Science.gov (United States)

    Ojo, Kayode K.; Sapkota, Amy R.; Ojo, Tokunbo B.; Pottinger, Paul S.

    2008-01-01

    The appearance of resistance to many first-line antimicrobial agents presents a critical challenge to the successful treatment of bacterial infections. Antimicrobial resistant bacteria and resistance genes are globally distributed, but significant variations in prevalence have been observed in different geographical regions. This article discusses possible relationships between socioeconomic and sociocultural factors and regional differences in the prevalence of antibiotic-resistant bacteria and their associated resistance genes. Findings indicate that the few studies that have been conducted to understand relationships between socioeconomic and sociocultural factors and antimicrobial resistance have focused on patterns of phenotypic antibiotic resistance. Yet, a critical need exists for molecular studies of human influences on bacterial resistance and adaptation. We propose that the results of these studies, coupled with well-coordinated culturally appropriate interventions that address specific socioeconomic and sociocultural needs may be necessary to reduce the scourge of antimicrobial resistance in both developing and developed countries. PMID:20204098

  11. An antibody that confers plant disease resistance targets a membrane-bound glyoxal oxidase in Fusarium.

    Science.gov (United States)

    Song, Xiu-Shi; Xing, Shu; Li, He-Ping; Zhang, Jing-Bo; Qu, Bo; Jiang, Jin-He; Fan, Chao; Yang, Peng; Liu, Jin-Long; Hu, Zu-Quan; Xue, Sheng; Liao, Yu-Cai

    2016-05-01

    Plant germplasm resources with natural resistance against globally important toxigenic Fusarium are inadequate. CWP2, a Fusarium genus-specific antibody, confers durable resistance to different Fusarium pathogens that infect cereals and other crops, producing mycotoxins. However, the nature of the CWP2 target is not known. Thus, investigation of the gene coding for the CWP2 antibody target will likely provide critical insights into the mechanism underlying the resistance mediated by this disease-resistance antibody. Immunoblots and mass spectrometry analysis of two-dimensional electrophoresis gels containing cell wall proteins from Fusarium graminearum (Fg) revealed that a glyoxal oxidase (GLX) is the CWP2 antigen. Cellular localization studies showed that GLX is localized to the plasma membrane. This GLX efficiently catalyzes hydrogen peroxide production; this enzymatic activity was specifically inhibited by the CWP2 antibody. GLX-deletion strains of Fg, F. verticillioides (Fv) and F. oxysporum had significantly reduced virulence on plants. The GLX-deletion Fg and Fv strains had markedly reduced mycotoxin accumulation, and the expression of key genes in mycotoxin metabolism was downregulated. This study reveals a single gene-encoded and highly conserved cellular surface antigen that is specifically recognized by the disease-resistance antibody CWP2 and regulates both virulence and mycotoxin biosynthesis in Fusarium species. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening).

    Science.gov (United States)

    Dutt, Manjul; Barthe, Gary; Irey, Michael; Grosser, Jude

    2015-01-01

    Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB), a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars 'Hamlin' and 'Valencia' expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2) promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.

  13. High diversity of genes for nonhost resistance of barley to heterologous rust fungi

    NARCIS (Netherlands)

    Jafary, H.; Albertazzi, G.; Marcel, T.C.; Niks, R.E.

    2008-01-01

    Inheritance studies on the nonhost resistance of plants would normally require interspecific crosses that suffer from sterility and abnormal segregation. Therefore, we developed the barley¿Puccinia rust model system to study, using forward genetics, the specificity, number, and diversity of genes in

  14. Behaviour of the disease resistance gene Asc in protoplasts of Lycopersicon esculentum mill

    NARCIS (Netherlands)

    Moussatos, V.; Witsenboer, H.; Hille, J.; Gilchrist, D.

    1993-01-01

    Action of Asc, a single dominant Mendelian gene controlling disease response at the whole plant level, was detected at the level of individual cells. Protoplasts, freshly isolated from resistant (Asc/Asc) and susceptible (asc/asc) tomato isolines, were differentially sensitive to AAL toxin as observ

  15. Inheritance and molecular mapping of anthracnose resistance gene present in the differential line PI533918

    Science.gov (United States)

    Anthracnose (Collectrotichum sublineolum) is considered one of the most destructive diseases of sorghum (Sorghum bicolor L. Moench) because it infects all aerial tissues of the plant. The best strategy to control the disease is the incorporation of resistance genes. At present, eighteen sorghum line...

  16. Transgenic Citrus Expressing an Arabidopsis NPR1 Gene Exhibit Enhanced Resistance against Huanglongbing (HLB; Citrus Greening.

    Directory of Open Access Journals (Sweden)

    Manjul Dutt

    Full Text Available Commercial sweet orange cultivars lack resistance to Huanglongbing (HLB, a serious phloem limited bacterial disease that is usually fatal. In order to develop sustained disease resistance to HLB, transgenic sweet orange cultivars 'Hamlin' and 'Valencia' expressing an Arabidopsis thaliana NPR1 gene under the control of a constitutive CaMV 35S promoter or a phloem specific Arabidopsis SUC2 (AtSUC2 promoter were produced. Overexpression of AtNPR1 resulted in trees with normal phenotypes that exhibited enhanced resistance to HLB. Phloem specific expression of NPR1 was equally effective for enhancing disease resistance. Transgenic trees exhibited reduced diseased severity and a few lines remained disease-free even after 36 months of planting in a high-disease pressure field site. Expression of the NPR1 gene induced expression of several native genes involved in the plant defense signaling pathways. The AtNPR1 gene being plant derived can serve as a component for the development of an all plant T-DNA derived consumer friendly GM tree.

  17. Prediction of drought-resistant genes in Arabidopsis thaliana using SVM-RFE.

    Directory of Open Access Journals (Sweden)

    Yanchun Liang

    Full Text Available BACKGROUND: Identifying genes with essential roles in resisting environmental stress rates high in agronomic importance. Although massive DNA microarray gene expression data have been generated for plants, current computational approaches underutilize these data for studying genotype-trait relationships. Some advanced gene identification methods have been explored for human diseases, but typically these methods have not been converted into publicly available software tools and cannot be applied to plants for identifying genes with agronomic traits. METHODOLOGY: In this study, we used 22 sets of Arabidopsis thaliana gene expression data from GEO to predict the key genes involved in water tolerance. We applied an SVM-RFE (Support Vector Machine-Recursive Feature Elimination feature selection method for the prediction. To address small sample sizes, we developed a modified approach for SVM-RFE by using bootstrapping and leave-one-out cross-validation. We also expanded our study to predict genes involved in water susceptibility. CONCLUSIONS: We analyzed the top 10 genes predicted to be involved in water tolerance. Seven of them are connected to known biological processes in drought resistance. We also analyzed the top 100 genes in terms of their biological functions. Our study shows that the SVM-RFE method is a highly promising method in analyzing plant microarray data for studying genotype-phenotype relationships. The software is freely available with source code at http://ccst.jlu.edu.cn/JCSB/RFET/.

  18. Comparing Host Plant Resistance, Engineered Resistance, and Insecticide Treatment for Control of Colorado Potato Beetle and Potato Leafhopper in Potatoes

    Directory of Open Access Journals (Sweden)

    Gerald M. Ghidiu

    2011-01-01

    Full Text Available The Colorado potato beetle, Leptinotarsa decemlineata (Say Order Coleoptera and the potato leafhopper, Empoasca fabae (Harris Order Homoptera, are the major insect pests of potato in eastern North America. In two years of field trials, we compared the effectiveness of three pest management options for the control of Colorado potato beetle and potato leafhopper: natural host plant resistance (glandular trichomes, engineered resistance (Bacillus thuringiensis [Bt] Berliner cry3A gene and a susceptible potato cultivar (Superior with an at-planting application of the insecticide thiamethoxam. Similar and acceptable control of the Colorado potato beetle larvae was obtained with the Bt-cry3A lines and the thiamethoxam treated “Superior” variety. The glandular trichome cultivar had significantly less Colorado potato beetle damage than did the untreated “Superior” in 2004, although damage was significantly greater than in the Bt-cry3A lines and the insecticide-treated potatoes for both years, and was the only treatment that consistently had very little potato leafhopper damage. These data demonstrate that although each type of host plant resistance mechanism (Bt-cry3A or glandular trichomes was as effective as the chemical control against one of the insects, neither provides adequate resistance to both Colorado potato beetle and potato leaf hopper.

  19. Resistance to Phytophthora infestans EC-1 clonal lineage in Solanum tuberosum by introducing the RB gene

    Directory of Open Access Journals (Sweden)

    María Lupe Román

    2015-04-01

    Full Text Available One of the most efficient options for the control of late blight disease in potato (Solanum tuberosum is the development of resistant varieties to Phytophthora infestans mediated by the direct transfer of resistance (R genes through genetic engineering. In the present work, we used Solanum bulbocastanum RB gene to confers broad spectrum resistance to P. infestans races. To that end, Agrobacterium - mediated genetic transformation was used to transform a susceptible potato variety, Desiree, with the binary vector pCIP68 harboring the RB gene. As a result, 19 transformed plants containing the RB gene were obtained. kanamycin resistance test and polymerase chain reaction (PCR assays confirmed the integration of the T-DNA in the potato genome. The 19 transformed plants, also called transgenic events were subjected to infection under biosafety greenhouse conditions. Phytophthora infestans isolate POX067 of the EC-1 clonal lineage, commonly find in Peru, was used for the infection. Three of the 19 plants ([RB]54, [RB]56 and [RB]70 show high resistance levels to isolate POX067 of P. infestans.

  20. High throughput phenotyping for aphid resistance in large plant collections

    Directory of Open Access Journals (Sweden)

    Chen Xi

    2012-08-01

    Full Text Available Abstract Background Phloem-feeding insects are among the most devastating pests worldwide. They not only cause damage by feeding from the phloem, thereby depleting the plant from photo-assimilates, but also by vectoring viruses. Until now, the main way to prevent such problems is the frequent use of insecticides. Applying resistant varieties would be a more environmental friendly and sustainable solution. For this, resistant sources need to be identified first. Up to now there were no methods suitable for high throughput phenotyping of plant germplasm to identify sources of resistance towards phloem-feeding insects. Results In this paper we present a high throughput screening system to identify plants with an increased resistance against aphids. Its versatility is demonstrated using an Arabidopsis thaliana activation tag mutant line collection. This system consists of the green peach aphid Myzus persicae (Sulzer and the circulative virus Turnip yellows virus (TuYV. In an initial screening, with one plant representing one mutant line, 13 virus-free mutant lines were identified by ELISA. Using seeds produced from these lines, the putative candidates were re-evaluated and characterized, resulting in nine lines with increased resistance towards the aphid. Conclusions This M. persicae-TuYV screening system is an efficient, reliable and quick procedure to identify among thousands of mutated lines those resistant to aphids. In our study, nine mutant lines with increased resistance against the aphid were selected among 5160 mutant lines in just 5 months by one person. The system can be extended to other phloem-feeding insects and circulative viruses to identify insect resistant sources from several collections, including for example genebanks and artificially prepared mutant collections.

  1. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper.

    Science.gov (United States)

    Rao, K V; Rathore, K S; Hodges, T K; Fu, X; Stoger, E; Sudhakar, D; Williams, S; Christou, P; Bharathi, M; Bown, D P; Powell, K S; Spence, J; Gatehouse, A M; Gatehouse, J A

    1998-08-01

    Snowdrop lectin (Galanthus nivalis agglutinin; GNA) has been shown previously to be toxic towards rice brown planthopper (Nilaparvata lugens; BPH) when administered in artificial diet. BPH feeds by phloem abstraction, and causes 'hopper burn', as well as being an important virus vector. To evaluate the potential of the gna gene to confer resistance towards BPH, transgenic rice (Oryza sativa L.) plants were produced, containing the gna gene in constructs where its expression was driven by a phloem-specific promoter (from the rice sucrose synthase RSs1 gene) and by a constitutive promoter (from the maize ubiquitin ubi1 gene). PCR and Southern analyses on DNA from these plants confirmed their transgenic status, and that the transgenes were transmitted to progeny after self-fertilization. Western blot analyses revealed expression of GNA at levels of up to 2.0% of total protein in some of the transgenic plants. GNA expression driven by the RSs1 promoter was tissue-specific, as shown by immunohistochemical localization of the protein in the non-lignified vascular tissue of transgenic plants. Insect bioassays and feeding studies showed that GNA expressed in the transgenic rice plants decreased survival and overall fecundity (production of offspring) of the insects, retarded insect development, and had a deterrent effect on BPH feeding. gna is the first transgene to exhibit insecticidal activity towards sap-sucking insects in an important cereal crop plant.

  2. Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease.

    Science.gov (United States)

    Namukwaya, B; Tripathi, L; Tripathi, J N; Arinaitwe, G; Mukasa, S B; Tushemereirwe, W K

    2012-08-01

    Banana Xanthomonas wilt (BXW), caused by Xanthomonas campestris pv. musacearum, is one of the most important diseases of banana (Musa sp.) and currently considered as the biggest threat to banana production in Great Lakes region of East and Central Africa. The pathogen is highly contagious and its spread has endangered the livelihood of millions of farmers who rely on banana for food and income. The development of disease resistant banana cultivars remains a high priority since farmers are reluctant to employ labor-intensive disease control measures and there is no host plant resistance among banana cultivars. In this study, we demonstrate that BXW can be efficiently controlled using transgenic technology. Transgenic bananas expressing the plant ferredoxin-like protein (Pflp) gene under the regulation of the constitutive CaMV35S promoter were generated using embryogenic cell suspensions of banana. These transgenic lines were characterized by molecular analysis. After challenge with X. campestris pv. musacearum transgenic lines showed high resistance. About 67% of transgenic lines evaluated were completely resistant to BXW. These transgenic lines did not show any disease symptoms after artificial inoculation of in vitro plants under laboratory conditions as well as potted plants in the screen-house, whereas non-transgenic control plants showed severe symptoms resulting in complete wilting. This study confirms that expression of the Pflp gene in banana results in enhanced resistance to BXW. This transgenic technology can provide a timely solution to the BXW pandemic.

  3. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus

    Directory of Open Access Journals (Sweden)

    Fangquan Wang

    2016-05-01

    Full Text Available Rice black-streaked dwarf virus (RBSDV belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21–24 nt small interfering RNA (siRNA. By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  4. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.).

    Science.gov (United States)

    Liang, Danna; Liu, Min; Hu, Qijing; He, Min; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao

    2015-05-11

    Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar 'EP6392' which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns.

  5. Comparative metagenomics reveals a diverse range of antimicrobial resistance genes in effluents entering a river catchment.

    Science.gov (United States)

    Rowe, Will; Verner-Jeffreys, David W; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan J; Pearce, Gareth P

    2016-01-01

    The aquatic environment has been implicated as a reservoir for antimicrobial resistance genes (ARGs). In order to identify sources that are contributing to these gene reservoirs, it is crucial to assess effluents that are entering the aquatic environment. Here we describe a metagenomic assessment for two types of effluent entering a river catchment. We investigated the diversity and abundance of resistance genes, mobile genetic elements (MGEs) and pathogenic bacteria. Findings were normalised to a background sample of river source water. Our results show that effluent contributed an array of genes to the river catchment, the most abundant being tetracycline resistance genes tetC and tetW from farm effluents and the sulfonamide resistance gene sul2 from wastewater treatment plant (WWTP) effluents. In nine separate samples taken across 3 years, we found 53 different genes conferring resistance to seven classes of antimicrobial. Compared to the background sample taken up river from effluent entry, the average abundance of genes was three times greater in the farm effluent and two times greater in the WWTP effluent. We conclude that effluents disperse ARGs, MGEs and pathogenic bacteria within a river catchment, thereby contributing to environmental reservoirs of ARGs.

  6. The Arabidopsis lectin receptor kinase LecRK-I.9 enhances resistance to Phytophthora infestans in Solanaceous plants.

    Science.gov (United States)

    Bouwmeester, Klaas; Han, Miao; Blanco-Portales, Rosario; Song, Wei; Weide, Rob; Guo, Li-Yun; van der Vossen, Edwin A G; Govers, Francine

    2014-01-01

    Late blight caused by the plant pathogenic oomycete Phytophthora infestans is known as one of the most destructive potato diseases. Plant breeders tend to employ NB-LRR-based resistance for introducing genetically controlled late blight resistance in their breeding lines. However, P. infestans is able to rapidly escape this type of resistance, and hence, NB-LRR-based resistance in potato cultivars is often not durable. Previously, we identified a novel type of Phytophthora resistance in Arabidopsis. This resistance is mediated by the cell surface receptor LecRK-I.9, which belongs to the family of L-type lectin receptor kinases. In this study, we report that expression of the Arabidopsis LecRK-I.9 gene in potato and Nicotiana benthamiana results in significantly enhanced late blight resistance. Transcriptional profiling showed strong reduction in salicylic acid (SA)-mediated defence gene expression in LecRK-I.9 transgenic potato lines (TPLs). In contrast, transcripts of two protease inhibitor genes accumulated to extreme high levels, suggesting that LecRK-I.9-mediated late blight resistance is relying on a defence response that includes activation of protease inhibitors. These results demonstrate that the functionality of LecRK-I.9 in Phytophthora resistance is maintained after interfamily transfer to potato and N. benthamiana and suggest that this novel type of LecRK-based resistance can be exploited in breeding strategies to improve durable late blight resistance in Solanaceous crops.

  7. Creation of Transgenic Bananas Expressing Human Lysozyme Gene for Panama Wilt Resistance

    Institute of Scientific and Technical Information of China (English)

    Xin-Wu PEI; Shi-Kai CHEN; Rui-Ming WEN; Shang YE; Jia-Qin HUANG; Yong-Qiang ZHANG; Bing-Shan WANG; Zhi-Xing WANG; Shi-Rong JIA

    2005-01-01

    Human lysozyme (HL) inhibits Fusarium oxysporum (FocR4) growth in vitro. To obtaintransgenic bananas (Musa spp.) that are resistant to Panama wilt (F. oxysporum), we introduced an HL genethat is driven by a constitutive cauliflower mosaic virus 35S promoter into the banana via Agrobacterium-mediated transformation. PCR confirmed that 51 transgenic plants were obtained. The development ofPanama wilt symptoms were examined after the plants had been grown in pots. The non-transgenic plantsdeveloped typical fusarium symptoms 60 d after FocR4 inoculation, whereas 24 of 51 transgenic plants remained healthy. The transgenic banana plants that showed resistance to FocR4 in the pots were then planted in a field that was heavily infected with FocR4 for further investigation. Eleven of 24 plants developed symptoms before bud emergence; another 11 plants showed symptoms after bud emergence and the remaining two plants, H-67 and H-144, remained healthy and were able to fruit. Northern blotting analysisdemonstrated that H-67 and H-144, bearing the strongest resistance to Panama wilt, had the highest level ofHL expression and that the expression of HL was well correlated with the FocR4 resistance of transgenicplants. We conclude that Agrobacterium-mediated transformation, with the assistance of particlebombardment, is a powerful approach for banana transformation and that a transgenic HL gene can causeresistance of the crop to FocR4 in the field.

  8. New resistance genes in the Zea mays: exserohilum turcicum pathosystem

    Directory of Open Access Journals (Sweden)

    Juliana Bernardi Ogliari

    2005-09-01

    Full Text Available The use of monogenic race-specific resistance is widespread for the control of maize (Zea mays L. helminthosporiosis caused by Exserohilum turcicum. Inoculation of 18 Brazilian isolates of E. turcicum onto elite maize lines containing previously identified resistance genes and onto differential near-isogenic lines allowed the identification of new qualitative resistance genes. The inoculation of one selected isolate on differential near-isogenic lines, F1 generations and a BC1F1 population from the referred elite lines enabled the characterization of the resistance spectrum of three new genes, one dominant (HtP, one recessive (rt and a third with non-identified genetic action. Three physiological races of the pathogen were also identified including two with new virulence factors capable of overcoming the resistance of one of the resistance genes identified here (rt.

  9. Progress in Research of Bacteria Fertilizer Strengthening Resistance of Plants

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Bacteria fertilizer is used most widely among all kinds of microbial fertilizers. We summarize the research headway of bacteria fertilizer. It mainly focuses on bacteria fertilizer improving the stress resistance of plant. Then we can offer basis to research and exploit bacteria fertilizer. These bacteria include azotobacter, photosynthetic bacteria, Bacillus mucilaginosus siliceous, phosphorus bacteria, plant growth-promoting rhizobacteria(PGPR), effective microorganism(EM).

  10. Transformation of japonica rice with RHL gene and salt tolerance of the transgenic rice plant

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Overexpression of the yeast HAL2 gene increases salt tolerance of yeast and plant. Rice HAL2-like (RHL) gene was introduced into a japonica rice cultivar HJ19 with Agrobacterium tumefaciens-mediated transformation. Transgenic plants in R0 generation were selected on the principle of GUS-positive, RHL gene PCR-positive and normal growth. Hygromycin-resistant plants of some transgenic lines in R1 generation increased salt tolerance during the seedling and booting stage, being less damaged in the cytomembrane and stronger in leaf tissue viability under salt stress during booting period. Southern analysis of transgenic lines tolerant to salt in R1 generation showed that the RHL gene expression cassette had been successfully integrated into rice genome. Moreover, gene engineering breeding methodology and really salt-tolerant rice cultivar were discussed.

  11. Cortical microtubules are responsible for gravity resistance in plants.

    Science.gov (United States)

    Hoson, Takayuki; Matsumoto, Shouhei; Soga, Kouichi; Wakabayashi, Kazuyuki

    2010-06-01

    Mechanical resistance to the gravitational force is a principal gravity response in plants distinct from gravitropism. In the final step of gravity resistance, plants increase the rigidity of their cell walls. Here we discuss the role of cortical microtubules, which sustain the function of the cell wall, in gravity resistance. Hypocotyls of Arabidopsis tubulin mutants were shorter and thicker than the wild-type, and showed either left-handed or right-handed helical growth at 1 g. The degree of twisting phenotype was intensified under hypergravity conditions. Hypergravity also induces reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells. In tubulin mutants, the percentage of cells with longitudinal microtubules was high even at 1 g, and it was further increased by hypergravity. The left-handed helical growth mutants had right-handed microtubule arrays, whereas the right-handed mutant had left-handed arrays. Moreover, blockers of mechanoreceptors suppressed both the twisting phenotype and reorientation of microtubules in tubulin mutants. These results support the hypothesis that cortical microtubules play an essential role in maintenance of normal growth phenotype against the gravitational force, and suggest that mechanoreceptors are involved in signal perception in gravity resistance. Space experiments will confirm whether this view is applicable to plant resistance to 1 g gravity, as to the resistance to hypergravity.

  12. Resistance to Asian soybean rust in soybean lines with the pyramided three Rpp genes

    Directory of Open Access Journals (Sweden)

    Naoki Yamanaka

    2013-04-01

    Full Text Available In this study, the influence of genetic background on the resistance level of a soybean line carrying Rpp2, Rpp4, and Rpp5 was evaluated by backcrossing it with a susceptible variety. It was also evaluated eight lines which carry these Rpp genes against five Asian soybean rust (ASR isolates, in order to determine the likely range of resistance against ASR isolates differing in pathogenicity. The results indicated that a high level of resistance against various ASR isolates could be retained in lines carrying the three Rpp genes in susceptible genetic backgrounds, although minor influences of plant genetic background and ASR pathogenicity to the ASR resistance could occur. Thus, lines with the pyramided three Rpp genes should be effective against a complex pathogen population consisting of diverse Phakopsora pachyrhizi isolates.

  13. The Vf gene for scrab resistance in apple is linked to sub-lethal genes

    NARCIS (Netherlands)

    Gao, Z.S.; Weg, van de W.E.

    2006-01-01

    V f is the most widely used resistance gene in the breeding for scab resistant apple cultivars. Distorted segregation ratios for V f -resistance have frequently been reported. Here we revealed that sub-lethal genes caused the distorted segregation. The inheritance of V f was examined in six progenie

  14. Transfer of engineered genes from crop to wild plants

    DEFF Research Database (Denmark)

    Bagger Jørgensen, Rikke; Hauser, T.P.; Mikkelsen, T.R.;

    1996-01-01

    The escape of engineered genes - genes inserted using recombinant DNA techniques - from cultivated plants to wild or weedy relatives has raised concern about possible risks to the environment or to health. The media have added considerably to public concern by suggesting that such gene escape...... is a new and rather unexpected phenomenon. However, transfer of engineered genes between plants is not at-all surprising, because it is mediated by exactly the same mechanisms as those responsible for transferring endogenous plant genes: it takes place by sexual crosses, with pollen as the carrier...

  15. Exploiting pathogens' tricks of the trade for engineering of plant disease resistance: challenges and opportunities.

    Science.gov (United States)

    Grant, Murray R; Kazan, Kemal; Manners, John M

    2013-05-01

    With expansion of our understanding of pathogen effector strategies and the multiplicity of their host targets, it is becoming evident that novel approaches to engineering broad-spectrum resistance need to be deployed. The increasing availability of high temporal gene expression data of a range of plant-microbe interactions enables the judicious choices of promoters to fine-tune timing and magnitude of expression under specified stress conditions. We can therefore contemplate engineering a range of transgenic lines designed to interfere with pathogen virulence strategies that target plant hormone signalling or deploy specific disease resistance genes. An advantage of such an approach is that hormonal signalling is generic so if this strategy is effective, it can be easily implemented in a range of crop species. Additionally, multiple re-wired lines can be crossed to develop more effective responses to pathogens.

  16. Integration and inheritance stability of foreign Bt toxin gene in the bivalent insectresistant transgenic cotton plants

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Genetic and expressional stability of Bt toxin gene is crucial for the breeding of insect-resistant transgenic cotton varieties and their commercialization. Genomic Southern blot analysis of R3, R4 and R5 generations of bivalent transgenic insect-resistant cotton plants was done in order to determine the integration, the copy number and the inheritance stability of Bt toxin gene in the transgenic cotton plants. The results indicated that there was a 4.7 kb positive band in the Southern blot when the genomic DNA of the bivalent transgenic insect-resistant cotton plants and the positive control (the plasmid) were digested with HindⅢ respectively. This result proved that the Bt toxin gene had been integrated into the genome of the cotton in full length.There is only one Xho I restriction site in the Bt toxin gene.Southern blot analysis indicated that many copies of Bt toxin gene had been integrated into the genome of the cotton when the genomic DNA of transgenic plants was digested with Xho I. Among them, there were four copies (about 17.7, 8,5.5 and 4.7 kb in size) existing in all the tested plants of R3,R4 and R5 generations. The preliminary conclusion was that there were more than four copies of Bt toxin gene integrated into the genome of the cotton, among them, more than one copy can express and inherit steadily. This result provides a scientific basis for the breeding of the bivalent insect-resistant transgenic cotton plants and its commercialization.``

  17. Isolation and Characterisation of PRSV-P Resistance Genes in Carica and Vasconcellea

    Directory of Open Access Journals (Sweden)

    M. R. Razean Haireen

    2014-01-01

    Full Text Available Papaya (Carica papaya L. is one of the major tropical fruit crops worldwide, but it is limited throughout its range by papaya ringspot virus type P (PRSV-P. Previous genetic studies identified a functional PRSV-P resistance marker in a mapping population of F2 plants of Vasconcellea pubescens (resistant to PRSV-P × Vasconcellea parviflora (susceptible to PRSV-P and showed that the marker exhibited homology to a serine threonine protein kinase (STK gene. Full length cDNAs of putative PRSV-P resistance genes designated CP_STK from C. papaya and VP_STK1 and VP_STK2 from V. pubescens were cloned by rapid amplification of cDNA ends (RACE. Due to a frame-shift mutation, the two homologous sequences are transcribed and edited differently such that the gene product in V. pubescens is two separate transcripts, whereas in C. papaya they are fused into a single message. A peroxisomal targeting signal (PTS2 present in VP_STK2 but absent in the other transcripts may be the functional source of PRSV resistance in V. pubescens. The STK gene from V. pubescens may have been derived from an alternative splicing to confer resistance. The putative resistance gene, VP_STK2, that was identified in this study is a potential new source of PRSV-P resistance for papaya genotypes.

  18. EDS1 in tomato is required for resistance mediated by TIR-class R genes and the receptor-like R gene Ve.

    Science.gov (United States)

    Hu, Gongshe; deHart, Amy K A; Li, Yansu; Ustach, Carolyn; Handley, Vanessa; Navarre, Roy; Hwang, Chin-Feng; Aegerter, Brenna J; Williamson, Valerie M; Baker, Barbara

    2005-05-01

    In tobacco and other Solanaceae species, the tobacco N gene confers resistance to tobacco mosaic virus (TMV), and leads to induction of standard defense and resistance responses. Here, we report the use of N-transgenic tomato to identify a fast-neutron mutant, sun1-1 (suppressor of N), that is defective in N-mediated resistance. Induction of salicylic acid (SA) and expression of pathogenesis-related (PR) genes, each signatures of systemic acquired resistance, are both dramatically suppressed in sun1-1 plants after TMV treatment compared to wild-type plants. Application of exogenous SA restores PR gene expression, indicating that SUN1 acts upstream of SA. Upon challenge with additional pathogens, we found that the sun1-1 mutation impairs resistance mediated by certain resistance (R) genes, (Bs4, I, and Ve), but not others (Mi-1). In addition, sun1-1 plants exhibit enhanced susceptibility to TMV, as well as to virulent pathogens. sun1-1 has been identified as an EDS1 homolog present on chromosome 6 of tomato. The discovery of enhanced susceptibility in the sun1-1 (Le_eds1-1) mutant plant, which contrasts to reports in Nicotiana benthamiana using virus-induced gene silencing, provides evidence that the intersection of R gene-mediated pathways with general resistance pathways is conserved in a Solanaceous species. In tomato, EDS1 is important for mediating resistance to a broad range of pathogens (viral, bacterial, and fungal pathogens), yet shows specificity in the class of R genes that it affects (TIR-NBS-LRR as opposed to CC-NBS-LRR). In addition, a requirement for EDS1 for Ve-mediated resistance in tomato exposes that the receptor-like R gene class may also require EDS1.

  19. Sponge microbiota are a reservoir of functional antibiotic resistance genes

    Directory of Open Access Journals (Sweden)

    Dennis Versluis

    2016-11-01

    Full Text Available Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n=6, gentamicin (n=1, amikacin (n=7, trimethoprim (n=17, chloramphenicol (n=1, rifampicin (n=2 and ampicillin (n=3. Fifteen of 37 inserts harboured resistance genes that shared <90% amino acid identity with known gene products, whereas on 13 inserts no resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance genes that may be harnessed by phylogenetically distinct bacteria.

  20. Comprehensive analysis of plant rapid alkalization factor (RALF) genes.

    Science.gov (United States)

    Sharma, Arti; Hussain, Adil; Mun, Bong-Gyu; Imran, Qari Muhammad; Falak, Noreen; Lee, Sang-Uk; Kim, Jae Young; Hong, Jeum Kyu; Loake, Gary John; Ali, Asad; Yun, Byung-Wook

    2016-09-01

    Receptor mediated signal carriers play a critical role in the regulation of plant defense and development. Rapid alkalization factor (RALF) proteins potentially comprise important signaling components which may have a key role in plant biology. The RALF gene family contains large number of genes in several plant species, however, only a few RALF genes have been characterized to date. In this study, an extensive database search identified 39, 43, 34 and 18 RALF genes in Arabidopsis, rice, maize and soybean, respectively. These RALF genes were found to be highly conserved across the 4 plant species. A comprehensive analysis including the chromosomal location, gene structure, subcellular location, conserved motifs, protein structure, protein-ligand interaction and promoter analysis was performed. RALF genes from four plant species were divided into 7 groups based on phylogenetic analysis. In silico expression analysis of these genes, using microarray and EST data, revealed that these genes exhibit a variety of expression patterns. Furthermore, RALF genes showed distinct expression patterns of transcript accumulation in vivo following nitrosative and oxidative stresses in Arabidopsis. Predicted interaction between RALF and heme ligand also showed that RALF proteins may contribute towards transporting or scavenging oxygen moieties. This suggests a possible role for RALF genes during changes in cellular redox status. Collectively, our data provides a valuable resource to prime future research in the role of RALF genes in plant growth and development.

  1. Gene interactions and genetics of blast resistance and yield attributes in rice (Oryza sativa L.)

    Indian Academy of Sciences (India)

    B. Divya; A. Biswas; S. Robin; R. Rabindran; A. John Joel

    2014-08-01

    Blast disease caused by the pathogen Pyricularia oryzae is a serious threat to rice production. Six generations viz., P1, P2, F1, F2, B1 and B2 of a cross between blast susceptible high-yielding rice cultivar ADT 43 and resistant near isogenic line (NIL) CT13432-3R, carrying four blast resistance genes Pi1, Pi2, Pi33 and Pi54 in combination were used to study the nature and magnitude of gene action for disease resistance and yield attributes. The epistatic interaction model was found adequate to explain the gene action in most of the traits. The interaction was complementary for number of productive tillers, economic yield, lesion number, infected leaf area and potential disease incidence but duplicate epistasis was observed for the remaining traits. Among the genotypes tested under epiphytotic conditions, gene pyramided lines were highly resistant to blast compared to individuals with single genes indicating that the nonallelic genes have a complementary effect when present together. The information on genetics of various contributing traits of resistance will further aid plant breeders in choosing appropriate breeding strategy for blast resistance and yield enhancement in rice.

  2. Transgenic maize plants expressing the Totivirus antifungal protein, KP4, are highly resistant to corn smut.

    Science.gov (United States)

    Allen, Aron; Islamovic, Emir; Kaur, Jagdeep; Gold, Scott; Shah, Dilip; Smith, Thomas J

    2011-10-01

    The corn smut fungus, Ustilago maydis, is a global pathogen responsible for extensive agricultural losses. Control of corn smut using traditional breeding has met with limited success because natural resistance to U. maydis is organ specific and involves numerous maize genes. Here, we present a transgenic approach by constitutively expressing the Totivirus antifungal protein KP4, in maize. Transgenic maize plants expressed high levels of KP4 with no apparent negative impact on plant development and displayed robust resistance to U. maydis challenges to both the stem and ear tissues in the greenhouse. More broadly, these results demonstrate that a high level of organ independent fungal resistance can be afforded by transgenic expression of this family of antifungal proteins.

  3. Exploration of horizontal gene transfer between transplastomic tobacco and plant-associated bacteria.

    Science.gov (United States)

    Demanèche, Sandrine; Monier, Jean-Michel; Dugat-Bony, Eric; Simonet, Pascal

    2011-10-01

    The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes.

  4. Diverse antibiotic resistance genes in dairy cow manure.

    Science.gov (United States)

    Wichmann, Fabienne; Udikovic-Kolic, Nikolina; Andrew, Sheila; Handelsman, Jo

    2014-04-22

    Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. IMPORTANCE The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected

  5. Using new genetic tools to identify potato resistance genes

    Science.gov (United States)

    Plant diseases present a burden to agriculture through yield losses due to plant stress, costs associated with disease control, and efforts to detect infections and limit disease epidemics. Plant breeders are interested in the identification and incorporation of simply inherited genes that confer ro...

  6. Associations between Antimicrobial Resistance Phenotypes, Antimicrobial Resistance Genes, and Virulence Genes of Fecal Escherichia coli Isolates from Healthy Grow-Finish Pigs ▿

    OpenAIRE

    2009-01-01

    Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotyp...

  7. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    Science.gov (United States)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  8. Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum.

    Science.gov (United States)

    Cai, Feng; Yu, Guanghui; Wang, Ping; Wei, Zhong; Fu, Lin; Shen, Qirong; Chen, Wei

    2013-12-01

    A detailed understanding of the effect of natural products on plant growth and protection will underpin new product development for plant production. The isolation and characterization of a known secondary metabolite named harzianolide from Trichoderma harzianum strain SQR-T037 were described, and the bioactivity of the purified compound as well as the crude metabolite extract in plant growth promotion and systemic resistance induction was investigated in this study. The results showed that harzianolide significantly promoted tomato seedling growth by up to 2.5-fold (dry weight) at a concentration of 0.1 ppm compared with the control. The result of root scan suggested that Trichoderma secondary metabolites may influence the early stages of plant growth through better root development for the enhancement of root length and tips. Both of the purified harzianolide and crude metabolite extract increased the activity of some defense-related enzymes to response to oxidative stress. Examination of six defense-related gene expression by real-time reverse transcription-PCR analysis revealed that harzianolide induces the expression of genes involved in the salicylic acid (PR1 and GLU) and jasmonate/ethylene (JERF3) signaling pathways while crude metabolite extract inhibited some gene expression (CHI-II and PGIP) related to basal defense in tomato plants. Further experiment showed that a subsequent challenge of harzianolide-pretreated plants with the pathogen Sclerotinia sclerotiorum resulted in higher systemic resistance by the reduction of lesion size. These results indicate that secondary metabolites of Trichoderma spp., like harzianolide, may play a novel role in both plant growth regulation and plant defense responses.

  9. The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry.

    Science.gov (United States)

    Silva, Katchen Julliany P; Brunings, Asha; Peres, Natalia A; Mou, Zhonglin; Folta, Kevin M

    2015-08-01

    Although strawberry is an economically important fruit crop worldwide, production of strawberry is limited by its susceptibility to a wide range of pathogens and the lack of major commercial cultivars with high levels of resistance to multiple pathogens. The objective of this study is to ectopically express the Arabidopsis thaliana NPR1 gene (AtNPR1) in the diploid strawberry Fragaria vesca L. and to test transgenic plants for disease resistance. AtNPR1 is a key positive regulator of the long-lasting broad-spectrum resistance known as systemic acquired resistance (SAR) and has been shown to confer resistance to a number of pathogens when overexpressed in Arabidopsis or ectopically expressed in several crop species. We show that ectopic expression of AtNPR1 in strawberry increases resistance to anthracnose, powdery mildew, and angular leaf spot, which are caused by different fungal or bacterial pathogens. The increased resistance is related to the relative expression levels of AtNPR1 in the transgenic plants. In contrast to Arabidopsis plants overexpressing AtNPR1, which grow normally and do not constitutively express defense genes, the strawberry transgenic plants are shorter than non-transformed controls, and most of them fail to produce runners and fruits. Consistently, most of the transgenic lines constitutively express the defense gene FvPR5, suggesting that the SAR activation mechanisms in strawberry and Arabidopsis are different. Nevertheless, our results indicate that overexpression of AtNPR1 holds the potential for generation of broad-spectrum disease resistance in strawberry.

  10. Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride

    Institute of Scientific and Technical Information of China (English)

    LIU Mei (刘梅); SUN Zong-xiu (孙宗修); ZHU Jie (朱洁); XU Tong (徐同); HARMAN Gary E.; LORITO Matteo

    2004-01-01

    Three genes encoding for fungal cell wall degrading enzymes (CWDEs), ech42, nag70 and gluc78 from the biocontrol fungus Trichoderma atroviride were inserted into the binary vector pCAMBIA1305.2 singly and in all possible combinations and transformed to rice plants. More than 1800 independently regenerated plantlets in seven different populations (for each of the three genes and each of the four gene combinations) were obtained. The ech42 gene encoding for an endochitinase increased resistance to sheath blight caused by Rhizoctonia solani, while the exochitinase-encoding gene, nag70, had lesser effect. The expression level of endochitinase but exochitinase was correlated with disease resistance. Nevertheless, exochitinase enhanced the effect of endochitinase on disease resistance when the two genes co-expressed in transgenics. Resistance to Magnaporthe grisea was found in all kinds of regenerated plants including that with single gluc78. A few lines expressing either ech42 or nag70 gene were immune to the disease. Transgenic plants are being tested to further evaluate disease resistance at field level. This is the first report of multiple of expression of genes encoding CWDEs from Trichoderma atroviride that result in resistance to blast and sheath blight in rice.

  11. Computational gene network study on antibiotic resistance genes of Acinetobacter baumannii.

    Science.gov (United States)

    Anitha, P; Anbarasu, Anand; Ramaiah, Sudha<