WorldWideScience

Sample records for plant populations depend

  1. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    Science.gov (United States)

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  2. Anomalous dependence of population growth on the birth rate in the plant-herbivore system

    International Nuclear Information System (INIS)

    Cui, Xue M.; Han, Seung K.; Chung, Jean S.

    2010-01-01

    We performed a simulation of the two-species plant-herbivore system by using the agent-based NetLogo program and constructed a dynamic model of populations consistent with the simulation results. The dynamic model is a three-dimensional system including the mean energy of the herbivore in addition to two variables denoting the populations of plants and herbivores. A steady-state analysis of the dynamic model shows that the dependence of the herbivore population on the birth and the death rates observed from the agent model is consistent with the prediction of the dynamic model. Especially, the anomalous dependence of the herbivore population on the birth rate, where the population decreases with the birth rate for small death rate, is consistently explained by a phase plane analysis of the dynamic model.

  3. Vector population growth and condition-dependent movement drive the spread of plant pathogens.

    Science.gov (United States)

    Shaw, Allison K; Peace, Angela; Power, Alison G; Bosque-Pérez, Nilsa A

    2017-08-01

    Plant viruses, often spread by arthropod vectors, impact natural and agricultural ecosystems worldwide. Intuitively, the movement behavior and life history of vectors influence pathogen spread, but the relative contribution of each factor has not been examined. Recent research has highlighted the influence of host infection status on vector behavior and life history. Here, we developed a model to explore how vector traits influence the spread of vector-borne plant viruses. We allowed vector life history (growth rate, carrying capacity) and movement behavior (departure and settlement rates) parameters to be conditional on whether the plant host is infected or healthy and whether the vector is viruliferous (carrying the virus) or not. We ran simulations under a wide range of parameter combinations and quantified the fraction of hosts infected over time. We also ran case studies of the model for Barley yellow dwarf virus, a persistently transmitted virus, and for Potato virus Y, a non-persistently transmitted virus. We quantified the relative importance of each parameter on pathogen spread using Latin hypercube sampling with the statistical partial rank correlation coefficient technique. We found two general types of mechanisms in our model that increased the rate of pathogen spread. First, increasing factors such as vector intrinsic growth rate, carrying capacity, and departure rate from hosts (independent of whether these factors were condition-dependent) led to more vectors moving between hosts, which increased pathogen spread. Second, changing condition-dependent factors such as a vector's preference for settling on a host with a different infection status than itself, and vector tendency to leave a host of the same infection status, led to increased contact between hosts and vectors with different infection statuses, which also increased pathogen spread. Overall, our findings suggest that vector population growth rates had the greatest influence on rates of virus

  4. Populations in clonal plants

    Directory of Open Access Journals (Sweden)

    Jussi Tammisola

    1986-12-01

    Full Text Available Population phenomena in higher plants are reviewed critically, particularly in relation to clonality. An array of concepts used in the field are discussed. In contrast to animals, higher plants are modular in structure. Plant populations show hierarchy at two levels: ramets and genets. In addition, their demography is far more complicated, since even the direction of development of a ramet may change by rejuvenation. Therefore, formulae concerning animal populations often require modification for plants. Furthermore, at the zygotic stage, higher plants are generally less mobile than animals. Accordingly, their population processes tend to be more local. Most populations of plants have a genetic structure: alleles and genotypes are spatially aggregated. Due to the short-ranged foraging behaviour of pollinators, genetically non-random pollination prevails. A generalized formula for parent-offspring dispersal variance is derived. It is used to analyze the effect of clonality on genetic patchiness in populations. In self-compatible species, an increase in clonality will tend to increase the degree of patchiness, while in self-incompatible species a decrease may result. Examples of population structure studies in different species are presented. A considerable degree of genetic variation appears to be found also in the populations of species with a strong allocation of resources to clonal growth or apomictic seed production. Some consequences of clonality are considered from the point of view of genetic conservation and plant breeding.

  5. Effects of host-plant population size and plant sex on a specialist leaf-miner

    DEFF Research Database (Denmark)

    Bañuelos, María-José; Kollmann, Johannes Christian

    2011-01-01

    of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different...... punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively...... stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size...

  6. Size asymmetry in intraspecific competition and the density-dependence of inbreeding depression in a natural plant population: a case study in cassava (Manihot esculenta Crantz, Euphorbiaceae).

    Science.gov (United States)

    Pujol, B; McKey, D

    2006-01-01

    The effects of competition on the genetic composition of natural populations are not well understood. We combined demography and molecular genetics to study how intraspecific competition affects microevolution in cohorts of volunteer plants of cassava (Manihot esculenta) originating from seeds in slash-and-burn fields of Palikur Amerindians in French Guiana. In this clonally propagated crop, genotypic diversity is enhanced by the incorporation of volunteer plants into farmers' stocks of clonal propagules. Mortality of volunteer plants was density-dependent. Furthermore, the size asymmetry of intraspecific competition increased with local clustering of plants. Size of plants was correlated with their multilocus heterozygosity, and stronger size-dependence of survival in clusters of plants, compared with solitary plants, increased the magnitude of inbreeding depression when competition was severe. The density-dependence of inbreeding depression of volunteer plants helps explain the high heterozygosity of volunteers that survive to harvest time and thus become candidates for clonal propagation. This effect could help favour the maintenance of sex in this 'vegetatively' propagated crop plant.

  7. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    Energy Technology Data Exchange (ETDEWEB)

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{sub t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.

  8. Ability of matrix models to explain the past and predict the future of plant populations.

    Science.gov (United States)

    McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.

    2013-01-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  9. Ability of matrix models to explain the past and predict the future of plant populations.

    Science.gov (United States)

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S

    2013-10-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. © 2013 Society for Conservation Biology.

  10. Effects of host-plant population size and plant sex on a specialist leaf-miner

    Science.gov (United States)

    Bañuelos, María-José; Kollmann, Johannes

    2011-03-01

    Animal population density has been related to resource patch size through various hypotheses such as those derived from island biogeography and resource concentration theory. This theoretical framework can be also applied to plant-herbivore interactions, and it can be modified by the sex of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size was negatively related to leaf-miner prevalence, with larger egg and mine densities in small populations. Percentage of eggs hatching and developing into mines, and percentage of adult flies emerging from mines also differed among host populations, but were not related to population size or host cover. Feeding punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively correlated with emergence of the larvae. The inverse effects of host population size were not in line with predictions based on island biogeography and resource concentration theory. We discuss how a thorough knowledge of the immigration behaviour of this fly might help to understand the patterns found.

  11. Model of yield response of corn to plant population and absorption of solar energy.

    Directory of Open Access Journals (Sweden)

    Allen R Overman

    Full Text Available Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1 and g plant(-1 on plant population (plants m(-2. Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L. grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m (Mg ha(-1 for maximum yield at high plant population and c (m(2 plant(-1 for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c = 1/c (plants m(-2. The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c were very similar for the three field studies with the same crop species.

  12. Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants.

    Science.gov (United States)

    Miller, Tom E X

    2007-07-01

    1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.

  13. Experimental evidence that density dependence strongly influences plant invasions through fragmented landscapes.

    Science.gov (United States)

    Williams, Jennifer L; Levine, Jonathan M

    2018-04-01

    Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.

  14. Nuclear power plants in populated areas

    International Nuclear Information System (INIS)

    Wachsmann, F.

    1973-01-01

    The article first deals with the permanently increasing demand for electical power. Considering the ever growing energy demand which can no longer be covered by conventional power plants, it has become necessary to set up nuclear power plants of larger range. The author presents in a survey the basic function of nuclear power plants as well as the resulting risks and safety measures. The author concludes that according to present knowledge there is no more need to erect nuclear power plants outside densely populated urban areas but there is now the possibility of erecting nuclear power plants in densely populated areas. (orig./LH) [de

  15. A consumer-resource approach to the density-dependent population dynamics of mutualism.

    Science.gov (United States)

    Holland, J Nathaniel; DeAngelis, Donald L

    2010-05-01

    Like predation and competition, mutualism is now recognized as a consumer-resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant-mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  16. A consumer-resource approach to the density-dependent population dynamics of mutualism

    Science.gov (United States)

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2010-01-01

    Like predation and competition, mutualism is now recognized as a consumer resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant- mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  17. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots

    Science.gov (United States)

    Picard, Christine; Bosco, Marco

    2008-01-01

    Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

  18. Matrix population models from 20 studies of perennial plant populations

    Science.gov (United States)

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  19. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth.

    Science.gov (United States)

    Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F

    2015-10-01

    The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.

  20. Low crop plant population densities promote pollen-mediated gene flow in spring wheat (Triticum aestivum L.).

    Science.gov (United States)

    Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C

    2009-12-01

    Transgenic wheat is currently being field tested with the intent of eventual commercialization. The development of wheat genotypes with novel traits has raised concerns regarding the presence of volunteer wheat populations and the role they may play in facilitating transgene movement. Here, we report the results of a field experiment that investigated the potential of spring wheat plant population density and crop height to minimize gene flow from a herbicide-resistant (HR) volunteer population to a non-HR crop. Pollen-mediated gene flow (PMGF) between the HR volunteer wheat population and four conventional spring wheat genotypes varying in height was assessed over a range of plant population densities. Natural hybridization events between the two cultivars were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) families. PMGF was strongly associated with crop yield components, but showed no association with flowering synchrony. Maximum observed PMGF was always less than 0.6%, regardless of crop height and density. The frequency of PMGF in spring wheat decreased exponentially with increasing plant population density, but showed no dependence on either crop genotype or height. However, increasing plant densities beyond the recommended planting rate of 300 cropped wheat plants m(-2) provided no obvious benefit to reducing PMGF. Nevertheless, our results demonstrate a critical plant density of 175-200 cropped wheat plants m(-2) below which PMGF frequencies rise exponentially with decreasing plant density. These results will be useful in the development of mechanistic models and best management practices that collectively facilitate the coexistence of transgenic and nontransgenic wheat crops.

  1. Managing Natural and Reintroduced Rare Plant Populations within a Large Government Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, T M; Paterson, L E; Alfaro, T M

    2009-07-15

    California is home to many large government reservations that have been in existence for decades. Many of these reservations were formed to support various Department of Defense and Department of Energy national defense activities. Often, only a very small percentage of the reservation is actively used for programmatic activities, resulting in large areas of intact habitat. In some cases, this has benefited rare plant populations, as surrounding lands have been developed for residential or industrial use. However, land management activities such as the suppression or active use of fire and other disturbance (such as fire trail grading) can also work to either the detriment or benefit of rare plant populations at these sites. A management regime that is beneficial to the rare plant populations of interest and is at best consistent with existing site programmatic activities, and at a minimum does not impact such activities, has the best potential for a positive outcome. As a result, some species may be 'difficult' while others may be 'easy' to manage in this context, depending on how closely the species biological requirements match the programmatic activities on the reservation. To illustrate, we compare and contrast two rare annual plant species found at Lawrence Livermore National Laboratory's Site 300. Although several populations of Amsinckia grandiflora have been restored on the site, and all populations are intensively managed, this species continues to decline. In contrast, Blepharizonia plumosa appears to take advantage of the annual controlled burns conducted on the site, and is thriving.

  2. The effect of plant population and nitrogen fertilizer on

    Directory of Open Access Journals (Sweden)

    mohamad reza asgaripor

    2009-06-01

    Full Text Available Interest has increased towards hemp (Cannabis sativa L. fibre production due to renewed demand for natural fibre in the world. A Study was conducted in 2005 at Shirvan in Northern Khorasan province, Iran, to determine the effects of three plant populations (30, 90 and 150 plant per m2 and three rates of nitrogen application (50, 150 and 250 kg N per ha on final stand, stalk height, basal stalk diameter, total stalk yield as well as fibre content from stalk and fibre yield in male and female plants. A split plot experimental with three replications was used. The result indicated that due to enhanced competition for light at higher population on density and N2 level plant mortality was higher than other treatment Morphological characteristics were highly correlated with plant sexual, plant population and nitrogen fertilizer. Highest stem, leaf and inflorescence yield were obtained at 250 plant m-2 when 150 kg N ha-1 was used. Lowest plant density did not show self-thinning but reduced above ground dry matter. Shoot dry matter increased with increasing plant density and nitrogen supply. Apparently, fibre content was greater at medium density and lowest nitrogen fertilizer, however, fibre yield was greatest at highest plant population and nitrogen fertilizer. In terms of fibre yield, approximate 31.7% of the fibre was located in the bottom parts, 22.4% in the middle and only 9.9% in the top part of the stem. The results suggest that hemp can yield large quantities of useful fibre at Shirvan when planted in proper plant densities and suitable nitrogen fertilizer.

  3. Projecting the success of plant restoration with population viability analysis

    Science.gov (United States)

    Bell, T.J.; Bowles, M.L.; McEachern, A.K.; Brigham, C.A.; Schwartz, M.W.

    2003-01-01

    Conserving viable populations of plant species requires that they have high probabilities of long-term persistence within natural habitats, such as a chance of extinction in 100 years of less than 5% (Menges 1991, 1998; Brown 1994; Pavlik 1994; Chap. 1, this Vol.). For endangered and threatened species that have been severely reduces in range and whose habitats have been fragmented, important species conservation strategies may include augmenting existing populations or restoring new viable populations (Bowles and Whelan 1994; Chap. 2, this Vol.). Restoration objectives may include increasing population numbers to reduce extinction probability, deterministic manipulations to develop a staged cohort structure, or more complex restoration of a desired genetic structure to allow outcrossing or increase effective population size (DeMauro 1993, 1994; Bowles et al. 1993, 1998; Pavlik 1994; Knapp and Dyer 1998; Chap. 2, this Vol.). These efforts may require translocation of propagules from existing (in situ) populations, or from ex situ botanic gardens or seed storage facilities (Falk et al. 1996; Guerrant and Pavlik 1998; Chap. 2, this Vol.). Population viability analysis (PVA) can provide a critical foundation for plant restoration, as it models demographic projections used to evaluate the probability of population persistence and links plant life history with restoration strategies. It is unknown how well artificially created populations will meet demographic modeling requirements (e.g., due to artificial cohort transitions) and few, if any, PVAs have been applied to restorations. To guide application of PVA to restored populations and to illustrate potential difficulties, we examine effects of planting different life stages, model initial population sizes needed to achieve population viability, and compare demographic characteristics between natural and restored populations. We develop and compare plant population restoration viability analysis (PRVA) case studies of

  4. Population trends around nuclear power plants

    International Nuclear Information System (INIS)

    Greenberg, M.; Krueckeberg, D.A.; Kaltman, M.

    1984-01-01

    Site selection criteria used by the Nuclear Regulatory Commission emphasize the selection of low population areas in which little growth is anticipated. This research examines population growth after site selection for the period 1960 to 1980 for forty-three operating sites. Substantial increments of population increase were found, only partially explained by national, regional, and host county growth trends impacting local host areas. These local components of change became especially important in the decade of the 1970s, when most of the plants were in full operation. The decade of the 1970s also saw a marked shift from the geographic pattern of growth of the 60s, when few plants were in operation. These larger and different growth components of the 1970s, also unexplained by preliminary analysis of correlation with coastal locations and degree of urbanization, are classified into categories with high potential and interest for further research

  5. Assessment of Genetic Heterogeneity in Structured Plant Populations Using Multivariate Whole-Genome Regression Models.

    Science.gov (United States)

    Lehermeier, Christina; Schön, Chris-Carolin; de Los Campos, Gustavo

    2015-09-01

    Plant breeding populations exhibit varying levels of structure and admixture; these features are likely to induce heterogeneity of marker effects across subpopulations. Traditionally, structure has been dealt with as a potential confounder, and various methods exist to "correct" for population stratification. However, these methods induce a mean correction that does not account for heterogeneity of marker effects. The animal breeding literature offers a few recent studies that consider modeling genetic heterogeneity in multibreed data, using multivariate models. However, these methods have received little attention in plant breeding where population structure can have different forms. In this article we address the problem of analyzing data from heterogeneous plant breeding populations, using three approaches: (a) a model that ignores population structure [A-genome-based best linear unbiased prediction (A-GBLUP)], (b) a stratified (i.e., within-group) analysis (W-GBLUP), and (c) a multivariate approach that uses multigroup data and accounts for heterogeneity (MG-GBLUP). The performance of the three models was assessed on three different data sets: a diversity panel of rice (Oryza sativa), a maize (Zea mays L.) half-sib panel, and a wheat (Triticum aestivum L.) data set that originated from plant breeding programs. The estimated genomic correlations between subpopulations varied from null to moderate, depending on the genetic distance between subpopulations and traits. Our assessment of prediction accuracy features cases where ignoring population structure leads to a parsimonious more powerful model as well as others where the multivariate and stratified approaches have higher predictive power. In general, the multivariate approach appeared slightly more robust than either the A- or the W-GBLUP. Copyright © 2015 by the Genetics Society of America.

  6. Effects of an invasive plant on population dynamics in toads.

    Science.gov (United States)

    Greenberg, Daniel A; Green, David M

    2013-10-01

    When populations decline in response to unfavorable environmental change, the dynamics of their population growth shift. In populations that normally exhibit high levels of variation in recruitment and abundance, as do many amphibians, declines may be difficult to identify from natural fluctuations in abundance. However, the onset of declines may be evident from changes in population growth rate in sufficiently long time series of population data. With data from 23 years of study of a population of Fowler's toad (Anaxyrus [ = Bufo] fowleri) at Long Point, Ontario (1989-2011), we sought to identify such a shift in dynamics. We tested for trends in abundance to detect a change point in population dynamics and then tested among competing population models to identify associated intrinsic and extrinsic factors. The most informative models of population growth included terms for toad abundance and the extent of an invasive marsh plant, the common reed (Phragmites australis), throughout the toads' marshland breeding areas. Our results showed density-dependent growth in the toad population from 1989 through 2002. After 2002, however, we found progressive population decline in the toads associated with the spread of common reeds and consequent loss of toad breeding habitat. This resulted in reduced recruitment and population growth despite the lack of significant loss of adult habitat. Our results underscore the value of using long-term time series to identify shifts in population dynamics coincident with the advent of population decline. © 2013 Society for Conservation Biology.

  7. Population and prehistory I: Food-dependent population growth in constant environments.

    Science.gov (United States)

    Lee, Charlotte T; Tuljapurkar, Shripad

    2008-06-01

    We present a demographic model that describes the feedbacks between food supply, human mortality and fertility rates, and labor availability in expanding populations, where arable land area is not limiting. This model provides a quantitative framework to describe how environment, technology, and culture interact to influence the fates of preindustrial agricultural populations. We present equilibrium conditions and derive approximations for the equilibrium population growth rate, food availability, and other food-dependent measures of population well-being. We examine how the approximations respond to environmental changes and to human choices, and find that the impact of environmental quality depends upon whether it manifests through agricultural yield or maximum (food-independent) survival rates. Human choices can complement or offset environmental effects: greater labor investments increase both population growth and well-being, and therefore can counteract lower agricultural yield, while fertility control decreases the growth rate but can increase or decrease well-being. Finally we establish equilibrium stability criteria, and argue that the potential for loss of local stability at low population growth rates could have important consequences for populations that suffer significant environmental or demographic shocks.

  8. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    Science.gov (United States)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  9. Ecological and population genetics of locally rare plants: A review

    Science.gov (United States)

    Simon A. Lei

    2001-01-01

    Plant species with limited dispersal ability, narrow geographical and physiological tolerance ranges, as well as with specific habitat and ecological requirements are likely to be rare. Small and isolated populations and species contain low levels of within-population genetic variation in many plant species. The gene pool of plants is a product of phenotype-environment...

  10. Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa.

    Science.gov (United States)

    Belz, Regina G; Patama, Marjo; Sinkkonen, Aki

    2018-08-01

    Toxicants are known to have negligible or stimulatory, i.e. hormetic, effects at low doses below those that decrease the mean response of a plant population. Our earlier observations indicated that at such low toxicant doses the growth of very fast- and slow-growing seedlings is selectively altered, even if the population mean remains constant. Currently, it is not known how common these selective low-dose effects are, whether they are similar among fast- and slow-growing seedlings, and whether they occur concurrently with hormetic effects. We tested the response of Lactuca sativa in complete dose-response experiments to six different toxicants at doses that did not decrease population mean and beyond. The tested toxicants were IAA, parthenin, HHCB, 4-tert-octylphenol, glyphosate, and pelargonic acid. Each experiment consisted of 14,400-16,800 seedlings, 12-14 concentrations, 24 replicates per concentration and 50 germinated seeds per replicate. We analyzed the commonness of selective low-dose effects and explored if toxic effects and hormetic stimulation among fast- and slow-growing individuals occurred at the same concentrations as they occur at the population level. Irrespective of the observed response pattern and toxicant, selective low-dose effects were found. Toxin effects among fast-growing individuals usually started at higher doses compared to the population mean, while the opposite was found among slow-growing individuals. Very low toxin exposures tended to homogenize plant populations due to selective effects, while higher, but still hormetic doses tended to heterogenize plant populations. Although the extent of observed size segregation varied with the specific toxin tested, we conclude that a dose-dependent alteration in size distribution of a plant population may generally apply for many toxin exposures. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Host plant adaptation in Drosophila mettleri populations.

    Directory of Open Access Journals (Sweden)

    Sergio Castrezana

    Full Text Available The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total. We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp. in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  12. A mechanistic analysis of density dependence in algal population dynamics

    Directory of Open Access Journals (Sweden)

    Adrian eBorlestean

    2015-04-01

    Full Text Available Population density regulation is a fundamental principle in ecology, but the specific process underlying functional expression of density dependence remains to be fully elucidated. One view contends that patterns of density dependence are largely fixed across a species irrespective of environmental conditions, whereas another is that the strength and expression of density dependence are fundamentally variable depending on the nature of exogenous or endogenous constraints acting on the population. We conducted a study investigating the expression of density dependence in Chlamydomonas spp. grown under a gradient from low to high nutrient density. We predicted that the relationship between per capita growth rate (pgr and population density would vary from concave up to concave down as nutrient density became less limiting and populations experienced weaker density regulation. Contrary to prediction, we found that the relationship between pgr and density became increasingly concave-up as nutrient levels increased. We also found that variation in pgr increased, and pgr levels reached higher maxima in nutrient-limited environments. Most likely, these results are attributable to population growth suppression in environments with high intraspecific competition due to limited nutrient resources. Our results suggest that density regulation is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density dependence depends extensively on local conditions. Additional experimental work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time.

  13. Conservation state of populations of rare plant species in highly transformed meadow steppes of Southern Opillya

    Directory of Open Access Journals (Sweden)

    I. I. Dmytrash-Vatseba

    2016-09-01

    Full Text Available Degradation of natural habitats causes rapid extinction of rare plant populations. The diversity of rare plant species in the meadow steppes of Southern Opillya (Western Ukraine depends strongly on patch area, pasture digression of vegetation and a variety of eco-coenotical conditions. The main threats for the rare components of the meadow steppe flora are reduction of habitat and overgrazing. Spatial connections between sites are unable to support a constant rare plant population. The analysis of the composition of rare plant meadow-steppe species indicated that habitats with similar rare species composition usually have similar parameters of area, stages of pasture digression and eco-coenotical conditions. Spatial connectivity of patches does not ensure species similarity of rare components of the flora. Rare plant species were grouped according to their preferences for habitat , area and condition. In small patches subject to any stage of pasture digression grow populations of Adonis vernalis L., Pulsatilla patens (L. Mill., P. grandis Wender., Stipa capillata L., S. рennata L., Chamaecytisus blockianus (Pawł. Klásková etc. On the contrary, populations of other species (Carlina onopordifolia Besser. ex Szafer., Kuecz. et Pawł., Adenophora liliifolia (L. Ledeb. ex A. DC., Crambe tataria Sebeók, Euphorbia volhynica Besser ex Racib., Stipa tirsa Stev. etc. prefer large habitats, not changed by pasture digression. Prevention of reduction of rare species diversity requires preservation (also extension of patch area and regulation of grazing intensity.

  14. Uncoupling the effects of seed predation and seed dispersal by granivorous ants on plant population dynamics.

    Directory of Open Access Journals (Sweden)

    Xavier Arnan

    Full Text Available Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation and benefits (seed dispersal, the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength.

  15. Impact of tillage, plant population and mulches on phenological characters of maize

    International Nuclear Information System (INIS)

    Gul, B.; Khan, M.A.; Khan, H.

    2014-01-01

    Field experiments were conducted during 2006 and 2007 in Peshawar, using open pollinated maize variety Azam in RCB design having 3 factors viz., tillage, maize populations and mulches with split-split plot arrangements. Tillage levels (zero and conventional) were assigned to the main plots, populations (90000, 60000 and 30000 plants ha/sup -1/) to sub-plots and four types of mulches (weeds mulch, black plastic mulch, white plastic mulch and mungbean as living mulch), a hand weeding and a weedy check were allotted to sub-sub plots, respectively. Data were recorded on days to tasseling, days to silking, days to maturity, leaf area of maize plant-1 (cm/sub 2/) and plant height (cm). Tillage affected leaf area of maize, where zero tillage resulted lower leaf area of 4094 cm/sub 2/ compared to conventional tillage (4722 cm/sub 2/). Different levels of plant populations affected all the physiological parameters. Days to tasseling, silking and maturity were more in higher plant population as compared to medium and lower plant population. Similarly, minimum leaf area plant-1 was recorded in higher plant population (3894 cm/sub 2/) than medium and lower plant population of 4398 and 4932 cm/sub 2/, respectively. Maximum plant height was recorded in hand weeding treatment (173 cm). However, it was statistically at par with black plastic mulch (171 cm), followed by weeds mulch (162 cm) and white plastic mulch (161 cm) as compared to weedy check (152 cm). Based on two years study it is suggested that even if tillage options and plant populations are a part of the weed management program, it should not be used as a sole management tool, as both have a negative impact on the phenological parameters of maize which subsequently affected the final yield and must be integrated and supplemented with other control methods. (author)

  16. Ecological context of the evolution of self-pollination in Clarkia xantiana: population size, plant communities, and reproductive assurance.

    Science.gov (United States)

    Moeller, David A; Geber, Monica A

    2005-04-01

    The repeated evolutionary transition from outcrossing to self-pollination in flowering plants has been suggested to occur because selfing provides reproductive assurance. Reports from biogeographical and ecological surveys indicate that selfing taxa are often associated with stressful and ephemeral environments, situations in which plant abundance is low (e.g., Baker's law) and with novel plant communities, however experimental tests of ecological hypotheses are few. In this study, we examined the ecological context of selection on mating system traits (herkogamy and protandry) in a California annual, Clarkia xantiana, where natural selfing populations differ from outcrossing populations in that they are often of small size or low density and occur mainly outside the range of pollinator-sharing congeners. We constructed artificial populations of plants with broad genetic variation in floral traits and manipulated two ecological factors, plant population size, and the presence versus absence of pollinator-sharing congeners, in the center of the geographic range of outcrossing populations. We found evidence for context-dependent selection on herkogamy and protandry via female fitness in which reduced traits, which promote autonomous selfing, were favored in small populations isolated from congeners whereas selection was comparatively weak in large populations or when congeners were present. In small, isolated populations, the fertility of plants with low herkogamy or protandry was elevated by 66% and 58%, respectively, compared to those with high herkogamy or protandry. The presence of pollinator-sharing congeners augmented bee visitation rates to C. xantiana flowers by 47% for all bees and by 93% for pollen specialists. By facilitating pollinator visitation, congeners mitigated selection on mating system traits in small populations, where outcross mating success is often low (the Allee effect). We also found support for the hypothesis that pollinator availability

  17. Population and prehistory III: food-dependent demography in variable environments.

    Science.gov (United States)

    Lee, Charlotte T; Puleston, Cedric O; Tuljapurkar, Shripad

    2009-11-01

    The population dynamics of preindustrial societies depend intimately on their surroundings, and food is a primary means through which environment influences population size and individual well-being. Food production requires labor; thus, dependence of survival and fertility on food involves dependence of a population's future on its current state. We use a perturbation approach to analyze the effects of random environmental variation on this nonlinear, age-structured system. We show that in expanding populations, direct environmental effects dominate induced population fluctuations, so environmental variability has little effect on mean hunger levels, although it does decrease population growth. The growth rate determines the time until population is limited by space. This limitation introduces a tradeoff between population density and well-being, so population effects become more important than the direct effects of the environment: environmental fluctuation increases mortality, releasing density dependence and raising average well-being for survivors. We discuss the social implications of these findings for the long-term fate of populations as they transition from expansion into limitation, given that conditions leading to high well-being during growth depress well-being during limitation.

  18. Evolution in plant populations as a driver of ecological changes in arthropod communities.

    Science.gov (United States)

    Johnson, Marc T J; Vellend, Mark; Stinchcombe, John R

    2009-06-12

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  19. Evolution in plant populations as a driver of ecological changes in arthropod communities

    Science.gov (United States)

    Johnson, Marc T.J.; Vellend, Mark; Stinchcombe, John R.

    2009-01-01

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  20. Human population, grasshopper and plant species richness in European countries

    Science.gov (United States)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  1. Novel synthetic Medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of Medea-dependent population suppression.

    Science.gov (United States)

    Akbari, Omar S; Chen, Chun-Hong; Marshall, John M; Huang, Haixia; Antoshechkin, Igor; Hay, Bruce A

    2014-12-19

    Insects act as vectors for diseases of plants, animals, and humans. Replacement of wild insect populations with genetically modified individuals unable to transmit disease provides a potentially self-perpetuating method of disease prevention. Population replacement requires a gene drive mechanism in order to spread linked genes mediating disease refractoriness through wild populations. We previously reported the creation of synthetic Medea selfish genetic elements able to drive population replacement in Drosophila. These elements use microRNA-mediated silencing of myd88, a maternally expressed gene required for embryonic dorso-ventral pattern formation, coupled with early zygotic expression of a rescuing transgene, to bring about gene drive. Medea elements that work through additional mechanisms are needed in order to be able to carry out cycles of population replacement and/or remove existing transgenes from the population, using second-generation elements that spread while driving first-generation elements out of the population. Here we report the synthesis and population genetic behavior of two new synthetic Medea elements that drive population replacement through manipulation of signaling pathways involved in cellular blastoderm formation or Notch signaling, demonstrating that in Drosophila Medea elements can be generated through manipulation of diverse signaling pathways. We also describe the mRNA and small RNA changes in ovaries and early embryos associated from Medea-bearing females. Finally, we use modeling to illustrate how Medea elements carrying genes that result in diapause-dependent female lethality could be used to bring about population suppression.

  2. Does responsiveness to arbuscular mycorrhizas depend on plant invasive status?

    Science.gov (United States)

    1. Some posit invasive alien plants are less dependent on mycorrhizal associations than native plants, and thus weak mycorrhizal responsiveness may be a general mechanism of plant invasion. 2. Here, we tested whether mycorrhizal responsiveness varies by plant invasive status while controlling for ph...

  3. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context.

    Science.gov (United States)

    Terhorst, Casey P; Lennon, Jay T; Lau, Jennifer A

    2014-06-22

    Evolution can occur on ecological time-scales, affecting community and ecosystem processes. However, the importance of evolutionary change relative to ecological processes remains largely unknown. Here, we analyse data from a long-term experiment in which we allowed plant populations to evolve for three generations in dry or wet soils and used a reciprocal transplant to compare the ecological effect of drought and the effect of plant evolutionary responses to drought on soil microbial communities and nutrient availability. Plants that evolved under drought tended to support higher bacterial and fungal richness, and increased fungal : bacterial ratios in the soil. Overall, the magnitudes of ecological and evolutionary effects on microbial communities were similar; however, the strength and direction of these effects depended on the context in which they were measured. For example, plants that evolved in dry environments increased bacterial abundance in dry contemporary environments, but decreased bacterial abundance in wet contemporary environments. Our results suggest that interactions between recent evolutionary history and ecological context affect both the direction and magnitude of plant effects on soil microbes. Consequently, an eco-evolutionary perspective is required to fully understand plant-microbe interactions.

  4. The psychological correlates of dependency in the Jamaican population.

    Science.gov (United States)

    Walcott, G; Hickling, F W

    2013-01-01

    To establish the prevalence of psychological dependency in the Jamaican society in order to examine the relationship between the psychological correlates of dependency and socio-political dependency in this post-colonial country. A total of 1506 adult individuals were sampled from 2150 households using a stratified sampling method and assessed using the 17 questions of the Jamaica Personality Disorder Inventory (JPDI) on the phenomenology of dependency that are grouped into the psychological features of physiological dependency, financial dependency, and psychological dependency. The database of responses to the demographic and JPDI questionnaires was created and analysed using the Statistical Package for the Social Sciences (SPSS) version 17. Of the national population sampled, 77.1% denied having any of these phenomenological symptoms of dependence while 22.63% of the population admitted to having some phenomenology of dependency, ranging from mild (5.6%), to moderate (12.1), or severe (4.9%). Substance use (physiological dependency) responders accounted for 21.23%, financial dependency responders for 43.45%, and psychological dependency responders for 15.96%. Significant gender and socio-economic class patterns of dependency were revealed. This substantial swathe of the Jamaican population acknowledged their own dependency and behavioural withdrawal response to physical or emotional loss in their life, and reported having dependency problems in managing their financial and monetary affairs. Three-quarters of the Jamaican responders of this survey ostensibly are free of the phenomenology of dependency while a more vulnerable one-quarter has insight that they are still locked in a struggle for psychological independence. The political and economic relations between psychological dependency and socio-political dependency are discussed.

  5. Ambit determination method in estimating rice plant population density

    Directory of Open Access Journals (Sweden)

    Abu Bakar, B.,

    2017-11-01

    Full Text Available Rice plant population density is a key indicator in determining the crop setting and fertilizer application rate. It is therefore essential that the population density is monitored to ensure that a correct crop management decision is taken. The conventional method of determining plant population is by manually counting the total number of rice plant tillers in a 25 cm x 25 cm square frame. Sampling is done by randomly choosing several different locations within a plot to perform tiller counting. This sampling method is time consuming, labour intensive and costly. An alternative fast estimating method was developed to overcome this issue. The method relies on measuring the outer circumference or ambit of the contained rice plants in a 25 cm x 25 cm square frame to determine the number of tillers within that square frame. Data samples of rice variety MR219 were collected from rice plots in the Muda granary area, Sungai Limau Dalam, Kedah. The data were taken at 50 days and 70 days after seeding (DAS. A total of 100 data samples were collected for each sampling day. A good correlation was obtained for the variety of 50 DAS and 70 DAS. The model was then verified by taking 100 samples with the latching strap for 50 DAS and 70 DAS. As a result, this technique can be used as a fast, economical and practical alternative to manual tiller counting. The technique can potentially be used in the development of an electronic sensing system to estimate paddy plant population density.

  6. Novel Synthetic Medea selfish genetic elements drive population replacement in Drosophila, and a theoretical exploration of Medea-dependent population suppression

    Science.gov (United States)

    Akbari, Omar S.; Chen, Chun-Hong; Marshall, John M.; Huang, Haixia; Antoshechkin, Igor; Hay, Bruce A.

    2013-01-01

    Insects act as vectors for diseases of plants, animals and humans. Replacement of wild insect populations with genetically modified individuals unable to transmit disease provides a potentially self-perpetuating method of disease prevention. Population replacement requires a gene drive mechanism in order to spread linked genes mediating disease refractoriness through wild populations. We previously reported the creation of synthetic Medea selfish genetic elements able to drive population replacement in Drosophila. These elements use microRNA-mediated silencing of myd88, a maternally expressed gene required for embryonic dorso-ventral pattern formation, coupled with early zygotic expression of a rescuing transgene, to bring about gene drive. Medea elements that work through additional mechanisms are needed in order to be able to carry out cycles of population replacement and/or remove existing transgenes from the population, using second-generation elements that spread while driving first-generation elements out of the population. Here we report the synthesis and population genetic behavior of two new synthetic Medea elements that drive population replacement through manipulation of signaling pathways involved in cellular blastoderm formation or Notch signaling, demonstrating that in Drosophila Medea elements can be generated through manipulation of diverse signaling pathways. We also describe the mRNA and small RNA changes in ovaries and early embryos associated from Medea-bearing females. Finally, we use modeling to illustrate how Medea elements carrying genes that result in diapause-dependent female lethality could be used to bring about population suppression. PMID:23654248

  7. Nitrogen and plant population change radiation capture and utilization capacity of sunflower in semi-arid environment.

    Science.gov (United States)

    Awais, Muhammad; Wajid, Aftab; Bashir, Muhammad Usman; Habib-Ur-Rahman, Muhammad; Raza, Muhammad Aown Sammar; Ahmad, Ashfaq; Saleem, Muhammad Farrukh; Hammad, Hafiz Mohkum; Mubeen, Muhammad; Saeed, Umer; Arshad, Muhammad Naveed; Fahad, Shah; Nasim, Wajid

    2017-07-01

    The combination of nitrogen and plant population expresses the spatial distribution of crop plants. The spatial distribution influences canopy structure and development, radiation capture, accumulated intercepted radiation (Sa), radiation use efficiency (RUE), and subsequently dry matter production. We hypothesized that the sunflower crop at higher plant populations and nitrogen (N) rates would achieve early canopy cover, capture more radiant energy, utilize radiation energy more efficiently, and ultimately increase economic yield. To investigate the above hypothesis, we examined the influences of leaf area index (LAI) at different plant populations (83,333, 66,666, and 55,555 plants ha -1 ) and N rates (90, 120, and 150 kg ha -1 ) on radiation interception (Fi), photosynthetically active radiation (PAR) accumulation (Sa), total dry matter (TDM), achene yield (AY), and RUE of sunflower. The experimental work was conducted during 2012 and 2013 on sandy loam soil in Punjab, Pakistan. The sunflower crop captured more than 96% of incident radiant energy (mean of all treatments), 98% with a higher plant population (83,333 plants ha -1 ), and 97% with higher N application (150 kg ha -1 ) at the fifth harvest (60 days after sowing) during both study years. The plant population of 83,333 plants ha -1 with 150 kg N ha -1 ominously promoted crop, RUE, and finally productivity of sunflower (AY and TDM). Sunflower canopy (LAI) showed a very close and strong association with Fi (R 2  = 0.99 in both years), PAR (R 2  = 0.74 and 0.79 in 2012 and 2013, respectively), TDM (R 2  = 0.97 in 2012 and 0.91 in 2013), AY (R 2  = 0.95 in both years), RUE for TDM (RUE TDM ) (R 2  = 0.63 and 0.71 in 2012 and 2013, respectively), and RUE for AY (RUE AY ) (R 2  = 0.88 and 0.87 in 2012 and 2013, respectively). Similarly, AY (R 2  = 0.73 in 2012 and 0.79 in 2013) and TDM (R 2  = 0.75 in 2012 and 0.84 in 2013) indicated significant dependence on PAR accumulation of

  8. Competition between Plant-Populations with Different Rooting Depths. 2. Pot Experiments

    NARCIS (Netherlands)

    Berendse, F.

    1981-01-01

    In a previous paper in this series a model was proposed lor the competition between plant populations with different rooting depths. This model predicts that in mixtures of plant populations with different rooting depths the Relative Yield Total will exceed unity. Secondly it predicts that in these

  9. Radiation burden of population in nuclear power plant siting

    International Nuclear Information System (INIS)

    Navratil, J.

    The significance is discussed of the determination of the radiobiological consequences of normal operation and design basis accidents in nuclear power plant siting. The basic diagram and brief description is given of the programme for calculating the radiation load of the population in the surroundings of the nuclear power plant. The programme consists of two subprogrammes, i.e., the dispersion of radioactive gases (for normal operation and for accidents), the main programme for the determination of biological consequences and one auxiliary programme (the distribution of the population in the surroundings of the power plant). The four most important types of exposure to ionizing radiation are considered, namely inhalation, external irradiation from a cloud, ingestion (water, milk, vegetables), external irradiation from the deposit. (B.S.)

  10. Lead and zinc accumulation and tolerance in populations of six wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Deng, H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China); Department of Environmental Science and Technology, East China Normal University, Shanghai (China); Ye, Z.H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China); School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou 510275 (China); Wong, M.H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China)]. E-mail: mhwong@hkbu.edu.hk

    2006-05-15

    Wetland plants such as Typha latifolia and Phragmites australis have been indicated to show a lack of evolution of metal tolerance in metal-contaminated populations. The aim of the present study is to verify whether other common wetland plants such as Alternanthera philoxeroides and Beckmannia syzigachne, also possess the same characteristics. Lead and zinc tolerances in populations of six species collected from contaminated and clean sites were examined by hydroponics. In general, the contaminated populations did not show higher metal tolerance and accumulation than the controls. Similar growth responses and tolerance indices in the same metal treatment solution between contaminated and control populations suggest that metal tolerance in wetland plants are generally not further evolved by contaminated environment. The reasons may be related to the special root anatomy in wetland plants, the alleviated metal toxicity by the reduced rooting conditions and the relatively high innate metal tolerance in some species. - Populations from metal contaminated sites did not have significantly higher metal tolerance indices.

  11. Lead and zinc accumulation and tolerance in populations of six wetland plants

    International Nuclear Information System (INIS)

    Deng, H.; Ye, Z.H.; Wong, M.H.

    2006-01-01

    Wetland plants such as Typha latifolia and Phragmites australis have been indicated to show a lack of evolution of metal tolerance in metal-contaminated populations. The aim of the present study is to verify whether other common wetland plants such as Alternanthera philoxeroides and Beckmannia syzigachne, also possess the same characteristics. Lead and zinc tolerances in populations of six species collected from contaminated and clean sites were examined by hydroponics. In general, the contaminated populations did not show higher metal tolerance and accumulation than the controls. Similar growth responses and tolerance indices in the same metal treatment solution between contaminated and control populations suggest that metal tolerance in wetland plants are generally not further evolved by contaminated environment. The reasons may be related to the special root anatomy in wetland plants, the alleviated metal toxicity by the reduced rooting conditions and the relatively high innate metal tolerance in some species. - Populations from metal contaminated sites did not have significantly higher metal tolerance indices

  12. Guideline on dependability management for the power industry: detailed description of international power plant equipment dependability indicators

    International Nuclear Information System (INIS)

    Procaccia, H.; Silberberg, S.

    1997-01-01

    Dependability Management involves the management of reliability, availability maintainability and maintenance support, and in the power industry is necessary to ensure that plant meets the Reliability, Availability and Maintainability (RAM) targets set by the Utilities. In 1993, a joint Standard on Dependability Programme Management - Part 1: Dependability Programme Management), ISO 9000-': 1993 (Quality Management and Quality Assurance Standards - Part 4: Guide to Dependability Programme Management). UNIPEDE established a group of experts (Nulethermaint) to produce guidelines on its implementation specifically for use in the power industry. The present document comprises Part 2 OF THE UNIPEDE plant performance indicators and can be applied to both nuclear and fossil plant. There are five different equipment dependability indicators, all relating to equipment maintenance activities and the impact that these activities have on the loss of both system function and unit capability. Per year, each of the indicators can be applied separately to both preventive maintenance and corrective maintenance, giving rise to as many as ten indicator values for each item of equipment. Used in this way, the indicators provide a comprehensive picture of the maintenance strategy employed for key pieces of equipment, and its effectiveness. They are, therefore, a valuable managerial tool for improving maintenance activities at the unit level within a utility. This document provides guidance on the division of both nuclear and fossil power plant into their component parts and in each case the types of equipment having the most dominant effect on dependability are identified. These are the items which merit the greatest attention with regard to the equipment dependability indicators. (authors)

  13. The Effect of Temperature and Host Plant Resistance on Population Growth of the Soybean Aphid Biotype 1 (Hemiptera: Aphididae).

    Science.gov (United States)

    Hough, Ashley R; Nechols, James R; McCornack, Brian P; Margolies, David C; Sandercock, Brett K; Yan, Donglin; Murray, Leigh

    2017-02-01

    A laboratory experiment was conducted to evaluate direct and indirect effects of temperature on demographic traits and population growth of biotype 1 of the soybean aphid, Aphis glycines Matsumura. Our objectives were to better understand how temperature influences the expression of host plant resistance, quantify the individual and interactive effects of plant resistance and temperature on soybean aphid population growth, and generate thermal constants for predicting temperature-dependent development on both susceptible and resistant soybeans. To assess indirect (plant-mediated) effects, soybean aphids were reared under a range of temperatures (15-30 °C) on soybean seedlings from a line expressing a Rag1 gene for resistance, and life history traits were quantified and compared to those obtained for soybean aphids on a susceptible soybean line. Direct effects of temperature were obtained by comparing relative differences in the magnitude of life-history traits among temperatures on susceptible soybeans. We predicted that temperature and host plant resistance would have a combined, but asymmetrical, effect on soybean aphid fitness and population growth. Results showed that temperature and plant resistance influenced preimaginal development and survival, progeny produced, and adult longevity. There also appeared to be a complex interaction between temperature and plant resistance for survival and developmental rate. Evidence suggested that the level of plant resistance increased at higher, but not lower, temperature. Soybean aphids required about the same number of degree-days to develop on resistant and susceptible plants. Our results will be useful for making predictions of soybean aphid population growth on resistant plants under different seasonal temperatures. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations.

    Science.gov (United States)

    Pan, Qingchun; Xu, Yuancheng; Li, Kun; Peng, Yong; Zhan, Wei; Li, Wenqiang; Li, Lin; Yan, Jianbing

    2017-10-01

    Plant architecture is a key factor affecting planting density and grain yield in maize ( Zea mays ). However, the genetic mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant height QTL, qPH3 , has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant architecture in maize breeding. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. The balance of planting and mortality in a street tree population

    Science.gov (United States)

    Lara A. Roman; John J. Battles; Joe R. McBride

    2013-01-01

    Street trees have aesthetic, environmental, human health, and economic benefits in urban ecosystems. Street tree populations are constructed by cycles of planting, growth, death, removal and replacement. The goals of this study were to understand how tree mortality and planting rates affect net population growth, evaluate the shape of the mortality curve, and assess...

  16. Highly Diverse Endophytic and Soil Fusarium oxysporum Populations Associated with Field-Grown Tomato Plants

    Science.gov (United States)

    Demers, Jill E.; Gugino, Beth K.

    2014-01-01

    The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1α gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. PMID:25304514

  17. Linking plant specialization to dependence in interactions for seed set in pollination networks.

    Science.gov (United States)

    Tur, Cristina; Castro-Urgal, Rocío; Traveset, Anna

    2013-01-01

    Studies on pollination networks have provided valuable information on the number, frequency, distribution and identity of interactions between plants and pollinators. However, little is still known on the functional effect of these interactions on plant reproductive success. Information on the extent to which plants depend on such interactions will help to make more realistic predictions of the potential impacts of disturbances on plant-pollinator networks. Plant functional dependence on pollinators (all interactions pooled) can be estimated by comparing seed set with and without pollinators (i.e. bagging flowers to exclude them). Our main goal in this study was thus to determine whether plant dependence on current insect interactions is related to plant specialization in a pollination network. We studied two networks from different communities, one in a coastal dune and one in a mountain. For ca. 30% of plant species in each community, we obtained the following specialization measures: (i) linkage level (number of interactions), (ii) diversity of interactions, and (iii) closeness centrality (a measure of how much a species is connected to other plants via shared pollinators). Phylogenetically controlled regression analyses revealed that, for the largest and most diverse coastal community, plants highly dependent on pollinators were the most generalists showing the highest number and diversity of interactions as well as occupying central positions in the network. The mountain community, by contrast, did not show such functional relationship, what might be attributable to their lower flower-resource heterogeneity and diversity of interactions. We conclude that plants with a wide array of pollinator interactions tend to be those that are more strongly dependent upon them for seed production and thus might be those more functionally vulnerable to the loss of network interaction, although these outcomes might be context-dependent.

  18. Linking plant specialization to dependence in interactions for seed set in pollination networks.

    Directory of Open Access Journals (Sweden)

    Cristina Tur

    Full Text Available Studies on pollination networks have provided valuable information on the number, frequency, distribution and identity of interactions between plants and pollinators. However, little is still known on the functional effect of these interactions on plant reproductive success. Information on the extent to which plants depend on such interactions will help to make more realistic predictions of the potential impacts of disturbances on plant-pollinator networks. Plant functional dependence on pollinators (all interactions pooled can be estimated by comparing seed set with and without pollinators (i.e. bagging flowers to exclude them. Our main goal in this study was thus to determine whether plant dependence on current insect interactions is related to plant specialization in a pollination network. We studied two networks from different communities, one in a coastal dune and one in a mountain. For ca. 30% of plant species in each community, we obtained the following specialization measures: (i linkage level (number of interactions, (ii diversity of interactions, and (iii closeness centrality (a measure of how much a species is connected to other plants via shared pollinators. Phylogenetically controlled regression analyses revealed that, for the largest and most diverse coastal community, plants highly dependent on pollinators were the most generalists showing the highest number and diversity of interactions as well as occupying central positions in the network. The mountain community, by contrast, did not show such functional relationship, what might be attributable to their lower flower-resource heterogeneity and diversity of interactions. We conclude that plants with a wide array of pollinator interactions tend to be those that are more strongly dependent upon them for seed production and thus might be those more functionally vulnerable to the loss of network interaction, although these outcomes might be context-dependent.

  19. Suppression of jasmonic acid-dependent defense in cotton plant by the mealybug Phenacoccus solenopsis.

    Directory of Open Access Journals (Sweden)

    Pengjun Zhang

    Full Text Available The solenopsis mealybug, Phenacoccus solenopsis, has been recently recognized as an aggressively invasive pest in China, and is now becoming a serious threat to the cotton industry in the country. Thus, it is necessary to investigate the molecular mechanisms employed by cotton for defending against P. solenopsis before the pest populations reach epidemic levels. Here, we examined the effects of exogenous jasmonic acid (JA, salicylic acid (SA, and herbivory treatments on feeding behavior and on development of female P. solenopsis. Further, we compared the volatile emissions of cotton plants upon JA, SA, and herbivory treatments, as well as the time-related changes in gossypol production and defense-related genes. Female adult P. solenopsis were repelled by leaves from JA-treated plant, but were not repelled by leaves from SA-treated plants. In contrast, females were attracted by leaves from plants pre-infested by P. solenopsis. The diverse feeding responses by P. solenopsis were due to the difference in volatile emission of plants from different treatments. Furthermore, we show that JA-treated plants slowed P. solenopsis development, but plants pre-infested by P. solenopsis accelerated its development. We also show that P. solenopsis feeding inhibited the JA-regulated gossypol production, and prevented the induction of JA-related genes. We conclude that P. solenopsis is able to prevent the activation of JA-dependent defenses associated with basal resistance to mealybugs.

  20. Are elderly dependency ratios associated with general population suicide rates?

    Science.gov (United States)

    Shah, Ajit

    2011-05-01

    The elderly population size is increasing worldwide due to falling birth rates and increasing life expectancy. It has been hypothesized that as the elderly dependency ratio (the ratio of those over the age of 65 years to those under 65) increases, there will be fewer younger people available to care for older people and this, in turn, will increase the burden on younger carers with increased levels of psychiatric morbidity leading to an increase in general population suicide rates. A cross-national study examining the relationship between elderly dependency ratios and general population suicide rates was conducted using data from the World Health Organization and the United Nations websites. The main findings were of a significant and independent positive correlation between elderly dependency ratios and general population suicide rates in both genders. The contribution of cross-national differences in psychiatric morbidity in younger carers on general population suicide rates requires further study. The prevalence of psychiatric morbidity in younger carers of older people should be examined by: (i) cross-national studies using standardized measures of psychiatric morbidity that are education-free, culture-fair and language-fair; and (ii) within-country longitudinal studies with changing elderly dependency ratios over time.

  1. State-dependent neutral delay equations from population dynamics.

    Science.gov (United States)

    Barbarossa, M V; Hadeler, K P; Kuttler, C

    2014-10-01

    A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations.

  2. Nitrogen rate and plant population effects on yield and yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... density and nitrogen rate increased plant height, lowest pod height, harvest index and seed yield. ... since some combine harvester heads are unable to pick ..... as effected by population density and plant distribution.

  3. Effects of long-term chronic exposure to radionuclides in plant populations

    International Nuclear Information System (INIS)

    Geras'kin, S.; Evseeva, T.; Oudalova, A.

    2013-01-01

    The results of field studies carried out on different plant species (winter rye and wheat, spring barley, oats, Scots pine, wild vetch, crested hairgrass) in various radioecological situations (nuclear weapon testing, the Chernobyl accident, uranium and radium processing) to investigate the effects of long-term chronic exposure to radionuclides are discussed. Plant populations growing in areas with relatively low levels of pollution are characterized by an increased level of both cytogenetic disturbances and genetic diversity. Although ionizing radiation causes primary damage at the molecular level, there are emergent effects at the level of populations, non-predictable from the knowledge of elementary mechanisms of cellular effects formation. Accumulation of cellular alterations may afterward influence biological parameters important for populations such as health and reproduction. Presented data provide evidence that in plant populations inhabiting heavily contaminated territories cytogenetic damage could be accompanied by a decrease in reproductive capacity. However, in less contaminated sites, because of the scarcity of data available, a steady relationship between cytogenetic effects and reproductive capacity was not revealed. Under radioactive contamination of the plant's environment, a population's resistance to exposure may increase. However, there are radioecological situations where an enhanced radioresistance has not evolved or has not persisted

  4. Do we need demographic data to forecast plant population dynamics?

    Science.gov (United States)

    Tredennick, Andrew T.; Hooten, Mevin B.; Adler, Peter B.

    2017-01-01

    Rapid environmental change has generated growing interest in forecasts of future population trajectories. Traditional population models built with detailed demographic observations from one study site can address the impacts of environmental change at particular locations, but are difficult to scale up to the landscape and regional scales relevant to management decisions. An alternative is to build models using population-level data that are much easier to collect over broad spatial scales than individual-level data. However, it is unknown whether models built using population-level data adequately capture the effects of density-dependence and environmental forcing that are necessary to generate skillful forecasts.Here, we test the consequences of aggregating individual responses when forecasting the population states (percent cover) and trajectories of four perennial grass species in a semi-arid grassland in Montana, USA. We parameterized two population models for each species, one based on individual-level data (survival, growth and recruitment) and one on population-level data (percent cover), and compared their forecasting accuracy and forecast horizons with and without the inclusion of climate covariates. For both models, we used Bayesian ridge regression to weight the influence of climate covariates for optimal prediction.In the absence of climate effects, we found no significant difference between the forecast accuracy of models based on individual-level data and models based on population-level data. Climate effects were weak, but increased forecast accuracy for two species. Increases in accuracy with climate covariates were similar between model types.In our case study, percent cover models generated forecasts as accurate as those from a demographic model. For the goal of forecasting, models based on aggregated individual-level data may offer a practical alternative to data-intensive demographic models. Long time series of percent cover data already exist

  5. Stimulus-dependent maximum entropy models of neural population codes.

    Directory of Open Access Journals (Sweden)

    Einat Granot-Atedgi

    Full Text Available Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME model-a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.

  6. Density dependence in a recovering osprey population: demographic and behavioural processes.

    Science.gov (United States)

    Bretagnolle, V; Mougeot, F; Thibault, J-C

    2008-09-01

    1. Understanding how density-dependent and independent processes influence demographic parameters, and hence regulate population size, is fundamental within population ecology. We investigated density dependence in growth rate and fecundity in a recovering population of a semicolonial raptor, the osprey Pandion haliaetus [Linnaeus, 1758], using 31 years of count and demographic data in Corsica. 2. The study population increased from three pairs in 1974 to an average of 22 pairs in the late 1990s, with two distinct phases during the recovery (increase followed by stability) and contrasted trends in breeding parameters in each phase. 3. We show density dependence in population growth rate in the second phase, indicating that the stabilized population was regulated. We also show density dependence in productivity (fledging success between years and hatching success within years). 4. Using long-term data on behavioural interactions at nest sites, and on diet and fish provisioning rate, we evaluated two possible mechanisms of density dependence in productivity, food depletion and behavioural interference. 5. As density increased, both provisioning rate and the size of prey increased, contrary to predictions of a food-depletion mechanism. In the time series, a reduction in fledging success coincided with an increase in the number of non-breeders. Hatching success decreased with increasing local density and frequency of interactions with conspecifics, suggesting that behavioural interference was influencing hatching success. 6. Our study shows that, taking into account the role of non-breeders, in particular in species or populations where there are many floaters and where competition for nest sites is intense, can improve our understanding of density-dependent processes and help conservation actions.

  7. How to conserve threatened Chinese plant species with extremely small populations?

    Directory of Open Access Journals (Sweden)

    Sergei Volis

    2016-02-01

    Full Text Available The Chinese flora occupies a unique position in global plant diversity, but is severely threatened. Although biodiversity conservation in China has made significant progress over the past decades, many wild plant species have extremely small population sizes and therefore are in extreme danger of extinction. The concept of plant species with extremely small populations (PSESPs, recently adopted and widely accepted in China, lacks a detailed description of the methodology appropriate for conserving PSESPs. Strategies for seed sampling, reintroduction, protecting PSESP locations, managing interactions with the local human population, and other conservation aspects can substantially differ from those commonly applied to non-PSESPs. The present review is an attempt to provide a detailed conservation methodology with realistic and easy-to-follow guidelines for PSESPs in China.

  8. Effects in Plant Populations Resulting from Chronic Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Geras' kin, Stanislav A.; Volkova, Polina Yu.; Vasiliyev, Denis V.; Dikareva, Nina S.; Oudalova, Alla A. [Russian Institute of Agricultural Radiology and Agroecology, 249032, Obninsk (Russian Federation)

    2014-07-01

    Human industrial activities have left behind a legacy of ecosystems strongly impacted by a wide range of contaminants, including radionuclides. Phyto-toxic effects of acute impact are well known, but the consequences of long-term chronic exposure to low pollutant concentrations is neither well understood nor adequately included in risk assessments. To understand effects of real-world contaminant exposure properly we must pay attention to what is actually going on in the field. However, for many wildlife groups and endpoints, there are no, or very few, studies that link accumulation, chronic exposure and biological effects in natural settings. To fill the gaps, results of field studies carried out on different plant species (winter rye and wheat, spring barley, oats, Scots pine, wild vetch, crested hair-grass) in various radioecological situations (nuclear weapon testing, the Chernobyl accident, uranium and radium processing) to investigate effects of long-term chronic exposure to radionuclides are discussed. Because each impacted site developed in its own way due to a unique history of events, the experience from one case study is rarely directly applicable to another situation. In spite of high heterogeneity in response, we have detected several general patterns. Plant populations growing in areas with relatively low levels of pollution are characterized by the increased level of both cytogenetic alterations and genetic diversity. Accumulation of cellular alterations may afterward influence biological parameters important for populations such as health and reproduction. Presented data provide evidence that in plant populations inhabiting heavily contaminated territories cytogenetic damage were accompanied by decrease in reproductive ability. In less contaminated sites, because of the scarcity of data available, it is impossible to establish exactly the relationship between cytogenetic effects and reproductive ability. Radioactive contamination of the plants

  9. Density-dependent feedbacks can mask environmental drivers of populations

    DEFF Research Database (Denmark)

    Dahlgren, Johan Petter

    I present some results from studies identifying environmental drivers of vital rates and population dynamics when controlling for intraspecific density statistically or experimentally, show that density dependence can be strong even in populations of slow-growing species in stressful habitats, an...

  10. Relative population exposures from coal-fired and nuclear power plants in India

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, T.V.; Lalit, B.Y.; Mishra, U.C.

    1987-01-01

    Coal combustion for electric power generation results in dispersal of fly ash, and hence an additional radiation dose to the population living in the neighbourhood of the coal-fired power plants due to natural radioactivity present in coal. The radiation hazards of coal based and nuclear power plants operating in India are given. The dose commitments to the population living within an 88.5 km radius of the thermal and nuclear power plants in India have been computed using the method outlined in an ORNL report. The estimated dose rates for these two types of power plant were compared. The present study shows that the radiation dose from coal-fired and nuclear power plants are comparable.

  11. [Energy accumulation and allocation of main plant populations in Aneurolepidium chinense grassland in Songnen Plain].

    Science.gov (United States)

    Qu, Guohui; Wen, Mingzhang; Guo, Jixun

    2003-05-01

    The calorific value of plants is dependent on their biological characteristics and energy-containing materials. The allocation of calorific value in different organs of Aneurolepidium chinese, Calamagrostic epigejos, Puccinellia tenuiflora and Chloris virgata was inflorescence > leaf > stem > dead standing. The seasonal dynamics of standing crop energy of aboveground part of four plant populations showed single-peak curve, and the energy production was Aneurolepidium chinense > Calamagrostic epigejos > Chloris virgata > Puccinellia tenuiflora. Energy increasing rate showed double-peak curve, with the first peak at heading stage and the second peak at maturing stage of seeds. Energy increasing rate was negative at the final stage of growth. The horizontal distribution of energy of aboveground part was that the allocation ratio of different organs at different growth stages was different. There existed a similar trend for vertical distribution of energy among four plant populations, i.e., was the vertical distribution of energy of aboveground part showed a tower shape, with the maximum value in 10-30 cm height. The vertical distribution of energy of underground part showed an inverted tower shape from soil surface to deeper layer, with the maximum value in 0-10 cm depth. The standing crop energy of underground part was about 3-4 times than that of aboveground part.

  12. Modeling the growth of individuals in plant populations: local density variation in a strand population of Xanthium strumarium (Asteraceae).

    Science.gov (United States)

    Weiner, J; Kinsman, S; Williams, S

    1998-11-01

    We studied the growth of individual Xanthium strumarium plants growing at four naturally occurring local densities on a beach in Maine: (1) isolated plants, (2) pairs of plants ≤1 cm apart, (3) four plants within 4 cm of each other, and (4) discrete dense clumps of 10-39 plants. A combination of nondestructive measurements every 2 wk and parallel calibration harvests provided very good estimates of the growth in aboveground biomass of over 400 individual plants over 8 wk and afforded the opportunity to fit explicit growth models to 293 of them. There was large individual variation in growth and resultant size within the population and within all densities. Local crowding played a role in determining plant size within the population: there were significant differences in final size between all densities except pairs and quadruples, which were almost identical. Overall, plants growing at higher densities were more variable in growth and final size than plants growing at lower densities, but this was due to increased variation among groups (greater variation in local density and/or greater environmental heterogeneity), not to increased variation within groups. Thus, there was no evidence of size asymmetric competition in this population. The growth of most plants was close to exponential over the study period, but half the plants were slightly better fit by a sigmoidal (logistic) model. The proportion of plants better fit by the logistic model increased with density and with initial plant size. The use of explicit growth models over several growth intervals to describe stand development can provide more biological content and more statistical power than "growth-size" methods that analyze growth intervals separately.

  13. Modelling interactions of toxicants and density dependence in wildlife populations

    Science.gov (United States)

    Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.

    2013-01-01

    1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to

  14. A theoretical analysis of population genetics of plants on restored habitats

    Energy Technology Data Exchange (ETDEWEB)

    Bogoliubov, A.G. [Botanical Institute, Russian Academy of Science, St. Petersburg (Russian Federation); Loehle, C. [Argonne National Lab., IL (United States)

    1995-02-01

    Seed and propagules used for habitat restoration are not likely to be closely adapted to local site conditions. Rapid changes of genotypes frequencies on local microsites and/or microevolution would allow plants to become better adapted to a site. These same factors would help to maintain genetic diversity and ensure the survival of small endangered populations. We used population genetics models to examine the selection of genotypes during establishment on restored sites. Vegetative spread was shown to affect selection and significantly reduce genetic diversity. To study general microevolution, we linked a model of resource usage with a genetics model and analyzed competition between genotypes. A complex suite of feasible ecogenetic states was shown to result. The state actually resulting would depend strongly on initial conditions. This analysis indicated that genetic structure can vary locally and can produce overall genetic variability that is not simply the result of microsite adaptations. For restoration activities, the implication is that small differences in seed source could lead to large differences in local genetic structure after selection.

  15. A theoretical analysis of population genetics of plants on restored habitats

    Energy Technology Data Exchange (ETDEWEB)

    Bogoliubov, A.G. [Russian Academy of Science, St. Petersburg (Russian Federation). Botanical Inst.; Loehle, C. [Argonne National Lab., IL (United States). Environmental Research Div.

    1997-07-01

    Seed and propagules used for habitat restoration are not likely to be closely adapted to local site conditions. Rapid changes of genotypes frequencies on local microsites and/or microevolution would allow plants to become better adapted to a site. These same factors would help to maintain genetic diversity and ensure the survival of small endangered populations. The authors used population genetics models to examine the selection of genotypes during establishment on restored sites. Vegetative spread was shown to affect selection and significantly reduce genetic diversity. To study general microevolution, the authors linked a model of resource usage with a genetics model and analyzed competition between genotypes. A complex suite of feasible ecogenetic states was shown to result. The state actually resulting would depend strongly on initial conditions. This analysis indicated that genetic structure can vary locally and can produce overall genetic variability that is not simply the result of microsite adaptations. For restoration activities, the implication is that small differences in seed source could lead to large differences in local genetic structure after selection.

  16. Alcohol dependence: international policy implications for prison populations.

    Science.gov (United States)

    Jones, Gail Yvonne; Hoffmann, Norman G

    2006-11-08

    In light of the emphasis on drug abuse, this study explored the relative prevalence of substance use disorders among United Kingdom (UK) prison inmates in the context of findings from a general inmate population in the United States (US). The lead author of the report conducted a structured diagnostic interview with 155 new admissions to one of two prisons in the UK using the CAAPE (Comprehensive Addiction And Psychological Evaluation), a structured diagnostic interview, to ensure consistent assessments. The US sample consisted of 6,881 male inmates in a state prison system evaluated with an automated version of the SUDDS-IV (Substance Use Disorder Diagnostic Schedule-IV) interview. Alcohol dependence emerged as the most prevalent substance use disorder in both UK prisons and in the US sample. Relative frequencies of abuse and dependence for alcohol and other drugs revealed that dependence on a given substance was more prevalent than abuse ad defined by the current diagnostic criteria. Despite the emphasis on drugs in correctional populations, alcohol dependence appears to be the most prominent substance use disorder among the incarcerated in both the US and UK and must be considered in developing treatment programs and policy priorities.

  17. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  18. Alcohol dependence: international policy implications for prison populations

    Directory of Open Access Journals (Sweden)

    Hoffmann Norman G

    2006-11-01

    Full Text Available Abstract Background In light of the emphasis on drug abuse, this study explored the relative prevalence of substance use disorders among United Kingdom (UK prison inmates in the context of findings from a general inmate population in the United States (US. The lead author of the report conducted a structured diagnostic interview with 155 new admissions to one of two prisons in the UK using the CAAPE (Comprehensive Addiction And Psychological Evaluation, a structured diagnostic interview, to ensure consistent assessments. The US sample consisted of 6,881 male inmates in a state prison system evaluated with an automated version of the SUDDS-IV (Substance Use Disorder Diagnostic Schedule-IV interview. Results Alcohol dependence emerged as the most prevalent substance use disorder in both UK prisons and in the US sample. Relative frequencies of abuse and dependence for alcohol and other drugs revealed that dependence on a given substance was more prevalent than abuse ad defined by the current diagnostic criteria. Conclusion Despite the emphasis on drugs in correctional populations, alcohol dependence appears to be the most prominent substance use disorder among the incarcerated in both the US and UK and must be considered in developing treatment programs and policy priorities.

  19. Plant Mating Systems Often Vary Widely Among Populations

    Directory of Open Access Journals (Sweden)

    Michael R. Whitehead

    2018-04-01

    Full Text Available Most flowering plants are hermaphroditic, yet the proportion of seeds fertilized by self and outcross pollen varies widely among species, ranging from predominant self-fertilization to exclusive outcrossing. A population's rate of outcrossing has important evolutionary outcomes as it influences genetic structure, effective population size, and offspring fitness. Because most mating system studies have quantified outcrossing rates for just one or two populations, past reviews of mating system diversity have not been able to characterize the extent of variation among populations. Here we present a new database of more than 30 years of mating system studies that report outcrossing rates for three or more populations per species. This survey, which includes 741 populations from 105 species, illustrates substantial and prevalent among-population variation in the mating system. Intermediate outcrossing rates (mixed mating are common; 63% of species had at least one mixed mating population. The variance among populations and within species was not significantly correlated with pollination mode or phylogeny. Our review underscores the need for studies exploring variation in the relative influence of ecological and genetic factors on the mating system, and how this varies among populations. We conclude that estimates of outcrossing rates from single populations are often highly unreliable indicators of the mating system of an entire species.

  20. Growth rates of rhizosphere microorganisms depend on competitive abilities of plants for nitrogen

    Science.gov (United States)

    Blagodatskaya, Evgenia; Littschwager, Johanna; Lauerer, Marianna; Kuzyakov, Yakov

    2010-05-01

    Rhizosphere - one of the most important ‘hot spots' in soil - is characterized not only by accelerated turnover of microbial biomass and nutrients but also by strong intra- and inter-specific competition. Intra-specific competition occurs between individual plants of the same species, while inter-specific competition can occur both at population level (plant species-specific, microbial species-specific interactions) and at community level (plant - microbial interactions). Such plant - microbial interactions are mainly governed by competition for available N sources, since N is one of the main growth limiting nutrients in natural ecosystems. Functional structure and activity of microbial community in rhizosphere is not uniform and is dependent on quantity and quality of root exudates which are plant specific. It is still unclear how microbial growth and turnover in the rhizosphere are dependent on the features and competitive abilities of plants for N. Depending on C and N availability, acceleration and even retardation of microbial activity and carbon mineralization can be expected in the rhizosphere of plants with high competitive abilities for N. We hypothesized slower microbial growth rates in the rhizosphere of plants with smaller roots, as they usually produce less exudates compared to plants with small shoot-to-root ratio. As the first hypothesis is based solely on C availability, we also expected the greater effect of N availability on microbial growth in rhizosphere of plants with smaller root mass. These hypothesis were tested for two plant species of strawberry: Fragaria vesca L. (native species), and Duchesnea indica (Andrews) Focke (an invasive plant in central Europe) growing in intraspecific and interspecific competition. Microbial biomass and the kinetic parameters of microbial growth in the rhizosphere were estimated by dynamics of CO2 emission from the soil amended with glucose and nutrients. Specific growth rate (µ) of soil microorganisms was

  1. Competition between Plant-Populations with Different Rooting Depths. 1. Theoretical Considerations

    NARCIS (Netherlands)

    Berendse, F.

    1979-01-01

    As an extension of De Wit's competition theory a theoretical description has been developed of competition between plant populations with different rooting depths. This model shows that in mixtures of plants with different rooting depths the value of the Relative Yield Total can be expected to

  2. Competition Between Plant Populations with Different Rooting Depths I. Theoretical Considerations

    NARCIS (Netherlands)

    Berendse, Frank

    1979-01-01

    As an extension of De Wit’s competition theory a theoretical description has been developed of competition between plant populations with different rooting depths. This model shows that in mixtures of plants with different rooting depths the value of the Relative Yield Total can be expected to

  3. Effective size of density-dependent two-sex populations: the effect of mating systems.

    Science.gov (United States)

    Myhre, A M; Engen, S; SAEther, B-E

    2017-08-01

    Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  4. Herbivory and growth in terrestrial and aquatic populations of amphibious stream plants

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Jacobsen, Dean

    2002-01-01

    1. Many amphibious plant species grow in the transition between terrestrial and submerged vegetation in small lowland streams. We determined biomass development, leaf turnover rate and invertebrate herbivory during summer in terrestrial and aquatic populations of three amphibious species...... production (average 1.2-5.1%) than aquatic populations (2.9-17.3%), while the same plant dry mass was consumed per unit ground area. 3. Grazing loss increased linearly with leaf age apart from the youngest leaf stages. Grazing loss during the lifetime of leaves was therefore 2.4-3.1 times higher than mean...... apparent loss to standing leaves of all ages. The results imply that variation in density of grazers relative to plant production can account for differences in grazing impact between terrestrial and aquatic populations, and that fast leaf turnover keeps apparent grazing damage down. 4. We conclude...

  5. Coding of time-dependent stimuli in homogeneous and heterogeneous neural populations.

    Science.gov (United States)

    Beiran, Manuel; Kruscha, Alexandra; Benda, Jan; Lindner, Benjamin

    2018-04-01

    We compare the information transmission of a time-dependent signal by two types of uncoupled neuron populations that differ in their sources of variability: i) a homogeneous population whose units receive independent noise and ii) a deterministic heterogeneous population, where each unit exhibits a different baseline firing rate ('disorder'). Our criterion for making both sources of variability quantitatively comparable is that the interspike-interval distributions are identical for both systems. Numerical simulations using leaky integrate-and-fire neurons unveil that a non-zero amount of both noise or disorder maximizes the encoding efficiency of the homogeneous and heterogeneous system, respectively, as a particular case of suprathreshold stochastic resonance. Our findings thus illustrate that heterogeneity can render similarly profitable effects for neuronal populations as dynamic noise. The optimal noise/disorder depends on the system size and the properties of the stimulus such as its intensity or cutoff frequency. We find that weak stimuli are better encoded by a noiseless heterogeneous population, whereas for strong stimuli a homogeneous population outperforms an equivalent heterogeneous system up to a moderate noise level. Furthermore, we derive analytical expressions of the coherence function for the cases of very strong noise and of vanishing intrinsic noise or heterogeneity, which predict the existence of an optimal noise intensity. Our results show that, depending on the type of signal, noise as well as heterogeneity can enhance the encoding performance of neuronal populations.

  6. Intervention analysis of power plant impact on fish populations

    International Nuclear Information System (INIS)

    Madenjian, C.P.

    1984-01-01

    Intervention analysis was applied to 10 yr (years 1973-1982) of field fish abundance data at the D. C. Cook Nuclear Power Plant, southeastern Lake Michigan. Three log-transformed catch series, comprising monthly observations, were examined for each combination of two species (alewife, Alosa pseudoharenga, or yellow perch, Perca flavescens) and gear (trawl or gill net): catch at the plant discharged transect, catch at the reference transect, and the ratio of plant catch to reference catch. Time series separated by age groups were examined. Based on intervention analysis, no change in the abundance of fish populations could be attributed to plant operation. Additionally, a modification of the intervention analysis technique was applied to investigate trends in abundance at both the plant discharge and reference transects. Significant declines were detected for abundance of alewife adults at both of the transects. Results of the trend analysis support the contention that the alewives have undergone a lakewide decrease in abundance during the 1970s

  7. Minimizing the dependency ratio in a population with below-replacement fertility through immigration

    Science.gov (United States)

    Simon, C.; Belyakov, A.O.; Feichtinger, G.

    2012-01-01

    Many industrialized countries face fertility rates below replacement level, combined with declining mortality especially in older ages. Consequently, the populations of these countries have started to age. One important indicator of age structures is the dependency ratio which is the ratio of the nonworking age population to the working age population. In this work we find the age-specific immigration profile that minimizes the dependency ratio in a stationary population with below-replacement fertility. It is assumed that the number of immigrants per age is limited. We consider two alternative policies. In the first one, we fix the total number of people who annually immigrate to a country. In the second one, we prescribe the size of the receiving country’s population. For both cases we provide numerical results for the optimal immigration profile, for the resulting age structure of the population, as well as for the dependency ratio. PMID:22781918

  8. Nuclear power plant site evaluation using site population-meterology factor

    International Nuclear Information System (INIS)

    Rho, B.H.; Kang, C.H.

    1982-01-01

    In this paper, as a site evaluation technique, SPNF(Site Population Neteorology Factor) which is modified from SPF(Site Population Factor) of the USNRC model, is defined from site population and meteorology data in order to consider the radiological impacts to the population at large from the atmospheric dispersion of the radioactive effluents released during routine plant operation as well as accidental conditions. The SPMF model proved its propriety from the comparison of SPMF and SPF for Kori site. The relative suitability of Korean sites to the U.S. sites have been also examined using SPF. (Author)

  9. Use of plants in oral health care by the population of Mahajanga, Madagascar.

    Science.gov (United States)

    Ranjarisoa, Lala Nirina; Razanamihaja, Noëline; Rafatro, Herintsoa

    2016-12-04

    The use of medicinal plants to address oral health problems is not well documented in Madagascar, yet the country is full of endemic flora. The aim of this study was to collect information on the use of plants in the region of Mahajanga, Madagascar, for the treatments of oral diseases mainly tooth decay. The ethnobotanical survey with respect to the use of plants for curing dental problems was carried out in 2012. A cluster sampling at three levels was applied when choosing the study sites. The target population was made up of heads of household. The following data were collected from a semi-structured questionnaire: name of plants, part used, mode of preparation, and administration. The Informant Consensus Factor and Fidelity Level indexes were calculated for each condition treated and used plants. The Results revealed that 93 per cent of the targeted population has used plants to calm dental pain, whereas 44.2% have reported using plants due to financial problems. About 65 species of plants are commonly used for oral health care and 63 of them treated caries. Cajanus cajan (L.) Millsp. was the most plant used. It was mostly used in crushed form of 5 to 9 leaves which were prepared and placed directly on the affected oral part or in the tooth cavity. In general, the treatment lasted about 5 days or minus. The ICF were 0.83 for caries and 0.81 for periodontal diseases. This ethnobotanical survey will serve as database for further phytochemical and pharmacological study of plants in order to identify their active components and advise the population on the most effective administration. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Glutathione-dependent responses of plants to drought: a review

    Directory of Open Access Journals (Sweden)

    Mateusz Labudda

    2014-02-01

    Full Text Available Water is a renewable resource. However, with the human population growth, economic development and improved living standards, the world’s supply of fresh water is steadily decreasing and consequently water resources for agricultural production are limited and diminishing. Water deficiency is a significant problem in agriculture and increasing efforts are currently being made to understand plant tolerance mechanisms and to develop new tools (especially molecular that could underpin plant breeding and cultivation. However, the biochemical and molecular mechanisms of plant water deficit tolerance are not fully understood, and the data available is incomplete. Here, we review the significance of glutathione and its related enzymes in plant responses to drought. Firstly, the roles of reduced glutathione and reduced/oxidized glutathione ratio, are discussed, followed by an extensive discussion of glutathione related enzymes, which play an important role in plant responses to drought. Special attention is given to the S-glutathionylation of proteins, which is involved in cell metabolism regulation and redox signaling in photosynthetic organisms subjected to abiotic stress. The review concludes with a brief overview of future perspectives for the involvement of glutathione and related enzymes in drought stress responses.

  11. Assessment of reproductive capacity of seeds sampled from natural populations of plants from a territory contaminated with radionuclides and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Vakhusheva, O.; Evseeva, T. [Institute of biology Komi SC Ural Branch of RAS (Russian Federation)

    2014-07-01

    Plants are an essential component of any ecosystem and are permanently exposed to soil contamination. Therefore, they are widely used for characterization of ecological situation of the territory. Located at the base of the food chain, plants are exposed to toxic agents before the organisms at higher trophic levels. Kirovo-Chepetsk chemical plant (Kirov, Russia) is one of the biggest chemical enterprises in Europe. Vascular plant communities from surrounding area are exposed to industrial wastes, including uranium production wastes from 1938. The aim of this work was to estimate reproductive capacity of Urtica dioica L., Cirsium setosum (Willd.) Bess and Filipendula ulmaria (L.) Maxim - natural populations inhabiting the chemical plant industrial zone. The plant species studied are common for the meadow communities of south taiga zone, and are characterized by high seed yield and living in wide range of ecological conditions. Plant seeds were collected from two experimental sites with different soil contamination levels, located in the vicinity of the Kirovo-Chepetsk chemical plant, as well as from the reference site, in 2011 and 2012. Soil specific activities of {sup 137}Cs and {sup 90}Sr and concentrations of Ni, Pb, Cd, Zn, Hg and Cu were measured and ecological criteria of the radioactive (C{sub r}) and chemical (C{sub c}) contamination of the soil cover were calculated. Seeds germination, germinative energy and seedling survival rate were used for assessing reproductive capacity. Urtica dioicawas found to be the most sensitive among plant species studied. Germination of seeds from contaminated sites was significantly lower compared with the reference values. Exponential relationship was found between the levels of soil radioactive contamination and seeds germination (R{sup 2}=0.8, p<0.001). Germination of Cirsium setosum seeds, sampled from contaminated sites, exceeded the values obtained for the reference plant population and was linearly dependent (R{sup 2

  12. Population Exposure Estimates in Proximity to Nuclear Power Plants, Locations

    Data.gov (United States)

    National Aeronautics and Space Administration — The Population Exposure Estimates in Proximity to Nuclear Power Plants, Locations data set combines information from a global data set developed by Declan Butler of...

  13. Dependence of adiabatic population transfer on pulse profile

    Indian Academy of Sciences (India)

    Control of population transfer by rapid adiabatic passage has been an established technique wherein the exact amplitude profile of the shaped pulse is considered to be insignificant. We study the effect of ultrafast shaped pulses for two-level systems, by density-matrix approach. However, we find that adiabaticity depends ...

  14. Assessing the impact of power plant mortality on the compensatory reserve of fish populations

    International Nuclear Information System (INIS)

    Goodyear, C.P.

    1977-01-01

    A technique is presented to quantify the concepts of compensation and compensatory reserve in exploited fish populations. The technique was used to examine the impact of power plant mortality on a hypothetical striped bass population. Power plant mortality had a more severe impact on the compensation ratio and compensatory reserve for an exploited stock. The technique can be applied to determine a critical compensation ratio which could serve as a standard against which additional sources of mortality, such as those caused by power plants, could be measured

  15. Density dependence governs when population responses to multiple stressors are magnified or mitigated.

    Science.gov (United States)

    Hodgson, Emma E; Essington, Timothy E; Halpern, Benjamin S

    2017-10-01

    Population endangerment typically arises from multiple, potentially interacting anthropogenic stressors. Extensive research has investigated the consequences of multiple stressors on organisms, frequently focusing on individual life stages. Less is known about population-level consequences of exposure to multiple stressors, especially when exposure varies through life. We provide the first theoretical basis for identifying species at risk of magnified effects from multiple stressors across life history. By applying a population modeling framework, we reveal conditions under which population responses from stressors applied to distinct life stages are either magnified (synergistic) or mitigated. We find that magnification or mitigation critically depends on the shape of density dependence, but not the life stage in which it occurs. Stressors are always magnified when density dependence is linear or concave, and magnified or mitigated when it is convex. Using Bayesian numerical methods, we estimated the shape of density dependence for eight species across diverse taxa, finding support for all three shapes. © 2017 by the Ecological Society of America.

  16. Forecasting climate change impacts on plant populations over large spatial extents

    Science.gov (United States)

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.; Homer, Collin G.; Kleinhesselink, Andrew R.; Adler, Peter B.

    2016-01-01

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. We overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates in the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.

  17. A test of density-dependent pollination within three populations of endangered Pentachaeta lyonii

    Directory of Open Access Journals (Sweden)

    Jocelyn R. Holt

    2014-02-01

    Full Text Available A major concern with endangered plants is that they might attract insufficient numbers of pollinators, produce low numbers of seeds, and decline towards extinction. We examined effects of density as it varied within populations on the pollination of Pentachaeta lyonii, an endangered species that requires pollinators for seed set. Generalist bee-flies and bees were abundant pollinators at three sites for two years. Per-capita visitation rates did not decline at sparse points or for plants placed on the order of 10 m away from other flowering individuals. Seed production was not pollinator-limited within patches, but seed set was low beyond 10 m from neighbours. Considering prior findings, factors such as habitat loss, competition with alien plants, and poor establishment of new populations likely contribute to the rarity of P. lyonii more than pollination failure.

  18. Influence of Plant Population and Nitrogen-Fertilizer at Various Levels on Growth and Growth Efficiency of Maize

    Directory of Open Access Journals (Sweden)

    M. I. Tajul

    2013-01-01

    Full Text Available Field experiments were conducted to evaluate plant population and N-fertilizer effects on yield and yield components of maize (Zea mays L.. Three levels of plant populations (53000, 66000, and 800000 plants ha−1 corresponding to spacings of 75 × 25, 60 × 25, and 50 × 25 cm and 4 doses of N (100, 140, 180, and 220 kg ha−1 were the treatment variables. Results revealed that plant growth, light interception (LI, yield attributes, and grain yield varied significantly due to the variations in population density and N-rates. Crop growth rate (CGR was the highest with the population of 80,000 ha−1 receiving 220 kg N ha−1, while relative growth rate (RGR showed an opposite trend of CGR. Light absorption was maximum when most of densely populated plant received the highest amount of N (220 kg N ha−1. Response of soil-plant-analysis development (SPAD value as well as N-content to N-rates was found significant. Plant height was the maximum at the lowest plant density with the highest amount of N. Plants that received 180 kg N ha−1 with 80,000 plants ha−1 had larger foliage, greater SPAD value, and higher amount of grains cob−1 that contributed to the maximum yield (5.03 t ha−1 and the maximum harvest index (HI compared to the plants in other treatments.

  19. Cloning and functional expression of a plant voltage-dependent chloride channel.

    Science.gov (United States)

    Lurin, C; Geelen, D; Barbier-Brygoo, H; Guern, J; Maurel, C

    1996-01-01

    Plant cell membrane anion channels participate in basic physiological functions, such as cell volume regulation and signal transduction. However, nothing is known about their molecular structure. Using a polymerase chain reaction strategy, we have cloned a tobacco cDNA (CIC-Nt1) encoding a 780-amino acid protein with several putative transmembrane domains. CIC-Nt1 displays 24 to 32% amino acid identity with members of the animal voltage-dependent chloride channel (CIC) family, whose archetype is CIC-0 from the Torpedo marmorata electric organ. Injection of CIC-Nt1 complementary RNA into Xenopus oocytes elicited slowly activating inward currents upon membrane hyperpolarization more negative than -120 mV. These currents were carried mainly by anions, modulated by extracellular anions, and totally blocked by 10 mM extracellular calcium. The identification of CIC-Nt1 extends the CIC family to higher plants and provides a molecular probe for the study of voltage-dependent anion channels in plants. PMID:8624442

  20. Explaining density-dependent regulation in earthworm populations using life-history analysis

    NARCIS (Netherlands)

    Kammenga, J.E.; Spurgeon, D.J.; Svendsen, C.; Weeks, J.M.

    2003-01-01

    At present there is little knowledge about how density regulates population growth rate and to what extent this is determined by life-history patterns. We compared density dependent population consequences in the Nicholsonian sense based oil experimental observations and life-history modeling for

  1. Wild Plant Species with Extremely Small Populations Require Conservation and Reintroduction in China

    Science.gov (United States)

    Hai Ren; Qianmei Zhang; Hongfang Lu; Hongxiao Liu; Qinfeng Guo; Jun Wang; Shuguang Jian; Hai’ou Bao

    2012-01-01

    China is exceptionally rich in biodiversity, with more than 30000 vascular plant species that include many endemic genera, species of ancient origin, and cultivated plants (Yang et al. 2005). Because of rapid economic development, population growth, pollution, and continuing resource exploitation, China’s plant diversity faces severe threats. According to the Chinese...

  2. Methamphetamine use and dependence in vulnerable female populations.

    Science.gov (United States)

    Kittirattanapaiboon, Phunnapa; Srikosai, Soontaree; Wittayanookulluk, Apisak

    2017-07-01

    The study reviews recent publications on methamphetamine use and dependence women in term of their epidemic, physical health impact, psychosocial impacts, and also in the identified vulnerable issues. Studies of vulnerable populations of women are wide ranging and include sex workers, sexual minorities, homeless, psychiatric patients, suburban women, and pregnant women, in which amphetamine type stimulants (ATSs) are the most commonly reported illicit drug used among them. The prenatal exposure of ATS demonstrated the small for gestational age and low birth weight; however, more research is needed on long-term studies of methamphetamine-exposed children. Intimate partner violence (IPV) is commonly reported by female methamphetamine users as perpetrators and victims. However, statistics and gendered power dynamics suggest that methamphetamine-related IPV indicates a higher chance of femicide. Methamphetamine-abusing women often have unresolved childhood trauma and are introduced to ATS through families or partners. Vulnerable populations of women at risk of methamphetamine abuse and dependence. Impacts on their physical and mental health, IPV, and pregnancy have been reported continuing, which guide that empowering and holistic substance abuse are necessary for specific group.

  3. Density regulation in Northeast Atlantic fish populations: Density dependence is stronger in recruitment than in somatic growth.

    Science.gov (United States)

    Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko

    2018-05-01

    Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and

  4. Econometric model for age- and population-dependent radiation exposures

    International Nuclear Information System (INIS)

    Sandquist, G.M.; Slaughter, D.M.; Rogers, V.C.

    1991-01-01

    The economic impact associated with ionizing radiation exposures in a given human population depends on numerous factors including the individual's mean economic status as a function age, the age distribution of the population, the future life expectancy at each age, and the latency period for the occurrence of radiation-induced health effects. A simple mathematical model has been developed that provides an analytical methodology for estimating the societal econometrics associated with radiation effects are to be assessed and compared for economic evaluation

  5. Gamma-radiation effect on the parameters of the population recovery of plants

    Directory of Open Access Journals (Sweden)

    N.I. Ivanishvili

    2016-12-01

    Full Text Available Investigation of the effects of different physic-chemical factors on the ecosystems is one of the important scientific tasks. From this perspective, it is to be mentioned an effect of such a strong damaging factor as ionizing radiation. Radiation damage is reflected differently in relation to the levels of organization of living organisms. On the relatively early stage of radiation damage determination of post-irradiation regeneration indicators on population level gives possibility to forecast the sustainability of ecosystems. In order to determine the indicators of post-irradiation regeneration of plant populations we have used as a model water plant – Lemna minor L. During the exposure of radiation on different levels of organization differences are identified not only according to qualitative features but also by the character of direction of the development of the processes of postradiation regeneration. A conclusion is made that if during the acute radiation it is possible to determine radioresistance of certain plants, which is based on the plant potential to post-radiation regeneration, the investigation carried out through chronic irradiation gives the possibility to determine the indicators of the ability of the plant to adapt to the radiation.

  6. Boom or bust? A comparative analysis of transient population dynamics in plants

    DEFF Research Database (Denmark)

    Stott, Iain; Franco, Miguel; Carslake, David

    2010-01-01

    researchers as further possible effectors of complicated dynamics. Previously published methods of transient analysis have tended to require knowledge of initial population structure. However, this has been overcome by the recent development of the parametric Kreiss bound (which describes how large...... a population must become before reaching its maximum possible transient amplification following a disturbance) and the extension of this and other transient indices to simultaneously describe both amplified and attenuated transient dynamics. We apply the Kreiss bound and other transient indices to a data base...... worrying artefact of basic model parameterization. Synthesis. Transient indices describe how big or how small plant populations can get, en route to long-term stable rates of increase or decline. The patterns we found in the potential for transient dynamics, across many species of plants, suggest...

  7. Effects of radiation exposure on plant populations and radiation protection of the environment

    Energy Technology Data Exchange (ETDEWEB)

    Geras' kin, St.A.; Dikarev, V.G.; Oudalova, A.A.; Vasiliev, D.V.; Dikareva, N.S.; Baykova, T.A. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation); Evseeva, T.I. [Institute of Biology, Komi Scientific Center, Ural Div. RAS, Syktyvkar (Russian Federation)

    2006-07-01

    The results of long-term field experiments in the 30-km Chernobyl NPP zone, In the vicinity of the radioactive wastes storage facility (Leningrad Region), at radium production industry storage cell (the Komi Republic), and in Bryansk Region affected by the ChNPP accident that have been carried out on different species of wild and agricultural plants are discussed. These findings indicate that plant populations growing in areas with relatively low levels of pollution are characterized by the increased level of both cytogenetic disturbances and genetic diversity. The chronic low-dose exposure appears to be an ecological factor creating preconditions for possible changes in the genetic structure of a population. These processes have a genetic basis; therefore, an understanding changes at the genetic level should help in an identifying more complex changes at higher levels. The presented findings add to filling an important gap in our knowledge on remote effects in plant populations and ecosystems from man-made impact. (author)

  8. Effects of radiation exposure on plant populations and radiation protection of the environment

    International Nuclear Information System (INIS)

    Geras'kin, St.A.; Dikarev, V.G.; Oudalova, A.A.; Vasiliev, D.V.; Dikareva, N.S.; Baykova, T.A.; Evseeva, T.I.

    2006-01-01

    The results of long-term field experiments in the 30-km Chernobyl NPP zone, In the vicinity of the radioactive wastes storage facility (Leningrad Region), at radium production industry storage cell (the Komi Republic), and in Bryansk Region affected by the ChNPP accident that have been carried out on different species of wild and agricultural plants are discussed. These findings indicate that plant populations growing in areas with relatively low levels of pollution are characterized by the increased level of both cytogenetic disturbances and genetic diversity. The chronic low-dose exposure appears to be an ecological factor creating preconditions for possible changes in the genetic structure of a population. These processes have a genetic basis; therefore, an understanding changes at the genetic level should help in an identifying more complex changes at higher levels. The presented findings add to filling an important gap in our knowledge on remote effects in plant populations and ecosystems from man-made impact. (author)

  9. Evaluation Of The Exclusion And Low Population Areas Around A Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tawfik, F.S.

    2011-01-01

    Being adjacent to the nuclear power plant (NPP) the exclusion area (EA) is the area of greatest importance. It essentially defines a buffer zone where the public has no access. It helps to define the fenced plant area, the site area and the public area. Also, the low population area is the area immediately surrounding the exclusion area near a licensed reactor in terms of public safety and the ability of residents to get away from the plant in an emergency. This study clarifies their significance and reviews the international approach on them. Assuming the nuclear power plant site at the north coast of Egypt, the exclusion area and low population area are determined according to CFR (2002). In this method, a maximum possible amount of radioactivity release (called a source term) should be assumed. The boiling water reactor (BWR) with a power 1000 MW was used to carry the calculation and assuming a severe loss of coolant accident with meltdown of reactor. The site specific data have been collected, investigated and processed. The effect of the degree of atmospheric stability and building width of the plant were examined. The proceeding factors that control the determination of exclusion area and low population area should be taken into consideration in the site evaluation stage and design basis of NPP to set a minimum distances for them

  10. Siting of Nuclear Power Plants in Metropolitan Areas. Estimation of Population Doses due to Accidental Release of Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Bresser, H. [Technischer Ueberwachungs-Verein Rheinland E.V., Cologne (Germany); Schwarzer, W. [Institut fuer Reaktorsicherheit der Technischen Ueberwachungs-Vereine E.V., Cologne (Germany)

    1967-09-15

    The safety of large nuclear power plants in heavily populated areas depends entirely on engineered safeguards. An assessment of their reliability and effectiveness will have to play a major role in any safety analysis of such a plant, and this assessment will have to be made on the basis of the radiological burden to the environment - in terms of individual dose and a population dose - which can be accepted as tolerable in case of a severe accident. The calculation of the dispersion of fission products in the atmosphere, which links the radiological burden to the release of radioactivity, should be modified. The fact that distance factors, aside from a comparably small exclusion area, can no longer be taken into account suggests the introduction of the parameter ''population density'' and an extensive use of the man-rem concept. In this connection the time history of the release and the influence of variations of wind directions lose their importance. The authors have carried out calculations of the population dose, which could be received in a metropolitan area as a consequence of a severe reactor accident, using population densities, height of release above ground and generalized meteorological data as the main parameters. The results of these calculations are used as a basis for an assessment of the performance requirements of the engineered safeguards system, and the relative importance of different components of this system is discussed. (author)

  11. Site selection and evaluation for nuclear power plants with respect to population distribution

    International Nuclear Information System (INIS)

    1980-01-01

    This safety guide, relating population distribution to site selection and evaluation, for nuclear power plants, forms part of the IAEA's programme, referred to as the NUSS programme (Nuclear Safety Standards). The guide presents population distribution data, requirements, examples of site screening methods, and an overview of radiological impact assessment with respect to population distribution

  12. Insect herbivores drive real-time ecological and evolutionary change in plant populations.

    Science.gov (United States)

    Agrawal, Anurag A; Hastings, Amy P; Johnson, Marc T J; Maron, John L; Salminen, Juha-Pekka

    2012-10-05

    Insect herbivores are hypothesized to be major factors affecting the ecology and evolution of plants. We tested this prediction by suppressing insects in replicated field populations of a native plant, Oenothera biennis, which reduced seed predation, altered interspecific competitive dynamics, and resulted in rapid evolutionary divergence. Comparative genotyping and phenotyping of nearly 12,000 O. biennis individuals revealed that in plots protected from insects, resistance to herbivores declined through time owing to changes in flowering time and lower defensive ellagitannins in fruits, whereas plant competitive ability increased. This independent real-time evolution of plant resistance and competitive ability in the field resulted from the relaxation of direct selective effects of insects on plant defense and through indirect effects due to reduced herbivory on plant competitors.

  13. Temperature dependence of 1H NMR relaxation time, T2, for intact and neoplastic plant tissues

    Science.gov (United States)

    Lewa, Czesław J.; Lewa, Maria

    Temperature dependences of the spin-spin proton relaxation time, T2, have been shown for normal and tumorous tissues collected from kalus culture Nicotiana tabacum and from the plant Kalanchoe daigremontiana. For neoplastic plant tissues, time T2 was increased compared to that for intact plants, a finding similar to that for animal and human tissues. The temperature dependences obtained were compared to analogous relations observed with animal tissues.

  14. Occupational hazard evaluation of working population in a select automotive industrial plant.

    Science.gov (United States)

    Wójcik, Alicja; Borzecki, Zdzisław; Kowalska, Edyta; Borzecki, Andrzej

    2004-01-01

    The research was conducted in the selected vehicle industry plant. Work conditions were assessed on the assembly line by measuring chemical and physical factors. Exposure to noise in the investigated plant exceeded the values of permissible standards. The pollution on the posts did not exceed the standards except singular concentrations. While assessing the values of chemical factors concentration, no toxicological danger was revealed in the investigated population. The work conditions of the investigated plant did not create the danger of professional diseases.

  15. WITHIN-POPULATION GENETIC DIVERSITY OF CLIMBING PLANTS AND TREES IN A TEMPERATE FOREST IN CENTRAL CHILE

    OpenAIRE

    Torres-Díaz, Cristian; Ruiz, Eduardo; Salgado-Luarte, Cristian; Molina-Montenegro, Marco A; Gianoli, Ernesto

    2013-01-01

    The climbing habit is a key innovation in angiosperm evolution: climbing plant taxa have greater species richness than their non-climbing sister groups. It is considered that highly diversified clades should show increased among-population genetic differentiation. Less clear is the expected pattern regarding within-population genetic diversity in speciose lineages. We tested the hypothesis of greater within-population genetic diversity in climbing plants compared to trees in a temperate fores...

  16. Morpho-physiological and productive biometry in semi-erect cultivars of the cowpea under different plant populations

    Directory of Open Access Journals (Sweden)

    Antônio Aécio de Carvalho Bezerra

    Full Text Available ABSTRACT The aim of this study was to evaluate morpho-physiological and productive characteristics in four semi-erect cultivars of the cowpea under five plant populations. The experiment was conducted in the experimental area of Embrapa Meio-Norte in Teresina in the State of Piauí, Brazil (PI. The experimental design was of randomised complete blocks with four replications, in a 4 x 5 factorial scheme, for evaluating four cultivars (BRS Guariba, BRS Novaera, BRS Potengi and BRS Tumucumaque and five plant populations (105, 2x105, 3x105, 4x105 and 5x105 plants ha-1. There were significant differences between cultivars for primary branch length (PBL, number of lateral branches (NLB, 100-grain weight (HGW, and dry-grain yield (GY. The maximum PBL of 58.5 cm was obtained with 300 thousand plants ha-1, corresponding to an increase of 11.5% when compared to 100 thousand plants ha-1. However, there was a reduction of 91.2% in NLB when compared to the populations of 100 and 500 thousand plants ha-1. The increases of 188% obtained in the leaf area index (LAI in the range of 100 to 500 thousand plants ha-1 explain the linear increase in the crop growth rate (CGR as being due to the greater production of leaf area; also, the decreases seen in the net assimilation rate (NAR, especially in the range of 100 to 300 thousand plants ha-1, are explained as due to the consequent self-shading, which was intensified in the larger populations. LAI, light interception, and CGR in the cultivars increase in response to higher densities. HGW and GY are not significantly affected by the different populations.

  17. Effect of plant population and N fertilizer on the growth and yield of ...

    African Journals Online (AJOL)

    Responses of bambara groundnut (Vigna subterranea (L.) Verdc) to 3 levels of fertilizer N (0, 50, and 100 kg N/ha) and seven plant populations (55555, 63492, 74074, 88888, 111111, 148148 and 222222 plants/ha) were studied under field conditions in Nsukka, Nigeria. The experimental design was a randomized ...

  18. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    Science.gov (United States)

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  19. Host plant use drives genetic differentiation in syntopic populations of Maculinea alcon

    DEFF Research Database (Denmark)

    Tartally, András; Kelager, Andreas; Fürst, Matthias Alois

    2016-01-01

    The rare socially parasitic butterfly Maculinea alcon occurs in two forms, which are characteristic of hygric or xeric habitats and which exploit different host plants and host ants. The status of these two forms has been the subject of considerable controversy. Populations of the two forms...... on different host plants, each with a distinct flowering phenology, providing a temporal rather than spatial barrier to gene flow....

  20. Sensitive plant (Mimosa pudica hiding time depends on individual and state

    Directory of Open Access Journals (Sweden)

    Sarah Reed-Guy

    2017-07-01

    Full Text Available The decisions animals make to adjust their antipredator behavior to rapidly changing conditions have been well studied. Inducible defenses in plants are an antipredator behavior that acts on a longer time scale, but sensitive plants, Mimosa pudica, have a much more rapid antipredator response; they temporarily close their leaves when touched. The time they remain closed is defined as hiding time. We studied hiding time in sensitive plants and found that individual plants differed significantly in their hiding times. We then showed that the effect of individual explained substantial variation in hiding time on a short time scale. Finally, on a longer time scale, individuality persisted but the amount of variation attributed to individual decreased. We hypothesized that variation in plant condition might explain this change. We therefore manipulated sunlight availability and quantified hiding time. When deprived of light for 6 h, sensitive plants significantly shortened their hiding times. But when only half a plant was deprived of light, hiding times on the deprived half and light exposed half were not significantly different. This suggests that overall condition best explains variation in sensitive plant antipredator behavior. Just like in animals, sensitive plant antipredator behavior is condition dependent, and, just like in animals, a substantial amount of the remaining variation is explained by individual differences between plants. Thus, models designed to predict plasticity in animal behavior may be successfully applied to understand behavior in other organisms, including plants.

  1. Conservation law of plants' energy value dependence of plants ...

    African Journals Online (AJOL)

    The plants differences in biochemical composition are analyzed, and the conservation law of energy value in plants is obtained. The link between the need for the nutrients and the plants biochemical composition is examined, Liebig's law is specified. Keywords: plant's biochemical composition, biochemistry, energy value in ...

  2. Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants.

    Science.gov (United States)

    Charbonnel, Cyril; Gallego, Maria E; White, Charles I

    2010-10-01

    Double-strand breakage (DSB) of DNA involves loss of information on the two strands of the DNA fibre and thus cannot be repaired by simple copying of the complementary strand which is possible with single-strand DNA damage. Homologous recombination (HR) can precisely repair DSB using another copy of the genome as template and non-homologous recombination (NHR) permits repair of DSB with little or no dependence on DNA sequence homology. In addition to the well-characterised Ku-dependent non-homologous end-joining (NHEJ) pathway, much recent attention has been focused on Ku-independent NHR. The complex interrelationships and regulation of NHR pathways remain poorly understood, even more so in the case of plants, and we present here an analysis of Ku-dependent and Ku-independent repair of DSB in Arabidopsis thaliana. We have characterised an Arabidopsis xrcc1 mutant and developed quantitative analysis of the kinetics of appearance and loss of γ-H2AX foci as a tool to measure DSB repair in dividing root tip cells of γ-irradiated plants in vivo. This approach has permitted determination of DSB repair kinetics in planta following a short pulse of γ-irradiation, establishing the existence of a Ku-independent, Xrcc1-dependent DSB repair pathway. Furthermore, our data show a role for Ku80 during the first minutes post-irradiation and that Xrcc1 also plays such a role, but only in the absence of Ku. The importance of Xrcc1 is, however, clearly visible at later times in the presence of Ku, showing that alternative end-joining plays an important role in DSB repair even in the presence of active NHEJ. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  3. Influence of Multiple Infection and Relatedness on Virulence: Disease Dynamics in an Experimental Plant Population and Its Castrating Parasite

    Science.gov (United States)

    Buono, Lorenza; López-Villavicencio, Manuela; Shykoff, Jacqui A.; Snirc, Alodie; Giraud, Tatiana

    2014-01-01

    The level of parasite virulence, i.e., the decrease in host's fitness due to a pathogen, is expected to depend on several parameters, such as the type of the disease (e.g., castrating or host-killing) and the prevalence of multiple infections. Although these parameters have been extensively studied theoretically, few empirical data are available to validate theoretical predictions. Using the anther smut castrating disease on Silene latifolia caused by Microbotryum lychnidis-dioicae, we studied the dynamics of multiple infections and of different components of virulence (host death, non-recovery and percentage of castrated stems) during the entire lifespan of the host in an experimental population. We monitored the number of fungal genotypes within plants and their relatedness across five years, using microsatellite markers, as well as the rates of recovery and host death in the population. The mean relatedness among genotypes within plants remained at a high level throughout the entire host lifespan despite the dynamics of the disease, with recurrent new infections. Recovery was lower for plants with multiple infections compared to plants infected by a single genotype. As expected for castrating parasites, M. lychnidis-dioicae did not increase host mortality. Mortality varied across years but was generally lower for plants that had been diseased the preceding year. This is one of the few studies to have empirically verified theoretical expectations for castrating parasites, and to show particularly i) that castrated hosts live longer, suggesting that parasites can redirect resources normally used in reproduction to increase host lifespan, lengthening their transmission phase, and ii) that multiple infections increase virulence, here in terms of non-recovery and host castration. PMID:24892951

  4. Population History and Pathways of Spread of the Plant Pathogen Phytophthora plurivora

    Science.gov (United States)

    Schoebel, Corine N.; Stewart, Jane; Gruenwald, Niklaus J.; Rigling, Daniel; Prospero, Simone

    2014-01-01

    Human activity has been shown to considerably affect the spread of dangerous pests and pathogens worldwide. Therefore, strict regulations of international trade exist for particularly harmful pathogenic organisms. Phytophthora plurivora, which is not subject to regulations, is a plant pathogen frequently found on a broad range of host species, both in natural and artificial environments. It is supposed to be native to Europe while resident populations are also present in the US. We characterized a hierarchical sample of isolates from Europe and the US and conducted coalescent-, migration, and population genetic analysis of sequence and microsatellite data, to determine the pathways of spread and the demographic history of this pathogen. We found P. plurivora populations to be moderately diverse but not geographically structured. High levels of gene flow were observed within Europe and unidirectional from Europe to the US. Coalescent analyses revealed a signal of a recent expansion of the global P. plurivora population. Our study shows that P. plurivora has most likely been spread around the world by nursery trade of diseased plant material. In particular, P. plurivora was introduced into the US from Europe. International trade has allowed the pathogen to colonize new environments and/or hosts, resulting in population growth. PMID:24427303

  5. Ghrelin precursor gene polymorphism and methamphetamine dependence in the Korean population.

    Science.gov (United States)

    Yoon, Su-Jung; Pae, Chi-Un; Lee, Heejin; Choi, Bomoon; Kim, Tae-Suk; Lyoo, In Kyoon; Kwon, Do-Hoon; Kim, Dai-Jin

    2005-12-01

    Ghrelin is a recently isolated brain-gut peptide that has growth hormone-releasing and appetite-inducing activities. Several recent studies have suggested that ghrelin plays a major role in the pathophysiology of drug-seeking behavior and anxiety. Therefore, we assessed the effect of the ghrelin precursor polymorphism on methamphetamine dependence in the Korean population. One hundred and eighteen patients with methamphetamine dependence, according to the Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) criteria, and the 144 healthy controls were enrolled in this study. Genotyping for the ghrelin precursor polymorphism was performed by the polymerase chain reaction-restriction fragment length polymorphism-based technique. The genotypic and allelic distributions of the ghrelin precursor polymorphism in the patients with methamphetamine dependence were not significantly different from those of the control subjects. However, the Met72 carriers were associated with the emotional problems of methamphetamine dependence. The patients with the Met72 allele were more depressed and anxious than the homozygous patients with the wild Leu72 allele. The present study suggests that the ghrelin precursor polymorphism may not confer a susceptibility to the development of methamphetamine dependence in the Korean population. However, the Leu72Met polymorphism could have a potential role in the emotional problems that are associated with this disease.

  6. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    Science.gov (United States)

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  7. Effects of environmental radiation of Kori nuclear power plant on the human population

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1979-01-01

    In order to clarify and protect the effects of environmental radiation according to the operation of Kori nuclear power plant on human population, the base line survey for the human monitoring, the fauna of land nocturnal insects, and the karyotypes of amphibian species which have been living around the power plant site were carried out. ''Kilchunri'' population which took for the human monitoring lie within a 2km distance from power plant site. Human monitoring, house and food characteristics, individual experience of X-ray exposures, human chromosome analysis and fauna of nocturnal land insects were surveyed and expressed in numerical tables. Chromosome number obtained from the amphibia which were collected around the power plant area was as follows; Kaloula borealis 2N=30, Rana amurensis 2N=26, Rana dybouskii 2N=24, Rana rugosa 2N=26, Rana migromaculata 2N=26, Rana plancyi 2N=26, Bombina orientalis 2N=24, Hyla arborea 2N=24, Bufo stejnegeri 2N=22, and Bufo bufo 2N=22. (author)

  8. Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere.

    Science.gov (United States)

    Essarioui, Adil; LeBlanc, Nicholas; Kistler, Harold C; Kinkel, Linda L

    2017-07-01

    Plant community characteristics impact rhizosphere Streptomyces nutrient competition and antagonistic capacities. However, the effects of Streptomyces on, and their responses to, coexisting microorganisms as a function of plant host or plant species richness have received little attention. In this work, we characterized antagonistic activities and nutrient use among Streptomyces and Fusarium from the rhizosphere of Andropogon gerardii (Ag) and Lespedeza capitata (Lc) plants growing in communities of 1 (monoculture) or 16 (polyculture) plant species. Streptomyces from monoculture were more antagonistic against Fusarium than those from polyculture. In contrast, Fusarium isolates from polyculture had greater inhibitory capacities against Streptomyces than isolates from monoculture. Although Fusarium isolates had on average greater niche widths, the collection of Streptomyces isolates in total used a greater diversity of nutrients for growth. Plant richness, but not plant host, influenced the potential for resource competition between the two taxa. Fusarium isolates had greater niche overlap with Streptomyces in monoculture than polyculture, suggesting greater potential for Fusarium to competitively challenge Streptomyces in monoculture plant communities. In contrast, Streptomyces had greater niche overlap with Fusarium in polyculture than monoculture, suggesting that Fusarium experiences greater resource competition with Streptomyces in polyculture than monoculture. These patterns of competitive and inhibitory phenotypes among Streptomyces and Fusarium populations are consistent with selection for Fusarium-antagonistic Streptomyces populations in the presence of strong Fusarium resource competition in plant monocultures. Similarly, these results suggest selection for Streptomyces-inhibitory Fusarium populations in the presence of strong Streptomyces resource competition in more diverse plant communities. Thus, landscape-scale variation in plant species richness may be

  9. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors

    Science.gov (United States)

    Russell, Tanya L.; Lwetoijera, Dickson W.; Knols, Bart G. J.; Takken, Willem; Killeen, Gerry F.; Ferguson, Heather M.

    2011-01-01

    Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAICc support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness. PMID:21389034

  10. Transients drive the demographic dynamics of plant populations in variable environments

    DEFF Research Database (Denmark)

    McDonald, Jenni L; Stott, Iain; Townley, Stuart

    2016-01-01

    clear patterns related to growth form. We find a surprising tendency for plant populations to boom rather than bust in response to temporal changes in vital rates and that stochastic growth rates increase with increasing tendency to boom. Synthesis. Transient dynamics contribute significantly...

  11. Distinguishing plant population and variety with UAV-derived vegetation indices

    Science.gov (United States)

    Oakes, Joseph; Balota, Maria

    2017-05-01

    Variety selection and seeding rate are two important choice that a peanut grower must make. High yielding varieties can increase profit with no additional input costs, while seeding rate often determines input cost a grower will incur from seed costs. The overall purpose of this study was to examine the effect that seeding rate has on different peanut varieties. With the advent of new UAV technology, we now have the possibility to use indices collected with the UAV to measure emergence, seeding rate, growth rate, and perhaps make yield predictions. This information could enable growers to make management decisions early in the season based on low plant populations due to poor emergence, and could be a useful tool for growers to use to estimate plant population and growth rate in order to help achieve desired crop stands. Red-Green-Blue (RGB) and near-infrared (NIR) images were collected from a UAV platform starting two weeks after planting and continued weekly for the next six weeks. Ground NDVI was also collected each time aerial images were collected. Vegetation indices were derived from both the RGB and NIR images. Greener area (GGA- the proportion of green pixels with a hue angle from 80° to 120°) and a* (the average red/green color of the image) were derived from the RGB images while Normalized Differential Vegetative Index (NDVI) was derived from NIR images. Aerial indices were successful in distinguishing seeding rates and determining emergence during the first few weeks after planting, but not later in the season. Meanwhile, these aerial indices are not an adequate predictor of yield in peanut at this point.

  12. Disjunct populations of European vascular plant species keep the same climatic niches

    DEFF Research Database (Denmark)

    Wasof, Safaa; Lenoir, Jonathan; Aarrestad, Per Arild

    2015-01-01

    separated for thousands of years. Location: European Alps and Fennoscandia. Methods: Of the studied pool of 888 terrestrial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly......Aim: Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been...... to be largely valid for arctic-alpine plants....

  13. Effect of plant-animal interactions on individual performance and population dynamics of Scorzonera hispanica

    OpenAIRE

    Červenková, Zita

    2016-01-01

    The population dynamics of plants with regard to plant-animal interactions is a remarkably complex topic. To look into how individual life stages are influenced in different directions by various animals is beyond the scope of a single paper. For each of the studies described below, I and my co-authors attempted to collect data that would cover as much of the plant life cycle as possible, focusing on interactions between plants and different animals during the flowering period and their conse...

  14. Using soil seed banks to assess temporal patterns of genetic variation in invasive plant populations

    OpenAIRE

    Fennell, Mark; Gallagher, Tommy; Vintro, Luis Leon; Osborne, Bruce

    2014-01-01

    Most research on the genetics of invasive plant species has focused on analyzing spatial differences among existing populations. Using a long-established Gunnera tinctoria population from Ireland, we evaluated the potential of using plants derived from seeds associated with different soil layers to track genetic variation through time. This species and site were chosen because (1) G. tinctoria produces a large and persistent seed bank; (2) it has been present in this locality, Sraheens, for ∼...

  15. Global asymptotic stability of density dependent integral population projection models.

    Science.gov (United States)

    Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart

    2012-02-01

    Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Social deprivation, population dependency ratio and an extended hospital episode - Insights from acute medicine.

    Science.gov (United States)

    Cournane, Seán; Dalton, Ann; Byrne, Declan; Conway, Richard; O'Riordan, Deirdre; Coveney, Seamus; Silke, Bernard

    2015-11-01

    Patients from deprived backgrounds have a higher in-patient mortality following an emergency medical admission; this study aimed to investigate the extent to which Deprivation status and the population Dependency Ratio influenced extended hospital episodes. All Emergency Medical admissions (75,018 episodes of 41,728 patients) over 12 years (2002-2013) categorized by quintile of Deprivation Index and Population Dependency Rates (proportion of non-working/working) were evaluated against length of stay (LOS). Patients with an Extended LOS (ELOS), >30 days, were investigated, by Deprivation status, Illness Severity and Co-morbidity status. Univariate and multi-variable risk estimates (Odds Rates or Incidence Rate Ratios) were calculated, using truncated Poisson regression. Hospital episodes with ELOS had a frequency of 11.5%; their median LOS (IQR) was 55.0 (38.8, 97.6) days utilizing 57.6% of all bed days by all 75,018 emergency medical admissions. The Deprivation Index independently predicted the rate of such ELOS admissions; these increased approximately five-fold (rate/1000 population) over the Deprivation Quintiles with model adjusted predicted admission rates of for Q1 0.93 (95% CI: 0.86, 0.99), Q22.63 (95% CI: 2.55, 2.71), Q3 3.84 (95% CI: 3.77, 3.91), Q4 3.42 (95% CI: 3.37, 3.48) and Q5 4.38 (95% CI: 4.22, 4.54). Similarly the Population Dependency Ratio Quintiles (dependent to working structure of the population by small area units) independently predicted extended LOS admissions. The admission of patients with an ELOS is strongly influenced by the Deprivation status and the population Dependency Ratio of the catchment area. These factors interact, with both high deprivation and Dependency cohorts having a major influence on the numbers of emergency medical admission patients with an extended hospital episode. Copyright © 2015 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  17. Mate Limitation in Fungal Plant Parasites Can Lead to Cyclic Epidemics in Perennial Host Populations.

    Science.gov (United States)

    Ravigné, Virginie; Lemesle, Valérie; Walter, Alicia; Mailleret, Ludovic; Hamelin, Frédéric M

    2017-03-01

    Fungal plant parasites represent a growing concern for biodiversity and food security. Most ascomycete species are capable of producing different types of infectious spores both asexually and sexually. Yet the contributions of both types of spores to epidemiological dynamics have still to been fully researched. Here we studied the effect of mate limitation in parasites which perform both sexual and asexual reproduction in the same host. Since mate limitation implies positive density dependence at low population density, we modeled the dynamics of such species with both density-dependent (sexual) and density-independent (asexual) transmission rates. A first simple SIR model incorporating these two types of transmission from the infected compartment, suggested that combining sexual and asexual spore production can generate persistently cyclic epidemics in a significant part of the parameter space. It was then confirmed that cyclic persistence could occur in realistic situations by parameterizing a more detailed model fitting the biology of the Black Sigatoka disease of banana, for which literature data are available. We discuss the implications of these results for research on and management of Sigatoka diseases of banana.

  18. Baselines to detect population stability of the threatened alpine plant Packera franciscana (Asteraceae)

    Science.gov (United States)

    James F. Fowler; Carolyn Hull Sieg; Shaula Hedwall

    2015-01-01

    Population size and density estimates have traditionally been acceptable ways to track species’ response to changing environments; however, species' population centroid elevation has recently been an equally important metric. Packera franciscana (Greene) W.A. Weber and A. Love (Asteraceae; San Francisco Peaks ragwort) is a single mountain endemic plant found only...

  19. Context dependency and saturating effects of loss of rare soil microbes on plant productivity

    Directory of Open Access Journals (Sweden)

    Gera eHol

    2015-06-01

    Full Text Available Land use intensification is associated with loss of biodiversity and altered ecosystem functioning. Until now most studies on the relationship between biodiversity and ecosystem functioning focused on random loss of species, while loss of rare species that usually are the first to disappear received less attention. Here we test if the effect of rare microbial species loss on plant productivity depends on the origin of the microbial soil community. Soils were sampled from three land use types at two farms. Microbial communities with increasing loss of rare species were created by inoculating sterilized soils with serially diluted soil suspensions. After 8 months of incubation, the effects of the different soil communities on abiotic soil properties, soil processes, microbial community composition and plant productivity was measured. Dilution treatments resulted in increasing species loss, which was in relation to abundance of bacteria in the original field soil, without affecting most of the other soil parameters and processes. Microbial species loss affected plant biomass positively, negatively or not at all, depending on soil origin, but not on land use history. Even within fields the effects of dilution on plant biomass varied between replicates, suggesting heterogeneity in microbial community composition. The effects of medium and severe species loss on plant biomass were similar, pointing towards a saturating effect of species loss. We conclude that changes in the composition of the soil microbial community, including rare species loss, can affect plant productivity, depending on the composition of the initial microbial community. Future work on the relation between function and species loss effects should address this variation by including multiple sampling origins.

  20. Context dependency and saturating effects of loss of rare soil microbes on plant productivity.

    Science.gov (United States)

    Hol, W H Gera; de Boer, Wietse; de Hollander, Mattias; Kuramae, Eiko E; Meisner, Annelein; van der Putten, Wim H

    2015-01-01

    Land use intensification is associated with loss of biodiversity and altered ecosystem functioning. Until now most studies on the relationship between biodiversity and ecosystem functioning focused on random loss of species, while loss of rare species that usually are the first to disappear received less attention. Here we test if the effect of rare microbial species loss on plant productivity depends on the origin of the microbial soil community. Soils were sampled from three land use types at two farms. Microbial communities with increasing loss of rare species were created by inoculating sterilized soils with serially diluted soil suspensions. After 8 months of incubation, the effects of the different soil communities on abiotic soil properties, soil processes, microbial community composition, and plant productivity was measured. Dilution treatments resulted in increasing species loss, which was in relation to abundance of bacteria in the original field soil, without affecting most of the other soil parameters and processes. Microbial species loss affected plant biomass positively, negatively or not at all, depending on soil origin, but not on land use history. Even within fields the effects of dilution on plant biomass varied between replicates, suggesting heterogeneity in microbial community composition. The effects of medium and severe species loss on plant biomass were similar, pointing toward a saturating effect of species loss. We conclude that changes in the composition of the soil microbial community, including rare species loss, can affect plant productivity, depending on the composition of the initial microbial community. Future work on the relation between function and species loss effects should address this variation by including multiple sampling origins.

  1. Morphological, Phenological And Agronomical Characterisation Of Variability Among Common Bean (Phaseolus Vulgaris L. Local Populations From The National Centre For Plant Genetic Resources: Polish Genebank

    Directory of Open Access Journals (Sweden)

    Boros Lech

    2014-12-01

    Full Text Available The main purpose of this work was to analyse the morphological, phenological and agronomical variability among common bean local populations from The National Centre for Plant Genetic Resources, Polish Genebank, in order to know the relation among them, and to identify potentially useful accessions for future production and breeding. A considerable genotypic variation for number of seeds per plant, number of pods per plant and weight of seeds per plant were found. Studied bean accessions differed significantly in terms of thousand seeds weight (TSW as well as severity of bacterial halo blight and anthracnose, the major bean diseases. The lowest genotypic diversity was found for the percentage of protein in the seeds, the length of the vegetation period and lodging. The cluster analysis allowed identification of five groups of bean accessions. Genotypes from the first cluster (POLPOD 98-77, KOS 002 and Raba cv. and from the second cluster (WUKR 06-573a, KRA 4, WUKR 06-0534 together with Prosna cv. are of the highest usefulness for breeding purposes. There was no grouping of local populations depending on region of origin.

  2. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean; Rayapuram, Naganand; Pflieger, Delphine; Hirt, Heribert

    2014-01-01

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  3. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  4. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population.

    Directory of Open Access Journals (Sweden)

    Kiwako S Araki

    Full Text Available In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals. We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers. We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms

  5. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population.

    Science.gov (United States)

    Araki, Kiwako S; Kubo, Takuya; Kudoh, Hiroshi

    2017-01-01

    In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for

  6. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    Directory of Open Access Journals (Sweden)

    Xiquan Gao

    2014-03-01

    Full Text Available An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP, which is called PAMP-triggered immunity (PTI. The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI. Calcium (Ca2+ signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response.

  7. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    Science.gov (United States)

    Gao, Xiquan; Cox, Kevin L.; He, Ping

    2014-01-01

    An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498

  8. Stochastic resonance and coherence resonance in groundwater-dependent plant ecosystems.

    Science.gov (United States)

    Borgogno, Fabio; D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2012-01-21

    Several studies have shown that non-linear deterministic dynamical systems forced by external random components can give rise to unexpectedly regular temporal behaviors. Stochastic resonance and coherence resonance, the two best known processes of this type, have been studied in a number of physical and chemical systems. Here, we explore their possible occurrence in the dynamics of groundwater-dependent plant ecosystems. To this end, we develop two eco-hydrological models, which allow us to demonstrate that stochastic and coherence resonance may emerge in the dynamics of phreatophyte vegetation, depending on their deterministic properties and the intensity of external stochastic drivers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Herbivore-specific, density-dependent induction of plant volatiles: honest or "cry wolf" signals?

    Directory of Open Access Journals (Sweden)

    Kaori Shiojiri

    Full Text Available Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori also show such a response to the density of cabbage white (Pieris rapae larvae and attract more (naive parasitoids (Cotesia glomerata when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella larvae, seedlings of the same variety (cv Shikidori release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata as a "cry wolf" signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike.

  10. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development

    International Nuclear Information System (INIS)

    Lin ChenTao; Ahmad, M.; Cashmore, A.R.

    1996-01-01

    Cryptochrome 1 (CRY1) is a flavin-type blue type receptor of Arabidopsis thaliana which mediates inhibition of hypocotyl elongation. In the work described in this report it is demonstrated that CRY1 is a soluble protein expressed in both young seedlings grown either in the dark or under light, and in different organs of adult plants. The functional role of CRY1 was further investigated using transgenic Arabidopsis plants overexpressing CRY1. It is demonstrated that overexpression of CRY1 resulted in hypersensitivity to blue, UV-A, and green light for the inhibition of hypocotyl elongation response. Transgenic plants overexpressing CRY1 also exhibited a dwarf phenotype with reduced size in almost every organ. This was in keeping with the previous observation of reciprocal alterations found in hy4 mutant plants and is consistent with a hypothesis that CRY1 mediates a light-dependent process resulting in a general inhibitory effect on plant growth. In addition, transgenic plants overexpressing CRY1 showed increased anthocyanin accumulation in response to blue, UV-A, and green light in a fluence rate-dependent manner. This increase in anthocyanin accumulation in transgenic plants was shown to be concomitant with increased blue light-induction of CHS gene expression. It is concluded that CRY1 is a photoreceptor mediating blue light-dependent regulation of gene expression in addition to its affect on plant growth. (author)

  11. A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations.

    Science.gov (United States)

    Agrawal, Anurag A; Johnson, Marc T J; Hastings, Amy P; Maron, John L

    2013-05-01

    The extent to which evolutionary change occurs in a predictable manner under field conditions and how evolutionary changes feed back to influence ecological dynamics are fundamental, yet unresolved, questions. To address these issues, we established eight replicate populations of native common evening primrose (Oenothera biennis). Each population was planted with 18 genotypes in identical frequency. By tracking genotype frequencies with microsatellite DNA markers over the subsequent three years (up to three generations, ≈5,000 genotyped plants), we show rapid and consistent evolution of two heritable plant life-history traits (shorter life span and later flowering time). This rapid evolution was only partially the result of differential seed production; genotypic variation in seed germination also contributed to the observed evolutionary response. Since evening primrose genotypes exhibited heritable variation for resistance to insect herbivores, which was related to flowering time, we predicted that evolutionary changes in genotype frequencies would feed back to influence populations of a seed predator moth that specializes on O. biennis. By the conclusion of the experiment, variation in the genotypic composition among our eight replicate field populations was highly predictive of moth abundance. These results demonstrate how rapid evolution in field populations of a native plant can influence ecological interactions.

  12. An experimental field study of delayed density dependence in natural populations of Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Rachael K Walsh

    Full Text Available Aedes albopictus, a species known to transmit dengue and chikungunya viruses, is primarily a container-inhabiting mosquito. The potential for pathogen transmission by Ae. albopictus has increased our need to understand its ecology and population dynamics. Two parameters that we know little about are the impact of direct density-dependence and delayed density-dependence in the larval stage. The present study uses a manipulative experimental design, under field conditions, to understand the impact of delayed density dependence in a natural population of Ae. albopictus in Raleigh, North Carolina. Twenty liter buckets, divided in half prior to experimentation, placed in the field accumulated rainwater and detritus, providing oviposition and larval production sites for natural populations of Ae. albopictus. Two treatments, a larvae present and larvae absent treatment, were produced in each bucket. After five weeks all larvae were removed from both treatments and the buckets were covered with fine mesh cloth. Equal numbers of first instars were added to both treatments in every bucket. Pupae were collected daily and adults were frozen as they emerged. We found a significant impact of delayed density-dependence on larval survival, development time and adult body size in containers with high larval densities. Our results indicate that delayed density-dependence will have negative impacts on the mosquito population when larval densities are high enough to deplete accessible nutrients faster than the rate of natural food accumulation.

  13. Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat.

    Science.gov (United States)

    Naeem, Muhammad; Aslam, Zubair; Khaliq, Abdul; Ahmed, Jam Nazir; Nawaz, Ahmad; Hussain, Mubshar

    2018-04-24

    Plant growth promoting rhizobacteria increase plant growth and give protection against insect pests and pathogens. Due to the negative impact of chemical pesticides on environment, alternatives to these chemicals are needed. In this scenario, the biological methods of pest control offer an eco-friendly and an attractive option. In this study, the effect of two plant growth promoting rhizobacterial strains (Bacillus sp. strain 6 and Pseudomonas sp. strain 6K) on aphid population and wheat productivity was evaluated in an aphid susceptible (Pasban-90) and resistant (Inqlab-91) wheat cultivar. The seeds were inoculated with each PGPR strain, separately or the combination of both. The lowest aphid population (2.1tiller -1 ), and highest plant height (85.8cm), number of spikelets per spike (18), grains per spike (44), productive tillers (320m -2 ), straw yield (8.6Mgha -1 ), and grain yield (4.8Mgha -1 ) were achieved when seeds were inoculated with Bacillus sp. strain 6+Pseudomonas sp. strain 6K. The grain yield of both varieties was enhanced by 35.5-38.9% with seed inoculation with both bacterial strains. Thus, the combine use of both PGPR strains viz. Bacillus sp. strain 6+Pseudomonas sp. strain 6K offers an attractive option to reduce aphid population tied with better wheat productivity. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  14. Impact Of Different Time Planting In Soybeans And Neem Seed Extract Application To Insect Population On Rice Field

    Directory of Open Access Journals (Sweden)

    Tamrin Abdullah

    2015-08-01

    Full Text Available Abstract The purpose of research is to study impact of different time planting of soybean and neem seed extract application to pest insect population on rice field. The research was used Random Block Design in three treatment of insecticides application i.e neem seed extract together with rice planting neem seed extract on soybean 17 days after rice planting synthetic insecticides on 17 days after rice planting Delthametrin on soybean and Chlorpirifos on rice respectively. Research was conducted in rice fields with irrigation channels. The land area is 0.8 hectares with extensive experiments each rice terraces approximately 900 m2 with separate by rice terraces for every treatment. Each treatment consisted of three groups and using nine rice terraces. Samples of the rice plant population is 25 plants per sample unit. The results was showed treatment by neem seed extract with different time planting of soybeans able to reduce number of pest insects populations such as N. virescens 80.38 N. lugens 67.17 S. incertulas 66.5 and L. oratorius 93.46 when compared to treatment with synthetic insecticides Delthamethrin and Chlorpyrifos.

  15. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    Science.gov (United States)

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Sub-national mapping of population pyramids and dependency ratios in Africa and Asia

    Science.gov (United States)

    Pezzulo, Carla; Hornby, Graeme M.; Sorichetta, Alessandro; Gaughan, Andrea E.; Linard, Catherine; Bird, Tomas J.; Kerr, David; Lloyd, Christopher T.; Tatem, Andrew J.

    2017-07-01

    The age group composition of populations varies substantially across continents and within countries, and is linked to levels of development, health status and poverty. The subnational variability in the shape of the population pyramid as well as the respective dependency ratio are reflective of the different levels of development of a country and are drivers for a country's economic prospects and health burdens. Whether measured as the ratio between those of working age and those young and old who are dependent upon them, or through separate young and old-age metrics, dependency ratios are often highly heterogeneous between and within countries. Assessments of subnational dependency ratio and age structure patterns have been undertaken for specific countries and across high income regions, but to a lesser extent across the low income regions. In the framework of the WorldPop Project, through the assembly of over 100 million records across 6,389 subnational administrative units, subnational dependency ratio and high resolution gridded age/sex group datasets were produced for 87 countries in Africa and Asia.

  17. Hydrogen and methane generation from large hydraulic plant: Thermo-economic multi-level time-dependent optimization

    International Nuclear Information System (INIS)

    Rivarolo, M.; Magistri, L.; Massardo, A.F.

    2014-01-01

    Highlights: • We investigate H 2 and CH 4 production from very large hydraulic plant (14 GW). • We employ only “spilled energy”, not used by hydraulic plant, for H 2 production. • We consider the integration with energy taken from the grid at different prices. • We consider hydrogen conversion in chemical reactors to produce methane. • We find plants optimal size using a time-dependent thermo-economic approach. - Abstract: This paper investigates hydrogen and methane generation from large hydraulic plant, using an original multilevel thermo-economic optimization approach developed by the authors. Hydrogen is produced by water electrolysis employing time-dependent hydraulic energy related to the water which is not normally used by the plant, known as “spilled water electricity”. Both the demand for spilled energy and the electrical grid load vary widely by time of year, therefore a time-dependent hour-by-hour one complete year analysis has been carried out, in order to define the optimal plant size. This time period analysis is necessary to take into account spilled energy and electrical load profiles variability during the year. The hydrogen generation plant is based on 1 MWe water electrolysers fuelled with the “spilled water electricity”, when available; in the remaining periods, in order to assure a regular H 2 production, the energy is taken from the electrical grid, at higher cost. To perform the production plant size optimization, two hierarchical levels have been considered over a one year time period, in order to minimize capital and variable costs. After the optimization of the hydrogen production plant size, a further analysis is carried out, with a view to converting the produced H 2 into methane in a chemical reactor, starting from H 2 and CO 2 which is obtained with CCS plants and/or carried by ships. For this plant, the optimal electrolysers and chemical reactors system size is defined. For both of the two solutions, thermo

  18. Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence

    Science.gov (United States)

    Su, Li-Xia; Lou, Qing; Jiao, Zhen; Shan, Chong-Xin

    2016-09-01

    Despite extensive work on fluorescence behavior stemming from color centers of diamond, reports on the excitation-dependent fluorescence of nanodiamonds (NDs) with a large-scale redshift from 400 to 620 nm under different excitation wavelengths are so far much fewer, especially in biological applications. The fluorescence can be attributed to the combined effects of the fraction of sp2-hybridized carbon atoms among the surface of the fine diamond nanoparticles and the defect energy trapping states on the surface of the diamond. The excitation-dependent fluorescent NDs have been applied in plant cell imaging for the first time. The results reported in this paper may provide a promising route to multiple-color bioimaging using NDs.

  19. Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence.

    Science.gov (United States)

    Su, Li-Xia; Lou, Qing; Jiao, Zhen; Shan, Chong-Xin

    2016-12-01

    Despite extensive work on fluorescence behavior stemming from color centers of diamond, reports on the excitation-dependent fluorescence of nanodiamonds (NDs) with a large-scale redshift from 400 to 620 nm under different excitation wavelengths are so far much fewer, especially in biological applications. The fluorescence can be attributed to the combined effects of the fraction of sp(2)-hybridized carbon atoms among the surface of the fine diamond nanoparticles and the defect energy trapping states on the surface of the diamond. The excitation-dependent fluorescent NDs have been applied in plant cell imaging for the first time. The results reported in this paper may provide a promising route to multiple-color bioimaging using NDs.

  20. Model calculations of the influence of population distribution on the siting of nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, F.; Walmod-Larsen, O.

    1984-02-01

    This report was prepared for a working group established in April 1981 by the Danish Environmental Protection Agency with the task of investigating siting problems of nuclear power stations in Denmark. The purpose of the working group was to study the influence of the population density around a site on nuclear power safety. The importance of emergency planning should be studied as well. In this model study two specific accident sequences were simulated on a 1000 MWe nuclear power plant. The plant was assumed to be placed in the center of two different model population distributions. The concequences for the two population distributions from the two accidents were calculated for the most frequent weather conditions. Doses to individuals were calculated for the bone marrow, lungs, gastrointestinal tract, thyroidea and for the whole body. The collective whole body doses were also calculated for the two populations considered. (author)

  1. Pseudohypericin and Hyperforin in Hypericum perforatum from Northern Turkey: Variation among Populations, Plant Parts and Phenological Stages

    Institute of Scientific and Technical Information of China (English)

    Cüneyt ?irak; Jolita Radusiene; Valdimaras Janulis; Liudas Ivanauskas

    2008-01-01

    Hypericum perforatum is a perennial medicinal plant known as "St. John's wort" in Western Europe and has been used in the treatment of several diseases for centuries. In the present study, morphologic, phenologic and population variability in pseudohypericin and hyperforin concentrations among H. perforatum populations from Northern Turkey was investigated for the first time. The aerial parts of H. perforatum plants representing a total of 30 individuals were collected at full flowering from 10 sites of Northern Turkey to search the regional variation in the secondary metabolits concentrations. For morphologic and phenologic sampling, plants from one site were gathered in five phenological stages: vegetative,floral budding, full flowering, fresh fruiting and mature fruiting. The plant materials were air-dried at room temperature and subsequently assayed for chemical concentrations by high performance liquid chromatography. Secondary metabolite concentrations ranged from traces to 2.94mg/g dry weight (DW) for pseudohypedcin and traces -6.29mg/g DW for hyperforin. The differences in the secondary metabolite concentrations among populations of H. perforatum were found to be significant. The populations varied greatly in hyperforin concentrations, whereas they produced a similar amount of pseudohypericin. Concentrations of both secondary metabolites in all tissues increased with advancing of plant development and higher accumulation levels were reached at flowering. Among different tissues, full opened flowers were found to be superior to stems, leaves and the other reproductive parts with regard to pseudohypericin and hyperforin accumulations. The present findings might be useful to optimize the processing methodology of wild-harvested plant material and obtain Increased concentrations of these secondary metabolites.

  2. Effect Of Plant Population On Yield Of Maize And Climbing Beans ...

    African Journals Online (AJOL)

    A field experiment was conducted at Kachwekano near Kabale town for two seasons: second rains of 1996 (1996b) and first rains of 1997 (1997a), to determine the appropriate plant population density (PPD) of maize that would maximize bean yield in an intercrop system. The treatments were: (a) maize PPD ranging from ...

  3. Stage-dependent responses to emergent habitat heterogeneity: consequences for a predatory insect population in a coffee agroecosystem.

    Science.gov (United States)

    Liere, Heidi; Perfecto, Ivette; Vandermeer, John

    2014-08-01

    Interactions among members of biological communities can create spatial patterns that effectively generate habitat heterogeneity for other members in the community, and this heterogeneity might be crucial for their persistence. For example, stage-dependent vulnerability of a predatory lady beetle to aggression of the ant, Azteca instabilis, creates two habitat types that are utilized differently by the immature and adult life stages of the beetle. Due to a mutualistic association between A. instabilis and the hemipteran Coccus viridis - which is A. orbigera main prey in the area - only plants around ant nests have high C. viridis populations. Here, we report on a series of surveys at three different scales aimed at detecting how the presence and clustered distribution of ant nests affect the distribution of the different life stages of this predatory lady beetle in a coffee farm in Chiapas, Mexico. Both beetle adults and larvae were more abundant in areas with ant nests, but adults were restricted to the peripheries of highest ant activity and outside the reach of coffee bushes containing the highest densities of lady beetle larvae. The abundance of adult beetles located around trees with ants increased with the size of the ant nest clusters but the relationship is not significant for larvae. Thus, we suggest that A. orbigera undergoes an ontogenetic niche shift, not through shifting prey species, but through stage-specific vulnerability differences against a competitor that renders areas of abundant prey populations inaccessible for adults but not for larvae. Together with evidence presented elsewhere, this study shows how an important predator is not only dependent on the existence of two qualitatively distinct habitat types, but also on the spatial distribution of these habitats. We suggest that this dependency arises due to the different responses that the predator's life stages have to this emergent spatial pattern.

  4. [Alimentation dependent health disorders among adult population of Bashkortostan Republic and their relation with nutritional traits].

    Science.gov (United States)

    Takaev, R M; Kondrova, N S; Baĭkina, I M; Larionova, T K

    2008-01-01

    The authors demonstrated relationship between alimentation dependent diseases among adult population of the Republic and nutritional traits of the population, defined major directions of program to optimize nutrition of the population.

  5. The influence of geographic location on population exposure to emissions from power plants throughout China

    International Nuclear Information System (INIS)

    Ying Zhou; Levy, J.I.; Evans, J.S.; Hammitt, J.K.

    2006-01-01

    This analysis seeks to evaluate the influence of emission source location on population exposure in China to fine particles and sulfur dioxide. We use the concept of intake fraction, defined as the fraction of material or its precursor released from a source that is eventually inhaled or ingested by a population. We select 29 power-plant sites throughout China and estimate annual average intake fractions at each site, using identical source characteristics to isolate the influence of geographic location. In addition, we develop regression models to interpret the intake fraction values and allow for extrapolation to other sites. To model the concentration increase due to emissions from selected power plants, we used a detailed long-range atmospheric dispersion model, CALPUFF. Primary fine particles have the highest average intake fraction (1 x 10 -5 ), followed by sulfur dioxide (5 x 10 -6 ), sulfate from sulfur dioxide (4 x 10 -6 ), and nitrate from nitrogen oxides (4 x 10 -6 ). For all pollutants, the intake fractions span approximately an order of magnitude across sites. In the regression analysis, the independent variables are meteorological proxies (such as climate region and precipitation) and population at various distances from the source. We find that population terms can explain a substantial percentage of variability in the intake fraction for all pollutants (R 2 between 0.86 and 0.95 across pollutants), with a significant modifying influence of meteorological regime. Near-source population is more important for primary coarse particles while population at medium to long distance is more important for primary fine particles and secondary particles. A significant portion of intake fraction (especially for secondary particles and primary fine particles) occurs beyond 500 km of the source, emphasizing the need for detailed long-range dispersion modeling. These findings demonstrate that intake fractions for power plants in China can be estimated with

  6. The influence of geographic location on population exposure to emissions from power plants throughout China

    Energy Technology Data Exchange (ETDEWEB)

    Ying Zhou; Levy, J.I. [Harvard School of Public Health, Boston, MA (United States); Evans, J.S.; Hammitt, J.K. [Harvard Center for Risk Analysis, Boston, MA (United States)

    2006-04-15

    This analysis seeks to evaluate the influence of emission source location on population exposure in China to fine particles and sulfur dioxide. We use the concept of intake fraction, defined as the fraction of material or its precursor released from a source that is eventually inhaled or ingested by a population. We select 29 power-plant sites throughout China and estimate annual average intake fractions at each site, using identical source characteristics to isolate the influence of geographic location. In addition, we develop regression models to interpret the intake fraction values and allow for extrapolation to other sites. To model the concentration increase due to emissions from selected power plants, we used a detailed long-range atmospheric dispersion model, CALPUFF. Primary fine particles have the highest average intake fraction (1 x 10{sup -5}), followed by sulfur dioxide (5 x 10{sup -6}), sulfate from sulfur dioxide (4 x 10{sup -6}), and nitrate from nitrogen oxides (4 x 10{sup -6}). For all pollutants, the intake fractions span approximately an order of magnitude across sites. In the regression analysis, the independent variables are meteorological proxies (such as climate region and precipitation) and population at various distances from the source. We find that population terms can explain a substantial percentage of variability in the intake fraction for all pollutants (R{sup 2} between 0.86 and 0.95 across pollutants), with a significant modifying influence of meteorological regime. Near-source population is more important for primary coarse particles while population at medium to long distance is more important for primary fine particles and secondary particles. A significant portion of intake fraction (especially for secondary particles and primary fine particles) occurs beyond 500 km of the source, emphasizing the need for detailed long-range dispersion modeling. These findings demonstrate that intake fractions for power plants in China can be

  7. Pipecolic Acid Orchestrates Plant Systemic Acquired Resistance and Defense Priming via Salicylic Acid-Dependent and -Independent Pathways.

    Science.gov (United States)

    Bernsdorff, Friederike; Döring, Anne-Christin; Gruner, Katrin; Schuck, Stefan; Bräutigam, Andrea; Zeier, Jürgen

    2016-01-01

    We investigated the relationships of the two immune-regulatory plant metabolites, salicylic acid (SA) and pipecolic acid (Pip), in the establishment of plant systemic acquired resistance (SAR), SAR-associated defense priming, and basal immunity. Using SA-deficient sid2, Pip-deficient ald1, and sid2 ald1 plants deficient in both SA and Pip, we show that SA and Pip act both independently from each other and synergistically in Arabidopsis thaliana basal immunity to Pseudomonas syringae. Transcriptome analyses reveal that SAR establishment in Arabidopsis is characterized by a strong transcriptional response systemically induced in the foliage that prepares plants for future pathogen attack by preactivating multiple stages of defense signaling and that SA accumulation upon SAR activation leads to the downregulation of photosynthesis and attenuated jasmonate responses systemically within the plant. Whereas systemic Pip elevations are indispensable for SAR and necessary for virtually the whole transcriptional SAR response, a moderate but significant SA-independent component of SAR activation and SAR gene expression is revealed. During SAR, Pip orchestrates SA-dependent and SA-independent priming of pathogen responses in a FLAVIN-DEPENDENT-MONOOXYGENASE1 (FMO1)-dependent manner. We conclude that a Pip/FMO1 signaling module acts as an indispensable switch for the activation of SAR and associated defense priming events and that SA amplifies Pip-triggered responses to different degrees in the distal tissue of SAR-activated plants. © 2016 American Society of Plant Biologists. All rights reserved.

  8. Defining groundwater-dependent ecosystems and assessing critical water needs for their foundational plant communities

    Science.gov (United States)

    Stella, J. C.

    2017-12-01

    In many water-limited regions, human water use in conjunction with increased climate variability threaten the sustainability of groundwater-dependent plant communities and the ecosystems that depend on them (GDEs). Identifying and delineating vulnerable GDEs and determining critical functional thresholds for their foundational species has proved challenging, but recent research across several disciplines shows great promise for reducing scientific uncertainty and increasing applicability to ecosystem and groundwater management. Combining interdisciplinary approaches provides insights into indicators that may serve as early indicators of ecosystem decline, or alternatively demonstrate lags in responses depending on scale or sensitivity, or that even may decouple over time (Fig. 1). At the plant scale, miniaturization of plant sap flow sensors and tensiometers allow for non-destructive, continual measurements of plant water status in response to environmental stressors. Novel applications of proven tree-ring and stable isotope methods provide multi-decadal chronologies of radial growth, physiological function (using d13C ratios) and source water use (using d18O ratios) in response to annual variation in climate and subsurface water availability to plant roots. At a landscape scale, integration of disparate geospatial data such as hyperspectral imagery and LiDAR, as well as novel spectral mixing analysis promote the development of novel water stress indices such as vegetation greenness and non-photosynthetic (i.e., dead) vegetation (Fig. 2), as well as change detection using time series (Fig. 3). Furthermore, increases in data resolution across numerous data types can increasingly differentiate individual plant species, including sensitive taxa that serve as early warning indicators of ecosystem impairment. Combining and cross-calibrating these approaches provide insight into the full range of GDE response to environmental change, including increased climate drought

  9. A below-ground herbivore shapes root defensive chemistry in natural plant populations.

    Science.gov (United States)

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-03-30

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. © 2016 The Author(s).

  10. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    DEFF Research Database (Denmark)

    Leirs, Herwig; Steneth, Nils Chr.; Nichols, James D.

    1997-01-01

    , but clear examples of both processes acting in the same population are rare(7,8). Key-factor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide...... no information on actual demographic rates(9,10). Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammute rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models, Both effects occur simultaneously, but we also demonstrate...

  11. Cigarette smoking, nicotine dependence and anxiety disorders: a systematic review of population-based, epidemiological studies

    Directory of Open Access Journals (Sweden)

    Moylan Steven

    2012-10-01

    Full Text Available Abstract Background Multiple studies have demonstrated that rates of smoking and nicotine dependence are increased in individuals with anxiety disorders. However, significant variability exists in the epidemiological literature exploring this relationship, including study design (cross-sectional versus prospective, the population assessed (random sample versus clinical population and diagnostic instrument utilized. Methods We undertook a systematic review of population-based observational studies that utilized recognized structured clinical diagnostic criteria (Diagnostic and Statistical Manual of Mental Disorders (DSM or International Classification of Diseases (ICD for anxiety disorder diagnosis to investigate the relationship between cigarette smoking, nicotine dependence and anxiety disorders. Results In total, 47 studies met the predefined inclusion criteria, with 12 studies providing prospective information and 5 studies providing quasiprospective information. The available evidence suggests that some baseline anxiety disorders are a risk factor for initiation of smoking and nicotine dependence, although the evidence is heterogeneous and many studies did not control for the effect of comorbid substance use disorders. The identified evidence however appeared to more consistently support cigarette smoking and nicotine dependence as being a risk factor for development of some anxiety disorders (for example, panic disorder, generalized anxiety disorder, although these findings were not replicated in all studies. A number of inconsistencies in the literature were identified. Conclusions Although many studies have demonstrated increased rates of smoking and nicotine dependence in individuals with anxiety disorders, there is a limited and heterogeneous literature that has prospectively examined this relationship in population studies using validated diagnostic criteria. The most consistent evidence supports smoking and nicotine dependence as

  12. Genetic variability in chronic irradiated plant populations - Polymorphism and activity of antioxidant enzymes in chronic irradiated plant populations

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, Polina Y.; Geras' kin, Stanislav A. [Russian Institute of Agricultural Radiology and Agroecology, 249030, Obninsk, Kievskoe shosse 109 km (Russian Federation)

    2014-07-01

    Introduction: The gene pool of natural population is constantly changing in order to provide the greatest fitness at this time. Ability of population to adapt to changing environmental conditions depends on genetic polymorphism of traits which are operates by selection. Chronic stress exposure can change amount or structure intra-population variability. Therefore, it is necessary to analyze the relationships between genetic polymorphism and stress factors, such as radiation exposure. This studies my assist in the development of new bio-indication methods. Materials and methods: Studying sites: Bryansk region is the most contaminated region of Russia as a result of Chernobyl accident. The initial activity by {sup 137}Cs on this territory reached 1 MBq/m{sup 2} above surface. Our study conducted in several districts of Bryansk region, which are characterized the most dose rate. Experimental sites similar to climate characteristics, stand of trees is homogeneous, pine trees take up a significant part of phytocenosis. Heavy metals content in soils and cones be within background. Dose rates vary from 0.14 to 130 mGy/year. Object: Pinus sylvestris L.,the dominant tree species in North European and Asian boreal forests. Scots pine has a long maturation period (18-20 month), which means that significant DNA damage may accumulate in the undifferentiated stem cells, even at low doses (or dose rates) during exposure to low concentrations of contaminants Isozyme analysis: We evaluated isozyme polymorphism of three antioxidant enzymes: superoxide dismutase, glutatione reductase and glutatione peroxidase. Analysis of enzymes activities: We chose key enzymes of antioxidant system for this experiment: superoxide dismutase, catalase and peroxidase. Results and conclusions: We estimated frequency of each allele in reference and experimental populations. based It was showed that frequency of rare alleles increase in chronic irradiated populations, i.e. increase the sampling variance

  13. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation

    Directory of Open Access Journals (Sweden)

    Benoît eDrogue

    2014-11-01

    Full Text Available Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defence and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyses of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post inoculation with A. lipoferum 4B (isolated from Cigalon or Azospirillum sp. B510 (isolated from Nipponbare and compared to the respective non-inoculated condition. A total of 7,384 genes were significantly regulated, which represent about 16 % of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83 % of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defence, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signalling highlight the complexity of hormone signalling networks in the Azospirillum

  14. Final report on effects of environmental radiation of Kori nuclear power plant on human population

    International Nuclear Information System (INIS)

    Kim, Y.J.; Kim, J.B.; Chung, K.H.; Lee, K.S.; Kim, S.R.; Yang, S.Y.

    1980-01-01

    In order to clarify and protect the effects of environmental radiation according to the operation of Kori nuclear power plant on the human population, the base line survey for the human monitoring, human life habits, expected individual exposure dose, frequencies of chromosomal aberration, gene frequencies and karyotypes in amphibia, fauna, and radiation sensitivities in microorganisms which have been living around the power plant site were carried out. Kilchonri population which took for the human monitoring lie within a 2 km distance from the power plant site. Human monitoring, house and food characteristics, individual experience of x-ray exposures, human chromosome analysis and fauna were surveyed and expressed in numerical tables. Chromosome number obtained from the amphibia which were collected around the power plant area was as follows: Kaloula borealis 2N=30, Rana amurensis 2N=26, Rana dybouskii 2N=24, Rana rugosa 2N=26, Rana nigromaculata 2N=26, Rana plancyi 2N=26, Bombina orientalis 2N=24, Hyla arborea 2N=24, Bufo stejnegeri 2N=22, Bufo bufo 2N=22. (author)

  15. Global environmental change effects on plant community composition trajectories depend upon management legacies

    NARCIS (Netherlands)

    Perring, Michael P.; Bernhardt-Römermann, Markus; Baeten, Lander; Midolo, Gabriele; Blondeel, Haben; Depauw, Leen; Landuyt, Dries; Maes, Sybryn L.; Lombaerde, De Emiel; Carón, Maria Mercedes; Vellend, Mark; Brunet, Jörg; Chudomelová, Markéta; Decocq, Guillaume; Diekmann, Martin; Dirnböck, Thomas; Dörfler, Inken; Durak, Tomasz; Frenne, De Pieter; Gilliam, Frank S.; Hédl, Radim; Heinken, Thilo; Hommel, Patrick; Jaroszewicz, Bogdan; Kirby, Keith J.; Kopecký, Martin; Lenoir, Jonathan; Li, Daijiang; Máliš, František; Mitchell, Fraser J.G.; Naaf, Tobias; Newman, Miles; Petřík, Petr; Reczyńska, Kamila; Schmidt, Wolfgang; Standovár, Tibor; Świerkosz, Krzysztof; Calster, Van Hans; Vild, Ondřej; Wagner, Eva Rosa; Wulf, Monika; Verheyen, Kris

    2018-01-01

    The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental

  16. The environmental dependence of inbreeding depression in a wild bird population.

    Directory of Open Access Journals (Sweden)

    Marta Szulkin

    2007-10-01

    Full Text Available Inbreeding depression occurs when the offspring produced as a result of matings between relatives show reduced fitness, and is generally understood as a consequence of the elevated expression of deleterious recessive alleles. How inbreeding depression varies across environments is of importance for the evolution of inbreeding avoidance behaviour, and for understanding extinction risks in small populations. However, inbreeding-by-environment (IxE interactions have rarely been investigated in wild populations.We analysed 41 years of breeding events from a wild great tit (Parus major population and used 11 measures of the environment to categorise environments as relatively good or poor, testing whether these measures influenced inbreeding depression. Although inbreeding always, and environmental quality often, significantly affected reproductive success, there was little evidence for statistically significant I x E interactions at the level of individual analyses. However, point estimates of the effect of the environment on inbreeding depression were sometimes considerable, and we show that variation in the magnitude of the I x E interaction across environments is consistent with the expectation that this interaction is more marked across environmental axes with a closer link to overall fitness, with the environmental dependence of inbreeding depression being elevated under such conditions. Hence, our analyses provide evidence for an environmental dependence of the inbreeding x environment interaction: effectively an I x E x E.Overall, our analyses suggest that I x E interactions may be substantial in wild populations, when measured across relevant environmental contrasts, although their detection for single traits may require very large samples, or high rates of inbreeding.

  17. Timing intervals using population synchrony and spike timing dependent plasticity

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2016-12-01

    Full Text Available We present a computational model by which ensembles of regularly spiking neurons can encode different time intervals through synchronous firing. We show that a neuron responding to a large population of convergent inputs has the potential to learn to produce an appropriately-timed output via spike-time dependent plasticity. We explain why temporal variability of this population synchrony increases with increasing time intervals. We also show that the scalar property of timing and its violation at short intervals can be explained by the spike-wise accumulation of jitter in the inter-spike intervals of timing neurons. We explore how the challenge of encoding longer time intervals can be overcome and conclude that this may involve a switch to a different population of neurons with lower firing rate, with the added effect of producing an earlier bias in response. Experimental data on human timing performance show features in agreement with the model’s output.

  18. Genetic and ontogenetic variation in an endangered tree structures dependent arthropod and fungal communities.

    Directory of Open Access Journals (Sweden)

    Benjamin J Gosney

    Full Text Available Plant genetic and ontogenetic variation can significantly impact dependent fungal and arthropod communities. However, little is known of the relative importance of these extended genetic and ontogenetic effects within a species. Using a common garden trial, we compared the dependent arthropod and fungal community on 222 progeny from two highly differentiated populations of the endangered heteroblastic tree species, Eucalyptus morrisbyi. We assessed arthropod and fungal communities on both juvenile and adult foliage. The community variation was related to previous levels of marsupial browsing, as well as the variation in the physicochemical properties of leaves using near-infrared spectroscopy. We found highly significant differences in community composition, abundance and diversity parameters between eucalypt source populations in the common garden, and these were comparable to differences between the distinctive juvenile and adult foliage. The physicochemical properties assessed accounted for a significant percentage of the community variation but did not explain fully the community differences between populations and foliage types. Similarly, while differences in population susceptibility to a major marsupial herbivore may result in diffuse genetic effects on the dependent community, this still did not account for the large genetic-based differences in dependent communities between populations. Our results emphasize the importance of maintaining the populations of this rare species as separate management units, as not only are the populations highly genetically structured, this variation may alter the trajectory of biotic colonization of conservation plantings.

  19. Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival

    Directory of Open Access Journals (Sweden)

    Céline Christiansen-Jucht

    2015-05-01

    Full Text Available Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a “standard” model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors.

  20. Human Health Risk Assessment Applied to Rural Populations Dependent on Unregulated Drinking Water Sources: A Scoping Review.

    Science.gov (United States)

    Ford, Lorelei; Bharadwaj, Lalita; McLeod, Lianne; Waldner, Cheryl

    2017-07-28

    Safe drinking water is a global challenge for rural populations dependent on unregulated water. A scoping review of research on human health risk assessments (HHRA) applied to this vulnerable population may be used to improve assessments applied by government and researchers. This review aims to summarize and describe the characteristics of HHRA methods, publications, and current literature gaps of HHRA studies on rural populations dependent on unregulated or unspecified drinking water. Peer-reviewed literature was systematically searched (January 2000 to May 2014) and identified at least one drinking water source as unregulated (21%) or unspecified (79%) in 100 studies. Only 7% of reviewed studies identified a rural community dependent on unregulated drinking water. Source water and hazards most frequently cited included groundwater (67%) and chemical water hazards (82%). Most HHRAs (86%) applied deterministic methods with 14% reporting probabilistic and stochastic methods. Publications increased over time with 57% set in Asia, and 47% of studies identified at least one literature gap in the areas of research, risk management, and community exposure. HHRAs applied to rural populations dependent on unregulated water are poorly represented in the literature even though almost half of the global population is rural.

  1. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses

    Directory of Open Access Journals (Sweden)

    Iwai Ohbayashi

    2018-01-01

    Full Text Available The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  2. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses.

    Science.gov (United States)

    Ohbayashi, Iwai; Sugiyama, Munetaka

    2017-01-01

    The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  3. Effects of Plant Extracts on Microbial Population, Methane Emission and Ruminal Fermentation Characteristics in

    Directory of Open Access Journals (Sweden)

    E. T. Kim

    2012-06-01

    Full Text Available This study was conducted to evaluate effects of plant extracts on methanogenesis and rumen microbial diversity in in vitro. Plant extracts (Artemisia princeps var. Orientalis; Wormwood, Allium sativum for. Pekinense; Garlic, Allium cepa; Onion, Zingiber officinale; Ginger, Citrus unshiu; Mandarin orange, Lonicera japonica; Honeysuckle were obtained from the Plant Extract Bank at Korea Research Institute of Bioscience and Biotechnology. The rumen fluid was collected before morning feeding from a fistulated Holstein cow fed timothy and commercial concentrate (TDN; 73.5%, crude protein; 19%, crude fat; 3%, crude fiber; 12%, crude ash; 10%, Ca; 0.8%, P; 1.2% in the ratio of 3 to 2. The 30 ml of mixture, comprising McDougall buffer and rumen liquor in the ratio of 4 to 1, was dispensed anaerobically into serum bottles containing 0.3 g of timothy substrate and plant extracts (1% of total volume, respectively filled with O2-free N2 gas and capped with a rubber stopper. The serum bottles were held in a shaking incubator at 39°C for 24 h. Total gas production in all plant extracts was higher (p<0.05 than that of the control, and total gas production of ginger extract was highest (p<0.05. The methane emission was highest (p<0.05 at control, but lowest (p<0.05 at garlic extract which was reduced to about 20% of methane emission (40.2 vs 32.5 ml/g DM. Other plant extracts also resulted in a decrease in methane emissions (wormwood; 8%, onion; 16%, ginger; 16.7%, mandarin orange; 12%, honeysuckle; 12.2%. Total VFAs concentration and pH were not influenced by the addition of plant extracts. Acetate to propionate ratios from garlic and ginger extracts addition samples were lower (p<0.05, 3.36 and 3.38 vs 3.53 than that of the control. Real-time PCR indicted that the ciliate-associated methanogen population in all added plant extracts decreased more than that of the control, while the fibrolytic bacteria population increased. In particular, the F. succinogens

  4. Response of predatory mites to a herbivore-induced plant volatile: genetic variation for context-dependent behaviour.

    Science.gov (United States)

    Sznajder, Beata; Sabelis, Maurice W; Egas, Martijn

    2010-07-01

    Plants infested with herbivores release specific volatile compounds that are known to recruit natural enemies. The response of natural enemies to these volatiles may be either learned or genetically determined. We asked whether there is genetic variation in the response of the predatory mite Phytoseiulus persimilis to methyl salicylate (MeSa). MeSa is a volatile compound consistently produced by plants being attacked by the two-spotted spider mite, the prey of P. persimilis. We predicted that predators express genetically determined responses during long-distance migration where previously learned associations may have less value. Additionally, we asked whether these responses depend on odors from uninfested plants as a background to MeSa. To infer a genetic basis, we analyzed the variation in response to MeSa among iso-female lines of P. persimilis by using choice-tests that involved either (1) MeSa presented as a single compound or (2) MeSa with background-odor from uninfested lima bean plants. These tests were conducted for starved and satiated predators, i.e., two physiological states, one that approximates migration and another that mimics local patch exploration. We found variation among iso-female lines in the responses to MeSa, thus showing genetic variation for this behavior. The variation was more pronounced in the starved predators, thus indicating that P. persimilis relies on innate preferences when migrating. Background volatiles of uninfested plants changed the predators' responses to MeSa in a manner that depended on physiological state and iso-female line. Thus, it is possible to select for context-dependent behavioral responses of natural enemies to plant volatiles.

  5. Bayesian inference on the effect of density dependence and weather on a guanaco population from Chile

    DEFF Research Database (Denmark)

    Zubillaga, Maria; Skewes, Oscar; Soto, Nicolás

    2014-01-01

    Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based...

  6. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Directory of Open Access Journals (Sweden)

    Astrid Welk

    Full Text Available This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  7. Dependence of plant biometrics of cutting lettuce (Lactuca sativa L. varietis on the concentration of microfertilizer Avatar-1

    Directory of Open Access Journals (Sweden)

    В. Б. Кутовенко

    2017-09-01

    Full Text Available Purpose. To investigate the variability of plant biometrics of cutting lettuce (Lactuca sativa L. varieties depending on the concentration of microfertilizer Avatar-1. Methods. Field study, biometric technique, comparative approach, statistical evaluation, generalization. Results. Dependence of the plant height, the diameter of the leaf rosette, the number of leaves per plant, the leaf area of plants on the concentration of microfertilizer Avatar-1 was defined. Investigations of cutting lettuce ‘Afitsyon’ and ‘Concord’ varieties by Dutch breeding were conducted in 2016–2017 in the collection sites of the department of vegetable growing in the scientific-experimental field  “Fruit and vegetable garden” of the National University of Life and Environmental Sciences of Ukraine. In order to determine dependence of plant biometrics of cutting lettuce varieties on the concentration of complex microfertilizer Avatar-1, the following scheme was used for the both varieties: variant 1 – water (control; variant 2 – 0,10% solution; variant 3 – 0,25% solution; variant 4 – 0,50% solution. Plants were treated with microfertilizer three times during the vegetative period. Alterations of plant biometrics of cutting lettuce ‘Afitsyon’ and ‘Concord’ varieties  depending on the concentration of complex microfertilizer Avatar-1 was studied. Conclusions. It was found that in case of three-time plant treatment with complex microfertilizer Avatar-1 at the time of harvesting, the best plant biometrics was registered in variant 3 (concentration 0,25% for the both ‘Afitsyon’ and ‘Concord’ varie­ties of cutting lettuce. The height of plants of the cutting lettuce in ‘Afitsyon’ variety exceeded this figure in ‘Concord variety by 1,1–1,4 cm. The concentration of microfertilizer had no significant effect on the diameter of the leaf rosette of ‘Concord’ variety (25,1–25,9 см. The diame­ter of the leaf rosette of

  8. Geographic structuring and transgenerational maternal effects shape germination in native, but not introduced, populations of a widespread plant invader.

    Science.gov (United States)

    Alba, Christina; Moravcová, Lenka; Pyšek, Petr

    2016-05-01

    Germination is critical in determining species distributions and invasion dynamics. However, is it unclear how often invasive populations evolve germination characteristics different from native populations, because few studies have isolated genetic variation by using seed from garden-grown plants. Additionally, while herbivore-induced transgenerational effects are common, it is unknown whether maternal herbivory differentially shapes germination in native and introduced offspring. We explored germination in native and introduced populations of the North American invader Verbascum thapsus using seed from garden-grown maternal plants, half of which were protected from herbivores. To elucidate (1) germination niche breadth and (2) whether germination conditions affected expression of genetic structuring among populations, we germinated seed under four ecologically relevant temperature regimes. Native populations had a wide germination niche breadth, germinating as well as or better than introduced populations. At cooler temperatures, native populations exhibited a genetically based environmental cline indicative of local adaptation, with populations from warmer locales germinating better than populations from cooler locales. However, this cline was obscured when maternal plants were attacked by herbivores, revealing that local stressors can override the expression of geographic structuring. Introduced populations did not exhibit clinal variation, suggesting its disruption during the introduction process. Native and introduced populations have evolved genetic differences in germination. The result of this difference manifests in a wider germination niche breadth in natives, suggesting that the invasive behavior of V. thapsus in North America is attributable to other factors. © 2016 Botanical Society of America.

  9. EPR pilot study on the population of Stepnogorsk city living in the vicinity of a uranium processing plant

    Energy Technology Data Exchange (ETDEWEB)

    Zhumadilov, Kassym; Akilbekov, Abdirash; Morzabayev, Aidar [L.N. Gumilyov Eurasian National University, Astana (Kazakhstan); Ivannikov, Alexander; Stepanenko, Valeriy [Medical Radiological Research Center, Obninsk (Russian Federation); Abralina, Sholpan; Sadvokasova, Lyazzat; Rakhypbekov, Tolebay [Semey State Medical University, Semey (Kazakhstan); Hoshi, Masaharu [Hiroshima University, Research Institute for Radiation Biology and Medicine, Hiroshima (Japan)

    2015-03-15

    The aim of this pilot study was to evaluate possible doses in teeth received by workers of a uranium processing plant, in excess to the natural background dose. For this, the electron paramagnetic resonance dosimetry method was applied. Absorbed doses in teeth from the workers were compared with those measured in teeth from the Stepnogorsk city population and a control pool population from Astana city. The measured tooth samples were extracted according to medical indications. In total, 32 tooth enamel samples were analyzed, 5 from Astana city, Kazakhstan (control population), 21 from the residents of Stepnogorsk city (180 km from Astana city), and 6 from the workers of a uranium processing plant. The estimated doses in tooth enamel from the uranium processing plant workers were not significantly different to those measured in enamel from the control population. In teeth from the workers, the maximum dose in excess to background dose was 33 mGy. In two teeth from residents of Stepnogorsk city, however, somewhat larger doses were measured. The results of this pilot study encourage further investigations in an effort to receiving a final conclusion on the exposure situation of the uranium processing plant workers and the residents of Stepnogorsk city. (orig.)

  10. Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion.

    Directory of Open Access Journals (Sweden)

    Jennifer N Smith

    Full Text Available Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe stems to determine if native spiders' web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe's architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations.

  11. An ant-plant mutualism through the lens of cGMP-dependent kinase genes.

    Science.gov (United States)

    Malé, Pierre-Jean G; Turner, Kyle M; Doha, Manjima; Anreiter, Ina; Allen, Aaron M; Sokolowski, Marla B; Frederickson, Megan E

    2017-09-13

    In plant-animal mutualisms, how an animal forages often determines how much benefit its plant partner receives. In many animals, foraging behaviour changes in response to foraging gene expression or activation of the cGMP-dependent protein kinase (PKG) that foraging encodes. Here, we show that this highly conserved molecular mechanism affects the outcome of a plant-animal mutualism. We studied the two PKG genes of Allomerus octoarticulatus, an Amazonian ant that defends the ant-plant Cordia nodosa against herbivores. Some ant colonies are better 'bodyguards' than others. Working in the field in Peru, we found that colonies fed with a PKG activator recruited more workers to attack herbivores than control colonies. This resulted in less herbivore damage. PKG gene expression in ant workers correlated with whether an ant colony discovered an herbivore and how much damage herbivores inflicted on leaves in a complex way; natural variation in expression levels of the two genes had significant interaction effects on ant behaviour and herbivory. Our results suggest a molecular basis for ant protection of plants in this mutualism. © 2017 The Author(s).

  12. Influence of small hydropower plants on brown trout (Salmo trutta L. population in Mislinja River

    Directory of Open Access Journals (Sweden)

    Blaž Cokan

    2013-12-01

    Full Text Available The brown trout (Salmo trutta L. in the Mislinja River has been endangered for years because of small hydroelectric power plants. To find out how they are affecting the population of the brown trout in the Mislinja River, we conducted a sampling of the brown trout, using a generating set. We measured the length and weight of all caught specimens and analysed the obtained data. The results are presented in this paper, e.g., biomass, estimations of abundance, average weight, average length and number of captured brown trout. We discovered that the population of the brown trout has decreased in all the sections where water has been taken away for small hydroelectric power plants.

  13. [Using IRAP markers for analysis of genetic variability in populations of resource and rare species of plants].

    Science.gov (United States)

    Boronnikova, S V; Kalendar', R N

    2010-01-01

    Species-specific LTR retrotransposons were first cloned in five rare relic species of drug plants located in the Perm' region. Sequences of LTR retrotransposons were used for PCR analysis based on amplification of repeated sequences from LTR or other sites of retrotransposons (IRAP). Genetic diversity was studied in six populations of rare relic species of plants Adonis vernalis L. by means of the IRAP method; 125 polymorphic IRAP-markers were analyzed. Parameters for DNA polymorphism and genetic diversity of A. vernalis populations were determined.

  14. The demography of climate-driven and density-regulated population dynamics in a perennial plant

    DEFF Research Database (Denmark)

    Dahlgren, Johan; Bengstsson, Karin; Ehrlén, Johan

    2016-01-01

    Identifying the internal and external drivers of population dynamics is a key objective in ecology, currently accentuated by the need to forecast the effects of climate change on species distributions and abundances. The interplay between environmental and density effects is one particularly...... important aspect of such forecasts. We examined the simultaneous impact of climate and intraspecific density on vital rates of the dwarf shrub Fumana procumbens over 20 yr, using generalized additive mixed models. We then analyzed effects on population dynamics using integral projection models...... to be driven solely by the environment can overestimate extinction risks if there is density dependence. We conclude that density regulation can dampen effects of climate change on Fumana population size, and discuss the need to quantify density dependence in predictions of population responses...

  15. Adaptive Potential for the Invasion of Novel Host Plants in the Bean Weevil: Patterns of the Reproductive Behavior in Populations That Used Different Host Plants

    Directory of Open Access Journals (Sweden)

    Dragana Milanović

    2007-01-01

    Full Text Available The goal of this work was to examine interpopulation patterns in the reproductive behavior of populations of bean weevil (Acanthoscelides obtectus Say; Coleoptera: Bruchidae that had different levels of specialization on their native host plant – the bean (Phaseolus vulgaris L., as well as on a novel host plant – the chickpea (Cicer arietinum Thorn. The obtained pattern of interpopulation mating behavior seemed exactly as if the males on chickpea had evolved a specific odor and/or a courtship ritual that females of populationson bean found repulsive. Unlike females, the males of bean populations seemed to be willing to mate with females from the population on chickpea equally as with their own females. Such an asymmetric pattern of reproductive isolation between populations ofa species has been often considered an initial phase of a process of speciation. Thus, our results could be a good starting point for further, thorough examination of both the role of the level of host specialization in females and the role of biochemical characteristics of male pheromone (and/or their cuticular hydrocarbones in the evolution of pre-reproductive isolation between insect populations.As the results of this study, together those of previous studies on A. obtectus, suggest great evolutionary potential for invasions of and fast specialization on novel host plants, they could provide valuable information for the development of long-term strategiesunder the programmes of Integrated Pest Management.

  16. Population growth and within-plant distribution of the striped mealybug Ferrisia virgata (Cockerell (Hemiptera, Pseudococcidae on cotton

    Directory of Open Access Journals (Sweden)

    Martin D. Oliveira

    2014-03-01

    Full Text Available Population growth and within-plant distribution of the striped mealybug Ferrisia virgata (Cockerell (Hemiptera, Pseudococcidae on cotton. The striped mealybug, Ferrisia virgata (Cockerell (Hemiptera, Pseudococcidae, is a widely distributed and polyphagous pest species, which naturally occurs on cotton plants in Brazil. This study evaluated the establishment and population growth as well as the within-plant distribution of F. virgata on four cotton cultivars: CNPA 7H (white fibers, BRS Verde, BRS Safira, and BRS Rubi (colored fibers. The experiment was conducted in a complete randomized design with four treatments (cultivars and 18 replications of each. Thus, cotton plants of each cultivar were infested with 100 newly hatched nymphs of F. virgata. The number of adult female mealybugs and the total number of mealybugs per plant were quantified, respectively, at 25 and 50 days after infestation. The developmental and pre-reproductive periods were also determined. Furthermore, we verified the distribution of F. virgata on the plant parts at 25 and 50 days after infestation. Ferrisia virgata showed similar growth of 412-fold in the four cotton cultivars studied. Also, the nymphs were spread on infested leaves; the secondgeneration nymphs were spread and established in all plant parts. Our results characterize F. virgata as having much potential as an important cotton pest in Brazil.

  17. Selfing for the design of genomic selection experiments in biparental plant populations.

    Science.gov (United States)

    McClosky, Benjamin; LaCombe, Jason; Tanksley, Steven D

    2013-11-01

    Self-fertilization (selfing) is commonly used for population development in plant breeding, and it is well established that selfing increases genetic variance between lines, thus increasing response to phenotypic selection. Furthermore, numerous studies have explored how selfing can be deployed to maximal benefit in the context of traditional plant breeding programs (Cornish in Heredity 65:201-211,1990a, Heredity 65:213-220,1990b; Liu et al. in Theor Appl Genet 109:370-376, 2004; Pooni and Jinks in Heredity 54:255-260, 1985). However, the impact of selfing on response to genomic selection has not been explored. In the current study we examined how selfing impacts the two key aspects of genomic selection-GEBV prediction (training) and selection response. We reach the following conclusions: (1) On average, selfing increases genomic selection gains by more than 70 %. (2) The gains in genomic selection response attributable to selfing hold over a wide range population sizes (100-500), heritabilities (0.2-0.8), and selection intensities (0.01-0.1). However, the benefits of selfing are dramatically reduced as the number of QTLs drops below 20. (3) The major cause of the improved response to genomic selection with selfing is through an increase in the occurrence of superior genotypes and not through improved GEBV predictions. While performance of the training population improves with selfing (especially with low heritability and small population sizes), the magnitude of these improvements is relatively small compared with improvements observed in the selection population. To illustrate the value of these insights, we propose a practical genomic selection scheme that substantially shortens the number of generations required to fully capture the benefits of selfing. Specifically, we provide simulation evidence that indicates the proposed scheme matches or exceeds the selection gains observed in advanced populations (i.e. F 8 and doubled haploid) across a broad range of

  18. Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species.

    Science.gov (United States)

    Allsopp, N; Stock, W D

    1992-08-01

    The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.

  19. Effects of chronic exposure in populations of Koeleria gracilis Pers. from the Semipalatinsk nuclear test site, Kazakhstan

    International Nuclear Information System (INIS)

    Geras'kin, S.A.; Oudalova, A.A.; Dikarev, V.G.; Dikareva, N.S.; Mozolin, E.M.; Hinton, T.; Spiridonov, S.I.; Copplestone, D.; Garnier-Laplace, J.

    2012-01-01

    Morphological and cytogenetic abnormalities were examined in crested hairgrass (Koeleria gracilis Pers.) populations inhabiting the Semipalatinsk nuclear test site (STS), Kazakhstan. Sampling of biological material and soil was carried out during 3 years (2005–2007) at 4 sites within the STS. Activity concentrations of 10 radionuclides and 8 heavy metals content in soils were measured. Doses absorbed by plants were estimated and varied, depending on the plot, from 4 up to 265 mGy/y. The frequency of cytogenetic alterations in apical meristem of germinated seeds from the highly contaminated plot significantly exceeded the level observed at other plots with lower levels of radioactive contamination during all three years of the study. A significant excess of chromosome aberrations, typical for radiation exposure, as well as a dependence of the frequency of these types of mutations on dose absorbed by plants were revealed. The results indicate the role radioactive contamination plays in the occurrence of cytogenetic effects. However, no radiation-dependent morphological alterations were detected in the progeny of the exposed populations. Given that the crested hairgrass populations have occupied the radioactively contaminated plots for some 50 years, adaptation to the radiation stress was not evident. The findings obtained were in agreement with the benchmark values proposed in the FASSET and ERICA projects to restrict radiation impacts on biota. - Highlights: ► Morphological and cytogenetic abnormalities were examined in plants from the STS. ► Annual doses absorbed by plants varied from 4 up to 265 mGy. ► Cytogenetic alterations in plants from the explosions epicenter exceeded the control. ► No radiation-dependent morphological alterations were detected in the progeny. ► Radio-adaptation in plant populations in 50 years of chronic exposure was not evident.

  20. Peculiarities of dermatoglyphic values among the people of Uzbek population dependently on sex

    OpenAIRE

    Kuziyev, Otabek; ORTIQBOYEV JAKHONGIR ORTIQBOY OGLI; Khakimova, Gulnoz; Aripdjanova, Nigina

    2015-01-01

    : This article describes a study conducted to determine the basic dermatoglyphic traits, located in relation to gender in persons of Uzbek population. Provides definitions of the differences in rate of dermatoglyphic depending on nationality.

  1. Differences in Competitive Ability between Plants from Nonnative and Native Populations of a Tropical Invader Relates to Adaptive Responses in Abiotic and Biotic Environments

    Science.gov (United States)

    Liao, Zhi-Yong; Zhang, Ru; Barclay, Gregor F.; Feng, Yu-Long

    2013-01-01

    The evolution of competitive ability of invasive plant species is generally studied in the context of adaptive responses to novel biotic environments (enemy release) in introduced ranges. However, invasive plants may also respond to novel abiotic environments. Here we studied differences in competitive ability between Chromolaena odorata plants of populations from nonnative versus native ranges, considering biogeographical differences in both biotic and abiotic environments. An intraspecific competition experiment was conducted at two nutrient levels in a common garden. In both low and high nutrient treatments, C. odorata plants from nonnative ranges showed consistently lower root to shoot ratios than did plants from native ranges grown in both monoculture and competition. In the low nutrient treatment, C. odorata plants from nonnative ranges showed significantly lower competitive ability (competition-driven decreases in plant height and biomass were more), which was associated with their lower root to shoot ratios and higher total leaf phenolic content (defense trait). In the high nutrient treatment, C. odorata plants from nonnative ranges showed lower leaf toughness and cellulosic contents (defense traits) but similar competitive ability compared with plants from native ranges, which was also associated with their lower root to shoot ratios. Our results indicate that genetically based shifts in biomass allocation (responses to abiotic environments) also influence competitive abilities of invasive plants, and provide a first potential mechanism for the interaction between range and environment (environment-dependent difference between ranges). PMID:23977140

  2. Reproductive allocation strategies in desert and Mediterranean populations of annual plants grown with and without water stress.

    Science.gov (United States)

    Aronson, J; Kigel, J; Shmida, A

    1993-03-01

    Reproductive effort (relative allocation of biomass to diaspore production) was compared in matched pairs of Mediterranean and desert populations of three unrelated annual species, Erucaria hispanica (L.) Druce, Bromus fasciculatus C. Presl. and Brachypodium distachyon (L.) Beauv., grown under high and low levels of water availability in a common-environment experiment. Desert populations in all three species showed higher reproductive effort than corresponding Mediterranean populations, as expressed by both a reproductive index (RI= reproductive biomass/vegetative biomass), and a reproductive efficiency index (REI=number of diaspores/total plant biomass). Moreover, in E. hispanica and Brachypodium distachyon, inter-populational differences in reproductive effort were greater under water stress, the main limiting factor for plant growth in the desert. These results indicate that variability in reproductive effort in response to drought is a critical and dynamic component of life history strategies in annual species in heterogeneous, unpredictable xeric environments. When subjected to water stress the Mediterranean populations of E. hispanica and B. distachyon showed greater plasticity (e.g. had a greater reduction) in reproductive effort than the desert populations, while in Bromus fasciculatus both populations showed similar amounts of plasticity.

  3. Phytomeliorative properties of Cannabis sativa L. plants depending on varietal features of the culture

    Directory of Open Access Journals (Sweden)

    В. М. Кабанець

    2017-12-01

    Full Text Available Purpose. To investigate the varietal characteristics of the hemp plants for improving the quality indices of the soil they grow in, determine the amount of inorganic elements in the soil, level of their accumulation in plant stalkі and seeds. Methods. Field and spectrometric methods were basic. The results were processed using conventional methods in agriculture, crop growing and statistics. Variants of the experiment were as follows: varieties ‘Hliana’, ‘Hlesiia’: 1 soils; 2 stalks; 3 seeds. Schemes of experiments included: a technical maturity of plants, row spacing 45 cm; b tech­nical maturity of plants, row spacing 15 cm; c biological maturity of plants, row spacing 45 cm; d biological maturity of plants, row spacing 15 cm. Results. The amount of the accumulation of alkaline earth metals and their compounds by seeds and stalks of hemp plants depending on their content in vegetation soils was determined. It was found that stalks of the ‘Hlesiia’ plant accumulated strontium (Sr and its compounds far less than that of ‘Hliana’, whereas in the seeds of the ‘Hlesiia’ variety the content of this chemical element was higher comparing with the previous variety by 70 and 78%, respectively. The difference in the accumulation of barium (Ba compounds in seeds of hemp plants was not significant, while the tissues of the plant stalks of the ‘Hlia­na’ variety accumulated its compounds significantly more as compared to the ‘Hlesiia’ variety. The degree of influence of the variety, feeding area and the maturity stage on the processes of magnesium compounds (Mg accumulation by plants was not revealed. Plants of the ‘Hlesiia’ variety accumulated far less calcium (Ca and its compounds in the stalk tissues as compared to the plants of the ‘Hliana’ variety: in variants of the technical maturity stage of plants with row spacing 45 cm (a and d – plants of narrow-row sowing (15 cm in the biological maturity stage 30,94 and 15

  4. Temperature dependence of carbon isotope fractionation in CAM plants

    International Nuclear Information System (INIS)

    Deleens, E.; Treichel, I.; O'Leary, M.H.

    1985-01-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoë daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17 degrees C nights, 23 degrees C days), the isotope fractionation for both plants is -4 per thousand (that is, malate is enriched in (13)C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0 per thousand at 27 degrees C/33 degrees C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process

  5. Temperature dependence of carbon isotope fractionation in CAM plants

    Energy Technology Data Exchange (ETDEWEB)

    Deleens, E.; Treichel, I.; O' Leary, M.H.

    1985-09-01

    The carbon isotope fractionation associated with nocturnal malic acid synthesis in Kalanchoe daigremontiana and Bryophyllum tubiflorum was calculated from the isotopic composition of carbon-4 of malic acid, after appropriate corrections. In the lowest temperature treatment (17/sup 0/C nights, 23/sup 0/C days), the isotope fractionation for both plants is -4% per thousand (that is, malate is enriched in /sup 13/C relative to the atmosphere). For K. daigremontiana, the isotope fractionation decreases with increasing temperature, becoming approximately 0% per thousand at 27/sup 0/C/33/sup 0/C. Detailed analysis of temperature effects on the isotope fractionation indicates that stomatal aperture decreases with increasing temperature and carboxylation capacity increases. For B. tubiflorum, the temperature dependence of the isotope fractionation is smaller and is principally attributed to the normal temperature dependences of the rates of diffusion and carboxylation steps. The small change in the isotopic composition of remaining malic acid in both species which is observed during deacidification indicates that malate release, rather than decarboxylation, is rate limiting in the deacidification process. 28 references, 1 figure, 4 tables.

  6. Disentangling the effects of climate, density dependence, and harvest on an iconic large herbivore's population dynamics

    DEFF Research Database (Denmark)

    Koons, David; Colchero, Fernando; Hersey, Kent

    2015-01-01

    Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semi-arid environments experiencing climate change. To address these issues for bison in southern Utah, we...... than precipitation and other temperature-related variables (model weight > 3 times more than that for other climate variables). Although we hypothesized that harvest is the primary driving force of bison population dynamics in southern Utah, our elasticity analysis indicated that changes in early...... spring temperature could have a greater ‘relative effect’ on equilibrium abundance than either harvest or the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife...

  7. Partitioning the sources of demographic variation reveals density-dependent nest predation in an island bird population.

    Science.gov (United States)

    Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K

    2014-07-01

    Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong.

  8. Population genetics and the evolution of geographic range limits in an annual plant.

    Science.gov (United States)

    Moeller, David A; Geber, Monica A; Tiffin, Peter

    2011-10-01

    Abstract Theoretical models of species' geographic range limits have identified both demographic and evolutionary mechanisms that prevent range expansion. Stable range limits have been paradoxical for evolutionary biologists because they represent locations where populations chronically fail to respond to selection. Distinguishing among the proposed causes of species' range limits requires insight into both current and historical population dynamics. The tools of molecular population genetics provide a window into the stability of range limits, historical demography, and rates of gene flow. Here we evaluate alternative range limit models using a multilocus data set based on DNA sequences and microsatellites along with field demographic data from the annual plant Clarkia xantiana ssp. xantiana. Our data suggest that central and peripheral populations have very large historical and current effective population sizes and that there is little evidence for population size changes or bottlenecks associated with colonization in peripheral populations. Whereas range limit populations appear to have been stable, central populations exhibit a signature of population expansion and have contributed asymmetrically to the genetic diversity of peripheral populations via migration. Overall, our results discount strictly demographic models of range limits and more strongly support evolutionary genetic models of range limits, where adaptation is prevented by a lack of genetic variation or maladaptive gene flow.

  9. Selection and adaptation in irradiated plant and animal populations: a review

    International Nuclear Information System (INIS)

    Hart, D.R.

    1981-03-01

    Available literature on the effects of ionizing radiation on mutation rates, variability and adaptive responses to selection in exposed plant and animal populations is reviewed. Accumulated variability, and hence potential selection differentials, may be increased by many times due to induced mutation. The radiation dose that maximizes induced mutation varies greatly among species, strains and genetic systems. Induced variability tends to enhance the respose to selection, but this effect may be delayed or prevented by an initial reduction in the heritability of induced variation. Significantly, the detrimental effects of harmful mutations in irradiated populations may exceed the beneficial effects of selection for adaptive characteristics. Selection for radioresistance may occur at lethal or sub-lethal radiation doses but dose relationships are highly variable. (author)

  10. Past climate-driven range shifts and population genetic diversity in arctic plants

    DEFF Research Database (Denmark)

    Pellissier, Loïc; Eidesen, Pernille Bronken; Ehrich, Dorothee

    2016-01-01

    High intra-specific genetic diversity is necessary for species adaptation to novel environments under climate change, but species tracking suitable conditions are losing alleles through successive founder events during range shift. Here, we investigated the relationship between range shift since ...... the Last Glacial Maximum (LGM) and extant population genetic diversity across multiple plant species to understand variability in species responses...

  11. Population and community ecology of the rare plant amsinckia grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, T.M.

    1996-11-01

    Research was conducted between the fall of 1992 and the spring on the population and community ecology of the rare annual plant, Amsinckia glandiflora (Gray) Kleeb. ex Greene (Boraginaceae). The research goal was to investigate the causes of the species rarity, data useful to restorative efforts. The work focused on the examination of competitive suppression by exotic annual grasses; comparisons with common, weedy congener; and the role of litter cover and seed germination and seedling establishment. Annual exotic grasses reduced A. grandiflora reproductive output to a greater extent than did the native perennial bunch grass.

  12. Plant quality and conspecific density effects on Anaphothrips obscurus (Thysanoptera: Thripidae) wing diphenism and population ecology.

    Science.gov (United States)

    Reisig, Dominic D; Godfrey, Larry D; Marcum, Daniel B

    2010-04-01

    Factors that influence thysanopteran wing diphenism are not well known. In these studies, the impact of food quality, mediated through nitrogen addition, and conspecific density was explored on the wing diphenism of an herbivorous thrips species (Anaphothrips obscurus Müller) (Thysanoptera: Thripidae). In the first study, nitrogen was added to timothy grass (Phleum pretense L.) (Poales: Poaceae) transplants, and naturally occurring thrips populations were caged on the plants. Thrips abundance and foliar nutrients were assessed every 2 wk. A separate factorial experiment in growth chambers explored the impact of both plant nitrogen addition and thrips abundance on wing diphenism. Thrips density was manipulated by adding either 3 or 40 thrips to potted and caged timothy. Thrips abundance and foliar nutrients were measured 58 d after treatment placement. Plant quality directly affected thrips wing diphenism independent of thrips density in both experiments. Near the end of the field cage experiment, density may have indirectly impacted wing diphenism. In both experiments, plant quality and thrips density interacted to affect thrips population abundance. Plant quality alone can affect thrips wing diphenism, but it remains unclear whether density alone can affect thrips wing diphenism. This is a unique and understudied system that will be useful to examine generalized theories on the negative interaction between reproduction and dispersal.

  13. Varying Herbivore Population Structure Correlates with Lack of Local Adaptation in a Geographic Variable Plant-Herbivore Interaction

    Science.gov (United States)

    Cogni, Rodrigo; Trigo, José R.; Futuyma, Douglas J.

    2011-01-01

    Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries) vary at the regional scale, while other traits (trichomes and nitrogen content) just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation. PMID:22220208

  14. Varying herbivore population structure correlates with lack of local adaptation in a geographic variable plant-herbivore interaction.

    Directory of Open Access Journals (Sweden)

    Rodrigo Cogni

    Full Text Available Local adaptation of parasites to their hosts due to coevolution is a central prediction of many theories in evolutionary biology. However, empirical studies looking for parasite local adaptation show great variation in outcomes, and the reasons for such variation are largely unknown. In a previous study, we showed adaptive differentiation in the arctiid moth Utetheisa ornatrix to its host plant, the pyrrolizidine alkaloid-bearing legume Crotalaria pallida, at the continental scale, but found no differentiation at the regional scale. In the present study, we sampled the same sites to investigate factors that may contribute to the lack of differentiation at the regional scale. We performed field observations that show that specialist and non-specialist polyphagous herbivore incidence varies among populations at both scales. With a series of common-garden experiments we show that some plant traits that may affect herbivory (pyrrolizidine alkaloids and extrafloral nectaries vary at the regional scale, while other traits (trichomes and nitrogen content just vary at the continental scale. These results, combined with our previous evidence for plant population differentiation based on larval performance on fresh fruits, suggest that U. ornatrix is subjected to divergent selection even at the regional scale. Finally, with a microsatellite study we investigated population structure of U. ornatrix. We found that population structure is not stable over time: we found population differentiation at the regional scale in the first year of sampling, but not in the second year. Unstable population structure of the herbivore is the most likely cause of the lack of regional adaptation.

  15. Dose-dependent LDL-cholesterol lowering effect by plant stanol ester consumption: clinical evidence

    Directory of Open Access Journals (Sweden)

    Laitinen Kirsi

    2012-10-01

    Full Text Available Abstract Elevated serum lipids are linked to cardiovascular diseases calling for effective therapeutic means to reduce particularly LDL-cholesterol (LDL-C levels. Plant stanols reduce levels of LDL-C by partly blocking cholesterol absorption. Accordingly the consumption of foods with added plant stanols, typically esterified with vegetable oil fatty acids in commercial food products, are recommended for lowering serum cholesterol levels. A daily intake of 1.5 to 2.4 g of plant stanols has been scientifically evaluated to lower LDL-C by 7 to 10% in different populations, ages and with different diseases. Based on earlier studies, a general understanding is that no further reduction may be achieved in intakes in excess of approximately 2.5 g/day. Recent studies however suggest that plant stanols show a continuous dose–response effect in serum LDL-C lowering. This review discusses the evidence for a dose-effect relationship between plant stanol ester consumption and reduction of LDL-C concentrations with daily intakes of plant stanols of 4 g/day or more. We identified five such studies and the overall data demonstrate a linear dose-effect relationship with the most pertinent LDL-Cholesterol lowering outcome, 18%, achieved by a daily intake of 9 to 10 g of plant stanols. Along with reduction in LDL-C, the studies demonstrated a decrease in cholesterol absorption markers, the serum plant sterol to cholesterol ratios, by increasing the dose of plant stanol intake. None of the studies with daily intakes up to 10 g of plant stanols reported adverse clinical or biochemical effects from plant stanols. In a like manner, the magnitude of decrease in serum antioxidant vitamins was not related to the dose of plant stanols consumed and the differences between plant stanol ester consumers and controls were minor and insignificant or nonexisting. Consumption of plant stanols in high doses is feasible as a range of food products are commercially available for

  16. Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants.

    Science.gov (United States)

    Pant, Bijaya

    2014-01-01

    Approximately 80% of the world inhabitants depend on the medicinal plants in the form of traditional formulations for their primary health care system well as in the treatment of a number of diseases since the ancient time. Many commercially used drugs have come from the information of indigenous knowledge of plants and their folk uses. Linking of the indigenous knowledge of medicinal plants to modern research activities provides a new reliable approach, for the discovery of novel drugs much more effectively than with random collection. Increase in population and increasing demand of plant products along with illegal trade are causing depletion of medicinal plants and many are threatened in natural habitat. Plant tissue culture technique has proved potential alternative for the production of desirable bioactive components from plants, to produce the enough amounts of plant material that is needed and for the conservation of threatened species. Different plant tissue culture systems have been extensively studied to improve and enhance the production of plant chemicals in various medicinal plants.

  17. Dose-dependent zoning of estranged territory after the Chernobyl power plant accident

    International Nuclear Information System (INIS)

    Savkin, M.N.

    1994-01-01

    The alienation zone was forming in May-September 1986 when the population was evacuated from the areas nearest to the Chernobyl power pilant. The presnet-day contour of the zone is a result of combination of a geographic criterion, a circular with a 30 km radius, and of radiation criteria developed at the earliest stages after the accident. The authors discuss dose-dependent regioning of the alienation zone at the latest stages of the accident and analyze radiation and hygienic aspects of possible reevacuation of the population

  18. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases.

    Science.gov (United States)

    Hunter, Lydia J R; Brockington, Samuel F; Murphy, Alex M; Pate, Adrienne E; Gruden, Kristina; MacFarlane, Stuart A; Palukaitis, Peter; Carr, John P

    2016-03-16

    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7.

  19. Actual and potential use of population viability analyses in recovery of plant species listed under the US endangered species act.

    Science.gov (United States)

    Zeigler, Sara L; Che-Castaldo, Judy P; Neel, Maile C

    2013-12-01

    Use of population viability analyses (PVAs) in endangered species recovery planning has been met with both support and criticism. Previous reviews promote use of PVA for setting scientifically based, measurable, and objective recovery criteria and recommend improvements to increase the framework's utility. However, others have questioned the value of PVA models for setting recovery criteria and assert that PVAs are more appropriate for understanding relative trade-offs between alternative management actions. We reviewed 258 final recovery plans for 642 plants listed under the U.S. Endangered Species Act to determine the number of plans that used or recommended PVA in recovery planning. We also reviewed 223 publications that describe plant PVAs to assess how these models were designed and whether those designs reflected previous recommendations for improvement of PVAs. Twenty-four percent of listed species had recovery plans that used or recommended PVA. In publications, the typical model was a matrix population model parameterized with ≤5 years of demographic data that did not consider stochasticity, genetics, density dependence, seed banks, vegetative reproduction, dormancy, threats, or management strategies. Population growth rates for different populations of the same species or for the same population at different points in time were often statistically different or varied by >10%. Therefore, PVAs parameterized with underlying vital rates that vary to this degree may not accurately predict recovery objectives across a species' entire distribution or over longer time scales. We assert that PVA, although an important tool as part of an adaptive-management program, can help to determine quantitative recovery criteria only if more long-term data sets that capture spatiotemporal variability in vital rates become available. Lacking this, there is a strong need for viable and comprehensive methods for determining quantitative, science-based recovery criteria for

  20. Size-dependent variation in plant form.

    Science.gov (United States)

    Niklas, Karl J; Cobb, Edward D

    2017-09-11

    The study of organic form has a long and distinguished history going at least as far back as Aristotle's Historia Anima¯lium, wherein he identified five basic biological processes that define the forms of animals (metabolism, temperature regulation, information processing, embryo development, and inheritance). Unfortunately, all of Aristotle's writings about plant forms are lost. We know of them only indirectly from his student Theophrastus's companion books, collectively called Historia Plantarum, wherein plant forms are categorized into annual herbs, herbaceous perennials, shrubs, and trees. The study of plant forms did not truly begin until the romantic poet and naturalist Goethe proposed the concept of a hypothetical 'Plant Archetype', declared "Alles ist Blatt", and first coined the word morphologie, which inspired the French anatomist Cuvier (who established the field of comparative morphology), the English naturalist Darwin (who saw his theory of evolution reinforced by it), and the Scottish mathematician D'Arcy Thompson (who attempted to quantify it). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Impact Of Different Time Planting In Soybeans And Neem Seed Extract Application To Insect Population On Rice Field

    OpenAIRE

    Tamrin Abdullah; Ahdin Gassa; Sri Nur Aminah Ngatimin; Nurariaty Agus And Abdul Fattah

    2015-01-01

    Abstract The purpose of research is to study impact of different time planting of soybean and neem seed extract application to pest insect population on rice field. The research was used Random Block Design in three treatment of insecticides application i.e neem seed extract together with rice planting neem seed extract on soybean 17 days after rice planting synthetic insecticides on 17 days after rice planting Delthametrin on soybean and Chlorpirifos on rice respectively. Research was conduc...

  2. Impact Of Different Time Planting In Soybeans And Neem Seed Extract Application To Insect Population On Rice Field

    OpenAIRE

    Abdullah, Tamrin; Gassa, Ahdin; Ngatimin, Sri Nur Aminah; Agus, Nurariaty; Fattah, Abdul

    2015-01-01

    The purpose of research is to study impact of different time planting of soybean and neem seed extract application to pest insect population on rice field. The research was used Random Block Design in three treatment of insecticides application i.e: neem seed extract together with rice planting, neem seed extract on soybean 17 days after rice planting, synthetic insecticides on 17 days after rice planting (Delthametrin on soybean and Chlorpirifos on rice), respectively. Research was conducted...

  3. Phase-dependent outbreak dynamics of geometrid moth linked to host plant phenology.

    Science.gov (United States)

    Jepsen, Jane U; Hagen, Snorre B; Karlsen, Stein-Rune; Ims, Rolf A

    2009-12-07

    Climatically driven Moran effects have often been invoked as the most likely cause of regionally synchronized outbreaks of insect herbivores without identifying the exact mechanism. However, the degree of match between host plant and larval phenology is crucial for the growth and survival of many spring-feeding pest insects, suggesting that a phenological match/mismatch-driven Moran effect may act as a synchronizing agent. We analyse the phase-dependent spatial dynamics of defoliation caused by cyclically outbreaking geometrid moths in northern boreal birch forest in Fennoscandia through the most recent massive outbreak (2000-2008). We use satellite-derived time series of the prevalence of moth defoliation and the onset of the growing season for the entire region to investigate the link between the patterns of defoliation and outbreak spread. In addition, we examine whether a phase-dependent coherence in the pattern of spatial synchrony exists between defoliation and onset of the growing season, in order to evaluate if the degree of matching phenology between the moth and their host plant could be the mechanism behind a Moran effect. The strength of regional spatial synchrony in defoliation and the pattern of defoliation spread were both highly phase-dependent. The incipient phase of the outbreak was characterized by high regional synchrony in defoliation and long spread distances, compared with the epidemic and crash phase. Defoliation spread was best described using a two-scale stratified spread model, suggesting that defoliation spread is governed by two processes operating at different spatial scale. The pattern of phase-dependent spatial synchrony was coherent in both defoliation and onset of the growing season. This suggests that the timing of spring phenology plays a role in the large-scale synchronization of birch forest moth outbreaks.

  4. Plant Materials are Sustainable Substrates Supporting New Technologies of Plant-Only-Based Culture Media for in vitro Culturing of the Plant Microbiota.

    Science.gov (United States)

    Mourad, Elhussein F; Sarhan, Mohamed S; Daanaa, Hassan-Sibroe A; Abdou, Mennatullah; Morsi, Ahmed T; Abdelfadeel, Mohamed R; Elsawey, Hend; Nemr, Rahma; El-Tahan, Mahmoud; Hamza, Mervat A; Abbas, Mohamed; Youssef, Hanan H; Abdelhadi, Abdelhadi A; Amer, Wafaa M; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2018-03-29

    In order to improve the culturability and biomass production of rhizobacteria, we previously introduced plant-only-based culture media. We herein attempted to widen the scope of plant materials suitable for the preparation of plant-only-based culture media. We chemically analyzed the refuse of turfgrass, cactus, and clover. They were sufficiently rich to support good in vitro growth by rhizobacteria isolates representing Proteobacteria and Firmicutes. They were also adequate and efficient to produce a cell biomass in liquid batch cultures. These culture media were as sufficient as artificial culture media for the cultivation and recovery of the in situ rhizobacteria of barley (Hordeum murinum L.). Based on culture-dependent (CFU plate counting) and culture-independent analyses (qPCR), mowed turfgrass, in particular, supported the highest culturable population of barley endophytes, representing >16% of the total bacterial number quantified with qPCR. This accurately reflected the endophytic community composition, in terms of diversity indices (S', H', and D') based on PCR-DGGE, and clustered the plant culture media together with the qPCR root populations away from the artificial culture media. Despite the promiscuous nature of the plant materials tested to culture the plant microbiome, our results indicated that plant materials of a homologous nature to the tested host plant, at least at the family level, and/or of the same environment were more likely to be selected. Plant-only-based culture media require further refinements in order to provide selectivity for the in vitro growth of members of the plant microbiome, particularly difficult-to-culture bacteria. This will provide insights into their hidden roles in the environment and support future culturomic studies.

  5. How safe are nuclear power plants

    International Nuclear Information System (INIS)

    Danzmann, H.J.

    1976-01-01

    The question 'how safe are nuclear power plants' can be answered differently - it depends on how the term 'safety' is understood. If the 'safety of supply' is left out as a possibility of interpretation, then the alternative views remain: Operational safety in the sense of reliability and safety of personnel and population. (orig.) [de

  6. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations

    Directory of Open Access Journals (Sweden)

    Jacob J. Herman

    2011-12-01

    Full Text Available Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in some cases, these inherited environmental effects can include specific growth adjustments that are functionally adaptive to the parental conditions that induced them, which can range from contrasting states of controlled laboratory environments to the complex habitat variation encountered by natural plant populations. Preliminary findings suggest that adaptive transgenerational effects can be transmitted by means of diverse mechanisms including changes to seed provisioning and biochemistry, and epigenetic modifications such as DNA methylation that can persist across multiple generations. These non-genetically inherited adaptations can influence the ecological breadth and evolutionary dynamics of plant taxa and promote the spread of invasive plants. Interdisciplinary studies that join mechanistic and evolutionary ecology approaches will be an important source of future insights.

  7. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations.

    Science.gov (United States)

    Herman, Jacob J; Sultan, Sonia E

    2011-01-01

    Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in some cases, these inherited environmental effects can include specific growth adjustments that are functionally adaptive to the parental conditions that induced them, which can range from contrasting states of controlled laboratory environments to the complex habitat variation encountered by natural plant populations. Preliminary findings suggest that adaptive transgenerational effects can be transmitted by means of diverse mechanisms including changes to seed provisioning and biochemistry, and epigenetic modifications such as DNA methylation that can persist across multiple generations. These non-genetically inherited adaptations can influence the ecological breadth and evolutionary dynamics of plant taxa and promote the spread of invasive plants. Interdisciplinary studies that join mechanistic and evolutionary ecology approaches will be an important source of future insights.

  8. Mites fluctuation population on peach tree (Prunus persica (L. Batsch and in associated plants

    Directory of Open Access Journals (Sweden)

    Carla Rosana Eichelberger

    2011-09-01

    Full Text Available Despite the importance of peach (Prunus persica (L. Batsch in Rio Grande do Sul, little is known about mites fluctuation population considered important to this crop. The objective of this study was to know the population diversity and fluctuation of mite species associated with Premier and Eldorado varieties in Roca Sales and Venâncio Aires counties, Rio Grande do Sul. The study was conducted from July 2008 to June 2009 when 15 plants were randomly chosen in each area. The plants were divided in quadrants and from each one a branch was chosen from which three leaves were removed: one collected in the apical region, another in the medium and the other in the basal region, totalizing 180 leaves/area. Five of the most abundant associated plants were collected monthly in enough amounts for the screening under the stereoscopic microscope during an hour. A total of 1,124 mites were found belonging to 14 families and 28 species. Tetranychus ludeni Zacher, 1913, Panonychus ulmi (Koch, 1836 and Mononychellus planki (McGregor, 1950 were the most abundant phytophagous mites, whereas Typhlodromalus aripo Deleon, 1967 and Phytoseiulus macropilis (Banks, 1904 the most common predatory mites. The period of one hour under stereoscopic microscope was enough to get a representative sample. In both places evaluated the ecologic indices were low, but little higherin Premier (H' 0.56; EqJ: 0.43 when compared to Eldorado (H' 0.53; EqJ 0.40. In Premier constant species were not observed and accessory only Brevipalpus phoenicis (Geijskes, 1939, T. ludeni and T. aripo. Higher abundance was observed in December and January and bigger amount in April. Already in Eldorado, T. ludeni and P. ulmi were constants. Greater abundance was observed in November and December, whereas grater richness in December and January. In both orchards were not found mites in buds. Tetranychus ludeni is the most abundant phytophagous mites with outbreak population in November, December and

  9. Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation.

    Science.gov (United States)

    Li, Suyi; Wang, K W

    2015-10-06

    Inspired by the impulsive movements in plants, this research investigates the physics of a novel fluidic origami concept for its pressure-dependent multi-stability. In this innovation, fluid-filled tubular cells are synthesized by integrating different Miura-Ori sheets into a three-dimensional topological system, where the internal pressures are strategically controlled similar to the motor cells in plants. Fluidic origami incorporates two crucial physiological features observed in nature: one is distributed, pressurized cellular organization, and the other is embedded multi-stability. For a single fluidic origami cell, two stable folding configurations can coexist due to the nonlinear relationships among folding, crease material deformation and internal volume change. When multiple origami cells are integrated, additional multi-stability characteristics could occur via the interactions between pressurized cells. Changes in the fluid pressure can tailor the existence and shapes of these stable folding configurations. As a result, fluidic origami can switch between being mono-stable, bistable and multi-stable with pressure control, and provide a rapid 'snap-through' type of shape change based on the similar principles as in plants. The outcomes of this research could lead to the development of new adaptive materials or structures, and provide insights for future plant physiology studies at the cellular level. © 2015 The Author(s).

  10. Plant population and habitat characteristics of the endemic Sonoran Desert cactus Peniocereus striatus in Organ Pipe Cactus National Monument, Arizona

    Science.gov (United States)

    Anderson, Greta; Rutman, Sue; Munson, Seth M.

    2010-01-01

    Peniocereus striatus (Brandegee) Buxb. (Cactaceae) is an endemic Sonoran Desert cactus that reaches its northern range limit in southwestern Arizona. One U.S. population occupies a small area of Organ Pipe Cactus National Monument near the U.S./Mexico international boundary, which has been monitored since 1939. An extensive survey conducted in 2002, covering 177 ha, resulted in the discovery of 88 new plants, in addition to the relocation of 57 plants found in previous surveys. Despite potential increases in population size and spatial distribution, mean plant height and number of basal stems has not significantly changed in recent years. Bud scars revealed that a majority of the population was sexually mature. Peniocereus striatus occurrence increased with decreasing slope, spanned every slope aspect, and was highest on rocky soils, but was noticeably low on west and northwest slopes and areas where severe land degradation had previously occurred. Over half of P. striatus plants were nursed by shrubs and subshrubs, while 40% occurred under leguminous trees. A severe frost in January 2002 top-killed 19% of the population, with the greatest damage in drainage bottoms. However, long-term (1944–2002) climate records show that there has been an overall increase in the number of frost free days in the region, which, coupled with land use change, has implications for the future health of this population.

  11. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  12. Radiation protection of population under normal operation conditions of nuclear power plants

    International Nuclear Information System (INIS)

    Kunz, Eh.; Shvets, I.

    1976-01-01

    Evolution of shielding is defined in short; approaches suggested for applying in radiation protection or being used are evaluated and classified. Modern views analysis of a risk of biological irradiation consequences in public approaches to health protection in connection with the technical progress side by side with provision of separate persons protection requires attentin to the nuclear power plants protection optimization. Protection optimization suggests the analysis of separate components of technology and protection systems, used materials and constructive solutions, maintenance rules and operating load with respect to environmental discharge of radioactive products. It is expedient to carry out similtaneously the similar analysis with respect to the nuclear power plant personnel irradiation, as separate measures can affect both personnel and population irradiation [ru

  13. Analysis of plant height between male sterile plants obtained by space flight and male fertile plants in Maize

    International Nuclear Information System (INIS)

    Cao Moju; Huang Wenchao; Pan Guangtang; Rong Tingzhao; Zhu Yingguo

    2004-01-01

    F 2 fertility segregation population and the sister-cross fertility segregation population, which descended from the male sterile material, were analysed by their plant height of different growing stage between 2 populations of male sterile plants and male fertile plants. The plant height of different fertility plants come to the significance at 0.01 level in different stage through the whole growing period. The differences become more and more large with the development of plants, the maximum difference happens in adult stage. The increasing amount of different stage also shows significance at 0.01 level between two kinds of different fertility plants

  14. About a dynamic model of interaction of insect population with food plant

    Directory of Open Access Journals (Sweden)

    L.V. Nedorezov

    2011-12-01

    Full Text Available In present paper there is the consideration of mathematical model of food plant (resource - consumer (insect population - pathogen system dynamics which is constructed as a system of ordinary differential equations. The dynamic regimes of model are analyzed and, in particular, with the help of numerical methods it is shown that trigger regimes (regimes with two stable attractors can be realized in model under very simple assumptions about ecological and intra-population processes functioning. Within the framework of model it was assumed that the rate of food flow into the system is constant and functioning of intra-population selfregulative mechanisms can be described by Verhulst model. As it was found, trigger regimes are different with respect to their properties: in particular, in model the trigger regimes with one of stable stationary points on the coordinate plane can be realized (it corresponds to the situation when sick individuals in population are absent and their appearance in small volume leads to their asymptotic elimination; also the regimes with several nonzero stationary states and stable periodic fluctuations were found.

  15. CHRNA3 genotype, nicotine dependence, lung function and disease in the general population

    DEFF Research Database (Denmark)

    Kaur-Knudsen, Diljit; Nordestgaard, Børge G; Bojesen, Stig E

    2012-01-01

    The CHRNA3 rs1051730 polymorphism has been associated to chronic obstructive pulmonary disease (COPD), lung cancer and nicotine dependence in case-control studies with high smoking exposure; however, its influence on lung function and COPD severity in the general population is largely unknown. We...... genotyped 57,657 adult individuals from the Copenhagen General Population Study, of whom 34,592 were ever-smokers. Information on spirometry, hospital admissions, smoking behaviour and use of nicotinic replacement therapy was recorded. In homozygous (11%), heterozygous (44%) and noncarrier (45%) ever...

  16. A dependability modeling of software under hardware faults digitized system in nuclear power plants

    International Nuclear Information System (INIS)

    Choi, Jong Gyun

    1996-02-01

    An analytic approach to the dependability evaluation of software in the operational phase is suggested in this work with special attention to the physical fault effects on the software dependability : The physical faults considered are memory faults and the dependability measure in question is the reliability. The model is based on the simple reliability theory and the graph theory with the path decomposition micro model. The model represents an application software with a graph consisting of nodes and arcs that probabilistic ally determine the flow from node to node. Through proper transformation of nodes and arcs, the graph can be reduced to a simple two-node graph and the software failure probability is derived from this graph. This model can be extended to the software system which consists of several complete modules without modification. The derived model is validated by the computer simulation, where the software is transformed to a probabilistic control flow graph. Simulation also shows a different viewpoint of software failure behavior. Using this model, we predict the reliability of an application software and a software system in a digitized system(ILS system) in the nuclear power plant and show the sensitivity of the software reliability to the major physical parameters which affect the software failure in the normal operation phase. The derived model is validated by the computer simulation, where the software is transformed to a probabilistic control flow graph. Simulation also shows a different viewpoint of software failure behavior. Using this model, we predict the reliability of an application software and a software system in a digitized system (ILS system) is the nuclear power plant and show the sensitivity of the software reliability to the major physical parameters which affect the software failure in the normal operation phase. This modeling method is particularly attractive for medium size programs such as software used in digitized systems of

  17. Contributions of long-distance dispersal to population growth in colonising Pinus ponderosa populations.

    Science.gov (United States)

    Lesser, Mark R; Jackson, Stephen T

    2013-03-01

    Long-distance dispersal is an integral part of plant species migration and population development. We aged and genotyped 1125 individuals in four disjunct populations of Pinus ponderosa that were initially established by long-distance dispersal in the 16th and 17th centuries. Parentage analysis was used to determine if individuals were the product of local reproductive events (two parents present), long-distance pollen dispersal (one parent present) or long-distance seed dispersal (no parents present). All individuals established in the first century at each site were the result of long-distance dispersal. Individuals reproduced at younger ages with increasing age of the overall population. These results suggest Allee effects, where populations were initially unable to expand on their own, and were dependent on long-distance dispersal to overcome a minimum-size threshold. Our results demonstrate that long-distance dispersal was not only necessary for initial colonisation but also to sustain subsequent population growth during early phases of expansion. © 2012 Blackwell Publishing Ltd/CNRS.

  18. Mood disorder, anxiety, and suicide risk among subjects with alcohol abuse and/or dependence: a population-based study

    Directory of Open Access Journals (Sweden)

    Carolina D. Wiener

    2017-06-01

    Full Text Available Objective: To evaluate the prevalence of alcohol abuse and/or dependence in a population-based sample of young adults and assess the prevalence of comorbid mood disorders, anxiety, and suicide risk in this population. Methods: This cross-sectional, population-based study enrolled 1,953 young adults aged 18-35 years. The CAGE questionnaire was used to screen for alcohol abuse and/or dependence, with CAGE scores ≥ 2 considered positive. Psychiatric disorders were investigated through the structured Mini International Neuropsychiatric Interview (MINI. Results: Alcohol abuse and/or dependence was identified in 187 (9.60% individuals (5.10% among women and 15.20% among men. Alcohol abuse and/or dependence were more prevalent among men than women, as well as among those who used tobacco, illicit drugs or presented with anxiety disorder, mood disorder, and suicide risk. Conclusion: These findings suggest that alcohol abuse and/or dependence are consistently associated with a higher prevalence of psychiatric comorbidities, could be considered important predictors of other psychiatric disorders, and deserve greater public heath attention, pointing to the need for alcohol abuse prevention programs.

  19. Mood disorder, anxiety, and suicide risk among subjects with alcohol abuse and/or dependence: a population-based study.

    Science.gov (United States)

    Wiener, Carolina D; Moreira, Fernanda P; Zago, Alethea; Souza, Luciano M; Branco, Jeronimo C; Oliveira, Jacqueline F de; Silva, Ricardo A da; Portela, Luis V; Lara, Diogo R; Jansen, Karen; Oses, Jean P

    2018-01-01

    To evaluate the prevalence of alcohol abuse and/or dependence in a population-based sample of young adults and assess the prevalence of comorbid mood disorders, anxiety, and suicide risk in this population. This cross-sectional, population-based study enrolled 1,953 young adults aged 18-35 years. The CAGE questionnaire was used to screen for alcohol abuse and/or dependence, with CAGE scores ≥ 2 considered positive. Psychiatric disorders were investigated through the structured Mini International Neuropsychiatric Interview (MINI). Alcohol abuse and/or dependence was identified in 187 (9.60%) individuals (5.10% among women and 15.20% among men). Alcohol abuse and/or dependence were more prevalent among men than women, as well as among those who used tobacco, illicit drugs or presented with anxiety disorder, mood disorder, and suicide risk. These findings suggest that alcohol abuse and/or dependence are consistently associated with a higher prevalence of psychiatric comorbidities, could be considered important predictors of other psychiatric disorders, and deserve greater public heath attention, pointing to the need for alcohol abuse prevention programs.

  20. Photosynthate consumption and carbon turnover in the rhizosphere depending on plant species and growth conditions

    International Nuclear Information System (INIS)

    Sauerbeck, D.R.; Helal, H.M.; Nonnen, S.; Allard, J.-l.

    1982-01-01

    The root tissue which can be isolated from soils represents only part of the total plant carbon incorporation. Between 20 and 40% of the photosynthetic production of plants is expended for root growth and root metabolism. This indicates a striking turnover of energy in the rhizosphere, because relatively litle root-derived organic matter remains there until harvest time. Plant species and variety, soil conditions and temperature were shown to be the most decisive factors governing the assimilate consumption of plant root systems. A special technique is described which enables to study how this extensive turnover affects the surrounding soil depending on its proximity to the roots. Plant-derived carbon can be detected up to 20mm away from the roots. A priming effect has been found on the decomposition of soil organic matter. This explains why, in spite of the rhizo-deposition mentioned, no net-accumulation of carbon in the rhizosphere has been found. (Author) [pt

  1. Plant stem cell niches.

    Science.gov (United States)

    Stahl, Yvonne; Simon, Rüdiger

    2005-01-01

    Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.

  2. Prevalence of eating disorder attitudes among men and women with exercise dependence symptoms: a non-athlete population study

    Directory of Open Access Journals (Sweden)

    Elaine Fernanda da Silva

    2013-09-01

    Full Text Available The present study sought to describe the prevalence of Secondary Exercise Dependence (ScED, i.e. eating disorders attitudes along with exercise dependence symptoms may differ between men and women in a broader exercising population. In this study, 174 regularly exerciser, aged 18-62 years old, who were invited to respond the Exercise Dependence Scale (EDS and the Eating Attitudes Test (EAT-26. There were more women than men with ScED. However, only men in the sample presented exercise dependence symptoms without eating disorders attitudes. Eating disorders may or may not exist in those who are exercise dependent in the broad exercising population, although there is a higher prevalence of ScED in women than men.

  3. Scale-dependent seasonal pool habitat use by sympatric Wild Brook Trout and Brown Trout populations

    Science.gov (United States)

    Davis, Lori A.; Wagner, Tyler

    2016-01-01

    Sympatric populations of native Brook Trout Salvelinus fontinalis and naturalized Brown Trout Salmo truttaexist throughout the eastern USA. An understanding of habitat use by sympatric populations is of importance for fisheries management agencies because of the close association between habitat and population dynamics. Moreover, habitat use by stream-dwelling salmonids may be further complicated by several factors, including the potential for fish to display scale-dependent habitat use. Discrete-choice models were used to (1) evaluate fall and early winter daytime habitat use by sympatric Brook Trout and Brown Trout populations based on available residual pool habitat within a stream network and (2) assess the sensitivity of inferred habitat use to changes in the spatial scale of the assumed available habitat. Trout exhibited an overall preference for pool habitats over nonpool habitats; however, the use of pools was nonlinear over time. Brook Trout displayed a greater preference for deep residual pool habitats than for shallow pool and nonpool habitats, whereas Brown Trout selected for all pool habitat categories similarly. Habitat use by both species was found to be scale dependent. At the smallest spatial scale (50 m), habitat use was primarily related to the time of year and fish weight. However, at larger spatial scales (250 and 450 m), habitat use varied over time according to the study stream in which a fish was located. Scale-dependent relationships in seasonal habitat use by Brook Trout and Brown Trout highlight the importance of considering scale when attempting to make inferences about habitat use; fisheries managers may want to consider identifying the appropriate spatial scale when devising actions to restore and protect Brook Trout populations and their habitats.

  4. Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum.

    Science.gov (United States)

    Rico, Y; Wagner, H H

    2016-11-01

    Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations.

  5. Local environment and density-dependent feedbacks determine population growth in a forest herb

    DEFF Research Database (Denmark)

    Dahlgren, Johan Petter; Östergård, Hannah; Ehrlén, Johan

    2014-01-01

    Linking spatial variation in environmental factors to variation in demographic rates is essential for a mechanistic understanding of the dynamics of populations. However, we still know relatively little about such links, partly because feedbacks via intraspecific density make them difficult...... to observe in natural populations. We conducted a detailed field study and investigated simultaneous effects of environmental factors and the intraspecific density of individuals on the demography of the herb Lathyrus vernus. In regression models of vital rates we identified effects associated with spring...... shade on survival and growth, while density was negatively correlated with these vital rates. Density was also negatively correlated with average individual size in the study plots, which is consistent with self-thinning. In addition, average plant sizes were larger than predicted by density in plots...

  6. Are atomic power plants saver than nuclear power plants

    International Nuclear Information System (INIS)

    Roeglin, H.C.

    1977-01-01

    It is rather impossible to establish nuclear power plants against the resistance of the population. To prevail over this resistance, a clarification of the citizens-initiatives motives which led to it will be necessary. This is to say: It is quite impossible for our population to understand what really heappens in nuclear power plants. They cannot identify themselves with nuclear power plants and thus feel very uncomfortable. As the total population feels the same way it is prepared for solidarity with the citizens-initiatives even if they believe in the necessity of nuclear power plants. Only an information-policy making transparent the social-psychological reasons of the population for being against nuclear power plants could be able to prevail over the resistance. More information about the technical procedures is not sufficient at all. (orig.) [de

  7. Evaluation of population density and distribution criteria in nuclear power plant siting

    International Nuclear Information System (INIS)

    Young, M.

    1994-06-01

    The NRC has proposed revisions to 10 CFR 100 which include the codification of nuclear reactor site population density limits to 500 people per square mile, at the siting stage, averaged over any radial distance out to 30 miles, and 1,000 people per square mile within the 40-year lifetime of a nuclear plant. This study examined whether there are less restrictive alternative population density and/or distribution criteria which would provide equivalent or better protection to human health in the unlikely event of a nuclear accident. This study did not attempt to directly address the issue of actual population density limits because there are no US risk standards established for the evaluation of population density limits. Calculations were performed using source terms for both a current generation light water reactor (LWR) and an advanced light water reactor (ALWR) design. The results of this study suggest that measures which address the distribution of the population density, including emergency response conditions, could result in lower average individual risks to the public than the proposed guidelines that require controlling average population density. Studies also indicate that an exclusion zone size, determined by emergency response conditions and reactor design (power level and safety features), would better serve to protect public health than a rigid standard applied to all sites

  8. Does responsiveness to arbuscular mycorrhizal fungi depend on plant invasive status?

    Science.gov (United States)

    Reinhart, Kurt O; Lekberg, Ylva; Klironomos, John; Maherali, Hafiz

    2017-08-01

    Differences in the direction and degree to which invasive alien and native plants are influenced by mycorrhizal associations could indicate a general mechanism of plant invasion, but whether or not such differences exist is unclear. Here, we tested whether mycorrhizal responsiveness varies by plant invasive status while controlling for phylogenetic relatedness among plants with two large grassland datasets. Mycorrhizal responsiveness was measured for 68 taxa from the Northern Plains, and data for 95 taxa from the Central Plains were included. Nineteen percent of taxa from the Northern Plains had greater total biomass with mycorrhizas while 61% of taxa from the Central Plains responded positively. For the Northern Plains taxa, measurable effects often depended on the response variable (i.e., total biomass, shoot biomass, and root mass ratio) suggesting varied resource allocation strategies when roots are colonized by arbuscular mycorrhizal fungi. In both datasets, invasive status was nonrandomly distributed on the phylogeny. Invasive taxa were mainly from two clades, that is, Poaceae and Asteraceae families. In contrast, mycorrhizal responsiveness was randomly distributed over the phylogeny for taxa from the Northern Plains, but nonrandomly distributed for taxa from the Central Plains. After controlling for phylogenetic similarity, we found no evidence that invasive taxa responded differently to mycorrhizas than other taxa. Although it is possible that mycorrhizal responsiveness contributes to invasiveness in particular species, we find no evidence that invasiveness in general is associated with the degree of mycorrhizal responsiveness. However, mycorrhizal responsiveness among species grown under common conditions was highly variable, and more work is needed to determine the causes of this variation.

  9. Plant oxidosqualene metabolism: cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana.

    Science.gov (United States)

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ(5)-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis.

  10. Integrating temperature-dependent life table data into a matrix projection model for Drosophila suzukii population estimation.

    Directory of Open Access Journals (Sweden)

    Nik G Wiman

    Full Text Available Temperature-dependent fecundity and survival data was integrated into a matrix population model to describe relative Drosophila suzukii Matsumura (Diptera: Drosophilidae population increase and age structure based on environmental conditions. This novel modification of the classic Leslie matrix population model is presented as a way to examine how insect populations interact with the environment, and has application as a predictor of population density. For D. suzukii, we examined model implications for pest pressure on crops. As case studies, we examined model predictions in three small fruit production regions in the United States (US and one in Italy. These production regions have distinctly different climates. In general, patterns of adult D. suzukii trap activity broadly mimicked seasonal population levels predicted by the model using only temperature data. Age structure of estimated populations suggest that trap and fruit infestation data are of limited value and are insufficient for model validation. Thus, we suggest alternative experiments for validation. The model is advantageous in that it provides stage-specific population estimation, which can potentially guide management strategies and provide unique opportunities to simulate stage-specific management effects such as insecticide applications or the effect of biological control on a specific life-stage. The two factors that drive initiation of the model are suitable temperatures (biofix and availability of a suitable host medium (fruit. Although there are many factors affecting population dynamics of D. suzukii in the field, temperature-dependent survival and reproduction are believed to be the main drivers for D. suzukii populations.

  11. Population genetic structure of the lettuce root aphid, Pemphigus bursarius (L.), in relation to geographic distance, gene flow and host plant usage.

    Science.gov (United States)

    Miller, N J; Birley, A J; Overall, A D J; Tatchell, G M

    2003-09-01

    Microsatellite markers were used to examine the population structure of Pemphigus bursarius, a cyclically parthenogenetic aphid. Substantial allele frequency differences were observed between populations on the primary host plant (collected shortly after sexual reproduction) separated by distances as low as 14 km. This suggested that migratory movements occur over relatively short distances in this species. However, the degree of allele frequency divergence between populations was not correlated with their geographical separation, indicating that isolation by distance was not the sole cause of spatial genetic structuring. Significant excesses of homozygotes were observed in several populations. Substantial allele frequency differences were also found between aphids on the primary host and those sampled from a secondary host plant after several parthenogenetic generations at the same location in two successive years. This could have been due to the existence of obligately parthenogenetic lineages living on the secondary host or genetically divergent populations confined to different secondary host plant species but sharing a common primary host.

  12. Model of annual plants dynamics with facilitation and competition.

    Science.gov (United States)

    Droz, Michel; Pękalski, Andrzej

    2013-10-21

    An individual-based model describing the dynamics of one type of annual plants is presented. We use Monte Carlo simulations where each plant has its own history and the interactions among plants are between nearest neighbours. The character of the interaction (positive or negative) depends on local conditions. The plants compete for two external resources-water and light. The amount of water and/or light a plant receives depends on the external factor but also on local arrangement. Survival, growth and seed production of plants are determined by how well their demands for the resources are met. The survival and seeds production tests have a probabilistic character, which makes the dynamics more realistic than by using a deterministic approach. There is a non-linear coupling between the external supplies. Water evaporates from the soil at a rate depending on constant evaporation rate, local conditions and the amount of light. We examine the dynamics of the plant population along two environmental gradients, allowing also for surplus of water and/or light. We show that the largest number of plants is when the demands for both resources are equal to the supplies. We estimate also the role of evaporation and we find that it depends on the situation. It could be negative, but sometimes it has a positive character. We show that the link between the type of interaction (positive or negative) and external conditions has a complex character. In general in favourable environment plants have a stronger tendency for competitive interactions, leading to mostly isolated plants. When the conditions are getting more difficult, cooperation becomes the dominant type of interactions and the plants grow in clusters. The type of plants-sun-loving or shade tolerating, plays also an important role. © 2013 Elsevier Ltd. All rights reserved.

  13. Plant recolonization in the Himalaya from the southeastern Qinghai-Tibetan Plateau: Geographical isolation contributed to high population differentiation.

    Science.gov (United States)

    Cun, Yu-Zhi; Wang, Xiao-Quan

    2010-09-01

    The Himalaya-Hengduan Mountains region (HHM) in the southern and southeastern Qinghai-Tibetan Plateau (QTP) is considered an important reservoir and a differentiation center for temperate and alpine plants in the Cenozoic. To reveal how plants responded to the Quaternary climatic oscillations in the QTP, the phylogeographical histories of a few subalpine and alpine plants have been investigated, but nearly all studies used only uniparentally inherited cytoplasmic DNA markers, and only a couple of them included sampling from the Himalaya. In this study, range-wide genetic variation of the Himalayan hemlock (Tsuga dumosa), an important forest species in the HHM, was surveyed using DNA markers from three genomes. All markers revealed genetic depauperation in the Himalaya and richness in the Hengduan Mountains populations. Surprisingly, population differentiation of this wind-pollinated conifer is very high in all three genomes, with few common and many private nuclear gene alleles. These results, together with fossil evidence, clearly indicate that T. dumosa recolonized the Himalaya from the Hengduan Mountains before the Last Glacial Maximum (LGM), accompanied with strong founder effects, and the influence of the earlier glaciations on demographic histories of the QTP plants could be much stronger than that of the LGM. The strong population differentiation in T. dumosa could be attributed to restricted gene flow caused by the complicated topography in the HHM that formed during the uplift of the QTP, and thus sheds lights on the importance of geographical isolation in the development of high plant species diversity in this biodiversity hotspot. Copyright 2010 Elsevier Inc. All rights reserved.

  14. The influence of geographic location on population exposure to emissions from power plants throughout China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Levy, J.I.; Evans, J.S.; Hammitt, J.K. [Harvard University, Boston, MA (United States). School of Public Health

    2006-04-15

    This analysis seeks to evaluate the influence of emission source location on population exposure in China to fine particles and sulfur dioxide. We use the concept of intake fraction, defined as the fraction of material or its precursor released from a source that is eventually inhaled or ingested by a population. We select 29 power-plant sites throughout China and estimate annual average intake fractions at each site, using identical source characteristics to isolate the influence of geographic location. In addition, we develop regression models to interpret the intake fraction values and allow for extrapolation to other sites. To model the concentration increase due to emissions from selected power plants, we used a detailed long-range atmospheric dispersion model, CALPUFF. Primary fine particles have the highest average intake fraction (1 x 10{sup -5}), followed by sulfur dioxide (5 x 10{sup -6}), sulfate from sulfur dioxide (4 x 10{sup -6}), and nitrate from nitrogen oxides (4 x 10{sup -6}). In the regression analysis, the independent variables are meteorological proxies (such as climate region and precipitation) and population at various distances from the source. We find that population terms can explain a substantial percentage of variability in the intake fraction for all pollutants, with a significant modifying influence of meteorological regime. Near-source population is more important for primary coarse particles while population at medium to long distance is more important for primary fine particles and secondary particles. A significant portion of intake fraction (especially for secondary particles and primary fine particles) occurs beyond 500 km of the source, emphasizing the need for detailed long-range dispersion modeling.

  15. Evolutionary responses of native plant species to invasive plants : a review

    OpenAIRE

    Oduor, Ayub M. O.

    2013-01-01

    Strong competition from invasive plant species often leads to declines in abundances and may,in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species, suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has invol...

  16. The health status of the population neighbouring the nuclear power plants in Slovakia

    International Nuclear Information System (INIS)

    Letkovicova, M.; Letkovicova, H.; Branislav Mihaly, B.; Stehlikova, B.

    2003-01-01

    The objective of this study is to ascertain the actual state of the indicators of health in individual villages within the area under investigation, to ascertain the trend of the development of indicators in the area surrounding the nuclear power plant included in the study, to find whether the occurrence of an indicator is accidental or whether it is determined in the village, make a comparison with another area and with the situation in the Slovak Republic as a whole and, consequently, to determine possible influence of the Power Plant on the indicator's value. It is concluded, that objective and comprehensive evaluation of the health of the population of Slovakia is possible. Enough solid and reliable proofs are available to justify the conclusion that, regardless of the length of the power plants' operation, no unfavourable impacts on human health on their territory have been detected even by the most sophisticated research carried out by a large, multidisciplinary team of researchers from various fields of science

  17. Population Growth and Its Impact on the Design Capacity and Performance of the Wastewater Treatment Plants in Sedibeng and Soshanguve, South Africa

    Science.gov (United States)

    Teklehaimanot, Giorgis Z.; Kamika, I.; Coetzee, M. A. A.; Momba, M. N. B.

    2015-10-01

    This study investigated the effects of population growth on the performance of the targeted wastewater treatment plants in Sedibeng District and Soshanguve peri-urban area, South Africa. The impact of population growth was assessed in terms of plant design, operational capacity (flow rate) and other treatment process constraints. Between 2001 and 2007, the number of households connected to the public sewerage service increased by 15.5, 17.2 and 37.8 % in Emfuleni, Lesedi and Midvaal Local Municipalities, respectively. Soshanguve revealed a 50 % increment in the number of households connected to the sewerage system between 1996 and 2001. Except for Sandspruit (-393.8 %), the rate of influent flows received by Meyerton increased by 6.8 ML/day (67.8 %) and 4.7 ML/day (46.8 %) during the dry and wet seasons, respectively. The flow rate appeared to increase during the wet season by 6.8 ML/day (19.1 %) in Leeuwkuil and during the dry season by 0.8 ML/day (3.9 %) in Rietgat. Underperformance of the existing wastewater treatment plants suggests that the rapid population growth in urban and peri-urban areas (hydraulic overloading of the wastewater treatment plants) and operational constraints (overflow rate, retention time, oxygen supply capacity of the plants and chlorine contact time) resulted in the production of poor quality effluents in both selected areas. This investigation showed that the inefficiency of Meyerton Wastewater Treatment Plant was attributed to the population growth (higher volumes of wastewater generated) and operational constraints, while the cause of underperformance in the other three treatment plants was clearly technical (operational).

  18. PLANT BIOTECHNOLOGY IN THE 21ST CENTURY: THE CHALLENGES AHEAD

    OpenAIRE

    Altman, Arie

    1999-01-01

    In a world where population growth is outstripping food supply agricultural -and especially plant-biotechnology, needs to be swiftly implemented in all walks of life. Achievements today in plant biotechnology have already surpassed all previous expectations, and the future is even more promising. The full realisation of the agricultural biotechnology revolution depends on both continued successful and innovative research and development activities and on a favourable regulatory climate and pu...

  19. Growth, development and productivity of Jerusalem artichoke depending on plant stand in the conditions of the Republic of Karakalpakstan

    Directory of Open Access Journals (Sweden)

    Zhangabaeva A.S.

    2017-08-01

    Full Text Available the article presents the results of studying the influence of various schemes of planting seed tubers of Jerusalem artichoke on the rate of plant growth and development in the soil and climatic conditions of the Republic of Karakalpakstan. Differences in the rate of growth and development of plants are revealed, depending on the varietal features of Jerusalem artichoke and the density of their standing. The most optimal scheme for planting tubers of Jerusalem artichoke is 70x40 cm.

  20. Health state of population in vicinity of the Mochovce nuclear power plant. Epidemiologic study

    International Nuclear Information System (INIS)

    Celko, M.; Durov, M.; Letkovicova, M.; Holy, R.; Sedliak, D.; Zrubec, M.; Kristufek, P.; Machata, M.; Prikazsky, V.; Rehak, R.; Stehlikova, B.; Vladar, M.

    1999-01-01

    Results of epidemiologic study of health state of population in vicinity of the Mochovce nuclear power plant (Slovak Republic) are presented. This report is reported under the headings: (1) Introduction; (2) Basic information about Mochovce NPP; (3) Assessment of population exposition by environmental factors; (4) Basic conceptions and principles of epidemiologic study; (5) Demography and health state of population; (6) Characterisation of databases and data; (7) Description of demographic and health indicators; (8) Calculation of demographic and health indicators in vicinity of the Mochovce NPP and in control areas; (9) Calculated indicators; (10) Statistical methods and evaluation of calculated indicators; (11) Summary and conclusions; (12) References; Appendixes: Literature review of similar epidemiologic studies; Quantities and units in radiation protection; Definitions of indicators calculation - specification of method

  1. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth

    Science.gov (United States)

    Kevin Ford; Joshua H. Ness; Judith L. Bronstein; William F. Morris

    2015-01-01

    The impact of mutualists on a partner’s demography depends on how they affect the partner’s multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and...

  2. Response of single bacterial cells to stress gives rise to complex history dependence at the population level

    Science.gov (United States)

    Mathis, Roland; Ackermann, Martin

    2016-01-01

    Most bacteria live in ever-changing environments where periods of stress are common. One fundamental question is whether individual bacterial cells have an increased tolerance to stress if they recently have been exposed to lower levels of the same stressor. To address this question, we worked with the bacterium Caulobacter crescentus and asked whether exposure to a moderate concentration of sodium chloride would affect survival during later exposure to a higher concentration. We found that the effects measured at the population level depended in a surprising and complex way on the time interval between the two exposure events: The effect of the first exposure on survival of the second exposure was positive for some time intervals but negative for others. We hypothesized that the complex pattern of history dependence at the population level was a consequence of the responses of individual cells to sodium chloride that we observed: (i) exposure to moderate concentrations of sodium chloride caused delays in cell division and led to cell-cycle synchronization, and (ii) whether a bacterium would survive subsequent exposure to higher concentrations was dependent on the cell-cycle state. Using computational modeling, we demonstrated that indeed the combination of these two effects could explain the complex patterns of history dependence observed at the population level. Our insight into how the behavior of single cells scales up to processes at the population level provides a perspective on how organisms operate in dynamic environments with fluctuating stress exposure. PMID:26960998

  3. Ecological trade-offs between jasmonic acid-dependent direct and indirect plant defences in tritrophic interactions.

    Science.gov (United States)

    Wei, Jianing; Wang, Lizhong; Zhao, Jiuhai; Li, Chuanyou; Ge, Feng; Kang, Le

    2011-01-01

    Recent studies on plants genetically modified in jasmonic acid (JA) signalling support the hypothesis that the jasmonate family of oxylipins plays an important role in mediating direct and indirect plant defences. However, the interaction of two modes of defence in tritrophic systems is largely unknown. In this study, we examined the preference and performance of a herbivorous leafminer (Liriomyza huidobrensis) and its parasitic wasp (Opius dissitus) on three tomato genotypes: a wild-type (WT) plant, a JA biosynthesis (spr2) mutant, and a JA-overexpression 35S::prosys plant. Their proteinase inhibitor production and volatile emission were used as direct and indirect defence factors to evaluate the responses of leafminers and parasitoids. Here, we show that although spr2 mutant plants are compromised in direct defence against the larval leafminers and in attracting parasitoids, they are less attractive to adult flies compared with WT plants. Moreover, in comparison to other genotypes, the 35S::prosys plant displays greater direct and constitutive indirect defences, but reduced success of parasitism by parasitoids. Taken together, these results suggest that there are distinguished ecological trade-offs between JA-dependent direct and indirect defences in genetically modified plants whose fitness should be assessed in tritrophic systems and under natural conditions. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  4. Characterization of acetate-utilizing methanogenic bacteria, depending on varying acetate concentrations, in a biogas plant. Phase 1

    International Nuclear Information System (INIS)

    Ahring, B.K.

    1994-12-01

    The present report contains the results of a project concerning behaviour of acetate-utilizing methanogenic bacteria in mesophilic and thermophilic biogas plants, collected in 1992 - 1994 period. Labelled acetates (2-C 14 -CH 3 COOH) have been used to characterize the types of methane bacteria populations in the Danish biogas plants, the optimum acetate concentration for these bacteria and acetate metabolism in mesophilic and thermophilic biogas reactors with low acetate concentrations. 2 publications are included. (EG)

  5. The genetics of indirect ecological effects - plant parasites and aphid herbivores

    Directory of Open Access Journals (Sweden)

    Jennifer K Rowntree

    2014-04-01

    Full Text Available When parasitic plants and aphid herbivores share a host, both direct and indirect ecological effects (IEEs can influence evolutionary processes. We used a hemiparasitic plant (Rhinanthus minor, a grass host (Hordeum vulgare and a cereal aphid (Sitobion avenae to investigate the genetics of IEEs between the aphid and the parasitic plant, and looked to see how these might affect or be influenced by the genetic diversity of the host plants. Survival of R. minor depended on the parasite’s population of origin, the genotypes of the aphids sharing the host and the genetic diversity in the host plant community. Hence the indirect effects of the aphids on the parasitic plants depended on the genetic environment of the system. Here, we show that genetic variation can be important in determining the outcome of IEEs. Therefore, IEEs have the potential to influence evolutionary processes and the continuity of species interactions over time.

  6. Population genetic analysis reveals barriers and corridors for gene flow within and among riparian populations of a rare plant.

    Science.gov (United States)

    Hevroy, Tanya H; Moody, Michael L; Krauss, Siegfried L

    2018-02-01

    Landscape features and life-history traits affect gene flow, migration and drift to impact on spatial genetic structure of species. Understanding this is important for managing genetic diversity of threatened species. This study assessed the spatial genetic structure of the rare riparian Grevillea sp. Cooljarloo (Proteaceae), which is restricted to a 20 km 2 region impacted by mining in the northern sandplains of the Southwest Australian Floristic Region, an international biodiversity hotspot. Within creek lines and floodplains, the distribution is largely continuous. Models of dispersal within riparian systems were assessed by spatial genetic analyses including population level partitioning of genetic variation and individual Bayesian clustering. High levels of genetic variation and weak isolation by distance within creek line and floodplain populations suggest large effective population sizes and strong connectivity, with little evidence for unidirectional gene flow as might be expected from hydrochory. Regional clustering of creek line populations and strong divergence among creek line populations suggest substantially lower levels of gene flow among creek lines than within creek lines. There was however a surprising amount of genetic admixture in floodplain populations, which could be explained by irregular flooding and/or movements by highly mobile nectar-feeding bird pollinators. Our results highlight that for conservation of rare riparian species, avoiding an impact to hydrodynamic processes, such as water tables and flooding dynamics, may be just as critical as avoiding direct impacts on the number of plants.

  7. Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere.

    Science.gov (United States)

    Kalam, Sadaf; Das, Subha Narayan; Basu, Anirban; Podile, Appa Rao

    2017-05-01

    Rhizosphere microbial community has diverse metabolic capabilities and plays a crucial role in maintaining plant health. Oligotrophic plant growth promoting rhizobacteria (PGPR), along with difficult-to-culture microbial fractions, might be involved synergistically in microbe-microbe and plant-microbe interactions in the rhizosphere. Among the difficult-to-culture microbial fractions, Acidobacteria constitutes the most dominant phylum thriving in rhizospheric soils. We selected effective PGPR for tomato and black gram and studied their effect on population densities of acidobacterial members. Three facultatively oligotrophic PGPR were identified through 16S rRNA gene sequencing as Sphingobacterium sp. (P3), Variovorax sp. (P4), and Roseomonas sp. (A2); the latter being a new report of PGPR. In presence of selected PGPR strains, the changes in population densities of Acidobacteria were monitored in metagenomic DNA extracted from bulk and rhizospheric soils of tomato and black gram using real time qPCR. A gradual increase in equivalent cell numbers of Acidobacteria members was observed over time along with a simultaneous increase in plant growth promotion by test PGPR. We report characterization of three effective PGPR strains and their effects on indigenous, underexplored difficult-to-culture phylum-Acidobacteria. We suggest that putative interactions between these two bacterial groups thriving in rhizospheric soils could be beneficial for plant growth. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ecological systems as computer networks: Long distance sea dispersal as a communication medium between island plant populations.

    Science.gov (United States)

    Sanaa, Adnen; Ben Abid, Samir; Boulila, Abdennacer; Messaoud, Chokri; Boussaid, Mohamed; Ben Fadhel, Najeh

    2016-06-01

    Ecological systems are known to exchange genetic material through animal species migration and seed dispersal for plants. Isolated plant populations have developed long distance dispersal as a means of propagation which rely on meteorological such as anemochory and hydrochory for coast, island and river bank dwelling species. Long distance dispersal by water, in particular, in the case of water current bound islands, calls for the analogy with computer networks, where each island and nearby mainland site plays the role of a network node, the water currents play the role of a transmission channel, and water borne seeds as data packets. In this paper we explore this analogy to model long distance dispersal of seeds among island and mainland populations, when traversed with water currents, in order to model and predict their future genetic diversity. The case of Pancratium maritimum L. populations in Tunisia is used as a proof of concept, where their genetic diversity is extrapolated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Volatile Constituents of Different Plant Parts and Populations of Malabaila aurea Boiss. from Montenegro

    Directory of Open Access Journals (Sweden)

    Ivan Vučković

    2014-03-01

    Full Text Available The volatile constituents of different plant parts and populations of Malabaila aurea Boiss. from Montenegro were obtained by simultaneous distillation-extraction and analyzed by GC-FID and GC-MS. A total of 12 samples were examined and 45 compounds were identified. The volatile content of different M. aurea populations was very similar, while the volatile fractions obtained from different plant parts showed significant qualitative and quantitative differences. The most abundant compounds found in stems & leaves were apiole (51.0-56.3%, myristicin (16.3-25.4%, and falcarinol (4.1-10.7%. The roots showed the same major components, but with different relative abundances: 30.9-49.1% of apiole, 12.9-34.7% of falcarinol, and 9.9-31.1% of myristicin. The volatile constituents of fruits & flowers were remarkably different, containing up to 71.2-80.5% octyl butyrate, 11.4-18.0% octanol, and 2.7-6.8% octyl hexanoate. The results were discussed as possible indication of relatedness of Malabaila aurea and Pastinacasativa (parsnip .

  10. The potential environmental impacts and the siting of proposed nuclear power plants in China

    International Nuclear Information System (INIS)

    Shi Zhongqi

    1986-01-01

    This paper reviews briefly the methodology of assessing environmental impacts from the nuclear power plants and analyses the potential radiological impacts on the environment from proposed nuclear power plants in China. Preliminary studies show that the environmental impacts of the effluents of routine release from PWRs to the proposed sites are extremely small, even if nuclear power plants are constructed either on the Bohai Sea shore with a narrow mouth or in the densely populated regions of Sunan. Thus, the suitability of sites depends mainly on the acceptability of possible exposure to the residents following postulated accidental release of radioactive materials. The paper also discusses relations between the nuclear plant siting and population distribution around the site and compares the distribution of the proposed sites in China with that of other countries sites in according to China actual situation, it is reasonable to adopt a prudent policy that the first series of nuclear power plants in China should be built in relatively low population areas

  11. Perceptions of Medicinal Plant Use Amongst the Hispanic Population in the St. Louis Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Kim M. Grafford

    2016-10-01

    Full Text Available Introduction: Medicinal plant use in the United States has increased as reported by the National Center of Complementary and Integrative Health and U.S. Census Bureau.However, little is known about how many minority groups in the United States use medicinal plants.There is a rise in the Hispanic population; a community with a steep tradition of medicinal plant use, in the U.S., so understanding the perceptions of medicinal plant use is useful to healthcare providers. Methods: A survey was designed to gauge a better understanding of the perceptions of medicinal plant use amongst Latino patients with varying education levels who reside in the St. Louis Metropolitan Area. Survey questions highlighted the perceptions of medicinal plants use, patient communication regarding medicinal plant use with healthcare providers (pharmacists and doctors, and the impact the education level has on medicinal plant use. Results: Surveys were distributed to six different investigational sites around the St. Louis Metropolitan Area from August 2015 to December 2015. Survey respondents identified 45 different plants/herbs that they currently use or had used at some point in their life. Those with higher levels of education had varying opinions on medicinal plant use with their current practices. Conclusion: The participants’ high interest in the use of medicinal plants exemplifies the need for enhanced communication between patients and healthcare professionals about medicinal plant use. However, it was hard to determine whether the participants’ level of education had any direct relationship to this use. Conflict of Interest None   Type: Original Research

  12. The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling

    KAUST Repository

    Turek, Ilona

    2016-03-05

    The functional homologues of vertebrate natriuretic peptides (NPs), the plant natriuretic peptides (PNPs), are a novel class of peptidic hormones that signal via guanosine 3′,5′-cyclic monophosphate (cGMP) and systemically affect plant salt and water balance and responses to biotrophic plant pathogens. Although there is increasing understanding of the complex roles of PNPs in plant responses at the systems level, little is known about the underlying signaling mechanisms. Here we report isolation and identification of a novel Leucine-Rich Repeat (LRR) protein that directly interacts with A. thaliana PNP, AtPNP-A. In vitro binding studies revealed that the Arabidopsis AtPNP-A binds specifically to the LRR protein, termed AtPNP-R1, and the active region of AtPNP-A is sufficient for the interaction to occur. Importantly, the cytosolic part of the AtPNP-R1, much like in some vertebrate NP receptors, harbors a catalytic center diagnostic for guanylyl cyclases and the recombinant AtPNP-R1 is capable of catalyzing the conversion of guanosine triphosphate to cGMP. In addition, we show that AtPNP-A causes rapid increases of cGMP levels in wild type (WT) leaf tissue while this response is significantly reduced in the atpnp-r1 mutants. AtPNP-A also causes cGMP-dependent net water uptake into WT protoplasts, and hence volume increases, whereas responses of the protoplasts from the receptor mutant are impaired. Taken together, our results suggest that the identified LRR protein is an AtPNP-A receptor essential for the PNP-dependent regulation of ion and water homeostasis in plants and that PNP- and vertebrate NP-receptors and their signaling mechanisms share surprising similarities. © 2016 Springer Science+Business Media Dordrecht

  13. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    Science.gov (United States)

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  14. Phenotypic selection varies with pollination intensity across populations of Sabatia angularis.

    Science.gov (United States)

    Emel, Sarah L; Franks, Steven J; Spigler, Rachel B

    2017-07-01

    Pollinators are considered primary selective agents acting on plant traits, and thus variation in the strength of the plant-pollinator interaction might drive variation in the opportunity for selection and selection intensity across plant populations. Here, we examine whether these critical evolutionary parameters covary with pollination intensity across wild populations of the biennial Sabatia angularis. We quantified pollination intensity in each of nine S. angularis populations as mean stigmatic pollen load per population. For female fitness and three components, fruit number, fruit set (proportion of flowers setting fruit) and number of seeds per fruit, we evaluated whether the opportunity for selection varied with pollination intensity. We used phenotypic selection analyses to test for interactions between pollination intensity and selection gradients for five floral traits, including flowering phenology. The opportunity for selection via fruit set and seeds per fruit declined significantly with increasing pollen receipt, as expected. We demonstrated significant directional selection on multiple traits across populations. We also found that selection intensity for all traits depended on pollination intensity. Consistent with general theory about the relationship between biotic interaction strength and the intensity of selection, our study suggests that variation in pollination intensity drives variation in selection across S. angularis populations. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Dispersion of radioactive material in air and water and consideration of population distribution in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2004-01-01

    The IAEA issues Safety Requirements and Safety Guides pertaining to nuclear power plants and activities in the field of nuclear energy, on the basis of its Safety Fundamentals publication on The Safety of Nuclear Installations. The present Safety Guide, which supplements the Code on the Safety of Nuclear Power Plants: Siting, concerns the effects of a nuclear power plant on the surrounding region and the consideration of population distribution in the siting of a plant. This Safety Guide makes recommendations on how to meet the requirements of the Code on the Safety of Nuclear Power Plants: Siting, on the basis of knowledge of the mechanisms for the dispersion of effluents discharged into the atmosphere and into surface water and groundwater. Relevant site characteristics and safety considerations are discussed. Population distribution, the projected population growth rate, particular geographical features, the capabilities of local transport networks and communications networks, industry and agriculture in the region, and recreational and institutional activities in the region should be considered in assessing the feasibility of developing an emergency response plan. In the selection of a site for a facility using radioactive material, such as a nuclear power plant, account should be taken of any local features that might be affected by the facility and of the feasibility of off-site intervention, including emergency response and protective actions. This is in addition to the evaluation of any features of the site itself that might affect the safety of the facility. This Safety Guide recommends methods for the assessment of regional and local characteristics. This Safety Guide supersedes four earlier IAEA Safety Guides, namely: Atmospheric Dispersion in Nuclear Power Plant Siting (Safety Series No. 50-SG-S3 (1980)). Site Selection and Evaluation for Nuclear Power Plants with Respect to Population Distribution (Safety Series No. 50-SG-S4 (1980)). Hydrological

  16. Dispersion of radioactive material in air and water and consideration of population distribution in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA issues Safety Requirements and Safety Guides pertaining to nuclear power plants and activities in the field of nuclear energy, on the basis of its Safety Fundamentals publication on The Safety of Nuclear Installations. The present Safety Guide, which supplements the Code on the Safety of Nuclear Power Plants: Siting, concerns the effects of a nuclear power plant on the surrounding region and the consideration of population distribution in the siting of a plant. This Safety Guide makes recommendations on how to meet the requirements of the Code on the Safety of Nuclear Power Plants: Siting, on the basis of knowledge of the mechanisms for the dispersion of effluents discharged into the atmosphere and into surface water and groundwater. Relevant site characteristics and safety considerations are discussed. Population distribution, the projected population growth rate, particular geographical features, the capabilities of local transport networks and communications networks, industry and agriculture in the region, and recreational and institutional activities in the region should be considered in assessing the feasibility of developing an emergency response plan. In the selection of a site for a facility using radioactive material, such as a nuclear power plant, account should be taken of any local features that might be affected by the facility and of the feasibility of off-site intervention, including emergency response and protective actions. This is in addition to the evaluation of any features of the site itself that might affect the safety of the facility. This Safety Guide recommends methods for the assessment of regional and local characteristics. This Safety Guide supersedes four earlier IAEA Safety Guides, namely: Atmospheric Dispersion in Nuclear Power Plant Siting (Safety Series No. 50-SG-S3 (1980)); Site Selection and Evaluation for Nuclear Power Plants with Respect to Population Distribution (Safety Series No. 50-SG-S4 (1980)); Hydrological

  17. Growing hickories (Carya spp.) for roost trees: A method to support conservation of declining bat populations

    Science.gov (United States)

    Tara Luna; Daniel L. Lindner; R. Kasten Dumroese

    2014-01-01

    Bats (Vespertilionidae and Phyllostomidae) are a critically important component of North American ecosystems. These insectivorous mammals provide largely unrecognized ecosystem services to agriculture and forest health and sustain bat-dependent native plant populations. The decline of North American bat populations reflects the recent emergence of the fungal disease...

  18. The ideal free distribution as an evolutionarily stable state in density-dependent population games

    Czech Academy of Sciences Publication Activity Database

    Cressman, R.; Křivan, Vlastimil

    2010-01-01

    Roč. 119, č. 8 (2010), s. 1231-1242 ISSN 0030-1299 R&D Projects: GA AV ČR IAA100070601 Institutional research plan: CEZ:AV0Z50070508 Keywords : density-dependent population games Subject RIV: EH - Ecology, Behaviour Impact factor: 3.393, year: 2010

  19. Ideotype population exploration: growth, photosynthesis, and yield components at different planting densities in winter oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Ma, Ni; Yuan, Jinzhan; Li, Ming; Li, Jun; Zhang, Liyan; Liu, Lixin; Naeem, Muhammad Shahbaz; Zhang, Chunlei

    2014-01-01

    Rapeseed is one of the most important edible oil crops in the world and the seed yield has lagged behind the increasing demand driven by population growth. Winter oilseed rape (Brassica napus L.) is widely cultivated with relatively low yield in China, so it is necessary to find the strategies to improve the expression of yield potential. Planting density has great effects on seed yield of crops. Hence, field experiments were conducted in Wuhan in the Yangtze River basin with one conventional variety (Zhongshuang 11, ZS11) and one hybrid variety (Huayouza 9, HYZ9) at five planting densities (27.0×10(4), 37.5×10(4), 48.0×10(4), 58.5×10(4), 69.0×10(4) plants ha(-1)) during 2010-2012 to investigate the yield components. The physiological traits for high-yield and normal-yield populations were measured during 2011-2013. Our results indicated that planting densities of 58.5×10(4) plants ha(-1) in ZS11 and 48.0×10(4) plants ha(-1) in HYZ9 have significantly higher yield compared with the density of 27.0×10(4) plants ha(-1) for both varieties. The ideal silique numbers for ZS11 and HYZ9 were ∼0.9×10(4) (n m(-2)) and ∼1×10(4) (n m(-2)), respectively, and ideal primary branches for ZS11 and HYZ9 were ∼250 (n m(-2)) and ∼300 (n m(-2)), respectively. The highest leaf area index (LAI) and silique wall area index (SAI) was ∼5.0 and 7.0, respectively. Moreover, higher leaf net photosynthetic rate (Pn) and water use efficiency (WUE) were observed in the high-yield populations. A significantly higher level of silique wall photosynthesis and rapid dry matter accumulation were supposed to result in the maximum seed yield. Our results suggest that increasing the planting density within certain range is a feasible approach for higher seed yield in winter rapeseed in China.

  20. Using soil seed banks to assess temporal patterns of genetic variation in invasive plant populations.

    Science.gov (United States)

    Fennell, Mark; Gallagher, Tommy; Vintro, Luis Leon; Osborne, Bruce

    2014-05-01

    Most research on the genetics of invasive plant species has focused on analyzing spatial differences among existing populations. Using a long-established Gunnera tinctoria population from Ireland, we evaluated the potential of using plants derived from seeds associated with different soil layers to track genetic variation through time. This species and site were chosen because (1) G. tinctoria produces a large and persistent seed bank; (2) it has been present in this locality, Sraheens, for ∼90 years; (3) the soil is largely undisturbed; and (4) the soil's age can be reliably determined radiometrically at different depths. Amplified fragment length polymorphic markers (AFLPs) were used to assess differences in the genetic structure of 75 individuals sampled from both the standing population and from four soil layers, which spanned 18 cm (estimated at ∼90 years based on (210)Pb and (137)Cs dating). While there are difficulties in interpreting such data, including accounting for the effects of selection, seed loss, and seed migration, a clear pattern of lower total allele counts, percentage polymorphic loci, and genetic diversity was observed in deeper soils. The greatest percentage increase in the measured genetic variables occurred prior to the shift from the lag to the exponential range expansion phases and may be of adaptive significance. These findings highlight that seed banks in areas with long-established invasive populations can contain valuable genetic information relating to invasion processes and as such, should not be overlooked.

  1. Population dynamics of minimally cognitive individuals. Part 2: Dynamics of time-dependent knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, R.W.

    1995-07-01

    The dynamical principle for a population of interacting individuals with mutual pairwise knowledge, presented by the author in a previous paper for the case of constant knowledge, is extended to include the possibility that the knowledge is time-dependent. Several mechanisms are presented by which the mutual knowledge, represented by a matrix K, can be altered, leading to dynamical equations for K(t). The author presents various examples of the transient and long time asymptotic behavior of K(t) for populations of relatively isolated individuals interacting infrequently in local binary collisions. Among the effects observed in the numerical experiments are knowledge diffusion, learning transients, and fluctuating equilibria. This approach will be most appropriate to small populations of complex individuals such as simple animals, robots, computer networks, agent-mediated traffic, simple ecosystems, and games. Evidence of metastable states and intermittent switching leads them to envision a spectroscopy associated with such transitions that is independent of the specific physical individuals and the population. Such spectra may serve as good lumped descriptors of the collective emergent behavior of large classes of populations in which mutual knowledge is an important part of the dynamics.

  2. Estimating population exposure to power plant emissions using CALPUFF: a case study in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Ying Zhou; Levy, J.I. [Harvard School of Public Health, Boston, MA (United States); Hammitt, J.K.; Evans, J.S. [Harvard Center for Risk Analysis, Boston, MA (United States)

    2003-02-01

    Epidemiological studies have shown a significant association between ambient particulate matter (PM) exposures and increased mortality and morbidity risk. Power plants are significant emitters of precursor gases of fine particulate matter. To evaluate the public health risk posed by power plants, it is necessary to evaluate population exposure to different pollutants. The concept of intake fraction (the fraction of a pollutant emitted that is eventually inhaled or ingested by a population) has been proposed to provide a simple summary measure of the relationship between emissions and exposure. Currently available intake fraction estimates from developing countries used models that look only at the near field impacts, which may not capture the full impact of a pollution source. This case study demonstrated how the intake fraction of power plant emissions in China can be calculated using a detailed long-range atmospheric dispersion model-CALPUFF. We found that the intake fraction of primary fine particles is roughly on the order of 10{sup -5}, while the intake fractions of sulfur dioxide, sulfate and nitrate are on the order of 10{sup -6}. These estimates are an order of magnitude higher than the US estimates. We also tested how sensitive the results were to key assumptions within the model. The size distribution of primary particles has a large impact on the intake fraction for primary particles while the background ammonia concentration is an important factor influencing the intake fraction of nitrate. The background ozone concentration has a moderate impact on the intake fraction of sulfate and nitrate. Our analysis shows that this approach is applicable to a developing country and it provides reasonable population exposure estimates. (author)

  3. Integration of Density Dependence and Concentration Response Models Provides an Ecologically Relevant Assessment of Populations Exposed to Toxicants

    Science.gov (United States)

    The assessment of toxic exposure on wildlife populations involves the integration of organism level effects measured in toxicity tests (e.g., chronic life cycle) and population models. These modeling exercises typically ignore density dependence, primarily because information on ...

  4. Evidence of population resistance to extreme low flows in a fluvial-dependent fish species

    Science.gov (United States)

    Katz, Rachel A.; Freeman, Mary C.

    2015-01-01

    Extreme low streamflows are natural disturbances to aquatic populations. Species in naturally intermittent streams display adaptations that enhance persistence during extreme events; however, the fate of populations in perennial streams during unprecedented low-flow periods is not well-understood. Biota requiring swift-flowing habitats may be especially vulnerable to flow reductions. We estimated the abundance and local survival of a native fluvial-dependent fish species (Etheostoma inscriptum) across 5 years encompassing historic low flows in a sixth-order southeastern USA perennial river. Based on capturemark-recapture data, the study shoal may have acted as a refuge during severe drought, with increased young-of-the-year (YOY) recruitment and occasionally high adult immigration. Contrary to expectations, summer and autumn survival rates (30 days) were not strongly depressed during low-flow periods, despite 25%-80% reductions in monthly discharge. Instead, YOY survival increased with lower minimum discharge and in response to small rain events that increased low-flow variability. Age-1+ fish showed the opposite pattern, with survival decreasing in response to increasing low-flow variability. Results from this population dynamics study of a small fish in a perennial river suggest that fluvial-dependent species can be resistant to extreme flow reductions through enhanced YOY recruitment and high survival

  5. Are invasive plants more competitive than native conspecifics? Patterns vary with competitors

    Science.gov (United States)

    Zheng, Yulong; Feng, Yulong; Valiente-Banuet, Alfonso; Li, Yangping; Liao, Zhiyong; Zhang, Jiaolin; Chen, Yajun

    2015-10-01

    Invasive plants are sometimes considered to be more competitive than their native conspecifics, according to the prediction that the invader reallocates resources from defense to growth due to liberation of natural enemies [‘Evolution of Increased Competitive Ability’ (EICA) hypothesis]. However, the differences in competitive ability may depend on the identity of competitors. In order to test the effects of competitors, Ageratina adenophora plants from both native and invasive ranges competed directly, and competed with native residents from both invasive (China) and native (Mexico) ranges respectively. Invasive A. adenophora plants were more competitive than their conspecifics from native populations when competing with natives from China (interspecific competition), but not when competing with natives from Mexico. Invasive A. adenophora plants also showed higher competitive ability when grown in high-density monoculture communities of plants from the same population (intrapopulation competition). In contrast, invasive A. adenophora plants showed lower competitive ability when competing with plants from native populations (intraspecific competition). Our results indicated that in the invasive range A. adenophora has evolved to effectively cope with co-occurring natives and high density environments, contributing to invasion success. Here, we showed the significant effects of competitors, which should be considered carefully when testing the EICA hypothesis.

  6. The abundance and pollen foraging behaviour of bumble bees in relation to population size of whortleberry (Vaccinium uliginosum.

    Directory of Open Access Journals (Sweden)

    Carolin Mayer

    Full Text Available Habitat fragmentation can have severe effects on plant pollinator interactions, for example changing the foraging behaviour of pollinators. To date, the impact of plant population size on pollen collection by pollinators has not yet been investigated. From 2008 to 2010, we monitored nine bumble bee species (Bombus campestris, Bombus hortorum s.l., Bombus hypnorum, Bombus lapidarius, Bombus pascuorum, Bombus pratorum, Bombus soroensis, Bombus terrestris s.l., Bombus vestalis s.l. on Vaccinium uliginosum (Ericaceae in up to nine populations in Belgium ranging in size from 80 m(2 to over 3.1 ha. Bumble bee abundance declined with decreasing plant population size, and especially the proportion of individuals of large bumble bee species diminished in smaller populations. The most remarkable and novel observation was that bumble bees seemed to switch foraging behaviour according to population size: while they collected both pollen and nectar in large populations, they largely neglected pollen collection in small populations. This pattern was due to large bumble bee species, which seem thus to be more likely to suffer from pollen shortages in smaller habitat fragments. Comparing pollen loads of bumble bees we found that fidelity to V. uliginosum pollen did not depend on plant population size but rather on the extent shrub cover and/or openness of the site. Bumble bees collected pollen only from three plant species (V.uliginosum, Sorbus aucuparia and Cytisus scoparius. We also did not discover any pollination limitation of V. uliginosum in small populations. We conclude that habitat fragmentation might not immediately threaten the pollination of V. uliginosum, nevertheless, it provides important nectar and pollen resources for bumble bees and declining populations of this plant could have negative effects for its pollinators. The finding that large bumble bee species abandon pollen collection when plant populations become small is of interest when

  7. Geographic population structure in an outcrossing plant invasion after centuries of cultivation and recent founding events.

    Science.gov (United States)

    Gaskin, John F; Schwarzländer, Mark; Gibson, Robert D; Simpson, Heather; Marshall, Diane L; Gerber, Esther; Hinz, Hariet

    2018-04-01

    Population structure and genetic diversity of invasions are the result of evolutionary processes such as natural selection, drift and founding events. Some invasions are also molded by specific human activities such as selection for cultivars and intentional introduction of desired phenotypes, which can lead to low genetic diversity in the resulting invasion. We investigated the population structure, diversity and origins of a species with both accidental and intentional introduction histories, as well as long-term selection as a cultivar. Dyer's woad ( Isatis tinctoria ; Brassicaceae) has been used as a dye source for at least eight centuries in Eurasia, was introduced to eastern USA in the 1600s, and is now considered invasive in the western USA. Our analyses of amplified fragment length polymorphisms (AFLPs) from 645 plants from the USA and Eurasia did not find significantly lower gene diversity ( H j ) in the invaded compared to the native range. This suggests that even though the species was under cultivation for many centuries, human selection of plants may not have had a strong influence on diversity in the invasion. We did find significantly lower genetic differentiation ( F st ) in the invasive range but our results still suggested that there are two distinct invasions in the western USA. Our data suggest that these invasions most likely originated from Switzerland, Ukraine and Germany, which correlates with initial biological control agent survey findings. Genetic information on population structure, diversity and origins assists in efforts to control invasive species, and continued combination of ecological and molecular analyses will help bring us closer to sustainable management of plant invasions.

  8. Circumnutation and its dependence on the gravity response in rice, morning glory and pea plants: verification by spaceflight experiments

    Science.gov (United States)

    Takahashi, Hideyuki; Kobayashi, Akie; Fujii, Nobuharu; Yano, Sachiko; Shimazu, Toru; Kim, Hyejeong; Tomita, Yuuta; Miyazawa, Yutaka

    Plant organs display helical growth movement known as circumnutation. This movement helps plant organs find suitable environmental cues. The amplitude, period and shape of the circumnutation differ depending on plant species or organs. Although the mechanism for circumnutation is unclear, it has long been argued whether circumnutation is involved with gravitropic response. Previously, we showed that shoots of weeping morning glory (we1 and we2) are impaired in not only the differentiation of endodermis (gravisensing cells) and gravitropic response, but also winding and circumnutation (Kitazawa et al., PNAS 102: 18742-18747, 2005). Here, we report a reduced circumnutation in the shoots of rice and the roots of pea mutants defective in gravitropic response. Coleoptiles of clinorotated rice seedlings and decapped roots of pea seedlings also showed a reduction of their circumnutational movement. These results suggest that circumnutation is tightly related with gravitropic response. In the proposed spaceflight experiments, “Plant Rotation”, we will verify the hypothesis that circumnutation requires gravity response, by using microgravity environment in KIBO module of the International Space Station. We will grow rice and morning glory plants under both muG and 1G conditions on orbit and monitor their growth by a camera. The downlinked images will be analyzed for the measurements of plant growth and nutational movements. This experiment will enable us to answer the question whether circumnutation depends on gravity response or not.

  9. Benefits of flooding-induced aquatic adventitious roots depend on the duration of submergence: linking plant performance to root functioning.

    Science.gov (United States)

    Zhang, Qian; Huber, Heidrun; Beljaars, Simone J M; Birnbaum, Diana; de Best, Sander; de Kroon, Hans; Visser, Eric J W

    2017-07-01

    Temporal flooding is a common environmental stress for terrestrial plants. Aquatic adventitious roots (aquatic roots) are commonly formed in flooding-tolerant plant species and are generally assumed to be beneficial for plant growth by supporting water and nutrient uptake during partial flooding. However, the actual contribution of these roots to plant performance under flooding has hardly been quantified. As the investment into aquatic root development in terms of carbohydrates may be costly, these costs may - depending on the specific environmental conditions - offset the beneficial effects of aquatic roots. This study tested the hypothesis that the balance between potential costs and benefits depends on the duration of flooding, as the benefits are expected to outweigh the costs in long-term but not in short-term flooding. The contribution of aquatic roots to plant performance was tested in Solanum dulcamara during 1-4 weeks of partial submergence and by experimentally manipulating root production. Nutrient uptake by aquatic roots, transpiration and photosynthesis were measured in plants differing in aquatic root development to assess the specific function of these roots. As predicted, flooded plants benefited from the presence of aquatic roots. The results showed that this was probably due to the contribution of roots to resource uptake. However, these beneficial effects were only present in long-term but not in short-term flooding. This relationship could be explained by the correlation between nutrient uptake and the flooding duration-dependent size of the aquatic root system. The results indicate that aquatic root formation is likely to be selected for in habitats characterized by long-term flooding. This study also revealed only limited costs associated with adventitious root formation, which may explain the maintenance of the ability to produce aquatic roots in habitats characterized by very rare or short flooding events. © The Author 2017. Published by

  10. The ALDH21 gene found in lower plants and some vascular plants codes for a NADP+ -dependent succinic semialdehyde dehydrogenase.

    Science.gov (United States)

    Kopečná, Martina; Vigouroux, Armelle; Vilím, Jan; Končitíková, Radka; Briozzo, Pierre; Hájková, Eva; Jašková, Lenka; von Schwartzenberg, Klaus; Šebela, Marek; Moréra, Solange; Kopečný, David

    2017-10-01

    Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP + -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol. NAD + is a very poor coenzyme for ALDH21 unlike for mitochondrial SSALDHs (ALDH5), which are the closest related ALDH members. Structural comparison between the apoform and the coenzyme complex reveal that NADP + binding induces a conformational change of the loop carrying Arg-228, which seals the NADP + in the coenzyme cavity via its 2'-phosphate and α-phosphate groups. The crystal structure with the bound product succinate shows that its carboxylate group establishes salt bridges with both Arg-121 and Arg-457, and a hydrogen bond with Tyr-296. While both arginine residues are pre-formed for substrate/product binding, Tyr-296 moves by more than 1 Å. Both R121A and R457A variants are almost inactive, demonstrating a key role of each arginine in catalysis. Our study implies that bryophytes but presumably also some green algae, lycopods and ferns, which carry both ALDH21 and ALDH5 genes, can oxidize SSAL to succinate in both cytosol and mitochondria, indicating a more diverse GABA shunt pathway compared with higher plants carrying only the mitochondrial ALDH5. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Planting strategies of maize farmers in Kenya: a simultaneous equations analysis in the presence of discrete dependent variables

    CSIR Research Space (South Africa)

    Hassan, RM

    1996-11-01

    Full Text Available procedures are used to handle the simultaneity and self-selectivity problems. Results showed that population pressure and agroclimatic diversity are important determinants of crop intensification and planting regimes among maize farmers and further supported...

  12. Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae) populations on kale, Brassica oleracea var. acephala (Brassicaceae) plants.

    Science.gov (United States)

    Silva-Filho, Reinildes; Santos, Ricardo Henrique Silva; Tavares, Wagner de Souza; Leite, Germano Leão Demolin; Wilcken, Carlos Frederico; Serrão, José Eduardo; Zanuncio, José Cola

    2014-01-01

    Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.

  13. Rice-straw mulch reduces the green peach aphid, Myzus persicae (Hemiptera: Aphididae populations on kale, Brassica oleracea var. acephala (Brassicaceae plants.

    Directory of Open Access Journals (Sweden)

    Reinildes Silva-Filho

    Full Text Available Organic mulches, like peel and rice-straw, besides other materials affect the UV and temperature, which cause a reduction in the aphid arrival. The aim was to evaluate the effect of covering the soil with straw on the populations of the green peach aphid, Myzus persicae on the kale, Brassica oleracea var. acephala plants. The first experiment evaluated the direct effect of the rice-straw mulch and the second its indirect effect on aphid immigration, testing the plant characteristics that could lead to the landing preference of this insect. The third experiment evaluated the direct effect of the mulch on the aphid population. In the second and third experiments, four plants, each in a 14 L polyethylene pot with holes at the bottom, were used in areas with and without soil mulching. These pots were changed between areas, after seven days, to evaluate the effects of this change on the arrival of the winged aphids to the plants. Each plant was covered with anti-aphid gauze and inoculated with one winged M. persicae. Winged and apterous adults of this insect were counted per plant after 15 days. The temperature increased in the mulched plots to a maximum of 21-36°C and to 18-32°C in the plots with or without soil covering, respectively. Plant growth reduced the numbers of the winged aphids landing before and after they were moved to the bare soil plots. The nutrient content was similar in plants in both the mulched and no mulched plots. The population growth of M. persicae was higher in the control than in the mulched plots. This was partially due to temperatures close to 30°C in these plots and changes in the plant physiology. The soil mulching with rice-straw decreased the M. persicae landing, increased the plot temperatures and improved the vegetative growth of the kale plants.

  14. Dynamics of a recovering Arctic bird population: the importance of climate, density dependence, and site quality

    Science.gov (United States)

    Bruggeman, Jason E.; Swem, Ted; Andersen, David E.; Kennedy, Patricia L.; Nigro, Debora A.

    2015-01-01

    Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve–Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably

  15. Performance of irrigated green corn cultivars in different plant populations at sowing

    Directory of Open Access Journals (Sweden)

    José C. Soares Neto

    Full Text Available ABSTRACT This study aimed to evaluate the yield of green corn hybrids grown under irrigation in different plant populations at sowing. The assay was carried out in the experimental area located in the city of Arapiraca, Alagoas State, Brazil, from November 2015 to January 2016. A randomized complete block design (RCBD was used, in a 2 x 5 factorial scheme with four replicates. A double- and a single-cross hybrid (AG 1051 and BM 3061, which are suitable for green corn production, were cultivated in five spacings between plants at sowing (15.0, 17.5, 20.0, 22.5 and 25.0 cm. The characteristics photosynthetic rate (PR, ear length with rusk (HEL and without husk (UEL, husked ear weight (HEW, unhusked ear weight (UEW, percentage of marketable ears (%ME and weight of husk (HW were evaluated. The double- and single-cross hybrids AG 1051 and BM 3061 showed green ears with commercial standard. The cultivar BM 3061 showed the best results for most of the characteristics related to the performance of green corn (PR, HEL, UEL, UEW, HEW, %ME. The spacing of 17.5 cm between plants at sowing was the most indicated for irrigated green corn cultivation.

  16. Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants.

    Science.gov (United States)

    Zhang, Zhijie; Pan, Xiaoyun; Blumenthal, Dana; van Kleunen, Mark; Liu, Mu; Li, Bo

    2018-04-01

    Invasive alien plants are likely to be released from specialist herbivores and at the same time encounter biotic resistance from resident generalist herbivores in their new ranges. The Shifting Defense hypothesis predicts that this will result in evolution of decreased defense against specialist herbivores and increased defense against generalist herbivores. To test this, we performed a comprehensive meta-analysis of 61 common garden studies that provide data on resistance and/or tolerance for both introduced and native populations of 32 invasive plant species. We demonstrate that introduced populations, relative to native populations, decreased their resistance against specialists, and increased their resistance against generalists. These differences were significant when resistance was measured in terms of damage caused by the herbivore, but not in terms of performance of the herbivore. Furthermore, we found the first evidence that the magnitude of resistance differences between introduced and native populations depended significantly on herbivore origin (i.e., whether the test herbivore was collected from the native or non-native range of the invasive plant). Finally, tolerance to generalists was found to be higher in introduced populations, while neither tolerance to specialists nor that to simulated herbivory differed between introduced and native plant populations. We conclude that enemy release from specialist herbivores and biotic resistance from generalist herbivores have contrasting effects on resistance evolution in invasive plants. Our results thus provide strong support for the Shifting Defense hypothesis. © 2018 by the Ecological Society of America.

  17. Impacts of invasive plants on carbon pools depend on both species' traits and local climate.

    Science.gov (United States)

    Martin, Philip A; Newton, Adrian C; Bullock, James M

    2017-04-01

    Invasive plants can alter ecosystem properties, leading to changes in the ecosystem services on which humans depend. However, generalizing about these effects is difficult because invasive plants represent a wide range of life forms, and invaded ecosystems differ in their plant communities and abiotic conditions. We hypothesize that differences in traits between the invader and native species can be used to predict impacts and so aid generalization. We further hypothesize that environmental conditions at invaded sites modify the effect of trait differences and so combine with traits to predict invasion impacts. To test these hypotheses, we used systematic review to compile data on changes in aboveground and soil carbon pools following non-native plant invasion from studies across the World. Maximum potential height (H max ) of each species was drawn from trait databases and other sources. We used meta-regression to assess which of invasive species' H max , differences in this height trait between native and invasive plants, and climatic water deficit, a measure of water stress, were good predictors of changes in carbon pools following invasion. We found that aboveground biomass in invaded ecosystems relative to uninvaded ones increased as the value of H max of invasive relative to native species increased, but that this effect was reduced in more water stressed ecosystems. Changes in soil carbon pools were also positively correlated with the relative H max of invasive species, but were not altered by water stress. This study is one of the first to show quantitatively that the impact of invasive species on an ecosystem may depend on differences in invasive and native species' traits, rather than solely the traits of invasive species. Our study is also the first to show that the influence of trait differences can be altered by climate. Further developing our understanding of the impacts of invasive species using this framework could help researchers to identify not

  18. Population Structures in Russia: Optimality and Dependence on Parameters of Global Evolution

    Directory of Open Access Journals (Sweden)

    Yuri Yegorov

    2016-07-01

    Full Text Available The paper is devoted to analytical investigation of the division of geographical space into urban and rural areas with application to Russia. Yegorov (2005, 2006, 2009 has suggested the role of population density on economics. A city has an attractive potential based on scale economies. The optimal city size depends on the balance between its attractive potential and the cost of living that can be approximated by equilibrium land rent and commuting cost. For moderate scale effects optimal population of a city depends negatively on transport costs that are related positively with energy price index. The optimal agricultural density of population can also be constructed. The larger is a land slot per peasant, the higher will be the output from one unit of his labour force applied to this slot. But at the same time, larger farm size results in increase of energy costs, related to land development, collecting the crop and bringing it to the market. In the last 10 years we have observed substantial rise of both food and energy prices at the world stock markets. However, the income of farmers did not grow as fast as food price index. This can shift optimal rural population density to lower level, causing migration to cities (and we observe this tendency globally. Any change in those prices results in suboptimality of existing spatial structures. If changes are slow, the optimal infrastructure can be adjusted by simple migration. If the shocks are high, adaptation may be impossible and shock will persist. This took place in early 1990es in the former USSR, where after transition to world price for oil in domestic markets existing spatial infrastructure became suboptimal and resulted in persistent crisis, leading to deterioration of both industry and agriculture. Russia is the largest country but this is also its problem. Having large resource endowment per capita, it is problematic to build sufficient infrastructure. Russia has too low population

  19. Distribution and Resources of the Medicinal Plant Colchicum autumnale L. in Bulgaria

    Directory of Open Access Journals (Sweden)

    Ivanka Semerdjieva

    2017-06-01

    Full Text Available Colchicum autumnale (Colchicaceae is a perennial geophyte and a medicinal plant. Its biomass is collected for industrial uses for obtaining the alkaloids colchicine and demecolcine. The objective of the present study was to estimate the distribution and potential resources of C. autumnale populations in Bulgaria in terms of their sustainable use. Monitoring of habitats was carried out in concrete harvesting areas. The distribution of the populations and the amount of drug production in specific sites and conditions were studied. In 2014-2015, eleven localities were established in seven floristic regions, spread on an area of 498000 m². Seed resources obtained from the different populations ranged from 3.57 g to 12225 g. The seed yield depends on the environmental conditions, the number of plants per m², the number of fruit capsules per plant and the weight of the seeds contained in them. Changes in the management approach to habitats occupied by C. autumnale caused degradation of the areas, resulting in the decrease of the population density of the species.

  20. The decrease in the population of Gluconacetobacter diazotrophicus in sugarcane after nitrogen fertilization is related to plant physiology in split root experiments.

    Science.gov (United States)

    Rodríguez-Andrade, Osvaldo; Fuentes-Ramírez, Luis E; Morales-García, Yolanda E; Molina-Romero, Dalia; Bustillos-Cristales, María R; Martínez-Contreras, Rebeca D; Muñoz-Rojas, Jesús

    2015-01-01

    It has been established that a decrease in the population of Gluconacetobacter diazotrophicus associated with sugarcane occurs after nitrogen fertilization. This fact could be due to a direct influence of NH(4)NO(3) on bacterial cells or to changes in plant physiology after fertilizer addition, affecting bacterial establishment. In this work, we observed that survival of G. diazotrophicus was directly influenced when 44.8mM of NH(4)NO(3) (640mgN/plant) was used for in vitro experiments. Furthermore, micropropagated sugarcane plantlets were inoculated with G. diazotrophicus and used for split root experiments, in which both ends of the system were fertilized with a basal level of NH(4)NO(3) (0.35mM; 10mgN/plant). Twenty days post inoculation (dpi) one half of the plants were fertilized with a high dose of NH(4)NO(3) (6.3mM; 180 mgN/plant) on one end of the system. This nitrogen level was lower than that directly affecting G. diazotrophicus cells; however, it caused a decrease in the bacterial population in comparison with control plants fertilized with basal nitrogen levels. The decrease in the population of G. diazotrophicus was higher in pots fertilized with a basal nitrogen level when compared with the corresponding end supplied with high levels of NH4NO3 (100dpi; 80 days post fertilization) of the same plant system. These observations suggest that the high nitrogen level added to the plants induce systemic physiological changes that affect the establishment of G. diazotrophicus. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Population Status of Commercially Important Medicinal Plants in Dehradun Forest Division, Uttarakhand (India

    Directory of Open Access Journals (Sweden)

    Ninad B. RAUT

    2013-05-01

    Full Text Available The objective of forest management in the tropics, in recent decades, has shifted from timber production to biodiversity conservation and maintenance of life support system. However, past forestry practices have greatly influenced the structure of plant communities, preponderance of foreign invasive species, populations of high value medicinal plants as well as other non-wood forest products. We assessed the abundance and distribution of medicinal plants in managed and undisturbed forests of Dehradun Forest Division (DFD, Uttarakhand (India. A total of 80 transects (each 1 km long were laid in various categories of forest types in DFD. This paper deals with distribution, availability and regeneration status of five commercially important species viz., Justicia adhatoda, Aegle marmelos, Phyllanthus emblica, Terminalia bellirica and Terminalia chebula, across different forest types. The study reveals that open canopy forest patches, Lantana infested patches and Acacia catechu-Dalbergia sissoo (Khair -Shisam woodlands in the eastern part of the DFD have excellent potential for the production and sustainable harvest of Justicia adhatoda. Areas those are less suitable for timber production viz., open hill forests, have greater potential for conservation and development of Aegle marmelos, Phyllanthus emblica and Terminalia bellirica. For the production and management of high value medicinal plants in the DFD these ecological considerations need to be kept in mind.

  2. Population dose commitments due to radioactive releases from nuclear power plant sites in 1983

    International Nuclear Information System (INIS)

    Baker, D.A.; Peloquin, R.A.

    1987-04-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1983. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 52 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 45 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 170 person-rem for the 100 million people considered at risk

  3. Describing a multitrophic plant-herbivore-parasitoid system at four spatial scales

    Science.gov (United States)

    Cuautle, M.; Parra-Tabla, V.

    2014-02-01

    Herbivore-parasitoid interactions must be studied using a multitrophic and multispecies approach. The strength and direction of multiple effects through trophic levels may change across spatial scales. In this work, we use the herbaceous plant Ruellia nudiflora, its moth herbivore Tripudia quadrifera, and several parasitoid morphospecies that feed on the herbivore to answer the following questions: Do herbivore and parasitoid attack levels vary depending on the spatial scale considered? With which plant characteristics are the parasitoid and the herbivore associated? Do parasitoid morphospecies vary in the magnitude of their positive indirect effect on plant reproduction? We evaluated three approximations of herbivore and parasitoid abundance (raw numbers, ratios, and attack rates) at four spatial scales: regional (three different regions which differ in terms of abiotic and biotic characteristics); population (i.e. four populations within each region); patch (four 1 m2 plots in each population); and plant level (using a number of plant characteristics). Finally, we determined whether parasitoids have a positive indirect effect on plant reproductive success (seed number). Herbivore and parasitoid numbers differed at three of the spatial scales considered. However, herbivore/fruit ratio and attack rates did not differ at the population level. Parasitoid/host ratio and attack rates did not differ at any scale, although there was a tendency of a higher attack in one region. At the plant level, herbivore and parasitoid abundances were related to different plant traits, varying the importance and the direction (positive or negative) of those traits. In addition, only one parasitoid species (Bracon sp.) had a positive effect on plant fitness saving up to 20% of the seeds in a fruit. These results underline the importance of knowing the scales that are relevant to organisms at different trophic levels and distinguish between the specific effects of species.

  4. The biological model of postradiation restoration of plants on the organismic and population levels of organization

    International Nuclear Information System (INIS)

    Ivanishvili, N.I.; Gogebashvili, M.E.

    2012-01-01

    Full text : When studying postradiating restoration of plants, the question of working out of biological models for testing of biosystems' reliability has become rather urgent. It is known that each organization level of a live organism is characterized by certain mechanisms of postradiating restoration at the formation of various radiobiological reactions. For example, the basic processes at cellular, tissue and organism levels are reparation and regeneration whereas at cenosis level the leading processes are often the forms of population restoration. Besides, in spite of the fact that the population restoration at cenosis level is continuously inked with restoration at the lower organization levels, at this level the specific forms of restoration characterized for only this level are seen. It is natural that studying of the mechanisms of response to the influence of damaging factors needs new methodological approaches on various forms of population restoration with the use of adequate test systems. For this purpose the species of duckweed was used. It was seen that this test-system is characterized by the two levels of response to radiation influence. The first one - at a rather low level of radiation influence (up to 50Gy) when decrease in intensity of leaf growth as well as in colony formation was observed and the second one - at a high level of radiation influence (up to 200Gy) when a crushing of colonies took place and an increase in quantity of undeveloped plant leaves was seen. Thus, thanks to the step character of response of culture duckweed it becomes possible to definite quantity indicators for the investigated populations, not only at the influence of concrete physical and chemical factors but also at multifactorial influences that is often difficult to be calculated. It can be concluded that at the first level of damage an increase of plant resistance to unfavorable factors takes place that is due to the inhibition of growth processes

  5. Estimating population exposure to power plant emissions using CALPUFF: a case study in Beijing, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.; Levy, J.I.; Hammitt, J.K.; Evans, J.S. [Harvard University, Boston, MA (USA). School of Public Health, Landmark Center

    2003-02-01

    Power plants are significant emitters of precursor gases of fine particulate matter. To evaluate the public health risk posed by power plants, it is necessary to evaluate population exposure to different pollutants. The concept of intake fraction (the fraction of a pollutant emitted that is eventually inhaled or ingested by a population) has been proposed to provide a simple summary measure of the relationship between emissions and exposure. Currently available intake fraction estimates from developing countries used models that look only at the near field impacts, which may not capture the full impact of a pollution source. This case study demonstrated how the intake fraction of power plant emissions in China can be calculated using a detailed long-range atmospheric dispersion model, CALPUFF. It was found that the intake fraction of primary fine particles is roughly on the order of 10{sup -5}, while the intake fractions of sulfur dioxide, sulfate and nitrate are on the order of 10{sup -6}. These estimates are an order of magnitude higher than the US estimates. The authors also tested how sensitive the results were to key assumptions within the model. The size distribution of primary particles has a large impact on the intake fraction for primary particles while the background ammonia concentration is an important factor influencing the intake fraction of nitrate. The background ozone concentration has a moderate impact on the intake fraction of sulfate and nitrate.

  6. Selection of energy source and evolutionary stable strategies for power plants under financial intervention of government

    Science.gov (United States)

    Hafezalkotob, Ashkan; Mahmoudi, Reza

    2017-09-01

    Currently, many socially responsible governments adopt economic incentives and deterrents to manage environmental impacts of electricity suppliers. Considering the Stackelberg leadership of the government, the government's role in the competition of power plants in an electricity market is investigated. A one-population evolutionary game model of power plants is developed to study how their production strategy depends on tariffs levied by the government. We establish that a unique evolutionary stable strategy (ESS) for the population exists. Numerical examples demonstrate that revenue maximization and environment protection policies of the government significantly affect the production ESS of competitive power plants. The results reveal that the government can introduce a green energy source as an ESS of the competitive power plants by imposing appropriate tariffs.

  7. Does plant-Microbe interaction confer stress tolerance in plants: A review?

    Science.gov (United States)

    Kumar, Akhilesh; Verma, Jay Prakash

    2018-03-01

    The biotic and abiotic stresses are major constraints for crop yield, food quality and global food security. A number of parameters such as physiological, biochemical, molecular of plants are affected under stress condition. Since the use of inorganic fertilizers and pesticides in agriculture practices cause degradation of soil fertility and environmental pollutions. Hence it is necessary to develop safer and sustainable means for agriculture production. The application of plant growth promoting microbes (PGPM) and mycorrhizal fungi enhance plant growth, under such conditions. It offers an economically fascinating and ecologically sound ways for protecting plants against stress condition. PGPM may promote plant growth by regulating plant hormones, improve nutrition acquisition, siderophore production and enhance the antioxidant system. While acquired systemic resistance (ASR) and induced systemic resistance (ISR) effectively deal with biotic stress. Arbuscular mycorrhiza (AM) enhance the supply of nutrients and water during stress condition and increase tolerance to stress. This plant-microbe interaction is vital for sustainable agriculture and industrial purpose, because it depends on biological processes and replaces conventional agriculture practices. Therefore, microbes may play a key role as an ecological engineer to solve environmental stress problems. So, it is a feasible and potential technology in future to feed global population at available resources with reduced impact on environmental quality. In this review, we have attempted to explore about abiotic and biotic stress tolerant beneficial microorganisms and their modes of action to enhance the sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Cold hardiness increases with age in juvenile Rhododendron populations

    Directory of Open Access Journals (Sweden)

    Rajeev eArora

    2014-10-01

    Full Text Available Winter survival in woody plants is controlled by environmental and genetic factors that affect the plant's ability to cold acclimate. Because woody perennials are long-lived and often have a prolonged juvenile (pre-flowering phase, it is conceivable that both chronological and physiological age factors influence adaptive traits such as stress tolerance. This study investigated annual cold hardiness (CH changes in several hybrid Rhododendron populations based on Tmax, an estimate of the maximum rate of freezing injury (ion leakage in cold-acclimated leaves from juvenile progeny. Data from F2 and backcross populations derived from R. catawbiense and R. fortunei parents indicated significant annual increases in Tmax ranging from 3.7 to to 6.4 C as the seedlings aged from 3 to 5 years old. A similar yearly increase (6.7° C was observed in comparisons of 1- and 2-year-old F1 progenies from a R. catawbiense x R. dichroanthum cross. In contrast, CH of the mature parent plants (> 10 years old did not change significantly over the same evaluation period. In leaf samples from a natural population of R. maximum, CH evaluations over two years resulted in an average Tmax value for juvenile 2- to 3- year- old plants that was 9.2 C lower than the average for mature (~30 years old plants. . A reduction in CH was also observed in three hybrid rhododendron cultivars clonally propagated by rooted cuttings (ramets - Tmax of 4-year-old ramets was significantly lower than the Tmax estimates for the 30- to 40-year-old source plants (ortets. In both the wild R. maximum population and the hybrid cultivar group, higher accumulation of a cold-acclimation responsive 25kDa leaf dehydrin was associated with older plants and higher CH. The feasibility of identifying hardy phenotypes at juvenile period and research implications of age-dependent changes in CH are discussed.

  9. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca2+ Signaling in Tomato.

    Science.gov (United States)

    Zhang, Huan; Hu, Zhangjian; Lei, Cui; Zheng, Chenfei; Wang, Jiao; Shao, Shujun; Li, Xin; Xia, Xiaojian; Cai, Xinzhong; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Foyer, Christine H; Shi, Kai

    2018-03-01

    Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato ( Solanum lycopersicum ) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca 2+ ], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca 2+ ] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea . © 2018 American Society of Plant Biologists. All rights reserved.

  10. The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death.

    Directory of Open Access Journals (Sweden)

    Melanie Ann Sacco

    2009-08-01

    Full Text Available Plant NB-LRR proteins confer robust protection against microbes and metazoan parasites by recognizing pathogen-derived avirulence (Avr proteins that are delivered to the host cytoplasm. Microbial Avr proteins usually function as virulence factors in compatible interactions; however, little is known about the types of metazoan proteins recognized by NB-LRR proteins and their relationship with virulence. In this report, we demonstrate that the secreted protein RBP-1 from the potato cyst nematode Globodera pallida elicits defense responses, including cell death typical of a hypersensitive response (HR, through the NB-LRR protein Gpa2. Gp-Rbp-1 variants from G. pallida populations both virulent and avirulent to Gpa2 demonstrated a high degree of polymorphism, with positive selection detected at numerous sites. All Gp-RBP-1 protein variants from an avirulent population were recognized by Gpa2, whereas virulent populations possessed Gp-RBP-1 protein variants both recognized and non-recognized by Gpa2. Recognition of Gp-RBP-1 by Gpa2 correlated to a single amino acid polymorphism at position 187 in the Gp-RBP-1 SPRY domain. Gp-RBP-1 expressed from Potato virus X elicited Gpa2-mediated defenses that required Ran GTPase-activating protein 2 (RanGAP2, a protein known to interact with the Gpa2 N terminus. Tethering RanGAP2 and Gp-RBP-1 variants via fusion proteins resulted in an enhancement of Gpa2-mediated responses. However, activation of Gpa2 was still dependent on the recognition specificity conferred by amino acid 187 and the Gpa2 LRR domain. These results suggest a two-tiered process wherein RanGAP2 mediates an initial interaction with pathogen-delivered Gp-RBP-1 proteins but where the Gpa2 LRR determines which of these interactions will be productive.

  11. Application of a time-dependent coalescence process for inferring the history of population size changes from DNA sequence data.

    Science.gov (United States)

    Polanski, A; Kimmel, M; Chakraborty, R

    1998-05-12

    Distribution of pairwise differences of nucleotides from data on a sample of DNA sequences from a given segment of the genome has been used in the past to draw inferences about the past history of population size changes. However, all earlier methods assume a given model of population size changes (such as sudden expansion), parameters of which (e.g., time and amplitude of expansion) are fitted to the observed distributions of nucleotide differences among pairwise comparisons of all DNA sequences in the sample. Our theory indicates that for any time-dependent population size, N(tau) (in which time tau is counted backward from present), a time-dependent coalescence process yields the distribution, p(tau), of the time of coalescence between two DNA sequences randomly drawn from the population. Prediction of p(tau) and N(tau) requires the use of a reverse Laplace transform known to be unstable. Nevertheless, simulated data obtained from three models of monotone population change (stepwise, exponential, and logistic) indicate that the pattern of a past population size change leaves its signature on the pattern of DNA polymorphism. Application of the theory to the published mtDNA sequences indicates that the current mtDNA sequence variation is not inconsistent with a logistic growth of the human population.

  12. Temperature dependencies of Henry's law constants and octanol/water partition coefficients for key plant volatile monoterpenoids.

    Science.gov (United States)

    Copolovici, Lucian O; Niinemets, Ulo

    2005-12-01

    To model the emission dynamics and changes in fractional composition of monoterpenoids from plant leaves, temperature dependencies of equilibrium coefficients must be known. Henry's law constants (H(pc), Pa m3 mol(-1) and octanol/water partition coefficients (K(OW), mol mol(-1)) were determined for 10 important plant monoterpenes at physiological temperature ranges (25-50 degrees C for H(pc) and 20-50 degrees C for K(OW)). A standard EPICS procedure was established to determine H(pc) and a shake flask method was used for the measurements of K(OW). The enthalpy of volatilization (deltaH(vol)) varied from 18.0 to 44.3 kJ mol(-1) among the monoterpenes, corresponding to a range of temperature-dependent increase in H(pc) between 1.3- and 1.8-fold per 10 degrees C rise in temperature. The enthalpy of water-octanol phase change varied from -11.0 to -23.8 kJ mol(-1), corresponding to a decrease of K(OW) between 1.15- and 1.32-fold per 10 degrees C increase in temperature. Correlations among physico-chemical characteristics of a wide range of monoterpenes were analyzed to seek the ways of derivation of H(pc) and K(OW) values from other monoterpene physico-chemical characteristics. H(pc) was strongly correlated with monoterpene saturated vapor pressure (P(v)), and for lipophilic monoterpenes, deltaH(vol) scaled positively with the enthalpy of vaporization that characterizes the temperature dependence of P(v) Thus, P(v) versus temperature relations may be employed to derive the temperature relations of H(pc) for these monoterpenes. These data collectively indicate that monoterpene differences in H(pc) and K(OW) temperature relations can importantly modify monoterpene emissions from and deposition on plant leaves.

  13. Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought.

    Science.gov (United States)

    Gitlin, Alicyn R; Sthultz, Christopher M; Bowker, Matthew A; Stumpf, Stacy; Paxton, Kristina L; Kennedy, Karla; Muñoz, Axhel; Bailey, Joseph K; Whitham, Thomas G

    2006-10-01

    Understanding patterns of plant population mortality during extreme weather events is important to conservation planners because the frequency of such events is expected to increase, creating the need to integrate climatic uncertainty into management. Dominant plants provide habitat and ecosystem structure, so changes in their distribution can be expected to have cascading effects on entire communities. Observing areas that respond quickly to climate fluctuations provides foresight into future ecological changes and will help prioritize conservation efforts. We investigated patterns of mortality in six dominant plant species during a drought in the southwestern United States. We quantified population mortality for each species across its regional distribution and tested hypotheses to identify ecological stress gradients for each species. Our results revealed three major patterns: (1) dominant species from diverse habitat types (i.e., riparian, chaparral, and low- to high-elevation forests) exhibited significant mortality, indicating that the effects of drought were widespread; (2) average mortality differed among dominant species (one-seed juniper[Juniperus monosperma (Engelm.) Sarg.] 3.3%; manzanita[Arctostaphylos pungens Kunth], 14.6%; quaking aspen[Populus tremuloides Michx.], 15.4%; ponderosa pine[Pinus ponderosa P. & C. Lawson], 15.9%; Fremont cottonwood[Populus fremontii S. Wats.], 20.7%; and pinyon pine[Pinus edulis Engelm.], 41.4%); (3) all dominant species showed localized patterns of very high mortality (24-100%) consistent with water stress gradients. Land managers should plan for climatic uncertainty by promoting tree recruitment in rare habitat types, alleviating unnatural levels of competition on dominant plants, and conserving sites across water stress gradients. High-stress sites, such as those we examined, have conservation value as barometers of change and because they may harbor genotypes that are adapted to climatic extremes.

  14. Museum specimen data reveal emergence of a plant disease may be linked to increases in the insect vector population.

    Science.gov (United States)

    Zeilinger, Adam R; Rapacciuolo, Giovanni; Turek, Daniel; Oboyski, Peter T; Almeida, Rodrigo P P; Roderick, George K

    2017-09-01

    The emergence rate of new plant diseases is increasing due to novel introductions, climate change, and changes in vector populations, posing risks to agricultural sustainability. Assessing and managing future disease risks depends on understanding the causes of contemporary and historical emergence events. Since the mid-1990s, potato growers in the western United States, Mexico, and Central America have experienced severe yield loss from Zebra Chip disease and have responded by increasing insecticide use to suppress populations of the insect vector, the potato psyllid, Bactericera cockerelli (Hemiptera: Triozidae). Despite the severe nature of Zebra Chip outbreaks, the causes of emergence remain unknown. We tested the hypotheses that (1) B. cockerelli occupancy has increased over the last century in California and (2) such increases are related to climate change, specifically warmer winters. We compiled a data set of 87,000 museum specimen occurrence records across the order Hemiptera collected between 1900 and 2014. We then analyzed changes in B. cockerelli distribution using a hierarchical occupancy model using changes in background species lists to correct for collecting effort. We found evidence that B. cockerelli occupancy has increased over the last century. However, these changes appear to be unrelated to climate changes, at least at the scale of our analysis. To the extent that species occupancy is related to abundance, our analysis provides the first quantitative support for the hypothesis that B. cockerelli population abundance has increased, but further work is needed to link B. cockerelli population dynamics to Zebra Chip epidemics. Finally, we demonstrate how this historical macro-ecological approach provides a general framework for comparative risk assessment of future pest and insect vector outbreaks. © 2017 by the Ecological Society of America.

  15. Current use of wild plants with edible underground storage organs in a rural population of Patagonia: between tradition and change.

    Science.gov (United States)

    Ochoa, Juan José; Ladio, Ana Haydee

    2015-09-25

    Edible plants with underground storage organs (USOs) are neglected resources. We studied the local ecological knowledge edible plants with (USOs) in rural populations of North-Patagonia in order to establish how people are utilizing these plants. Some aspect of corpus-praxis-cosmos complex associated to the local ecological knowledge was documented and discussed. In addition, variation in this ecological knowledge due to age, gender, family structure, ethnic self-determination was also evaluated. Semi-structured interviews were conducted with 51 inhabitants in order to study the relationship between the current use of plants with USOs and the age, sex, family group composition and ethnic self-identification of interviewees. In addition, the Cultural Importance Index for each species was calculated. The current richness of known species in these populations is a total of 9 plants. Plants with USOs tend to be used more frequently as the age of the interviewee increases. Women and men showed no differences in the average richness of species cited. The interviewees who share their homes with other generations use these plants more frequently than those who live alone. Our results indicate that the interviewees who identified themselves as belonging to the Mapuche people use these plants more frequently. For the Mapuche people, wild plants have constituted material and symbolic resources of great importance in their historical subsistence. In addition, they are currently being redefined as elements which present a connection with ancestral practices, produce a strong relationship with the 'land', and become markers which identify the 'natural' (historical) ways of their people; these are key elements in the current political processes of identity revaluation. This research is valuable to stimulate cultural revival and health promotion programs in the communities with their own local, cultural food.

  16. Guideline on dependability management for the power industry: detailed description of international power plant equipment dependability indicators; Guide de gestion de la surete de fonctionnement dans l`industrie electrique: description detaillee d`indicateurs de surete de fonctionnement internationaux

    Energy Technology Data Exchange (ETDEWEB)

    Procaccia, H.; Silberberg, S.

    1997-10-01

    Dependability Management involves the management of reliability, availability maintainability and maintenance support, and in the power industry is necessary to ensure that plant meets the Reliability, Availability and Maintainability (RAM) targets set by the Utilities. In 1993, a joint (Standard on Dependability Programme Management - Part 1: Dependability Programme Management), ISO 9000-`: 1993 (Quality Management and Quality Assurance Standards - Part 4: Guide to Dependability Programme Management). UNIPEDE established a group of experts (Nulethermaint) to produce guidelines on its implementation specifically for use in the power industry. The present document comprises Part 2 OF THE UNIPEDE plant performance indicators and can be applied to both nuclear and fossil plant. There are five different equipment dependability indicators, all relating to equipment maintenance activities and the impact that these activities have on the loss of both system function and unit capability. Per year, each of the indicators can be applied separately to both preventive maintenance and corrective maintenance, giving rise to as many as ten indicator values for each item of equipment. Used in this way, the indicators provide a comprehensive picture of the maintenance strategy employed for key pieces of equipment, and its effectiveness. They are, therefore, a valuable managerial tool for improving maintenance activities at the unit level within a utility. This document provides guidance on the division of both nuclear and fossil power plant into their component parts and in each case the types of equipment having the most dominant effect on dependability are identified. These are the items which merit the greatest attention with regard to the equipment dependability indicators. (authors).

  17. Medicinal plants of Papua New Guinea's Miu speaking population and a focus on their use of plant-slaked lime mixtures.

    Science.gov (United States)

    Prescott, Thomas A K; Briggs, Marie; Kiapranis, Robert; Simmonds, Monique S J

    2015-11-04

    Here we present the results of an ethnobotanical survey of the medicinal plants used by the Miu, a virtually unresearched ethnolinguistic group who live in the mountainous interior of Papua New Guinea's West New Britain Province. We compare the findings for those previously reported for the neighbouring inland Kaulong speaking population. Three species, Trema orientalis, Spondias dulcis and Ficus botryocarpa are used in combination with locally prepared slaked lime to produce intensely coloured mixtures which are applied to dermatological infections. Their effects on dermal fibroblast viability with and without slaked lime are examined. The sap of F. botryocarpa which is used to treat tropical ulcers was examined further with assays relevant to wound healing. Focus groups and semi-structured interviews were used to acquire information on the uses of plants, vouchers of which were collected and identified by comparison with authentic herbarium specimens. LC-MS and NMR were used to identify chemical components. Cell viability assays were used to examine the effects of added slaked lime on dermal fibroblasts. For the sap of F. botryocarpa, fibroblast stimulation assays and antibacterial growth inhibition with Bacillus subtilis were carried out. The survey identified 33 plants and one fungal species, and clear differences with the inland Kaulong group despite their close proximity. Added slaked lime does not greatly increase the cytotoxicity of plant material towards dermal fibroblasts. The sap of F. botryocarpa contains the alkaloid ficuseptine as a single major component and displays antibacterial activity. The results demonstrate the potential for variation in medicinal plant use amongst Papua New Guinea's numerous language groups. The addition of slaked lime to plant material does not appear to present a concern for wound healing in the amounts used. The sap of F. botryocarpa displays antibacterial activity at concentrations that would occur at the wound surface

  18. Density dependence, density independence, and recruitment in the American shad (Alosa sapidissima) population of the Connecticut River

    International Nuclear Information System (INIS)

    Leggett, W.C.

    1977-01-01

    The role of density-dependent and density-independent factors in the regulation of the stock-recruitment relationship of the American shad (Alosa sapidissima) population of the Connecticut River was investigated. Significant reductions in egg-to-adult survival and juvenile growth rates occurred in the Holyoke--Turners Falls region in response to increases in the intensity of spawning in this area. For the Connecticut River population as a whole, egg-to-adult survival was estimated to be 0.00056 percent at replacement levels, and 0.00083 percent at the point of maximum population growth. Density-independent factors result in significant annual deviations from recruitment levels predicted by the density-dependent model. Temperature and flow regimes during spawning and early larval development are involved, but they explain only a small portion (less than 16 percent) of the total variation. In spite of an extensive data base, the accuracy of predictions concerning the potential effects of additional mortality to pre-recruit stages is low. The implications of these findings for environmental impact assessment are discussed

  19. Effect of Varieties and Plant Population Densities on Dry Matter Production, Radiation Interception and Radiation Energy Conversion in Peanut

    Directory of Open Access Journals (Sweden)

    agus suprapto

    2012-05-01

    Full Text Available The solar radiation is one of the major criteria to obtaining advantages on peanuts (Arachishypogaea L.. Although various combinations of crops have been reported, but variety association and plant population densities (PPD during the periodically stage of growth on peanuts have yet to be analyzed. Dry matter production (DM, radiation energy interception, and radiation energy conversions were monitored over the growth period of two varieties of peanut. An experiment was conducted in Jambegede Research Farm, Indonesian Legume and Tuber Crops Research Institute, Malang, East Java, Indonesia, from July until October 2011. The experiment was arranged in a Split Plot Design with three replications. Peanut varieties, as the main plot consisted of two treatments: Kelinci andKancil variety. In addition, five PPD variations as sub plot consisted of 8.1, 11.1, 16.0, 25.0 and 44.4 plant m-2 were arranged in a square spacing. The results showed that DM production from high PPD increased gradually to lower PPD in all varieties. Interception efficiency (IE increased in all varieties from early sowing. A plant population density of 25.0 m-2 and 44.4 plants m-2 intercepted more radiation over 11.1 or 16.0 plants m-2. Conversion efficiency of radiation energy (CE to total dry matter production on Kelinci variety (1.52% indicated a slight higher percentage than on Kancil variety (1.41%. Moreover, the CE and IE values indicated a decrease as the PPD increased on maximum DM.

  20. Investigations on the mechanism of oxygen-dependent plant processes: ethylene biosynthesis and cyanide-resistant respiration

    International Nuclear Information System (INIS)

    Stegink, S.J.

    1985-01-01

    Two oxygen-dependent plant processes were investigated. A cell-free preparation from pea (Pisum sativum L., cv. Alaska) was used to study ethylene biosynthesis from 1-aminocyclopropane-1-carboxylic acid. Mitochondrial cyanide-resistant respiration was investigated in studies with 14 C-butyl gallate and other respiratory effectors. Ethylene biosynthesis was not due to a specific enzyme, or oxygen radicals. Rather, hydrogen peroxide, generated at low levels, coupled with endogenous manganese produced ethylene. 14 C-butyl gallate bound specifically to mitochondria from cyanide-sensitive and -resistant higher plants and Neurospora crassa mitochondria. The amount of gallate bound was similar for all higher plant mitochondria. Rat liver mitochondria bound very little 14 C-butyl gallate. Plant mitochondria in which cyanide-resistance was induced bound as much 14 C-butyl gallate as before induction. However mitochondria from recently harvested white potato tubers did not bind the gallate. The observations suggest that an engaging factor couples with a gallate binding site in the mitochondrial membrane. With skunk cabbage spadix mitochondria the I 5 0 for antimycin A inhibition of oxygen uptake was decreased by salicylhydroxamic acid pretreatment; this was also true for reverse order additions. No shift was observed with mung bean hypocotyl or Jerusalem artichoke tuber mitochondria

  1. Computer simulation model for the striped bass young-of-the-year population in the Hudson River. [Effects of entrainment and impingement at power plants on population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Eraslan, A.H.; Van Winkle, W.; Sharp, R.D.; Christensen, S.W.; Goodyear, C.P.; Rush, R.M.; Fulkerson, W.

    1975-09-01

    This report presents a daily transient (tidal-averaged), longitudinally one-dimensional (cross-section-averaged) computer simulation model for the assessment of the entrainment and impingement impacts of power plant operations on young-of-the-year populations of the striped bass, Morone saxatilis, in the Hudson River.

  2. Density-dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore.

    Science.gov (United States)

    Martel, John W; Malcolm, Stephen B

    2004-03-01

    The effect of aphid population size on host-plant chemical defense expression and the effect of plant defense on aphid population dynamics were investigated in a milkweed-specialist herbivore system. Density effects of the aposematic oleander aphid, Aphis nerii, on cardenolide expression were measured in two milkweed species, Asclepias curassavica and A. incarnata. These plants vary in constitutive chemical investment with high mean cardenolide concentration in A. curassavica and low to zero in A. incarnata. The second objective was to determine whether cardenolide expression in these two host plants impacts mean A. nerii colony biomass (mg) and density. Cardenolide concentration (microgram/g) of A. curassavica in both aphid-treated leaves and opposite, herbivore-free leaves decreased initially in comparison with aphid-free controls, and then increased significantly with A. nerii density. Thus, A. curassavica responds to aphid herbivory initially with density-dependent phytochemical reduction, followed by induction of cardenolides to concentrations above aphid-free controls. In addition, mean cardenolide concentration of aphid-treated leaves was significantly higher than that of opposite, herbivore-free leaves. Therefore, A. curassavica induction is strongest in herbivore-damage tissue. Conversely, A. incarnata exhibited no such chemical response to aphid herbivory. Furthermore, neither host plant responded chemically to herbivore feeding duration time (days) or to the interaction between herbivore initial density and feeding duration time. There were also no significant differences in mean colony biomass or population density of A. nerii reared on high cardenolide (A. curassavica) and low cardenolide (A. incarnata) hosts.

  3. Nuclear power plant disasters

    International Nuclear Information System (INIS)

    Trott, K.R.

    1979-01-01

    The possibility of a nuclear power plant disaster is small but not excluded: in its event, assistance to the affected population mainly depends on local practitioners. Already existing diseases have to be diagnosed and treated; moreover, these physicians are responsible for the early detection of those individuals exposed to radiation doses high enough to induce acute illness. Here we present the pathogenesis, clinical development and possible diagnostic and therapeutical problems related to acute radiation-induced diseases. The differentiation of persons according to therapy need and prognosis is done on the sole base of the clinical evidence and the peripheral blood count. (orig.) [de

  4. The COMPADRE Plant Matrix Database

    DEFF Research Database (Denmark)

    Salguero-Gomez, Roberto; Jones, Owen; Archer, C. Ruth

    2015-01-01

    growth or decline, such data furthermore help us understand how different biomes shape plant ecology, how plant populations and communities respond to global change, and how to develop successful management tools for endangered or invasive species. 2. Matrix population models summarize the life cycle......1. Schedules of survival, growth and reproduction are key life history traits. Data on how these traits vary among species and populations are fundamental to our understanding of the ecological conditions that have shaped plant evolution. Because these demographic schedules determine population...

  5. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants.

    Science.gov (United States)

    Turley, Nash E; Johnson, Marc T J

    2015-07-01

    Genetic variation and contemporary evolution within populations can shape the strength and nature of species interactions, but the relative importance of these forces compared to other ecological factors is unclear. We conducted a field experiment testing the effects of genotypic variation, abundance, and presence/absence of green peach aphids (Myzus persicae) on the growth, leaf nitrogen, and carbon of two plant species (Brassica napus and Solanum nigrum). Aphid genotype affected B. napus but not S. nigrum biomass explaining 20 and 7% of the total variation, respectively. Averaging across both plant species, the presence/absence of aphids had a 1.6× larger effect size (Cohen's d) than aphid genotype, and aphid abundance had the strongest negative effects on plant biomass explaining 29% of the total variation. On B. napus, aphid genotypes had different effects on leaf nitrogen depending on their abundance. Aphids did not influence leaf nitrogen in S. nigrum nor leaf carbon in either species. We conducted a second experiment in the field to test whether contemporary evolution could affect plant performance. Aphid populations evolved in as little as five generations, but the rate and direction of this evolution did not consistently vary between plant species. On one host species (B. napus), faster evolving populations had greater negative effects on host plant biomass, with aphid evolutionary rate explaining 23% of the variation in host plant biomass. Together, these results show that genetic variation and evolution in an insect herbivore can play important roles in shaping host plant ecology.

  6. PsbS-specific zeaxanthin-independent changes in fluorescence emission spectrum as a signature of energy-dependent non-photochemical quenching in higher plants.

    Science.gov (United States)

    Zulfugarov, Ismayil S; Tovuu, Altanzaya; Dogsom, Bolormaa; Lee, Chung Yeol; Lee, Choon-Hwan

    2010-05-01

    The PsbS protein of photosystem II is necessary for the development of energy-dependent quenching of chlorophyll (Chl) fluorescence (qE), and PsbS-deficient Arabidopsis plant leaves failed to show qE-specific changes in the steady-state 77 K fluorescence emission spectra observed in wild-type leaves. The difference spectrum between the quenched and un-quenched states showed a negative peak at 682 nm. Although the level of qE development in the zeaxanthin-less npq1-2 mutant plants, which lacked violaxanthin de-epoxidase enzyme, was only half that of wild type, there were no noticeable changes in this qE-dependent difference spectrum. This zeaxanthin-independent DeltaF682 signal was not dependent on state transition, and the signal was not due to photobleaching of pigments either. These results suggest that DeltaF682 signal is formed due to PsbS-specific conformational changes in the quenching site of qE and is a new signature of qE generation in higher plants.

  7. Ecology of Meimuna mongolica (Hemiptera: Cicadidae) Nymphs: Instars, Morphological Variation, Vertical Distribution and Population Density, Host-Plant Selection, and Emergence Phenology

    Science.gov (United States)

    Li, Qinglong; Yang, Mingsheng; Liu, Yunxiang; Wei, Cong

    2015-01-01

    The cicada Meimuna mongolica (Distant) (Hemiptera: Cicadidae) is one of the most important pests of economic forest in Guanzhong Plain of Shaanxi Province, China. Information about ecological characteristics and some sustainable control measures of this species is urgently required for its control. In this study, nymphal instars, morphological variation, vertical distribution, and population density in soil, and emergence phenology of nymphs of M. mongolica on three main host plants (Pinus tabuliformis Carr., Populus tomentosa Carr., and Pyrus xerophila Yü) were studied, based on combined morphological and molecular identification, investigation of the first-instar nymphs hatched from eggs and others excavated from soil, and investigation of exuviae in the adult emergence period. Five nymphal instars of M. mongolica were redetermined according to the distribution plots of the head capsule widths of the nymphs. Nymphs of third and fourth instars showed morphological variation, which is closely related to host-plant association. The mean densities of nymphs in soil under the three host plants were significantly different, indicating a distinct host preference. The nymphs could extend their distribution from the 0–10 cm soil layer to the 51–60 cm soil layer underground but not beyond 60 cm soil layer under all the three host plants. The 21–30 cm soil layer under all the three host plants has the highest nymphal population density. The sex ratio of the entire population was nearly 50:50, but males dominated in the early half of the duration of the emergence. These ecological characteristics of M. mongolica could provide important information for sustainable control measures.

  8. [Study of defense styles, defenses and coping strategies in alcohol-dependent population].

    Science.gov (United States)

    Ribadier, A; Varescon, I

    2017-05-01

    Defense mechanisms have been seen to greatly change over time and across different definitions made by different theoretical currents. Recently with the definition provided by the DSM IV, defense mechanisms have integrated the concept of coping as a defensive factor. These mechanisms are no longer considered just through a psychodynamic approach but also through a cognitive and behavioral one. In recent years, new theories have therefore integrated these two components of the defensive operation. According to Chabrol and Callahan (2013), defense mechanisms precede coping strategies. In individuals with psychopathological disorders, these authors indicate a relative stability of these mechanisms. Also, we asked about the presence of unique characteristics among people with alcohol dependence. Indeed, studies conducted with people with alcohol dependence highlight the presence of a neurotic defense style and some highly immature defenses (projection, acting out, splitting and somatization). In terms of coping strategies, persons with alcohol dependence preferentially use avoidant strategies and strategies focused on emotion. However, although several studies have been conducted to assess coping strategies and defense styles within a population of individuals with an alcohol problem, at the present time none of them has taken into account all these aspects of defense mechanisms. The aim of this study is therefore to study the defenses and defense styles and coping strategies in an alcohol-dependent population. This multicenter study (3 CHU, 1 center of supportive care and prevention in addiction and 1 clinic) received a favorable opinion of an Institutional Review Board (IRB Registration #: 00001072). Eighty alcohol-dependent individuals responded to a questionnaire assessing sociodemographic characteristics and elements related to the course of consumption. Coping strategies were assessed by means of a questionnaire validated in French: the Brief Cope. The Defense

  9. Climate-associated population declines reverse recovery and threaten future of an iconic high-elevation plant

    Science.gov (United States)

    Krushelnycky, Paul D.; Loope, Lloyd L.; Giambelluca, Thomas W.; Starr, Forest; Starr, Kim; Drake, Donald R.; Taylor, Andrew D.; Robichaux, Robert H.

    2013-01-01

    Although climate change is predicted to place mountain-top and other narrowly endemic species at severe risk of extinction, the ecological processes involved in such extinctions are still poorly resolved. In addition, much of this biodiversity loss will likely go unobserved, and therefore largely unappreciated. The Haleakalā silversword is restricted to a single volcano summit in Hawai‘i, but is a highly charismatic giant rosette plant that is viewed by 1–2 million visitors annually. We link detailed local climate data to a lengthy demographic record, and combine both with a population-wide assessment of recent plant mortality and recruitment, to show that after decades of strong recovery following successful management, this iconic species has entered a period of substantial climate-associated decline. Mortality has been highest at the lower end of the distributional range, where most silverswords occur, and the strong association of annual population growth rates with patterns of precipitation suggests an increasing frequency of lethal water stress. Local climate data confirm trends toward warmer and drier conditions on the mountain, and signify a bleak outlook for silverswords if these trends continue. The silversword example foreshadows trouble for diversity in other biological hotspots, and illustrates how even well-protected and relatively abundant species may succumb to climate-induced stresses.

  10. Regulation of Population Densities of Heterodera cajani and Other Plant-Parasitic Nematodes by Crop Rotations on Vertisols, in Semi-Arid Tropical Production Systems in India

    Science.gov (United States)

    Sharma, S. B.; Rego, T. J.; Mohiuddin, M.; Rao, V. N.

    1996-01-01

    The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions. PMID:19277141

  11. ASSESSMENT OF THE FUKUSIMA NUCLEAR POWER PLANT ACCIDENT CONSEQUENCES BY THE POPULATION IN THE FAR EAST

    Directory of Open Access Journals (Sweden)

    G. V. Arkhangelskaya

    2012-01-01

    Full Text Available The article analyzes the attitude of the population in the five regions of the Far East to the consequences of the accident at the Fukushimai nuclear power plant, as well as the issues of informing about the accident. The analysis of public opinion is based on the data obtained by anonymous questionnaire survey performed in November 2011. In spite of the rather active informing and objective information on the absence of the contamination, most of the population of the Russian Far East believes that radioactive contamination is presented in the areas of their residence, and the main cause of this contamination is the nuclear accident in Japan.

  12. Plant responses to variable timing of aboveground clipping and belowground herbivory depend on plant age

    NARCIS (Netherlands)

    Wang, Minggang; Bezemer, T. Martijn; van der Putten, W.H.; Brinkman, Pella; Biere, Arjen

    2017-01-01

    Aims Plants use different types of responses such as tolerance and induced defense to mitigate the effects of herbivores. The direction and magnitude of both these plant responses can vary with plant age. However, most studies have focused on aboveground herbivory, whereas important feeding occurs

  13. A meta-analysis of local adaptation in plants.

    Directory of Open Access Journals (Sweden)

    Roosa Leimu

    Full Text Available Local adaptation is of fundamental importance in evolutionary, population, conservation, and global-change biology. The generality of local adaptation in plants and whether and how it is influenced by specific species, population and habitat characteristics have, however, not been quantitatively reviewed. Therefore, we examined published data on the outcomes of reciprocal transplant experiments using two approaches. We conducted a meta-analysis to compare the performance of local and foreign plants at all transplant sites. In addition, we analysed frequencies of pairs of plant origin to examine whether local plants perform better than foreign plants at both compared transplant sites. In both approaches, we also examined the effects of population size, and of the habitat and species characteristics that are predicted to affect local adaptation. We show that, overall, local plants performed significantly better than foreign plants at their site of origin: this was found to be the case in 71.0% of the studied sites. However, local plants performed better than foreign plants at both sites of a pair-wise comparison (strict definition of local adaption only in 45.3% of the 1032 compared population pairs. Furthermore, we found local adaptation much more common for large plant populations (>1000 flowering individuals than for small populations (<1000 flowering individuals for which local adaptation was very rare. The degree of local adaptation was independent of plant life history, spatial or temporal habitat heterogeneity, and geographic scale. Our results suggest that local adaptation is less common in plant populations than generally assumed. Moreover, our findings reinforce the fundamental importance of population size for evolutionary theory. The clear role of population size for the ability to evolve local adaptation raises considerable doubt on the ability of small plant populations to cope with changing environments.

  14. Effect of Drought on Herbivore-Induced Plant Gene Expression: Population Comparison for Range Limit Inferences

    Directory of Open Access Journals (Sweden)

    Gunbharpur Singh Gill

    2016-03-01

    Full Text Available Low elevation “trailing edge” range margin populations typically face increases in both abiotic and biotic stressors that may contribute to range limit development. We hypothesize that selection may act on ABA and JA signaling pathways for more stable expression needed for range expansion, but that antagonistic crosstalk prevents their simultaneous co-option. To test this hypothesis, we compared high and low elevation populations of Boechera stricta that have diverged with respect to constitutive levels of glucosinolate defenses and root:shoot ratios; neither population has high levels of both traits. If constraints imposed by antagonistic signaling underlie this divergence, one would predict that high constitutive levels of traits would coincide with lower plasticity. To test this prediction, we compared the genetically diverged populations in a double challenge drought-herbivory growth chamber experiment. Although a glucosinolate defense response to the generalist insect herbivore Spodoptera exigua was attenuated under drought conditions, the plastic defense response did not differ significantly between populations. Similarly, although several potential drought tolerance traits were measured, only stomatal aperture behavior, as measured by carbon isotope ratios, was less plastic as predicted in the high elevation population. However, RNAseq results on a small subset of plants indicated differential expression of relevant genes between populations as predicted. We suggest that the ambiguity in our results stems from a weaker link between the pathways and the functional traits compared to transcripts.

  15. Population survey of phytoseiid mites and spider mites on peach leaves and wild plants in Japanese peach orchard.

    Science.gov (United States)

    Wari, David; Yamashita, Jun; Kataoka, Yoko; Kohara, Yoko; Hinomoto, Norihide; Kishimoto, Hidenari; Toyoshima, Shingo; Sonoda, Shoji

    2014-07-01

    A population survey of phytoseiid mites and spider mites was conducted on peach leaves and wild plants in Japanese peach orchards having different pesticide practices. The phytoseiid mite species composition on peach leaves and wild plants, as estimated using quantitative sequencing, changed during the survey period. Moreover, it varied among study sites. The phytoseiid mite species compositions were similar between peach leaves and some wild plants, such as Veronica persica, Paederia foetida, Persicaria longiseta, and Oxalis corniculata with larger quantities of phytoseiid mites, especially after mid-summer. A PCR-based method to detect the ribosomal ITS sequences of Tetranychus kanzawai and Panonychus mori from phytoseiid mites was developed. Results showed that Euseius sojaensis (specialized pollen feeder/generalist predator) uses both spider mites as prey in the field.

  16. Plant density-dependent variations in bioactive markers and root yield in Australian-grown Salvia miltiorrhiza Bunge.

    Science.gov (United States)

    Li, Chun Guang; Sheng, Shu Jun; Pang, Edwin C K; May, Brian; Xue, Charlie Chang Li

    2011-04-01

    The plant density-dependent variations in the root yield and content, and the yield of biomarkers in Australian grown Salvia miltiorrhiza Bunge, a commonly used Chinese medicinal herb for the treatment of cardiovascular diseases, were investigated in a field trial involving six different plant densities. The key biomarker compounds cryptotanshinone, tanshinone I, tanshinone IIA, and salvianolic acid B were quantified by a validated RP-HPLC method, and the root yields were determined per plant pair or unit area. There were significant variations (pplant densities. Positive linear correlations were observed between the contents of the three tanshinones, whereas negative linear correlations were revealed between the contents of the tanshinones and salvianolic acid B. The highest root yield per plant pair was achieved when the plants were grown at 45×30 cm or 45×40 cm, whereas the highest root production par unit area was obtained for a plant density of 30×30 cm. The highest contents of the three tanshinones and the most abundant production of these tanshinones per unit area were achieved when the plants were grown at 30×30 cm. However, the highest content of salvianolic acid B was found for a density of 45×40 cm, while its highest yield per unit area was obtained for densities of 30×40 cm or 45×30 cm. The findings suggest that the plant density distinctly affects the root yield and content and the yield of tanshinones and salvianolic acid B in Australian grown S. miltiorrhiza, which may be used as a guide for developing optimal agricultural procedures for cultivating this herb. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  17. Rates of change in climatic niches in plant and animal populations are much slower than projected climate change

    Science.gov (United States)

    Jezkova, Tereza

    2016-01-01

    Climate change may soon threaten much of global biodiversity. A critical question is: can species undergo niche shifts of sufficient speed and magnitude to persist within their current geographic ranges? Here, we analyse niche shifts among populations within 56 plant and animal species using time-calibrated trees from phylogeographic studies. Across 266 phylogeographic groups analysed, rates of niche change were much slower than rates of projected climate change (mean difference > 200 000-fold for temperature variables). Furthermore, the absolute niche divergence among populations was typically lower than the magnitude of projected climate change over the next approximately 55 years for relevant variables, suggesting the amount of change needed to persist may often be too great, even if these niche shifts were instantaneous. Rates were broadly similar between plants and animals, but especially rapid in some arthropods, birds and mammals. Rates for temperature variables were lower at lower latitudes, further suggesting that tropical species may be especially vulnerable to climate change. PMID:27881748

  18. Radiation exposure of the population from 222Rn and other natural radionuclides around Mochovce nuclear power plant, Slovakia

    International Nuclear Information System (INIS)

    Bulko, Martin; Holy, Karol; Mullerova, Monika; Bohm, Radoslav; Pohronska, Zofia; Hola, Olga

    2017-01-01

    In this article, the effective dose to the population from natural sources of ionizing radiation in the vicinity of Mochovce nuclear power plant in Slovakia is presented. All major contributions to the effective dose were taken into account, including the contributions from gamma radiation of soil and rocks, cosmic radiation, and indoor and outdoor radon and thoron. On the basis of recent indoor radon measurements in Slovak cities and publicly available data about radon concentration in the soil air, a roughly linear relationship was found between these variables. Consequently, the annual effective dose from indoor radon and thoron was conservatively estimated. For the area of interest, a map of conservatively estimated potential effective doses was created. For the villages in the vicinity of Mochovce, the conservatively estimated effective dose to the population from natural sources ranged from 5.4 to 14.6 mSv, which is four orders of magnitude higher than the contribution of radioactive discharges from Mochovce nuclear power plant. (authors)

  19. Population structure of barley landrace populations and gene-flow with modern varieties.

    Directory of Open Access Journals (Sweden)

    Elisa Bellucci

    Full Text Available Landraces are heterogeneous plant varieties that are reproduced by farmers as populations that are subject to both artificial and natural selection. Landraces are distinguished by farmers due to their specific traits, and different farmers often grow different populations of the same landrace. We used simple sequence repeats (SSRs to analyse 12 barley landrace populations from Sardinia from two collections spanning 10 years. We analysed the population structure, and compared the population diversity of the landraces that were collected at field level (population. We used a representative pool of barley varieties for diversity comparisons and to analyse the effects of gene flow from modern varieties. We found that the Sardinian landraces are a distinct gene pool from those of both two-row and six-row barley varieties. There is also a low, but significant, mean level and population-dependent level of introgression from the modern varieties into the Sardinian landraces. Moreover, we show that the Sardinian landraces have the same level of gene diversity as the representative sample of modern commercial varieties grown in Italy in the last decades, even within population level. Thus, these populations represent crucial sources of germplasm that will be useful for crop improvement and for population genomics studies and association mapping, to identify genes, loci and genome regions responsible for adaptive variations. Our data also suggest that landraces are a source of valuable germplasm for sustainable agriculture in the context of future climate change, and that in-situ conservation strategies based on farmer use can preserve the genetic identity of landraces while allowing adaptation to local environments.

  20. Population morbidity in the Zaporizhzhia Nuclear Power Plant observation zone as an integral part of public health.

    Science.gov (United States)

    Khomenko, I M; Zakladna, N V; Orlova, N M

    2017-12-01

    To evaluate the health status of adult population living in the Ukrainian nuclear power industry obser vation zone on the example of Zaporizhzhia Nuclear Power Plant. System review, analytic, sociological survey and statistical methods. There was established an increase in the incidence of digestive diseases among adult population in Nikopol of Dnipropetrovsk region, which is included in the Zaporizhzhia NPP observation zone. The highest increase was observed in the incidence of peptic ulcer, gastritis and duodenitis, cholecystitis and cholangitis by 340 %, 305 % and 83 %, respectively. In connection with the residence in industrially developed region and NPP life extension in Ukraine, the possible influence of harmful factors on health status of the population of observation zones, an increase in the incidence of digestive diseases among adult population, there is required continuous monitoring and detailed study of public health. I. M. Khomenko, N. V. Zakladna, N. M. Orlova.

  1. Population status, demography and habitat preferences of the threatened lipstick palm Cyrtostachys renda Blume in Kerumutan Reserve, Sumatra

    Science.gov (United States)

    Widyatmoko, Didik; Burgman, Mark A.; Guhardja, Edi; Mogea, Johanis P.; Walujo, Eko B.; Setiadi, Dede

    2005-09-01

    Population status and demography of a population of the threatened lipstick palm Cyrtostachys renda in a peat swamp ecosystem of Kerumutan Reserve, Sumatra (one of the largest remaining populations) was documented at 16 different sites, covering a wide range of forest and habitat types, vegetation associations, and population sizes. Population sizes were dominated by suckers comprising 89% of the total population. Individuals with stem heights between 0 and 4 m (47.5%), stem diameters between 4 and 10 cm (82.0%), and leaf scar numbers between 0 and 60 (69.2%) dominated. Ages of individuals were estimated and used to fit a curvilinear relationship between age and stem height. Wild plants reach reproductive maturity within 25-30 years, or when they have stem heights in excess of 2.0 m, or when they have 15-25 leaf scars. They can survive more than 80 years. Cultivated plants appear to reproduce earlier and produce more seeds than wild plants. Individual growth was plant size-dependent with the adult stage being the most productive. Higher mortality was experienced by suckers, especially in continuously waterlogged conditions and locations with dense canopies. Sucker growth was faster than seedling growth, an adaptation that may allow the species to cope with periodically waterlogged conditions. Population abundances varied with habitat types; well-drained areas were the most suitable habitat. To conserve the most important remaining populations of the lipstick palm, it is crucial to protect well-drained sites in Kerumutan Reserve.

  2. Mutational jackpot events generate effective frequency-dependent selection in adapting populations

    Science.gov (United States)

    Hallatschek, Oskar

    The site-frequency spectrum is one the most easily measurable quantities that characterize the genetic diversity of a population. While most neutral models predict that site frequency spectra should decay with increasing frequency, a high-frequency uptick has been reported in many populations. Anomalies in the high-frequency tail are particularly unsettling because the highest frequencies can be measured with greatest accuracy. Here, we show that an uptick in the spectrum of neutral mutations generally arises when mutant frequencies are dominated by rare jackpot events, mutational events with large descendant numbers. This leads to an effective pattern of frequency-dependent selection (or unstable internal equilibrium at one half frequency) that causes an accumulation of high-frequency polymorphic sites. We reproduce the known uptick occurring for recurrent hitchhiking (genetic draft) as well as rapid adaptation, and (in the future) generalize the shape of the high-frequency tail to other scenarios that are dominated by jackpot events, such as frequent range expansions. We also tackle (in the future) the inverse approach to use the high-frequency uptick for learning about the tail of the offspring number distribution. Positively selected alleles need to surpass, typically, an u NSF Career Award (PoLS), NIH NIGMS R01, Simons Foundation.

  3. The Impact of Different Habitat Conditions on the Variability of Wild Populations of a Medicinal Plant Betonica officinalis L.

    Directory of Open Access Journals (Sweden)

    Kinga Kostrakiewicz-Gierałt

    2015-06-01

    Full Text Available Plants are important source of beneficial bioactive compounds which may find various applications as functional ingredients, such as components of food supplements, cosmetics, and pharmaceuticals. One such medicinal plant is Betonica officinalis, populations of which were investigated in 2012‒13. The studies were conducted in patches of Molinietum caeruleae dominated by: small meadow taxa (patch I; the shrub willow Salix repens ssp. rosmarinifolia (patch II; large tussock grasses Deschampsia caespitosa and Molinia caerulaea (patch III; tall-growing macroforbs Filipendula ulmaria and Solidago canadensis (patch IV. Over successive patches, the average height of plant cover increased, as did soil moisture, while light availability at ground level decreased. Much greater abundance and density of the Betonica officinalis population were found in patches I, III and IV, while lower values for these parameters were noted in patch II. Individuals in pre-reproductive stages were absent during whole study period in all study plots, vegetative ramet clusters were observed in plots situated in patches I and III in the first year of observations, while only generative ramet clusters occurred in plots set in patches II and IV. The number of rosettes per ramet cluster, number and dimensions of rosette leaves, height of flowering stems, number of cauline leaves, length of inflorescences, as well as number and length of flowers increased gradually over successive patches, whereas the number of generative stems per ramet cluster did not differ remarkably among populations. On the basis of the performed studies it might be concluded that the condition of populations deteriorated from patches overgrown by large-tussock grasses and characterized by considerable share of native and alien tall-growing macroforbs, via patch dominated by small meadow taxa, to patch prevailed by shrub willows.

  4. ROLE OF PLANTS FOUND IN NORTH EAST INDIA AND BANGLADESH IN CONTROLLING POPULATION GROWTH

    Directory of Open Access Journals (Sweden)

    Jhimly Das

    2014-08-01

    Full Text Available Being part of the Indian subcontinent both the North Eastern region of India and the Bangladesh share a long common cultural, economic and political history. One of the most critical problems of developing countries like India as well as Bangladesh is their enormous increase in human population. Contraceptive Prevalence Rate (CPR of India is 48.3 and that of Bangladesh is 53.8. As the large majority of population of both the countries belong to rural area, the family planning programmes have largely remained unsuccessful because of many factors including lack of availability of contraceptive drugs in rural markets, lack of accessibility of rural people to medical personnel as well as the lack of acceptability of synthetic drugs due to various socio-cultural and religious perceptions prevailing among many ethnic communities. These contributed to a growing interest among researchers in developing contraceptives of natural origin and at present natural herbal contraception have become one of the major focuses of modern contraceptive research. Since time immemorial herbal drugs are being practiced by various rural communities and ethnic tribes in North East India as well as in Bangladesh, and hence the acceptability of herbal contraceptives is expected to be much higher among rural folk. In different parts of North East India and Bangladesh, ethnic communities are using plant based medicinal products till today. This study aims at highlighting the contraceptive property of some plants found in North-Eastern India as well as in Bangladesh.

  5. Butterfly Larval Host Plant use in a Tropical Urban Context: Life History Associations, Herbivory, and Landscape Factors

    Science.gov (United States)

    Tiple, Ashish D.; Khurad, Arun M.; Dennis, Roger L. H.

    2011-01-01

    This study examines butterfly larval host plants, herbivory and related life history attributes within Nagpur City, India. The larval host plants of 120 butterfly species are identified and their host specificity, life form, biotope, abundance and perennation recorded; of the 126 larval host plants, most are trees (49), with fewer herbs (43), shrubs (22), climbers (7) and stem parasites (2). They include 89 wild, 23 cultivated, 11 wild/cultivated and 3 exotic plant species; 78 are perennials, 43 annuals and 5 biannuals. Plants belonging to Poaceae and Fabaceae are most widely used by butterfly larvae. In addition to distinctions in host plant family affiliation, a number of significant differences between butterfly families have been identified in host use patterns: for life forms, biotopes, landforms, perennation, host specificity, egg batch size and ant associations. These differences arising from the development of a butterfly resource database have important implications for conserving butterfly species within the city area. Differences in overall butterfly population sizes within the city relate mainly to the number of host plants used, but other influences, including egg batch size and host specificity are identified. Much of the variation in population size is unaccounted for and points to the need to investigate larval host plant life history and strategies as population size is not simply dependent on host plant abundance. PMID:21864159

  6. Incidence of plant cover over the autotrophic nitrifying bacteria population in a fragment of Andean forest

    International Nuclear Information System (INIS)

    Gonzalez, Xiomara; Gonzalez, L; Varela, A; Ahumada, J A

    1999-01-01

    It was determined the incidence of plant cover (forest vs. pasture), on the autotrophy nitrifying bacteria, through the effect of biotic factors (radical exudate) and abiotic factors (temperature, ph and humidity), in a high mountain cloud forest fragment. The site of study was located near La Mesa (Cundinamarca) municipality. The temperature of soil was measured in situ, and soil samples were collected and carried to the laboratory for pH and humidity percentage measurements. Serial soil dilution method was used for plating samples on a selective culture medium with ammonium sulphate as nitrogen source, in order to estimate the autotrophic nitrifying bacteria population levels. Grown colonies were examined macro and microscopically. The quantity of nitrates produced by bacteria cultured in vitro was determined spectra-photometrical. In relation to the abiotic factors, there was no significant differences of pH between both plant covers, but there were significant for soil humidity and temperature (p<0.05). There were highly significant differences with respect to the bacteria population levels (p<0.0001) and with respect to nitrate production. This suggests a higher bacterial activity in the under forest cover. The radical exudate from both types of plant cover reduced the viability of bacteria in vitro, from 1:1 to 1:30 exudate bacteria proportions. In the soils physical and chemical analysis, it was found a higher P and Al concentrations, and a higher CIC and organic matter content under the forest cover. It is suggested the importance of this functional group in this ecosystem

  7. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran.

    Science.gov (United States)

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among

  8. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding.

    Science.gov (United States)

    He, Jianbo; Meng, Shan; Zhao, Tuanjie; Xing, Guangnan; Yang, Shouping; Li, Yan; Guan, Rongzhan; Lu, Jiangjie; Wang, Yufeng; Xia, Qiuju; Yang, Bing; Gai, Junyi

    2017-11-01

    The innovative RTM-GWAS procedure provides a relatively thorough detection of QTL and their multiple alleles for germplasm population characterization, gene network identification, and genomic selection strategy innovation in plant breeding. The previous genome-wide association studies (GWAS) have been concentrated on finding a handful of major quantitative trait loci (QTL), but plant breeders are interested in revealing the whole-genome QTL-allele constitution in breeding materials/germplasm (in which tremendous historical allelic variation has been accumulated) for genome-wide improvement. To match this requirement, two innovations were suggested for GWAS: first grouping tightly linked sequential SNPs into linkage disequilibrium blocks (SNPLDBs) to form markers with multi-allelic haplotypes, and second utilizing two-stage association analysis for QTL identification, where the markers were preselected by single-locus model followed by multi-locus multi-allele model stepwise regression. Our proposed GWAS procedure is characterized as a novel restricted two-stage multi-locus multi-allele GWAS (RTM-GWAS, https://github.com/njau-sri/rtm-gwas ). The Chinese soybean germplasm population (CSGP) composed of 1024 accessions with 36,952 SNPLDBs (generated from 145,558 SNPs, with reduced linkage disequilibrium decay distance) was used to demonstrate the power and efficiency of RTM-GWAS. Using the CSGP marker information, simulation studies demonstrated that RTM-GWAS achieved the highest QTL detection power and efficiency compared with the previous procedures, especially under large sample size and high trait heritability conditions. A relatively thorough detection of QTL with their multiple alleles was achieved by RTM-GWAS compared with the linear mixed model method on 100-seed weight in CSGP. A QTL-allele matrix (402 alleles of 139 QTL × 1024 accessions) was established as a compact form of the population genetic constitution. The 100-seed weight QTL-allele matrix was

  9. The Use of Medicinal Plants by Migrant People: Adaptation, Maintenance, and Replacement

    Directory of Open Access Journals (Sweden)

    Patrícia Muniz de Medeiros

    2012-01-01

    Full Text Available Given the importance of studying the knowledge, beliefs, and practices of migrant communities to understand the dynamics of plant resource use, we reviewed the scientific literature concerning the use of medicinal plants by migrant populations engaged in international or long-distance migrations. We considered the importance of two processes: (1 adaptation to the new flora of the host country (i.e., substitution and incorporation of plants in the pharmacopoeia and (2 continued use and acquisition of the original flora from migrants' home countries (i.e., importation, cultivation, and/or continued use of plants that grow in both host and home environments. We suggest that, depending on the specific context and conditions of migration, different processes that determine the use and/or selection of plants as herbal medicines may become predominant.

  10. The Use of Medicinal Plants by Migrant People: Adaptation, Maintenance, and Replacement

    Science.gov (United States)

    de Medeiros, Patrícia Muniz; Soldati, Gustavo Taboada; Alencar, Nélson Leal; Vandebroek, Ina; Pieroni, Andrea; Hanazaki, Natalia; de Albuquerque, Ulysses Paulino

    2012-01-01

    Given the importance of studying the knowledge, beliefs, and practices of migrant communities to understand the dynamics of plant resource use, we reviewed the scientific literature concerning the use of medicinal plants by migrant populations engaged in international or long-distance migrations. We considered the importance of two processes: (1) adaptation to the new flora of the host country (i.e., substitution and incorporation of plants in the pharmacopoeia) and (2) continued use and acquisition of the original flora from migrants' home countries (i.e., importation, cultivation, and/or continued use of plants that grow in both host and home environments). We suggest that, depending on the specific context and conditions of migration, different processes that determine the use and/or selection of plants as herbal medicines may become predominant. PMID:22110548

  11. Assessment of psychological dependence among tobacco users: A survey held among the rural population of India to call for attention of tobacco cessation centers

    Directory of Open Access Journals (Sweden)

    Kiran Jadhav

    2013-01-01

    Full Text Available Background: In India most of the tobacco cessation centers are concentrating only on urban population, whereas, literature reveals that it is rural population, which shows high frequency of consumption of tobacco. It is well known that high frequency of tobacco consumption is associated with psychological dependence. This study aimed at identifying, which form of tobacco consumption (smoking or smokeless is associated with psychological dependence and is associated with which particular age group in rural population. Materials and Methods: It was a questionnaire based survey where 200 subjects were enrolled. Revised version of standard Fagerstrom Test for Nicotine dependence (FTND was given to each subject to answer. The collected data was statistically analyzed by using Karl Pearson Correlation (r test and Student′s t-test. Results: Study showed that subjects above 40 years of age are psychologically highly dependent on tobacco smoking as compared to tobacco chewing. Tobacco chewing is more prevalent among the younger population (20-30 years of age and type of habit does not have any influence over psychological dependence below 40 years of age. A positive correlation was observed between duration of habit and psychological dependence in all age groups irrespective of type of the habit of tobacco consumption. Conclusion: This study attempts at creating a new avenue for the tobacco cessation centers where they can target their efforts towards rural population particularly people above 40 years of age with a tobacco smoking habit so that they can actually reduce the burden of a number of people at risk for developing tobacco associated oral cancer.

  12. Assessment of psychological dependence among tobacco users: A survey held among the rural population of India to call for attention of tobacco cessation centers.

    Science.gov (United States)

    Jadhav, Kiran; Singh, Dhanpal

    2013-07-01

    In India most of the tobacco cessation centers are concentrating only on urban population, whereas, literature reveals that it is rural population, which shows high frequency of consumption of tobacco. It is well known that high frequency of tobacco consumption is associated with psychological dependence. This study aimed at identifying, which form of tobacco consumption (smoking or smokeless) is associated with psychological dependence and is associated with which particular age group in rural population. It was a questionnaire based survey where 200 subjects were enrolled. Revised version of standard Fagerstrom Test for Nicotine dependence (FTND) was given to each subject to answer. The collected data was statistically analyzed by using Karl Pearson Correlation (r) test and Student's t-test. Study showed that subjects above 40 years of age are psychologically highly dependent on tobacco smoking as compared to tobacco chewing. Tobacco chewing is more prevalent among the younger population (20-30 years of age) and type of habit does not have any influence over psychological dependence below 40 years of age. A positive correlation was observed between duration of habit and psychological dependence in all age groups irrespective of type of the habit of tobacco consumption. This study attempts at creating a new avenue for the tobacco cessation centers where they can target their efforts towards rural population particularly people above 40 years of age with a tobacco smoking habit so that they can actually reduce the burden of a number of people at risk for developing tobacco associated oral cancer.

  13. Density-dependency and plant-soil feedback: former plant abundance influences competitive interactions between two grassland plant species through plant-soil feedbacks

    NARCIS (Netherlands)

    Xue, W.; Bezemer, T.M.; Berendse, Frank

    2018-01-01

    Backgrounds and aims Negative plant-soil feedbacks (PSFs) are thought to promote species coexistence, but most evidence is derived from theoretical models and data from plant monoculture experiments. Methods We grew Anthoxanthum odoratum and Centaurea jacea in field plots in monocultures and in

  14. Ways of adaptation of the plant populations to chemical and radioactive contamination

    International Nuclear Information System (INIS)

    Pozolotina, V.; Bezel', V.; Zhuykova, T.; Severu'Khina, O.; Ulyanova, E.

    2004-01-01

    Chemical agents (heavy metals, acids, etc.) and radiation render their influence upon biota being clearly distinct in primary mechanisms of action. However, lively organisms demonstrate one and the same set [arsenal] of response reactions, and thus it is important to reveal the ways of their realization caused by different types of techno-genic impacts. Our work was intended to examine the seed progeny of the dandelion, Taraxacum officinale, from radionuclides-contaminated coeno-populations (grown at the territories influenced by Eastern-Ural radioactive trace, in the Techa-river flood plain) and those situated in the nearest impact zone affected by a large metallurgical plant in the Urals. Plots, differently distanced from the enterprise, showed heavy metal contamination loads 8-33 times higher than the control site did. Radionuclides concentrations ( 90 Sr and 137 Cs) within the contaminated zone exceeded the background values 4-40 times. The study allowed estimation of the seed progeny vitality level for different coeno-populations, comparison of their adaptive potential in regard to heavy metals tolerance and gamma radiation resistance, estimation of abnormal seedlings [sprouts] frequency values. It was shown [found] that under techno-genic pollution the dandelion coeno-populations usually demonstrate wider variations of different characteristics (vitality, mutability, root and leaf growth rates) as compared to those in the background zone. As a general regularity one can regard the phenomenon, that negative effects were not marked to be increased by heavier pollution loads, irrespectively of the agents nature. (author)

  15. Age-dependent risk-based methodology and its application to prioritization of nuclear power plant components and to maintenance for managing aging using PRAs

    International Nuclear Information System (INIS)

    Levy, I.S.; Vesely, W.E.

    1990-01-01

    This paper is based on a study to demonstrate several important ways that the age-dependent risk-based methodology developed by the Nuclear Plant Aging Research (NPAR) Program may be applied to resolving important issues related to the aging of nuclear power plant systems, structures, and components (SSCs). The study was sponsored by the NPAR Program of the Division of Engineering, Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC). Initiated on the basis of a Users Need Request, the age-dependent risk-based methodology has been under development by the NPAR Program for several years. In this methodology, the time-dependent change in a component's risk contribution is the product of two factors: (1) the risk importance of the component (e.g., the change in its risk contribution when it is assumed to be totally unavailable to perform its intended safety function) and (2) the change in its unavailability with time. This change in the component's unavailability with time is a function of the component's aging rate and plant inspection and maintenance practices. The methodology permits evaluations of the age-dependent risk contributions from both single- and multiple-components. Principal results and conclusions generated by the methodology demonstrations are discussed

  16. Fire creates host plant patches for monarch butterflies

    Science.gov (United States)

    Baum, Kristen A.; Sharber, Wyatt V.

    2012-01-01

    Monarch butterflies (Danaus plexippus) depend on the presence of host plants (Asclepias spp.) within their breeding range for reproduction. In the southern Great Plains, Asclepias viridis is a perennial that flowers in May and June, and starts to senesce by August. It is locally abundant and readily used by monarchs as a host plant. We evaluated the effects of summer prescribed fire on A. viridis and the use of A. viridis by monarch butterflies. Summer prescribed fire generated a newly emergent population of A. viridis that was absent in other areas. Pre-migrant monarch butterflies laid eggs on A. viridis in summer burned plots in late August and September, allowing adequate time for a new generation of adult monarchs to emerge and migrate south to their overwintering grounds. Thus, summer prescribed fire may provide host plant patches and/or corridors for pre-migrant monarchs during a time when host plant availability may be limited in other areas. PMID:22859559

  17. Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen.

    Directory of Open Access Journals (Sweden)

    Jes Johannesen

    Full Text Available Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a and its vector (Hyalesthes obsoletus: Cixiidae affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.

  18. Plantes médicinales utilisées par les populations Bassa de la région ...

    African Journals Online (AJOL)

    Une enquête ethnobotanique portant sur un échantillon de 90 ménages a été conduite en juin 2010 dans trois villages de la région de Douala, au Cameroun, afin de recenser les plantes médicinales utilisées par les populations rurales. Elle montre que 48 espèces relevant de 44 genres et de 26 familles sont utilisées dans ...

  19. Climate-associated population declines reverse recovery and threaten future of an iconic high-elevation plant.

    Science.gov (United States)

    Krushelnycky, Paul D; Loope, Lloyd L; Giambelluca, Thomas W; Starr, Forest; Starr, Kim; Drake, Donald R; Taylor, Andrew D; Robichaux, Robert H

    2013-03-01

    Although climate change is predicted to place mountain-top and other narrowly endemic species at severe risk of extinction, the ecological processes involved in such extinctions are still poorly resolved. In addition, much of this biodiversity loss will likely go unobserved, and therefore largely unappreciated. The Haleakalā silversword is restricted to a single volcano summit in Hawai'i, but is a highly charismatic giant rosette plant that is viewed by 1-2 million visitors annually. We link detailed local climate data to a lengthy demographic record, and combine both with a population-wide assessment of recent plant mortality and recruitment, to show that after decades of strong recovery following successful management, this iconic species has entered a period of substantial climate-associated decline. Mortality has been highest at the lower end of the distributional range, where most silverswords occur, and the strong association of annual population growth rates with patterns of precipitation suggests an increasing frequency of lethal water stress. Local climate data confirm trends toward warmer and drier conditions on the mountain, and signify a bleak outlook for silverswords if these trends continue. The silversword example foreshadows trouble for diversity in other biological hotspots, and illustrates how even well-protected and relatively abundant species may succumb to climate-induced stresses. © 2012 Blackwell Publishing Ltd.

  20. Green's function method with consideration of temperature dependent material properties for fatigue monitoring of nuclear power plants

    International Nuclear Information System (INIS)

    Koo, Gyeong-Hoi; Kwon, Jong-Jooh; Kim, Wanjae

    2009-01-01

    In this paper, a method to consider temperature dependent material properties when using the Green's function method is proposed by using a numerical weight function approach. This is verified by using detailed finite element analyses for a pressurizer spray nozzle with various assumed thermal transient load cases. From the results, it is found that the temperature dependent material properties can significantly affect the maximum peak stresses and the proposed method can resolve this problem with the weight function approach. Finally, it is concluded that the temperature dependency of the material properties affects the maximum stress ranges for a fatigue evaluation. Therefore, it is necessary to consider this effect to monitor fatigue damage when using a Green's function method for the real operating conditions in a nuclear power plant

  1. Great genetic differentiation among populations of Meconopsis integrifolia and its implication for plant speciation in the Qinghai-Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Fu-Sheng Yang

    Full Text Available The complex tectonic events and climatic oscillations in the Qinghai-Tibetan Plateau (QTP, the largest and highest plateau in the world, are thought to have had great effects on the evolutionary history of the native plants. Of great interest is to investigate plant population genetic divergence in the QTP and its correlation with the geologic and climatic changes. We conducted a range-wide phylogeographical analysis of M. integrifolia based on the chloroplast DNA (cpDNA trnL-trnF and trnfM-trnS regions, and defined 26 haplotypes that were phylogenetically divided into six clades dated to the late Tertiary. The six clades correspond, respectively, to highly differentiated population groups that do not overlap in geographic distribution, implying that the mountain ranges acting as corridors or barriers greatly affected the evolutionary history of the QTP plants. The older clade of M. integrifolia only occurs in the southwest of the species' range, whereas the distributions of younger clades extend northeastward in the eastern QTP, suggesting that climatic divergence resulting from the uplift of the QTP triggered the initial divergence of M. integrifolia native to the plateau. Also, the nrDNA ITS region was used to clarify the unexpected phylogenetic relationships of cpDNA haplotypes between M. integrifolia and M. betonicifolia. The topological incongruence between the two phylogenies suggests an ancestral hybridization between the two species. Our study indicates that geographic isolation and hybridization are two important mechanisms responsible for the population differentiation and speciation of Meconopsis, a species-rich genus with complex polyploids.

  2. Scientific Opinion on the risks to plant health posed by European versus non-European populations of the potato cyst nematodes Globodera pallida and Globodera rostochiensis

    DEFF Research Database (Denmark)

    Baker, R.; Candresse, T.; Dormannsné Simon, E.

    2012-01-01

    The Panel on Plant Health has delivered a scientific opinion on the different risks posed by European and non-European populations of the potato cyst nematodes (PCN) Globodera pallida and Globodera rostochiensis to solanaceous plants in the EU and on the effectiveness of current control measures...... to place of production freedom and soil origin were noted, and the Panel identified additional risk reduction options for certain plants for planting (e.g. bulbs) and additional requirements to confirm the absence of PCN in places of production. The Panel also identified some problems with the existing...... control measures to reduce the spread of PCN within the EU. A thorough and well-coordinated EU-wide survey using standardized methods would be necessary to evaluate the need to maintain these measures. The monitoring of PCN populations should exploit new diagnostic techniques (e.g. mitochondrial DNA...

  3. The K+ dependent asparaginase, NSE1, is crucial for plant growth and seed production in Lotus japonicus

    DEFF Research Database (Denmark)

    Credali, Alfredo; Garcia-Calderón, Margarita; Dam, Svend Secher

    2013-01-01

    The physiological role of K+-dependent and K+-independent asparaginases in plants remains unclear, and the contribution from individual isoforms during development is poorly understood. We have used reverse genetics to assess the phenotypes produced by the deficiency of K+-dependent NSE1 asparagi...

  4. Aquatic Plant Control Research Program. Allelopathic Aquatic Plants for Aquatic Plant Management: A Feasibility Study

    Science.gov (United States)

    1989-10-01

    1978. " Ecotoxicology of aquatic plant communi- ties," Principles of Ecotoxicology , SCOPE Report 12, Chapter 11, pp 239-255. [Heavy metals, Pollutants...Phragmites communis and Equisetum limosum were cultivated . They found plant-plant influences depend on soil type. Typha latifolia, S. A2 lacustris, and

  5. Does source population size affect performance in new environments?

    Science.gov (United States)

    Yates, Matthew C; Fraser, Dylan J

    2014-01-01

    Small populations are predicted to perform poorly relative to large populations when experiencing environmental change. To explore this prediction in nature, data from reciprocal transplant, common garden, and translocation studies were compared meta-analytically. We contrasted changes in performance resulting from transplantation to new environments among individuals originating from different sized source populations from plants and salmonids. We then evaluated the effect of source population size on performance in natural common garden environments and the relationship between population size and habitat quality. In ‘home-away’ contrasts, large populations exhibited reduced performance in new environments. In common gardens, the effect of source population size on performance was inconsistent across life-history stages (LHS) and environments. When transplanted to the same set of new environments, small populations either performed equally well or better than large populations, depending on life stage. Conversely, large populations outperformed small populations within native environments, but only at later life stages. Population size was not associated with habitat quality. Several factors might explain the negative association between source population size and performance in new environments: (i) stronger local adaptation in large populations and antagonistic pleiotropy, (ii) the maintenance of genetic variation in small populations, and (iii) potential environmental differences between large and small populations. PMID:25469166

  6. Among-Population Variation in Microbial Community Structure in the Floral Nectar of the Bee-Pollinated Forest Herb Pulmonaria officinalis L

    Science.gov (United States)

    Jacquemyn, Hans; Lenaerts, Marijke; Brys, Rein; Willems, Kris; Honnay, Olivier; Lievens, Bart

    2013-01-01

    Background Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. Methodology/Principal Findings We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0–4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2–13) OTUs0.03 and 7.9 (range 2–16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. Conclusions/Significance We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar. PMID

  7. Seasonal timing of first rain storms affects rare plant population dynamics

    Science.gov (United States)

    Levine, J.M.; McEachern, A.K.; Cowan, C.

    2011-01-01

    A major challenge in forecasting the ecological consequences of climate change is understanding the relative importance of changes to mean conditions vs. changes to discrete climatic events, such as storms, frosts, or droughts. Here we show that the first major storm of the growing season strongly influences the population dynamics of three rare and endangered annual plant species in a coastal California (USA) ecosystem. In a field experiment we used moisture barriers and water addition to manipulate the timing and temperature associated with first major rains of the season. The three focal species showed two- to fivefold variation in per capita population growth rates between the different storm treatments, comparable to variation found in a prior experiment imposing eightfold differences in season-long precipitation. Variation in germination was a major demographic driver of how two of three species responded to the first rains. For one of these species, the timing of the storm was the most critical determinant of its germination, while the other showed enhanced germination with colder storm temperatures. The role of temperature was further supported by laboratory trials showing enhanced germination in cooler treatments. Our work suggests that, because of species-specific cues for demographic transitions such as germination, changes to discrete climate events may be as, if not more, important than changes to season-long variables.

  8. Power generation in the 21st century: ultra efficient, low emission plant

    International Nuclear Information System (INIS)

    Kozlowski, R.H.

    1999-01-01

    The ready availability of energy at an economical price is major factor affecting the success of manufacturing industry, upon which the general well-being and the standard of living of the population depend. The provision of sufficient supplies of energy, bearing in mind the large increase in world population expected over the coming decades, presents a considerable economic and technological challenge to the power manufactures. The introduction of increasingly stringent emission regulations to safeguard health and preserve the environment for future generations increases the pressure for the development of environmentally benign power generating plants with low NO, SO and CO emission. For plant designers and manufacturers, materials suppliers and component manufacturers, the business opportunities and technical challenges that will arise through the increased world demand for electricity are significant (author)

  9. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance.

    Science.gov (United States)

    Grettenberger, Ian M; Tooker, John F

    2016-09-01

    Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems.

  10. Genetic variability of wild populations of Leporinus elongatus in the São Domingos River - MS Brazil: a preliminary view on the construction of the hydroelectric plant

    Directory of Open Access Journals (Sweden)

    Ricardo Pereira Ribeiro

    2016-09-01

    Full Text Available Most of the electricity used in Brazil comes from hydroelectric plants, mainly due to the great availability of its water resources. However, the construction of these plants denotes serious problems related to migration of native fish and the genetic conservation of stocks. Current study evaluates two wild population of Leporinus elongatus (piapara located downstream (Population A - PopA and upstream (Population B - PopB of the Cachoeira Branca before the construction of the São Domingos hydroelectric plant (HPP in the Mato Grosso do Sul State, Brazil. Thirty samples from caudal fins were collected and analyzed for each population. Eighty-nine fragments, including 72 polymorphic ones (80.9%, were analyzed. Low fragments (less than 0.100 in both populations (PopA = 2 and PopB = 3 were identified. Nine fixed fragments (frequency 1.000 (PopA = 3 and PopB = 6, and four exclusive fragments (PopA = 3 and PopB = 1 were also reported. The genetic variability within populations, calculated by Shannon Index and by percentage of polymorphic fragments, indicated high rates of intrapopulation variability (PopA = 0.309 and 61.80% and PopB = 0.392 and 71.90%, respectively. Genetic distance and identity rates (0.089 and 0.915, respectively were different between populations, whilst AMOVA showed that most variations lie within the populations and not between them. Fst and Nm rates showed moderate genetic differentiation with low numbers of migrants. Results reveal populations with high intra-population genetic variability and genetic differentiation, with low gene flow. The passage ladders of São Domingos HPP should control fish transposition to preserve genetic variability.

  11. On flavonoid accumulation in different plant parts: Variation patterns among individuals and populations in the shore campion (Silene littorea.

    Directory of Open Access Journals (Sweden)

    Jose Carlos Del Valle

    2015-10-01

    Full Text Available The presence of anthocyanins in flowers and fruits is frequently attributed to attracting pollinators and dispersers. In vegetative organs, anthocyanins and other non-pigmented flavonoids such as flavones and flavonols may serve protective functions against UV radiation, cold, heat, drought, salinity, pathogens and herbivores; thus, these compounds are usually produced as a plastic response to such stressors. Although the independent accumulation of anthocyanins in reproductive and vegetative tissues is commonly postulated due to differential regulation, the accumulation of flavonoids within and among populations has never been thoroughly compared. Here, we investigated the shore campion (Silene littorea, Caryophyllaceae which exhibits variation in anthocyanin accumulation in its floral and vegetative tissues. We examined the in-situ accumulation of flavonoids in floral (petals and calyxes and vegetative organs (leaves from 18 populations representing the species’ geographic distribution. Each organ exhibited considerable variability in the content of anthocyanins and other flavonoids both within and among populations. In all organs, anthocyanin and other flavonoids were correlated. At the plant level, the flavonoid content in petals, calyxes and leaves was not correlated in most of the populations. However, at the population level, the mean amount of anthocyanins in all organs was positively correlated, which suggests that the variable environmental conditions of populations may play a role in anthocyanin accumulation. These results are unexpected because the anthocyanins are usually constitutive in petals, yet contingent to environmental conditions in calyxes and leaves. Anthocyanin variation in petals may influence pollinator attraction and subsequent plant reproduction, yet the amount of anthocyanins may be a direct response to environmental factors. In populations on the west coast, a general pattern of increasing accumulation of

  12. Validity of the EQ-5D as a generic health outcome instrument in a heroin-dependent population

    NARCIS (Netherlands)

    van der Zanden, Bart P.; Dijkgraaf, Marcel G. W.; Blanken, Peter; de Borgie, Corianne A. J. M.; van Ree, Jan M.; van den Brink, Wim

    2006-01-01

    OBJECTIVE: To evaluate the validity of the EuroQol (EQ-5D) in a population of chronic, treatment-resistant heroin-dependent patients. METHODS: The EQ-5D is studied relative to the Maudsley Addiction Profile (MAP), the Symptom Checklist (SCL-90) and the European Addiction Severity Index (EuropASI)

  13. Plant-based culture media: Efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity.

    Science.gov (United States)

    Youssef, Hanan H; Hamza, Mervat A; Fayez, Mohamed; Mourad, Elhussein F; Saleh, Mohamed Y; Sarhan, Mohamed S; Suker, Ragab M; Eltahlawy, Asmaa A; Nemr, Rahma A; El-Tahan, Mahmod; Ruppel, Silke; Hegazi, Nabil A

    2016-03-01

    Our previous publications and the data presented here provide evidences on the ability of plant-based culture media to optimize the cultivability of rhizobacteria and to support their recovery from plant-soil environments. Compared to the tested chemically-synthetic culture media (e.g. nutrient agar and N-deficient combined-carbon sources media), slurry homogenates, crude saps, juices and powders of cactus (Opuntia ficus-indica) and succulent plants (Aloe vera and Aloe arborescens) were rich enough to support growth of rhizobacteria. Representative isolates of Enterobacter spp., Klebsiella spp., Bacillus spp. and Azospirillum spp. exhibited good growth on agar plates of such plant-based culture media. Cell growth and biomass production in liquid batch cultures were comparable to those reported with the synthetic culture media. In addition, the tested plant-based culture media efficiently recovered populations of rhizobacteria associated to plant roots. Culturable populations of >10(6)-10(8) cfu g(-1) were recovered from the ecto- and endo-rhizospheres of tested host plants. More than 100 endophytic culture-dependent isolates were secured and subjected to morphophysiological identification. Factor and cluster analyses indicated the unique community structure, on species, genera, class and phyla levels, of the culturable population recovered with plant-based culture media, being distinct from that obtained with the chemically-synthetic culture media. Proteobacteria were the dominant (78.8%) on plant-based agar culture medium compared to only 31% on nutrient agar, while Firmicutes prevailed on nutrient agar (69%) compared to the plant-based agar culture media (18.2%). Bacteroidetes, represented by Chryseobacterium indologenes, was only reported (3%) among the culturable rhizobacteria community of the plant-based agar culture medium.

  14. Climate impacts on bird and plant communities from altered animal-plant interactions

    Science.gov (United States)

    Martin, Thomas E.; Maron, John L.

    2012-01-01

    The contribution of climate change to declining populations of organisms remains a question of outstanding concern. Much attention to declining populations has focused on how changing climate drives phenological mismatches between animals and their food. Effects of climate on plant communities may provide an alternative, but particularly powerful, influence on animal populations because plants provide their habitats. Here, we show that abundances of deciduous trees and associated songbirds have declined with decreasing snowfall over 22 years of study in montane Arizona, USA. We experimentally tested the hypothesis that declining snowfall indirectly influences plants and associated birds by allowing greater over-winter herbivory by elk (Cervus canadensis). We excluded elk from one of two paired snowmelt drainages (10 ha per drainage), and replicated this paired experiment across three distant canyons. Over six years, we reversed multi-decade declines in plant and bird populations by experimentally inhibiting heavy winter herbivory associated with declining snowfall. Moreover, predation rates on songbird nests decreased in exclosures, despite higher abundances of nest predators, demonstrating the over-riding importance of habitat quality to avian recruitment. Thus, our results suggest that climate impacts on plant–animal interactions can have forceful ramifying effects on plants, birds, and ecological interactions.

  15. Uprooting force balance for pioneer woody plants: A quantification of the relative contribution of above- and below-ground plant architecture to uprooting susceptibility

    Science.gov (United States)

    Bywater-Reyes, S.; Wilcox, A. C.; Lightbody, A.; Skorko, K.; Stella, J. C.

    2012-12-01

    Cottonwood (Populus), willow (Salix), and tamarisk (Tamarix) populate riparian areas in many dryland regions, and their recruitment depends heavily on hydrogeomorphic conditions. The survival of pioneer woody seedlings depends in part on the establishment of root systems capable of anchoring plants in subsequent floods, and this root system development in turn influences the cohesion that plants provide to bars. The factors influencing the anchoring ability and resistance to scour of woody seedlings include plant frontal area and flexibility, root structure, and water table elevation. This study aims to quantify the factors comprising the force balance to uproot woody seedlings and saplings in two field sites characterized by different hydrologic conditions. The Bill Williams River (AZ) is an impounded river with elevated water table elevations produced by dam-released base flows. The Bitterroot River (MT) is an unimpounded river with a snowmelt hydrograph and seasonal fluctuations in river and water table elevation. We simulate uprooting from flooding events by saturating substrates and applying force near the base of the plant in a lateral, downstream direction until uprooting occurs, for a range of plant sizes but with a focus on small (plants, with cottonwood and tamarisk seedlings showing greater variability than willow. In contrast, root length and stem diameter are only weakly correlated with pull-out force. By combining pull test results with measurements of geomorphic and groundwater conditions, this study provides insights into the relative contribution of a plant's above-ground and below-ground architecture to uprooting potential and into the feedbacks between vegetation and morphodynamics on river bars.

  16. Genetic Population Structure of Cacao Plantings within a Young Production Area in Nicaragua

    Science.gov (United States)

    Trognitz, Bodo; Scheldeman, Xavier; Hansel-Hohl, Karin; Kuant, Aldo; Grebe, Hans; Hermann, Michael

    2011-01-01

    Significant cocoa production in the municipality of Waslala, Nicaragua, began in 1961. Since the 1980s, its economic importance to rural smallholders increased, and the region now contributes more than 50% of national cocoa bean production. This research aimed to assist local farmers to develop production of high-value cocoa based on optimal use of cacao biodiversity. Using microsatellite markers, the allelic composition and genetic structure of cacao was assessed from 44 representative plantings and two unmanaged trees. The population at Waslala consists of only three putative founder genotype spectra (lineages). Two (B and R) were introduced during the past 50 years and occur in >95% of all trees sampled, indicating high rates of outcrossing. Based on intermediate allelic diversity, there was large farm-to-farm multilocus genotypic variation. GIS analysis revealed unequal distribution of the genotype spectra, with R being frequent within a 2 km corridor along roads, and B at more remote sites with lower precipitation. The third lineage, Y, was detected in the two forest trees. For explaining the spatial stratification of the genotype spectra, both human intervention and a combination of management and selection driven by environmental conditions, appear responsible. Genotypes of individual trees were highly diverse across plantings, thus enabling selection for farm-specific qualities. On-farm populations can currently be most clearly recognized by the degree of the contribution of the three genotype spectra. Of two possible strategies for future development of cacao in Waslala, i.e. introducing more unrelated germplasm, or working with existing on-site diversity, the latter seems most appropriate. Superior genotypes could be selected by their specific composite genotype spectra as soon as associations with desired quality traits are established, and clonally multiplied. The two Y trees from the forest share a single multilocus genotype, possibly representing the

  17. Responses of Crop Pests and Natural Enemies to Wildflower Borders Depends on Functional Group.

    Science.gov (United States)

    McCabe, Ellie; Loeb, Gregory; Grab, Heather

    2017-07-25

    Increased homogeneity of agricultural landscapes in the last century has led to a loss of biodiversity and ecosystem services. However, management practices such as wildflower borders offer supplementary resources to many beneficial arthropods. There is evidence that these borders can increase beneficial arthropod abundance, including natural enemies of many pests. However, this increase in local habitat diversity can also have effects on pest populations, and these effects are not well-studied. In this study, we investigated how wildflower borders affect both natural enemies and pests within an adjacent strawberry crop. Significantly more predators were captured in strawberry plantings with wildflower borders versus plantings without wildflowers, but this effect depended on sampling method. Overall, herbivore populations were lower in plots with a wildflower border; however, responses to wildflower borders varied across specific pest groups. Densities of Lygus lineolaris (Tarnished Plant Bug), a generalist pest, increased significantly in plots that had a border, while Stelidota geminata (Strawberry Sap Beetle) decreased in strawberry fields with a wildflower border. These results suggest that wildflower borders may support the control of some pest insects; however, if the pest is a generalist and can utilize the resources of the wildflower patch, their populations may increase within the crop.

  18. Infection rates and comparative population dynamics of Peregrinus maidis (Hemiptera: Delphacidae) on corn plants with and without symptoms of maize mosaic virus (Rhabdoviridae: Nucleorhabdovirus) infection.

    Science.gov (United States)

    Higashi, C H V; Bressan, A

    2013-10-01

    We examined the population dynamics of the corn planthopper Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae) throughout a cycle of corn (Zea mays L.) production on plants with or without symptoms of maize mosaic virus (MMV) (Rhabdoviridae: Nucleorhabdovirus) infection. Our results indicate that the timing of MMV plant infection greatly influenced the planthopper's host plant colonization patterns. Corn plants that expressed symptoms of MMV infection early in the crop cycle (28 d after planting) harbored, on average, 40 and 48% fewer planthoppers than plants that expressed symptoms of MMV infection later in the crop cycle (49 d after planting) and asymptomatic plants, respectively. We also observed a change in the number of brachypterous (short-wing type) and macropterous (long-wing type) winged forms produced; plants expressing early symptoms of MMV infection harbored, on average, 41 and 47% more of the brachypterous form than plants with late infections of MMV and plants with no symptoms of MMV, respectively. Furthermore, we determined the rates of MMV-infected planthoppers relative to their wing morphology (macropterous or brachypterous) and gender. MMV infection was 5 and 12% higher in females than in males in field and greenhouse experiments, respectively; however, these differences were not significantly different. This research provides evidence that MMV similarly infects P. maidis planthoppers regardless of the gender and wing morphotype. These results also suggest that the timing of symptom development greatly affects the population dynamics of the planthopper vector, and likely has important consequences for the dynamics of the disease in the field.

  19. Growth but not photosynthesis response of a host plant to infection by a holoparasitic plant depends on nitrogen supply.

    Directory of Open Access Journals (Sweden)

    Hao Shen

    Full Text Available Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources

  20. Growth but Not Photosynthesis Response of a Host Plant to Infection by a Holoparasitic Plant Depends on Nitrogen Supply

    Science.gov (United States)

    Shen, Hao; Xu, Shu-Jun; Hong, Lan; Wang, Zhang-Ming; Ye, Wan-Hui

    2013-01-01

    Parasitic plants can adversely influence the growth of their hosts by removing resources and by affecting photosynthesis. Such negative effects depend on resource availability. However, at varied resource levels, to what extent the negative effects on growth are attributed to the effects on photosynthesis has not been well elucidated. Here, we examined the influence of nitrogen supply on the growth and photosynthesis responses of the host plant Mikania micrantha to infection by the holoparasite Cuscuta campestris by focusing on the interaction of nitrogen and infection. Mikania micrantha plants fertilized at 0.2, 1 and 5 mM nitrate were grown with and without C. campestris infection. We observed that the infection significantly reduced M. micrantha growth at each nitrate fertilization and more severely at low than at high nitrate. Such alleviation at high nitrate was largely attributed to a stronger influence of infection on root biomass at low than at high nitrate fertilization. However, although C. campestris altered allometry and inhibited host photosynthesis, the magnitude of the effects was independent of nitrate fertilizations. The infection reduced light saturation point, net photosynthesis at saturating irradiances, apparent quantum yield, CO2 saturated rate of photosynthesis, carboxylation efficiency, the maximum carboxylation rate of Rubisco, and maximum light-saturated rate of electron transport, and increased light compensation point in host leaves similarly across nitrate levels, corresponding to a similar magnitude of negative effects of the parasite on host leaf soluble protein and Rubisco concentrations, photosynthetic nitrogen use efficiency and stomatal conductance across nitrate concentrations. Thus, the more severe inhibition in host growth at low than at high nitrate supplies cannot be attributed to a greater parasite-induced reduction in host photosynthesis, but the result of a higher proportion of host resources transferred to the parasite at

  1. Influence of plant species and environmental conditions on epiphytic and endophytic pink-pigmented facultative methylotrophic bacterial populations associated with field-grown rice cultivars.

    Science.gov (United States)

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Sa, Tongmin

    2007-10-01

    The total methylotrophic population associated with rice plants from different cultivars was enumerated at three different stages: vegetative, flowering, and harvesting. The bacterial population in the leaf, rhizosphere soil, endophytic in the stem and roots, and epiphytic in the florets and grains were determined from four rice cultivars, Il-mi, Nam-pyeoung, O-dae, and Dong-jin, sampled from three different field sites. The methylotrophic bacteria isolated on AMS media containing 0.5% methanol as the sole carbon source uniformly showed three distinct morphologies, which were recorded as separate groups and their distribution among the various samples was determined using the ecophysiological index. The growth stage at the time of sampling had a more significant effect on the methylotrophic population and their distribution than the field site or cultivar. A similar effect was also observed for the PPFMs, where their population in different plant parts increased from V10 to R4 and then decreased towards stage R9. A canonical discriminant analysis of the PPFM population from different parts of rice showed clear variations among the cultivars, sampled sites, and growth stages, although the variations were more prominent among the growth stages.

  2. Arsenic-phosphorus interactions in the soil-plant-microbe system: Dynamics of uptake, suppression and toxicity to plants.

    Science.gov (United States)

    Anawar, Hossain M; Rengel, Zed; Damon, Paul; Tibbett, Mark

    2018-02-01

    High arsenic (As) concentrations in the soil, water and plant systems can pose a direct health risk to humans and ecosystems. Phosphate (Pi) ions strongly influence As availability in soil, its uptake and toxicity to plants. Better understanding of As(V)-Pi interactions in soils and plants will facilitate a potential remediation strategy for As contaminated soils, reducing As uptake by crop plants and toxicity to human populations via manipulation of soil Pi content. However, the As(V)-Pi interactions in soil-plant systems are complex, leading to contradictory findings among different studies. Therefore, this review investigates the role of soil type, soil properties, minerals, Pi levels in soil and plant, Pi transporters, mycorrhizal association and microbial activities on As-Pi interactions in soils and hydroponics, and uptake by plants, elucidate the key mechanisms, identify key knowledge gaps and recommend new research directions. Although Pi suppresses As uptake by plants in hydroponic systems, in soils it could either increase or decrease As availability and toxicity to plants depending on the soil types, properties and charge characteristics. In soil, As(V) availability is typically increased by the addition of Pi. At the root surface, the Pi transport system has high affinity for Pi over As(V). However, Pi concentration in plant influences the As transport from roots to shoots. Mycorrhizal association may reduce As uptake via a physiological shift to the mycorrhizal uptake pathway, which has a greater affinity for Pi over As(V) than the root epidermal uptake pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effects of chronic exposure in populations of Koeleria gracilis Pers. from the Semipalatinsk nuclear test site, Kazakhstan.

    Science.gov (United States)

    Geras'kin, S A; Oudalova, A A; Dikarev, V G; Dikareva, N S; Mozolin, E M; Hinton, T; Spiridonov, S I; Copplestone, D; Garnier-Laplace, J

    2012-02-01

    Morphological and cytogenetic abnormalities were examined in crested hairgrass (Koeleria gracilis Pers.) populations inhabiting the Semipalatinsk nuclear test site (STS), Kazakhstan. Sampling of biological material and soil was carried out during 3 years (2005-2007) at 4 sites within the STS. Activity concentrations of 10 radionuclides and 8 heavy metals content in soils were measured. Doses absorbed by plants were estimated and varied, depending on the plot, from 4 up to 265 mGy/y. The frequency of cytogenetic alterations in apical meristem of germinated seeds from the highly contaminated plot significantly exceeded the level observed at other plots with lower levels of radioactive contamination during all three years of the study. A significant excess of chromosome aberrations, typical for radiation exposure, as well as a dependence of the frequency of these types of mutations on dose absorbed by plants were revealed. The results indicate the role radioactive contamination plays in the occurrence of cytogenetic effects. However, no radiation-dependent morphological alterations were detected in the progeny of the exposed populations. Given that the crested hairgrass populations have occupied the radioactively contaminated plots for some 50 years, adaptation to the radiation stress was not evident. The findings obtained were in agreement with the benchmark values proposed in the FASSET and ERICA projects to restrict radiation impacts on biota. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. DEPEND-HRA-A method for consideration of dependency in human reliability analysis

    International Nuclear Information System (INIS)

    Cepin, Marko

    2008-01-01

    A consideration of dependencies between human actions is an important issue within the human reliability analysis. A method was developed, which integrates the features of existing methods and the experience from a full scope plant simulator. The method is used on real plant-specific human reliability analysis as a part of the probabilistic safety assessment of a nuclear power plant. The method distinguishes dependency for pre-initiator events from dependency for initiator and post-initiator events. The method identifies dependencies based on scenarios, where consecutive human actions are modeled, and based on a list of minimal cut sets, which is obtained by running the minimal cut set analysis considering high values of human error probabilities in the evaluation. A large example study, which consisted of a large number of human failure events, demonstrated the applicability of the method. Comparative analyses that were performed show that both selection of dependency method and selection of dependency levels within the method largely impact the results of probabilistic safety assessment. If the core damage frequency is not impacted much, the listings of important basic events in terms of risk increase and risk decrease factors may change considerably. More efforts are needed on the subject, which will prepare the background for more detailed guidelines, which will remove the subjectivity from the evaluations as much as it is possible

  5. Plant Physiology: Out in the Midday Sun, Plants Keep Their Cool.

    Science.gov (United States)

    Ezer, Daphne; Wigge, Philip A

    2017-01-09

    Plants use context-dependent information to calibrate growth responses to temperature signals. A new study shows that plants modulate their sensitivity to temperature depending on whether or not they are in direct sunlight. This enables them to make adaptive decisions in a complex natural environment. Copyright © 2017. Published by Elsevier Ltd.

  6. Critical mutation rate has an exponential dependence on population size in haploid and diploid populations.

    Directory of Open Access Journals (Sweden)

    Elizabeth Aston

    Full Text Available Understanding the effect of population size on the key parameters of evolution is particularly important for populations nearing extinction. There are evolutionary pressures to evolve sequences that are both fit and robust. At high mutation rates, individuals with greater mutational robustness can outcompete those with higher fitness. This is survival-of-the-flattest, and has been observed in digital organisms, theoretically, in simulated RNA evolution, and in RNA viruses. We introduce an algorithmic method capable of determining the relationship between population size, the critical mutation rate at which individuals with greater robustness to mutation are favoured over individuals with greater fitness, and the error threshold. Verification for this method is provided against analytical models for the error threshold. We show that the critical mutation rate for increasing haploid population sizes can be approximated by an exponential function, with much lower mutation rates tolerated by small populations. This is in contrast to previous studies which identified that critical mutation rate was independent of population size. The algorithm is extended to diploid populations in a system modelled on the biological process of meiosis. The results confirm that the relationship remains exponential, but show that both the critical mutation rate and error threshold are lower for diploids, rather than higher as might have been expected. Analyzing the transition from critical mutation rate to error threshold provides an improved definition of critical mutation rate. Natural populations with their numbers in decline can be expected to lose genetic material in line with the exponential model, accelerating and potentially irreversibly advancing their decline, and this could potentially affect extinction, recovery and population management strategy. The effect of population size is particularly strong in small populations with 100 individuals or less; the

  7. Population dose commitments due to radioactive releases from nuclear power plant sites in 1986

    International Nuclear Information System (INIS)

    Baker, D.A.

    1989-10-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1986. Fifty-year dose commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 66 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 31 person-rem to a low of 0.0007 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 1.7 person-rem. The total population dose for all sites was estimated at 110 person-rem for the 140 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 2 x 10 -6 mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites. 12 refs

  8. Population dose commitments due to radioactive releases from nuclear power plant sites in 1984

    International Nuclear Information System (INIS)

    Baker, D.A.

    1988-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1984. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 56 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 110 person-rem to a low of 0.002 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 5 person-rem. The total population dose for all sites was estimated at 280 person-rem for the 100 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 6 x 10 -6 mrem to a high of 0.04 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites

  9. Population dose commitments due to radioactive releases from nuclear power plant sites in 1985

    International Nuclear Information System (INIS)

    Baker, D.A.

    1988-08-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commericial power reactors operating during 1985. Fifty-year dose commitments from a one-year exposure were calculated from both liquid and atmospheric releases for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 61 sites. This report tabulates the results of these calculations, showing the dose commitments for both liquid and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total dose commitments (from both liquid and airborne pathways) for each site ranged from a high of 73 person-rem to a low of 0.011 person-rem for the sites with plants operating throughout the year with an arithmetic mean of 3 person-rem. The total population dose for all sites was estimated at 200 person-rem for the 110 million people considered at risk. The site average individual dose commitment from all pathways ranged from a low of 5 /times/ 10/sup /minus/6/ mrem to a high of 0.02 mrem. No attempt was made in this study to determine the maximum dose commitment received by any one individual from the radionuclides released at any of the sites

  10. Food synergies for improving bioavailability of micronutrients from plant foods.

    Science.gov (United States)

    Nair, K Madhavan; Augustine, Little Flower

    2018-01-01

    Plant foods are endowed with micronutrients but an understanding of bioavailability is essential in countries primarily dependent on plant based foods. Bioavailability depends majorly on food synergies. This review examines the nature of certain food synergies and methods to screen and establish it as a strategy to control micronutrient deficiency in the populations. Strong evidence on the synergistic effect of inclusion of vitamin C rich fruits and non-vegetarian foods in enhancing the bioavailability of iron has been demonstrated. Fat is found to be synergistic for vitamin A absorption. Red wine and protein have been explored for zinc absorption and effect of fat has been studied for vitamin D. Methods for screening of bioavailability, and biomarkers to demonstrate the synergistic effects of foods are required. Translation of food synergy as a strategy requires adaptation to the context and popularization of intelligent food synergies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Pollutants emitted by a cement plant: health risks for the population living in the neighborhood

    International Nuclear Information System (INIS)

    Schuhmacher, Marta; Domingo, J.L.; Garreta, Josepa

    2004-01-01

    The aim of this study was to investigate the health risks due to combustor emissions in the manufacturing of Portland cement for the population living in the neighborhood of a cement kiln in Catalonia, Spain. Pollutants emitted to the atmosphere in the course of cement production were modeled. The ISC3-ST model was applied to estimate air dispersion of the contaminants emitted by the cement plant. Air concentrations of NO 2 , SO 2 , PM 10 , metals, and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), as well as the potential exposure in the vicinity of the facility, were assessed via models based on US EPA guidance documents. PCDD/F and metal concentrations were also modeled for soil and vegetation. Based on these concentrations, the levels of human exposure were calculated. Individual cancer and noncancer risks for the emissions of the cement kiln were assessed. Health effects due to NO 2 , SO 2 , and PM 10 emissions were also evaluated. Risk assessment was performed as a deterministic analysis. The main individual risk in the population was evaluated in a central-tendency and a high-end approach. The results show that the incremental individual risk due to emissions of the cement plant is very low not only with regard to health effects, but also in relation to toxicological and cancer risks produced by pollutants such as metals and PCDD/Fs emitted by the cement kiln

  12. Living in isolation - population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink).

    Science.gov (United States)

    Putz, Christina M; Schmid, Christoph; Reisch, Christoph

    2015-09-01

    The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.

  13. Assay dependence of Brucella antibody prevalence in a declining Alaskan harbor seal (Phoca vitulina population

    Directory of Open Access Journals (Sweden)

    Hueffer Karsten

    2013-01-01

    Full Text Available Abstract Background Brucella is a group of bacteria that causes brucellosis, which can affect population health and reproductive success in many marine mammals. We investigated the serological prevalence of antibodies against Brucella bacteria in a declining harbor seal population in Glacier Bay National Park, Alaska. Results Prevalence ranged from 16 to 74 percent for those tests detecting antibodies, indicating that harbor seals in Glacier Bay have been exposed to Brucella bacteria. However, the actual level of serological prevalence could not be determined because results were strongly assay-dependent. Conclusions This study reinforces the need to carefully consider assay choice when comparing different studies on the prevalence of anti–Brucella antibodies in pinnipeds and further highlights the need for species- or taxon-specific assay validation for both pathogen and host species.

  14. The phloem-sap feeding mealybug (Ferrisia virgata carries 'Candidatus Liberibacter asiaticus' populations that do not cause disease in host plants.

    Directory of Open Access Journals (Sweden)

    Marco Pitino

    Full Text Available 'Candidatus Liberibacter asiaticus' (Las is the primary causal agent of huanglongbing (HLB, the most devastating disease of citrus worldwide. There are three known insect vectors of the HLB-associated bacteria, and all are members of the Hemiptera: Diaphorina citri (Psyllidae, Trioza erytreae (Triozidae, and Cacopsylla (Psylla citrisuga (Psyllidae. In this study, we found that another hemipteran, the striped mealybug Ferrisia virgata (Cockerell (Hemiptera: Pseudococcidae, was able to acquire and retain Las bacteria. The bacterial titers were positively correlated with the feeding acquisition time on Las-infected leaf discs, with a two-weeks feeding period resulting in Ct values ranging from 23.1 to 36.1 (8.24 × 10(7 to 1.07 × 10(4 Las cells per mealybug. We further discovered that the prophage/phage populations of Las in the mealybugs were different from those of Las in psyllids based on Las prophage-specific molecular markers: infected psyllids harbored the Las populations with prophage/phage FP1 and FP2, while infected mealybugs carried the Las populations with the iFP3 being the dominant prophage/phage. As in the psyllids, Las bacteria were shown to move through the insect gut wall to the salivary glands after being ingested by the mealybug based on a time-course quantitative polymerase chain reaction (qPCR assay of the dissected digestive systems. However, Las populations transmitted by the mealybugs did not cause disease in host plants. This is the first evidence of genetic difference among Las populations harbored by different insect vectors and difference among Las populations with respect to whether or not they cause disease in host plants.

  15. Some Genetic Characteristics of the Population Residing Nearby Nuclear Power Plant. The First Step

    International Nuclear Information System (INIS)

    Mkheidze, M.

    2007-01-01

    There is Sosnovy Bor with 60 thousands of inhabitants located 80 km to the west from the centre of St. Petersburg. Here is the greatest and the oldest nuclear power plant, LNPP, with four reactors of the RMBK-1000 (Chernobyl) type. In fact every Sosnovy Bor inhabitant is connected with nuclear technologies. The strategy of the city development is formed and controlled by the policy of federal bodies. It is very difficult to have access to any demographic data and documents reflecting status of population health. Low doses of ionizing radiation are known to cause mutations in germ cells. A great part of the population of Sosnovy Bor works in the NPP and is exposed to low dose ionizing radiation. This paper presents some genetic characteristics of Sosnovy Bor inhabitants including monogenic diseases (phenylketonuria, Duchenne muscular dystrophy, lysosomal diseases, hypothyroidism etc), chromosomal pathology (Down syndrome, Turner and Klinefelter diseases), multiple malformation syndromes and results of aFP screening of pregnant women with high rate of abnormal values of aFP and hHG. These results are obligatory basis and the first step to conduct a study on possible genetic effects of LNPP on genetic structure of Sosnovy Bor population.(author)

  16. MRI of plants and foods

    Science.gov (United States)

    Van As, Henk; van Duynhoven, John

    2013-04-01

    The importance and prospects for MRI as applied to intact plants and to foods are presented in view of one of humanity's most pressing concerns, the sustainable and healthy feeding of a worldwide increasing population. Intact plants and foods have in common that their functionality is determined by complex multiple length scale architectures. Intact plants have an additional level of complexity since they are living systems which critically depend on transport and signalling processes between and within tissues and organs. The combination of recent cutting-edge technical advances and integration of MRI accessible parameters has the perspective to contribute to breakthroughs in understanding complex regulatory plant performance mechanisms. In food science and technology MRI allows for quantitative multi-length scale structural assessment of food systems, non-invasive monitoring of heat and mass transport during shelf-life and processing, and for a unique view on food properties under shear. These MRI applications are powerful enablers of rationally (re)designed food formulations and processes. Limitations and bottlenecks of the present plant and food MRI methods are mainly related to short T2 values and susceptibility artefacts originating from small air spaces in tissues/materials. We envisage cross-fertilisation of solutions to overcome these hurdles in MRI applications in plants and foods. For both application areas we witness a development where MRI is moving from highly specialised equipment to mobile and downscaled versions to be used by a broad user base in the field, greenhouse, food laboratory or factory.

  17. [Confirmative study of a French version of the Exercise Dependence Scale-revised with a French population].

    Science.gov (United States)

    Allegre, B; Therme, P

    2008-10-01

    Since the first writings on excessive exercise, there has been an increased interest in exercise dependence. One of the major consequences of this increased interest has been the development of several definitions and measures of exercise dependence. The work of Veale [Does primary exercise dependence really exist? In: Annet J, Cripps B, Steinberg H, editors. Exercise addiction: Motivation for participation in sport and exercise.Leicester, UK: Br Psychol Soc; 1995. p. 1-5.] provides an advance for the definition and measure of exercise dependence. These studies have adapted the DSM-IV criteria for substance dependence to measure exercise dependence. The Exercise Dependence Scale-Revised is based on these diagnostic criteria, which are: tolerance; withdrawal effects; intention effect; lack of control; time; reductions in other activities; continuance. Confirmatory factor analyses of EDS-R provided support to present a measurement model (21 items loaded in seven factors) of EDS-R (Comparative Fit Index=0.97; Root mean Square Error of Approximation=0.05; Tucker-Lewis Index=0.96). The aim of this study was to examine the psychometric properties of a French version of the EDS-R [Factorial validity and psychometric examination of the exercise dependence scale-revised. Meas Phys Educ Exerc Sci 2004;8(4):183-201.] to test the stability of the seven-factor model of the original version with a French population. A total of 516 half-marathoners ranged in age from 17 to 74 years old (Mean age=39.02 years, ET=10.64), with 402 men (77.9%) and 114 women (22.1%) participated in the study. The principal component analysis results in a six-factor structure, which accounts for 68.60% of the total variance. Because principal component analysis presents a six-factor structure differing from the original seven-factor structure, two models were tested, using confirmatory factor analysis. The first model is the seven-factor model of the original version of the EDS-R and the second is the

  18. The damage caused by Callosobruchus maculatus on cowpea grains is dependent on the plant genotype.

    Science.gov (United States)

    Torres, Elida Barros; Nóbrega, Rafaela S A; Fernandes-Júnior, Paulo Ivan; Silva, Luciana Barboza; Dos Santos Carvalho, Gabriel; Marinho, Rita de Cassia Nunes; Pavan, Bruno E

    2016-09-01

    Beans from cowpea cultivars fertilized with mineral N or inoculated with various rhizobium strains may contain different nitrogen concentrations and nitrogen metabolite composition, which affects the beans' defense mechanisms against pests. In this study, the population growth of Callosobruchus maculatus reared on beans from four cowpea cultivars fertilized with different nitrogen sources was evaluated. The factors tested were beans from four cowpea cultivars and seven different nitrogen sources: mineral N fertilization, inoculation with five strains of symbiotic diazotrophic bacteria, and soil nitrogen (absolute control). BRS Tapaihum and BRS Acauã cultivars had lower cumulative emergence and instantaneous rate of population growth of the insects compared with other cultivars, indicating antixenosis resistance against C. maculatus. Inoculation of BRS Acauã cultivar with the diazotrophic bacteria strain BR 3299 resulted in higher mortality of C. maculatus. For BRS Tapaihum cultivar, inoculation with diazotrophic bacteria strains BR3267, BR 3262 and BR 3299, and nitrogen fertilization resulted in higher mortality among C. maculatus. BRS Tapaihum and BRS Acauã cultivars showed the lowest cumulative insect emergence and instantaneous rates of population growth, and the highest insect mortality, mainly when the grains were obtained from plants inoculated with rhizobial strains. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Search for entrance-channel dependence in the population of superdeformed bands in {sup 191}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Soramel, F.; Khoo, T.L.; Janssens, R.V.F. [and others

    1995-08-01

    The population intensity of some SD bands in the mass 150 region were observed to depend on the mass symmetry of the entrance channel in the fusion reaction. The authors raised the possibility that the population of SD bands had a memory of the entrance channel. To check this interesting possibility, we made measurements of the population intensities of superdeformed (SD) bands in the {sup 160}Gd({sup 36}S,5n){sup 191}Hg and {sup 130}Te({sup 64}Ni,3n){sup 191}Hg reactions. To ensure that any observed effect was not due to a simple angular momentum difference in the entrance channels, we also measured the average entry points and spin distributions of normal and SD states in {sup 191}Hg in the two reactions. The entry points and spin distributions for {sup 191}Hg are the same and, indeed, so are the SD intensities in the two reactions. Hence, no entrance-channel effect is observed in the population of the SD band in {sup 191}Hg, in contrast with data for SD bands in the mass 150 regions. We suggest that the effect observed previously in the mass 150 region is due to an angular momentum effect. A letter reporting our results was submitted for publication.

  20. A Calcium-Dependent Protein Kinase Is Systemically Induced upon Wounding in Tomato Plants1

    Science.gov (United States)

    Chico, José Manuel; Raíces, Marcela; Téllez-Iñón, María Teresa; Ulloa, Rita María

    2002-01-01

    A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family. LeCDPK1 has a putative N-terminal myristoylation sequence and presents a possible palmitoylation site. The in vitro translated protein conserves the biochemical properties of a member of the CDPK family. In addition, CDPK activity was detected in soluble and particulate extracts of tomato leaves. Basal levels of LeCDPK1 mRNA were detected by northern-blot analysis in roots, stems, leaves, and flowers of tomato plants. The expression of LeCDPK1 was rapidly and transiently enhanced in detached tomato leaves treated with pathogen elicitors and H2O2. Moreover, when tomato greenhouse plants were subjected to mechanical wounding, a transient increase of LeCDPK1 steady-state mRNA levels was detected locally at the site of the injury and systemically in distant non-wounded leaves. The increase observed in LeCDPK1 mRNA upon wounding correlates with an increase in the amount and in the activity of a soluble CDPK detected in extracts of tomato leaves, suggesting that this kinase is part of physiological plant defense mechanisms against biotic or abiotic attacks. PMID:11788771

  1. Effects of Copper-based Compounds, Antibiotics and a Plant Activator on Population Sizes and Spread of Clavibacter michiganensis subsp. michiganensis in Greenhouse Tomato Seedlings

    Directory of Open Access Journals (Sweden)

    Svetlana Milijašević

    2009-01-01

    Full Text Available Three copper-based compounds (copper hydroxide, copper oxychloride, copper sulphate, two antibiotics (streptomycin and kasugamycin and a plant activator (ASM significantly reduced population sizes and spread of C. michiganensis subsp. michiganensis among tomatoseedlings in the greenhouse. Streptomycin had the best effect in reducing pathogen population size in all sampling regions. Moreover, this antibiotic completely stopped the spread of C. michiganensis subsp. michiganensis in the region most distant from the inoculumfocus. Copper hydroxide mixed with streptomycin significantly limited the pathogen population, compared with copper hydroxide alone, the other copper-based compounds, ASM and kasugamycin. However, combining streptomycin with copper hydroxide did notcontribute to its greater efficacy against the pathogen population. Copper-based compounds, in general, were less effective in limiting pathogen population sizes than the other treatments in all three sampling regions, primarily copper oxychloride and the combinationof copper hydroxide and mancozeb. Among copper compounds, copper hydroxide was the most prominent in reducing the bacterial population, especially in the region closest to the inoculum focus, while its combination with mancozeb did not improve the effects. Kasugamycin significantly limited pathogen population size, compared to copper bactericides, but it was less effective than the other antibiotic compound, i.e. streptomycin. The plant activator ASM significantly reduced population density, and it was more effectivewhen used three days prior to inoculation than six days before inoculation.

  2. Temperature dependent development parameters and population life table of beet armyworm, Spodoptera exigua (Hübner (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    HonQing Dai

    2017-12-01

    Full Text Available Beet armyworm, Spodoptera exigua (Hübner, is an important insect pest fed on many crops. Temperature and host plant dependent development, survival, and population parameters of S. exigua were studied in present article. The results showed that the generation duration of S. exigua at temperatures 20, 25, 27, 30, and 35 ℃ were 37.61, 30.78, 22.40, 18.57, and 13.74 days, respectively. S. exigua could not survive at 38 ℃. The generation duration of S. exigua, feeding on Lactuca sativa, Lactuca Sativa L., Raphanus sativus L., and Allium fistulosum at 27 ℃, were 18.86, 20.10, 22.67, and 22.50 days respectively. And the generation survivorship was 30.91, 29.00, 22.00, and 27.50% respectively, far less than observed 81.91% feeding on artificial diet. S. exigua feeding on L. sativa showed the highest net reproduction rate (216.29, intrinsic rate for increase (0.34, population trend index (76.59, finite rate for increase (1.33, and fecundity (606.5 eggs, while these values were the lowest when it fed on A. fistulosum. Relationship between development rate and temperature was fitted with three models, the linear model, Logistic model and Wang model, and Wang model produced the best fitting goodness. Wang model showed that for the egg, the 1st-5th instar larvae, pupa and adult of S. exigua, the upper limit temperatures for development are 45, 44.5, 44.4, 40.3, 43.6, 38.9, 38, and 38 ℃, resepctively; the lower limit temperatures for development are 7.5, 7.2, 13.4, 7.3, 6.6, 5.3, 5.6, and 5.6 ℃, respectively, and the optimum temperatures for development are 21.9, 28.9, 25.5, 24.5, 26, 31.6, 30.6, and 29.1 ℃, respectively. The upper limit, lower limit and optimum temperatures for development of the entire generation are 38, 5.7 and 30 ℃, resepctively.

  3. AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca(2+) increase.

    Science.gov (United States)

    Francia, Doriana; Chiltz, Annick; Lo Schiavo, Fiorella; Pugin, Alain; Bonfante, Paola; Cardinale, Francesca

    2011-09-01

    The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapid and transient increase in free cytosolic Ca(2+) in Nicotiana plumbaginifolia and tobacco cells, and pre-treatment with a Ca(2+)-channel blocker (La(3+)) showed that in these cells, MAPK activation was dependent on the cytosolic Ca(2+) increase. A partial dependence of MAPK activity on the common Sym pathway could be demonstrated for a cell line of L. japonicus defective for LjSym4 and hence unable to establish an AM symbiosis. Our results show that MAPK activation is triggered by an FE-induced cytosolic Ca(2+) transient, and that a Sym genetic determinant acts to modulate the intensity and duration of this activity. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Assessment of reproductive capacity of estuarine plants Butomus umbellatus L. and Alisma plantago-aquatica L. from radioactively contaminated flood plains

    Energy Technology Data Exchange (ETDEWEB)

    Kaneva, A.V.; Majstrenko, T.A.; Rachkova, N.G.; Belykh, E.S.; Zainullin, V.G. [Institute of Biology, Komi Scientific Center, Ural Division of RAS, Syktyvkar, 167982 (Russian Federation)

    2014-07-01

    contaminated territory (from 1.2 up to 7.75 %). There was no significant difference in seed germination among the plant populations from two contaminated sites. Germination of A. plantago-aquatica seeds was higher as compared with B. umbellatus and was equal to 32-34 % for reference populations. The index values for population from radioactively contaminated territory were significantly lower (from 5 up to 9 %). We hypothesized that the reproductive capacity of the plants depends on radionuclide specific activities and concentrations of toxic non-radioactive compounds in water and sediments. Stepwise regression analysis showed that A. plantago-aquatica seeds germination decline with increase in {sup 137}Cs specific activity in sediments (R{sup 2}=0.97, SR=2.6, F=72.2, pF=0.001). The dependency is described with the following equation: A. plantago-aquatica germination=33.24 - 1.04*[{sup 137}Cs], where [{sup 137}Cs] is the specific activity {sup 137}Cs in sediments. Increase in specific activity of {sup 90}Sr in water and As concentration in sediments resulted in decrease of B. umbellatus seeds germination (R2=0.95, SR=1.6, F=28.2, pF=0.01). The dependency is described with the equation: B. umbellatus germination=19.7-0.27*[{sup 90}Sr] -1.3*[As], where [{sup 90}Sr] is {sup 90}Sr specific activity in water, [As] - As concentration in sediments. Thus decrease in the reproductive capacity of natural estuarine plant populations is significantly dependent on the specific activities of long-lived artificial radionuclides in water and sediments. (authors)

  5. Real-time assessment of radiation burden of the population in the vicinity of nuclear power plants during radiation accidents

    International Nuclear Information System (INIS)

    Stubna, M.

    1986-01-01

    The method is presented of real-time calculation of the radiation situation (dose equivalents) in the environs of a nuclear power plant in case of an accident involving the release of radioactive substances into the atmosphere, this for the potentially most significant exposure paths in the initial and medium stages of the accident. The method allows to take into consideration the time dependence of the rate of radioactive substance release from the nuclear power plant and to assess the development in space and time of the radiation situation in the environs of the nuclear power plant. The use of the method is illustrated by an example of the calculation of the development of the radiation situation for model accidents of a hypothetical PWR with containment. (author)

  6. A dependability modeling of software under memory faults for digital system in nuclear power plants

    International Nuclear Information System (INIS)

    Choi, J. G.; Seong, P. H.

    1997-01-01

    In this work, an analytic approach to the dependability of software in the operational phase is suggested with special attention to the hardware fault effects on the software behavior : The hardware faults considered are memory faults and the dependability measure in question is the reliability. The model is based on the simple reliability theory and the graph theory which represents the software with graph composed of nodes and arcs. Through proper transformation, the graph can be reduced to a simple two-node graph and the software reliability is derived from this graph. Using this model, we predict the reliability of an application software in the digital system (ILS) in the nuclear power plant and show the sensitivity of the software reliability to the major physical parameters which affect the software failure in the normal operation phase. We also found that the effects of the hardware faults on the software failure should be considered for predicting the software dependability accurately in operation phase, especially for the software which is executed frequently. This modeling method is particularly attractive for the medium size programs such as the microprocessor-based nuclear safety logic program. (author)

  7. Chronic radiation exposure as an ecological factor: Hypermethylation and genetic differentiation in irradiated Scots pine populations

    International Nuclear Information System (INIS)

    Volkova, P.Yu.; Geras'kin, S.A.; Horemans, N.; Makarenko, E.S.; Saenen, E.; Duarte, G.T.; Nauts, R.; Bondarenko, V.S.; Jacobs, G.; Voorspoels, S.; Kudin, M.

    2018-01-01

    Genetic and epigenetic changes were investigated in chronically irradiated Scots pine (Pinus sylvestris L.) populations from territories that were heavily contaminated by radionuclides as result of the Chernobyl Nuclear Power Plant accident. In comparison to the reference site, the genetic diversity revealed by electrophoretic mobility of AFLPs was found to be significantly higher at the radioactively contaminated areas. In addition, the genome of pine trees was significantly hypermethylated at 4 of the 7 affected sites. - Highlights: • Chronic radiation exposure changes the genetic structure of plant populations. • Genomes of irradiated pines are hypermethylated. • The level of hypermethylation does not depend on annual dose. - These results indicate that even relatively low levels of chronic radiation exposure can influence on the genetic characteristics and the methylation status of natural pine populations and that it should be considered as an important ecological factor reflecting the anthropogenic impact on ecosystems.

  8. Influence of plant size on female-biased sex allocation in a single-flowered, nectarless herb

    Science.gov (United States)

    Xiong, Ying-Ze; Xie, Meng; Huang, Shuang-Quan

    2016-01-01

    Relative allocation to female and male function in hermaphroditic species often departs from strict equisexuality. Increased femaleness with plant size in animal-pollinated species has been proposed in theory and demonstrated in empirical studies. However, such size-dependent sex allocation (SDS) has not been observed in some insect-pollinated species, throwing doubt on the generalization of SDS, that large plants have decelerated male function investment. Himalayan mayapple Podophyllum hexandrum (Berberidaceae) produces a single terminal flower and no nectar, providing a simple system for studying SDS without the confounding effects of flower number and nectar production. To investigate the SDS in P. hexandrum, plant size, biomass of floral organs (stamens, pistils and petals) and gamete production (pollen and ovule number) were measured in four populations in Yunnan Province, northwest China. Isometric allocation to female and male function with plant size was found in two populations, but the prediction of SDS was supported in the other two populations. Using pollen and ovule production as the allocation currency, allocation to female and male function was isometric in all studied populations. Resources allocated to attractive (petals) and sexual (pistils and stamens) structures did not show a significantly disproportionate increase with plant size in three of the four studied populations. The general pattern of isometric allocation to female and male function and to attractive and sexual structures could be attributed to the species being capable of automatic self-pollination, related to low pollen loss, minor deleterious effect of selfing and low importance of attractive structures. However, in further studies, careful consideration should be given to the different currencies used to estimate sex allocation. PMID:26602988

  9. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 5. Control of population densities surrounding nuclear power plants

    International Nuclear Information System (INIS)

    Nero, A.V.; Schroeder, C.H.; Yen, W.W.S.

    1977-01-01

    In view of the requirement that the California Energy Resources Conservation and Development Commission must specify land-use/population-density control measures to be used in the vicinity of nuclear power plants being granted land use, the possible forms of such measures are examined. Since these measures must maintain population densities below Nuclear Regulatory Commission criteria, if appropriate, NRC criteria for land use and population densities are given particular attention. In addition, a preliminary comparison of the cost of possible control measures with the reduced potential for damage to the public health and safety is made, yielding the result that control measures within approximately one mile of the plant site may be justified, in certain cases, on a strictly cost-benefit basis. However, it is not clear whether controls over such a limited region would satisfy the legal mandate

  10. A generic individual-based model to simulate morphogenesis, C-N acquisition and population dynamics in contrasting forage legumes.

    Science.gov (United States)

    Louarn, Gaëtan; Faverjon, Lucas

    2018-04-18

    Individual-based models (IBMs) are promising tools to disentangle plant interactions in multi-species grasslands and foster innovative species mixtures. This study describes an IBM dealing with the morphogenesis, growth and C-N acquisition of forage legumes that integrates plastic responses from functional-structural plant models. A generic model was developed to account for herbaceous legume species with contrasting above- and below-ground morphogenetic syndromes and to integrate the responses of plants to light, water and N. Through coupling with a radiative transfer model and a three-dimensional virtual soil, the model allows dynamic resolution of competition for multiple resources at individual plant level within a plant community. The behaviour of the model was assessed on a range of monospecific stands grown along gradients of light, water and N availability. The model proved able to capture the diversity of morphologies encountered among the forage legumes. The main density-dependent features known about even-age plant populations were correctly anticipated. The model predicted (1) the 'reciprocal yield' law relating average plant mass to density, (2) a self-thinning pattern close to that measured for herbaceous species and (3) consistent changes in the size structure of plant populations with time and pedo-climatic conditions. In addition, plastic changes in the partitioning of dry matter, the N acquisition mode and in the architecture of shoots and roots emerged from the integration of plant responses to their local environment. This resulted in taller plants and thinner roots when competition was dominated by light, and shorter plants with relatively more developed root systems when competition was dominated by soil resources. A population dynamic model considering growth and morphogenesis responses to multiple resources heterogeneously distributed in the environment was presented. It should allow scaling plant-plant interactions from individual to

  11. Changes in defense of an alien plant Ambrosia artemisiifolia before and after the invasion of a native specialist enemy Ophraella communa.

    Directory of Open Access Journals (Sweden)

    Yuya Fukano

    Full Text Available The evolution of increased competitive ability hypothesis (EICA predicts that when alien plants are free from their natural enemies they evolve lower allocation to defense in order to achieve a higher growth rate. If this hypothesis is true, the converse implication would be that the defense against herbivory could be restored if a natural enemy also becomes present in the introduced range. We tested this scenario in the case of Ambrosia artemisiifolia (common ragweed - a species that invaded Japan from North America. We collected seeds from five North American populations, three populations in enemy free areas of Japan and four populations in Japan where the specialist herbivore Ophraella communa naturalized recently. Using plants grown in a common garden in Japan, we compared performance of O. communa with a bioassay experiment. Consistent with the EICA hypothesis, invasive Japanese populations of A. artemisiifolia exhibited a weakened defense against the specialist herbivores and higher growth rate than native populations. Conversely, in locations where the herbivore O. communa appeared during the past decade, populations of A. artemisiifolia exhibited stronger defensive capabilities. These results strengthen the case for EICA and suggest that defense levels of alien populations can be recuperated rapidly after the native specialist becomes present in the introduced range. Our study implies that the plant defense is evolutionary labile depending on plant-herbivore interactions.

  12. Influence of ambient and enhanced ultraviolet-B radiation on the plant growth and physiological properties in two contrasting populations of Hippophae rhamnoides

    International Nuclear Information System (INIS)

    Yang, Y.; Yao, Y.; He, H.

    2008-01-01

    Two contrasting sea buckthorn (Hippophae rhamnoides L.) populations from low and high altitude regions were employed to investigate the effects of prevailing and enhanced ultraviolet-B (UV-B) radiation on plant growth and physiological properties under a UVB-enhanced/exclusion system. The experimental design included three UV-B regimes, including excluded (-UVB), near-ambient (NA) and enhanced UV-B (+UVB) radiation. Compared with the control (-UVB), NA caused the formation of smaller but thicker plant leaves in both sea buckthorn populations, paralleled with significant increments of carotenoids and UV-absorbing compounds as well as improved water economy. NA also induced more biomass partition from shoot to root, but CO2 assimilation rate (A), photosynthetic area and biomass accumulation were unaffected. The low-altitude population seemed sensitive to +uvB, as indicated by the decreases in total biomass, A and ascorbic acid content (Asa, an antioxidant) compared with NA. However, little +UVB effect occurred on the high-altitude population, and we suggest that the higher tolerance of this population could be associated with its specific morphological and physiological characteristics, such as small but thick leaves and high-level of Asa content, as well as its greater physiological modification in response to NA, e.g., increases in protective compounds (carotenoids and UV-absorbing compounds) and improvement in water economy, in comparison to the low-altitude population, which form an effective adaptation strategy to enhanced UV-B stress

  13. Time of planting and choice of maize hybrids in controlling WCR (Diabrotica virgifera virgifera Le Conte) in Serbia and Montenegro.

    Science.gov (United States)

    Baca, F; Videnovic, Z; Erski, P; Stankovic, R; Dobrikovic, Danica

    2003-01-01

    Effects of the length of growing season of maize hybrids (FAO maturity groups 400, 500, 600 and 700) and planting dates on the maize crop, as an attractive supplemental feeding for western corn rootworm (WCR) beetles and larval survival, were observed in two locations of South Banat, during a three-year (1997-1999) and a two-year period (2001 and 2002). The feeding attraction of the maize crop for WCR beetles and survival of larvae were evaluated in dependency of the variable "plant lodging". The following results were obtained: First location: A. Plant lodging over time of planting and applied insecticides. 1. Early planting: 44.2%, 77.6%, and 76.7% for FAO 400, 500 and 600, respectively. 2. Late planting: 4.7%, 14.9%, and 7.9% for FAO 400, 500 and 600, respectively. B. Plant lodging over time of planting and cropping practices: 1. Early planting without insecticide application 72.2%, and with insecticide application 7.3%. The efficacy of application of insecticide carbofurane (Furadan 350 FS, dosage 4.0 liter/ha) in larval control was 89.9%. 2. Late planting without insecticide application, plant lodging was 47.7%, and with insecticide application 8.1%. The efficacy of application of insecticide carbofurane (Furadan 350 FS, dosage 4.0 l/ha-1) in larval control was 83.0%. Early planting resulted in greater survival of larvae; hence plant lodging was 10 times greater in early than in late planting. The percentage of lodged plants indicates that the maize crop in late planting was more attractive to imagoes. Therefore, more lodged plants were observed in the treatment where late planting preceded. Second location: Plant lodging as dependent on "treatments" 1. Regular plantings: 90.7% in untreated control and 76.2% in insecticide treated variant. The efficacy of insecticide application in control of high larval population was 16.0%. 2. Replanting date: 12.2% in untreated and 4.4% in treated variant. The efficacy of insecticide in control of low larval population

  14. TAS3 miR390-dependent loci in non-vascular land plants: towards a comprehensive reconstruction of the gene evolutionary history

    Directory of Open Access Journals (Sweden)

    Sergey Y. Morozov

    2018-04-01

    Full Text Available Trans-acting small interfering RNAs (ta-siRNAs are transcribed from protein non-coding genomic TAS loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant non-vascular plant taxa such as Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in plant classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified charophyte alga sequences coding for SUPPRESSOR OF GENE SILENCING 3 (SGS3, which is required for generation of ta-siRNAs in plants, and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants.

  15. TAS3 miR390-dependent loci in non-vascular land plants: towards a comprehensive reconstruction of the gene evolutionary history.

    Science.gov (United States)

    Morozov, Sergey Y; Milyutina, Irina A; Erokhina, Tatiana N; Ozerova, Liudmila V; Troitsky, Alexey V; Solovyev, Andrey G

    2018-01-01

    Trans-acting small interfering RNAs (ta-siRNAs) are transcribed from protein non-coding genomic TAS loci and belong to a plant-specific class of endogenous small RNAs. These siRNAs have been found to regulate gene expression in most taxa including seed plants, gymnosperms, ferns and mosses. In this study, bioinformatic and experimental PCR-based approaches were used as tools to analyze TAS3 and TAS6 loci in transcriptomes and genomic DNAs from representatives of evolutionary distant non-vascular plant taxa such as Bryophyta, Marchantiophyta and Anthocerotophyta. We revealed previously undiscovered TAS3 loci in plant classes Sphagnopsida and Anthocerotopsida, as well as TAS6 loci in Bryophyta classes Tetraphidiopsida, Polytrichopsida, Andreaeopsida and Takakiopsida. These data further unveil the evolutionary pathway of the miR390-dependent TAS3 loci in land plants. We also identified charophyte alga sequences coding for SUPPRESSOR OF GENE SILENCING 3 (SGS3), which is required for generation of ta-siRNAs in plants, and hypothesized that the appearance of TAS3-related sequences could take place at a very early step in evolutionary transition from charophyte algae to an earliest common ancestor of land plants.

  16. High and uneven levels of 45S rDNA site-number variation across wild populations of a diploid plant genus (Anacyclus, Asteraceae).

    Science.gov (United States)

    Rosato, Marcela; Álvarez, Inés; Nieto Feliner, Gonzalo; Rosselló, Josep A

    2017-01-01

    The nuclear genome harbours hundreds to several thousand copies of ribosomal DNA. Despite their essential role in cellular ribogenesis few studies have addressed intrapopulation, interpopulation and interspecific levels of rDNA variability in wild plants. Some studies have assessed the extent of rDNA variation at the sequence and copy-number level with large sampling in several species. However, comparable studies on rDNA site number variation in plants, assessed with extensive hierarchical sampling at several levels (individuals, populations, species) are lacking. In exploring the possible causes for ribosomal loci dynamism, we have used the diploid genus Anacyclus (Asteraceae) as a suitable system to examine the evolution of ribosomal loci. To this end, the number and chromosomal position of 45S rDNA sites have been determined in 196 individuals from 47 populations in all Anacyclus species using FISH. The 45S rDNA site-number has been assessed in a significant sample of seed plants, which usually exhibit rather consistent features, except for polyploid plants. In contrast, the level of rDNA site-number variation detected in Anacyclus is outstanding in the context of angiosperms particularly regarding populations of the same species. The number of 45S rDNA sites ranged from four to 11, accounting for 14 karyological ribosomal phenotypes. Our results are not even across species and geographical areas, and show that there is no clear association between the number of 45S rDNA loci and the life cycle in Anacyclus. A single rDNA phenotype was detected in several species, but a more complex pattern that included intra-specific and intra-population polymorphisms was recorded in A. homogamos, A. clavatus and A. valentinus, three weedy species showing large and overlapping distribution ranges. It is likely that part of the cytogenetic changes and inferred dynamism found in these species have been triggered by genomic rearrangements resulting from contemporary

  17. Nuclear power plant siting

    International Nuclear Information System (INIS)

    Sulkiewicz, M.; Navratil, J.

    The construction of a nuclear power plant is conditioned on territorial requirements and is accompanied by the disturbance of the environment, land occupation, population migration, the emission of radioactive wastes, thermal pollution, etc. On the other hand, a nuclear power plant makes possible the introduction of district heating and increases the economic and civilization activity of the population. Due to the construction of a nuclear power plant the set limits of negative impacts must not be exceeded. The locality should be selected such as to reduce the unfavourable effects of the plant and to fully use its benefits. The decision on the siting of the nuclear power plant is preceded by the processing of a number of surveys and a wide range of documentation to which the given criteria are strictly applied. (B.H.)

  18. Alcohol consumption, hazardous drinking, and alcohol dependency among the population of Andaman and Nicobar Islands, India.

    Science.gov (United States)

    Manimunda, Sathya Prakash; Sugunan, Attayuru Purushottaman; Thennarasu, Kandavelu; Pandian, Dhanasekara; Pesala, Kasturi S; Benegal, Vivek

    2017-01-01

    Harmful use of alcohol is one of the globally recognized causes of health hazards. There are no data on alcohol consumption from Andaman and Nicobar Islands. The objective of the study was to assess the prevalence and pattern of alcohol use among the population of Andaman and Nicobar Islands, India. A representative sample of 18,018 individuals aged ≥14 years were chosen by multistage random sampling and administered a structured instrument, a modified version of the Gender, Alcohol, and Culture: An International Study (GENACIS) which included sociodemographic details and Alcohol Use Disorders Identification Test (AUDIT). The overall prevalence of alcohol consumption was 35% among males and over 6.0% in females, aged 14 and above. Two out of every five alcohol users fit into a category of hazardous drinkers. One-fourth of the total users (23%) are alcohol dependents. Both the hazardous drinking and dependent use are high among males compared to females. Almost 18.0% of male drinkers and 12.0% of female drinkers reported heavy drinking on typical drinking occasions. The predominant beverages consumed were in the category of homebrews such as toddy and handia. The present study highlights the magnitude of hazardous drinking and alcohol dependence in Andaman and Nicobar Islands, India and the complex sociocultural differences in the pattern of alcohol use. Based on the AUDIT data, among the population of Andaman and Nicobar Islands (aged 14 and above), one out of ten requires active interventions to manage the harmful impact of alcohol misuse.

  19. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae)

    Science.gov (United States)

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic

  20. Drought tolerance in wild plant populations: the case of common beans (Phaseolus vulgaris L..

    Directory of Open Access Journals (Sweden)

    Andrés J Cortés

    Full Text Available Reliable estimations of drought tolerance in wild plant populations have proved to be challenging and more accessible alternatives are desirable. With that in mind, an ecological diversity study was conducted based on the geographical origin of 104 wild common bean accessions to estimate drought tolerance in their natural habitats. Our wild population sample covered a range of mesic to very dry habitats from Mexico to Argentina. Two potential evapotranspiration models that considered the effects of temperature and radiation were coupled with the precipitation regimes of the last fifty years for each collection site based on geographical information system analysis. We found that wild accessions were distributed among different precipitation regimes following a latitudinal gradient and that habitat ecological diversity of the collection sites was associated with natural sub-populations. We also detected a broader geographic distribution of wild beans across ecologies compared to cultivated common beans in a reference collection of 297 cultivars. Habitat drought stress index based on the Thornthwaite potential evapotranspiration model was equivalent to the Hamon estimator. Both ecological drought stress indexes would be useful together with population structure for the genealogical analysis of gene families in common bean, for genome-wide genetic-environmental associations, and for postulating the evolutionary history and diversification processes that have occurred for the species. Finally, we propose that wild common bean should be taken into account to exploit variation for drought tolerance in cultivated common bean which is generally considered susceptible as a crop to drought stress.

  1. Plant extracts, metaldehyde and saline solutions on the population control of Bradybaena similaris

    Directory of Open Access Journals (Sweden)

    Junir Antonio Lutinski

    2016-08-01

    Full Text Available ABSTRACT: This study aimed to test the efficiency of plant extracts, metaldehyde and saline solutions, as alternatives to the population control of the snail Bradybaena similaris , and to investigate the effect of the plant extracts in reducing the damage of the snail on Brassica oleracea . The experiments were performed at the Entomology Laboratory of the Universidade Comunitária da Região de Chapecó (Unochapecó, using a random experimental design with nine treatments in triplicate. Five adult individuals of B. similaris were subjected to each trial, totaling 135 snails. The following treatments were tested: cinnamon ( Melia azedarach , timbó ( Ateleia glazioveana , rosemary ( Rosmarinus officinalis , mate herb ( Ilex paraguariensis , two concentrations of metaldehyde (3% and 5%, two concentrations of salt solution (5% and 10 %, and a control treatment (distilled water. To evaluate the survival of B. similaris it was checked the treatments every 24 hours, over four consecutive days. The results revealed that the two concentrations of metaldehyde were fully efficient, that the saline solution (10% had and intermediate efficiency, and that all other treatments were not effective. The treatment with the M. azedarach extract induced a higher consumption of B. oleracea , while the saline solution at 10% and the extracts of R. officinalis and I. paraguariensis inhibited leaf consumption.

  2. On the numerical simulation of population dynamics with density-dependent migrations and the Allee effects

    International Nuclear Information System (INIS)

    Sweilam, H N; Khader, M M; Al-Bar, F R

    2008-01-01

    In this paper, the variational iteration method (VIM) and the Adomian decomposition method (ADM) are presented for the numerical simulation of the population dynamics model with density-dependent migrations and the Allee effects. The convergence of ADM is proved for the model problem. The results obtained by these methods are compared to the exact solution. It is found that these methods are always converges to the right solutions with high accuracy. Furthermore, VIM needs relative less computational work than ADM

  3. Response to nitrate/ammonium nutrition of tomato (Solanum lycopersicum L.) plants overexpressing a prokaryotic NH4(+)-dependent asparagine synthetase.

    Science.gov (United States)

    Martínez-Andújar, Cristina; Ghanem, Michel Edmond; Albacete, Alfonso; Pérez-Alfocea, Francisco

    2013-05-01

    Nitrogen availability is an important limiting factor for plant growth. Although NH4(+) assimilation is energetically more favorable than NO3(-), it is usually toxic for plants. In order to study if an improved ammonium assimilatory metabolism could increase the plant tolerance to ammonium nutrition, tomato (Solanum lycopersicum L. cv P-73) plants were transformed with an NH4(+)-dependent asparagine synthetase (AS-A) gene from Escherichia coli (asnA) under the control of a PCpea promoter (pea isolated constitutive promotor). Homozygous (Hom), azygous (Az) asnA and wild type (WT) plants were grown hydroponically for 6 weeks with normal Hoagland nutrition (NO3(-)/NH4(+)=6/0.5) and high ammonium nutrition (NO3(-)/NH4(+)=3.5/3). Under Hoagland's conditions, Hom plants produced 40-50% less biomass than WT and Az plants. However, under NO3(-)/NH4(+)=3.5/3 the biomass of Hom was not affected while it was reduced by 40-70% in WT and Az plants compared to Hoagland, respectively. The Hom plants accumulated 1.5-4 times more asparagine, glycine, serine and soluble proteins and registered higher glutamine synthetase (GS) and glutamate synthase (GOGAT) activities in the light-adapted leaves than the other genotypes, but had similar NH4(+) and NO3(-) levels in all conditions. In the dark-adapted leaves, a protein catabolism occurred in the Hom plants with a concomitant 25-40% increase in organic acid concentration, while asparagine accumulation registered the highest values. The aforementioned processes might be responsible for a positive energetic balance as regards the futile cycle of the transgenic protein synthesis and catabolism. This explains growth penalty under standard nutrition and growth stability under NO3(-)/NH4(+)=3.5/3, respectively. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. Population Ecology of Caribou Populations without Predators: Southampton and Coats Island Herds

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Quellet

    1996-01-01

    Full Text Available This paper is a review of the ecology of two caribou populations inhabiting predator-free northern islands, Coats and Southampton Island. Findings are analyzed in light of the hypothesis that in absence of prédation or high human harvest, food competition results in delayed puberty, reduced calf production, increased winter starvation of caribou and regulates populations at high densities (>2 km-2. Caribou were hunted to extinction on Southampton Island (Northwest Territories, Canada by mid-century. In 1967, 48 caribou were captured on neighbouring Coats Island and released on Southampton Island. Southampton Island is characterized by a high per capita winter food availability in summer and in winter. The population on Southampton Island has been increasing at a rapid rate of growth since re-introduction (Lamba=1.27. Fast population growth was possible because females invested early in reproduction and over winter survival rate was high. The population on Coats Island is also characterized by high per capita food availability in summer but low food availability in winter. The population size has undergone some marked fluctuations, abrupt declines followed by relatively rapid recovery and, contrary to predictions, densities were always less than 1 km-2. Low population densities on Coats Island result primarily from low food availability. This review suggests that in the absence of prédation or high human harvest competition for food regulates caribou population abundance. However, caribou numbers can fluctuate markedly among years because inter-annual variation of weather conditions affects forage accessibility in winter. This review also emphasizes the importance of distinguishing between factors that determine absolute population density and variation in density among years (in our case probably plant production and winter weather conditions which influence forage accessibility from the regulatory factors, processes that stop population

  5. Pb-induced responses in Zygophyllum fabago plants are organ-dependent and modulated by salicylic acid.

    Science.gov (United States)

    López-Orenes, Antonio; Martínez-Pérez, Ascensión; Calderón, Antonio A; Ferrer, María A

    2014-11-01

    Zygophyllum fabago is a promising species for restoring heavy metal (HM) polluted soils, although the mechanisms involved in HM tolerance in this non-model plant remain largely unknown. This paper analyses the extent to which redox-active compounds and enzymatic antioxidants in roots, stems and leaves are responsible for Pb tolerance in a metallicolous ecotype of Z. fabago and the possible influence of salicylic acid (SA) pretreatment (24 h, 0.5 mM SA) in the response to Pb stress. SA pretreatment reduced both the accumulation of Pb in roots and even more so the concentration of Pb in aerial parts of the plants, although a similar drop in the content of chlorophylls and in the maximum quantum yield of photosystem II was observed in both Pb- and SA-Pb-treated plants. Pb increased the endogenous free SA levels in all organs and this response was enhanced in root tissues upon SA pretreatment. Generally, Pb induced a reduction in catalase, ascorbate peroxidase and glutathione reductase specific activities, whereas dehydroascorbate reductase was increased in all organs of control plants. SA pretreatment enhanced the Pb-induced H2O2 accumulation in roots by up-regulating Fe-superoxide dismutase isoenzymes. Under Pb stress, the GSH redox ratio remained highly reduced in all organs while the ascorbic acid redox ratio dropped in leaf tissues where a rise in lipid peroxidation products and electrolyte leakage was observed. Finally, an organ-dependent accumulation of proline and β-carboline alkaloids was found, suggesting these nitrogen-redox-active compounds could play a role in the adaptation strategies of this species to Pb stress. Copyright © 2014. Published by Elsevier Masson SAS.

  6. Experience matters: prior exposure to plant toxins enhances diversity of gut microbes in herbivores.

    Science.gov (United States)

    Kohl, Kevin D; Dearing, M D

    2012-09-01

    For decades, ecologists have hypothesised that exposure to plant secondary compounds (PSCs) modifies herbivore-associated microbial community composition. This notion has not been critically evaluated in wild mammalian herbivores on evolutionary timescales. We investigated responses of the microbial communities of two woodrat species (Neotoma bryanti and N. lepida). For each species, we compared experienced populations that independently converged to feed on the same toxic plant (creosote bush, Larrea tridentata) to naïve populations with no exposure to creosote toxins. The addition of dietary PSCs significantly altered gut microbial community structure, and the response was dependent on previous experience. Microbial diversity and relative abundances of several dominant phyla increased in experienced woodrats in response to PSCs; however, opposite effects were observed in naïve woodrats. These differential responses were convergent in experienced populations of both species. We hypothesise that adaptation of the foregut microbiota to creosote PSCs in experienced woodrats drives this differential response. © 2012 Blackwell Publishing Ltd/CNRS.

  7. Childhood ADHD and Risk for Substance Dependence in Adulthood: A Longitudinal, Population-Based Study

    Science.gov (United States)

    Levy, Sharon; Katusic, Slavica K.; Colligan, Robert C.; Weaver, Amy L.; Killian, Jill M.; Voigt, Robert G.; Barbaresi, William J.

    2014-01-01

    Background Adolescents with attention-deficit/hyperactivity disorder (ADHD) are known to be at significantly greater risk for the development of substance use disorders (SUD) compared to peers. Impulsivity, which could lead to higher levels of drug use, is a known symptom of ADHD and likely accounts, in part, for this relationship. Other factors, such as a biologically increased susceptibility to substance dependence (addiction), may also play a role. Objective This report further examines the relationships between childhood ADHD, adolescent- onset SUD, and substance abuse and substance dependence in adulthood. Method Individuals with childhood ADHD and non-ADHD controls from the same population-based birth cohort were invited to participate in a prospective outcome study. Participants completed a structured neuropsychiatric interview with modules for SUD and a psychosocial questionnaire. Information on adolescent SUD was obtained retrospectively, in a previous study, from medical and school records. Associations were summarized using odds ratios (OR) and 95% CIs estimated from logistic regression models adjusted for age and gender. Results A total of 232 ADHD cases and 335 non-ADHD controls participated (mean age, 27.0 and 28.6 years, respectively). ADHD cases were more likely than controls to have a SUD diagnosed in adolescence and were more likely to have alcohol (adjusted OR 14.38, 95% CI 1.49–138.88) and drug (adjusted OR 3.48, 95% CI 1.38–8.79) dependence in adulthood. The subgroup of participating ADHD cases who did not have SUD during adolescence were no more likely than controls to develop new onset alcohol dependence as adults, although they were significantly more likely to develop new onset drug dependence. Conclusions Our study found preliminary evidence that adults with childhood ADHD are more susceptible than peers to developing drug dependence, a disorder associated with neurological changes in the brain. The relationship between ADHD and

  8. Molecular taxonomic analysis of the plant associations of adult pollen beetles (Nitidulidae: Meligethinae), and the population structure of Brassicogethes aeneus.

    Science.gov (United States)

    Ouvrard, Pierre; Hicks, Damien M; Mouland, Molly; Nicholls, James A; Baldock, Katherine C R; Goddard, Mark A; Kunin, William E; Potts, Simon G; Thieme, Thomas; Veromann, Eve; Stone, Graham N

    2016-12-01

    Pollen beetles (Nitidulidae: Meligethinae) are among the most abundant flower-visiting insects in Europe. While some species damage millions of hectares of crops annually, the biology of many species is little known. We assessed the utility of a 797 base pair fragment of the cytochrome oxidase 1 gene to resolve molecular operational taxonomic units (MOTUs) in 750 adult pollen beetles sampled from flowers of 63 plant species sampled across the UK and continental Europe. We used the same locus to analyse region-scale patterns in population structure and demography in an economically important pest, Brassicogethes aeneus. We identified 44 Meligethinae at ∼2% divergence, 35 of which contained published sequences. A few specimens could not be identified because the MOTUs containing them included published sequences for multiple Linnaean species, suggesting either retention of ancestral haplotype polymorphism or identification errors in published sequences. Over 90% of UK specimens were identifiable as B. aeneus. Plant associations of adult B. aeneus were found to be far wider taxonomically than for their larvae. UK B. aeneus populations showed contrasting affiliations between the north (most similar to Scandinavia and the Baltic) and south (most similar to western continental Europe), with strong signatures of population growth in the south.

  9. Floral characteristics and pollination ecology of Manglietia ventii (Magnoliaceae, a plant species with extremely small populations (PSESP endemic to South Yunnan of China

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2017-02-01

    Full Text Available Manglietia ventii is a highly endangered plant species endemic to Yunnan province in China, where there are only five known small populations. Despite abundant flowering there is very low fruit and seed set, and very few seedlings in natural populations, indicating problems with reproduction. The causes of low fecundity in M. ventii are not known, largely because of insufficient knowledge of the species pollination ecology and breeding system. We conducted observations and pollination experiments, and analyzed floral scents to understand the pollinator–plant interactions and the role of floral scent in this relationship, as well as the species breeding system. Like the majority of Magnoliaceae, M. ventii has protogynous and nocturnal flowers that emit a strong fragrance over two consecutive evenings. There is a closing period (the pre-staminate stage during the process of anthesis of a flower, and we characterize the key flowering process as an “open-close-reopen” flowering rhythm with five distinct floral stages observed throughout the floral period of this species: pre-pistillate, pistillate, pre-staminate, staminate, and post-staminate. Flowers are in the pistillate stage during the first night of anthesis and enter the staminate stage the next night. During anthesis, floral scent emission occurs in the pistillate and staminate stages. The effective pollinators were weevils (Sitophilus sp. and beetles (Anomala sp., while the role of Rove beetles (Aleochara sp. and thrips (Thrips sp. in pollination of M. ventii appears to be minor or absent. The major chemical compounds of the floral scents were Limonene, β-Pinene, α-Pinene, 1,8-Cineole, Methyl-2-methylbutyrate, p-Cymene, Methyl-3-methyl-2-butenoate and 2-Methoxy-2-methyl-3-buten, and the relative proportions of these compounds varied between the pistillate and staminate stages. Production of these chemicals coincided with flower visitation by weevils and beetles. The results of

  10. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in Arabidopsis under saline conditions.

    Science.gov (United States)

    Álvarez-Aragón, Rocío; Rodríguez-Navarro, Alonso

    2017-07-01

    Improving crop plants to be productive in saline soils or under irrigation with saline water would be an important technological advance in overcoming the food and freshwater crises that threaten the world population. However, even if the transformation of a glycophyte into a plant that thrives under seawater irrigation was biologically feasible, current knowledge about Na + effects would be insufficient to support this technical advance. Intriguingly, crucial details about Na + uptake and its function in the plant have not yet been well established. We here propose that under saline conditions two nitrate-dependent transport systems in series that take up and load Na + into the xylem constitute the major pathway for the accumulation of Na + in Arabidopsis shoots; this pathway can also function with chloride at high concentrations. In nrt1.1 nitrate transport mutants, plant Na + accumulation was partially defective, which suggests that NRT1.1 either partially mediates or modulates the nitrate-dependent Na + transport. Arabidopsis plants exposed to an osmotic potential of -1.0 MPa (400 mOsm) for 24 h showed high water loss and wilting in sorbitol or Na/MES, where Na + could not be accumulated. In contrast, in NaCl the plants that accumulated Na + lost a low amount of water, and only suffered transitory wilting. We discuss that in Arabidopsis plants exposed to high NaCl concentrations, root Na + uptake and tissue accumulation fulfil the primary function of osmotic adjustment, even if these processes lead to long-term toxicity. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Effects of sample size on estimates of population growth rates calculated with matrix models.

    Directory of Open Access Journals (Sweden)

    Ian J Fiske

    Full Text Available BACKGROUND: Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. METHODOLOGY/PRINCIPAL FINDINGS: Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. CONCLUSIONS/SIGNIFICANCE: We found significant bias at small sample sizes when survival was low (survival = 0.5, and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high

  12. Effects of sample size on estimates of population growth rates calculated with matrix models.

    Science.gov (United States)

    Fiske, Ian J; Bruna, Emilio M; Bolker, Benjamin M

    2008-08-28

    Matrix models are widely used to study the dynamics and demography of populations. An important but overlooked issue is how the number of individuals sampled influences estimates of the population growth rate (lambda) calculated with matrix models. Even unbiased estimates of vital rates do not ensure unbiased estimates of lambda-Jensen's Inequality implies that even when the estimates of the vital rates are accurate, small sample sizes lead to biased estimates of lambda due to increased sampling variance. We investigated if sampling variability and the distribution of sampling effort among size classes lead to biases in estimates of lambda. Using data from a long-term field study of plant demography, we simulated the effects of sampling variance by drawing vital rates and calculating lambda for increasingly larger populations drawn from a total population of 3842 plants. We then compared these estimates of lambda with those based on the entire population and calculated the resulting bias. Finally, we conducted a review of the literature to determine the sample sizes typically used when parameterizing matrix models used to study plant demography. We found significant bias at small sample sizes when survival was low (survival = 0.5), and that sampling with a more-realistic inverse J-shaped population structure exacerbated this bias. However our simulations also demonstrate that these biases rapidly become negligible with increasing sample sizes or as survival increases. For many of the sample sizes used in demographic studies, matrix models are probably robust to the biases resulting from sampling variance of vital rates. However, this conclusion may depend on the structure of populations or the distribution of sampling effort in ways that are unexplored. We suggest more intensive sampling of populations when individual survival is low and greater sampling of stages with high elasticities.

  13. Vegetation changes associated with a population irruption by Roosevelt elk

    Science.gov (United States)

    Starns, H D; Weckerly, Floyd W.; Ricca, Mark; Duarte, Adam

    2015-01-01

    Interactions between large herbivores and their food supply are central to the study of population dynamics. We assessed temporal and spatial patterns in meadow plant biomass over a 23-year period for meadow complexes that were spatially linked to three distinct populations of Roosevelt elk (Cervus elaphus roosevelti) in northwestern California. Our objectives were to determine whether the plant community exhibited a tolerant or resistant response when elk population growth became irruptive. Plant biomass for the three meadow complexes inhabited by the elk populations was measured using Normalized Difference Vegetation Index (NDVI), which was derived from Landsat 5 Thematic Mapper imagery. Elk populations exhibited different patterns of growth through the time series, whereby one population underwent a complete four-stage irruptive growth pattern while the other two did not. Temporal changes in NDVI for the meadow complex used by the irruptive population suggested a decline in forage biomass during the end of the dry season and a temporal decline in spatial variation of NDVI at the peak of plant biomass in May. Conversely, no such patterns were detected in the meadow complexes inhabited by the nonirruptive populations. Our findings suggest that the meadow complex used by the irruptive elk population may have undergone changes in plant community composition favoring plants that were resistant to elk grazing.

  14. Two disjunct Pleistocene populations and anisotropic postglacial expansion shaped the current genetic structure of the relict plant Amborella trichopoda.

    Directory of Open Access Journals (Sweden)

    Rémi Tournebize

    Full Text Available Past climate fluctuations shaped the population dynamics of organisms in space and time, and have impacted their present intra-specific genetic structure. Demo-genetic modelling allows inferring the way past demographic and migration dynamics have determined this structure. Amborella trichopoda is an emblematic relict plant endemic to New Caledonia, widely distributed in the understory of non-ultramafic rainforests. We assessed the influence of the last glacial climates on the demographic history and the paleo-distribution of 12 Amborella populations covering the whole current distribution. We performed coalescent genetic modelling of these dynamics, based on both whole-genome resequencing and microsatellite genotyping data. We found that the two main genetic groups of Amborella were shaped by the divergence of two ancestral populations during the last glacial maximum. From 12,800 years BP, the South ancestral population has expanded 6.3-fold while the size of the North population has remained stable. Recent asymmetric gene flow between the groups further contributed to the phylogeographical pattern. Spatially explicit coalescent modelling allowed us to estimate the location of ancestral populations with good accuracy (< 22 km and provided indications regarding the mid-elevation pathways that facilitated post-glacial expansion.

  15. Both population size and patch quality affect local extinctions and colonizations.

    Science.gov (United States)

    Franzén, Markus; Nilsson, Sven G

    2010-01-07

    Currently, the habitat of many species is fragmented, resulting in small local populations with individuals occasionally dispersing between the remaining habitat patches. In a solitary bee metapopulation, extinction probability was related to both local bee population sizes and pollen resources measured as host plant population size. Patch size, on the other hand, had no additional predictive power. The turnover rate of local bee populations in 63 habitat patches over 4 years was high, with 72 extinction events and 31 colonization events, but the pollen plant population was stable with no extinctions or colonizations. Both pollen resources and bee populations had strong and independent effects on extinction probability, but connectivity was not of importance. Colonizations occurred more frequently within larger host plant populations. For metapopulation survival of the bee, large pollen plant populations are essential, independent of current bee population size.

  16. Vitamin Deficiencies in Humans: Can Plant Science Help?[W

    Science.gov (United States)

    Fitzpatrick, Teresa B.; Basset, Gilles J.C.; Borel, Patrick; Carrari, Fernando; DellaPenna, Dean; Fraser, Paul D.; Hellmann, Hanjo; Osorio, Sonia; Rothan, Christophe; Valpuesta, Victoriano; Caris-Veyrat, Catherine; Fernie, Alisdair R.

    2012-01-01

    The term vitamin describes a small group of organic compounds that are absolutely required in the human diet. Although for the most part, dependency criteria are met in developed countries through balanced diets, this is not the case for the five billion people in developing countries who depend predominantly on a single staple crop for survival. Thus, providing a more balanced vitamin intake from high-quality food remains one of the grandest challenges for global human nutrition in the coming decade(s). Here, we describe the known importance of vitamins in human health and current knowledge on their metabolism in plants. Deficits in developing countries are a combined consequence of a paucity of specific vitamins in major food staple crops, losses during crop processing, and/or overreliance on a single species as a primary food source. We discuss the role that plant science can play in addressing this problem and review successful engineering of vitamin pathways. We conclude that while considerable advances have been made in understanding vitamin metabolic pathways in plants, more cross-disciplinary approaches must be adopted to provide adequate levels of all vitamins in the major staple crops to eradicate vitamin deficiencies from the global population. PMID:22374394

  17. Mapuche medicinal plants: Proposition in their propagation

    Science.gov (United States)

    Paz Ovalle; Zoia Neira; Patricio Nunez

    2002-01-01

    The Mapuche (native indians from Chile) population is one of the largest populations of native indians left in America (approximately 1 million). As many of the other Native communities, they continuously struggle to maintain their rituals and customs. One of the most valuable customs for the Mapuche is the use of medicinal plants. All these plants are native plants...

  18. Population dose commitments due to radioactive releases from nuclear power plant sites in 1988

    International Nuclear Information System (INIS)

    Baker, D.A.

    1992-01-01

    Population radiation dose commitments have been estimated from reported radionuclide releases from commercial power reactors operating during 1988. Fifty-year commitments for a one-year exposure from both liquid and atmospheric releases were calculated for four population groups (infant, child, teen-ager and adult) residing between 2 and 80 km from each of 71 reactor sites. This report tabulates the results of these calculations, showing the dose commitments for both water and airborne pathways for each age group and organ. Also included for each of the sites is a histogram showing the fraction of the total population within 2 to 80 km around each site receiving various average dose commitments from the airborne pathways. The total collective d