WorldWideScience

Sample records for plant population densities

  1. Ambit determination method in estimating rice plant population density

    Directory of Open Access Journals (Sweden)

    Abu Bakar, B.,

    2017-11-01

    Full Text Available Rice plant population density is a key indicator in determining the crop setting and fertilizer application rate. It is therefore essential that the population density is monitored to ensure that a correct crop management decision is taken. The conventional method of determining plant population is by manually counting the total number of rice plant tillers in a 25 cm x 25 cm square frame. Sampling is done by randomly choosing several different locations within a plot to perform tiller counting. This sampling method is time consuming, labour intensive and costly. An alternative fast estimating method was developed to overcome this issue. The method relies on measuring the outer circumference or ambit of the contained rice plants in a 25 cm x 25 cm square frame to determine the number of tillers within that square frame. Data samples of rice variety MR219 were collected from rice plots in the Muda granary area, Sungai Limau Dalam, Kedah. The data were taken at 50 days and 70 days after seeding (DAS. A total of 100 data samples were collected for each sampling day. A good correlation was obtained for the variety of 50 DAS and 70 DAS. The model was then verified by taking 100 samples with the latching strap for 50 DAS and 70 DAS. As a result, this technique can be used as a fast, economical and practical alternative to manual tiller counting. The technique can potentially be used in the development of an electronic sensing system to estimate paddy plant population density.

  2. Low crop plant population densities promote pollen-mediated gene flow in spring wheat (Triticum aestivum L.).

    Science.gov (United States)

    Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C

    2009-12-01

    Transgenic wheat is currently being field tested with the intent of eventual commercialization. The development of wheat genotypes with novel traits has raised concerns regarding the presence of volunteer wheat populations and the role they may play in facilitating transgene movement. Here, we report the results of a field experiment that investigated the potential of spring wheat plant population density and crop height to minimize gene flow from a herbicide-resistant (HR) volunteer population to a non-HR crop. Pollen-mediated gene flow (PMGF) between the HR volunteer wheat population and four conventional spring wheat genotypes varying in height was assessed over a range of plant population densities. Natural hybridization events between the two cultivars were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) families. PMGF was strongly associated with crop yield components, but showed no association with flowering synchrony. Maximum observed PMGF was always less than 0.6%, regardless of crop height and density. The frequency of PMGF in spring wheat decreased exponentially with increasing plant population density, but showed no dependence on either crop genotype or height. However, increasing plant densities beyond the recommended planting rate of 300 cropped wheat plants m(-2) provided no obvious benefit to reducing PMGF. Nevertheless, our results demonstrate a critical plant density of 175-200 cropped wheat plants m(-2) below which PMGF frequencies rise exponentially with decreasing plant density. These results will be useful in the development of mechanistic models and best management practices that collectively facilitate the coexistence of transgenic and nontransgenic wheat crops.

  3. Modeling the growth of individuals in plant populations: local density variation in a strand population of Xanthium strumarium (Asteraceae).

    Science.gov (United States)

    Weiner, J; Kinsman, S; Williams, S

    1998-11-01

    We studied the growth of individual Xanthium strumarium plants growing at four naturally occurring local densities on a beach in Maine: (1) isolated plants, (2) pairs of plants ≤1 cm apart, (3) four plants within 4 cm of each other, and (4) discrete dense clumps of 10-39 plants. A combination of nondestructive measurements every 2 wk and parallel calibration harvests provided very good estimates of the growth in aboveground biomass of over 400 individual plants over 8 wk and afforded the opportunity to fit explicit growth models to 293 of them. There was large individual variation in growth and resultant size within the population and within all densities. Local crowding played a role in determining plant size within the population: there were significant differences in final size between all densities except pairs and quadruples, which were almost identical. Overall, plants growing at higher densities were more variable in growth and final size than plants growing at lower densities, but this was due to increased variation among groups (greater variation in local density and/or greater environmental heterogeneity), not to increased variation within groups. Thus, there was no evidence of size asymmetric competition in this population. The growth of most plants was close to exponential over the study period, but half the plants were slightly better fit by a sigmoidal (logistic) model. The proportion of plants better fit by the logistic model increased with density and with initial plant size. The use of explicit growth models over several growth intervals to describe stand development can provide more biological content and more statistical power than "growth-size" methods that analyze growth intervals separately.

  4. Evaluation of population density and distribution criteria in nuclear power plant siting

    International Nuclear Information System (INIS)

    Young, M.

    1994-06-01

    The NRC has proposed revisions to 10 CFR 100 which include the codification of nuclear reactor site population density limits to 500 people per square mile, at the siting stage, averaged over any radial distance out to 30 miles, and 1,000 people per square mile within the 40-year lifetime of a nuclear plant. This study examined whether there are less restrictive alternative population density and/or distribution criteria which would provide equivalent or better protection to human health in the unlikely event of a nuclear accident. This study did not attempt to directly address the issue of actual population density limits because there are no US risk standards established for the evaluation of population density limits. Calculations were performed using source terms for both a current generation light water reactor (LWR) and an advanced light water reactor (ALWR) design. The results of this study suggest that measures which address the distribution of the population density, including emergency response conditions, could result in lower average individual risks to the public than the proposed guidelines that require controlling average population density. Studies also indicate that an exclusion zone size, determined by emergency response conditions and reactor design (power level and safety features), would better serve to protect public health than a rigid standard applied to all sites

  5. Plant quality and conspecific density effects on Anaphothrips obscurus (Thysanoptera: Thripidae) wing diphenism and population ecology.

    Science.gov (United States)

    Reisig, Dominic D; Godfrey, Larry D; Marcum, Daniel B

    2010-04-01

    Factors that influence thysanopteran wing diphenism are not well known. In these studies, the impact of food quality, mediated through nitrogen addition, and conspecific density was explored on the wing diphenism of an herbivorous thrips species (Anaphothrips obscurus Müller) (Thysanoptera: Thripidae). In the first study, nitrogen was added to timothy grass (Phleum pretense L.) (Poales: Poaceae) transplants, and naturally occurring thrips populations were caged on the plants. Thrips abundance and foliar nutrients were assessed every 2 wk. A separate factorial experiment in growth chambers explored the impact of both plant nitrogen addition and thrips abundance on wing diphenism. Thrips density was manipulated by adding either 3 or 40 thrips to potted and caged timothy. Thrips abundance and foliar nutrients were measured 58 d after treatment placement. Plant quality directly affected thrips wing diphenism independent of thrips density in both experiments. Near the end of the field cage experiment, density may have indirectly impacted wing diphenism. In both experiments, plant quality and thrips density interacted to affect thrips population abundance. Plant quality alone can affect thrips wing diphenism, but it remains unclear whether density alone can affect thrips wing diphenism. This is a unique and understudied system that will be useful to examine generalized theories on the negative interaction between reproduction and dispersal.

  6. Ideotype population exploration: growth, photosynthesis, and yield components at different planting densities in winter oilseed rape (Brassica napus L.).

    Science.gov (United States)

    Ma, Ni; Yuan, Jinzhan; Li, Ming; Li, Jun; Zhang, Liyan; Liu, Lixin; Naeem, Muhammad Shahbaz; Zhang, Chunlei

    2014-01-01

    Rapeseed is one of the most important edible oil crops in the world and the seed yield has lagged behind the increasing demand driven by population growth. Winter oilseed rape (Brassica napus L.) is widely cultivated with relatively low yield in China, so it is necessary to find the strategies to improve the expression of yield potential. Planting density has great effects on seed yield of crops. Hence, field experiments were conducted in Wuhan in the Yangtze River basin with one conventional variety (Zhongshuang 11, ZS11) and one hybrid variety (Huayouza 9, HYZ9) at five planting densities (27.0×10(4), 37.5×10(4), 48.0×10(4), 58.5×10(4), 69.0×10(4) plants ha(-1)) during 2010-2012 to investigate the yield components. The physiological traits for high-yield and normal-yield populations were measured during 2011-2013. Our results indicated that planting densities of 58.5×10(4) plants ha(-1) in ZS11 and 48.0×10(4) plants ha(-1) in HYZ9 have significantly higher yield compared with the density of 27.0×10(4) plants ha(-1) for both varieties. The ideal silique numbers for ZS11 and HYZ9 were ∼0.9×10(4) (n m(-2)) and ∼1×10(4) (n m(-2)), respectively, and ideal primary branches for ZS11 and HYZ9 were ∼250 (n m(-2)) and ∼300 (n m(-2)), respectively. The highest leaf area index (LAI) and silique wall area index (SAI) was ∼5.0 and 7.0, respectively. Moreover, higher leaf net photosynthetic rate (Pn) and water use efficiency (WUE) were observed in the high-yield populations. A significantly higher level of silique wall photosynthesis and rapid dry matter accumulation were supposed to result in the maximum seed yield. Our results suggest that increasing the planting density within certain range is a feasible approach for higher seed yield in winter rapeseed in China.

  7. Effects of plant density on forage production in five populations of ...

    African Journals Online (AJOL)

    Kleingrass (Panicum coloratum L.) forage yield evaluation plots are often established at a density of 6.0 plants m-2 to accommodate mechanical transplanting and harvesting equipment. However, forage crops are usually established from seed at higher plant densities. Experiments were conducted to determine if ...

  8. Evaluation and comparison of high population density sites

    International Nuclear Information System (INIS)

    Margulies, T.S.

    1979-10-01

    Consideration of the population distribution surrounding a potential nuclear site generally includes the calculation of population density over a circular area outward to a radial distance of 30 miles from the site. A recently proposed nuclear site Perryman, Maryland challenged the NRC population density guidelines and motivated this project which was performed under the Maryland Power Plant Siting Program. The report provides a comparison of several site population factor indices for comparing relative public safety aspects of alternative nuclear power plant sites. In addition, it is illustrated that use of the reactor safety study (WASH-1400) consequence model as a tool for comparing the relative safety of alternative sites has potential pitfalls

  9. Anatomical traits related to stress in high density populations of Typha angustifolia L. (Typhaceae

    Directory of Open Access Journals (Sweden)

    F. F. Corrêa

    Full Text Available Abstract Some macrophytes species show a high growth potential, colonizing large areas on aquatic environments. Cattail (Typha angustifolia L. uncontrolled growth causes several problems to human activities and local biodiversity, but this also may lead to competition and further problems for this species itself. Thus, the objective of this study was to investigate anatomical modifications on T. angustifolia plants from different population densities, once it can help to understand its biology. Roots and leaves were collected from natural populations growing under high and low densities. These plant materials were fixed and submitted to usual plant microtechnique procedures. Slides were observed and photographed under light microscopy and images were analyzed in the UTHSCSA-Imagetool software. The experimental design was completely randomized with two treatments and ten replicates, data were submitted to one-way ANOVA and Scott-Knott test at p<0.05. Leaves from low density populations showed higher stomatal density and index. These modifications on stomatal characteristics were more evident on the leaf abaxial surface. Plants from low density populations showed thicker mesophyll and higher proportion of aerenchymal area. Roots from low density populations showed a higher proportion of the vascular cylinder. Whereas, plants from higher density populations showed greater thickness of the endodermis, exodermis, phloem and root cortex. Higher density populations showed a higher proportion of aerenchymal gaps in the root cortex. Therefore, cattail plants from populations growing under high density population show anatomical traits typical of plants under stress, which promotes the development of less functional anatomical modifications to aquatic environments.

  10. Effect of plant population density on the growth and yield of sorghum ...

    African Journals Online (AJOL)

    Improvement of resource use efficiency and yields is probably possible through the use of appropriate plant densities. Field trials were therefore conducted to study the effects of four plant densities, varying from 2.0 to 12.5 plants m-2 on water and radiation use and performance of two Masakwa sorghum varieties grown on ...

  11. Regulation of Population Densities of Heterodera cajani and Other Plant-Parasitic Nematodes by Crop Rotations on Vertisols, in Semi-Arid Tropical Production Systems in India

    Science.gov (United States)

    Sharma, S. B.; Rego, T. J.; Mohiuddin, M.; Rao, V. N.

    1996-01-01

    The significance of double crop (intercrop and sequential crop), single crop (rainy season crop fallow from June to September), and rotations on densities of Heterodera cajani, Helicotylenchus retusus, and Rotylenchulus reniformis was studied on Vertisol (Typic Pellusterts) between 1987 and 1993. Cowpea (Vigna sinensis), mungbean (Phaseolus aureus), and pigeonpea (Cajanus cajan) greatly increased the population densities of H. cajani and suppressed the population densities of other plant-parasitic nematodes. Mean population densities of H. cajani were about 8 times lower in single crop systems than in double crop systems, with pigeonpea as a component intercrop. Plots planted to sorghum, safflower, and chickpea in the preceding year contained fewer H. cajani eggs and juveniles than did plots previously planted to pigeonpea, cowpea, or mungbean. Continuous cropping of sorghum in the rainy season and safflower in the post-rainy season markedly reduced the population density of H. cajani. Sorghum, safflower, and chickpea favored increased population densities of H. retusus. Adding cowpea to the system resulted in a significant increase in the densities of R. reniformis. Mean densities of total plant-parasitic nematodes were three times greater in double crop systems, with pigeonpea as a component intercrop than in single crop systems with rainy season fallow component. Cropping systems had a regulatory effect on the nematode populations and could be an effective nematode management tactic. Intercropping of sorghum with H. cajani tolerant pigeonpea could be effective in increasing the productivity of traditional production systems in H. cajani infested regions. PMID:19277141

  12. Population densities of indigenous Acidobacteria change in the presence of plant growth promoting rhizobacteria (PGPR) in rhizosphere.

    Science.gov (United States)

    Kalam, Sadaf; Das, Subha Narayan; Basu, Anirban; Podile, Appa Rao

    2017-05-01

    Rhizosphere microbial community has diverse metabolic capabilities and plays a crucial role in maintaining plant health. Oligotrophic plant growth promoting rhizobacteria (PGPR), along with difficult-to-culture microbial fractions, might be involved synergistically in microbe-microbe and plant-microbe interactions in the rhizosphere. Among the difficult-to-culture microbial fractions, Acidobacteria constitutes the most dominant phylum thriving in rhizospheric soils. We selected effective PGPR for tomato and black gram and studied their effect on population densities of acidobacterial members. Three facultatively oligotrophic PGPR were identified through 16S rRNA gene sequencing as Sphingobacterium sp. (P3), Variovorax sp. (P4), and Roseomonas sp. (A2); the latter being a new report of PGPR. In presence of selected PGPR strains, the changes in population densities of Acidobacteria were monitored in metagenomic DNA extracted from bulk and rhizospheric soils of tomato and black gram using real time qPCR. A gradual increase in equivalent cell numbers of Acidobacteria members was observed over time along with a simultaneous increase in plant growth promotion by test PGPR. We report characterization of three effective PGPR strains and their effects on indigenous, underexplored difficult-to-culture phylum-Acidobacteria. We suggest that putative interactions between these two bacterial groups thriving in rhizospheric soils could be beneficial for plant growth. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of host-plant population size and plant sex on a specialist leaf-miner

    DEFF Research Database (Denmark)

    Bañuelos, María-José; Kollmann, Johannes Christian

    2011-01-01

    of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different...... punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively...... stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size...

  14. Effects of host-plant population size and plant sex on a specialist leaf-miner

    Science.gov (United States)

    Bañuelos, María-José; Kollmann, Johannes

    2011-03-01

    Animal population density has been related to resource patch size through various hypotheses such as those derived from island biogeography and resource concentration theory. This theoretical framework can be also applied to plant-herbivore interactions, and it can be modified by the sex of the host-plant, and density-dependent relationships. Leaf-miners are specialised herbivores that leave distinct traces on infested leaves in the form of egg scars, mines, signs of predation and emergence holes. This allows the life cycle of the insect to be reconstructed and the success at the different stages to be estimated. The main stages of the leaf-miner Phytomyza ilicis were recorded in eleven populations of the evergreen host Ilex aquifolium in Denmark. Survival rates were calculated and related to population size, sex of the host plant, and egg and mine densities. Host population size was negatively related to leaf-miner prevalence, with larger egg and mine densities in small populations. Percentage of eggs hatching and developing into mines, and percentage of adult flies emerging from mines also differed among host populations, but were not related to population size or host cover. Feeding punctures left by adults were marginally more frequent on male plants, whereas egg scars and mines were more common on females. Overall survival rate from egg stage to adult emergence was higher on female plants. Egg density was negatively correlated with hatching, while mine density was positively correlated with emergence of the larvae. The inverse effects of host population size were not in line with predictions based on island biogeography and resource concentration theory. We discuss how a thorough knowledge of the immigration behaviour of this fly might help to understand the patterns found.

  15. The effect of plant population and nitrogen fertilizer on

    Directory of Open Access Journals (Sweden)

    mohamad reza asgaripor

    2009-06-01

    Full Text Available Interest has increased towards hemp (Cannabis sativa L. fibre production due to renewed demand for natural fibre in the world. A Study was conducted in 2005 at Shirvan in Northern Khorasan province, Iran, to determine the effects of three plant populations (30, 90 and 150 plant per m2 and three rates of nitrogen application (50, 150 and 250 kg N per ha on final stand, stalk height, basal stalk diameter, total stalk yield as well as fibre content from stalk and fibre yield in male and female plants. A split plot experimental with three replications was used. The result indicated that due to enhanced competition for light at higher population on density and N2 level plant mortality was higher than other treatment Morphological characteristics were highly correlated with plant sexual, plant population and nitrogen fertilizer. Highest stem, leaf and inflorescence yield were obtained at 250 plant m-2 when 150 kg N ha-1 was used. Lowest plant density did not show self-thinning but reduced above ground dry matter. Shoot dry matter increased with increasing plant density and nitrogen supply. Apparently, fibre content was greater at medium density and lowest nitrogen fertilizer, however, fibre yield was greatest at highest plant population and nitrogen fertilizer. In terms of fibre yield, approximate 31.7% of the fibre was located in the bottom parts, 22.4% in the middle and only 9.9% in the top part of the stem. The results suggest that hemp can yield large quantities of useful fibre at Shirvan when planted in proper plant densities and suitable nitrogen fertilizer.

  16. Ecology of Meimuna mongolica (Hemiptera: Cicadidae) Nymphs: Instars, Morphological Variation, Vertical Distribution and Population Density, Host-Plant Selection, and Emergence Phenology

    Science.gov (United States)

    Li, Qinglong; Yang, Mingsheng; Liu, Yunxiang; Wei, Cong

    2015-01-01

    The cicada Meimuna mongolica (Distant) (Hemiptera: Cicadidae) is one of the most important pests of economic forest in Guanzhong Plain of Shaanxi Province, China. Information about ecological characteristics and some sustainable control measures of this species is urgently required for its control. In this study, nymphal instars, morphological variation, vertical distribution, and population density in soil, and emergence phenology of nymphs of M. mongolica on three main host plants (Pinus tabuliformis Carr., Populus tomentosa Carr., and Pyrus xerophila Yü) were studied, based on combined morphological and molecular identification, investigation of the first-instar nymphs hatched from eggs and others excavated from soil, and investigation of exuviae in the adult emergence period. Five nymphal instars of M. mongolica were redetermined according to the distribution plots of the head capsule widths of the nymphs. Nymphs of third and fourth instars showed morphological variation, which is closely related to host-plant association. The mean densities of nymphs in soil under the three host plants were significantly different, indicating a distinct host preference. The nymphs could extend their distribution from the 0–10 cm soil layer to the 51–60 cm soil layer underground but not beyond 60 cm soil layer under all the three host plants. The 21–30 cm soil layer under all the three host plants has the highest nymphal population density. The sex ratio of the entire population was nearly 50:50, but males dominated in the early half of the duration of the emergence. These ecological characteristics of M. mongolica could provide important information for sustainable control measures.

  17. Health and safety impacts of nuclear, geothermal, and fossil-fuel electric generation in California. Volume 5. Control of population densities surrounding nuclear power plants

    International Nuclear Information System (INIS)

    Nero, A.V.; Schroeder, C.H.; Yen, W.W.S.

    1977-01-01

    In view of the requirement that the California Energy Resources Conservation and Development Commission must specify land-use/population-density control measures to be used in the vicinity of nuclear power plants being granted land use, the possible forms of such measures are examined. Since these measures must maintain population densities below Nuclear Regulatory Commission criteria, if appropriate, NRC criteria for land use and population densities are given particular attention. In addition, a preliminary comparison of the cost of possible control measures with the reduced potential for damage to the public health and safety is made, yielding the result that control measures within approximately one mile of the plant site may be justified, in certain cases, on a strictly cost-benefit basis. However, it is not clear whether controls over such a limited region would satisfy the legal mandate

  18. Nitrogen rate and plant population effects on yield and yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... density and nitrogen rate increased plant height, lowest pod height, harvest index and seed yield. ... since some combine harvester heads are unable to pick ..... as effected by population density and plant distribution.

  19. Effect of Varieties and Plant Population Densities on Dry Matter Production, Radiation Interception and Radiation Energy Conversion in Peanut

    Directory of Open Access Journals (Sweden)

    agus suprapto

    2012-05-01

    Full Text Available The solar radiation is one of the major criteria to obtaining advantages on peanuts (Arachishypogaea L.. Although various combinations of crops have been reported, but variety association and plant population densities (PPD during the periodically stage of growth on peanuts have yet to be analyzed. Dry matter production (DM, radiation energy interception, and radiation energy conversions were monitored over the growth period of two varieties of peanut. An experiment was conducted in Jambegede Research Farm, Indonesian Legume and Tuber Crops Research Institute, Malang, East Java, Indonesia, from July until October 2011. The experiment was arranged in a Split Plot Design with three replications. Peanut varieties, as the main plot consisted of two treatments: Kelinci andKancil variety. In addition, five PPD variations as sub plot consisted of 8.1, 11.1, 16.0, 25.0 and 44.4 plant m-2 were arranged in a square spacing. The results showed that DM production from high PPD increased gradually to lower PPD in all varieties. Interception efficiency (IE increased in all varieties from early sowing. A plant population density of 25.0 m-2 and 44.4 plants m-2 intercepted more radiation over 11.1 or 16.0 plants m-2. Conversion efficiency of radiation energy (CE to total dry matter production on Kelinci variety (1.52% indicated a slight higher percentage than on Kancil variety (1.41%. Moreover, the CE and IE values indicated a decrease as the PPD increased on maximum DM.

  20. Effect Of Cowpea Planting Density On Growth, Yield And ...

    African Journals Online (AJOL)

    Effect Of Cowpea Planting Density On Growth, Yield And Productivity Of Component Crops In Cowpea/Cassava Intercropping System. ... Similarly, fresh root yield (t/ha) of cassava was influenced by cropping system and population density in 2005/2006, but not in 2004/2005 cropping season. Cassava tuber yield was ...

  1. The demography of climate-driven and density-regulated population dynamics in a perennial plant

    DEFF Research Database (Denmark)

    Dahlgren, Johan; Bengstsson, Karin; Ehrlén, Johan

    2016-01-01

    Identifying the internal and external drivers of population dynamics is a key objective in ecology, currently accentuated by the need to forecast the effects of climate change on species distributions and abundances. The interplay between environmental and density effects is one particularly...... important aspect of such forecasts. We examined the simultaneous impact of climate and intraspecific density on vital rates of the dwarf shrub Fumana procumbens over 20 yr, using generalized additive mixed models. We then analyzed effects on population dynamics using integral projection models...... to be driven solely by the environment can overestimate extinction risks if there is density dependence. We conclude that density regulation can dampen effects of climate change on Fumana population size, and discuss the need to quantify density dependence in predictions of population responses...

  2. Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants.

    Science.gov (United States)

    Miller, Tom E X

    2007-07-01

    1. It is widely accepted that density-dependent processes play an important role in most natural populations. However, persistent challenges in our understanding of density-dependent population dynamics include evaluating the shape of the relationship between density and demographic rates (linear, concave, convex), and identifying extrinsic factors that can mediate this relationship. 2. I studied the population dynamics of the cactus bug Narnia pallidicornis on host plants (Opuntia imbricata) that varied naturally in relative reproductive effort (RRE, the proportion of meristems allocated to reproduction), an important plant quality trait. I manipulated per-plant cactus bug densities, quantified subsequent dynamics, and fit stage-structured models to the experimental data to ask if and how density influences demographic parameters. 3. In the field experiment, I found that populations with variable starting densities quickly converged upon similar growth trajectories. In the model-fitting analyses, the data strongly supported a model that defined the juvenile cactus bug retention parameter (joint probability of surviving and not dispersing) as a nonlinear decreasing function of density. The estimated shape of this relationship shifted from concave to convex with increasing host-plant RRE. 4. The results demonstrate that host-plant traits are critical sources of variation in the strength and shape of density dependence in insects, and highlight the utility of integrated experimental-theoretical approaches for identifying processes underlying patterns of change in natural populations.

  3. Initial density affects biomass – density and allometric relationships in self-thinning populations of Fagopyrum esculentum

    DEFF Research Database (Denmark)

    Li, Lei; Weiner, Jacob; Zhou, Daowei

    2013-01-01

    and the biomass–density trajectory, we grew Fagopyrum esculentum populations at three high densities and measured shoot biomass, density and the height and diameter of individual plants at six harvests. * Initial density did not affect the slope of the log biomass–log density relationship, but there was a clear...... by the biomass density: the relationship between mass and volume. Initial density could affect this by altering allometric growth in a way that influences architectural compactness. An alternative hypothesis is that competition at higher initial density is more size symmetric, which has been shown to reduce...

  4. Productive performance of soybean cultivars grown in different plant densities

    Directory of Open Access Journals (Sweden)

    Augusto Belchior Marchetti Ribeiro

    Full Text Available ABSTRACT: Plants density in soybean cultivation is an important management practice to achieve high grain yield. In this way, the objective was to evaluate the agronomic traits and grain yield in soybean in different plant densities, in two locations in the south of Minas Gerais. The experimental design was in randomized blocks, arranged in a split plot design, with three replications. Plots were composed of four population densities (300, 400, 500 and 600 thousand plants per hectare and the subplots were composed of six cultivars (‘BMX Força RR’, ‘CD 250 RR’, ‘FMT 08 - 60.346/1’, ‘NA 5909 RR’, ‘TMG 7161 RR’ and ‘V - TOP RR’ grown in Lavras and Inconfidentes, both in Minas Gerais. At the time of harvest was determined the plant height, lodging, insertion of the first pod, harvest index, number of pods per plant, number of grains, number of grains per pod and yield. Regardless of the soybean cultivar, the plant density of up to 600,000 per ha does not affect grain yield, plant height, lodging, harvest index, and number of grains per pod. The cultivars ‘V-TOP RR’ and ‘BMX FORÇA RR’ showed high grain yield and good agronomic traits in Lavras and Incofidentes.

  5. Correlations of Rotylenchulus reniformis Population Densities with 1,3-Dichloropropene Dosage Rate and Pineapple Yields

    OpenAIRE

    Schenck, Susan

    1990-01-01

    The relationships between Rotylenchulus reniformis population densities and pineapple growth and yield were studied in a small-plot field experiment. Increasing rates of handgun-injected 1,3-dichloropropene (1,3-D) preplant fumigant from 0 to 337 liters/ha resulted in greater nematode control, faster plant growth, and larger pineapple fruits. Rotylenchulus reniformis population densities at 2, 4, 6, and 8 months postplant were correlated with plant size and yield. The shorter the time period ...

  6. Causes and consequences of complex population dynamics in an annual plant, Cardamine pensylvanica

    Energy Technology Data Exchange (ETDEWEB)

    Crone, E.E.

    1995-11-08

    The relative importance of density-dependent and density-independent factors in determining the population dynamics of plants has been widely debated with little resolution. In this thesis, the author explores the effects of density-dependent population regulation on population dynamics in Cardamine pensylvanica, an annual plant. In the first chapter, she shows that experimental populations of C. pensylvanica cycled from high to low density in controlled constant-environment conditions. These cycles could not be explained by external environmental changes or simple models of direct density dependence (N{sub t+1} = f[N{sub t}]), but they could be explained by delayed density dependence (N{sub t+1} = f[N{sub t}, N{sub t+1}]). In the second chapter, she shows that the difference in the stability properties of population growth models with and without delayed density dependence is due to the presence of Hopf as well as slip bifurcations from stable to chaotic population dynamics. She also measures delayed density dependence due to effects of parental density on offspring quality in C. pensylvanica and shows that this is large enough to be the cause of the population dynamics observed in C. pensylvanica. In the third chapter, the author extends her analyses of density-dependent population growth models to include interactions between competing species. In the final chapter, she compares the effects of fixed spatial environmental variation and variation in population size on the evolutionary response of C. pensylvanica populations.

  7. Evaluation of sweet sorghum (Sorghum bicolor L. [Moench]) on several population density for bioethanol production

    Science.gov (United States)

    Suwarti; Efendi, R.; Massinai, R.; Pabendon, M. B.

    2018-03-01

    Sweet sorghum (Sorghum bicolor L. [Moench]) crop management that is use for raw source of bioethanol for industrial purpose in Indonesia is less developed. The aim of this research was to evaluated sweet sorghum variety at several population to determine optimum density for juice production. Experiment design was set on split-plot design with three replications, conducted on August to December 2016 at the Indonesian Cereals Research Institute Research Station, Maros South Sulawesi. Main plot were six variation of plant row, and sub plot were three sweet sorghum varieties. Result of the study showed that plant population was high significanty affect to stalk weight, total biomass yield, leaf weight, and also significantly affect bagass weight and juice volume. Varieties were high significantly different in plant height, juice volume, and number of nodes. Super 1 variety on population at 166,667 plants/ha (P1) was obtained the highest juice volume (19,445 lHa-1), meanwhile the highest brix value obtained from Numbu at the same plants population. Furthermore juice volume had significant correlation with biomass weight at the r=0.73. Based on ethanol production, Super 2 and Numbu had the highest volume at 83.333 plants/ha density (P3) and Super 1 at 166.667 plants/ha density with the ethanol volume were 827.68 l Ha-1, 1116.50 l/ha and 993.62 l Ha-1 respectively.

  8. Effects of Plant Density and NPK Application on the Growth and ...

    African Journals Online (AJOL)

    Studies were conducted at Evboneka, Edo State, Nigeria in a forest zone to examine the effect of increasing plant population and NPK application on the growth and tuber yield of Dioscorea rotundata (Poir) cv “Obiaoturugo”. This study involved three trials. The first was conducted in 2010 involving five plant densities (10000 ...

  9. Grain yield of corn at different population densities and intercropped with forages

    Directory of Open Access Journals (Sweden)

    José M. do Nascimento

    2015-12-01

    Full Text Available ABSTRACT The no-tillage system optimizes agricultural areas, maintaining the supply of straw and promoting crop rotation and soil conservation. The aim of the present study was to evaluate sowing quality and grain yield of corn intercropped with three forage species of the Urochloa genus associated with two corn population densities. The experiment was conducted at the São Paulo State University (UNESP, in Jaboticabal-SP, Brazil. The experimental design was randomized blocks in a 2 x 3 factorial scheme with four replicates. The treatments consisted of two corn densities (55,000 and 75,000 plants ha-1 intercropped with three forages (Urochloa brizantha, Urochloa decumbens and Urochloa ruziziensis sown between rows of corn in the V4 stage. The following corn variables were analysed: mean number of days for emergence, longitudinal distribution, grain yield, initial population and final population. There were differences between corn populations (p < 0.1 and the intercropping of corn with the species U. brizantha and U. ruziziensis promoted the best results, which permitted concluding that the cultivation of corn at the population density of 75,000 plants ha-1 intercropped U. brizantha and U. ruziziensis promoted better sowing quality and, consequently, higher grain yields.

  10. Nutritional Correlates of Koala Persistence in a Low-Density Population

    Science.gov (United States)

    Stalenberg, Eleanor; Wallis, Ian R.; Cunningham, Ross B.; Allen, Chris; Foley, William J.

    2014-01-01

    It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus) populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts) compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence. PMID:25470599

  11. Nutritional correlates of koala persistence in a low-density population.

    Directory of Open Access Journals (Sweden)

    Eleanor Stalenberg

    Full Text Available It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence.

  12. High coffee population density to improve fertility of an oxisol

    OpenAIRE

    Pavan,Marcos Antonio; Chaves,Júlio César Dias; Siqueira,Rubens; Androcioli Filho,Armando; Colozzi Filho,Arnaldo; Balota,Elcio Liborio

    1999-01-01

    The objective of this work was to evaluate the effect of coffee (Coffea arabica L.) population densities on the chemical and microbiological properties of an Oxisol. The work was carried out on soil samples of 0-20 cm depth originated from an experimental site which had been used for coffee tree spacing studies during 15 years, in Paraná State, Brazil. Eight coffee tree populations were evaluated: 7143, 3571, 2381, 1786, 1429, 1190, 1020, and 893 trees/ha. Increasing plant population increase...

  13. Plant Density Effect in Different Planting Dates on Growth Indices, Yield and

    Directory of Open Access Journals (Sweden)

    F Azizi

    2013-04-01

    Full Text Available In order to determine the appropriate plant density in different planting dates for sweet corn cultivar KSC403su, an experiment was conducted using a randomized complete block design in split plot lay out with three replications at Seed and Plant Improvement Institute in Karaj in 2006. Three planting dates (22 May, 5 June and 22 June were assigned as main plots and three plant densities (65000, 75000 and 85000 plants per hectare were considered as sub plots. Effect of planting date on row/ear, 1000 kernels weight, biological yield and harvest index was significant at 1% probability level and it was significant at 5% probability level for kernels/ear row and grain yield. All traits decreased with postponement of planting date to 5 June except for row/ear, kernels/row and grain yield. More delay in planting from 22 May to 22 June caused that grain yield was decreased significantly about 32.5% (from 14.45 to 9.78 ton/ha. Effect of plant density was significant at 1% probability level for all the traits. All of the traits decreased significantly with increasing plant density except for biological yield. The highest grain yield was resulted from 65000 plants per hectare density (14.20 ton/ha. Interaction effect of planting date and plant density was significant at 5% probability level for biological yield and harvest index but it wasn’t significant for the other traits. Growth indices decreased with delay in planting date and increasing plant density. Only leaf area index increased in more plant densities. From the results of this experiment it might be resulted that appropriate planting date to produce the highest grain yield is 22 May to 5 June for sweet corn cultivar KSC403su and also the highest grain yield can obtain from 65000 plants per hectare density.

  14. All Hazard Hotspots/Population Density

    Indian Academy of Sciences (India)

    This map shows hotspots of humanitarian risk for floods, cyclones, and drought overlaying a population density gradient. Blue areas with striped overlay represent areas of high population density that are also risk hotspots. These are at higher risk of future population displacement as a result of climate hazards.

  15. Experimental evidence that density dependence strongly influences plant invasions through fragmented landscapes.

    Science.gov (United States)

    Williams, Jennifer L; Levine, Jonathan M

    2018-04-01

    Populations of range expanding species encounter patches of both favorable and unfavorable habitat as they spread across landscapes. Theory shows that increasing patchiness slows the spread of populations modeled with continuously varying population density when dispersal is not influence by the environment or individual behavior. However, as is found in uniformly favorable landscapes, spread remains driven by fecundity and dispersal from low density individuals at the invasion front. In contrast, when modeled populations are composed of discrete individuals, patchiness causes populations to build up to high density before dispersing past unsuitable habitat, introducing an important influence of density dependence on spread velocity. To test the hypothesized interaction between habitat patchiness and density dependence, we simultaneously manipulated these factors in a greenhouse system of annual plants spreading through replicated experimental landscapes. We found that increasing the size of gaps and amplifying the strength of density dependence both slowed spread velocity, but contrary to predictions, the effect of amplified density dependence was similar across all landscape types. Our results demonstrate that the discrete nature of individuals in spreading populations has a strong influence on how both landscape patchiness and density dependence influence spread through demographic and dispersal stochasticity. Both finiteness and landscape structure should be critical components to theoretical predictions of future spread for range expanding native species or invasive species colonizing new habitat. © 2018 by the Ecological Society of America.

  16. Aruscular mycorhizal fungi alter plant allometry and biomass - density relationships

    DEFF Research Database (Denmark)

    Zhang, Qian; Zhang, Lu; Weiner, Jacob

    2011-01-01

    Background and Aims Plant biomass–density relationships during self-thinning are determined mainly by allometry. Both allometry and biomass–density relationship have been shown to vary with abiotic conditions, but the effects of biotic interactions have not been investigated. Arbuscular mycorrhizal....... In self-thinning populations, the slope of the log (mean shoot biomass) vs. log density relationship was significantly steeper for the high AMF treatment (slope = –1·480) than for the low AMF treatment (–1·133). The canopy radius–biomass allometric exponents were not significantly affected by AMF level...

  17. Size asymmetry in intraspecific competition and the density-dependence of inbreeding depression in a natural plant population: a case study in cassava (Manihot esculenta Crantz, Euphorbiaceae).

    Science.gov (United States)

    Pujol, B; McKey, D

    2006-01-01

    The effects of competition on the genetic composition of natural populations are not well understood. We combined demography and molecular genetics to study how intraspecific competition affects microevolution in cohorts of volunteer plants of cassava (Manihot esculenta) originating from seeds in slash-and-burn fields of Palikur Amerindians in French Guiana. In this clonally propagated crop, genotypic diversity is enhanced by the incorporation of volunteer plants into farmers' stocks of clonal propagules. Mortality of volunteer plants was density-dependent. Furthermore, the size asymmetry of intraspecific competition increased with local clustering of plants. Size of plants was correlated with their multilocus heterozygosity, and stronger size-dependence of survival in clusters of plants, compared with solitary plants, increased the magnitude of inbreeding depression when competition was severe. The density-dependence of inbreeding depression of volunteer plants helps explain the high heterozygosity of volunteers that survive to harvest time and thus become candidates for clonal propagation. This effect could help favour the maintenance of sex in this 'vegetatively' propagated crop plant.

  18. Genetic Variation and Phenotypic Response of 15 Sweet Corn (Zea mays L. Hybrids to Population Density

    Directory of Open Access Journals (Sweden)

    William F. Tracy

    2013-06-01

    Full Text Available Planting sweet corn at higher densities may increase the canopy cover, reducing light transmission to the understory and suppressing weed growth. High planting densities can also negatively impact the crop, however, by decreasing ear size and overall yield. The objective of this study was to determine the potential for increased density tolerance of 15 sweet corn hybrids by estimating the general combining ability (GCA and specific combining ability (SCA for traits of interest. In 2010 and 2011, a half-diallel of six historic sweet corn inbreds was evaluated in a split-block randomized complete block design in four Wisconsin environments, with four replicates in each environment. Hybrids were planted at a low density of 29,936 plants ha−1, a medium density of 63,615 plants ha−1, and a high density of 97,293 plants ha−1. Significant differences between hybrids were found for phenomorphological traits and ear characteristics. Inbreds C68, C40 and Ia5125 produced the progeny most tolerant of the highest population density. Among these genotypes, tolerance to high density is a heritable trait, indicating the feasibility of breeding sweet corn for density tolerance and potential weed competitiveness.

  19. Ability of matrix models to explain the past and predict the future of plant populations.

    Science.gov (United States)

    McEachern, Kathryn; Crone, Elizabeth E.; Ellis, Martha M.; Morris, William F.; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlen, Johan; Kaye, Thomas N.; Knight, Tiffany M.; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer I.; Doak, Daniel F.; Ganesan, Rengaian; Thorpe, Andrea S.; Menges, Eric S.

    2013-01-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models.

  20. Ability of matrix models to explain the past and predict the future of plant populations.

    Science.gov (United States)

    Crone, Elizabeth E; Ellis, Martha M; Morris, William F; Stanley, Amanda; Bell, Timothy; Bierzychudek, Paulette; Ehrlén, Johan; Kaye, Thomas N; Knight, Tiffany M; Lesica, Peter; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F; Ticktin, Tamara; Valverde, Teresa; Williams, Jennifer L; Doak, Daniel F; Ganesan, Rengaian; McEachern, Kathyrn; Thorpe, Andrea S; Menges, Eric S

    2013-10-01

    Uncertainty associated with ecological forecasts has long been recognized, but forecast accuracy is rarely quantified. We evaluated how well data on 82 populations of 20 species of plants spanning 3 continents explained and predicted plant population dynamics. We parameterized stage-based matrix models with demographic data from individually marked plants and determined how well these models forecast population sizes observed at least 5 years into the future. Simple demographic models forecasted population dynamics poorly; only 40% of observed population sizes fell within our forecasts' 95% confidence limits. However, these models explained population dynamics during the years in which data were collected; observed changes in population size during the data-collection period were strongly positively correlated with population growth rate. Thus, these models are at least a sound way to quantify population status. Poor forecasts were not associated with the number of individual plants or years of data. We tested whether vital rates were density dependent and found both positive and negative density dependence. However, density dependence was not associated with forecast error. Forecast error was significantly associated with environmental differences between the data collection and forecast periods. To forecast population fates, more detailed models, such as those that project how environments are likely to change and how these changes will affect population dynamics, may be needed. Such detailed models are not always feasible. Thus, it may be wiser to make risk-averse decisions than to expect precise forecasts from models. © 2013 Society for Conservation Biology.

  1. Leaf Senescence, Root Morphology, and Seed Yield of Winter Oilseed Rape (Brassica napus L. at Varying Plant Densities

    Directory of Open Access Journals (Sweden)

    Ming Li

    2017-01-01

    Full Text Available In this study, the yield and yield components were studied using a conventional variety Zhongshuang 11 (ZS 11 and a hybrid variety Zhongyouza 12 (ZYZ 12 at varying plant densities. The increase in plant density led to an initial increase in seed yield and pod numbers per unit area, followed by a decrease. The optimal plant density was 58.5 × 104 plants ha−1 in both ZS 11 and ZYZ 12. The further researches on physiological traits showed a rapid decrease in the green leaf area index (GLAI and chlorophyll content and a remarkable increase in malondialdehyde content in high plant density (HPD population than did the low plant density (LPD population, which indicated the rapid leaf senescence. However, HPD had higher values in terms of pod area index (PAI, pod photosynthesis, and radiation use efficiency (RUE after peak anthesis. A significantly higher level of dry matter accumulation and nitrogen utilization efficiency were observed, which resulted in higher yield. HPD resulted in a rapid decrease in root morphological parameters (root length, root tips, root surface area, and root volume. These results suggested that increasing the plant density within a certain range was a promising option for high seed yield in winter rapeseed in China.

  2. Local environment and density-dependent feedbacks determine population growth in a forest herb

    DEFF Research Database (Denmark)

    Dahlgren, Johan Petter; Östergård, Hannah; Ehrlén, Johan

    2014-01-01

    Linking spatial variation in environmental factors to variation in demographic rates is essential for a mechanistic understanding of the dynamics of populations. However, we still know relatively little about such links, partly because feedbacks via intraspecific density make them difficult...... to observe in natural populations. We conducted a detailed field study and investigated simultaneous effects of environmental factors and the intraspecific density of individuals on the demography of the herb Lathyrus vernus. In regression models of vital rates we identified effects associated with spring...... shade on survival and growth, while density was negatively correlated with these vital rates. Density was also negatively correlated with average individual size in the study plots, which is consistent with self-thinning. In addition, average plant sizes were larger than predicted by density in plots...

  3. A consumer-resource approach to the density-dependent population dynamics of mutualism.

    Science.gov (United States)

    Holland, J Nathaniel; DeAngelis, Donald L

    2010-05-01

    Like predation and competition, mutualism is now recognized as a consumer-resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant-mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  4. A consumer-resource approach to the density-dependent population dynamics of mutualism

    Science.gov (United States)

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2010-01-01

    Like predation and competition, mutualism is now recognized as a consumer resource (C-R) interaction, including, in particular, bi-directional (e.g., coral, plant- mycorrhizae) and uni-directional (e.g., ant-plant defense, plant-pollinator) C-R mutualisms. Here, we develop general theory for the density-dependent population dynamics of mutualism based on the C-R mechanism of interspecific interaction. To test the influence of C-R interactions on the dynamics and stability of bi- and uni-directional C-R mutualisms, we developed simple models that link consumer functional response of one mutualistic species with the resources supplied by another. Phase-plane analyses show that the ecological dynamics of C-R mutualisms are stable in general. Most transient behavior leads to an equilibrium of mutualistic coexistence, at which both species densities are greater than in the absence of interactions. However, due to the basic nature of C-R interactions, certain density-dependent conditions can lead to C-R dynamics characteristic of predator-prey interactions, in which one species overexploits and causes the other to go extinct. Consistent with empirical phenomena, these results suggest that the C-R interaction can provide a broad mechanism for understanding density-dependent population dynamics of mutualism. By unifying predation, competition, and mutualism under the common ecological framework of consumer-resource theory, we may also gain a better understanding of the universal features of interspecific interactions in general.

  5. Mechanisms Affecting Population Density in Fragmented Habitat

    Directory of Open Access Journals (Sweden)

    Lutz Tischendorf

    2005-06-01

    Full Text Available We conducted a factorial simulation experiment to analyze the relative importance of movement pattern, boundary-crossing probability, and mortality in habitat and matrix on population density, and its dependency on habitat fragmentation, as well as inter-patch distance. We also examined how the initial response of a species to a fragmentation event may affect our observations of population density in post-fragmentation experiments. We found that the boundary-crossing probability from habitat to matrix, which partly determines the emigration rate, is the most important determinant for population density within habitat patches. The probability of crossing a boundary from matrix to habitat had a weaker, but positive, effect on population density. Movement behavior in habitat had a stronger effect on population density than movement behavior in matrix. Habitat fragmentation and inter-patch distance may have a positive or negative effect on population density. The direction of both effects depends on two factors. First, when the boundary-crossing probability from habitat to matrix is high, population density may decline with increasing habitat fragmentation. Conversely, for species with a high matrix-to-habitat boundary-crossing probability, population density may increase with increasing habitat fragmentation. Second, the initial distribution of individuals across the landscape: we found that habitat fragmentation and inter-patch distance were positively correlated with population density when individuals were distributed across matrix and habitat at the beginning of our simulation experiments. The direction of these relationships changed to negative when individuals were initially distributed across habitat only. Our findings imply that the speed of the initial response of organisms to habitat fragmentation events may determine the direction of observed relationships between habitat fragmentation and population density. The time scale of post

  6. Medicinal Plants Density Along an Altitudinal Gradient in and Around Ayubia National Park

    International Nuclear Information System (INIS)

    Tariq, A.; Adnan, M.; Begum, S.

    2016-01-01

    Medicinal plants are an essential source of livelihood for many rural populations and are currently facing several threats of extinction in temperate Himalaya, such as excessive grazing and collection along altitudinal gradients. The present study was designed to investigate the species density of medicinal plants at different mid-altitude levels (2200, 2300, 2400, and 2500 m above the sea level (a.s.l.) between two forest-use types and to examine the possible association between medicinal plant densities and forest-stand structural variables along the altitudinal gradient. Factorial design analysis of variance showed that the densities of all medicinal plants differed significantly between the forest-use types (p<0.00) and elevation (p<0.00). Moreover, a significant interaction (p<0.04) was also observed between the forest-use types and elevation. In the old-growth forest, density of medicinal plants was 290/40 m/sup 2/ at the higher altitude (2500 m a.s.l.), approximately 1.5-fold less than the 475/40 m/sup 2/ density observed at lower altitude (2200 m a.s.l.). However, in derived woodland, density of medicinal plants at higher altitude was approximately 4-fold less than that at the lower altitude. At these altitudinal levels, medicinal plants densities, such as Valeriana jatamansi, were significantly higher under old-growth forest compared to derived woodland, where they were almost nonexistent. A rapid vulnerability assessment has also shown that Valeriana jatamansi and Viola canescens were highly vulnerable species. Litter cover was the influential variable that was most likely related to medicinal plant density. In conclusion, abundance of medicinal plants decreased along mid-altitude levels in both of the forest-use types. However, this decrease was extremely marked in the derived woodland, and this decline may be due to human activity. Hence, these factors must be considered in future studies to suggest protective measures that can be applied along

  7. Populations in clonal plants

    Directory of Open Access Journals (Sweden)

    Jussi Tammisola

    1986-12-01

    Full Text Available Population phenomena in higher plants are reviewed critically, particularly in relation to clonality. An array of concepts used in the field are discussed. In contrast to animals, higher plants are modular in structure. Plant populations show hierarchy at two levels: ramets and genets. In addition, their demography is far more complicated, since even the direction of development of a ramet may change by rejuvenation. Therefore, formulae concerning animal populations often require modification for plants. Furthermore, at the zygotic stage, higher plants are generally less mobile than animals. Accordingly, their population processes tend to be more local. Most populations of plants have a genetic structure: alleles and genotypes are spatially aggregated. Due to the short-ranged foraging behaviour of pollinators, genetically non-random pollination prevails. A generalized formula for parent-offspring dispersal variance is derived. It is used to analyze the effect of clonality on genetic patchiness in populations. In self-compatible species, an increase in clonality will tend to increase the degree of patchiness, while in self-incompatible species a decrease may result. Examples of population structure studies in different species are presented. A considerable degree of genetic variation appears to be found also in the populations of species with a strong allocation of resources to clonal growth or apomictic seed production. Some consequences of clonality are considered from the point of view of genetic conservation and plant breeding.

  8. Global Population Density Grid Time Series Estimates

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Population Density Grid Time Series Estimates provide a back-cast time series of population density grids based on the year 2000 population grid from SEDAC's...

  9. Infection Density Dynamics of the Citrus Greening Bacterium “Candidatus Liberibacter asiaticus” in Field Populations of the Psyllid Diaphorina citri and Its Relevance to the Efficiency of Pathogen Transmission to Citrus Plants

    Science.gov (United States)

    Ukuda-Hosokawa, Rie; Sadoyama, Yasutsune; Kishaba, Misaki; Kuriwada, Takashi; Anbutsu, Hisashi

    2015-01-01

    Huanglongbing, or citrus greening, is a devastating disease of citrus plants recently spreading worldwide, which is caused by an uncultivable bacterial pathogen, “Candidatus Liberibacter asiaticus,” and vectored by a phloem-sucking insect, Diaphorina citri. We investigated the infection density dynamics of “Ca. Liberibacter asiaticus” in field populations of D. citri with experiments using field-collected insects to address how “Ca. Liberibacter asiaticus” infection density in the vector insect is relevant to pathogen transmission to citrus plants. Of 500 insects continuously collected from “Ca. Liberibacter asiaticus”-infected citrus trees with pathological symptoms in the spring and autumn of 2009, 497 (99.4%) were “Ca. Liberibacter asiaticus” positive. The infections were systemic across head-thorax and abdomen, ranging from 103 to 107 bacteria per insect. In spring, the infection densities were low in March, at ∼103 bacteria per insect, increasing up to 106 to 107 bacteria per insect in April and May, and decreasing to 105 to 106 bacteria per insect in late May, whereas the infection densities were constantly ∼106 to 107 bacteria per insect in autumn. Statistical analysis suggested that several factors, such as insect sex, host trees, and collection dates, may be correlated with “Ca. Liberibacter asiaticus” infection densities in field D. citri populations. Inoculation experiments with citrus seedlings using field-collected “Ca. Liberibacter asiaticus”-infected insects suggested that (i) “Ca. Liberibacter asiaticus”-transmitting insects tend to exhibit higher infection densities than do nontransmitting insects, (ii) a threshold level (∼106 bacteria per insect) of “Ca. Liberibacter asiaticus” density in D. citri is required for successful transmission to citrus plants, and (iii) D. citri attaining the threshold infection level transmits “Ca. Liberibacter asiaticus” to citrus plants in a stochastic manner. These

  10. Accuracy, precision, and economic efficiency for three methods of thrips (Thysanoptera: Thripidae) population density assessment.

    Science.gov (United States)

    Sutherland, Andrew M; Parrella, Michael P

    2011-08-01

    Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major horticultural pest and an important vector of plant viruses in many parts of the world. Methods for assessing thrips population density for pest management decision support are often inaccurate or imprecise due to thrips' positive thigmotaxis, small size, and naturally aggregated populations. Two established methods, flower tapping and an alcohol wash, were compared with a novel method, plant desiccation coupled with passive trapping, using accuracy, precision and economic efficiency as comparative variables. Observed accuracy was statistically similar and low (37.8-53.6%) for all three methods. Flower tapping was the least expensive method, in terms of person-hours, whereas the alcohol wash method was the most expensive. Precision, expressed by relative variation, depended on location within the greenhouse, location on greenhouse benches, and the sampling week, but it was generally highest for the flower tapping and desiccation methods. Economic efficiency, expressed by relative net precision, was highest for the flower tapping method and lowest for the alcohol wash method. Advantages and disadvantages are discussed for all three methods used. If relative density assessment methods such as these can all be assumed to accurately estimate a constant proportion of absolute density, then high precision becomes the methodological goal in terms of measuring insect population density, decision making for pest management, and pesticide efficacy assessments.

  11. Effect of Plant Density and Land Race on the Growth and Yield of ...

    African Journals Online (AJOL)

    Field study was conducted at National Root Crops Research Institute out station Nyanya Research farm located at Zhewun Jidna Nasarawa State during 2007 and 2008 cropping seasons. The aim was to determine the effect of optimum plant population Density of sweet potato land races under improved management ...

  12. A test of density-dependent pollination within three populations of endangered Pentachaeta lyonii

    Directory of Open Access Journals (Sweden)

    Jocelyn R. Holt

    2014-02-01

    Full Text Available A major concern with endangered plants is that they might attract insufficient numbers of pollinators, produce low numbers of seeds, and decline towards extinction. We examined effects of density as it varied within populations on the pollination of Pentachaeta lyonii, an endangered species that requires pollinators for seed set. Generalist bee-flies and bees were abundant pollinators at three sites for two years. Per-capita visitation rates did not decline at sparse points or for plants placed on the order of 10 m away from other flowering individuals. Seed production was not pollinator-limited within patches, but seed set was low beyond 10 m from neighbours. Considering prior findings, factors such as habitat loss, competition with alien plants, and poor establishment of new populations likely contribute to the rarity of P. lyonii more than pollination failure.

  13. Influence of Plant Population and Nitrogen-Fertilizer at Various Levels on Growth and Growth Efficiency of Maize

    Directory of Open Access Journals (Sweden)

    M. I. Tajul

    2013-01-01

    Full Text Available Field experiments were conducted to evaluate plant population and N-fertilizer effects on yield and yield components of maize (Zea mays L.. Three levels of plant populations (53000, 66000, and 800000 plants ha−1 corresponding to spacings of 75 × 25, 60 × 25, and 50 × 25 cm and 4 doses of N (100, 140, 180, and 220 kg ha−1 were the treatment variables. Results revealed that plant growth, light interception (LI, yield attributes, and grain yield varied significantly due to the variations in population density and N-rates. Crop growth rate (CGR was the highest with the population of 80,000 ha−1 receiving 220 kg N ha−1, while relative growth rate (RGR showed an opposite trend of CGR. Light absorption was maximum when most of densely populated plant received the highest amount of N (220 kg N ha−1. Response of soil-plant-analysis development (SPAD value as well as N-content to N-rates was found significant. Plant height was the maximum at the lowest plant density with the highest amount of N. Plants that received 180 kg N ha−1 with 80,000 plants ha−1 had larger foliage, greater SPAD value, and higher amount of grains cob−1 that contributed to the maximum yield (5.03 t ha−1 and the maximum harvest index (HI compared to the plants in other treatments.

  14. Infection Density Dynamics of the Citrus Greening Bacterium "Candidatus Liberibacter asiaticus" in Field Populations of the Psyllid Diaphorina citri and Its Relevance to the Efficiency of Pathogen Transmission to Citrus Plants.

    Science.gov (United States)

    Ukuda-Hosokawa, Rie; Sadoyama, Yasutsune; Kishaba, Misaki; Kuriwada, Takashi; Anbutsu, Hisashi; Fukatsu, Takema

    2015-06-01

    Huanglongbing, or citrus greening, is a devastating disease of citrus plants recently spreading worldwide, which is caused by an uncultivable bacterial pathogen, "Candidatus Liberibacter asiaticus," and vectored by a phloem-sucking insect, Diaphorina citri. We investigated the infection density dynamics of "Ca. Liberibacter asiaticus" in field populations of D. citri with experiments using field-collected insects to address how "Ca. Liberibacter asiaticus" infection density in the vector insect is relevant to pathogen transmission to citrus plants. Of 500 insects continuously collected from "Ca. Liberibacter asiaticus"-infected citrus trees with pathological symptoms in the spring and autumn of 2009, 497 (99.4%) were "Ca. Liberibacter asiaticus" positive. The infections were systemic across head-thorax and abdomen, ranging from 10(3) to 10(7) bacteria per insect. In spring, the infection densities were low in March, at ∼ 10(3) bacteria per insect, increasing up to 10(6) to 10(7) bacteria per insect in April and May, and decreasing to 10(5) to 10(6) bacteria per insect in late May, whereas the infection densities were constantly ∼ 10(6) to 10(7) bacteria per insect in autumn. Statistical analysis suggested that several factors, such as insect sex, host trees, and collection dates, may be correlated with "Ca. Liberibacter asiaticus" infection densities in field D. citri populations. Inoculation experiments with citrus seedlings using field-collected "Ca. Liberibacter asiaticus"-infected insects suggested that (i) "Ca. Liberibacter asiaticus"-transmitting insects tend to exhibit higher infection densities than do nontransmitting insects, (ii) a threshold level (∼ 10(6) bacteria per insect) of "Ca. Liberibacter asiaticus" density in D. citri is required for successful transmission to citrus plants, and (iii) D. citri attaining the threshold infection level transmits "Ca. Liberibacter asiaticus" to citrus plants in a stochastic manner. These findings provide

  15. Plant densities and modulation of symbiotic nitrogen fixation in soybean

    Directory of Open Access Journals (Sweden)

    Marcos Javier de Luca

    2014-06-01

    Full Text Available Soybean nitrogen (N demands can be supplied to a large extent via biological nitrogen fixation, but the mechanisms of source/sink regulating photosynthesis/nitrogen fixation in high yielding cultivars and current crop management arrangements need to be investigated. We investigated the modulation of symbiotic nitrogen fixation in soybean [Glycine max (L. Merrill] at different plant densities. A field trial was performed in southern Brazil with six treatments, including non-inoculated controls without and with N-fertilizer, both at a density of 320,000 plants ha−1, and plants inoculated with Bradyrhizobium elkanii at four densities, ranging from 40,000 to 320,000 plants ha−1. Differences in nodulation, biomass production, N accumulation and partition were observed at stage R5, but not at stage V4, indicating that quantitative and qualitative factors (such as sunlight infrared/red ratio assume increasing importance during the later stages of plant growth. Decreases in density in the inoculated treatments stimulated photosynthesis and nitrogen fixation per plant. Similar yields were obtained at the different plant densities, with decreases only at the very low density level of 40,000 plants ha−1, which was also the only treatment to show differences in seed protein and oil contents. Results confirm a fine tuning of the mechanisms of source/sink, photosynthesis/nitrogen fixation under lower plant densities. Higher photosynthesis and nitrogen fixation rates are capable of sustaining increased plant growth.

  16. Baselines to detect population stability of the threatened alpine plant Packera franciscana (Asteraceae)

    Science.gov (United States)

    James F. Fowler; Carolyn Hull Sieg; Shaula Hedwall

    2015-01-01

    Population size and density estimates have traditionally been acceptable ways to track species’ response to changing environments; however, species' population centroid elevation has recently been an equally important metric. Packera franciscana (Greene) W.A. Weber and A. Love (Asteraceae; San Francisco Peaks ragwort) is a single mountain endemic plant found only...

  17. The effect of different initial densities of nematode (Meloidogyne javanica) on the build-up of Pasteuria penetrans population.

    Science.gov (United States)

    Darban, Daim Ali; Pathan, Mumtaz Ali; Bhatti, Abdul Ghaffar; Maitelo, Sultan Ahmed

    2005-02-01

    Pasteuria penetrans will build-up faster where there is a high initial nematode density and can suppress root-knot nematode populations in the roots of tomato plants. The effect of different initial densities of nematode (Meloidogyne javanica) (150, 750, 1500, 3000) and P. penetrans infected females (F1, F3) densities (F0=control and AC=absolute control without nematode or P. penetrans inoculum) on the build-up of Pasteuria population was investigated over four crop cycles. Two major points of interest were highlighted. First, that within a confined soil volume, densities of P. penetrans can increase >100 times within 2 or 3 crop cycles. Second, from a relatively small amount of spore inoculum, infection of the host is very high. There were more infected females in the higher P. penetrans doses. The root growth data confirms the greater number of females in the controls particularly at the higher inoculum densities in the third and fourth crops. P. penetrans generally caused the fresh root weights to be higher than those in the control. P. penetrans has shown greater reduction of egg masses per plant at most densities. The effects of different initial densities of M. javanica and P. penetrans on the development of the pest and parasite populations were monitored. And no attempt was made to return the P. penetrans spores to the pots after each crop so the build-up in actual numbers of infected females and spores under natural conditions may be underestimated.

  18. Density Estimation in Several Populations With Uncertain Population Membership

    KAUST Repository

    Ma, Yanyuan

    2011-09-01

    We devise methods to estimate probability density functions of several populations using observations with uncertain population membership, meaning from which population an observation comes is unknown. The probability of an observation being sampled from any given population can be calculated. We develop general estimation procedures and bandwidth selection methods for our setting. We establish large-sample properties and study finite-sample performance using simulation studies. We illustrate our methods with data from a nutrition study.

  19. Econometric studies of urban population density: a survey.

    Science.gov (United States)

    Mcdonald, J F

    1989-01-01

    This paper presents the 1st reasonably comprehensive survey of empirical research of urban population densities since the publication of the book by Edmonston in 1975. The survey summarizes contributions to empirical knowledge that have been made since 1975 and points toward possible areas for additional research. The paper also provides a brief interpretative intellectual history of the topic. It begins with a personal overview of research in the field. The next section discusses econometric issues that arise in the estimation of population density functions in which density is a function only of a distance to the central business district of the urban area. Section 4 summarizes the studies of a single urban area that went beyond the estimation of simple distance-density functions, and Section 5 discusses studies that sought to explain the variations across urban areas in population density patterns. McDonald refers to the standard theory of urban population density throughout the paper. This basic model is presented in the textbook by Mills and Hamilton and it is assumed that the reader is familiar with the model.

  20. Herbivory and growth in terrestrial and aquatic populations of amphibious stream plants

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Jacobsen, Dean

    2002-01-01

    1. Many amphibious plant species grow in the transition between terrestrial and submerged vegetation in small lowland streams. We determined biomass development, leaf turnover rate and invertebrate herbivory during summer in terrestrial and aquatic populations of three amphibious species...... production (average 1.2-5.1%) than aquatic populations (2.9-17.3%), while the same plant dry mass was consumed per unit ground area. 3. Grazing loss increased linearly with leaf age apart from the youngest leaf stages. Grazing loss during the lifetime of leaves was therefore 2.4-3.1 times higher than mean...... apparent loss to standing leaves of all ages. The results imply that variation in density of grazers relative to plant production can account for differences in grazing impact between terrestrial and aquatic populations, and that fast leaf turnover keeps apparent grazing damage down. 4. We conclude...

  1. Density regulation in Northeast Atlantic fish populations: Density dependence is stronger in recruitment than in somatic growth.

    Science.gov (United States)

    Zimmermann, Fabian; Ricard, Daniel; Heino, Mikko

    2018-05-01

    Population regulation is a central concept in ecology, yet in many cases its presence and the underlying mechanisms are difficult to demonstrate. The current paradigm maintains that marine fish populations are predominantly regulated by density-dependent recruitment. While it is known that density-dependent somatic growth can be present too, its general importance remains unknown and most practical applications neglect it. This study aimed to close this gap by for the first time quantifying and comparing density dependence in growth and recruitment over a large set of fish populations. We fitted density-dependent models to time-series data on population size, recruitment and age-specific weight from commercially exploited fish populations in the Northeast Atlantic Ocean and the Baltic Sea. Data were standardized to enable a direct comparison within and among populations, and estimated parameters were used to quantify the impact of density regulation on population biomass. Statistically significant density dependence in recruitment was detected in a large proportion of populations (70%), whereas for density dependence in somatic growth the prevalence of density dependence depended heavily on the method (26% and 69%). Despite age-dependent variability, the density dependence in recruitment was consistently stronger among age groups and between alternative approaches that use weight-at-age or weight increments to assess growth. Estimates of density-dependent reduction in biomass underlined these results: 97% of populations with statistically significant parameters for growth and recruitment showed a larger impact of density-dependent recruitment on population biomass. The results reaffirm the importance of density-dependent recruitment in marine fishes, yet they also show that density dependence in somatic growth is not uncommon. Furthermore, the results are important from an applied perspective because density dependence in somatic growth affects productivity and

  2. The Genetic Basis of Plant Architecture in 10 Maize Recombinant Inbred Line Populations.

    Science.gov (United States)

    Pan, Qingchun; Xu, Yuancheng; Li, Kun; Peng, Yong; Zhan, Wei; Li, Wenqiang; Li, Lin; Yan, Jianbing

    2017-10-01

    Plant architecture is a key factor affecting planting density and grain yield in maize ( Zea mays ). However, the genetic mechanisms underlying plant architecture in diverse genetic backgrounds have not been fully addressed. Here, we performed a large-scale phenotyping of 10 plant architecture-related traits and dissected the genetic loci controlling these traits in 10 recombinant inbred line populations derived from 14 diverse genetic backgrounds. Nearly 800 quantitative trait loci (QTLs) with major and minor effects were identified as contributing to the phenotypic variation of plant architecture-related traits. Ninety-two percent of these QTLs were detected in only one population, confirming the diverse genetic backgrounds of the mapping populations and the prevalence of rare alleles in maize. The numbers and effects of QTLs are positively associated with the phenotypic variation in the population, which, in turn, correlates positively with parental phenotypic and genetic variations. A large proportion (38.5%) of QTLs was associated with at least two traits, suggestive of the frequent occurrence of pleiotropic loci or closely linked loci. Key developmental genes, which previously were shown to affect plant architecture in mutant studies, were found to colocalize with many QTLs. Five QTLs were further validated using the segregating populations developed from residual heterozygous lines present in the recombinant inbred line populations. Additionally, one new plant height QTL, qPH3 , has been fine-mapped to a 600-kb genomic region where three candidate genes are located. These results provide insights into the genetic mechanisms controlling plant architecture and will benefit the selection of ideal plant architecture in maize breeding. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. A mechanistic analysis of density dependence in algal population dynamics

    Directory of Open Access Journals (Sweden)

    Adrian eBorlestean

    2015-04-01

    Full Text Available Population density regulation is a fundamental principle in ecology, but the specific process underlying functional expression of density dependence remains to be fully elucidated. One view contends that patterns of density dependence are largely fixed across a species irrespective of environmental conditions, whereas another is that the strength and expression of density dependence are fundamentally variable depending on the nature of exogenous or endogenous constraints acting on the population. We conducted a study investigating the expression of density dependence in Chlamydomonas spp. grown under a gradient from low to high nutrient density. We predicted that the relationship between per capita growth rate (pgr and population density would vary from concave up to concave down as nutrient density became less limiting and populations experienced weaker density regulation. Contrary to prediction, we found that the relationship between pgr and density became increasingly concave-up as nutrient levels increased. We also found that variation in pgr increased, and pgr levels reached higher maxima in nutrient-limited environments. Most likely, these results are attributable to population growth suppression in environments with high intraspecific competition due to limited nutrient resources. Our results suggest that density regulation is strongly variable depending on exogenous and endogenous processes acting on the population, implying that expression of density dependence depends extensively on local conditions. Additional experimental work should reveal the mechanisms influencing how the expression of density dependence varies across populations through space and time.

  4. Effect Of Plant Population On Yield Of Maize And Climbing Beans ...

    African Journals Online (AJOL)

    A field experiment was conducted at Kachwekano near Kabale town for two seasons: second rains of 1996 (1996b) and first rains of 1997 (1997a), to determine the appropriate plant population density (PPD) of maize that would maximize bean yield in an intercrop system. The treatments were: (a) maize PPD ranging from ...

  5. Potato yield and quality as a function of the plant density

    Directory of Open Access Journals (Sweden)

    Eero Varis

    1975-05-01

    Full Text Available The effects of potato plant density on yield quantity and quality were investigated at the Hankkija Plant Breeding Institute from 1971-73, using seed rates of 1600, 3200 and 4800 kg/ha, and seed sizes of 40, 80 and 120 g. The varieties used were Ijsselster and Record. The number of stems per m2 rose with increasing seed rate and with increasing seed size. Stem number increased with seed rate faster for small seed than for large. The response in stem number was greater for Ijsselster than for Record. The number of stems per seed tuber fell as the plant density rose. The number of tubers per m2 altered in the same direction as the number of stems, but less responsively. The reason for this was that the number of tubers per stem decreased with increasing plant density. The tuber yield showed a continual increase with increasing plant density. At the lowest stem densities (less than 20—25 stems/m2 small seed gave better results than other sizes, but at the higher plant densities, the importance of seed size faded away and the yield was dependant on the plant density alone. Net yield (gross yield 2 x seed rate, however, was higher the smaller the seed used, whatever the stem density. Tuber size decreased when plant density increased, the proportion of large tubers diminishing most, especially when small seed was used. The proportion of small tubers altered more for Ijsselster than for Record. Seed size and seed rate did not on average significantly affect the proportion of Class I potatoes, though small seed gave results slightly better than other sizes. The starch content of the yield rose when the seed rate was increased (16.0-16.3 -16.5 % and fell with increasing seed size (16.5 16.2 16.1 %. The maximum variation was 15.8-16.7 %. The specific gravity distribution improved with increasing plant density. Raw discolouration of the tubers did not alter significantly as the plant density rose. Blackening of the tubers decreased with increasing plant

  6. Effects of planting date and plant density on crop growth of cut chrysanthemum

    NARCIS (Netherlands)

    Lee, J.H.; Heuvelink, E.; Challa, H.

    2002-01-01

    The effects of planting date (season) and plant density (32, 48 or 64 plants m-2) on growth of cut chrysanthemum (Chrysanthemum (Indicum group)) were investigated in six greenhouse experiments, applying the expolinear growth equation. Final plant fresh and dry mass and number of flowers per plant

  7. Breast density in screening mammography in Indian population - Is it different from western population?

    Science.gov (United States)

    Singh, Tulika; Khandelwal, Niranjan; Singla, Veenu; Kumar, Dileep; Gupta, Madhu; Singh, Gurpreet; Bal, Amanjit

    2018-05-01

    Mammography is the only method presently considered appropriate for mass screening of breast cancer. However, higher breast density was strongly associated with lower mammographic sensitivity. Breast density is also identified as independent and strongest risk factors for breast cancer. Studies have shown women with high breast density have four to six times increased risk of breast cancer as compare to women with fatty breast. It varies between different age group it generally decreases with increasing age in postmenopausal women and it can be different in different ethnic groups and people from different geographical areas. This study evaluates the breast density in Indian population and its relationship with the age. We reviewed of all screening mammography examinations performed from May 2012 to January 2015 at our institute PGIMER, Chandigarh, INDIA. Descriptive analyses were used to examine the association between age and breast density. A total of 6132 screening mammograms were performed. Each subgroup categorized by decade of age. There was a significant inverse relationship between age and breast density (P density in Indian and Western population with more Indians having ACR Grade 1 and 2 and Western population having 2 and 3. We found an inverse relationship between patient age and mammographic breast density. However, there were a large proportion of young women who had lower grades of mammographic density which could potentially benefit from the use of routine screening mammography in this subgroup of patients. Moreover, the breast density of Indian population is less when compared to the Western population. This might suggest that mammography is a good modality of choice for screening Indian population. © 2017 Wiley Periodicals, Inc.

  8. Factors affecting the population density of weeds and yield loss of them in wheat: a case study in Golestan province – Bandargaz

    Directory of Open Access Journals (Sweden)

    Mohamad Zaman Nekahi

    2016-05-01

    Full Text Available To investigate the factors affecting the population density of weeds and yield loss of them in wheat, a non systematic survey experiment was conducted in 45 fields in the township of Bandar-gaz (Sarmahaleh village in 2012. Sampling of wheat and weeds were taken in two stages (Heading and Harvest maturity by randomized to the five points of each field using quadrate size 1m*1m. In this study all information about crop management including Land area , farmers experience , the seed bed preparation, sowing date , cultivar and site preparation of them, sowing ways , seed rate , weeds control ways , kind , amount and time of herbicide , fungicide use and wheat harvest time were collected during a growing season by preparing questionnaire and complete them with farmers. At the end of the growing season, the actual yield harvested by farmers’ ‬ recorded. Among the various parameters, Wheat plant and raceme density, farmer experience, Kind of variety and use of Tapic+Geranestar herbicide had significant effects on weed population. With increased wheat plant density, weed density decreased. Also there was less weed density in field of high experience farmer. Weed density was lesser in N8118 variety than N8019 variety and not use Tapic+granestar herbicide due to increased of weeds density. Among weed different species, Avena sp, Phalaris minor and Sinapis arvense had highest negative effect on wheat yield. Model study showed if wheat plant density was optimum and there were weeds, yield will be 2713kg/ha and if weeds remove yield will increase to 2877kg/ha (yield gap equal164kg/ha. Amaong weed, Phalaris minor (12 plant per m-2, Sinapis arvensis (3plant per m-2 and Avena sp (2 plant per m-2 with 65, 18 and 17% yield loss respectively, were the strongest competitor with wheat.

  9. Exploring the relationship between population density and maternal health coverage

    Directory of Open Access Journals (Sweden)

    Hanlon Michael

    2012-11-01

    Full Text Available Abstract Background Delivering health services to dense populations is more practical than to dispersed populations, other factors constant. This engenders the hypothesis that population density positively affects coverage rates of health services. This hypothesis has been tested indirectly for some services at a local level, but not at a national level. Methods We use cross-sectional data to conduct cross-country, OLS regressions at the national level to estimate the relationship between population density and maternal health coverage. We separately estimate the effect of two measures of density on three population-level coverage rates (6 tests in total. Our coverage indicators are the fraction of the maternal population completing four antenatal care visits and the utilization rates of both skilled birth attendants and in-facility delivery. The first density metric we use is the percentage of a population living in an urban area. The second metric, which we denote as a density score, is a relative ranking of countries by population density. The score’s calculation discounts a nation’s uninhabited territory under the assumption those areas are irrelevant to service delivery. Results We find significantly positive relationships between our maternal health indicators and density measures. On average, a one-unit increase in our density score is equivalent to a 0.2% increase in coverage rates. Conclusions Countries with dispersed populations face higher burdens to achieve multinational coverage targets such as the United Nations’ Millennial Development Goals.

  10. 10 CFR 960.5-2-1 - Population density and distribution.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Population density and distribution. 960.5-2-1 Section 960... Population density and distribution. (a) Qualifying condition. The site shall be located such that, during... specified in § 960.5-1(a)(1). (b) Favorable conditions. (1) A low population density in the general region...

  11. Presentation: 3D magnetic inversion by planting anomalous densities

    OpenAIRE

    Uieda, Leonardo; Barbosa, Valeria C. F.

    2013-01-01

    Slides for the presentation "3D magnetic inversion by planting anomalous densities" given at the 2013 AGU Meeting of the Americas in Cancun, Mexico.   Note: There was an error in the title of the talk. The correct title should be "3D magnetic inversion by planting anomalous magnetization"   Abstract: We present a new 3D magnetic inversion algorithm based on the computationally efficient method of planting anomalous densities. The algorithm consists of an iterative growth of the an...

  12. Reproductive sink of sweet corn in response to plant density and hybrid

    Science.gov (United States)

    Improvements in plant density tolerance have played an essential role in grain corn yield gains for ~80 years; however, plant density effects on sweet corn biomass allocation to the ear (the reproductive ‘sink’) is poorly quantified. Moreover, optimal plant densities for modern white-kernel shrunke...

  13. Performance of 'Rocha' and 'Santa Maria' pears as affected by planting density

    Directory of Open Access Journals (Sweden)

    Mateus da Silveira Pasa

    2015-02-01

    Full Text Available The objective of this work was to evaluate the performance of 'Rocha' and 'Santa Maria' pears at two planting densities. The experiment was carried out during the 2011/2012, 2012/2013, and 2013/2014 growing seasons, in one-year-old orchards (2011/2012 of 'Rocha' and 'Santa Maria' pears, trained in a central-leader system and planted in two densities (2,000 and 4,000 trees per hectare. The assessed parameters were: production per hectare, production per tree, yield efficiency, number of fruit per tree, average fruit weight, trunk diameter increment, fruit firmness, and soluble solid contents. The cumulative yield of 'Rocha' is greater at the higher planting density, whereas the yield efficiency of 'Santa Maria' increases at the lower planting density, as the trees get more mature. Trunk diameter of 'Rocha' also increases at the lower planting density. However, fruit quality parameters in both cultivars are little affected by planting density.

  14. The effect of plant density and nitrogen fertilizer on light interception and dry matter yield in hemp (Cannabis sativa L.

    Directory of Open Access Journals (Sweden)

    mohamad reza asghari poor

    2009-06-01

    Full Text Available The effect of plant density and nitrogen fertilizer on canopy light interception and on flowering was investigated in hemp (Cannabis sativa L. cv. ‘Kompolti’ Crop grown at initial densities of 50, 150 and 250 plants/m2 at the Mashhad and 30, 90 and 150 plants/m2 at the Shirvan. Nitrogen fertilizer was applied before and 45 days after sowing at a rates of 50 and 200 kg/ha at the Mashhad, and 50, 150 and 250 kg/ha at the Shirvan. Rate of canopy development increased with increasing plant density and nitrogen fertilizer in both sites. At the Mashhad, interception of 90% of light was attained at 380 to 665 degree days (base 2°C from emergence for the crop grown at different densities. At Shirvan, rate of canopy development was slower. Interception of 90% of light was attained at 586 degree days from emergence for the crop grown at 30 plants/m2 and at 712 degree days for the crop grown at 150 plants/m2, probably as a result of cold weather. Nitrogen fertilizer in a similar way as plant density increased light interception. Maximum light interception did not depend on plant density and nitrogen fertilizer and was about 95%. In both sites, the flowering date was later with increasing plant density. Dates of 75% flowering for the initial densities of 50, 150 and 250 plants/m2 in Mashhad and 30, 90 and 150 plants/m2 in Shirvan were, respectively 26 August, 1, 6, 6, 11 and 12 September. Independent of plant density, canopy light interception started to decline at about 150 degree days after flowering, reaching 58 to 75% at about 700 degree days post-flowering. Morphological characteristics at both sites were highly correlated with plant sexual, plant population and nitrogen fertilizer. Highest stem, leaf and inflorescence yield were obtained in Mashhad at 250 plant/m-2 and in Shirvan at 150 plant m-2 when 200 kg N ha-1 in Mashhad and 250 kg N/ha in Shirvan was used. Above ground dry matter increased at both sites with increasing plant density and

  15. The factors controlling species density in herbaceous plant communities: An assessment

    Science.gov (United States)

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  16. Early Growth of Improved Acacia mangium at Different Planting Densities

    Directory of Open Access Journals (Sweden)

    Arif Nirsatmanto

    2016-08-01

    Full Text Available Integrating tree improvement into silvicultural practices is essential in forest plantation. Concerning this fact, Acacia mangium spacing trial planted using genetically improved seed was established in West Java. This study was aimed to evaluate the impact of ages and planting density on early growth of improved seed A. mangium in the spacing trial. Improved seed from 2 seed orchards (SSO-5 and SSO-20 and a control of unimproved seed from seed stand (SS-7 were tested together in spacing 3 × 3 m and 2 × 2 m. Height, diameter, stem volume, and stand volume were observed at 3 ages. The results showed that improved seed consistently outperformed to unimproved seed. Ages were highly significant for all traits, but the significant difference varied among traits and seed sources for planting density and the interactions. High density performed better growth than low density at first year, and they were varied in subsequent ages depending on traits and seed sources. Improved seed from less intensity selection orchard was less tolerance to high density than that from high intensity selection orchard, but the tolerance was reversed in low density. Improved seed A. mangium from different level of genetic selection has responded differently in behavior to the changes of planting density.

  17. Paradoxical effects of density on measurement of copper tolerance in Silene paradoxa L.

    Science.gov (United States)

    Capuana, Maurizio; Colzi, Ilaria; Buccianti, Antonella; Coppi, Andrea; Palm, Emily; Del Bubba, Massimo; Gonnelli, Cristina

    2018-01-01

    This work investigated if the assessment of tolerance to trace metals can depend on plant density in the experimental design. A non-metallicolous and a metallicolous populations of Silene paradoxa were hydroponically cultivated at increasing density and in both the absence (-Cu conditions) and excess of copper (+Cu conditions). In -Cu conditions, the metallicolous population showed a lower susceptibility to plant density in comparison to the non-metallicolous one, explained by a higher capacity of the metallicolous population to exploit resources. In +Cu conditions, an alleviating effect of increasing density was found in roots. Such effect was present to a greater extent in the non-metallicolous population, thus making the populations equally copper-tolerant at the highest density used. In shoots, an additive effect of increasing plant density to copper toxicity was reported. Its higher intensity in the metallicolous population reverted the copper tolerance relationship at the highest plant densities used. In both populations, a density-induced decrease in root copper accumulation was observed, thus concurring to the reported mitigation in +Cu conditions. Our work revealed the importance of density studies on the optimization of eco-toxicological bioassays and of metal tolerance assessment and it can be considered the first example of an alleviating effect of increasing plant number on copper stress in a metallophyte.

  18. Density-dependent feedbacks can mask environmental drivers of populations

    DEFF Research Database (Denmark)

    Dahlgren, Johan Petter

    I present some results from studies identifying environmental drivers of vital rates and population dynamics when controlling for intraspecific density statistically or experimentally, show that density dependence can be strong even in populations of slow-growing species in stressful habitats, an...

  19. Energetic and ecological constraints on population density of reef fishes.

    Science.gov (United States)

    Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P

    2016-01-27

    Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. © 2016 The Author(s).

  20. Sampling Error in Relation to Cyst Nematode Population Density Estimation in Small Field Plots.

    Science.gov (United States)

    Župunski, Vesna; Jevtić, Radivoje; Jokić, Vesna Spasić; Župunski, Ljubica; Lalošević, Mirjana; Ćirić, Mihajlo; Ćurčić, Živko

    2017-06-01

    Cyst nematodes are serious plant-parasitic pests which could cause severe yield losses and extensive damage. Since there is still very little information about error of population density estimation in small field plots, this study contributes to the broad issue of population density assessment. It was shown that there was no significant difference between cyst counts of five or seven bulk samples taken per each 1-m 2 plot, if average cyst count per examined plot exceeds 75 cysts per 100 g of soil. Goodness of fit of data to probability distribution tested with χ 2 test confirmed a negative binomial distribution of cyst counts for 21 out of 23 plots. The recommended measure of sampling precision of 17% expressed through coefficient of variation ( cv ) was achieved if the plots of 1 m 2 contaminated with more than 90 cysts per 100 g of soil were sampled with 10-core bulk samples taken in five repetitions. If plots were contaminated with less than 75 cysts per 100 g of soil, 10-core bulk samples taken in seven repetitions gave cv higher than 23%. This study indicates that more attention should be paid on estimation of sampling error in experimental field plots to ensure more reliable estimation of population density of cyst nematodes.

  1. Maize yield and quality in response to plant density and application of a novel plant growth regulator

    NARCIS (Netherlands)

    Zhang, Q.; Zhang, L.; Evers, J.B.; Werf, van der W.; Zhang, W.; Duan, L.

    2014-01-01

    Farmers in China have gradually increased plant density in maize to achieve higher yields, but this has increased risk of lodging due to taller and weaker stems at higher plant densities. Plant growth regulators can be used to reduce lodging risk. In this study, for the first time, the performance

  2. Response of False horn plantain to different plant densities and ...

    African Journals Online (AJOL)

    The study, which was carried out at the Crops Research Institute, Kumasi, Ghana, from April 1992 to March 1995, aimed at determining (i) the optimum plant density of False horn plantain for maximum yield, and (ii) the optimum frequency of handweeding for economic returns. Results indicated that the optimum plant density ...

  3. Physiological response of soybean genotypes to plant density

    NARCIS (Netherlands)

    Gan, Y; Stulen, [No Value; van Keulen, H; Kuiper, PJC

    2002-01-01

    Response of soybean (Glycine max (L.) Merr.) to plant density has occupied a segment of agronomic research for most of the century. Genotype differences have been noted especially in response to planting date, lodging problems and water limitation. There is limited information on the physiological

  4. An Evaluation of the Plant Density Estimator the Point-Centred Quarter Method (PCQM Using Monte Carlo Simulation.

    Directory of Open Access Journals (Sweden)

    Md Nabiul Islam Khan

    Full Text Available In the Point-Centred Quarter Method (PCQM, the mean distance of the first nearest plants in each quadrant of a number of random sample points is converted to plant density. It is a quick method for plant density estimation. In recent publications the estimator equations of simple PCQM (PCQM1 and higher order ones (PCQM2 and PCQM3, which uses the distance of the second and third nearest plants, respectively show discrepancy. This study attempts to review PCQM estimators in order to find the most accurate equation form. We tested the accuracy of different PCQM equations using Monte Carlo Simulations in simulated (having 'random', 'aggregated' and 'regular' spatial patterns plant populations and empirical ones.PCQM requires at least 50 sample points to ensure a desired level of accuracy. PCQM with a corrected estimator is more accurate than with a previously published estimator. The published PCQM versions (PCQM1, PCQM2 and PCQM3 show significant differences in accuracy of density estimation, i.e. the higher order PCQM provides higher accuracy. However, the corrected PCQM versions show no significant differences among them as tested in various spatial patterns except in plant assemblages with a strong repulsion (plant competition. If N is number of sample points and R is distance, the corrected estimator of PCQM1 is 4(4N - 1/(π ∑ R2 but not 12N/(π ∑ R2, of PCQM2 is 4(8N - 1/(π ∑ R2 but not 28N/(π ∑ R2 and of PCQM3 is 4(12N - 1/(π ∑ R2 but not 44N/(π ∑ R2 as published.If the spatial pattern of a plant association is random, PCQM1 with a corrected equation estimator and over 50 sample points would be sufficient to provide accurate density estimation. PCQM using just the nearest tree in each quadrant is therefore sufficient, which facilitates sampling of trees, particularly in areas with just a few hundred trees per hectare. PCQM3 provides the best density estimations for all types of plant assemblages including the repulsion process

  5. Nuclear power plants in populated areas

    International Nuclear Information System (INIS)

    Wachsmann, F.

    1973-01-01

    The article first deals with the permanently increasing demand for electical power. Considering the ever growing energy demand which can no longer be covered by conventional power plants, it has become necessary to set up nuclear power plants of larger range. The author presents in a survey the basic function of nuclear power plants as well as the resulting risks and safety measures. The author concludes that according to present knowledge there is no more need to erect nuclear power plants outside densely populated urban areas but there is now the possibility of erecting nuclear power plants in densely populated areas. (orig./LH) [de

  6. Modelling interactions of toxicants and density dependence in wildlife populations

    Science.gov (United States)

    Schipper, Aafke M.; Hendriks, Harrie W.M.; Kauffman, Matthew J.; Hendriks, A. Jan; Huijbregts, Mark A.J.

    2013-01-01

    1. A major challenge in the conservation of threatened and endangered species is to predict population decline and design appropriate recovery measures. However, anthropogenic impacts on wildlife populations are notoriously difficult to predict due to potentially nonlinear responses and interactions with natural ecological processes like density dependence. 2. Here, we incorporated both density dependence and anthropogenic stressors in a stage-based matrix population model and parameterized it for a density-dependent population of peregrine falcons Falco peregrinus exposed to two anthropogenic toxicants [dichlorodiphenyldichloroethylene (DDE) and polybrominated diphenyl ethers (PBDEs)]. Log-logistic exposure–response relationships were used to translate toxicant concentrations in peregrine falcon eggs to effects on fecundity. Density dependence was modelled as the probability of a nonbreeding bird acquiring a breeding territory as a function of the current number of breeders. 3. The equilibrium size of the population, as represented by the number of breeders, responded nonlinearly to increasing toxicant concentrations, showing a gradual decrease followed by a relatively steep decline. Initially, toxicant-induced reductions in population size were mitigated by an alleviation of the density limitation, that is, an increasing probability of territory acquisition. Once population density was no longer limiting, the toxicant impacts were no longer buffered by an increasing proportion of nonbreeders shifting to the breeding stage, resulting in a strong decrease in the equilibrium number of breeders. 4. Median critical exposure concentrations, that is, median toxicant concentrations in eggs corresponding with an equilibrium population size of zero, were 33 and 46 μg g−1 fresh weight for DDE and PBDEs, respectively. 5. Synthesis and applications. Our modelling results showed that particular life stages of a density-limited population may be relatively insensitive to

  7. Effects of Planting Date and Plant Density on Physiological Indices, Quantity and Quality Traits of Two Varieties of Marigold (Calendula officinalis L.

    Directory of Open Access Journals (Sweden)

    A Sepehri

    2016-07-01

    Full Text Available Introduction Marigold (Calendula officinalis L. is originated from North West Africa and Mediterranean area, is a medicinal plant used for several purposes. It is an annual herb or short-lived perennial from the Asteraceae family with yellow or orange flowers. The Marigold has been used as a traditional medicine and food dye, but is currently used as an anti-inflammatory and wound healer. It is grown for drug, obtained from the flowers. The flowers blossom during summer three or more times per year. The essential oil of yellow or orange petals of Calendula officinalis L. is one of the important yield components which is used for food and medicine. Moreover, the seed has an oil content of 5-20 %. Seed oil could be used as a binder in paints, coating and cosmetics. Growth, development and production of medicinal plants, as well as other plants are affected by genetic and agronomic factors. Planting date and plant density are two most important factors that can affect yield and yield components. Planting date affects the quantity and quality of secondary metabolites of medicinal plants. The optimum sowing date and plant density can improve the light and temperature absorption and other factors during the growing season. The positive effects of optimal planting date and plant density has been described by a number of researchers. The Plant population is dependent on the plant characters, growth period, time and method of cultivation. Also, the suitable sowing date has advantages for maximum production. Early sowing in the spring causes weakly establishment of plant and late planting date shortens growth period and simultaneous flowering period due to high temperature in summer. In this study, the effects of plant density and planting date on physiological indices, quantity and quality of two varieties of spare and compact marigold has been evaluated. Materials and Methods In order to determine the effects of planting date and plant density on

  8. Relative floral density of an invasive plant affects pollinator foraging behaviour on a native plant

    Directory of Open Access Journals (Sweden)

    Amy Marie Iler

    2014-08-01

    Full Text Available Interactions between invasive and native plants for pollinators vary from competition to facilitation of pollination of native plants. Theory predicts that relative floral densities should account for some of this variation in outcomes, with facilitation at low floral densities and competition at high floral densities of the invader. We tested this prediction by quantifying pollination and female reproductive success of a native herb, Geranium maculatum, in three experimental arrays that varied in floral density of the invasive shrub Lonicera maackii: control (no L. maackii, low floral density of L. maackii, and high floral density of L. maackii. A low density of L. maackii flowers was associated with an increase in pollinator visitation rate to G. maculatum flowers and an increase in conspecific pollen deposition compared to controls and high density arrays. Increased visitation rates were not associated with an increase in the number of visitors to low density arrays, suggesting instead that a behavioural switch in visitation within the array accounted for increased pollen deposition. In contrast, the only evidence of competition in high density arrays was a shorter duration of visits to G. maculatum flowers relative to the other treatments. The number of seeds per flower did not vary among treatments, although trends in seeds per flower were consistent with patterns of pollinator foraging behaviour. Given increased pollinator visits and pollen deposition at a low density of the invader, our study indicates that complete eradication of invasives as a management or restoration technique may have unintended negative consequences for pollination of native plants.

  9. Cordia dichotoma G. Forst. : Bioecology and population density

    Science.gov (United States)

    Rahayu, E. S.; Martin, P.; Dewi, N. K.; Kurniawan, F. H.

    2017-04-01

    Kendal tree is declared as an identity flora of Kendal Regency, Central Java, Indonesia. It is predicted as a rare species; most of the local people do not know the existence of this tree. The study aimed to describe some aspects of bioecology and a population density of Kendal tree. An explorative study was conducted from March to July 2016, through interview, observation, and literature review. The respondents were determined by purposive and snowball sampling methods. The data were analysed descriptively. Results showed that there were very limited numbers (only five trees) of Kendal tree throughout Kendal Regency. The species was identified as Cordia dichotoma G. Forst. The tree is 3-15 m in height. The leaves are simple and arranged spirally, inflorescence dichotomous, bisexual, with five gamosepalous and gamopetalous. Generative reproduction occurred at a low rate. The tree grew optimally in a dusty, sandy loam soil, pH 6.0-6.5 with a temperature ranged from 27-34 °C, a light intensity of 450-1580 lux, and an altitude of about 10 meters above sea level. In conclusion, C. dichotoma is a rare plant in Kendal Regency. This plant needs an alternative method of propagation, regeneration and conservation using in vitro technique.

  10. Living in isolation - population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink).

    Science.gov (United States)

    Putz, Christina M; Schmid, Christoph; Reisch, Christoph

    2015-09-01

    The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.

  11. Growth limitation of Lemna minor due to high plant density

    NARCIS (Netherlands)

    Driever, S.M.; Nes, van E.H.; Roijackers, R.M.M.

    2005-01-01

    The effect of high population densities on the growth rate of Lemna minor (L.) was studied under laboratory conditions at 23°C in a medium with sufficient nutrients. At high population densities, we found a non-linear decreasing growth rate with increasing L. minor density. Above a L. minor biomass

  12. Influence of weather variables and plant communities on grasshopper density in the Southern Pampas, Argentina.

    Science.gov (United States)

    de Wysiecki, María Laura; Arturi, Marcelo; Torrusio, Sandra; Cigliano, María Marta

    2011-01-01

    A study was conducted to evaluate the influence of weather (precipitation and temperature) and plant communities on grasshopper density over a 14-year period (1996-2009) in Benito Juárez County, Southern Pampas, Argentina. Total density strongly varied among plant communities. Highest values were registered in 2001 and 2003 in highly disturbed pastures and in 2002 and 2009 in halophilous grasslands. Native grasslands had the lowest density values. Seasonal precipitation and temperature had no significant effect on total grasshopper density. Dichroplus elongatus (Giglio-Tos) (Orthoptera: Acridoidea), Covasacris pallidinota (Bruner), Dichroplus pratensis Bruner, Scotussa lemniscata Stål, Borellia bruneri (Rehn) and Dichroplus maculipennis (Blanchard) comprised, on average, 64% of the grasshopper assemblages during low density years and 79% during high density years. Dichroplus elongatus, S. lemniscata and C. pallidinota were the most abundant species in 2001, 2002 and 2003, while D. elongatus, B. brunneri and C. pallidinota in 2009. Dichroplus elongatus and D. pratensis, mixed feeders species, were positively affected by summer rainfall. This suggests that the increase in summer precipitation had a positive effect on the quantity and quality forage production, affecting these grasshopper populations. Scotussa lemniscata and C. pallidinota were negatively affected by winter and fall temperature, possibly affecting the embryonic development before diapause and hatching. Dichroplus elongatus and D. pratensis were associated with highly disturbed pastures, S. lemniscata with pastures and B. bruneri and D. maculipennis with halophilous grasslands. Covasacris pallidinota was closely associated with halophilous grasslands and moderately disturbed pastures. Weather conditions changed over the years, with 2001, 2002 and 2003 having excessive rainfall while 2008 and 2009 were the driest years since the study started. We suggest that although seasonal precipitation and

  13. Branch Development of Five-Year-Old Betula alnoides Plantations in Response to Planting Density

    Directory of Open Access Journals (Sweden)

    Chun-Sheng Wang

    2018-01-01

    Full Text Available Branch development in the lower part of stem is critical to both early stem growth and wood quality of the most valuable section of tree, and its regulation through planting density has always been greatly concerned. Here the effect of planting density on branch development was examined in a five-year-old plantation of Betula alnoides with six planting densities (625, 833, 1111, 1250, 1667, and 2500 stems per hectare (sph in Guangdong Province, South China. Branch quantity (number, proportion, and density, morphology (diameter, length, and angle, position (height and orientation, and branch status (dead or alive were investigated for 54 dominant or co-dominant trees under six treatments of planting density after the growth of each tree was measured. Factors influencing branch development were also explored by mixed modelling. The results showed that the mean tree heights of 1250 and 1667 sph treatments were higher than those of other planting density treatments. The quantity of live branches decreased with increasing planting density. However, planting density had no significant effect on the number of all branches, and there existed no remarkable difference in branch number and proportion among four orientations. As for branch morphology, only the largest branch diameter had a significantly negative correlation with planting density. In addition, high planting density significantly increased the height of the largest branch within the crown. Mixed effects models indicated that branch diameter, length, and angle were closely correlated with each other, and they were all in positively significant correlation to the branch height at the stem section below six meters. It was concluded that properly increasing planting density will promote natural pruning, improve early branch control, and be beneficial for wood production from the most valuable section of the stem.

  14. Influences of population size and density on birthplace effects.

    Science.gov (United States)

    Hancock, David J; Coutinho, Patrícia; Côté, Jean; Mesquita, Isabel

    2018-01-01

    Contextual influences on talent development (e.g., birthplace effects) have become a topic of interest for sport scientists. Birthplace effects occur when being born in a certain city size leads to participation or performance advantages, typically for those born in smaller or mid-sized cities. The purpose of this study was to investigate birthplace effects in Portuguese volleyball players by analysing city size, as well as population density - an important but infrequently used variable. Participants included 4062 volleyball players (M age  = 33), 53.2% of whom were men. Using Portuguese national census data from 1981, we compared participants (within each sex) across five population categories. In addition, we used ANOVAs to study expertise and population density. Results indicated that men and women athletes born in districts of 200,000-399,999 were 2.4 times more likely to attain elite volleyball status, while all other districts decreased the odds of expert development. For men, being born in high-density areas resulted in less chance of achieving expertise, whereas there were no differences for women. The results suggest that athletes' infrastructure and social structure play an important role in talent development, and that these structures are influenced by total population and population density, respectively.

  15. The influence of population density and duration of breeding on ...

    African Journals Online (AJOL)

    USER

    2010-07-12

    Jul 12, 2010 ... profitability could be more advantageous if the increased population density goes up to 16 birds per m2; or the ... addition, increased population density of broiler chickens reduces the body weight .... and labor costs. The main ...

  16. Effects of plant density on recombinant hemagglutinin yields in an Agrobacterium-mediated transient gene expression system using Nicotiana benthamiana plants.

    Science.gov (United States)

    Fujiuchi, Naomichi; Matsuda, Ryo; Matoba, Nobuyuki; Fujiwara, Kazuhiro

    2017-08-01

    Agrobacterium-mediated transient expression systems enable plants to rapidly produce a wide range of recombinant proteins. To achieve economically feasible upstream production and downstream processing, it is beneficial to obtain high levels of two yield-related quantities of upstream production: recombinant protein content per fresh mass of harvested biomass (g gFM -1 ) and recombinant protein productivity per unit area-time (g m -2 /month). Here, we report that the density of Nicotiana benthamiana plants during upstream production had significant impacts on the yield-related quantities of recombinant hemagglutinin (HA). The two quantities were smaller at a high plant density of 400 plants m -2 than at a low plant density of 100 plants m -2 . The smaller quantities at the high plant density were attributed to: (i) a lower HA content in young leaves, which usually have high HA accumulation potentials; (ii) a lower biomass allocation to the young leaves; and (iii) a high area-time requirement for plants. Thus, plant density is a key factor for improving upstream production in Agrobacterium-mediated transient expression systems. Biotechnol. Bioeng. 2017;114: 1762-1770. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Density dependence in a recovering osprey population: demographic and behavioural processes.

    Science.gov (United States)

    Bretagnolle, V; Mougeot, F; Thibault, J-C

    2008-09-01

    1. Understanding how density-dependent and independent processes influence demographic parameters, and hence regulate population size, is fundamental within population ecology. We investigated density dependence in growth rate and fecundity in a recovering population of a semicolonial raptor, the osprey Pandion haliaetus [Linnaeus, 1758], using 31 years of count and demographic data in Corsica. 2. The study population increased from three pairs in 1974 to an average of 22 pairs in the late 1990s, with two distinct phases during the recovery (increase followed by stability) and contrasted trends in breeding parameters in each phase. 3. We show density dependence in population growth rate in the second phase, indicating that the stabilized population was regulated. We also show density dependence in productivity (fledging success between years and hatching success within years). 4. Using long-term data on behavioural interactions at nest sites, and on diet and fish provisioning rate, we evaluated two possible mechanisms of density dependence in productivity, food depletion and behavioural interference. 5. As density increased, both provisioning rate and the size of prey increased, contrary to predictions of a food-depletion mechanism. In the time series, a reduction in fledging success coincided with an increase in the number of non-breeders. Hatching success decreased with increasing local density and frequency of interactions with conspecifics, suggesting that behavioural interference was influencing hatching success. 6. Our study shows that, taking into account the role of non-breeders, in particular in species or populations where there are many floaters and where competition for nest sites is intense, can improve our understanding of density-dependent processes and help conservation actions.

  18. Scaling laws between population and facility densities.

    Science.gov (United States)

    Um, Jaegon; Son, Seung-Woo; Lee, Sung-Ik; Jeong, Hawoong; Kim, Beom Jun

    2009-08-25

    When a new facility like a grocery store, a school, or a fire station is planned, its location should ideally be determined by the necessities of people who live nearby. Empirically, it has been found that there exists a positive correlation between facility and population densities. In the present work, we investigate the ideal relation between the population and the facility densities within the framework of an economic mechanism governing microdynamics. In previous studies based on the global optimization of facility positions in minimizing the overall travel distance between people and facilities, it was shown that the density of facility D and that of population rho should follow a simple power law D approximately rho(2/3). In our empirical analysis, on the other hand, the power-law exponent alpha in D approximately rho(alpha) is not a fixed value but spreads in a broad range depending on facility types. To explain this discrepancy in alpha, we propose a model based on economic mechanisms that mimic the competitive balance between the profit of the facilities and the social opportunity cost for populations. Through our simple, microscopically driven model, we show that commercial facilities driven by the profit of the facilities have alpha = 1, whereas public facilities driven by the social opportunity cost have alpha = 2/3. We simulate this model to find the optimal positions of facilities on a real U.S. map and show that the results are consistent with the empirical data.

  19. Morphogenesis of Tanzania guinea grass under nitrogen doses and plant densities

    Directory of Open Access Journals (Sweden)

    Thiago Gomes dos Santos Braz

    2011-07-01

    Full Text Available The objective of this work was to evaluate effects of nitrogen fertilization and plant density on morphogenesis of Tanzania guinea grass. It was used a random block design with 12 treatments and two replications in a 4 × 3 factorial arrangement, with four doses of nitrogen (N (without N application, 80, 160 or 320 kg/ha.year and three plant densities (9, 25 or 49 plants/m². Harvest was performed at 25 cm from the ground when the canopy intercepted 95% of the incident light. Rates of leaf appearance and pseudostem elongation were positively and linearly influenced by nitrogen, whereas phillochron and leaf life span were influenced linearly and negatively. Leaf elongation responded positively to two factors, whereas leaf senescence rate and number of live leaves were not influenced by the factors evaluated. Number of total, basal and aerial tillers were greater at the density of 9 plants/m² and at the nitrogen dose of 320 kg/ha.year. Nitrogen increases production of leaves and tillers in Tanzania guinea grass defoliated at 95% of light interception, but high density of plants reduces the number of tiller per bunch.

  20. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator

    NARCIS (Netherlands)

    Mao, L.; Zhang, L.; Zhao, X.; Liu, S.; Werf, van der W.; Zhang, S.; Spiertz, J.H.J.; Li, Z.

    2014-01-01

    Modern cotton cultivation requires high plant densities and compact plants. Here we study planting density and growth regulator effects on plant structure and production of cotton when the cotton is grown in a relay intercrop with wheat, a cultivation system that is widespread in China. Field

  1. Estimation of Wheat Plant Density at Early Stages Using High Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Shouyang Liu

    2017-05-01

    Full Text Available Crop density is a key agronomical trait used to manage wheat crops and estimate yield. Visual counting of plants in the field is currently the most common method used. However, it is tedious and time consuming. The main objective of this work is to develop a machine vision based method to automate the density survey of wheat at early stages. RGB images taken with a high resolution RGB camera are classified to identify the green pixels corresponding to the plants. Crop rows are extracted and the connected components (objects are identified. A neural network is then trained to estimate the number of plants in the objects using the object features. The method was evaluated over three experiments showing contrasted conditions with sowing densities ranging from 100 to 600 seeds⋅m-2. Results demonstrate that the density is accurately estimated with an average relative error of 12%. The pipeline developed here provides an efficient and accurate estimate of wheat plant density at early stages.

  2. Model calculations of the influence of population distribution on the siting of nuclear power plants

    International Nuclear Information System (INIS)

    Nielsen, F.; Walmod-Larsen, O.

    1984-02-01

    This report was prepared for a working group established in April 1981 by the Danish Environmental Protection Agency with the task of investigating siting problems of nuclear power stations in Denmark. The purpose of the working group was to study the influence of the population density around a site on nuclear power safety. The importance of emergency planning should be studied as well. In this model study two specific accident sequences were simulated on a 1000 MWe nuclear power plant. The plant was assumed to be placed in the center of two different model population distributions. The concequences for the two population distributions from the two accidents were calculated for the most frequent weather conditions. Doses to individuals were calculated for the bone marrow, lungs, gastrointestinal tract, thyroidea and for the whole body. The collective whole body doses were also calculated for the two populations considered. (author)

  3. Detectability of landscape effects on recolonization increases with regional population density.

    Science.gov (United States)

    Liman, Anna-Sara; Dalin, Peter; Björkman, Christer

    2015-07-01

    Variation in population size over time can influence our ability to identify landscape-moderated differences in community assembly. To date, however, most studies at the landscape scale only cover snapshots in time, thereby overlooking the temporal dynamics of populations and communities. In this paper, we present data that illustrate how temporal variation in population density at a regional scale can influence landscape-moderated variation in recolonization and population buildup in disturbed habitat patches. Four common insect species, two omnivores and two herbivores, were monitored over 8 years in 10 willow short-rotation coppice bio-energy stands with a four-year disturbance regime (coppice cycle). The population densities in these regularly disturbed stands were compared to densities in 17 undisturbed natural Salix cinerea (grey willow) stands in the same region. A time series approach was used, utilizing the natural variation between years to statistically model recolonization as a function of landscape composition under two different levels of regional density. Landscape composition, i.e. relative amount of forest vs. open agricultural habitats, largely determined the density of re-colonizing populations following willow coppicing in three of the four species. However, the impact of landscape composition was not detectable in years with low regional density. Our results illustrate that landscape-moderated recolonization can change over time and that considering the temporal dynamics of populations may be crucial when designing and evaluating studies at landscape level.

  4. Diallel analyze of yield and progress of the severity of leaf diseases in maize hybrids in two population density

    Directory of Open Access Journals (Sweden)

    Marcos Ventura Faria

    2015-02-01

    Full Text Available Seven commercial maize hybrids (AS1575, 2B688, Penta, GNZ2004, AG8021, Sprint e P30F53 were intercrossed in a complete diallel, excluded reciprocal, obtaining 21 crosses. The 28 treatments were evaluated in two environments characterized by different densities (62,500 and 90,000 plants ha-1, with the aim of selecting the most promising parents for generating base population to obtain lines. Two experiments were carried out in Guarapuava-PR, at randomized block design with three replications. We estimated the general (GCA and specific (SCA combining abilities for yield and disease severity assessed by the area under the common rust (Puccinia sorghi progress curve (AURPC and the area under the leaf spot (Cercospora zeae-maydis progress curve (AULPC. The effects of GCA and SCA were significant for grain yield and diseases severity in both densities, revealing the importance of both additive and non-additive effects. There GCA x densities interaction was significant only for grain yield. Crossings P30F53 x AG8021 and P30F53 x Penta had negative estimates of SCA for AURPC and AULPC on the environments average. Hybrids GNZ 2004 and P30F53 stood out showing positive GCA for grain yield and negative for AURPC and AULPC in both densities and therefore are recommended for generating base populations for obtaining lines adapted for both densities, conventional and denser plantings, given the current trends in management of maize.

  5. Density-independent mortality and increasing plant diversity are associated with differentiation of Taraxacum officinale into r- and K-strategists.

    Directory of Open Access Journals (Sweden)

    Annett Lipowsky

    Full Text Available Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants.We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae over a 5-year period in a grassland biodiversity experiment (Jena Experiment. We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds.Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our results still indicate that the association of these

  6. Density-independent mortality and increasing plant diversity are associated with differentiation of Taraxacum officinale into r- and K-strategists.

    Science.gov (United States)

    Lipowsky, Annett; Roscher, Christiane; Schumacher, Jens; Schmid, Bernhard

    2012-01-01

    Differential selection between clones of apomictic species may result in ecological differentiation without mutation and recombination, thus offering a simple system to study adaptation and life-history evolution in plants. We caused density-independent mortality by weeding to colonizer populations of the largely apomictic Taraxacum officinale (Asteraceae) over a 5-year period in a grassland biodiversity experiment (Jena Experiment). We compared the offspring of colonizer populations with resident populations deliberately sown into similar communities. Plants raised from cuttings and seeds of colonizer and resident populations were grown under uniform conditions. Offspring from colonizer populations had higher reproductive output, which was in general agreement with predictions of r-selection theory. Offspring from resident populations had higher root and leaf biomass, fewer flower heads and higher individual seed mass as predicted under K-selection. Plants grown from cuttings and seeds differed to some degree in the strength, but not in the direction, of their response to the r- vs. K-selection regime. More diverse communities appeared to exert stronger K-selection on resident populations in plants grown from cuttings, while we did not find significant effects of increasing species richness on plants grown from seeds. Differentiation into r- and K-strategists suggests that clones with characteristics of r-strategists were selected in regularly weeded plots through rapid colonization, while increasing plant diversity favoured the selection of clones with characteristics of K-strategists in resident populations. Our results show that different selection pressures may result in a rapid genetic differentiation within a largely apomictic species. Even under the assumption that colonizer and resident populations, respectively, happened to be r- vs. K-selected already at the start of the experiment, our results still indicate that the association of these strategies with

  7. Matrix population models from 20 studies of perennial plant populations

    Science.gov (United States)

    Ellis, Martha M.; Williams, Jennifer L.; Lesica, Peter; Bell, Timothy J.; Bierzychudek, Paulette; Bowles, Marlin; Crone, Elizabeth E.; Doak, Daniel F.; Ehrlen, Johan; Ellis-Adam, Albertine; McEachern, Kathryn; Ganesan, Rengaian; Latham, Penelope; Luijten, Sheila; Kaye, Thomas N.; Knight, Tiffany M.; Menges, Eric S.; Morris, William F.; den Nijs, Hans; Oostermeijer, Gerard; Quintana-Ascencio, Pedro F.; Shelly, J. Stephen; Stanley, Amanda; Thorpe, Andrea; Tamara, Ticktin; Valverde, Teresa; Weekley, Carl W.

    2012-01-01

    Demographic transition matrices are one of the most commonly applied population models for both basic and applied ecological research. The relatively simple framework of these models and simple, easily interpretable summary statistics they produce have prompted the wide use of these models across an exceptionally broad range of taxa. Here, we provide annual transition matrices and observed stage structures/population sizes for 20 perennial plant species which have been the focal species for long-term demographic monitoring. These data were assembled as part of the 'Testing Matrix Models' working group through the National Center for Ecological Analysis and Synthesis (NCEAS). In sum, these data represent 82 populations with >460 total population-years of data. It is our hope that making these data available will help promote and improve our ability to monitor and understand plant population dynamics.

  8. Effective size of density-dependent two-sex populations: the effect of mating systems.

    Science.gov (United States)

    Myhre, A M; Engen, S; SAEther, B-E

    2017-08-01

    Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare N e in short-lived, density-dependent animal populations with different mating systems. We study the impact of a fluctuating, density-dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual N e /N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male-biased, density-dependent sex ratio reduces the rate of genetic drift compared to an equal, density-independent sex ratio, but a stochastic change towards male bias reduces the N e /N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  9. The determination of bulk (apparent) density of plant fibres by density method

    International Nuclear Information System (INIS)

    Sharifah Hanisah Syed Abd Aziz; Raja Jamal Raja hedar; Zahid Abdullah

    2004-01-01

    The absolute density of plant fibres excludes all pores and lumen and therefore is a measure of the solid matter of the fibres. On the other hand the bulk density, which is being discussed here, includes all the solid matter and the pores of the fibres. In this work, the apparent density of the fibre was measured by using the Archimedes principle, which involves the immersion of a known weight of fibre into a solvent of lower density than the fibre. Toluene with a density of about 860 kg/m3 was chosen as a solvent. A tuft of fibre was weighed and recorded as W fa . The fibre was then immersed in toluene, which wetted the fibre, and made to rest on the weighing pan submerged in the solvent and the weight of the immersed fibre was recorded as W fs . The apparent density was then calculated using the equation. All the measurements were taken at room temperature. The fibre samples were not oven dried prior to measurement. (Author)

  10. Precipitation, density, and population dynamics of desert bighorn sheep on San Andres National Wildlife Refuge, New Mexico

    Science.gov (United States)

    Bender, L.C.; Weisenberger, M.E.

    2005-01-01

    Understanding the determinants of population size and performance for desert bighorn sheep (Ovis canadensis mexicana) is critical to develop effective recovery and management strategies. In arid environments, plant communities and consequently herbivore populations are strongly dependent upon precipitation, which is highly variable seasonally and annually. We conducted a retrospective exploratory analysis of desert bighorn sheep population dynamics on San Andres National Wildlife Refuge (SANWR), New Mexico, 1941-1976, by modeling sheep population size as a function of previous population sizes and precipitation. Population size and trend of desert bighorn were best and well described (R 2=0.89) by a model that included only total annual precipitation as a covariate. Models incorporating density-dependence, delayed density-dependence, and combinations of density and precipitation were less informative than the model containing precipitation alone (??AlCc=8.5-22.5). Lamb:female ratios were positively related to precipitation (current year: F1,34=7.09, P=0.012; previous year: F1,33=3.37, P=0.075) but were unrelated to population size (current year. F1,34=0.04, P=0.843; previous year: F1,33 =0.14, P=0.715). Instantaneous population rate of increase (r) was related to population size (F1,33=5.55; P=0.025). Precipitation limited populations of desert bighorn sheep on SANWR primarily in a density-independent manner by affecting production or survival of lambs, likely through influences on forage quantity and quality. Habitat evaluations and recovery plans for desert bighorn sheep need to consider fundamental influences on desert bighorn populations such as precipitation and food, rather than focus solely on proximate issues such as security cover, predation, and disease. Moreover, the concept of carrying capacity for desert bighorn sheep may need re-evaluation in respect to highly variable (CV =35.6%) localized precipitation patterns. On SANWR carrying capacity for desert

  11. Effects of nitrogen application and plant densities on flower yield, essential oils, and radiation use efficiency of Marigold (Calendula officinalis L.)

    International Nuclear Information System (INIS)

    Ameri, A.A.; Nasiri Mahalati, M.

    2010-01-01

    Efficient use of radiation for medicinal plants production, might increase flower yield, essential oils and extract yield .A split plot design.was used in a two years (2005 and 2006) field study in Torogh region(36,10° N,59.33° E and 1300 m altitude) of Mashhad, Iran, to observe the effects of different nitrogen application and plants densities on flower dry matter production, essential oils, and radiation use efficiency in a multi-harvested Marigold (Calendula officinalis). The levels of nitrogen fertilizer were 0, 50, 100 and 150 kg ha-1 and levels of density were 20, 40, 60 and 80 plant m-2. The combined analysis results revealed significant effects of nitrogen and density levels on flower dry matter production, essential oils, and radiation use efficiency of Marigold. The highest dry flower production obtained by 150 kg ha-1 N and 80 plant m-2 plant population (102.86 g m-2). The higher flower dry matter production caused more essential oils and extract production in high nitrogen and density levels. The amount of essential oils and extract per 100g flower dry matter decreased during the flower harvesting period. The higher amount of essential oil and extract obtained at early flowering season. The essential oil and extract ranged from 0.22 to 0.12 (ml. per 100g flower dry matter) and 2.74 to 2.13 (g per 100g flower dry matter) respectively. Increase of both nitrogen and density caused higher radiation use efficiency. The most radiation use efficiency obtained at 150 kg ha-1 nitrogen and 80 Plant m-2desity treatments. In 150 kg ha-1 nitrogen treatment, increase of density levels from 20 plant m-2 to 80 Plant m-2 caused increase in radiation use efficiency from 1.41 g MJ-1 to 1.44 g MJ-1 respectively

  12. Local variation in conspecific plant density influences plant-soil feedback in a natural grassland

    NARCIS (Netherlands)

    Kos, M.; Veendrick, Johan; Bezemer, T.M.

    2013-01-01

    Several studies have argued that under field conditions plant–soil feedback may be related to the local density of a plant species, but plant–soil feedback is often studied by comparing conspecific and heterospecific soils or by using mixed soil samples collected from different locations and plant

  13. Effect of planting density on fruit size, light-interception and photosynthetic activity of vertically trained watermelon (Citrullus lanatus (Thunb.) Matsum. et Nakai) plants

    International Nuclear Information System (INIS)

    Watanabe, S.; Nakano, Y.; Okano, K.

    2003-01-01

    Summary The effect of planting density on fruit size of vertically trained watermelon (Citrullus lanatus (Thunb.) Matsum. et Nakai) plants was investigated with regard to light - interception characteristics and photosynthetic production. Watermelon plants, grafted on bottle gourd, were grown in a glasshouse at different planting densities. Two vines per plant were allowed to grow and trained vertically. One hand-pollinated fruit per plant was set around the 15th node on either vine. The solar radiation and photosynthetic rate of individual leaves during fruit development period were determined by an integrated solarimeter film and a portable photosynthesis system, respectively. Fruit size was significantly decreased as the planting density increased, whereas soluble solids content of the fruits was affected little. The solar radiation and the photosynthetic rate of the individual leaves gradually decreased as the leaf position became lower at all planting densities on account of shading; those at lower leaves tended to decrease as the planting density increased. Fruit size was closely related to both the total solar radiation and the photosynthetic production per plant. In conclusion, the difference in fruit size among the planting densities is attributed to the photosynthetic productivity of the whole plant, which is mainly a function of the total solar radiation. This paper appears to be the first trial relating the influence of light interception and photosynthetic rates in high density plantings of vertically trained watermelon plants on fruit size

  14. Effect of power plant condenser coolant discharge on population density of intertidal bivalve Donax cuneatus (L. 1758)

    International Nuclear Information System (INIS)

    Jahir Hussain, K.; Mohanty, A.K.; Prasad, M.V.R.; Satpathy, K.K.

    2008-01-01

    Impact of thermal discharge from a coastal power station (Madras Atomic Power Station, south-east coast of India) on the spatial variability of Donax cuneatus abundance was assessed to determine the impact boundary. Totally twenty sites were selected both on south and north side of effluents mixing zone in increasing spatial scale. Twelve locations were selected towards south side at a distance from 0 (near mixing point) to 2000 m and eight locations were selected towards north from the effluent mixing zone. The present study was conducted during January 2008. Mean water temperature along the coast ranged from 29.1 ± 0.1 - 31.2 ± 0.1 deg C. Total organic carbon content in the sediment ranged from 0.27 to 0.70%. D. cuneatus population in the swash zone ranged between 1.3 ± 1.5 to 88.3 ± 9.6 m -2 . Meager population of the wedge clam was observed up to 100 m south from mixing point and abundance gradually increased with increasing distance from the mixing zone. Comparatively high abundance was observed from 400 m; the density reached maximum at 1000 m (64.0 ± 3.6 m -2 ). Similar pattern was observed on north side too but less abundance was observed only up to 80m. Maximum abundance was observed (88.3 ± 9.6 m -2 ) at control location located 500 m north of the discharge point. 40 m on either side of discharge point were highly impacted, 80 to 100m towards plume flow (south) were moderately impacted and 80 m north of mixing point also witnessed moderate impact. After 100 m, effluents did not affect the northern side, whereas between 100 to 400 m, south was influenced slightly. Multivariate clustering pattern on the environmental variables of all sampling locations and abundance pattern of D. cuneatus showed similarity. Present investigation unambiguously showed that the abundance pattern of D. cuneatus on the sandy beach of Kalpakkam is not governed by single major factor but is influenced by multiple interacting factors. The population size of the wedge clam

  15. Experimental evolution reveals differences between phenotypic and evolutionary responses to population density.

    Science.gov (United States)

    McNamara, K B; Simmons, L W

    2017-09-01

    Group living can select for increased immunity, given the heightened risk of parasite transmission. Yet, it also may select for increased male reproductive investment, given the elevated risk of female multiple mating. Trade-offs between immunity and reproduction are well documented. Phenotypically, population density mediates both reproductive investment and immune function in the Indian meal moth, Plodia interpunctella. However, the evolutionary response of populations to these traits is unknown. We created two replicated populations of P. interpunctella, reared and mated for 14 generations under high or low population densities. These population densities cause plastic responses in immunity and reproduction: at higher numbers, both sexes invest more in one index of immunity [phenoloxidase (PO) activity] and males invest more in sperm. Interestingly, our data revealed divergence in PO and reproduction in a different direction to previously reported phenotypic responses. Males evolving at low population densities transferred more sperm, and both males and females displayed higher PO than individuals at high population densities. These positively correlated responses to selection suggest no apparent evolutionary trade-off between immunity and reproduction. We speculate that the reduced PO activity and sperm investment when evolving under high population density may be due to the reduced population fitness predicted under increased sexual conflict and/or to trade-offs between pre- and post-copulatory traits. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  16. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    Science.gov (United States)

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  17. Explaining density-dependent regulation in earthworm populations using life-history analysis

    NARCIS (Netherlands)

    Kammenga, J.E.; Spurgeon, D.J.; Svendsen, C.; Weeks, J.M.

    2003-01-01

    At present there is little knowledge about how density regulates population growth rate and to what extent this is determined by life-history patterns. We compared density dependent population consequences in the Nicholsonian sense based oil experimental observations and life-history modeling for

  18. Effects of an invasive plant on population dynamics in toads.

    Science.gov (United States)

    Greenberg, Daniel A; Green, David M

    2013-10-01

    When populations decline in response to unfavorable environmental change, the dynamics of their population growth shift. In populations that normally exhibit high levels of variation in recruitment and abundance, as do many amphibians, declines may be difficult to identify from natural fluctuations in abundance. However, the onset of declines may be evident from changes in population growth rate in sufficiently long time series of population data. With data from 23 years of study of a population of Fowler's toad (Anaxyrus [ = Bufo] fowleri) at Long Point, Ontario (1989-2011), we sought to identify such a shift in dynamics. We tested for trends in abundance to detect a change point in population dynamics and then tested among competing population models to identify associated intrinsic and extrinsic factors. The most informative models of population growth included terms for toad abundance and the extent of an invasive marsh plant, the common reed (Phragmites australis), throughout the toads' marshland breeding areas. Our results showed density-dependent growth in the toad population from 1989 through 2002. After 2002, however, we found progressive population decline in the toads associated with the spread of common reeds and consequent loss of toad breeding habitat. This resulted in reduced recruitment and population growth despite the lack of significant loss of adult habitat. Our results underscore the value of using long-term time series to identify shifts in population dynamics coincident with the advent of population decline. © 2013 Society for Conservation Biology.

  19. Effects of plant density and proportion on the interaction between wheat with alexandergrass plants

    Directory of Open Access Journals (Sweden)

    Leonardo Bianco de Carvalho

    2011-01-01

    Full Text Available Determination of competitive relationships among plant species requires appropriate experimental designs and method of analysis. The hypothesis of this research was that two species growing in coexistence show different growth and development due to their relative competitiveness. This research aims to measure the relative competitiveness of wheat crop compared to Alexandergrass by the interpretation of plant density and proportional effects using replacement series experiments. Monocultures were cultivated in densities of 1, 3, 5, 10 and 15 plants per pot and analyzed by regression of dry mass data. Mixture experiment was cultivated in wheat:Alexandergrass proportions of 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0 plants per pot and analyzed by graphical interpretation of growth and production characteristics. Both experiments were carried out in randomized complete block design with four replicates. Alexandergrass was more sensitive to intraspecific competition than wheat. Alexandergrass was lightly more competitive than wheat. Number and weight of spikes and number of tillers were the wheat characteristics more affected by Alexandergrass interference.

  20. Sampling low-density gypsy moth populations

    Science.gov (United States)

    William E. Wallner; Clive G. Jones; Joseph S. Elkinton; Bruce L. Parker

    1991-01-01

    The techniques and methodology for sampling gypsy moth, Lymantria dispar L., at low densities, less than 100 egg masses/ha (EM/ha), are compared. Forest managers have constraints of time and cost, and need a useful, simple predictable means to assist them in sampling gypsy moth populations. A comparison of various techniques coupled with results of...

  1. Morpho-physiological and productive biometry in semi-erect cultivars of the cowpea under different plant populations

    Directory of Open Access Journals (Sweden)

    Antônio Aécio de Carvalho Bezerra

    Full Text Available ABSTRACT The aim of this study was to evaluate morpho-physiological and productive characteristics in four semi-erect cultivars of the cowpea under five plant populations. The experiment was conducted in the experimental area of Embrapa Meio-Norte in Teresina in the State of Piauí, Brazil (PI. The experimental design was of randomised complete blocks with four replications, in a 4 x 5 factorial scheme, for evaluating four cultivars (BRS Guariba, BRS Novaera, BRS Potengi and BRS Tumucumaque and five plant populations (105, 2x105, 3x105, 4x105 and 5x105 plants ha-1. There were significant differences between cultivars for primary branch length (PBL, number of lateral branches (NLB, 100-grain weight (HGW, and dry-grain yield (GY. The maximum PBL of 58.5 cm was obtained with 300 thousand plants ha-1, corresponding to an increase of 11.5% when compared to 100 thousand plants ha-1. However, there was a reduction of 91.2% in NLB when compared to the populations of 100 and 500 thousand plants ha-1. The increases of 188% obtained in the leaf area index (LAI in the range of 100 to 500 thousand plants ha-1 explain the linear increase in the crop growth rate (CGR as being due to the greater production of leaf area; also, the decreases seen in the net assimilation rate (NAR, especially in the range of 100 to 300 thousand plants ha-1, are explained as due to the consequent self-shading, which was intensified in the larger populations. LAI, light interception, and CGR in the cultivars increase in response to higher densities. HGW and GY are not significantly affected by the different populations.

  2. Sexual conflict and the evolution of asexuality at low population densities.

    Science.gov (United States)

    Gerber, Nina; Kokko, Hanna

    2016-10-26

    Theories for the evolution of sex rarely include facultatively sexual reproduction. Sexual harassment by males is an underappreciated factor: it should at first sight increase the relative advantage of asexual reproduction by increasing the cost of sex. However, if the same females can perform either sexual or asexual life cycles, then females trying to reproduce asexually may not escape harassment. If resisting male harassment is costly, it might be beneficial for a female to accept a mating and undertake a sexual life cycle rather than 'insist' on an asexual one. We investigate the effects of sexual harassment on the maintenance of sex under different population densities. Our model shows that resisting matings pays off at low population densities, which leads to the complete extinction of males, and thus to the evolution of completely asexual populations. Facultative sex persists in a narrow range of slightly higher densities. At high densities, selection favours giving up resisting male mating attempts and thus sexual reproduction takes over. These interactions between the outcomes of sexual conflict and population density suggest an explanation for the rarity of facultative sex and also patterns of geographical parthenogenesis, where marginal environments with potentially low densities are associated with asexuality. © 2016 The Author(s).

  3. Expression of Beta-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants

    Science.gov (United States)

    Singh, Nameirakpam Dolendro; Kumar, Shashi; Daniell, Henry

    2015-01-01

    Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the etiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript was confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography (HPLC, MS-TOF) data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (g-1DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to 5-fold in BGL1 transgenic flowers. The present study opens the possibility of increasing artemisinin content by manipulating trichomes density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children. PMID:26360801

  4. Dispersal patterns of red foxes relative to population density

    Science.gov (United States)

    Allen, Stephen H.; Sargeant, Alan B.

    1993-01-01

    Factors affecting red fox (Vulpes vulpes) dispersal patterns are poorly understood but warranted investigation because of the role of dispersal in rebuilding depleted populations and transmission of diseases. We examined dispersal patterns of red foxes in North Dakota based on recoveries of 363 of 854 foxes tagged as pups and relative to fox density. Foxes were recovered up to 8.6 years after tagging; 79% were trapped or shot. Straight-line distances between tagging and recovery locations ranged from 0 to 302 km. Mean recovery distances increased with age and were greater for males than females, but longest individual recovery distances were by females. Dispersal distances were not related to population density for males (P = 0.36) or females (P = 0.96). The proportion of males recovered that dispersed was inversely related to population density (r = -0.94; n = 5; P = 0.02), but not the proportion of females (r = -0.49; n = 5; P = 0.40). Dispersal directions were not uniform for either males (P = 0.003) or females (P = 0.006); littermates tended to disperse in similar directions (P = 0.09). A 4-lane interstate highway altered dispersal directions (P = 0.001). Dispersal is a strong innate behavior of red foxes (especially males) that results in many individuals of both sexes traveling far from natal areas. Because dispersal distance was unaffected by fox density, populations can be rebuilt and diseases transmitted long distances regardless of fox abundance.

  5. Effect of planting density and growing media on growth and yield of strawberry

    International Nuclear Information System (INIS)

    Tariq, R.; Qureshi, K.M.; Hassan, I.; Rasheed, M.; Qureshi, U.S.

    2013-01-01

    Strawberry (Fragaria ananasa), belonging to Rosaceae family, is a rich source of vitamins and minerals with delicate flavors. It is perishable crop which is exceedingly in demand for its taste, profitability, high yield and good quality. To make the plant growth successful in the container, the requirement of special media is very important step because plant growth is largely depended on the physiochemical properties of the growing media used. Winter strawberry production in a greenhouse using high plant densities and various media may be a viable alternative to open-field production system. Planting density can be increased thrice by using different production systems. Studies were conducted to see the impact of different planting densities and media on growth and yield of strawberry. The treatments were T 1 = Control, with normal planting distance of 30 cm x 60 cm and growing media silt, sand and farm yard manure (FYM); T 2 = 15 cm 2 x 30 cm and silt, sand and FYM; T 3 = 30 cm x 60 cm and coir; T 4 = 15 cm x 30 cm and coir; T 5 = 30 cm x 60 cm and peat moss; T 6 = 15 cm x 30 cm and 5 6 peat moss. Results showed that plants grown at low planting distance on all growth media showed more pronounced results as compared to high planting distance. Plants grown in peat moss at both planting densities moderately increased the plant height, canopy size, leaf area, number of fruits, fruit size, fruit weight and titratable acidity. A significant increase in fresh and dry weight of leaves, number of leaves, fruit yield in term of fruit number, fruit size and fruit weight, and fruit quality with high ascorbic acid contents were observed. On the other hand, plants grown in silt, sand and FYM (1 : 1 : 1) at both planting densities showed significant increment in vegetative growth resulting in early flowering with more flowers per plant, better fruit setting and fruit set percentage, greater fruit size and weight but fruit number per plant was reduced which lowered the overall

  6. effect of population density and dose of nitrogen and potassium ...

    African Journals Online (AJOL)

    A. Hussein

    2018-01-01

    Jan 1, 2018 ... while, nitrogen consumption increased dry weight resulting in increased plant yield (Hatami et al., 2009). Vorob (2000) ... of this study was to investigate the effect of plant density and dose of nitrogen and potassium on Green bean Cv. ..... biogeochem. cycle., 2008, 22(1), 1022-1041. [11] Moniruzzaman M ...

  7. Effect of Organic Fertilizers and Plant Density on Qualititative Characteristics of Balangu (Lallenamntia royleana Benth.

    Directory of Open Access Journals (Sweden)

    A Roohi Nogh

    2017-10-01

    Full Text Available Introduction Recently, the impact of chemical farming and the negative consequences on the environment and human health are on rise in Iran. Organic farming is gaining attention and increasing globally because it is eco-friendly, safe and has benefits for human health. The use of organic fertilizers in agriculture improves soil structure. Plant spacing and fertilizer applications have significant influence on the growth and yield in crop production. Optimum plant spacing ensures the proper use of land, as well as growth and nutrition in plants. Balangu (Lallemantia royleana Benth. is a medicinal plant from Lamiaceae family, containing essential oils and mucilage. The most important feature of this plant is the mucilage of the seeds. The seeds are a good source of fiber, oil and protein, and have medicinal and nutritional properties. Using the appropriate plant density and environmental friendly methods like organic fertilizers can improve the quality and quantity of medicinal plants production. Materials and Methods In order to study the effect of organic fertilizers and plant density on the qualitative characteristics of Balangu (Lallemantia royleana Benth. as a medicinal plant, an experiment was conducted at the Research Station of Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during the growing season of 2011-2012. Soil samples were collected from the 15 cm depth of each experimental plots for laboratory analysis. This experiment was carried out as factorial layout based on randomized complete block design with three replications. Treatments were included five levels of fertilizer (cow manure, sheep manure, chicken manure, municipal solid waste compost and control and three levels of plant density (20, 30 and 40 plant m-2. The studied traits were included amount of mucilage, swelling factor, swelling per gram mucilage, mucilage and seed yield. Data were analyzed with SAS software. The F test was used to test the significance

  8. Responses of Grain Maize to Plant Density at Different Irrigation Regimes

    Directory of Open Access Journals (Sweden)

    Sara SAMADVAND

    2017-12-01

    Full Text Available In order to examine the effects of different plant densities, plant patterns and irrigation regimes on yield, yield components and harvest index of grain maize, a field experiment was conducted at Miyandoab Agricultural Research Station, Iran. A strip split plot experiment was conducted based on randomized complete block design with three replications. The results showed that the effect of plant density was significant on kernel yield, harvest index, 1,000 kernel weight. The highest kernel yield was obtained from 90,000 plants ha-1 density. Maximum grain yield (18.530 t ha-1 was obtained from furrow irrigation. However, there was no significant difference between moisture levels of 100% and 120% of field capacity. The lowest kernel yield was obtained at 80% field capacity. This study also showed that mean kernel weight and the number of kernels per row were the most determinant factors in grain yield formation. The highest and the lowest harvest indices were obtained at 120% and 80% treatments of field capacity treatment, respectively.

  9. [Effect of the population density on growth and regeneration in the snail Achatina fulica].

    Science.gov (United States)

    Sidel'nikov, A P; Stepanov, I I

    2000-01-01

    In the laboratory, the growth rate of the giant African snail Achatina fulica, as estimated by the weight and shell length was shown to decrease when the population density increased from 10 to 60 snails/m2 of the total terrarium area for five months. In the second experiment, when the population density increased from 48 to 193 snails/m2, the growth rate had already decreased by six weeks. In the groups with a high population density the feeding behavior was weakened, expressed by a greater amount of nonconsumed food, according to visual observations, than in the groups with lower population densities. At the population density of 10 to 60 snails/m2, the proliferative activity in the course of the optic tentacle regeneration, as expressed by the mitotic index, did not differ reliably within five months. In the second experiment, the mitotic indices at the population densities of 96 and 193 snails/m2 within 1.5 months exceeded that of 48 snails/m2. Recommendations are given concerning the population density from the viewpoint of commercial growth of the snails. It was proposed that, based on the analysis of the mechanism underlying the inhibition of feeding behavior in populations with extra high densities, one may develop a new approach to the production of chemical agents to control land snails as agricultural pests.

  10. Effects of social organization, trap arrangement and density, sampling scale, and population density on bias in population size estimation using some common mark-recapture estimators.

    Directory of Open Access Journals (Sweden)

    Manan Gupta

    Full Text Available Mark-recapture estimators are commonly used for population size estimation, and typically yield unbiased estimates for most solitary species with low to moderate home range sizes. However, these methods assume independence of captures among individuals, an assumption that is clearly violated in social species that show fission-fusion dynamics, such as the Asian elephant. In the specific case of Asian elephants, doubts have been raised about the accuracy of population size estimates. More importantly, the potential problem for the use of mark-recapture methods posed by social organization in general has not been systematically addressed. We developed an individual-based simulation framework to systematically examine the potential effects of type of social organization, as well as other factors such as trap density and arrangement, spatial scale of sampling, and population density, on bias in population sizes estimated by POPAN, Robust Design, and Robust Design with detection heterogeneity. In the present study, we ran simulations with biological, demographic and ecological parameters relevant to Asian elephant populations, but the simulation framework is easily extended to address questions relevant to other social species. We collected capture history data from the simulations, and used those data to test for bias in population size estimation. Social organization significantly affected bias in most analyses, but the effect sizes were variable, depending on other factors. Social organization tended to introduce large bias when trap arrangement was uniform and sampling effort was low. POPAN clearly outperformed the two Robust Design models we tested, yielding close to zero bias if traps were arranged at random in the study area, and when population density and trap density were not too low. Social organization did not have a major effect on bias for these parameter combinations at which POPAN gave more or less unbiased population size estimates

  11. Narrow row and crossed lines associated with different plant densities of soybean

    Directory of Open Access Journals (Sweden)

    Alvadi Antonio Balbinot Junior

    2015-10-01

    Full Text Available The spatial arrangement of soybean plants affects the intraspecific competition for light, water and nutrients, which can change the biomass production, incidence of pests, diseases and weeds, plant lodging, and grain yield. This work aimed to evaluate the agronomic performance under different row spacing, plant densities and crossed rows. Two field experiments were carried out in Campo Mourão, Paraná State, Southern Brazil, using the randomized complete block experimental design, in a 3x3x2 factorial arrangement, with four replications. The treatments were formed by the combination of three row spacings (0.30, 0.45, and 0.60 m, three plant densities (300,000; 450,000; and 600,000 plants ha-1, and two row design (crossed or parallel rows. For all variables, interaction of the experimental factors was not significant. The row spacing of 0.45 m provided the highest grain yield in relation to 0.30 and 0.60 m. The density of 300,000 plants ha-1 showed higher yield of soybeans in late sowing. The crossed lines did not increase the productive performance in soybean.

  12. Relationships between brightness of nighttime lights and population density

    Science.gov (United States)

    Naizhuo, Z.

    2012-12-01

    Brightness of nighttime lights has been proven to be a good proxy for socioeconomic and demographic statistics. Moreover, the satellite nighttime lights data have been used to spatially disaggregate amounts of gross domestic product (GDP), fossil fuel carbon dioxide emission, and electric power consumption (Ghosh et al., 2010; Oda and Maksyutov, 2011; Zhao et al., 2012). Spatial disaggregations were performed in these previous studies based on assumed linear relationships between digital number (DN) value of pixels in the nighttime light images and socioeconomic data. However, reliability of the linear relationships was never tested due to lack of relative high-spatial-resolution (equal to or finer than 1 km × 1 km) statistical data. With the similar assumption that brightness linearly correlates to population, Bharti et al. (2011) used nighttime light data as a proxy for population density and then developed a model about seasonal fluctuations of measles in West Africa. The Oak Ridge National Laboratory used sub-national census population data and high spatial resolution remotely-sensed-images to produce LandScan population raster datasets. The LandScan population datasets have 1 km × 1 km spatial resolution which is consistent with the spatial resolution of the nighttime light images. Therefore, in this study I selected 2008 LandScan population data as baseline reference data and the contiguous United State as study area. Relationships between DN value of pixels in the 2008 Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) stable light image and population density were established. Results showed that an exponential function can more accurately reflect the relationship between luminosity and population density than a linear function. Additionally, a certain number of saturated pixels with DN value of 63 exist in urban core areas. If directly using the exponential function to estimate the population density for the whole brightly

  13. Population Density Modeling for Diverse Land Use Classes: Creating a National Dasymetric Worker Population Model

    Science.gov (United States)

    Trombley, N.; Weber, E.; Moehl, J.

    2017-12-01

    Many studies invoke dasymetric mapping to make more accurate depictions of population distribution by spatially restricting populations to inhabited/inhabitable portions of observational units (e.g., census blocks) and/or by varying population density among different land classes. LandScan USA uses this approach by restricting particular population components (such as residents or workers) to building area detected from remotely sensed imagery, but also goes a step further by classifying each cell of building area in accordance with ancillary land use information from national parcel data (CoreLogic, Inc.'s ParcelPoint database). Modeling population density according to land use is critical. For instance, office buildings would have a higher density of workers than warehouses even though the latter would likely have more cells of detection. This paper presents a modeling approach by which different land uses are assigned different densities to more accurately distribute populations within them. For parts of the country where the parcel data is insufficient, an alternate methodology is developed that uses National Land Cover Database (NLCD) data to define the land use type of building detection. Furthermore, LiDAR data is incorporated for many of the largest cities across the US, allowing the independent variables to be updated from two-dimensional building detection area to total building floor space. In the end, four different regression models are created to explain the effect of different land uses on worker distribution: A two-dimensional model using land use types from the parcel data A three-dimensional model using land use types from the parcel data A two-dimensional model using land use types from the NLCD data, and A three-dimensional model using land use types from the NLCD data. By and large, the resultant coefficients followed intuition, but importantly allow the relationships between different land uses to be quantified. For instance, in the model

  14. Maximizing plant density affects broccoli yield and quality

    Science.gov (United States)

    Increased demand for fresh market bunch broccoli (Brassica oleracea L. var. italica) has led to increased production along the United States east coast. Maximizing broccoli yields is a primary concern for quickly expanding southeastern commercial markets. This broccoli plant density study was carr...

  15. [Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize.

    Science.gov (United States)

    Zhang, Lin Lin; Sun, Shi Jun; Chen, Zhi Jun; Jiang, Hao; Zhang, Xu Dong; Chi, Dao Cai

    2018-01-01

    plant density treatments. The combination of black film mulching and density of 82500 plants·hm -2 significantly improved the water use efficiency of maize, which increased by 4.6%-40.9% compared with other treatments. In addition, it increased yield by 3.0%-39.7% compared with other treatments. At heading stage, the correlation between the dry matter amount of stalk and leaf and the yield and yield components was the biggest. Decreasing 1 kg·hm -2 dry matter amount of stalk and leaf would decrease the population yield by almost 0.79 kg·hm -2 . Decreasing 10% dry matter amount of stalk and leaf would decrease the yield by almost 10%. Based on increasing plant density, black film mulching was beneficial for increasing the dry matter accumulation and improving grain yield and water use efficiency of spring maize.

  16. Effect of maize intercrop plant densities on yield and β-carotene ...

    African Journals Online (AJOL)

    Effect of maize intercrop plant densities on yield and β-carotene contents of orange-fleshed sweetpotatoes. ... African Crop Science Journal ... 88,888 plants ha-1), at Ngetta Zonal Agricultural Research and Development Institute in Uganda.

  17. Insect density-plant density relationships: a modified view of insect responses to resource concentrations.

    Science.gov (United States)

    Andersson, Petter; Löfstedt, Christer; Hambäck, Peter A

    2013-12-01

    Habitat area is an important predictor of spatial variation in animal densities. However, the area often correlates with the quantity of resources within habitats, complicating our understanding of the factors shaping animal distributions. We addressed this problem by investigating densities of insect herbivores in habitat patches with a constant area but varying numbers of plants. Using a mathematical model, predictions of scale-dependent immigration and emigration rates for insects into patches with different densities of host plants were derived. Moreover, a field experiment was conducted where the scaling properties of odour-mediated attraction in relation to the number of odour sources were estimated, in order to derive a prediction of immigration rates of olfactory searchers. The theoretical model predicted that we should expect immigration rates of contact and visual searchers to be determined by patch area, with a steep scaling coefficient, μ = -1. The field experiment suggested that olfactory searchers should show a less steep scaling coefficient, with μ ≈ -0.5. A parameter estimation and analysis of published data revealed a correspondence between observations and predictions, and density-variation among groups could largely be explained by search behaviour. Aphids showed scaling coefficients corresponding to the prediction for contact/visual searchers, whereas moths, flies and beetles corresponded to the prediction for olfactory searchers. As density responses varied considerably among groups, and variation could be explained by a certain trait, we conclude that a general theory of insect responses to habitat heterogeneity should be based on shared traits, rather than a general prediction for all species.

  18. Morphological analysis of plant density effects on early leaf area growth in maize

    NARCIS (Netherlands)

    Bos, H.J.; Vos, J.; Struik, P.C.

    2000-01-01

    The mechanisms of density-related reduced leaf area per plant in non-tillering maize (Zea mays) were investigated. Maize cv. Luna crops with a wide range of plant densities were grown in the field at Wageningen for two years. Half of the plots were shaded (50% transmittance). Detailed measurements

  19. Expression of β-glucosidase increases trichome density and artemisinin content in transgenic Artemisia annua plants.

    Science.gov (United States)

    Singh, Nameirakpam Dolendro; Kumar, Shashi; Daniell, Henry

    2016-03-01

    Artemisinin is highly effective against multidrug-resistant strains of Plasmodium falciparum, the aetiological agent of the most severe form of malaria. However, a low level of accumulation of artemisinin in Artemisia annua is a major limitation for its production and delivery to malaria endemic areas of the world. While several strategies to enhance artemisinin have been extensively explored, enhancing storage capacity in trichome has not yet been considered. Therefore, trichome density was increased with the expression of β-glucosidase (bgl1) gene in A. annua through Agrobacterium-mediated transformation. Transgene (bgl1) integration and transcript were confirmed by molecular analysis. Trichome density increased up to 20% in leaves and 66% in flowers of BGL1 transgenic plants than Artemisia control plants. High-performance liquid chromatography, time of flight mass spectrometer data showed that artemisinin content increased up to 1.4% in leaf and 2.56% in flowers (per g DW), similar to the highest yields achieved so far through metabolic engineering. Artemisinin was enhanced up to five-fold in BGL1 transgenic flowers. This study opens the possibility of increasing artemisinin content by manipulating trichomes' density, which is a major reservoir of artemisinin. Combining biosynthetic pathway engineering with enhancing trichome density may further increase artemisinin yield in A. annua. Because oral feeding of Artemisia plant cells reduced parasitemia more efficiently than the purified drug, reduced drug resistance and cost of prohibitively expensive purification process, enhanced expression should play a key role in making this valuable drug affordable to treat malaria in a large global population that disproportionally impacts low-socioeconomic areas and underprivileged children. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Density dependence, density independence, and recruitment in the American shad (Alosa sapidissima) population of the Connecticut River

    International Nuclear Information System (INIS)

    Leggett, W.C.

    1977-01-01

    The role of density-dependent and density-independent factors in the regulation of the stock-recruitment relationship of the American shad (Alosa sapidissima) population of the Connecticut River was investigated. Significant reductions in egg-to-adult survival and juvenile growth rates occurred in the Holyoke--Turners Falls region in response to increases in the intensity of spawning in this area. For the Connecticut River population as a whole, egg-to-adult survival was estimated to be 0.00056 percent at replacement levels, and 0.00083 percent at the point of maximum population growth. Density-independent factors result in significant annual deviations from recruitment levels predicted by the density-dependent model. Temperature and flow regimes during spawning and early larval development are involved, but they explain only a small portion (less than 16 percent) of the total variation. In spite of an extensive data base, the accuracy of predictions concerning the potential effects of additional mortality to pre-recruit stages is low. The implications of these findings for environmental impact assessment are discussed

  1. The Effect of Planting Pattern and Density on Yield and Yield Components of Sesame (Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2017-06-01

    Full Text Available Introduction Crop density enhancement is a method to increase yield per unit area. The spatial distribution of plants is related to radiation absorption. Therefore, it could play an effective role in photosynthesis and yield, since Crop Growth Rate (CGR is a function of used radiation energy in photosynthesis. Totally, increasing radiation absorption efficiency and yield need sufficient leaf area and suitable distribution of leaves in canopy. Ahmad et al., (2002 planted sesame with different inter row- spacing (30, 45 and 60 cm, they reported that the maximum plant height and economic yield were obtained from inter row- spacing of 45 cm. Rahnama and Bakhshandeh (2006 planted sesame with different inter row- spacing (37.5, 50 and 60 cm and the results showed that the number of capsules per plant, seed weight as well as seed oil per plant, increased with increasing inter row- spacing. Karasan et al., (2007 reported that decreasing inter row- spacing resulted in seed yield enhancement and reduction in number of capsules per plant. Material and Methods An experiment using split-plot based on randomized complete blocks design was performed. The experiment was carried with three replications in two years (2012 and 2013 at the agricultural research station of Ferdowsi University of Mashhad. For this purpose, the main plot was the density per square meter with three levels (30, 40 and 50 plants per square meter and the sub main plot was planting pattern (rectangle, square and rhombic. The size of each plot was 2×3 meters. The distance between plots and blocks were 0.5 and 1 meter, respectively. Intra row- spacing for rectangle planting pattern for densities of 30, 40 and 50 plants per square meter was 6, 5 and 4 cm, respectively. In square and rhombic planting patterns, 2 lines was planted in each row and inter row- spacing for densities of 30, 40 and 50 plants per square meter were 18, 16 and 14 cm. economic yield measured at the end of growth season

  2. Forage yield and nutritive value of Tanzania grass under nitrogen supplies and plant densities

    Directory of Open Access Journals (Sweden)

    Fabrício Paiva de Freitas

    2012-04-01

    Full Text Available The objective of this experiment was to evaluate the nitrogen and plant density influence on the yield, forage dissection and nutritive value of Tanzania grass (Panicum maximum Jacq.. The design was of completely randomized blocks with three replications in a factorial arrangement with four nitrogen levels (0, 80, 160 or 320 kg/ha N and three plant densities (9, 25 or 49 plants/m². The plots were cut at 25 cm from soil level when the canopy reached 95% of light interception. The total dry matter forage yield and dry matter forage yield per harvest increased linearly with the nitrogen fertilization. The leaf and stem yield had the same response. The senesced forage yield was quadratically influenced by the nitrogen. The stems ratio in the morphologic composition was high in the high nitrogen levels and in the low plant densities. The leaf:stem ratio showed high values in this trial, but it was increased in plots without nitrogen and high plant density. The pre-grazing height was reduced with the increase in plant density. The nutritive value was favored by the nitrogen fertilization, which increased the crude protein level and reduced neutral detergent fiber and lignin. These factors increased the leaf and stem in vitro digestibility of organic matter. Nitrogen fertilization increases the forage yield of Tanzania grass under rotational grazing. After the establishment, plant density has little influence on the Tanzania grass yield and its forage dissection. The harvest with 95% light interception improves the structure and nutritive value of Tanzania grass pastures.

  3. Connections between population density, energy use, and GHG emissions in water networks

    Energy Technology Data Exchange (ETDEWEB)

    Filion, Y.R. [Queen' s Univ., Kingston, ON (Canada). Dept. of Civil Engineering

    2007-07-01

    There is a growing concern that urban sprawl and highly dispersed urban infrastructure in cities is posing significant environmental impacts. However, there is no agreement on the suitability of interventions such as population intensification on reducing environmental impacts. This paper investigated the connection between population intensification and environmental impact in water distribution networks. Specifically, it examined the relationship between population density, annual per capita energy use, and annual per capita greenhouse gas (GHG) emissions in water distribution networks. It also examined which population densities produce low levels of annual per capita energy use and GHG emissions. An analytical model of a trunk main was developed to connect population density to energy use and GHG emissions. The model considered energy use in five life activities of the trunk main, namely pipe fabrication, pipe repair, water pumping, and pipe recycling and/or disposal. The energy use model was combined with emission factors and electricity fuel-source mixtures from four Canadian regions (Atlantic Provinces, Quebec, Ontario, and Alberta) to compute representative levels of annual per capita GHGs emitted by the trunk main. It was concluded that increasing population density from 10 ca/ha to 150 ca/ha reduced energy use and GHG emissions by 67per cent and that increasing population density beyond 150 ca/ha produces no significant decrease in annual per capita energy use and GHG emissions. Further analysis on looped networks is required to verify these preliminary findings. 10 refs., 3 tabs., 2 figs.

  4. Nitrogen dose and plant density effects on popcorn grain yield ...

    African Journals Online (AJOL)

    and plant densities on grain yield and yield-related plant characteristics of popcorn in Hatay, located at Southern Mediterranean region of Turkey, during 2002 and 2003. The experiment was designed in a randomized complete block design with a split-plot arrangement with three replications. Nitrogen doses of 0, 120, 180 ...

  5. Drip irrigation in coffee crop under different planting densities: Growth and yield in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Gleice A. de Assis

    2014-11-01

    Full Text Available Irrigation associated to reduction on planting spaces between rows and between coffee plants has been a featured practice in coffee cultivation. The objective of the present study was to assess, over a period of five consecutive years, influence of different irrigation management regimes and planting densities on growth and bean yield of Coffea arabica L.. The treatments consisted of four irrigation regimes: climatologic water balance, irrigation when the soil water tension reached values close to 20 and 60 kPa; and a control that was not irrigated. The treatments were distributed randomly in five planting densities: 2,500, 3,333, 5,000, 10,000 and 20,000 plants ha-1. A split-plot in randomized block design was used with four replications. Irrigation promoted better growth of coffee plants and increased yield that varied in function of the plant density per area. For densities from 10,000 to 20,000 plants ha-1, regardless of the used irrigation management, mean yield increases were over 49.6% compared to the non-irrigated crop.

  6. Interaction Effects between Light Level and Plant Density on Plant Growth, Development and External Quality in Year-around Cut Chrysanthemum

    NARCIS (Netherlands)

    Lee, J.H.; Heuvelink, E.; Bakker, M.J.

    2009-01-01

    Aims of this study are to analyze growth pattern and development Of Cut chrysanthemum and test simple regression models in relation to light level and plant density. Cut chrysanthemum (Chrysanthemum morifolium), cv. Reagan Improved, was grown at four different plant densities of 16, 32, 64 or 80

  7. Effect of population density and dose of nitrogen and potassium ...

    African Journals Online (AJOL)

    This experiment was executed in a split randomized complete block design with three replications. Two plant densities (D), (D1; D2) equal to one plant and two plants per pot and seven fertilizers doses (F), (N0 K0; N1 K0; N1 K1; N2 K0; N2 K2; N0 K1; N0 K2) were investigated. N0, N11 and N2 equal to 0, 0.46, and 0.92 g ...

  8. Physiological quality of soybean seeds under different yield environments and plant density

    Directory of Open Access Journals (Sweden)

    Felipe A. Baron

    Full Text Available ABSTRACT Yield potential of agricultural fields associated with plant spatial arrangement could determine the physiological quality of soybean (Glycine max L. seeds. Thus, this study aimed to evaluate the physiological quality of soybean seeds from different yield environments and plant densities. Experiments were carried out in Boa Vista das Missões-RS, Brazil, during the 2014/2015 growing season. Yield environments were delineated by overlapping yield maps from the 2008, 2009/2010 and 2011/2012 growing seasons. The experimental design was a randomized complete block in a 2 x 5 factorial arrangement with two yield environments (low and high and five plant densities, with four replicates. Two varieties were tested: Brasmax Ativa RR (10, 15, 20, 25 and 30 plants m-1 and Nidera 5909 RR (5, 10, 15, 20 and 25 plants m-1. After harvested, the seeds were analysed as following: first count index, germination, abnormal seedlings, dead seeds, electrical conductivity, accelerate aging test, root length, hypocotyl length and seedling length. The spatial variability of seed vigor in the production field could be reduced by adjusting plant density, but the adjustment should consider the variety. Harvest according to yield environment is a strategy to separate lots of seeds with higher vigor, originated from high-yield environments.

  9. Effects of two pheromone trap densities against banana weevil Cosmopolites sordidus, populations and their impact on plant damage in Uganda

    NARCIS (Netherlands)

    Tinzaara, W.; Gold, C.S.; Kagezi, G.H.; Dicke, M.; Huis, van A.; Nankinga, C.; Tushemereirwe, W.; Ragama, P.E.

    2005-01-01

    An on-farm study to evaluate the effect of pheromone trap density on the population of the banana weevil, Cosmopolites sordidus (Germar) (Col., Curculionidae) was conducted in Masaka district, Uganda. The pheromone used was Cosmolure+, a commercially available weevil aggregation pheromone. Forty-two

  10. Inter-Population Variability of Endosymbiont Densities in the Asian Citrus Psyllid (Diaphorina citri Kuwayama).

    Science.gov (United States)

    Chu, Chia-Ching; Gill, Torrence A; Hoffmann, Mark; Pelz-Stelinski, Kirsten S

    2016-05-01

    The Asian citrus psyllid (Diaphorina citri Kuwayama) is an insect pest capable of transmitting Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening in North America. D. citri also harbors three endosymbionts, Wolbachia, Candidatus Carsonella ruddii, and Candidatus Profftella armatura, which may influence D. citri physiology and fitness. Although genomic researches on these bacteria have been conducted, much remains unclear regarding their ecology and inter-population variability in D. citri. The present work examined the densities of each endosymbiont in adult D. citri sampled from different populations using quantitative PCR. Under field conditions, the densities of all three endosymbionts positively correlated with each other, and they are associated with D. citri gender and locality. In addition, the infection density of CLas also varied across populations. Although an analysis pooling D. citri from different populations showed that CLas-infected individuals tended to have lower endosymbiont densities compared to uninfected individuals, the difference was not significant when the population was included as a factor in the analysis, suggesting that other population-specific factors may have stronger effects on endosymbiont densities. To determine whether there is a genetic basis to the density differences, endosymbiont densities between aged CLas-negative females of two D. citri populations reared under standardized laboratory conditions were compared. Results suggested that inter-population variability in Wolbachia infection density is associated with the genotypes of the endosymbiont or the host. Findings from this work could facilitate understanding of D. citri-bacterial associations that may benefit the development of approaches for managing citrus greening, such as prevention of CLas transmission.

  11. Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species.

    Science.gov (United States)

    Allsopp, N; Stock, W D

    1992-08-01

    The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.

  12. Experimental effects of herbivore density on above-ground plant biomass in an alpine grassland ecosystem

    OpenAIRE

    Austrheim, Gunnar; Speed, James David Mervyn; Martinsen, Vegard; Mulder, Jan; Mysterud, Atle

    2014-01-01

    Herbivores may increase or decrease aboveground plant productivity depending on factors such as herbivore density and habitat productivity. The grazing optimization hypothesis predicts a peak in plant production at intermediate herbivore densities, but has rarely been tested experimentally in an alpine field setting. In an experimental design with three densities of sheep (high, low, and no sheep), we harvested aboveground plant biomass in alpine grasslands prior to treatment and after five y...

  13. Ecological context of the evolution of self-pollination in Clarkia xantiana: population size, plant communities, and reproductive assurance.

    Science.gov (United States)

    Moeller, David A; Geber, Monica A

    2005-04-01

    The repeated evolutionary transition from outcrossing to self-pollination in flowering plants has been suggested to occur because selfing provides reproductive assurance. Reports from biogeographical and ecological surveys indicate that selfing taxa are often associated with stressful and ephemeral environments, situations in which plant abundance is low (e.g., Baker's law) and with novel plant communities, however experimental tests of ecological hypotheses are few. In this study, we examined the ecological context of selection on mating system traits (herkogamy and protandry) in a California annual, Clarkia xantiana, where natural selfing populations differ from outcrossing populations in that they are often of small size or low density and occur mainly outside the range of pollinator-sharing congeners. We constructed artificial populations of plants with broad genetic variation in floral traits and manipulated two ecological factors, plant population size, and the presence versus absence of pollinator-sharing congeners, in the center of the geographic range of outcrossing populations. We found evidence for context-dependent selection on herkogamy and protandry via female fitness in which reduced traits, which promote autonomous selfing, were favored in small populations isolated from congeners whereas selection was comparatively weak in large populations or when congeners were present. In small, isolated populations, the fertility of plants with low herkogamy or protandry was elevated by 66% and 58%, respectively, compared to those with high herkogamy or protandry. The presence of pollinator-sharing congeners augmented bee visitation rates to C. xantiana flowers by 47% for all bees and by 93% for pollen specialists. By facilitating pollinator visitation, congeners mitigated selection on mating system traits in small populations, where outcross mating success is often low (the Allee effect). We also found support for the hypothesis that pollinator availability

  14. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    Science.gov (United States)

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  15. How Planting Density Affects Number and Yield of Potato Minitubers in a Commercial Glasshouse Production System

    NARCIS (Netherlands)

    Veeken, van der A.J.H.; Lommen, W.J.M.

    2009-01-01

    Commercial potato minituber production systems aim at high tuber numbers per plant. This study investigated by which mechanisms planting density (25.0, 62.5 and 145.8 plants/m2) of in vitro derived plantlets affected minituber yield and minituber number per plantlet. Lowering planting density

  16. The Effect of Plant Density on Photosynthesis and Growth Indices of Henna (Lowsonia inermis L. Ecotypes

    Directory of Open Access Journals (Sweden)

    A Pasandi Pour

    2018-05-01

    Full Text Available Introduction One of the most important factors to obtain the maximum performance or yield in every climatic condition and for each plant varieties is determining the optimum plant density. Henna (Lowsonia inermis L. is a perennial plant with high value in terms of having medicinal properties and industrial applications. The dye which is derived from green leaves of henna is used for decorating the body with intricate designs and the principle coloring matter is lawsone, 2-hydroxy-1, 4-naphthoqunone. The main purpose of this study was to evaluate the agro-physiological reaction of different henna ecotypes to different planting densities in Kerman weather conditions. Materials and Methods The study was carried out as a factorial experiment based on complete randomized block design with three replications in Shahid Bahonar University in 2015. The experiment consisted of four plant densities (25, 33, 50 and 100 plants m-2 and three ecotypes (Shahdad, Roodbar and Bam. Due to its small seeds and germination problems the planting method used was transplanting. In this study, growth indices such as leaf area index (LAI, crop growth rate (CGR, relative growth rate (RGR, leaf area ratio (LAR, specific leaf area (SLA, specific leaf weight (SLW, leaf area duration (LAD and biomass duration (BMD were calculated. The net photosynthesis, stomatal conductance and transpiration rate were measured in the middle of growing period by photosynthesis meter (CI-340 model, CID Bio- Science companies, USA. At the end, the results were analyzed using the SAS v. 9.1 and MSTATC software’s and diagrams were drawn by Excel software. Results and Discussion The results showed that the studied ecotypes were significantly different in terms of CGR, RGR and stomatal conductance. The highest average of CGR belonged to Shahdad ecotype while there was no significant difference between Roodbar and Bam ecotypes in this case. Shahdad ecotype with the RGR of 0.018 g.g.day had the

  17. Effect of Weed Interference on Yield and Agronomical Characteristics of Fenugreek (Trigonella foenum gracum in Different Plant Density under Birjand Conditions

    Directory of Open Access Journals (Sweden)

    R Baradaran

    2016-02-01

    Full Text Available Introduction Iran is among the countries with a climate appropriate for growing a wide range of herbs, and can be a great source of producing and exporting plants. Fenugreek (Trigonella foenum gracum is one of the oldest plant and it is an annual herbaceous plant of the Fabaceae family (Fabaceae which are dry, brown or reddish-yellow to gray to over 5.3 mm. Seeds of this plant are used as a spice and its leaves are used as a vegetable. Among the most important factors in farming, it is important to use appropriate planting density. Therefore, if all the necessary conditions, including the right, but density is inappropriate, it will not get the optimum yield per unit area. The effective management of weeds increase the performance of weed management practices, reduce weed population and the costs associated with it over time. Weeds compete with crops for a variety of sources such as light, water and minerals. Given that the best time weeding the weeds and the most appropriate density of fenugreek is not much information available, this study aimed to determine the appropriate density of weed infested and fenugreek was used. Materials and Methods In order to determine the effects of weed interference and appropriate density of fenugreek, a field trial was conducted in research farm of Birjand Islamic Azad University during the spring of year 2011. The experiment was a factorial based on randomized complete block design. The treatments were fenugreek density at 10, 20 and 40 plants m-2 and weed interference in five levels included weed-free to maturity, 20, 40 and 60 days after emergence, and no weeding. Fenugreek seeds (spherical, brown of pure seed before planting desert of preparation and sterilization by benomyl and then do planting trees and irrigation was done immediately. Irrigation was applied every seven days. During the study, pests and diseases were completely controlled. Weed control was done manually in three stages. Traits such as

  18. Biomass of tree species as a response to planting density and interspecific competition

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2014-04-01

    Full Text Available Planting trees is an important way to promote the recovery of degraded areas in the Caatinga region. Experiments (E1, E2, and E3 were conducted in a randomized blocks design, with three, three, and five replicates, respectively. The objectives were to evaluate biomass of the shoots of: a gliricidia (G and sabiá (S, as a response to planting density; b G, S, and neem (N in competition; c G, and S in agroforestry. E1 was conducted in split-plots, and planting densities (400, 600, 800, 1000, and 1200 plants ha-1 as subplots. E2 consisted of a factorial comprising the following plots: GGG, NGN, SGS, NNN, GNG, SNS, SSS, GSG, NSN (each letter represents a row of plants. E3 was conducted with G and S in agroforestry experiment. The trees were harvested after 54, 42, and 27 months old, in E1, E2 and E3, respectively. In E1, G presented higher green biomass of the stems and leaf at smaller densities than S, but lower green biomass of branches at most densities. The species did not differ for mean stem dry biomass and leaf dry biomass, but G showed higher branch dry biomass at most densities. Higher planting densities increased green and dry biomass of stems, branches, and leaves in S, but decreased those characteristics in G, with the exception of leaf dry mass, which was not influenced by density. In E2, the behavior of each species was identical in plots containing the same or different species. Griricidia showed the highest green biomass of stems and branches, and the highest values for geren biomass of the leaf were observed for gliricidia and neem. The highest stem, branch, and leaf dry biomass values were obtained for G, S, and N, respectively. In E3, G was superior for stem and leaf green biomass, and for stem and branch dry biomass. There were no differences between species for the other biomass values.

  19. Effect of Physicochemical Characteristics of Soil on Population Density of Arbuscular Mycorrhizal Fungi in the Roots of Grapevine in Urmia

    Directory of Open Access Journals (Sweden)

    A. Mahdavi Bileh Savar

    2015-01-01

    Full Text Available Relationship of is one of the most useful interactions in terrestrial ecosystems that its positive effects on growth, physiology and ecology of different plants has been documented. This study investigated the relationship between important physicochemical characteristics of soils such as pH, electrical conductivity (EC, soil texture, organic carbon percentage, soil potassium percentage and the amount of accessible phosphorus with population of mycorrhizal fungi. After dividing the study region into four areas, 43 samples of soil were collected. The results of statistical analysis on physico-chemical characteristics of soil and their relation with population density of spores of arbuscular mycorrhizal fungi showed that there was a negative correlation between electrical conductivity (EC, pH, clay percent, and percent of soil available phosphorus, potassium percent, and percentage of organic carbon with the mean number of fungi. There were positive correlations between silt and sand percentages and mean number of spores present in the soil. Based on the coefficien of determination and based on study conditions, the best model for the rhizosphere was found tobe the one in wich available phosphorus percent of soil was the independent variable, and mean population of fungi as the dependant variable. The correlation between available phosphorus percent in soil samples with average fungi population density negative (P<0/05, but there was not a meaningful correlation between other traits and population density of fungi

  20. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines.

    Science.gov (United States)

    Zhou, Zhiqiang; Zhang, Chaoshu; Zhou, Yu; Hao, Zhuanfang; Wang, Zhenhua; Zeng, Xing; Di, Hong; Li, Mingshun; Zhang, Degui; Yong, Hongjun; Zhang, Shihuang; Weng, Jianfeng; Li, Xinhai

    2016-03-03

    Plant architecture attributes, such as plant height, ear height, and internode number, have played an important role in the historical increases in grain yield, lodging resistance, and biomass in maize (Zea mays L.). Analyzing the genetic basis of variation in plant architecture using high density QTL mapping will be of benefit for the breeding of maize for many traits. However, the low density of molecular markers in existing genetic maps has limited the efficiency and accuracy of QTL mapping. Genotyping by sequencing (GBS) is an improved strategy for addressing a complex genome via next-generation sequencing technology. GBS has been a powerful tool for SNP discovery and high-density genetic map construction. The creation of ultra-high density genetic maps using large populations of advanced recombinant inbred lines (RILs) is an efficient way to identify QTL for complex agronomic traits. A set of 314 RILs derived from inbreds Ye478 and Qi319 were generated and subjected to GBS. A total of 137,699,000 reads with an average of 357,376 reads per individual RIL were generated, which is equivalent to approximately 0.07-fold coverage of the maize B73 RefGen_V3 genome for each individual RIL. A high-density genetic map was constructed using 4183 bin markers (100-Kb intervals with no recombination events). The total genetic distance covered by the linkage map was 1545.65 cM and the average distance between adjacent markers was 0.37 cM with a physical distance of about 0.51 Mb. Our results demonstrated a relatively high degree of collinearity between the genetic map and the B73 reference genome. The quality and accuracy of the bin map for QTL detection was verified by the mapping of a known gene, pericarp color 1 (P1), which controls the color of the cob, with a high LOD value of 80.78 on chromosome 1. Using this high-density bin map, 35 QTL affecting plant architecture, including 14 for plant height, 14 for ear height, and seven for internode number were detected

  1. Effects of plant density and cultivar on yield responses in onions (Allium cepa L. grown from seeds

    Directory of Open Access Journals (Sweden)

    Jan Rumpel

    2013-12-01

    Full Text Available Two field experiments were conducted to study the effect of plant density on yield, size grading and maturity of onion bulbs grown from seeds. In the first experiment carried out during 1991-1993, three onion cultivars (Hysam F1 , Mercato F1 and Sochaczewska were sown for intended densities of 20, 40, 60, 80,100 and 140 plants m-2, whereas in the second one, in 1996, six onion cultivars (Spirit F1, Summit F1, Hyduro F1, Armstrong F1, Renate F1 and Robusta were sown for intended densities of 40, 60 and 80 plants m-2. The onions were grown on beds, 1,35 m wide, in 4 rows per bed (27+27+27+54 cm. Marketable yield increased with plant density, and depending on year was highest at 80 or 100 plants m-2. The average marketable yield of the 1991-1993 experiment increased from 20.5 t·ha-1 at 20 plants m-2 to 32.8 t·ha-1 at 80 plants m-2, whereas that of the 1996 experiment increased from 48,9 t-ha-1 at 40 plants m-2 to 59.0 t·ha-1 at 80 plants m-2, respectively. Yield of large bulbs decreased with density and was highest at 20-40 plants m-2, oposite to the yield of small bulbs, which was highest at the highest density of 140 plants·m-2. The medium bulb yield increased with density, at the some way as compared the total marketable yield. No greater effect of cultivar on bulb size grades was found and the existing differences were proportional to the total marketable yield . Plant density hastened maturity of onions, and at density of 140 plants m-2 the leaf fall-over occurred 9-10 days earlier as compared at density of 20 plants m-2. The cultiwars used. can be placed in the following order of decreasing productivity: 1 . Mercato F1, 2. Hysam F1 and 3. Sochaczewska, - in the first expeiiment (1991-93 and 1. Annstrong F1, 2. Spirit F1, 3. Robusta, 4. Renate F1, 5. Hyduro F1 and 6. Summit F1 - in the second experiment (1996, respectively.

  2. Effect of Plant Density and Weed Interference on Yield and Yied Components of Grain Sorghum

    Directory of Open Access Journals (Sweden)

    S. Sarani

    2018-01-01

    Full Text Available Introduction Weed control is an essential part of all crop production systems. Weeds reduce yields by competing with crops for water, nutrients, and sunlight. Weeds also directly reduce profits by hindering harvest operations, lowering crop quality, and producing chemicals which are harmful to crop plants. Plant density is an efficient management tool for maximizing grain yield by increasing the capture of solar radiation within the canopy, which can significantly affect development of crop-weed association. The response of yield and yield components to weed competition varies by crop and weeds species and weeds interference duration. The objective of the present study was to evaluate the effect of weed interference periods and plant density on the yield and yield components of sorghum. Materials and Methods In order to study the effect of plant density and weeds interference on weeds traits, yield and yield components of sorghum (Var. Saravan, an experiment was conducted as in factorial based on a randomized complete block design with three replications at the research field of Islamic Azad University, Birjand Branch in South Khorasan province during year of 2013. Experimental treatments consisted of three plant density (10, 20 and 30 plants m-2 and four weeds interference (weed free until end of growth season, interference until 6-8 leaf stage, interference until stage of panicle emergence, interference until end of growth season. Measuring traits included the panicle length, number of panicle per plant, number of panicle per m2, number of seed per panicle, 1000-seed weight, seed yield, biological yield, number and weight of weeds per m2. Weed sampling in each plot have done manually from a square meter and different weed species counted and oven dried at 72 °C for 48 hours. MSTAT-C statistical software used for data analysis and means compared with Duncan multiple range test at 5% probability level. Results and Discussion Results showed that

  3. Varying plant density and harvest time to optimize cowpea leaf yield and nutrient content

    Science.gov (United States)

    Ohler, T. A.; Nielsen, S. S.; Mitchell, C. A.

    1996-01-01

    Plant density and harvest time were manipulated to optimize vegetative (foliar) productivity of cowpea [Vigna unguiculata (L.) Walp.] canopies for future dietary use in controlled ecological life-support systems as vegetables or salad greens. Productivity was measured as total shoot and edible dry weights (DW), edible yield rate [(EYR) grams DW per square meter per day], shoot harvest index [(SHI) grams DW per edible gram DW total shoot], and yield-efficiency rate [(YER) grams DW edible per square meter per day per grams DW nonedible]. Cowpeas were grown in a greenhouse for leaf-only harvest at 14, 28, 42, 56, 84, or 99 plants/m2 and were harvested 20, 30, 40, or 50 days after planting (DAP). Shoot and edible dry weights increased as plant density and time to harvest increased. A maximum of 1189 g shoot DW/m2 and 594 g edible DW/m2 were achieved at an estimated plant density of 85 plants/m2 and harvest 50 DAP. EYR also increased as plant density and time to harvest increased. An EYR of 11 g m-2 day-1 was predicted to occur at 86 plants/m2 and harvest 50 DAP. SHI and YER were not affected by plant density. However, the highest values of SHI (64%) and YER (1.3 g m-2 day-1 g-1) were attained when cowpeas were harvested 20 DAP. The average fat and ash contents [dry-weight basis (dwb)] of harvested leaves remained constant regardless of harvest time. Average protein content increased from 25% DW at 30 DAP to 45% DW at 50 DAP. Carbohydrate content declined from 50% DW at 30 DAP to 45% DW at 50 DAP. Total dietary fiber content (dwb) of the leaves increased from 19% to 26% as time to harvest increased from 20 to 50 days.

  4. Projecting the success of plant restoration with population viability analysis

    Science.gov (United States)

    Bell, T.J.; Bowles, M.L.; McEachern, A.K.; Brigham, C.A.; Schwartz, M.W.

    2003-01-01

    Conserving viable populations of plant species requires that they have high probabilities of long-term persistence within natural habitats, such as a chance of extinction in 100 years of less than 5% (Menges 1991, 1998; Brown 1994; Pavlik 1994; Chap. 1, this Vol.). For endangered and threatened species that have been severely reduces in range and whose habitats have been fragmented, important species conservation strategies may include augmenting existing populations or restoring new viable populations (Bowles and Whelan 1994; Chap. 2, this Vol.). Restoration objectives may include increasing population numbers to reduce extinction probability, deterministic manipulations to develop a staged cohort structure, or more complex restoration of a desired genetic structure to allow outcrossing or increase effective population size (DeMauro 1993, 1994; Bowles et al. 1993, 1998; Pavlik 1994; Knapp and Dyer 1998; Chap. 2, this Vol.). These efforts may require translocation of propagules from existing (in situ) populations, or from ex situ botanic gardens or seed storage facilities (Falk et al. 1996; Guerrant and Pavlik 1998; Chap. 2, this Vol.). Population viability analysis (PVA) can provide a critical foundation for plant restoration, as it models demographic projections used to evaluate the probability of population persistence and links plant life history with restoration strategies. It is unknown how well artificially created populations will meet demographic modeling requirements (e.g., due to artificial cohort transitions) and few, if any, PVAs have been applied to restorations. To guide application of PVA to restored populations and to illustrate potential difficulties, we examine effects of planting different life stages, model initial population sizes needed to achieve population viability, and compare demographic characteristics between natural and restored populations. We develop and compare plant population restoration viability analysis (PRVA) case studies of

  5. Population trends around nuclear power plants

    International Nuclear Information System (INIS)

    Greenberg, M.; Krueckeberg, D.A.; Kaltman, M.

    1984-01-01

    Site selection criteria used by the Nuclear Regulatory Commission emphasize the selection of low population areas in which little growth is anticipated. This research examines population growth after site selection for the period 1960 to 1980 for forty-three operating sites. Substantial increments of population increase were found, only partially explained by national, regional, and host county growth trends impacting local host areas. These local components of change became especially important in the decade of the 1970s, when most of the plants were in full operation. The decade of the 1970s also saw a marked shift from the geographic pattern of growth of the 60s, when few plants were in operation. These larger and different growth components of the 1970s, also unexplained by preliminary analysis of correlation with coastal locations and degree of urbanization, are classified into categories with high potential and interest for further research

  6. Conservation investment for rare plants in urban environments.

    Science.gov (United States)

    Schwartz, Mark W; Smith, Lacy M; Steel, Zachary L

    2013-01-01

    Budgets for species conservation limit actions. Expending resources in areas of high human density is costly and generally considered less likely to succeed. Yet, coastal California contains both a large fraction of narrowly endemic at-risk plant species as well as the state's three largest metropolitan regions. Hence understanding the capacity to protect species along the highly urbanized coast is a conservation priority. We examine at-risk plant populations along California's coastline from San Diego to north of San Francisco to better understand whether there is a relationship between human population density and: i) performance of at-risk plant populations; and ii) conservation spending. Answering these questions can help focus appropriate strategic conservation investment. Rare plant performance was measured using the annualized growth rate estimate between census periods using the California Natural Diversity Database. Human density was estimated using Census Bureau statistics from the year 2000. We found strong evidence for a lack of a relationship between human population density and plant population performance in California's coastal counties. Analyzing US Endangered Species expenditure reports, we found large differences in expenditures among counties, with plants in San Diego County receiving much higher expenditures than other locations. We found a slight positive relationship between expenditures on behalf of endangered species and human density. Together these data support the argument that conservation efforts by protecting habitats within urban environments are not less likely to be successful than in rural areas. Expenditures on behalf of federally listed endangered and threatened plants do not appear to be related to proximity to human populations. Given the evidence of sufficient performance in urban environments, along with a high potential to leverage public support for nature in urban environments, expenditures in these areas appear to be an

  7. Plant density affects measures of biodiversity effects

    Czech Academy of Sciences Publication Activity Database

    Stachová, T.; Fibich, P.; Lepš, Jan

    2013-01-01

    Roč. 6, č. 1 (2013), s. 1-11 ISSN 1752-9921 R&D Projects: GA ČR GD206/08/H044 Grant - others:GA JU(CZ) 138/2010/P Institutional support: RVO:60077344 Keywords : biodiversity effects * plant density * constant final yield Subject RIV: EH - Ecology, Behaviour Impact factor: 2.284, year: 2013 http://jpe.oxfordjournals.org/content/early/2012/04/27/jpe.rts015.full.pdf+html

  8. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.

    Science.gov (United States)

    Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-02-01

    Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effects of Plant Density and Nitrogen Fertilizer on Quantity and Quality of Forage Corn in Daregaz Region (Iran

    Directory of Open Access Journals (Sweden)

    N. Saadatzadeh

    2011-01-01

    Full Text Available In order to evaluate the effects of plant density and nitrogen on quantity and quality of forage corn an experiment was conducted in Daregaz region in cropping season 2008 – 2009. The experimental design was a split – plot based on randomized complete block with three replications. The main plots were four levels of nitrogen (0 , 75, 150 and 225 kg/ha and sub plots were three levels of plant density (75000, 100000 and 125000 plant/ha. The results showed that increasing nitrogen levels and plant density, plant height, percentage crude protein and total protein production (ton/ha were increased. By increasing plant density, stem diameter, leaf and ear weight decreased while they increased with increased nitrogen levels. The highest forage yield obtained at nitrogen level 150 kg/ha (46 ton/ha and 100000 plant per hectare (40.27 ton/ha. The highest total protein production (7 ton/ha obtained at nitrogen level of 150 kg/ha and plant density of 125000 plant/ha.

  10. Understanding spatial connectivity of individuals with non-uniform population density.

    Science.gov (United States)

    Wang, Pu; González, Marta C

    2009-08-28

    We construct a two-dimensional geometric graph connecting individuals placed in space within a given contact distance. The individuals are distributed using a measured country's density of population. We observe that while large clusters (group of individuals connected) emerge within some regions, they are trapped in detached urban areas owing to the low population density of the regions bordering them. To understand the emergence of a giant cluster that connects the entire population, we compare the empirical geometric graph with the one generated by placing the same number of individuals randomly in space. We find that, for small contact distances, the empirical distribution of population dominates the growth of connected components, but no critical percolation transition is observed in contrast to the graph generated by a random distribution of population. Our results show that contact distances from real-world situations as for WIFI and Bluetooth connections drop in a zone where a fully connected cluster is not observed, hinting that human mobility must play a crucial role in contact-based diseases and wireless viruses' large-scale spreading.

  11. Ecological and population genetics of locally rare plants: A review

    Science.gov (United States)

    Simon A. Lei

    2001-01-01

    Plant species with limited dispersal ability, narrow geographical and physiological tolerance ranges, as well as with specific habitat and ecological requirements are likely to be rare. Small and isolated populations and species contain low levels of within-population genetic variation in many plant species. The gene pool of plants is a product of phenotype-environment...

  12. Tiller size/population density compensation in grazed Coastcross bermudagrass swards

    Directory of Open Access Journals (Sweden)

    Sbrissia André Fischer

    2001-01-01

    Full Text Available Several compensatory mechanisms in pastures do not allow optimisation of responses from the processes of herbage production and utilisation. Compensation due to tiller size/density relationships is one of these mechanisms. This experiment evaluated this process for Coastcross bermudagrass and compared the responses to those reported for temperate forages. Treatments were "steady state" sward surface heights of 5, 10, 15, and 20 cm that were maintained from August, 1998, through July, 1999 by sheep grazing. The experimental design was a randomised complete block, replicated four times. Pasture responses were evaluated on four separate dates (15/12/1998, 25/01/1999, 07/04/1999 and 04/07/1999 with respect to: tiller population density, tiller weight, leaf mass and leaf area per tiller and herbage mass (biomass. Tiller volume, leaf area index (LAI, tiller leaf:stem ratio and tiller leaf area:volume ratio (R were calculated. Simple regression analyses between tiller population density and tiller weight were also performed. Coastcross swards showed a tiller size/density compensation mechanism where high tiller population densities were associated with small tillers and vice-versa; except on the last evaluation. However, regression analysis revealed linear coefficients of -3.83 to -2.05, which are lower than the theoretical expectation of -3/2. The lower R values observed, when compared to those reported for perennial ryegrass, suggest that Coastcross swards optimised their LAI via clonal integration among tillers in contrast with tillers of cool-season grasses that respond more as individuals. However, this hypothesis has yet to be experimentally verified.

  13. Population densities of wheat thrips, Haplothrips tritici Kurdjumov ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... Key words: Thysanoptera, Haplothrips tritici, population density, bread wheat, durum wheat, barley, cultivars. INTRODUCTION. Some thrips types of the order Thysanoptera constitute one of the harmful groups found on grains (Minaei and. Mound, 2008). The most common species observed on grains in ...

  14. Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations.

    Science.gov (United States)

    Zhang, Ao; Wang, Hongwu; Beyene, Yoseph; Semagn, Kassa; Liu, Yubo; Cao, Shiliang; Cui, Zhenhai; Ruan, Yanye; Burgueño, Juan; San Vicente, Felix; Olsen, Michael; Prasanna, Boddupalli M; Crossa, José; Yu, Haiqiu; Zhang, Xuecai

    2017-01-01

    Genomic selection is being used increasingly in plant breeding to accelerate genetic gain per unit time. One of the most important applications of genomic selection in maize breeding is to predict and select the best un-phenotyped lines in bi-parental populations based on genomic estimated breeding values. In the present study, 22 bi-parental tropical maize populations genotyped with low density SNPs were used to evaluate the genomic prediction accuracy ( r MG ) of the six trait-environment combinations under various levels of training population size (TPS) and marker density (MD), and assess the effect of trait heritability ( h 2 ), TPS and MD on r MG estimation. Our results showed that: (1) moderate r MG values were obtained for different trait-environment combinations, when 50% of the total genotypes was used as training population and ~200 SNPs were used for prediction; (2) r MG increased with an increase in h 2 , TPS and MD, both correlation and variance analyses showed that h 2 is the most important factor and MD is the least important factor on r MG estimation for most of the trait-environment combinations; (3) predictions between pairwise half-sib populations showed that the r MG values for all the six trait-environment combinations were centered around zero, 49% predictions had r MG values above zero; (4) the trend observed in r MG differed with the trend observed in r MG / h , and h is the square root of heritability of the predicted trait, it indicated that both r MG and r MG / h values should be presented in GS study to show the accuracy of genomic selection and the relative accuracy of genomic selection compared with phenotypic selection, respectively. This study provides useful information to maize breeders to design genomic selection workflow in their breeding programs.

  15. Effect of Trait Heritability, Training Population Size and Marker Density on Genomic Prediction Accuracy Estimation in 22 bi-parental Tropical Maize Populations

    Directory of Open Access Journals (Sweden)

    Ao Zhang

    2017-11-01

    Full Text Available Genomic selection is being used increasingly in plant breeding to accelerate genetic gain per unit time. One of the most important applications of genomic selection in maize breeding is to predict and select the best un-phenotyped lines in bi-parental populations based on genomic estimated breeding values. In the present study, 22 bi-parental tropical maize populations genotyped with low density SNPs were used to evaluate the genomic prediction accuracy (rMG of the six trait-environment combinations under various levels of training population size (TPS and marker density (MD, and assess the effect of trait heritability (h2, TPS and MD on rMG estimation. Our results showed that: (1 moderate rMG values were obtained for different trait-environment combinations, when 50% of the total genotypes was used as training population and ~200 SNPs were used for prediction; (2 rMG increased with an increase in h2, TPS and MD, both correlation and variance analyses showed that h2 is the most important factor and MD is the least important factor on rMG estimation for most of the trait-environment combinations; (3 predictions between pairwise half-sib populations showed that the rMG values for all the six trait-environment combinations were centered around zero, 49% predictions had rMG values above zero; (4 the trend observed in rMG differed with the trend observed in rMG/h, and h is the square root of heritability of the predicted trait, it indicated that both rMG and rMG/h values should be presented in GS study to show the accuracy of genomic selection and the relative accuracy of genomic selection compared with phenotypic selection, respectively. This study provides useful information to maize breeders to design genomic selection workflow in their breeding programs.

  16. EFFECTS OF PLANT DENSITY AND NPK APPLICATION ON THE ...

    African Journals Online (AJOL)

    Dr. K.E. Law-Ogbomo

    and livestock industries. Nigeria is the ... planting density and NPK fertilizer application rate on the growth and yield of D. rotundata in ..... Clay (%). 10.90. 11.00. 22.60. Silt (%). 8.60. 11.00. 23.40. Sand (%). 80.50. 78.00 .... Institute of food and.

  17. Effect of sowing date and plant density on grain and flower yield of Pot Marigold (Calendula officinalis L.

    Directory of Open Access Journals (Sweden)

    mohamad javad seghatol eslami

    2009-06-01

    Full Text Available Pot marigold (Calendula officinalis L. is a medicinal herb whose dried flower heads are used to heal wounds. In order to study the effects of sowing dates and plant density on grain and flower yield of pot marigold, an experiment was conducted at Agricultural Research Center of Islamic Azad University, Birjand Branch in 2005. Three sowing dates (30 March, 14 April and 30 April and three plant densities (plant distances on row were 10, 20 and 30 centimeters were compared in a split- plot experiment based on a randomized complete block design with 3 replications. Seed and flower yields were significantly different at planting dates and plant densities. Sowing date had significant effects on flower and seed harvest index. The latest sowing dates had the highest flower and seed harvest index. Plant density had not significant effect on flower harvest index, but the effect on seed harvest index, was significant. In total our result showed that the first sowing date with 25 plants/m2 had the highest grain and flower yield. Keywords: Marigold, sowing date, plant density, medicinal plant.

  18. Predicting Intra-Urban Population Densities in Africa using SAR and Optical Remote Sensing Data

    Science.gov (United States)

    Linard, C.; Steele, J.; Forget, Y.; Lopez, J.; Shimoni, M.

    2017-12-01

    The population of Africa is predicted to double over the next 40 years, driving profound social, environmental and epidemiological changes within rapidly growing cities. Estimations of within-city variations in population density must be improved in order to take urban heterogeneities into account and better help urban research and decision making, especially for vulnerability and health assessments. Satellite remote sensing offers an effective solution for mapping settlements and monitoring urbanization at different spatial and temporal scales. In Africa, the urban landscape is covered by slums and small houses, where the heterogeneity is high and where the man-made materials are natural. Innovative methods that combine optical and SAR data are therefore necessary for improving settlement mapping and population density predictions. An automatic method was developed to estimate built-up densities using recent and archived optical and SAR data and a multi-temporal database of built-up densities was produced for 48 African cities. Geo-statistical methods were then used to study the relationships between census-derived population densities and satellite-derived built-up attributes. Best predictors were combined in a Random Forest framework in order to predict intra-urban variations in population density in any large African city. Models show significant improvement of our spatial understanding of urbanization and urban population distribution in Africa in comparison to the state of the art.

  19. Effect of increased plant density and fertilizer dose on the yield of rice variety IR-6

    International Nuclear Information System (INIS)

    Amin, M.; Khan, M.A.; Khan, E.A.; Ramazan, M.

    2004-01-01

    An experiment to evaluate the effect of increased plant density and fertilizer dose on yield of rice variety IR-6 was conducted at the farm of Faculty of Agriculture, Gomal University Dera Ismail Khan. Increase plant density significantly increase number of panicles per square meter, sterility and straw yield while increased fertilizer dose of NPK increase plant height, sterility, normal kernels, and 1000 grain weight. Interaction of increased plant density and fertilizer dose was found to be non significant except sterility percentage and straw yield. However efforts are required for increasing yield per unit area of rice. (author)

  20. Plant density-dependent variations in bioactive markers and root yield in Australian-grown Salvia miltiorrhiza Bunge.

    Science.gov (United States)

    Li, Chun Guang; Sheng, Shu Jun; Pang, Edwin C K; May, Brian; Xue, Charlie Chang Li

    2011-04-01

    The plant density-dependent variations in the root yield and content, and the yield of biomarkers in Australian grown Salvia miltiorrhiza Bunge, a commonly used Chinese medicinal herb for the treatment of cardiovascular diseases, were investigated in a field trial involving six different plant densities. The key biomarker compounds cryptotanshinone, tanshinone I, tanshinone IIA, and salvianolic acid B were quantified by a validated RP-HPLC method, and the root yields were determined per plant pair or unit area. There were significant variations (pplant densities. Positive linear correlations were observed between the contents of the three tanshinones, whereas negative linear correlations were revealed between the contents of the tanshinones and salvianolic acid B. The highest root yield per plant pair was achieved when the plants were grown at 45×30 cm or 45×40 cm, whereas the highest root production par unit area was obtained for a plant density of 30×30 cm. The highest contents of the three tanshinones and the most abundant production of these tanshinones per unit area were achieved when the plants were grown at 30×30 cm. However, the highest content of salvianolic acid B was found for a density of 45×40 cm, while its highest yield per unit area was obtained for densities of 30×40 cm or 45×30 cm. The findings suggest that the plant density distinctly affects the root yield and content and the yield of tanshinones and salvianolic acid B in Australian grown S. miltiorrhiza, which may be used as a guide for developing optimal agricultural procedures for cultivating this herb. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  1. Host plant adaptation in Drosophila mettleri populations.

    Directory of Open Access Journals (Sweden)

    Sergio Castrezana

    Full Text Available The process of local adaptation creates diversity among allopatric populations, and may eventually lead to speciation. Plant-feeding insect populations that specialize on different host species provide an excellent opportunity to evaluate the causes of ecological specialization and the subsequent consequences for diversity. In this study, we used geographically separated Drosophila mettleri populations that specialize on different host cacti to examine oviposition preference for and larval performance on an array of natural and non-natural hosts (eight total. We found evidence of local adaptation in performance on saguaro cactus (Carnegiea gigantea for populations that are typically associated with this host, and to chemically divergent prickly pear species (Opuntia spp. in a genetically isolated population on Santa Catalina Island. Moreover, each population exhibited reduced performance on the alternative host. This finding is consistent with trade-offs associated with adaptation to these chemically divergent hosts, although we also discuss alternative explanations for this pattern. For oviposition preference, Santa Catalina Island flies were more likely to oviposit on some prickly pear species, but all populations readily laid eggs on saguaro. Experiments with non-natural hosts suggest that factors such as ecological opportunity may play a more important role than host plant chemistry in explaining the lack of natural associations with some hosts.

  2. Siting of Nuclear Power Plants in Metropolitan Areas. Estimation of Population Doses due to Accidental Release of Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Bresser, H. [Technischer Ueberwachungs-Verein Rheinland E.V., Cologne (Germany); Schwarzer, W. [Institut fuer Reaktorsicherheit der Technischen Ueberwachungs-Vereine E.V., Cologne (Germany)

    1967-09-15

    The safety of large nuclear power plants in heavily populated areas depends entirely on engineered safeguards. An assessment of their reliability and effectiveness will have to play a major role in any safety analysis of such a plant, and this assessment will have to be made on the basis of the radiological burden to the environment - in terms of individual dose and a population dose - which can be accepted as tolerable in case of a severe accident. The calculation of the dispersion of fission products in the atmosphere, which links the radiological burden to the release of radioactivity, should be modified. The fact that distance factors, aside from a comparably small exclusion area, can no longer be taken into account suggests the introduction of the parameter ''population density'' and an extensive use of the man-rem concept. In this connection the time history of the release and the influence of variations of wind directions lose their importance. The authors have carried out calculations of the population dose, which could be received in a metropolitan area as a consequence of a severe reactor accident, using population densities, height of release above ground and generalized meteorological data as the main parameters. The results of these calculations are used as a basis for an assessment of the performance requirements of the engineered safeguards system, and the relative importance of different components of this system is discussed. (author)

  3. Effects of planting density and drought on the productivity of tea clones ( Camellia sinensis L.): Yield responses

    Science.gov (United States)

    Kigalu, Julius M.

    Tea is an important cash crop in Tanzania, contributing over US$ 45 million of annual exports and grown by over 30 000 smallholder households, and a further 10 000 people are employed by large estate producers. Over 70% of the national tea production comes from the Southern Highlands of Tanzania where expansion of tea estates under limited suitable land for tea is expected for the next two decades. Thus a client-demand driven field experiment was established in January 1993 to study and advice tea growers on the effects of plant density on the productivity and water use of young tea. The experiment comprised of two types of vegetative propagated tea plants (known as “clones”) of contrasting growth behaviour (AHP S15/10: spreading type and BBK35: erect), six plant densities (labelled D1: 8300 plants ha -1 to D6: 83 300 plants ha -1) and seven irrigation or drought levels (labelled I0: un irrigated, to I6: well irrigated condition) as the treatments. Clone AHP S15/10, with larger crop cover than clone BBK35, consistently out-yielded clone BBK35 at all densities and under both well watered and drought stressed conditions. The corresponding yields from clone BBK35 were 2620 and 5960 kg ha -1. Reciprocal of yield per plant- and asymptotic yield-density relationships were used to explain these responses to density. Yields from clone AHP S15/10 during the period of drought treatments decreased as the maximum soil water deficit increased at all densities, but there were no yield responses to drought from clone BBK35 at the low densities. The study recommends planting densities of 20 000 and 40 000 plants ha -1 for clones AHP S15/10, respectively for well irrigated conditions and a density of 20 000 plants ha -1 for both clones under un-irrigated environments.

  4. Population densities of wheat thrips, Haplothrips tritici Kurdjumov ...

    African Journals Online (AJOL)

    Population densities of Haplothrips tritici (H. tritici) Kurdjumov (Thysanoptera: Phlaeothripidae) were studied in Kahramanmaras, Turkey. In 2002, bread wheat cultivars, Bocro 4, Pehlivan and Yüreğir 89, durum wheat cultivars, Balcali 85, Ceylan 95 and Harran 95 and barley cultivars, Esterel and Pacific, were used. In 2003 ...

  5. Density-dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore.

    Science.gov (United States)

    Martel, John W; Malcolm, Stephen B

    2004-03-01

    The effect of aphid population size on host-plant chemical defense expression and the effect of plant defense on aphid population dynamics were investigated in a milkweed-specialist herbivore system. Density effects of the aposematic oleander aphid, Aphis nerii, on cardenolide expression were measured in two milkweed species, Asclepias curassavica and A. incarnata. These plants vary in constitutive chemical investment with high mean cardenolide concentration in A. curassavica and low to zero in A. incarnata. The second objective was to determine whether cardenolide expression in these two host plants impacts mean A. nerii colony biomass (mg) and density. Cardenolide concentration (microgram/g) of A. curassavica in both aphid-treated leaves and opposite, herbivore-free leaves decreased initially in comparison with aphid-free controls, and then increased significantly with A. nerii density. Thus, A. curassavica responds to aphid herbivory initially with density-dependent phytochemical reduction, followed by induction of cardenolides to concentrations above aphid-free controls. In addition, mean cardenolide concentration of aphid-treated leaves was significantly higher than that of opposite, herbivore-free leaves. Therefore, A. curassavica induction is strongest in herbivore-damage tissue. Conversely, A. incarnata exhibited no such chemical response to aphid herbivory. Furthermore, neither host plant responded chemically to herbivore feeding duration time (days) or to the interaction between herbivore initial density and feeding duration time. There were also no significant differences in mean colony biomass or population density of A. nerii reared on high cardenolide (A. curassavica) and low cardenolide (A. incarnata) hosts.

  6. Effect of planting methods, seed density and nitrogen phosphorus (NP) fertilizer levels on sweet corn (Zea maYs L.)

    International Nuclear Information System (INIS)

    Amin, M.; Razzaq, A.; Ullah, R.

    2006-01-01

    A field experiment was conducted to evaluate the effect of planting methods, seed density and nitrogen phosphorus (NP) fertilizer levels on emergence m/sup -2/ growth and grain yield of sweet corn. The fertilizer and interaction of fertilizer x seed density had significant negative effect with increasing level while seed density had a positive effect with increased density on emergence per m/sup 2/. Increased seed density significantly reduced plant growth which increased with application of higher fertilizer dose. The grain yield was improves by ridge planting methods, increased seed density and increased fertilizer levels. The highest grain yield (3,553.50 kg ha/sup-1/) of sweet corn plants was recorded in ridge planting method with highest NP fertilizer level of 300:150 kg ha/sup 1/ and 4 seeds hill/sup -1/. The lowest grain yield (3,493.75 kg ha/sup -1/) of sweet corn was observed in flat sowing planting method with 120:75 NP level and 2 seeds hill/sup -1/ seed density. The ridge planting rank first then furrow and flat planting methods on basis of grain yield per hectare. The sweet corn plant yield was high with 4 seeds hill/sup -1/ compared with 2 seeds hill/sup -1/. (author)

  7. Impact of tillage, plant population and mulches on phenological characters of maize

    International Nuclear Information System (INIS)

    Gul, B.; Khan, M.A.; Khan, H.

    2014-01-01

    Field experiments were conducted during 2006 and 2007 in Peshawar, using open pollinated maize variety Azam in RCB design having 3 factors viz., tillage, maize populations and mulches with split-split plot arrangements. Tillage levels (zero and conventional) were assigned to the main plots, populations (90000, 60000 and 30000 plants ha/sup -1/) to sub-plots and four types of mulches (weeds mulch, black plastic mulch, white plastic mulch and mungbean as living mulch), a hand weeding and a weedy check were allotted to sub-sub plots, respectively. Data were recorded on days to tasseling, days to silking, days to maturity, leaf area of maize plant-1 (cm/sub 2/) and plant height (cm). Tillage affected leaf area of maize, where zero tillage resulted lower leaf area of 4094 cm/sub 2/ compared to conventional tillage (4722 cm/sub 2/). Different levels of plant populations affected all the physiological parameters. Days to tasseling, silking and maturity were more in higher plant population as compared to medium and lower plant population. Similarly, minimum leaf area plant-1 was recorded in higher plant population (3894 cm/sub 2/) than medium and lower plant population of 4398 and 4932 cm/sub 2/, respectively. Maximum plant height was recorded in hand weeding treatment (173 cm). However, it was statistically at par with black plastic mulch (171 cm), followed by weeds mulch (162 cm) and white plastic mulch (161 cm) as compared to weedy check (152 cm). Based on two years study it is suggested that even if tillage options and plant populations are a part of the weed management program, it should not be used as a sole management tool, as both have a negative impact on the phenological parameters of maize which subsequently affected the final yield and must be integrated and supplemented with other control methods. (author)

  8. Herbicide on Weed Composition, Diversity and Density in Silage Corn (cv. Sc 704

    Directory of Open Access Journals (Sweden)

    M. Zafarian

    2012-07-01

    Full Text Available In order to study the effect of plant density, planting pattern and herbicide dosage of nicosulfuron, a field experiment was arranged in a factorial split plot treatments based on RCBD with three replications in Chenaran, Khorasan Razavi, in 2010. The experimental treatments consisted of a factorial plant density (100000, 120000 and 140000 plants ha-1 in the planting pattern (single and double row as main plot and herbicide dosage of nicousulforon in four levels (0, 1, 1/5 and 2, l.ha-1 as sub-plot. Samplings were made at in five stages (37days after the emergence of corn and it was repeated once per 20 days. The results indicated reducing the weed density and dry matter of weeds in the first stage after the herbicide treatment. Moreover, it was observed a significant interaction effect between plant density with planting pattern and between planting pattern with herbicides dosages during growth season on reducing weed density and dry matter. Also results indicated that in between of this experiment's treatments, nicosulfuron herbicide reduced weed density at the beginning of growth season and double row planting pattern suppressed weed density during growing season, and resulted in lowest Jacard similarity index (Sj of weed species. Results also indicated that with increasing of plant density and herbicide dosage especially in composition of double row planting pattern, according to Shannon- Wiener index, sensitive population such as common purslane (Portulaca oleracea L., buckhorn plantain (Plantago lanceolata L., prostrate knotweed (Polygonum aviculareL., black nightshade (Solanum nigrum L. and Johnson grass (Sorghum halepens L. was reduced in during growing season. Simpson dominance index, showed that some low populated weeds such as redroot pigweed (Amaranthus retroflexus L., common lambsquarters (Chenopodium album L., field bindweed (Convolvulus arvensis L. and Canada thistle (Circum arvensis L. persisted their growth up to the end of

  9. Population Density Modulates Drug Inhibition and Gives Rise to Potential Bistability of Treatment Outcomes for Bacterial Infections.

    Directory of Open Access Journals (Sweden)

    Jason Karslake

    2016-10-01

    Full Text Available The inoculum effect (IE is an increase in the minimum inhibitory concentration (MIC of an antibiotic as a function of the initial size of a microbial population. The IE has been observed in a wide range of bacteria, implying that antibiotic efficacy may depend on population density. Such density dependence could have dramatic effects on bacterial population dynamics and potential treatment strategies, but explicit measures of per capita growth as a function of density are generally not available. Instead, the IE measures MIC as a function of initial population size, and population density changes by many orders of magnitude on the timescale of the experiment. Therefore, the functional relationship between population density and antibiotic inhibition is generally not known, leaving many questions about the impact of the IE on different treatment strategies unanswered. To address these questions, here we directly measured real-time per capita growth of Enterococcus faecalis populations exposed to antibiotic at fixed population densities using multiplexed computer-automated culture devices. We show that density-dependent growth inhibition is pervasive for commonly used antibiotics, with some drugs showing increased inhibition and others decreased inhibition at high densities. For several drugs, the density dependence is mediated by changes in extracellular pH, a community-level phenomenon not previously linked with the IE. Using a simple mathematical model, we demonstrate how this density dependence can modulate population dynamics in constant drug environments. Then, we illustrate how time-dependent dosing strategies can mitigate the negative effects of density-dependence. Finally, we show that these density effects lead to bistable treatment outcomes for a wide range of antibiotic concentrations in a pharmacological model of antibiotic treatment. As a result, infections exceeding a critical density often survive otherwise effective treatments.

  10. to Irrigation Intervals and Plant Density in Zuru, Northern Guinea

    African Journals Online (AJOL)

    ISSN 0794-5698. Response of Onion (Allium cepa L.) to Irrigation Intervals and Plant Density in ... The treatments were laid out in a split plot design with three replications. Irrigation ..... System and Agronomic Practice in. Tropical Climates.

  11. Partitioning the sources of demographic variation reveals density-dependent nest predation in an island bird population.

    Science.gov (United States)

    Sofaer, Helen R; Sillett, T Scott; Langin, Kathryn M; Morrison, Scott A; Ghalambor, Cameron K

    2014-07-01

    Ecological factors often shape demography through multiple mechanisms, making it difficult to identify the sources of demographic variation. In particular, conspecific density can influence both the strength of competition and the predation rate, but density-dependent competition has received more attention, particularly among terrestrial vertebrates and in island populations. A better understanding of how both competition and predation contribute to density-dependent variation in fecundity can be gained by partitioning the effects of density on offspring number from its effects on reproductive failure, while also evaluating how biotic and abiotic factors jointly shape demography. We examined the effects of population density and precipitation on fecundity, nest survival, and adult survival in an insular population of orange-crowned warblers (Oreothlypis celata) that breeds at high densities and exhibits a suite of traits suggesting strong intraspecific competition. Breeding density had a negative influence on fecundity, but it acted by increasing the probability of reproductive failure through nest predation, rather than through competition, which was predicted to reduce the number of offspring produced by successful individuals. Our results demonstrate that density-dependent nest predation can underlie the relationship between population density and fecundity even in a high-density, insular population where intraspecific competition should be strong.

  12. Population dynamics of three songbird species in a nestbox population in Central Europe show effects of density, climate and competitive interactions

    NARCIS (Netherlands)

    Smallegange, I.M.; van der Meer, J.; Fiedler, W.

    2011-01-01

    Unravelling the contributions of density-dependent and density-independent factors in determining species population dynamics is a challenge, especially if the two factors interact. One approach is to apply stochastic population models to long-term data, yet few studies have included interactions

  13. Effects of host plant and larval density on intraspecific competition in larvae of the emerald ash borer (Coleoptera: Buprestidae).

    Science.gov (United States)

    Duan, Jian J; Larson, Kristi; Watt, Tim; Gould, Juli; Lelito, Jonathan P

    2013-12-01

    Competition for food, mates, and space among different individuals of the same insect species can affect density-dependent regulation of insect abundance or population dynamics. The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a serious invasive pest of North American ash (Fraxinus spp.) trees, with its larvae feeding in serpentine galleries between the interface of sapwood and phloem tissues of ash trees. Using artificial infestation of freshly cut logs of green ash (Fraxinus pennsylvanica Marshall) and tropical ash (Fraxinus uhdei [Wenzig] Lingelsh) with a series of egg densities, we evaluated the mechanism and outcome of intraspecific competition in larvae of A. planipennis in relation to larval density and host plant species. Results from our study showed that as the egg densities on each log (1.5-6.5 cm in diameter and 22-25 cm in length) increased from 200 to 1,600 eggs per square meter of surface area, larval survivorship declined from ≍68 to 10% for the green ash logs, and 86 to 55% for tropical ash logs. Accordingly, larval mortality resulting from cannibalism, starvation, or both, significantly increased as egg density increased, and the biomass of surviving larvae significantly decreased on both ash species. When larval density was adjusted to the same level, however, larval mortality from intraspecific competition was significantly higher and mean biomasses of surviving larvae was significantly lower in green ash than in tropical ash. The role of intraspecific competition of A. planipennis larvae in density-dependent regulation of its natural population dynamics is discussed.

  14. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors

    Science.gov (United States)

    Russell, Tanya L.; Lwetoijera, Dickson W.; Knols, Bart G. J.; Takken, Willem; Killeen, Gerry F.; Ferguson, Heather M.

    2011-01-01

    Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in phenotypic traits predict the dynamics of Anopheles gambiae sensu lato mosquitoes, the most important vectors of human malaria. Anopheles gambiae dynamics were monitored over a six-month period of seasonal growth and decline. The population exhibited density-dependent feedback, with the carrying capacity being modified by rainfall (97% wAICc support). The individual phenotypic expression of the maternal (p = 0.0001) and current (p = 0.040) body size positively influenced population growth. Our field-based evidence uniquely demonstrates that individual fitness can have population-level impacts and, furthermore, can mitigate the impact of exogenous drivers (e.g. rainfall) in species whose reproduction depends upon it. Once frontline interventions have suppressed mosquito densities, attempts to eliminate malaria with supplementary vector control tools may be attenuated by increased population growth and individual fitness. PMID:21389034

  15. Ecological and evolutionary consequences of tri-trophic interactions: Spatial variation and effects of plant density.

    Science.gov (United States)

    Abdala-Roberts, Luis; Parra-Tabla, Víctor; Moreira, Xoaquín; Ramos-Zapata, José

    2017-02-01

    The factors driving variation in species interactions are often unknown, and few studies have made a link between changes in interactions and the strength of selection. We report on spatial variation in functional responses by a seed predator (SP) and its parasitic wasps associated with the herb Ruellia nudiflora . We assessed the influence of plant density on consumer responses and determined whether density effects and spatial variation in functional responses altered natural selection by these consumers on the plant. We established common gardens at two sites in Yucatan, Mexico, and planted R. nudiflora at two densities in each garden. We recorded fruit output and SP and parasitoid attack; calculated relative fitness (seed number) under scenarios of three trophic levels (accounting for SP and parasitoid effects), two trophic levels (accounting for SP but not parasitoid effects), and one trophic level (no consumer effects); and compared selection strength on fruit number under these scenarios across sites and densities. There was spatial variation in SP recruitment, whereby the SP functional response was negatively density-dependent at one site but density-independent at the other; parasitoid responses were density-independent and invariant across sites. Site variation in SP attack led, in turn, to differences in SP selection on fruit output, and parasitoids did not alter SP selection. There were no significant effects of density at either site. Our results provide a link between consumer functional responses and consumer selection on plants, which deepens our understanding of geographic variation in the evolutionary outcomes of multitrophic interactions. © 2017 Botanical Society of America.

  16. Sociodemographic Factors, Population Density, and Bicycling for Transportation in the United States.

    Science.gov (United States)

    Nehme, Eileen K; Pérez, Adriana; Ranjit, Nalini; Amick, Benjamin C; Kohl, Harold W

    2016-01-01

    Transportation bicycling is a behavior with demonstrated health benefits. Population-representative studies of transportation bicycling in United States are lacking. This study examined associations between sociodemographic factors, population density, and transportation bicycling and described transportation bicyclists by trip purposes, using a US-representative sample. This cross-sectional study used 2009 National Household Travel Survey datasets. Associations among study variables were assessed using weighted multivariable logistic regression. On a typical day in 2009, 1% of Americans older than 5 years of age reported a transportation bicycling trip. Transportation cycling was inversely associated with age and directly with being male, with being white, and with population density (≥ 10,000 vs transportation. Twenty-one percent of transportation bicyclists reported trips to work, whereas 67% reported trips to social or other activities. Transportation bicycling in the United States is associated with sociodemographic characteristics and population density. Bicycles are used for a variety of trip purposes, which has implications for transportation bicycling research based on commuter data and for developing interventions to promote this behavior.

  17. Allometric scaling of population variance with mean body size is predicted from Taylor's law and density-mass allometry.

    Science.gov (United States)

    Cohen, Joel E; Xu, Meng; Schuster, William S F

    2012-09-25

    Two widely tested empirical patterns in ecology are combined here to predict how the variation of population density relates to the average body size of organisms. Taylor's law (TL) asserts that the variance of the population density of a set of populations is a power-law function of the mean population density. Density-mass allometry (DMA) asserts that the mean population density of a set of populations is a power-law function of the mean individual body mass. Combined, DMA and TL predict that the variance of the population density is a power-law function of mean individual body mass. We call this relationship "variance-mass allometry" (VMA). We confirmed the theoretically predicted power-law form and the theoretically predicted parameters of VMA, using detailed data on individual oak trees (Quercus spp.) of Black Rock Forest, Cornwall, New York. These results connect the variability of population density to the mean body mass of individuals.

  18. Tillage and planting density affect the performance of maize hybrids in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Tika Baladur Karki

    2015-12-01

    Full Text Available To find out whether the different tillage methods at different planting densities affect the performance of maize hybrids, an experiment was carried out at National Maize Research Program, Rampur during spring season of 2013 and 2014. The experiment was laid out in strip plot design with three replications having 12 treatments. The vertical factor was tillage with conservation tillage (No Tillage + residue=NT and conventional tillage (CT and the horizontal factor were genotypes (Rampur Hybrid-2 and RML-32/RML-17 and in split planting geometries (75cm × 25cm =53333 plants/ha, 70cm × 25cm=57142 plant/ha and 60cm ×25cm= 66666 plants/ha. In both the years, the highest number of cobs (73,177 and 67638/ha was recorded at planting density of 66666/ha. NT had the highest no of kernel rows/cob (14.01 as against 12.12 in CT in 2014. The highest number of kernels (27.3 and 29.29 per row was recorded in NT during 2013 and 2014 respectively. Similarly, in 2014, the highest number of kernels were found in RML-32/RMl-17 (29.17/row and planting density of 53333/ha (28.46/row. In 2013, RML-32/RML-17 produced the highest test weight of 363.94g over the Rampur hybrid-2 with 362.17g. Significantly the highest grain yield of 9240.00 kg/ha in 2013 and 7459.80 kg/ha in 2014 at planting geometry of 65cm ×25cm were recorded. No effects was found by tillage methods for grain yields of maize in 2013, but was found in 2014 (7012.18 kg in NT compared to 6037.59 kg/ha in CT. NT and wider spaced crop matured earlier in both the years; however Rampur hybrid-2 matured earlier to RML-32/RML-17 in 2013. In 2014, harvest index of 47.85 % was recorded in planting geometry of 66666/ha, the highest benefit cost ratio of 1.36 was worked out in NT and 1.46 at the density of 66666/ha. The highest value of 2.46% of soil organic matter was recorded in NT as compared to 2.43% in CT.

  19. Population density models of integrate-and-fire neurons with jumps: well-posedness.

    Science.gov (United States)

    Dumont, Grégory; Henry, Jacques

    2013-09-01

    In this paper we study the well-posedness of different models of population of leaky integrate-and-fire neurons with a population density approach. The synaptic interaction between neurons is modeled by a potential jump at the reception of a spike. We study populations that are self excitatory or self inhibitory. We distinguish the cases where this interaction is instantaneous from the one where there is a repartition of conduction delays. In the case of a bounded density of delays both excitatory and inhibitory population models are shown to be well-posed. But without conduction delay the solution of the model of self excitatory neurons may blow up. We analyze the different behaviours of the model with jumps compared to its diffusion approximation.

  20. Human population, grasshopper and plant species richness in European countries

    Science.gov (United States)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  1. Effect of planting density and cutting frequency on forage and grain yields of kochia (Kochia scoparia under saline water irrigation

    Directory of Open Access Journals (Sweden)

    mseou ziyaeii

    2009-06-01

    Full Text Available AField experiment was conducted at Research Farms of Center of Excellence for Special Crops, Ferdowsi University of Mashhad, Mashhad, Iran, in 2006 to evaluate the effect of planting density on forage and grain yield of kochia (Kochia scoparia. Experimental design was a randomized complete block with split-plot arrangement of treatments,with three replications, where different planting densities (10, 20, 30 and 40 plant m-2 were assigned to main plots and number of cutting (including a single cutting, two cutting and no cutting i.e. allowing the crop to grow until maturity allocated to sub-plots. At each harvest date (cutting the biological yield, leaf and stem dry weight, plant height, number of branches and the individual plant biomass were measured. Grain yield and thousand seed weight were also determined at the end of growing season. Result showed the highest biological yield and leaf and stem dry weights for kochia obtaind at 30 plant m-2. The total biomass, leaf and stem dry weights, plant height, number of branches were greater for the first cutting as compared to the second cutting. Planting density and cutting number interacted to affect the leaf dry weight. At physiological maturity stage there were no significant differences among planting densities for plant height and number of branches. The best planting density, in terms of biomass production and leaf and stem dry weight, was found as 30 plant m-2, while for grain production a planting density of 20 plant m-2 could be recommended. Key words: Kochia, planting density, sward, biological yield, grain production.

  2. Evidence of a high density population of harvested leopards in a montane environment.

    Science.gov (United States)

    Chase Grey, Julia N; Kent, Vivien T; Hill, Russell A

    2013-01-01

    Populations of large carnivores can persist in mountainous environments following extensive land use change and the conversion of suitable habitat for agriculture and human habitation in lower lying areas of their range. The significance of these populations is poorly understood, however, and little attention has focussed on why certain mountainous areas can hold high densities of large carnivores and what the conservation implications of such populations might be. Here we use the leopard (Panthera pardus) population in the western Soutpansberg Mountains, South Africa, as a model system and show that montane habitats can support high numbers of leopards. Spatially explicit capture-recapture (SECR) analysis recorded the highest density of leopards reported outside of state-protected areas in sub-Saharan Africa. This density represents a temporally high local abundance of leopards and we explore the explanations for this alongside some of the potential conservation implications.

  3. Evidence of a high density population of harvested leopards in a montane environment.

    Directory of Open Access Journals (Sweden)

    Julia N Chase Grey

    Full Text Available Populations of large carnivores can persist in mountainous environments following extensive land use change and the conversion of suitable habitat for agriculture and human habitation in lower lying areas of their range. The significance of these populations is poorly understood, however, and little attention has focussed on why certain mountainous areas can hold high densities of large carnivores and what the conservation implications of such populations might be. Here we use the leopard (Panthera pardus population in the western Soutpansberg Mountains, South Africa, as a model system and show that montane habitats can support high numbers of leopards. Spatially explicit capture-recapture (SECR analysis recorded the highest density of leopards reported outside of state-protected areas in sub-Saharan Africa. This density represents a temporally high local abundance of leopards and we explore the explanations for this alongside some of the potential conservation implications.

  4. Biomass conversion and expansion factors in Douglas-fir stands of different planting density: variation according to individual growth and prediction equations

    International Nuclear Information System (INIS)

    Marziliano, P.A.; Menguzzato, G.; Scuderi, A.; Scalise, C.; Coletta, V.

    2017-01-01

    Aim of study: We built biomass expansion factors (BCEFs) from Douglas-fir felled trees planted with different planting densities to evaluate the differences according tree size and planting density. Area of study: The Douglas-fir plantation under study is located on the northern coastal chain of Calabria (Tyrrhenian side) south Italy. Materials and methods: We derived tree level BCEFs, relative to crown (BCEFc), to stem (BCEFst = basic density, BD) and total above-ground (BCEFt) from destructive measurements carried out in a Douglas-fir plantation where four study plots were selected according to different planting densities (from 833 to 2500 trees per hectare). The measured BCEFs were regressed against diameter at breast height and total height, planting density, site productivity (SP) and their interactions to test the variation of BCEFs. Analysis of variance (ANOVA) and the post hoc Tukey comparison test were used to test differences in BCEFt, BCEFc and in BD between plots with different planting density. Main results: BCEFs decreased with increasing total height and DBH, but large dispersion measures were obtained for any of the compartments in the analysis. An increasing trend with planting density was found for all the analyzed BCEFs, but together with planting density, BCEFs also resulted dependent upon site productivity. BCEFt average values ranged between 1.40 Mg m-3 in planting density with 833 trees/ha (PD833) to 2.09 Mg m-3 in planting density with 2500 trees/ha (PD2500), which are in the range of IPCC prescribed values for Douglas-fir trees. Research highlights: Our results showed that the application of BCEF to estimate forest biomass in stands with different planting densities should explicitly account for the effect of planting density and site productivity.

  5. Biomass conversion and expansion factors in Douglas-fir stands of different planting density: variation according to individual growth and prediction equations

    Energy Technology Data Exchange (ETDEWEB)

    Marziliano, P.A.; Menguzzato, G.; Scuderi, A.; Scalise, C.; Coletta, V.

    2017-11-01

    Aim of study: We built biomass expansion factors (BCEFs) from Douglas-fir felled trees planted with different planting densities to evaluate the differences according tree size and planting density. Area of study: The Douglas-fir plantation under study is located on the northern coastal chain of Calabria (Tyrrhenian side) south Italy. Materials and methods: We derived tree level BCEFs, relative to crown (BCEFc), to stem (BCEFst = basic density, BD) and total above-ground (BCEFt) from destructive measurements carried out in a Douglas-fir plantation where four study plots were selected according to different planting densities (from 833 to 2500 trees per hectare). The measured BCEFs were regressed against diameter at breast height and total height, planting density, site productivity (SP) and their interactions to test the variation of BCEFs. Analysis of variance (ANOVA) and the post hoc Tukey comparison test were used to test differences in BCEFt, BCEFc and in BD between plots with different planting density. Main results: BCEFs decreased with increasing total height and DBH, but large dispersion measures were obtained for any of the compartments in the analysis. An increasing trend with planting density was found for all the analyzed BCEFs, but together with planting density, BCEFs also resulted dependent upon site productivity. BCEFt average values ranged between 1.40 Mg m-3 in planting density with 833 trees/ha (PD833) to 2.09 Mg m-3 in planting density with 2500 trees/ha (PD2500), which are in the range of IPCC prescribed values for Douglas-fir trees. Research highlights: Our results showed that the application of BCEF to estimate forest biomass in stands with different planting densities should explicitly account for the effect of planting density and site productivity.

  6. Larval Population Density Alters Adult Sleep in Wild-Type Drosophila melanogaster but Not in Amnesiac Mutant Flies

    Directory of Open Access Journals (Sweden)

    Michael W. Chi

    2014-08-01

    Full Text Available Sleep has many important biological functions, but how sleep is regulated remains poorly understood. In humans, social isolation and other stressors early in life can disrupt adult sleep. In fruit flies housed at different population densities during early adulthood, social enrichment was shown to increase subsequent sleep, but it is unknown if population density during early development can also influence adult sleep. To answer this question, we maintained Drosophila larvae at a range of population densities throughout larval development, kept them isolated during early adulthood, and then tested their sleep patterns. Our findings reveal that flies that had been isolated as larvae had more fragmented sleep than those that had been raised at higher population densities. This effect was more prominent in females than in males. Larval population density did not affect sleep in female flies that were mutant for amnesiac, which has been shown to be required for normal memory consolidation, adult sleep regulation, and brain development. In contrast, larval population density effects on sleep persisted in female flies lacking the olfactory receptor or83b, suggesting that olfactory signals are not required for the effects of larval population density on adult sleep. These findings show that population density during early development can alter sleep behavior in adulthood, suggesting that genetic and/or structural changes are induced by this developmental manipulation that persist through metamorphosis.

  7. Do we need demographic data to forecast plant population dynamics?

    Science.gov (United States)

    Tredennick, Andrew T.; Hooten, Mevin B.; Adler, Peter B.

    2017-01-01

    Rapid environmental change has generated growing interest in forecasts of future population trajectories. Traditional population models built with detailed demographic observations from one study site can address the impacts of environmental change at particular locations, but are difficult to scale up to the landscape and regional scales relevant to management decisions. An alternative is to build models using population-level data that are much easier to collect over broad spatial scales than individual-level data. However, it is unknown whether models built using population-level data adequately capture the effects of density-dependence and environmental forcing that are necessary to generate skillful forecasts.Here, we test the consequences of aggregating individual responses when forecasting the population states (percent cover) and trajectories of four perennial grass species in a semi-arid grassland in Montana, USA. We parameterized two population models for each species, one based on individual-level data (survival, growth and recruitment) and one on population-level data (percent cover), and compared their forecasting accuracy and forecast horizons with and without the inclusion of climate covariates. For both models, we used Bayesian ridge regression to weight the influence of climate covariates for optimal prediction.In the absence of climate effects, we found no significant difference between the forecast accuracy of models based on individual-level data and models based on population-level data. Climate effects were weak, but increased forecast accuracy for two species. Increases in accuracy with climate covariates were similar between model types.In our case study, percent cover models generated forecasts as accurate as those from a demographic model. For the goal of forecasting, models based on aggregated individual-level data may offer a practical alternative to data-intensive demographic models. Long time series of percent cover data already exist

  8. Yield gains of coffee plants from phosphorus fertilization may not be generalized for high density planting

    Directory of Open Access Journals (Sweden)

    Samuel Vasconcelos Valadares

    2014-06-01

    Full Text Available Inconclusive responses of the adult coffee plant to phosphorus fertilization have been reported in the literature, especially when dealing with application of this nutrient in high density planting systems. Thus, this study was carried out for the purpose of assessing the response of adult coffee plants at high planting density in full production (in regard to yield and their biennial cycle/stability to the addition of different sources and application rates of P in the Zona da Mata region of Minas Gerais, Brazil. The experiment with coffee plants of the Catucaí Amarelo 6/30 variety was carried out over four growing seasons. Treatments were arranged in a full factorial design [(4 × 3 + 1] consisting of four P sources (monoammonium phosphate, simple superphosphate, natural reactive rock phosphate from Algeria (Djebel-Onk, and FH 550®, three P rates (100, 200, and 400 kg ha-1 year-1 of P2O5, and an additional treatment without application of the nutrient (0 kg ha-¹ year-¹. A randomized block experimental design was used with three replicates. The four seasons were evaluated as subplots in a split plot experiment. The P contents in soil and leaves increased with increased rates of P application. However, there was no effect from P application on the yield and its biennial cycle/stability regardless of the source used over the four seasons assessed.

  9. Mate Limitation in Fungal Plant Parasites Can Lead to Cyclic Epidemics in Perennial Host Populations.

    Science.gov (United States)

    Ravigné, Virginie; Lemesle, Valérie; Walter, Alicia; Mailleret, Ludovic; Hamelin, Frédéric M

    2017-03-01

    Fungal plant parasites represent a growing concern for biodiversity and food security. Most ascomycete species are capable of producing different types of infectious spores both asexually and sexually. Yet the contributions of both types of spores to epidemiological dynamics have still to been fully researched. Here we studied the effect of mate limitation in parasites which perform both sexual and asexual reproduction in the same host. Since mate limitation implies positive density dependence at low population density, we modeled the dynamics of such species with both density-dependent (sexual) and density-independent (asexual) transmission rates. A first simple SIR model incorporating these two types of transmission from the infected compartment, suggested that combining sexual and asexual spore production can generate persistently cyclic epidemics in a significant part of the parameter space. It was then confirmed that cyclic persistence could occur in realistic situations by parameterizing a more detailed model fitting the biology of the Black Sigatoka disease of banana, for which literature data are available. We discuss the implications of these results for research on and management of Sigatoka diseases of banana.

  10. Population density shapes patterns of survival and reproduction in Eleutheria dichotoma (Hydrozoa: Anthoathecata).

    Science.gov (United States)

    Dańko, Aleksandra; Schaible, Ralf; Pijanowska, Joanna; Dańko, Maciej J

    2018-01-01

    Budding hydromedusae have high reproductive rates due to asexual reproduction and can occur in high population densities along the coasts, specifically in tidal pools. In laboratory experiments, we investigated the effects of population density on the survival and reproductive strategies of a single clone of Eleutheria dichotoma . We found that sexual reproduction occurs with the highest rate at medium population densities. Increased sexual reproduction was associated with lower budding (asexual reproduction) and survival probability. Sexual reproduction results in the production of motile larvae that can, in contrast to medusae, seek to escape unfavorable conditions by actively looking for better environments. The successful settlement of a larva results in starting the polyp stage, which is probably more resistant to environmental conditions. This is the first study that has examined the life-history strategies of the budding hydromedusa E. dichotoma by conducting a long-term experiment with a relatively large sample size that allowed for the examination of age-specific mortality and reproductive rates. We found that most sexual and asexual reproduction occurred at the beginning of life following a very rapid process of maturation. The parametric models fitted to the mortality data showed that population density was associated with an increase in the rate of aging, an increase in the level of late-life mortality plateau, and a decrease in the hidden heterogeneity in individual mortality rates. The effects of population density on life-history traits are discussed in the context of resource allocation and the r/K-strategies' continuum concept.

  11. Herbivore-specific, density-dependent induction of plant volatiles: honest or "cry wolf" signals?

    Directory of Open Access Journals (Sweden)

    Kaori Shiojiri

    Full Text Available Plants release volatile chemicals upon attack by herbivorous arthropods. They do so commonly in a dose-dependent manner: the more herbivores, the more volatiles released. The volatiles attract predatory arthropods and the amount determines the probability of predator response. We show that seedlings of a cabbage variety (Brassica oleracea var. capitata, cv Shikidori also show such a response to the density of cabbage white (Pieris rapae larvae and attract more (naive parasitoids (Cotesia glomerata when there are more herbivores on the plant. However, when attacked by diamondback moth (Plutella xylostella larvae, seedlings of the same variety (cv Shikidori release volatiles, the total amount of which is high and constant and thus independent of caterpillar density, and naive parasitoids (Cotesia vestalis of diamondback moth larvae fail to discriminate herbivore-rich from herbivore-poor plants. In contrast, seedlings of another cabbage variety of B. oleracea (var. acephala: kale respond in a dose-dependent manner to the density of diamondback moth larvae and attract more parasitoids when there are more herbivores. Assuming these responses of the cabbage cultivars reflect behaviour of at least some genotypes of wild plants, we provide arguments why the behaviour of kale (B. oleracea var acephala is best interpreted as an honest signaling strategy and that of cabbage cv Shikidori (B. oleracea var capitata as a "cry wolf" signaling strategy, implying a conflict of interest between the plant and the enemies of its herbivores: the plant profits from being visited by the herbivore's enemies, but the latter would be better off by visiting other plants with more herbivores. If so, evolutionary theory on alarm signaling predicts consequences of major interest to students of plant protection, tritrophic systems and communication alike.

  12. Density dependence governs when population responses to multiple stressors are magnified or mitigated.

    Science.gov (United States)

    Hodgson, Emma E; Essington, Timothy E; Halpern, Benjamin S

    2017-10-01

    Population endangerment typically arises from multiple, potentially interacting anthropogenic stressors. Extensive research has investigated the consequences of multiple stressors on organisms, frequently focusing on individual life stages. Less is known about population-level consequences of exposure to multiple stressors, especially when exposure varies through life. We provide the first theoretical basis for identifying species at risk of magnified effects from multiple stressors across life history. By applying a population modeling framework, we reveal conditions under which population responses from stressors applied to distinct life stages are either magnified (synergistic) or mitigated. We find that magnification or mitigation critically depends on the shape of density dependence, but not the life stage in which it occurs. Stressors are always magnified when density dependence is linear or concave, and magnified or mitigated when it is convex. Using Bayesian numerical methods, we estimated the shape of density dependence for eight species across diverse taxa, finding support for all three shapes. © 2017 by the Ecological Society of America.

  13. Inference about density and temporary emigration in unmarked populations

    Science.gov (United States)

    Chandler, Richard B.; Royle, J. Andrew; King, David I.

    2011-01-01

    Few species are distributed uniformly in space, and populations of mobile organisms are rarely closed with respect to movement, yet many models of density rely upon these assumptions. We present a hierarchical model allowing inference about the density of unmarked populations subject to temporary emigration and imperfect detection. The model can be fit to data collected using a variety of standard survey methods such as repeated point counts in which removal sampling, double-observer sampling, or distance sampling is used during each count. Simulation studies demonstrated that parameter estimators are unbiased when temporary emigration is either "completely random" or is determined by the size and location of home ranges relative to survey points. We also applied the model to repeated removal sampling data collected on Chestnut-sided Warblers (Dendroica pensylvancia) in the White Mountain National Forest, USA. The density estimate from our model, 1.09 birds/ha, was similar to an estimate of 1.11 birds/ha produced by an intensive spot-mapping effort. Our model is also applicable when processes other than temporary emigration affect the probability of being available for detection, such as in studies using cue counts. Functions to implement the model have been added to the R package unmarked.

  14. The trans-generational impact of population density signals on host-parasite interactions.

    Science.gov (United States)

    Michel, Jessica; Ebert, Dieter; Hall, Matthew D

    2016-11-25

    The density of a host population is a key parameter underlying disease transmission, but it also has implications for the expression of disease through its effect on host physiology. In response to higher densities, individuals are predicted to either increase their immune investment in response to the elevated risk of parasitism, or conversely to decrease their immune capacity as a consequence of the stress of a crowded environment. However, an individual's health is shaped by many different factors, including their genetic background, current environmental conditions, and maternal effects. Indeed, population density is often sensed through the presence of info-chemicals in the environment, which may influence a host's interaction with parasites, and also those of its offspring. All of which may alter the expression of disease, and potentially uncouple the presumed link between changes in host density and disease outcomes. In this study, we used the water flea Daphnia magna and its obligate bacterial parasite Pasteuria ramosa, to investigate how signals of high host density impact on host-parasite interactions over two consecutive generations. We found that the chemical signals from crowded treatments induced phenotypic changes in both the parental and offspring generations. In the absence of a pathogen, life-history changes were genotype-specific, but consistent across generations, even when the signal of density was removed. In contrast, the influence of density on infected animals depended on the trait and generation of exposure. When directly exposed to signals of high-density, host genotypes responded differently in how they minimised the severity of disease. Yet, in the subsequent generation, the influence of density was rarely genotype-specific and instead related to ability of the host to minimise the onset of infection. Our findings reveal that population level correlations between host density and infection capture only part of the complex relationship

  15. An experimental field study of delayed density dependence in natural populations of Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Rachael K Walsh

    Full Text Available Aedes albopictus, a species known to transmit dengue and chikungunya viruses, is primarily a container-inhabiting mosquito. The potential for pathogen transmission by Ae. albopictus has increased our need to understand its ecology and population dynamics. Two parameters that we know little about are the impact of direct density-dependence and delayed density-dependence in the larval stage. The present study uses a manipulative experimental design, under field conditions, to understand the impact of delayed density dependence in a natural population of Ae. albopictus in Raleigh, North Carolina. Twenty liter buckets, divided in half prior to experimentation, placed in the field accumulated rainwater and detritus, providing oviposition and larval production sites for natural populations of Ae. albopictus. Two treatments, a larvae present and larvae absent treatment, were produced in each bucket. After five weeks all larvae were removed from both treatments and the buckets were covered with fine mesh cloth. Equal numbers of first instars were added to both treatments in every bucket. Pupae were collected daily and adults were frozen as they emerged. We found a significant impact of delayed density-dependence on larval survival, development time and adult body size in containers with high larval densities. Our results indicate that delayed density-dependence will have negative impacts on the mosquito population when larval densities are high enough to deplete accessible nutrients faster than the rate of natural food accumulation.

  16. Effects of fungicides and biofungicides on population density and community structure of soil oribatid mites.

    Science.gov (United States)

    Al-Assiuty, Abdel-Naieem I M; Khalil, Mohamed A; Ismail, Abdel-Wahab A; van Straalen, Nico M; Ageba, Mohamed F

    2014-01-01

    To compare the side-effects of chemical versus biofungicides on non-target organisms in agricultural soil, a study of population structure, spatial distribution and fecundity of oribatid mites, a diverse and species-rich group of microarthropods indicative of decomposer activity in soil was done. Plots laid out in agricultural fields of a research station in Egypt, were cultivated with cucumber and treated with two chemical fungicides: Ridomil Plus 50% wp (active ingredients=metalaxyl and copper oxychloride) and Dithane M-45 (active ingredient=mancozeb), and two biofungicides: Plant Guard (containing the antagonistic fungus Trichoderma harzianum) and Polyversum (containing the fungi-parasitic oomycete Pythium oligandrum). All treatments were done using both low-volume and high-volume spraying techniques to check whether any effects were dependent on the method of application. Oribatid mite communities were assessed from soil core samples collected during the growing season. Total abundance of oribatids was not different across the plots, but some species decreased in number, while one species increased. Species diversity and community equitability decreased with the application of chemical and biofungicides especially when using high-volume spraying. In control plots most oribatid species showed a significant degree of aggregation, which tended to decrease under fungicide treatment. Ridomil Plus, Plant Guard and Polyversum had a negative effect on the gravid/ungravid ratio of some species. Egg number averaged over the whole adult population was not directly related to the application of chemical and biofungicides but it showed a species-specific relationship with population density. In general biofungicides had a smaller effect on population size and community structure of oribatid mite species than chemical fungicides. The results indicate that biofungicides may be the preferred option when aiming to prevent side-effects on sensitive groups among the species

  17. Model of yield response of corn to plant population and absorption of solar energy.

    Directory of Open Access Journals (Sweden)

    Allen R Overman

    Full Text Available Biomass yield of agronomic crops is influenced by a number of factors, including crop species, soil type, applied nutrients, water availability, and plant population. This article is focused on dependence of biomass yield (Mg ha(-1 and g plant(-1 on plant population (plants m(-2. Analysis includes data from the literature for three independent studies with the warm-season annual corn (Zea mays L. grown in the United States. Data are analyzed with a simple exponential mathematical model which contains two parameters, viz. Y(m (Mg ha(-1 for maximum yield at high plant population and c (m(2 plant(-1 for the population response coefficient. This analysis leads to a new parameter called characteristic plant population, x(c = 1/c (plants m(-2. The model is shown to describe the data rather well for the three field studies. In one study measurements were made of solar radiation at different positions in the plant canopy. The coefficient of absorption of solar energy was assumed to be the same as c and provided a physical basis for the exponential model. The three studies showed no definitive peak in yield with plant population, but generally exhibited asymptotic approach to maximum yield with increased plant population. Values of x(c were very similar for the three field studies with the same crop species.

  18. Influence of planting density and nitrogen fertilization on the yield of Morus alba var. tigreada

    International Nuclear Information System (INIS)

    Noda, Yolai; Martín, G. J.

    2014-01-01

    An experiment was carried out to evaluate the effect of planting density (12 500, 25 000 and 37 500 plants/ha) and nitrogen fertilization (100, 300 and 500 kg N/ha/year) on the yield and bromatological composition of Morus alba var. tigreada. The dry matter yield of the total (DMYTB) and edible biomass (DMYEB), and the yield of the leaves (DMYL) and the fresh stems (DMYFS) were measured during two years. The crude fiber (CF) and crude protein (CP) percentages were also calculated. There was interaction of the factors (p < 0,05) in the DMYFS; the highest values were obtained when the maximum planting density was combined with the three doses of N (0,37; 0,35 and 0,32 kg DM/plant), as well as when combining 25 000 plants/ha with 300 and 500 kg N/ha/year (0,27 and 0,34 kg DM/plant, respectively). In the variables DMYTB, DMYEB and DMYL there was no interaction of the studied factors. The highest values of total and edible biomass and leaves were reached with 37 500 plants (4,43; 2,37 and 2,03 kg DM/plant ) and the maximum dose of N (3,16;1,89 and 1,68 kg DM/plant). It is concluded that the best results regarding the yield of mulberry were obtained with the density of 37 500 plants/ha; its combination with the lowest dose of N produced high yields of fresh stems, which constitutes an important component of the biomass consumed by livestock. (author)

  19. Characterising root density of peach trees in a semi-arid Chernozem to increase plant density

    Science.gov (United States)

    Paltineanu, Cristian; Septar, Leinar; Gavat, Corina; Chitu, Emil; Oprita, Alexandru; Moale, Cristina; Calciu, Irina; Vizitiu, Olga; Lamureanu, Gheorghe

    2016-01-01

    The available information on root system in fully mature peach orchards in semi-arid regions is insufficient. This paper presents a study on the root system density in an irrigated peach orchard from Dobrogea, Romania, using the trench technique. The old orchard has clean cultivation in inter-row and in-row. The objectives of the study were to: test the hypothesis that the roots of fully mature peach trees occupy the whole soil volume; find out if root repulsive effect of adjacent plants occurred for the rootstocks and soil conditions; find relationships between root system and soil properties and analyse soil state trend. Some soil physical properties were significantly deteriorated in inter-row versus in-row, mainly due to soil compaction induced by technological traffic. Density of total roots was higher in-row than inter-row, but the differences were not significant. Root density decreased more intensely with soil depth than with distance from tree trunks. Root density correlated with some soil properties. No repulsive effect of the roots of adjacent peach trees was noted. The decrease of root density with distance from trunk can be used in optimising tree arrangement. The conclusions could also be used in countries with similar growth conditions.

  20. Effects of population density on agricultural land use and ...

    African Journals Online (AJOL)

    This study examined agricultural land use and productivity with particular reference to its effects on population density in the Nsukka Agricultural Zone of Enugu State, Nigeria. The study involved distribution of questionnaires to 96 respondents, with only 60 being valid. Majority of the respondents had farms of between one ...

  1. The influence of population density and duration of breeding on ...

    African Journals Online (AJOL)

    The influence of population density and duration of breeding on broiler chickens productivity and profitability. S Mitrovic, V Dermanovi c, M Radivojevi c, Z Raji c, D Živkovi c, D Ostoji c, N Filipovi c ...

  2. Effects of Plant Density on Sweet and Baby Corn (Hybrid KSC 403 Yield and Yield Components

    Directory of Open Access Journals (Sweden)

    H Bavi

    2016-07-01

    Full Text Available Introduction Sweet corn is the one of the most important types of corn. There is a high amount of sugar in the endosperm of sweet corn than dent corn. Baby corn is the ear of corn that is being harvested in the silking stage before the end of pollination. This crop has an interesting using methods as salad, conserve production and vegetative consumption. Both two sweet and baby corn is obtained from one plant in different growth stages and could be harvested from one corn hybrid. Best yield and quality of baby corn is obtained from sweet corn hybrids, because of high amounts of sugar in the grains and ears. Sweet corn and baby corn could be harvested at early dough stage (with about 30 % of humidity and early silking stage before the pollination is completed, respectively. Plant density is the most important factor in growing corn, especially in sweet and baby corn. Khuzestan province is one of the main regions of corn production in Iran. In Khuzestan, forage and silage corn have the most production among the summer crops. Corn is planted in two planting date in Khuzestan: early spring and early summer. Spring corn planting produces little grain yield due to Simultaneity of silking stage with hot early summer days. Because of little production and little research about sweet and baby corn, this study was performed and designed. Materials and Methods In order to investigate the effects of plant density and harvesting method on sweet corn and baby corn yield, an experiment was performed during 2012-13, in research farm of Ramin Agriculture and Natural Resources University of Khuzestan, located in southwest of Iran. In this experiment, four plant densities (7, 9, 11 and 13 plants.m-2 and two harvesting methods (baby corn and sweet corn were investigated in an RCB statistical design with four replications. The KSC 403 hybrid was used and investigated in the experiment, as a sweet corn hybrid. Statistical analysis was performed using SAS 9.1 through

  3. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    Directory of Open Access Journals (Sweden)

    Daniel D Bjornlie

    Full Text Available Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos in the Greater Yellowstone Ecosystem (GYE, recent decline of whitebark pine (WBP; Pinus albicaulis, an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  4. Whitebark pine, population density, and home-range size of grizzly bears in the greater Yellowstone ecosystem

    Science.gov (United States)

    Bjornlie, Daniel D.; van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  5. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    Science.gov (United States)

    Bjornlie, Daniel D; Van Manen, Frank T; Ebinger, Michael R; Haroldson, Mark A; Thompson, Daniel J; Costello, Cecily M

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  6. Competition between Plant-Populations with Different Rooting Depths. 2. Pot Experiments

    NARCIS (Netherlands)

    Berendse, F.

    1981-01-01

    In a previous paper in this series a model was proposed lor the competition between plant populations with different rooting depths. This model predicts that in mixtures of plant populations with different rooting depths the Relative Yield Total will exceed unity. Secondly it predicts that in these

  7. Consequences for conservation: population density and genetic effects on reproduction of an endangered lagomorph.

    Science.gov (United States)

    Demay, Stephanie M; Becker, Penny A; Waits, Lisette P; Johnson, Timothy R; Rachlow, Janet L

    2016-04-01

    Understanding reproduction and mating systems is important for managers tasked with conserving vulnerable species. Genetic tools allow biologists to investigate reproduction and mating systems with high resolution and are particularly useful for species that are otherwise difficult to study in their natural environments. We conducted parentage analyses using 19 nuclear DNA microsatellite loci to assess the influence of population density, genetic diversity, and ancestry on reproduction, and to examine the mating system of pygmy rabbits (Brachylagus idahoensis) bred in large naturalized enclosures for the reintroduction and recovery of the endangered distinct population in central Washington, USA. Reproductive output for females and males decreased as population density and individual homozygosity increased. We identified an interaction indicating that male reproductive output decreased as genetic diversity declined at high population densities, but there was no effect at low densities. Males with high amounts (> 50%) of Washington ancestry had higher reproductive output than the other ancestry groups, while reproductive output was decreased for males with high northern Utah/Wyoming ancestry and females with high Oregon/Nevada ancestry. Females and males bred with an average of 3.8 and 3.6 mates per year, respectively, and we found no evidence of positive or negative assortative mating with regards to ancestry. Multiple paternity was confirmed in 81% of litters, and we report the first documented cases of juvenile breeding by pygmy rabbits. This study demonstrates how variation in population density, genetic diversity, and ancestry impact fitness for an endangered species being bred for conservation. Our results advance understanding of basic life history characteristics for a cryptic species that is difficult to study in the wild and provide lessons for managing populations of vulnerable species in captive and free-ranging populations.

  8. Effects of Row Spacing and Plant Density on Yield and Yield Components of Sweet Corn in Climatic Conditions of Isfahan

    Directory of Open Access Journals (Sweden)

    N. Khodaeian

    2013-06-01

    Full Text Available To evaluate the effects of row spacing and plant density on yield and yield components of sweet corn, variety KSC403, an experiment was conducted in Research Farm of Isfahan University of Technology, Isfahan, Iran, in 2007, as randomized complete block design with a split-plot layout and three replications. The main plots were allocated to two row spacing (60 and 75 cm and the sub-plots accommodated four levels of plant density (50000, 70000, 90000 and 110000 plants per ha. There was significant increase in leaf area index, shoot dry weight, 100-grain fresh weight and grain fresh yield, as row width was decreased from 75 to 60 cm but the plant height was decreased. There was no significant effect of row spacing on number of rows per ear, number of grains per row and number of grains per ear. Plant height, leaf area index, shoot dry weight per m2 and number of ears per m2 were increased with an increase in plant density. The number of rows per ear, number of grains per row, number of grains per ear, 100-grain fresh weight and grain fresh yield were significantly higher under plant densities of 90000 and 110000 as compared to 50000 and 70000 plants per ha. There was significant interaction between row spacing and plant density for leaf area index, shoot dry weight, number of grains per ear, 100-grain fresh weight and grain fresh yield. Under all plant densities, the grain fresh yield was higher in 60-cm row width compared to 70-cm row width. However, the difference between these two row spacing was not significant in plant densities of 50000 and 110000 plants per ha. The highest grain fresh yield (33940 kg/ha was achieved under row spacing 60 cm and 70000 plants per ha and the least grain fresh yield (20750 kg/ha was obtained in under 75 cm row width and 110000 plants per ha. Considering the obtained results of this experiment, to have maximum grain fresh yield of sweet corn under Isfahan climate, the row spacing of 60 cm and plant density of

  9. Density and volume measurements of reprocessing plant feed

    International Nuclear Information System (INIS)

    Platzer, R.; Carrier, M.; Neuilly, M.; Dedaldechamp, P.

    1985-05-01

    A theoretical study of the phenomenon of gas bubbles formation within a liquid led to an adaptation of the differential pressure bubbling technique for the measurement of liquid levels and densities in tanks. Experiments, carried out on a 800 liters tank with water and uranyl nitrate solutions had the double aim to study the precision attainable on volume and density measurements and to design a method for corrections of influencing factors. In parallel, procedures for transfer of known volumes through the use of siphons and for tank calibration by liquid level measurement are also investigated. The paper presents the first results obtained so far and the conclusions to be drawn for the elaboration of calibration and exploitation procedures suitables for use in reprocessing plants. The demonstration to transfer mass of solution with an accuracy of 0.1% is made [fr

  10. Inter cropping and population density effects on yield component ...

    African Journals Online (AJOL)

    Thus the objective of this study was to determine the influence of intercropping and population density on protein and oil yield components, photosynthesis of sorghum and Soybean at the canopy closure. The study was conducted at the University of Nairobi farm during the long rains. There was a significant increase in the ...

  11. The effects of planting density and cultural intensity on loblolly pine crown characteristics at age twelve

    Science.gov (United States)

    Madison Akers; Michael Kane; Robert Teskey; Richard Daniels; Dehai Zhao; Santosh Subedi

    2012-01-01

    Twelve-year old loblolly pine (Pinus taeda L.) stands were analyzed for the effects of planting density and cultural intensity on tree and crown attributes. Four study installations were located in the Piedmont and Upper Coastal Plain regions of the U.S. South. The treatments included six planting densities (740, 1480, 2220, 2960, 3700, 4440 trees...

  12. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid.

    Science.gov (United States)

    Turcotte, Martin M; Reznick, David N; Daniel Hare, J

    2013-05-01

    An eco-evolutionary feedback loop is defined as the reciprocal impacts of ecology on evolutionary dynamics and evolution on ecological dynamics on contemporary timescales. We experimentally tested for an eco-evolutionary feedback loop in the green peach aphid, Myzus persicae, by manipulating initial densities and evolution. We found strong evidence that initial aphid density alters the rate and direction of evolution, as measured by changes in genotype frequencies through time. We also found that evolution of aphids within only 16 days, or approximately three generations, alters the rate of population growth and predicts density compared to nonevolving controls. The impact of evolution on population dynamics also depended on density. In one evolution treatment, evolution accelerated population growth by up to 10.3% at high initial density or reduced it by up to 6.4% at low initial density. The impact of evolution on population growth was as strong as or stronger than that caused by a threefold change in intraspecific density. We found that, taken together, ecological condition, here intraspecific density, alters evolutionary dynamics, which in turn alter concurrent population growth rate (ecological dynamics) in an eco-evolutionary feedback loop. Our results suggest that ignoring evolution in studies predicting population dynamics might lead us to over- or underestimate population density and that we cannot predict the evolutionary outcome within aphid populations without considering population size.

  13. Effect of Increase in Plant Density on Stem Yield and Sucrose Content in Two Sweet Sorghum Cultivars

    Directory of Open Access Journals (Sweden)

    A Soleymani

    2011-01-01

    Full Text Available Abstract In order to evaluate the effect of increase plant density on stalk yield and sucrose content in two sweet sorghum cultivars, an experiment was conducted at Research Farm of Isfahan University located at Zaghmar village. A split plot layout within a randomized complete block design with tree replication was used. Main plots were plant densities (100, 200, 300, 400, 500 and 600 thousand plant/ha and subplots were cultivars (Rio and Keller. The effect of plant density at hard dough harvest stage on plant height, stem diameter, number of tillers, stem fresh weight and juice yield were significant but had no significant effect on brix, sucrose percentage and purity. The highest juice yield and purity were produced by 400 thousand plants/ha. Keller was significantly superior for plant height, stem diameter, stem fresh weight, juice yield and brix at hard dough harvest stage as compared to Rio. Number of tiller per plant of Rio was significantly more than Keller. There were no significant difference between two cultivars for sucrose percentage and purity but sucrose percentage in Keller had highest as compared to Rio. Maximum stem fresh weight, juice yield, sucrose percentage and purity were obtained at hard dough harvest stag. On the basis of the results obtained, 400 thousand plant/ha plant density, Keller cultivar and hard dough harvest stage might be suitable for sweet sorghum production under the condition similar to the present study. Keywords: Sweet sorghum, Stem yield, Sucrose percentage, Harvesting stages

  14. Stochastic seasonality and nonlinear density-dependent factors regulate population size in an African rodent

    DEFF Research Database (Denmark)

    Leirs, Herwig; Steneth, Nils Chr.; Nichols, James D.

    1997-01-01

    , but clear examples of both processes acting in the same population are rare(7,8). Key-factor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide...... no information on actual demographic rates(9,10). Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammute rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models, Both effects occur simultaneously, but we also demonstrate...

  15. 55-61 Effect of Plant Density on Morphological Characteristics, Yield a

    African Journals Online (AJOL)

    characteristics of Napier grass due to plant density during the establishment year. However, the ... resulting in slow growth rates, poor fertility and high rates of mortality (Osuji et al., ...... matter digestibility in vitro of leaf and stem of buffel grass ...

  16. effect of plant density and land race on the growth

    African Journals Online (AJOL)

    COMPUTER UNIT

    Key words: optimum plant density sweet potato landraces and yield. ..... From this work it can be seen that improved management practices play a role in obtaining ... 22.2. 24.7. 21.4. 22.2. SED D. 5.23. 6.15. SED V. 5.23. 6.15. SED D xV. 10.46.

  17. Radiation burden of population in nuclear power plant siting

    International Nuclear Information System (INIS)

    Navratil, J.

    The significance is discussed of the determination of the radiobiological consequences of normal operation and design basis accidents in nuclear power plant siting. The basic diagram and brief description is given of the programme for calculating the radiation load of the population in the surroundings of the nuclear power plant. The programme consists of two subprogrammes, i.e., the dispersion of radioactive gases (for normal operation and for accidents), the main programme for the determination of biological consequences and one auxiliary programme (the distribution of the population in the surroundings of the power plant). The four most important types of exposure to ionizing radiation are considered, namely inhalation, external irradiation from a cloud, ingestion (water, milk, vegetables), external irradiation from the deposit. (B.S.)

  18. Light response of sunflower and canola as affected by plant density, plant genotype and N fertilization.

    Science.gov (United States)

    Soleymani, A

    2017-08-01

    Crop response to light is an important parameter determining crop growth. Three field (split plots) experiments were conducted to investigate the effects of plant density, plant genotype and N fertilization on the light absorption and light extinction of sunflower (Helianthus annuus L.) and canola (Brassica napus L.). A detailed set of plant growth, light absorption and crop yield and oil related parameters were determined. Light was measured at noon during the sunny days with clear sky. In experiment I, although the plant density (PD) of 14 resulted in the highest rate of sunflower light absorption (31.37%) and light extinction (0.756), the highest rate of grain yield and grain oil yield was resulted at PD12 at 3639 and 1457.9kg/ha, respectively; as well as by genotype SUP.A. In experiment II (canola), PD80 resulted in the highest rate of light absorption (13.13%), light extinction (0.63), grain yield (2189.4kg/ha) and grain oil yield (556.54kg/ha). This was also the case for Genotype H. In experiment III (canola), although N150 resulted in the highest rate of light absorption (10.74%) and light extinction (0.48), the highest rate of grain yield (3413.6kg/ha) and grain oil yield (891.86kg/ha) was resulted at N100 as well as by Genotype H401. Results indicate how light properties, crop growth and yield of sunflower and canola can be affected by plant and environmental parameters, which are also of practical use by farmers. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Populational Growth Models Proportional to Beta Densities with Allee Effect

    Science.gov (United States)

    Aleixo, Sandra M.; Rocha, J. Leonel; Pestana, Dinis D.

    2009-05-01

    We consider populations growth models with Allee effect, proportional to beta densities with shape parameters p and 2, where the dynamical complexity is related with the Malthusian parameter r. For p>2, these models exhibit a population dynamics with natural Allee effect. However, in the case of 1

  20. Lead and zinc accumulation and tolerance in populations of six wetland plants

    Energy Technology Data Exchange (ETDEWEB)

    Deng, H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China); Department of Environmental Science and Technology, East China Normal University, Shanghai (China); Ye, Z.H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China); School of Life Sciences, Zhongshan (Sun Yat-sen) University, Guangzhou 510275 (China); Wong, M.H. [Biology Department and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, Hong Kong (China)]. E-mail: mhwong@hkbu.edu.hk

    2006-05-15

    Wetland plants such as Typha latifolia and Phragmites australis have been indicated to show a lack of evolution of metal tolerance in metal-contaminated populations. The aim of the present study is to verify whether other common wetland plants such as Alternanthera philoxeroides and Beckmannia syzigachne, also possess the same characteristics. Lead and zinc tolerances in populations of six species collected from contaminated and clean sites were examined by hydroponics. In general, the contaminated populations did not show higher metal tolerance and accumulation than the controls. Similar growth responses and tolerance indices in the same metal treatment solution between contaminated and control populations suggest that metal tolerance in wetland plants are generally not further evolved by contaminated environment. The reasons may be related to the special root anatomy in wetland plants, the alleviated metal toxicity by the reduced rooting conditions and the relatively high innate metal tolerance in some species. - Populations from metal contaminated sites did not have significantly higher metal tolerance indices.

  1. Lead and zinc accumulation and tolerance in populations of six wetland plants

    International Nuclear Information System (INIS)

    Deng, H.; Ye, Z.H.; Wong, M.H.

    2006-01-01

    Wetland plants such as Typha latifolia and Phragmites australis have been indicated to show a lack of evolution of metal tolerance in metal-contaminated populations. The aim of the present study is to verify whether other common wetland plants such as Alternanthera philoxeroides and Beckmannia syzigachne, also possess the same characteristics. Lead and zinc tolerances in populations of six species collected from contaminated and clean sites were examined by hydroponics. In general, the contaminated populations did not show higher metal tolerance and accumulation than the controls. Similar growth responses and tolerance indices in the same metal treatment solution between contaminated and control populations suggest that metal tolerance in wetland plants are generally not further evolved by contaminated environment. The reasons may be related to the special root anatomy in wetland plants, the alleviated metal toxicity by the reduced rooting conditions and the relatively high innate metal tolerance in some species. - Populations from metal contaminated sites did not have significantly higher metal tolerance indices

  2. Global asymptotic stability of density dependent integral population projection models.

    Science.gov (United States)

    Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart

    2012-02-01

    Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Effects of sowing date and plant density on morphological triats, yield and yield components of sweet corn (Zea mays L.

    Directory of Open Access Journals (Sweden)

    A. Rahmani

    2016-04-01

    Full Text Available In order to evaluate the effect of sowing date and plant density on the morphological triats, yield and yield components of sweet corn (Zea mays L. var SC. 403 an experiment was conducted at the Khorasan Razavi Agricultural Research and Natural Resources Center, Mashhad, Iran during 2008. This experiment was carried out as split plot based on RCBD with four replications. The sowing date (14th June, 3th July and 24th July and plant densities (66600, 83300 and 111000 plants.ha-1 were arranged in main and sub plots, respectively. The results showed significant differences between different sowing dates for plant height, ear height, and no. of leaves/plant, no. of leaves above ear, stem diameter, dehusked ear yield, can grains yield, no. of grain rows/ear, ear length, ear diameter, kernel depth, no. of ear.plant-1, 1000 kernel weight, ear harvest index and plant harvest index. The highest and the lowest can grains yield with 18.27 and 0.930 ton ha-1 was belonged to 14th June and 24th July sowing date, respectively. Although, delay in sowing date, led to decrease of growth period and also decrease of temperature can lead to improper transfer of photosynthetic materials and cause to grains yield decrease. The plant density had significant effects on husked ear yield, dehusked ear yield and forage yield. The highest can grains yield was harvested from the highest plant density (8.862 t.ha-1 and the lowest can grains yield derived from the lowest plant density (66600 plants.ha-1 with 7.692 t.ha-1. Finally, the interaction of sowing date and plant density was significant only for harvest index. Therefore, the sowing date 14th June and the highest plant density (111000 plants.ha-1, is recommended for summer sowing date of sweet corn in Mashhad with maximum and better can grains production.

  4. Immigration Rates during Population Density Reduction in a Coral Reef Fish

    Science.gov (United States)

    Turgeon, Katrine; Kramer, Donald L.

    2016-01-01

    Although the importance of density-dependent dispersal has been recognized in theory, few empirical studies have examined how immigration changes over a wide range of densities. In a replicated experiment using a novel approach allowing within-site comparison, we examined changes in immigration rate following the gradual removal of territorial damselfish from a limited area within a much larger patch of continuous habitat. In all sites, immigration occurred at intermediate densities but did not occur before the start of removals and only rarely as density approached zero. In the combined data and in 5 of 7 sites, the number of immigrants was a hump-shaped function of density. This is the first experimental evidence for hump-shaped, density-dependent immigration. This pattern may be more widespread than previously recognized because studies over more limited density ranges have identified positive density dependence at low densities and negative density dependence at high densities. Positive density dependence at low density can arise from limits to the number of potential immigrants and from behavioral preferences for settling near conspecifics. Negative density dependence at high density can arise from competition for resources, especially high quality territories. The potential for non-linear effects of local density on immigration needs to be recognized for robust predictions of conservation reserve function, harvest impacts, pest control, and the dynamics of fragmented populations. PMID:27271081

  5. The balance of planting and mortality in a street tree population

    Science.gov (United States)

    Lara A. Roman; John J. Battles; Joe R. McBride

    2013-01-01

    Street trees have aesthetic, environmental, human health, and economic benefits in urban ecosystems. Street tree populations are constructed by cycles of planting, growth, death, removal and replacement. The goals of this study were to understand how tree mortality and planting rates affect net population growth, evaluate the shape of the mortality curve, and assess...

  6. Highly Diverse Endophytic and Soil Fusarium oxysporum Populations Associated with Field-Grown Tomato Plants

    Science.gov (United States)

    Demers, Jill E.; Gugino, Beth K.

    2014-01-01

    The diversity and genetic differentiation of populations of Fusarium oxysporum associated with tomato fields, both endophytes obtained from tomato plants and isolates obtained from soil surrounding the sampled plants, were investigated. A total of 609 isolates of F. oxysporum were obtained, 295 isolates from a total of 32 asymptomatic tomato plants in two fields and 314 isolates from eight soil cores sampled from the area surrounding the plants. Included in this total were 112 isolates from the stems of all 32 plants, a niche that has not been previously included in F. oxysporum population genetics studies. Isolates were characterized using the DNA sequence of the translation elongation factor 1α gene. A diverse population of 26 sequence types was found, although two sequence types represented nearly two-thirds of the isolates studied. The sequence types were placed in different phylogenetic clades within F. oxysporum, and endophytic isolates were not monophyletic. Multiple sequence types were found in all plants, with an average of 4.2 per plant. The population compositions differed between the two fields but not between soil samples within each field. A certain degree of differentiation was observed between populations associated with different tomato cultivars, suggesting that the host genotype may affect the composition of plant-associated F. oxysporum populations. No clear patterns of genetic differentiation were observed between endophyte populations and soil populations, suggesting a lack of specialization of endophytic isolates. PMID:25304514

  7. Performance evaluation of drip-fertigated cotton grown under different plant densities using nuclear techniques

    International Nuclear Information System (INIS)

    Janat, M.; Kalhout, A.

    2007-04-01

    Field experiment was conducted over two growing seasons to assess different planting densities of cotton variety Aleppo 118 (71.000, 57.000, 48.000, 41.000, 33.500 plants /ha), and two irrigation systems; one irrigation line per one planting row and one irrigation line per two planting rows. Nitrogen fertilizer (120 kg N/ha) as Urea (46% N) was injected through the irrigation system in six equally split applications. A labeled area (1.0 m 2 ) was established for the labeled sub plots and labeled Urea was applied to the labeled sub plots in the same manner as for unlabeled N fertilizer. Irrigation scheduling was accomplished using the direct method of neutron scattering technique. Irrigation was determined when the soil moisture content in the active root depth reached almost 80% of the field capacity. The amount of water applied for one line / one row were 6738 and 9149 m 3 /ha, whereas, for one line/two rows were 7489 and 12653 m 3 / ha for the two growing seasons 2004 and 2005 respectively. The objectives of the experiment were to evaluate the effect of different planting densities and two irrigation system on cotton yield, lint properties, dry matter yield, N-uptake, chlorophyll content and leaf area. The experimental design was randomized block design with 6 replications for each irrigation method. Results revealed that no significant differences between all different plant densities were recorded for all growth parameters tested in this study such as seed cotton yield, dry matter yield, lint properties, chlorophyll content and leaf area.(author)

  8. Using ecology to inform physiology studies: implications of high population density in the laboratory.

    Science.gov (United States)

    Newman, Amy E M; Edmunds, Nicholas B; Ferraro, Shannon; Heffell, Quentin; Merritt, Gillian M; Pakkala, Jesse J; Schilling, Cory R; Schorno, Sarah

    2015-03-15

    Conspecific density is widely recognized as an important ecological factor across the animal kingdom; however, the physiological impacts are less thoroughly described. In fact, population density is rarely mentioned as a factor in physiological studies on captive animals and, when it is infrequently addressed, the animals used are reared and housed at densities far above those in nature, making the translation of results from the laboratory to natural systems difficult. We survey the literature to highlight this important ecophysiological gap and bring attention to the possibility that conspecific density prior to experimentation may be a critical factor influencing results. Across three taxa: mammals, birds, and fish, we present evidence from ecology that density influences glucocorticoid levels, immune function, and body condition with the intention of stimulating discussion and increasing consideration of population density in physiology studies. We conclude with several directives to improve the applicability of insights gained in the laboratory to organisms in the natural environment. Copyright © 2015 the American Physiological Society.

  9. Effects of different nitrogen levels and plant density on flower, essential oils and extract production and nitrogen use efficiency of Marigold (Calendula officinalis.

    Directory of Open Access Journals (Sweden)

    ali akbar ameri

    2009-06-01

    Full Text Available Efficient use of nitrogen for medicinal plants production, might increase flower dry matter, essential oil and extract yield and reduce cost of yield production. A two year (2005 and 2006 field study was conducted in Torogh region(36,10° N,59.33° E and 1300 m altitude of Mashhad, Iran, to observe the effects of different nitrogen and densities on flower dry matter, essential oil and extract production and nitrogen use efficiency (NUE in a multi-harvested Marigold (Calendula officinalis. The levels of Nitrogen fertilizer (N were 0, 50, 100 and 150 kg ha-1 and levels of density were 20, 40, 60 and 80 plant m-2. The combined analysis results revealed significant effects of N and density levels on flower dry matter, essential oil and extract production and NUE of Marigold. The highest dry flower production obtained by 150 kg ha-1 N and 80 plant m-2 plant population (102.86 g m-2. The higher flower dry matter production caused more essential oil and extract production in high nitrogen and density levels. Agronomic N-use efficiency (kg flower dry matter yield per kg N applied, physiological efficiency (kg flower dry matter yield per kg N absorbed and fertilizer N-recovery efficiency (kg N absorbed per kg N applied, expressed as % for marigold across treatments ranged from 6.8 to14.9, 12.3 to 33.6 and 55.5 to 77.6, respectively and all were greater for N application at 50 compared with150 kg N ha-1, and under high density than low density. The amount of essential oil and extract per 100g flower dry matter decreased during the flower harvesting period. The higher amount of essential oil and extract obtained at early flowering season. The essential oil and extract ranged from 0.22 to 0.12 (ml. per 100g flower dry matter and 2.74 to 2.13 (g per 100g flower dry matter respectively.

  10. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    OpenAIRE

    Li, Yong; Cui, Zhengyong; Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, 'Wennong6' and 'Jimai20', were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The resul...

  11. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    Science.gov (United States)

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  12. Optimization of Nitrogen Rate and Planting Density for Improving Yield, Nitrogen Use Efficiency, and Lodging Resistance in Oilseed Rape

    Directory of Open Access Journals (Sweden)

    Shahbaz Khan

    2017-05-01

    Full Text Available Yield and lodging related traits are essential for improving rapeseed production. The objective of the present study was to investigate the influence of plant density (D and nitrogen (N rates on morphological and physiological traits related to yield and lodging in rapeseed. We evaluated Huayouza 9 for two consecutive growing seasons (2014–2016 under three plant densities (LD, 10 plants m−2; MD, 30 plants m−2; HD, 60 plants m−2 and four N rates (0, 60, 120, and 180 kg ha−1. Experiment was laid out in split plot design using density as a main factor and N as sub-plot factor with three replications each. Seed yield was increased by increasing density and N rate, reaching a peak at HD with 180 kg N ha−1. The effect of N rate was consistently positive in increasing the plant height, pod area index, 1,000 seed weight, shoot and root dry weights, and root neck diameter, reaching a peak at 180 kg N ha−1. Plant height was decreased by increasing D, whereas the maximum radiation interception (~80% and net photosynthetic rate were recorded at MD at highest N. Lodging resistance and nitrogen use efficiency significantly increased with increasing D from 10 to 30 plants m−2, and N rate up to 120 kg ha−1, further increase of D and N decreased lodging resistance and NUE. Hence, our study implies that planting density 30 plants m−2 can improve yield, nitrogen use efficiency, and enhance lodging resistance by improving crop canopy.

  13. The impact of urbanization and population density on childhood Plasmodium falciparum parasite prevalence rates in Africa.

    Science.gov (United States)

    Kabaria, Caroline W; Gilbert, Marius; Noor, Abdisalan M; Snow, Robert W; Linard, Catherine

    2017-01-26

    Although malaria has been traditionally regarded as less of a problem in urban areas compared to neighbouring rural areas, the risk of malaria infection continues to exist in densely populated, urban areas of Africa. Despite the recognition that urbanization influences the epidemiology of malaria, there is little consensus on urbanization relevant for malaria parasite mapping. Previous studies examining the relationship between urbanization and malaria transmission have used products defining urbanization at global/continental scales developed in the early 2000s, that overestimate actual urban extents while the population estimates are over 15 years old and estimated at administrative unit level. This study sought to discriminate an urbanization definition that is most relevant for malaria parasite mapping using individual level malaria infection data obtained from nationally representative household-based surveys. Boosted regression tree (BRT) modelling was used to determine the effect of urbanization on malaria transmission and if this effect varied with urbanization definition. In addition, the most recent high resolution population distribution data was used to determine whether population density had significant effect on malaria parasite prevalence and if so, could population density replace urban classifications in modelling malaria transmission patterns. The risk of malaria infection was shown to decline from rural areas through peri-urban settlements to urban central areas. Population density was found to be an important predictor of malaria risk. The final boosted regression trees (BRT) model with urbanization and population density gave the best model fit (Tukey test p value <0.05) compared to the models with urbanization only. Given the challenges in uniformly classifying urban areas across different countries, population density provides a reliable metric to adjust for the patterns of malaria risk in densely populated urban areas. Future malaria risk

  14. Evaluation of Yield and Yield Components of Black Cumin (Nigella sativa L. under different Plant Density and Limited Irrigation Condition

    Directory of Open Access Journals (Sweden)

    Sh Rezvan Beidokhti

    2012-10-01

    Full Text Available Research on crop response to deficit irrigation is important to reduce agriculture water use in areas where water is limited resource. Using drought resistant landraces with irrigation scheduling based on phenological stages in semi-arid and arid regions may provide an opportunity to optimize irrigation efficiency and water savings in these regions. In order to evaluate of yield and yield components of black cumin under different plant density and limited irrigation condition an experiment was conducted in Research Farm of Islamic Azad University of Damghan during growing season of 2007-2008. The experimental treatments were arranged in split plots based on a complete randomized block design with three replications. The limited irrigation (based on phenological stages treatments were included: cutting irrigation at blooming (folded flowers, cutting irrigation at flowering stage, cutting irrigation at seed formation and normal weekly irrigation (control were allocated to the main plots and different plant density: 100, 150, 200 and 250 plant per square meter (m2 were allocated to sub plots. The results showed that the effect of limited irrigation, plant density and their interaction on plant height, number of follicle, follicle weight, number of seed, 1000 seed weight, seed yield, biological yield and harvest index Black Cumin. The highest yield and yield components was obtained in normal irrigation (control and 200 plant density and the lowest yield were obtained when irrigation cut at the blooming stage and 250 plant density. There was a significant correlation between seed yield and number (r=0.90, 1000 seed weight (r=0.95 and biological yield (r=0.97. Optimum plant density of black cumin was decreased under limited irrigation treatments. Under normal (control and limited irrigation, optimum plant density was 200 and 150 plant per (m2 respectively.

  15. Effects of long-term chronic exposure to radionuclides in plant populations

    International Nuclear Information System (INIS)

    Geras'kin, S.; Evseeva, T.; Oudalova, A.

    2013-01-01

    The results of field studies carried out on different plant species (winter rye and wheat, spring barley, oats, Scots pine, wild vetch, crested hairgrass) in various radioecological situations (nuclear weapon testing, the Chernobyl accident, uranium and radium processing) to investigate the effects of long-term chronic exposure to radionuclides are discussed. Plant populations growing in areas with relatively low levels of pollution are characterized by an increased level of both cytogenetic disturbances and genetic diversity. Although ionizing radiation causes primary damage at the molecular level, there are emergent effects at the level of populations, non-predictable from the knowledge of elementary mechanisms of cellular effects formation. Accumulation of cellular alterations may afterward influence biological parameters important for populations such as health and reproduction. Presented data provide evidence that in plant populations inhabiting heavily contaminated territories cytogenetic damage could be accompanied by a decrease in reproductive capacity. However, in less contaminated sites, because of the scarcity of data available, a steady relationship between cytogenetic effects and reproductive capacity was not revealed. Under radioactive contamination of the plant's environment, a population's resistance to exposure may increase. However, there are radioecological situations where an enhanced radioresistance has not evolved or has not persisted

  16. Tillering dynamics of Tanzania guinea grass under nitrogen levels and plant densities - doi: 10.4025/actascianimsci.v34i4.13382

    Directory of Open Access Journals (Sweden)

    Manoel Eduardo Rozalino Santos

    2012-10-01

    Full Text Available This study evaluated the influence of nitrogen levels (N and plant density (D on the tillering dynamics of Tanzania guinea grass (Panicum maximum Jacq.. Treatments were arranged in a completely randomized block design with 12 treatments and two replicates in a factorial scheme (4 × 3 with four levels of N (0, 80, 160 or 320 kg ha-1 N and three plant densities (9, 25, and 49 plant m-². Higher number of tillers was observed in the treatment with 9 plants m-² and under higher levels of N, especially in the second and third generations. Still, the N influenced quadratically the appearance rate of basal and total tillers, which were also affected by plant density and interaction N × D. However, the appearance rate of aerial tiller was not influenced by factors evaluated. The mortality rate of total tiller was influenced quadratically by the nitrogen levels and plant densities. The mortality rate of basal tiller responded quadratically to plant density, whereas the mortality rate of aerial tiller increased linearly with fertilization. Pastures with low or intermediate densities fertilized with nitrogen, presented a more intense pattern of tiller renewal.

  17. Population Variation in the Life History of a Land Fish, Alticus arnoldorum, and the Effects of Predation and Density.

    Directory of Open Access Journals (Sweden)

    Edward R M Platt

    Full Text Available Life history variation can often reflect differences in age-specific mortality within populations, with the general expectation that reproduction should be shifted away from ages experiencing increased mortality. Investigators of life history in vertebrates frequently focus on the impact of predation, but there is increasing evidence that predation may have unexpected impacts on population density that in turn prompt unexpected changes in life history. There are also other reasons why density might impact life history independently of predation or mortality more generally. We investigated the consequences of predation and density on life history variation among populations of the Pacific leaping blenny, Alticus arnoldorum. This fish from the island of Guam spends its adult life out of the water on rocks in the splash zone, where it is vulnerable to predation and can be expected to be sensitive to changes in population density that impact resource availability. We found populations invested more in reproduction as predation decreased, while growth rate varied primarily in response to population density. These differences in life history among populations are likely plastic given the extensive gene flow among populations revealed by a previous study. The influence of predation and density on life history was unlikely to have operated independently of each other, with predation rate tending to be associated with reduced population densities. Taken together, our results suggest predation and density can have complex influences on life history, and that plastic life history traits could allow populations to persist in new or rapidly changing environments.

  18. Effect of zinc and plant-population on the yield and yield components of maize (zea mays L.)

    International Nuclear Information System (INIS)

    Kakar, K.M.; Sadiq, S.A.; Tariq, M.

    2005-01-01

    A field experiment was conducted during 2001 to study the effect of two levels of zinc (0 and 5 kg Zn ha-J) and three plant-densities (60,000, 80,000 and 100,000 plants ha-J) on the performance of two varieties of maize Azam and Pahari and two hybrids N7989 and Babar, at Malakandher Farm of NWFP Agricultural University, Peshawar. Zinc at the rate of 5 kg ha-J increased the cob yield, grain yield and 1000-grain weight, while increase in plant-density significantly increased the number of grains cob-J, number of cob-plant-J, cob-yield, grain-yield and 1000-grain weight. Results revealed that the highest plant-density of 100,000 plant ha-J decreased the number of cobs plant-J, number of grains cob-J and 1000-grain weight. Maximum number of cobs plant-J (0.87), number of grains cob-J (313), cob yield (4602 kg ha-J), grain yield (4222 kg ha-J) and 1000-grain weight (249 g) were obtained with plant- density of 80,000 plant ha-J. The maximum grain-yield of 4333 kg ha-J was recorded in plots of hybrid variety N7989. (author)

  19. Plant-plant interactions influence developmental phase transitions, grain productivity and root system architecture in Arabidopsis via auxin and PFT1/MED25 signalling.

    Science.gov (United States)

    Muñoz-Parra, Edith; Pelagio-Flores, Ramón; Raya-González, Javier; Salmerón-Barrera, Guadalupe; Ruiz-Herrera, León Francisco; Valencia-Cantero, Eduardo; López-Bucio, José

    2017-09-01

    Transcriptional regulation of gene expression influences plant growth, environmental interactions and plant-plant communication. Here, we report that population density is a key factor for plant productivity and a major root architectural determinant in Arabidopsis thaliana. When grown in soil at varied densities from 1 to 32 plants, high number of individuals decreased stem growth and accelerated senescence, which negatively correlated with total plant biomass and seed production at the completion of the life cycle. Root morphogenesis was also a major trait modulated by plant density, because an increasing number of individuals grown in vitro showed repression of primary root growth, lateral root formation and root hair development while affecting auxin-regulated gene expression and the levels of auxin transporters PIN1 and PIN2. We also found that mutation of the Mediator complex subunit PFT1/MED25 renders plants insensitive to high density-modulated root traits. Our results suggest that plant density is critical for phase transitions, productivity and root system architecture and reveal a role of Mediator in self-plant recognition. © 2017 John Wiley & Sons Ltd.

  20. Early impact of oil palm planting density on vegetative and oil yield variables in West Africa

    Directory of Open Access Journals (Sweden)

    Bonneau Xavier

    2014-07-01

    Full Text Available A range of various different planting distances (from 7.5 to 9.5 m between oil palms were tested using an equilateral triangle design in a plantation density experiment which was settled in an oil palm commercial plantation in Nigeria. Climatic conditions were quite stable, with two seasons and around 2000 mm of annual rainfall. The soil was of desaturated ferralitic type, sandy on the surface, deep and without coarse elements. The early impact of plantation density was analysed at eight years after planting. Some early signs of depressive effect on yields were found for high planting densities (180 and 205 p/ha. Such a negative impact was not severe enough to counteract the effects of a higher number of palms per hectare. As a consequence, a gradient could be observed as yields (in tons of bunches per hectare increased with density. We can anticipate that the competition effect between palms will increase over time with high densities, so that the counteracting point ought to be reached in a few years. A thinning treatment has been included in the protocol. Thinning was carried out at the end of the eight-year period.

  1. DNA-based population density estimation of black bear at northern ...

    African Journals Online (AJOL)

    The analysis of deoxyribonucleic acid (DNA) microsatellites from hair samples obtained by the non-invasive method of traps was used to estimate the population density of black bears (Ursus americanus eremicus) in a mountain located at the county of Lampazos, Nuevo Leon, Mexico. The genotyping of bears was ...

  2. Effects of tillage operations and plant density on leaf spot disease ...

    African Journals Online (AJOL)

    Two seasons experiments conducted in 2002 and 2003 revealed that Tillage operations significantly influenced leafspot disease severity; Percentage lodging 3.14; 2.08 and Grain yield 3.02; 3.84 in 2002 and 2003 respectively. Plant density also had significant difference on leafspot disease severity; Percentage lodging ...

  3. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors

    NARCIS (Netherlands)

    Russell, T.L.; Lwetoijera, D.W.; Knols, B.G.J.; Takken, W.; Killeen, G.F.; Ferguson, H.M.

    2011-01-01

    Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low- or high-density insect populations. We assessed whether variation in

  4. Linking individual phenotype to density-dependent population growth: the influence of body size on the population dynamics of malaria vectors

    NARCIS (Netherlands)

    Russell, T.L.; Lwetoijera, D.W.; Knols, B.G.J.; Takken, W.; Killeen, G.F.; Ferguson, H.M.

    2011-01-01

    Understanding the endogenous factors that drive the population dynamics of malaria mosquitoes will facilitate more accurate predictions about vector control effectiveness and our ability to destabilize the growth of either low-or high-density insect populations. We assessed whether variation in

  5. Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction

    Science.gov (United States)

    Tuan, Nguyen Huy; Van Au, Vo; Khoa, Vo Anh; Lesnic, Daniel

    2017-05-01

    The identification of the population density of a logistic equation backwards in time associated with nonlocal diffusion and nonlinear reaction, motivated by biology and ecology fields, is investigated. The diffusion depends on an integral average of the population density whilst the reaction term is a global or local Lipschitz function of the population density. After discussing the ill-posedness of the problem, we apply the quasi-reversibility method to construct stable approximation problems. It is shown that the regularized solutions stemming from such method not only depend continuously on the final data, but also strongly converge to the exact solution in L 2-norm. New error estimates together with stability results are obtained. Furthermore, numerical examples are provided to illustrate the theoretical results.

  6. A regional assessment of white-tailed deer effects on plant invasion

    Science.gov (United States)

    Mortensen, David A; Smithwick, Erica A H; Kalisz, Susan; McShea, William J; Bourg, Norman A; Parker, John D; Royo, Alejandro A; Abrams, Marc D; Apsley, David K; Blossey, Bernd; Boucher, Douglas H; Caraher, Kai L; DiTommaso, Antonio; Johnson, Sarah E; Masson, Robert; Nuzzo, Victoria A

    2018-01-01

    Abstract Herbivores can profoundly influence plant species assembly, including plant invasion, and resulting community composition. Population increases of native herbivores, e.g. white-tailed deer (Odocoileus virginianus), combined with burgeoning plant invasions raise concerns for native plant diversity and forest regeneration. While individual researchers typically test for the impact of deer on plant invasion at a few sites, the overarching influence of deer on plant invasion across regional scales is unclear. We tested the effects of deer on the abundance and diversity of introduced and native herbaceous and woody plants across 23 white-tailed deer research sites distributed across the east-central and north-eastern USA and representing a wide range of deer densities and invasive plant abundance and identity. Deer access/exclusion or deer population density did not affect introduced plant richness or community-level abundance. Native and total plant species richness, abundance (cover and stem density) and Shannon diversity were lower in deer-access vs. deer-exclusion plots. Among deer-access plots, native species richness, native and total cover, and Shannon diversity (cover) declined as deer density increased. Deer access increased the proportion of introduced species cover (but not of species richness or stem density). As deer density increased, the proportion of introduced species richness, cover and stem density all increased. Because absolute abundance of introduced plants was unaffected by deer, the increase in proportion of introduced plant abundance is likely an indirect effect of deer reducing native cover. Indicator species analysis revealed that deer access favoured three introduced plant species, including Alliaria petiolata and Microstegium vimineum, as well as four native plant species. In contrast, deer exclusion favoured three introduced plant species, including Lonicera japonica and Rosa multiflora, and 15 native plant species. Overall, native

  7. A regional assessment of white-tailed deer effects on plant invasion

    Energy Technology Data Exchange (ETDEWEB)

    Averill, Kristine M. [Ecology Intercollege Graduate Degree Program, The Pennsylvania State University, University Park, PA, USA; Department of Plant Sciences, The Pennsylvania State University, University Park, PA, USA; Mortensen, David A. [Ecology Intercollege Graduate Degree Program, The Pennsylvania State University, University Park, PA, USA; Department of Plant Sciences, The Pennsylvania State University, University Park, PA, USA; Smithwick, Erica A. H. [Ecology Intercollege Graduate Degree Program, The Pennsylvania State University, University Park, PA, USA; Department of Geography, The Pennsylvania State University, University Park, PA, USA; Kalisz, Susan [Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA; McShea, William J. [Smithsonian Conservation Biology Institute, Front Royal, VA, USA; Bourg, Norman A. [Smithsonian Conservation Biology Institute, Front Royal, VA, USA; Parker, John D. [Smithsonian Environmental Research Center, Edgewater, MD, USA; Royo, Alejandro A. [United States Department of Agriculture Forest Service, Northern Research Station, Irvine, PA, USA; Abrams, Marc D. [Ecology Intercollege Graduate Degree Program, The Pennsylvania State University, University Park, PA, USA; Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA; Apsley, David K. [Department of Extension, The Ohio State University, Jackson, OH, USA; Blossey, Bernd [Department of Natural Resources, Cornell University, Ithaca, NY, USA; Boucher, Douglas H. [Department of Biology, Hood College, Frederick, MD, USA; Caraher, Kai L. [Department of Biology, Hood College, Frederick, MD, USA; DiTommaso, Antonio [Soil and Crop Sciences Section, Cornell University, Ithaca, NY, USA; Johnson, Sarah E. [Ecology Intercollege Graduate Degree Program, The Pennsylvania State University, University Park, PA, USA; Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, USA; Masson, Robert [National Park Service, Morristown National Historical Park, Morristown, NJ, USA; Nuzzo, Victoria A. [Natural Area Consultants, Richford, NY, USA

    2017-12-07

    Herbivores can profoundly influence plant species assembly, including plant invasion, and resulting community composition. Population increases of native herbivores, e.g., white-tailed deer (Odocoileus virginianus), combined with burgeoning plant invasions raise concerns for native plant diversity and forest regeneration. While individual researchers typically test for the impact of deer on plant invasion at a few sites, the overarching influence of deer on plant invasion across regional scales is unclear. We tested the effects of deer on the abundance and diversity of introduced and native herbaceous and woody plants across 23 white-tailed deer research sites distributed across the east central and northeastern United States and representing a wide range of deer densities and invasive plant abundance and identity. Deer access/exclusion or deer population density did not affect introduced plant richness or community-level abundance. Native and total plant species richness, abundance (cover and stem density), and Shannon diversity were lower in deer-access vs. deer-exclusion plots. Among deer access plots, native species richness, native and total cover, and Shannon diversity (cover) declined as deer density increased. Deer access increased the proportion of introduced species cover (but not of species richness or stem density). As deer density increased, the proportion of introduced species richness, cover, and stem density all increased. Because absolute abundance of introduced plants was unaffected by deer, the increase in proportion of introduced plant abundance is likely an indirect effect of deer reducing native cover. Indicator species analysis revealed that deer access favored three introduced plant species, including Alliaria petiolata and Microstegium vimineum, as well as four native plant species. In contrast, deer exclusion favored three introduced plant species, including Lonicera japonica and Rosa multiflora, and fifteen native plant species. Overall

  8. Effects of Plant Density and Nitrogen Fertilizer on Dry Flower Yield and Essential Oil Content of Chamomile (Matricaria chamomilla

    Directory of Open Access Journals (Sweden)

    Gh. Sharafi

    2013-06-01

    Full Text Available Chamomile is a valuable medicinal plant and is used as spice and herbal medicine. Application of agronomical methods has important role in increasing quantitative and qualitative traits of this medicinal plant. Fertilizer management is an important factor in successful cultivation of medicinal plants, which could have positive effects on their quantitative and qualitative indices. This experiment was conducted in order to determine the effects of plant density and nitrogen (N fertilizer on dry flower yield and essential oil content of chamomile (Matricaria chamomilla using factorial randomized complete blocks design with three replications. Three N rates from urea source (0, 100 and 200 kg/ha and three plant densities (28.6, 40 and 66.7 plants per m2 were considered. The results showed that the highest single plant yield was produced in the lowest plant density (28.6 plants per m2 and application of 100 kg/ha N. The highest dry flower yield of 474.1 kg/ha and essential oil content of 0.2% was produced in 25 cm row width and fixed plant spacing of 10 cm (40 plants per m2 and application of 100 kg/ha N.

  9. Estimating population density and connectivity of American mink using spatial capture-recapture.

    Science.gov (United States)

    Fuller, Angela K; Sutherland, Chris S; Royle, J Andrew; Hare, Matthew P

    2016-06-01

    Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture-recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture-recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km² area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture-recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.

  10. Estimating population density and connectivity of American mink using spatial capture-recapture

    Science.gov (United States)

    Fuller, Angela K.; Sutherland, Christopher S.; Royle, Andy; Hare, Matthew P.

    2016-01-01

    Estimating the abundance or density of populations is fundamental to the conservation and management of species, and as landscapes become more fragmented, maintaining landscape connectivity has become one of the most important challenges for biodiversity conservation. Yet these two issues have never been formally integrated together in a model that simultaneously models abundance while accounting for connectivity of a landscape. We demonstrate an application of using capture–recapture to develop a model of animal density using a least-cost path model for individual encounter probability that accounts for non-Euclidean connectivity in a highly structured network. We utilized scat detection dogs (Canis lupus familiaris) as a means of collecting non-invasive genetic samples of American mink (Neovison vison) individuals and used spatial capture–recapture models (SCR) to gain inferences about mink population density and connectivity. Density of mink was not constant across the landscape, but rather increased with increasing distance from city, town, or village centers, and mink activity was associated with water. The SCR model allowed us to estimate the density and spatial distribution of individuals across a 388 km2 area. The model was used to investigate patterns of space usage and to evaluate covariate effects on encounter probabilities, including differences between sexes. This study provides an application of capture–recapture models based on ecological distance, allowing us to directly estimate landscape connectivity. This approach should be widely applicable to provide simultaneous direct estimates of density, space usage, and landscape connectivity for many species.

  11. Optimization of Nitrogen Rate and Planting Density for Improving Yield, Nitrogen Use Efficiency, and Lodging Resistance in Oilseed Rape

    OpenAIRE

    Khan, Shahbaz; Anwar, Sumera; Kuai, Jie; Ullah, Sana; Fahad, Shah; Zhou, Guangsheng

    2017-01-01

    Yield and lodging related traits are essential for improving rapeseed production. The objective of the present study was to investigate the influence of plant density (D) and nitrogen (N) rates on morphological and physiological traits related to yield and lodging in rapeseed. We evaluated Huayouza 9 for two consecutive growing seasons (2014–2016) under three plant densities (LD, 10 plants m−2; MD, 30 plants m−2; HD, 60 plants m−2) and four N rates (0, 60, 120, and 180 kg ha−1). Experiment wa...

  12. Responses of predatory invertebrates to seeding density and plant species richness in experimental tallgrass prairie restorations

    Science.gov (United States)

    Nemec, Kristine T.; Allen, Craig R.; Danielson, Stephen D.; Helzer, Christopher J.

    2014-01-01

    In recent decades, agricultural producers and non-governmental organizations have restored thousands of hectares of former cropland in the central United States with native grasses and forbs. However, the ability of these grassland restorations to attract predatory invertebrates has not been well documented, even though predators provide an important ecosystem service to agricultural producers by naturally regulating herbivores. This study assessed the effects of plant richness and seeding density on the richness and abundance of surface-dwelling (ants, ground beetles, and spiders) and aboveground (ladybird beetles) predatory invertebrates. In the spring of 2006, twenty-four 55 m × 55 m-plots were planted to six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Natural Resources Conservation Service Conservation Reserve Program mix, CP25), at low and high seeding densities. Ants, ground beetles, and spiders were sampled using pitfall traps and ladybird beetles were sampled using sweep netting in 2007–2009. The abundance of ants, ground beetles, and spiders showed no response to seed mix richness or seeding density but there was a significant positive effect of richness on ladybird beetle abundance. Seeding density had a significant positive effect on ground beetle and spider species richness and Shannon–Weaver diversity. These results may be related to differences in the plant species composition and relative amount of grass basal cover among the treatments rather than richness.

  13. The non-linear, interactive effects of population density and climate drive the geographical patterns of waterfowl survival

    Science.gov (United States)

    Zhao, Qing; Boomer, G. Scott; Kendall, William L.

    2018-01-01

    On-going climate change has major impacts on ecological processes and patterns. Understanding the impacts of climate on the geographical patterns of survival can provide insights to how population dynamics respond to climate change and provide important information for the development of appropriate conservation strategies at regional scales. It is challenging to understand the impacts of climate on survival, however, due to the fact that the non-linear relationship between survival and climate can be modified by density-dependent processes. In this study we extended the Brownie model to partition hunting and non-hunting mortalities and linked non-hunting survival to covariates. We applied this model to four decades (1972–2014) of waterfowl band-recovery, breeding population survey, and precipitation and temperature data covering multiple ecological regions to examine the non-linear, interactive effects of population density and climate on waterfowl non-hunting survival at a regional scale. Our results showed that the non-linear effect of temperature on waterfowl non-hunting survival was modified by breeding population density. The concave relationship between non-hunting survival and temperature suggested that the effects of warming on waterfowl survival might be multifaceted. Furthermore, the relationship between non-hunting survival and temperature was stronger when population density was higher, suggesting that high-density populations may be less buffered against warming than low-density populations. Our study revealed distinct relationships between waterfowl non-hunting survival and climate across and within ecological regions, highlighting the importance of considering different conservation strategies according to region-specific population and climate conditions. Our findings and associated novel modelling approach have wide implications in conservation practice.

  14. Dietary Energy Density in the Australian Adult Population from National Nutrition Surveys 1995 to 2012.

    Science.gov (United States)

    Grech, Amanda Lee; Rangan, Anna; Allman-Farinelli, Margaret

    2017-12-01

    It is hypothesized that the observed proliferation of energy-dense, nutrient-poor foods globally is an important contributing factor to the development of the obesity epidemic. However, evidence that the population's dietary energy density has increased is sparse. The World Cancer Research Fund recommends that dietary energy density be density of the Australian population has changed between 1995 and 2012. A secondary analysis of two cross-sectional Australian national nutrition surveys from 1995 and 2011/2012 was conducted. Participants of the surveys included adults aged 18 years and older (1995 n=10,986 and 2011/2012 n=9,435) completing 24-hour dietary recalls, including a second recall for a subset of the population (10.4% in 1995 and 64.6% in 2011/2012). Outcome measures included the change in dietary energy density (calculated as energy/weight of food [kcal/g] for food only) between surveys. The National Cancer Institute method for "estimating ratios of two dietary components that are consumed nearly every day" was used to determine the usual distribution and the percentage of participants reporting energy density density was 1.59 (0.26) kcal/g and 1.64 (0.32) kcal/g (Pdensity recommendations. For those aged 70 years and older, the percentage with energy density density density has increased between the two surveys and few people consumed low energy-dense diets in line with recommendations. The change was largely due to increased energy density of older adult's diets, while young adults had high dietary energy density at both time points. These data suggest efforts now focus on the evaluation of the role of modifying energy density of the diet to reduce the risk of weight gain in adults. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  15. A new approach on seismic mortality estimations based on average population density

    Science.gov (United States)

    Zhu, Xiaoxin; Sun, Baiqing; Jin, Zhanyong

    2016-12-01

    This study examines a new methodology to predict the final seismic mortality from earthquakes in China. Most studies established the association between mortality estimation and seismic intensity without considering the population density. In China, however, the data are not always available, especially when it comes to the very urgent relief situation in the disaster. And the population density varies greatly from region to region. This motivates the development of empirical models that use historical death data to provide the path to analyze the death tolls for earthquakes. The present paper employs the average population density to predict the final death tolls in earthquakes using a case-based reasoning model from realistic perspective. To validate the forecasting results, historical data from 18 large-scale earthquakes occurred in China are used to estimate the seismic morality of each case. And a typical earthquake case occurred in the northwest of Sichuan Province is employed to demonstrate the estimation of final death toll. The strength of this paper is that it provides scientific methods with overall forecast errors lower than 20 %, and opens the door for conducting final death forecasts with a qualitative and quantitative approach. Limitations and future research are also analyzed and discussed in the conclusion.

  16. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR on soybean.

    Directory of Open Access Journals (Sweden)

    Ni Xiang

    Full Text Available Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13 reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13 increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  17. Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean.

    Science.gov (United States)

    Xiang, Ni; Lawrence, Kathy S; Kloepper, Joseph W; Donald, Patricia A; McInroy, John A

    2017-01-01

    Heterodera glycines, the soybean cyst nematode, is the most economically important plant-parasitic nematode on soybean production in the U.S. The objectives of this study were to evaluate the potential of plant growth-promoting rhizobacteria (PGPR) strains for mortality of H. glycines J2 in vitro and for reducing nematode population density on soybean in greenhouse, microplot, and field trials. The major group causing mortality to H. glycines in vitro was the genus Bacillus that consisted of 92.6% of the total 663 PGPR strains evaluated. The subsequent greenhouse, microplot, and field trials indicated that B. velezensis strain Bve2 consistently reduced H. glycines cyst population density at 60 DAP. Bacillus mojavensis strain Bmo3 suppressed H. glycines cyst and total H. glycines population density under greenhouse conditions. Bacillus safensis strain Bsa27 and Mixture 1 (Bve2 + Bal13) reduced H. glycines cyst population density at 60 DAP in the field trials. Bacillus subtilis subsp. subtilis strains Bsssu2 and Bsssu3, and B. velezensis strain Bve12 increased early soybean growth including plant height and plant biomass in the greenhouse trials. Bacillus altitudinis strain Bal13 increased early plant growth on soybean in the greenhouse and microplot trials. Mixture 2 (Abamectin + Bve2 + Bal13) increased early plant growth in the microplot trials at 60 DAP, and also enhanced soybean yield at harvest in the field trials. These results demonstrated that individual PGPR strains and mixtures can reduce H. glycines population density in the greenhouse, microplot, and field conditions, and increased yield of soybean.

  18. How to conserve threatened Chinese plant species with extremely small populations?

    Directory of Open Access Journals (Sweden)

    Sergei Volis

    2016-02-01

    Full Text Available The Chinese flora occupies a unique position in global plant diversity, but is severely threatened. Although biodiversity conservation in China has made significant progress over the past decades, many wild plant species have extremely small population sizes and therefore are in extreme danger of extinction. The concept of plant species with extremely small populations (PSESPs, recently adopted and widely accepted in China, lacks a detailed description of the methodology appropriate for conserving PSESPs. Strategies for seed sampling, reintroduction, protecting PSESP locations, managing interactions with the local human population, and other conservation aspects can substantially differ from those commonly applied to non-PSESPs. The present review is an attempt to provide a detailed conservation methodology with realistic and easy-to-follow guidelines for PSESPs in China.

  19. The role of population density on the impact of urbaniza-tion on GHG emissions in China

    Science.gov (United States)

    Liu, Yonghong; Gao, Chaochao; Lu, Yingying

    2017-04-01

    Urbanization directly drives rural to urban population migration and indirectly causes west to east migration in China, two phenomena that may significantly impact China's greenhouse gas emissions given its huge population and vast difference between the western rural and eastern urban areas. These two phenomena were analyzed by using emissions as a per capita term, and extending the impact from the traditional urbanization rate effect to include population density effect. The results show that population density has actually been the dominant demographic player in changing per capita emissions for the past two decades in China, and its elasticity changed from positive in economically less-developed provinces to negative for the developed provinces. This study provides a new perspective in the study of the relationship between urbanization and greenhouse gas emissions, and the results indicate that population density change should be taken into account to accurately assess the impact of urbanization.

  20. Effects in Plant Populations Resulting from Chronic Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Geras' kin, Stanislav A.; Volkova, Polina Yu.; Vasiliyev, Denis V.; Dikareva, Nina S.; Oudalova, Alla A. [Russian Institute of Agricultural Radiology and Agroecology, 249032, Obninsk (Russian Federation)

    2014-07-01

    Human industrial activities have left behind a legacy of ecosystems strongly impacted by a wide range of contaminants, including radionuclides. Phyto-toxic effects of acute impact are well known, but the consequences of long-term chronic exposure to low pollutant concentrations is neither well understood nor adequately included in risk assessments. To understand effects of real-world contaminant exposure properly we must pay attention to what is actually going on in the field. However, for many wildlife groups and endpoints, there are no, or very few, studies that link accumulation, chronic exposure and biological effects in natural settings. To fill the gaps, results of field studies carried out on different plant species (winter rye and wheat, spring barley, oats, Scots pine, wild vetch, crested hair-grass) in various radioecological situations (nuclear weapon testing, the Chernobyl accident, uranium and radium processing) to investigate effects of long-term chronic exposure to radionuclides are discussed. Because each impacted site developed in its own way due to a unique history of events, the experience from one case study is rarely directly applicable to another situation. In spite of high heterogeneity in response, we have detected several general patterns. Plant populations growing in areas with relatively low levels of pollution are characterized by the increased level of both cytogenetic alterations and genetic diversity. Accumulation of cellular alterations may afterward influence biological parameters important for populations such as health and reproduction. Presented data provide evidence that in plant populations inhabiting heavily contaminated territories cytogenetic damage were accompanied by decrease in reproductive ability. In less contaminated sites, because of the scarcity of data available, it is impossible to establish exactly the relationship between cytogenetic effects and reproductive ability. Radioactive contamination of the plants

  1. Population density and efficiency in energy consumption: An empirical analysis of service establishments

    International Nuclear Information System (INIS)

    Morikawa, Masayuki

    2012-01-01

    This study, using novel establishment-level microdata from the Energy Consumption Statistics, empirically analyzes the effect of urban density on energy intensity in the service sector. According to the analysis, the efficiency of energy consumption in service establishments is higher for densely populated cities. Quantitatively, after controlling for differences among industries, energy efficiency increases by approximately 12% when the density in a municipality population doubles. This result suggests that, given a structural transformation toward the service economy, deregulation of excessive restrictions hindering urban agglomeration, and investment in infrastructure in city centers would contribute to environmentally friendly economic growth.

  2. Effects of Cycocel and Nitrogen Application on Yield and Yield Components of Autumn-Grown Oilseed Rape at Different Plant Densities

    Directory of Open Access Journals (Sweden)

    S. Majd

    2013-06-01

    Full Text Available In this research, which was carried out as two experiments (in the field and greenhouse at Research Farm of College of Agriculture, Shiraz University, Shiraz, Iran, in 2009-2010 growing season, the effects of different levels of nitrogen, plant density and cycocel application on yield and yield components of autumn-grown oilseed rape (Talaye cultivar were investigated. The field experiment was designed as split-split plot based on completely randomized blocks design. Treatments included nitrogen level (80, 140, 200 and 260 kg/ha as the main plot, plant density (70 and 90 plants/m2 as sub-plot and cycocel rate (0, 1.4 and 2.8 L/ha as sub- subplot. The greenhouse experiment, which was arranged as a factorial based on complete randomized design, included nitrogen level (0, 50, 100, 150 and 200 kg/ha and cycocel rate (0, 1.4 and 2.8 L/ha. Results showed that the highest seed yield was achieved at 200 kg N/ha, 2.8 L/ha cycocel and plant density of 90 plants/m2 (533.17, 533.96 and 521.6 g/m2, respectively. Application of 2.8 L/ha cycocel was associated with increased number of siliques per plant and final plants dry weight. Increasing plant density from 70 to 90 plants/m2 was associated with decreased number of siliques per plant, plant dry weight and number of seeds per silique. It appears that application of 200 kg N/ha, 2.8 L/ha cycocel and plant density of 90 plants/m2 could be recommended for maximum grain yield of autumn-grown rapeseed cv. Talaye, in agroclimatic conditions similar to this research

  3. Effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame (Sesamum indicum

    Directory of Open Access Journals (Sweden)

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame, an experiment was conducted at experimental station, college of agriculture, Ferdowsi University of Mashhad. Four different irrigation intervals (one, two, three and four weeks with four plant densities (20, 30, 40 and 50 plants/m2 were compared in a spilt plot arrangement based on randomized complete block design with four replications. Irrigation intervals and plant densities allocated in main plots and subplots, respectively. Different characteristics such as plant height, distance of first capsule from soil surface, number of branches per plant, number of grains per capsule, number of capsules per plant, grain yield, 1000-seed weight, harvest index and oil yield were recorded. The results showed that there were no significant difference between different irrigation intervals in terms of distance of first capsule from soil surface, number of grains per capsule, 1000-seed weight and harvest index. Different irrigation intervals had significant effects on plant height, number of branches per plant, number of capsules per plant, grain yield and oil yield. There were significant differences between different plant densities in terms of distance of first capsule from soil surface, number of branches per plant, number of graines per capsule, number of capsules per plant, grain yield, harvest index and oil yield. The highest grain yield (798/7 kg/ha and oil yield (412/8 kg/ha were obtained at one week and four weeks irrigation intervals, respectively. Between all treatments, 50 plants/m2 and one week irrigation interval produced the highest grain yield (914/7 kg/ha and oil yield (478/6 kg/ha. Because of shortage of water in Mashhad condition, the results recommended that, 50 plants/m2 and two weeks irrigation interval produced rather acceptable grain yield, with less water consumption.

  4. Relative population exposures from coal-fired and nuclear power plants in India

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, T.V.; Lalit, B.Y.; Mishra, U.C.

    1987-01-01

    Coal combustion for electric power generation results in dispersal of fly ash, and hence an additional radiation dose to the population living in the neighbourhood of the coal-fired power plants due to natural radioactivity present in coal. The radiation hazards of coal based and nuclear power plants operating in India are given. The dose commitments to the population living within an 88.5 km radius of the thermal and nuclear power plants in India have been computed using the method outlined in an ORNL report. The estimated dose rates for these two types of power plant were compared. The present study shows that the radiation dose from coal-fired and nuclear power plants are comparable.

  5. Conservation implications of brown hyaena (Parahyaena brunnea population densities and distribution across landscapes in Botswana

    Directory of Open Access Journals (Sweden)

    Christiaan W. Winterbach

    2017-05-01

    Full Text Available The brown hyaena (Parahyaena brunnea is endemic to southern Africa. The largest population of this near-threatened species occurs in Botswana, but limited data were available to assess distribution and density. Our objectives were to use a stratified approach to collate available data and to collect more data to assess brown hyaena distribution and density across land uses in Botswana. We conducted surveys using track counts, camera traps and questionnaires and collated our results and available data to estimate the brown hyaena population based on the stratification of Botswana for large carnivores. Brown hyaenas occur over 533 050 km² (92% of Botswana. Our density estimates ranged from 0 brown hyaenas/100 km² in strata of northern Botswana to 2.94 (2.16–3.71 brown hyaenas/100 km² in the southern stratum of the Central Kalahari Game Reserve. We made assumptions regarding densities in strata that lacked data, using the best references available. We estimated the brown hyaena population in Botswana as 4642 (3133–5993 animals, with 6.8% of the population in the Northern Conservation Zone, 73.1% in the Southern Conservation Zone, 2.0% in the smaller conservation zones and 18.1% in the agricultural zones. The similar densities of brown hyaenas in the Central Kalahari Game Reserve and the Ghanzi farms highlight the potential of agricultural areas in Botswana to conserve this species. The conservation of brown hyaenas in the agricultural landscape of Botswana is critical for the long-term conservation of the species; these areas provide important links between populations in South Africa, Namibia and Zimbabwe. Conservation implications: Botswana contains the core of the brown hyaena population in southern Africa, and conflict mitigation on agricultural land is crucial to maintaining connectivity among the range countries.

  6. Long-Term Bird Assemblage Trends in Areas of High and Low Human Population Density

    International Nuclear Information System (INIS)

    Barrett, K.; Romagosa, C.M.; Williams, M.I.

    2008-01-01

    Urban areas are expanding globally, and the impact of high human population density (HHPD) on bird species richness remains unresolved. Studies primarily focus on species richness along an urban-to-rural gradient; however, some studies have analyzed larger-scale patterns and found results that contrast with those obtained at smaller scales. To move the discussion beyond static species richness patterns, we analyzed the effect of HHPD on bird assemblage dynamics (year-to-year extinction probability, turnover, changes in species richness) across the United States over a 25-year period. We found that bird assemblages in both high and low human population density areas changed significantly over the period of record. Specifically, bird assemblages increased in species richness on average. Assemblage change in areas of HHPD was not significantly different from assemblage change in areas with LHPD. These results suggest that human population density alone does not alter the persistence of avian assemblage patterns.

  7. Population density, water supply, and the risk of dengue fever in Vietnam: cohort study and spatial analysis.

    Science.gov (United States)

    Schmidt, Wolf-Peter; Suzuki, Motoi; Thiem, Vu Dinh; White, Richard G; Tsuzuki, Ataru; Yoshida, Lay-Myint; Yanai, Hideki; Haque, Ubydul; Tho, Le Huu; Anh, Dang Duc; Ariyoshi, Koya

    2011-08-01

    Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk. We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013). We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km² prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks. Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary.

  8. Population density, water supply, and the risk of dengue fever in Vietnam: cohort study and spatial analysis.

    Directory of Open Access Journals (Sweden)

    Wolf-Peter Schmidt

    2011-08-01

    Full Text Available Aedes aegypti, the major vector of dengue viruses, often breeds in water storage containers used by households without tap water supply, and occurs in high numbers even in dense urban areas. We analysed the interaction between human population density and lack of tap water as a cause of dengue fever outbreaks with the aim of identifying geographic areas at highest risk.We conducted an individual-level cohort study in a population of 75,000 geo-referenced households in Vietnam over the course of two epidemics, on the basis of dengue hospital admissions (n = 3,013. We applied space-time scan statistics and mathematical models to confirm the findings. We identified a surprisingly narrow range of critical human population densities between around 3,000 to 7,000 people/km² prone to dengue outbreaks. In the study area, this population density was typical of villages and some peri-urban areas. Scan statistics showed that areas with a high population density or adequate water supply did not experience severe outbreaks. The risk of dengue was higher in rural than in urban areas, largely explained by lack of piped water supply, and in human population densities more often falling within the critical range. Mathematical modeling suggests that simple assumptions regarding area-level vector/host ratios may explain the occurrence of outbreaks.Rural areas may contribute at least as much to the dissemination of dengue fever as cities. Improving water supply and vector control in areas with a human population density critical for dengue transmission could increase the efficiency of control efforts. Please see later in the article for the Editors' Summary.

  9. Genotype and planting density effects on rooting traits and yield in cotton (Gossypium hirsutum L.)

    NARCIS (Netherlands)

    Zhang, L.Z.; Li, B.G.; Yan, G.T.; Werf, van der W.; Spiertz, J.H.J.; Zhang, S.P.

    2006-01-01

    Root density distribution of plants is a major indicator of competition between plants and determines resource capture from the soil. This experiment was conducted in 2005 at Anyang, located in the Yellow River region, Henan Province, China. Three cotton (Gossypium hirsutum L.) cultivars were

  10. Yield components and quality of intercropped cotton in response to mepiquat chloride and plant density

    NARCIS (Netherlands)

    Mao, Lili; Zhang, Lizhen; Evers, J.B.; Werf, van der Wopke; Liu, Shaodong; Zhang, Siping; Wang, Baomin; Li, Zhaohu

    2015-01-01

    Cotton yield is greatly improved by moderately increasing plant density and modifying the cotton plants to have a compact structure, which is also required by the increasing demand for mechanized harvest. However, in cotton strip intercropped with wheat, only limited knowledge on yield response

  11. Investigation on effect of Populus alba stands distance on density of pests and their natural enemies population under poplar/alfalfa agroforestry system.

    Science.gov (United States)

    Khabir, Z H; Sadeghi, S E; Hanifeh, S; Eivazi, A

    2009-01-15

    This study was carried out in order to distinguish the effect of agroforestry system (combination of agriculture and forestry) on pests and natural enemy's population in poplar research station. Wood is one of the first substances that naturally was used for a long period of time. Forage is an important production of natural resources too. Some factors such as proper lands deficit, lack of economy, pest and disease attacks and faced production of these materials with serious challenges. Agroforestry is a method for decrease of the mentioned problems. The stands of poplar had have planted by complete randomized design with 4 treatments (stand distance) of poplar/alfalfa include 3x4, 3x6.7, 3x8, 3x10 m and 2 control treatments, alfalfa and poplar. The results showed that Chaitophorus populeti had the highest density in poplar and 3x10 m treatments. Monosteira unicostata is another insect pest that had most density in 3x10 m treatment. And alfalfa had high density of Chrysoperla carnea. The density of Coccinella septempunctata, were almost equal in all treatments.

  12. Yield performance and leaf nutrient levels of coffee cultivars under different plant densities Produtividade e níveis foliares de nutrientes em cultivares de café sob diferentes populações de plantas

    Directory of Open Access Journals (Sweden)

    Edison Martins Paulo

    2010-12-01

    Full Text Available Coffee (Coffea Arabica L. plantations using adapted cultivars to regional environmental conditions with optimal plant population density and adequate nutrition are expected to show high yield responses. The triennial production and leaf macronutrient concentrations of four coffee cultivars were studied under different plant population densities. Catuaí Amarelo (IAC 47, Obatã (IAC 1669-20, Acaiá (IAC 474-19 and Icatu Amarelo (IAC 2944 were planted in densities of 2,500; 5,000; 7,519; and 10,000 plants ha-1 with one plant per hole and two plants per hole in the 2,500 plant ha-1. Plants were homogeneously fertilized without liming. As the population density increased the triennial coffee productivity increased, the yield per plant decreased, and leaf concentrations of phosphorus (P, potassium (K and sulfur (S increased. Coffee plants under dense systems presented equal or higher leaf macronutrient concentrations compared to the plants under conventional population. Taller cultivars presented the highest nutrient concentration values, and Obatã, a dwarf cultivar, the lowest values. Higher coffee yields and lower leaf P, Ca and S concentrations were observed in plots with one plant compared to the plots with two plants. In general, the coffee cultivars had leaf N and S concentrations above the reference limits reported in the literature, but leaf concentrations of other macronutrients were within adequate ranges.Cultivares de cafeeiro (Coffea Arabica L. adaptadas às regiões de cultivo, com população de plantas otimizada e adequado estado nutricional são premissas para a obtenção de produções elevadas de café. Estudou-se a produção trienal de café e o teor foliar de macronutrientes de cultivares de cafeeiro em função das densidades de plantio. Foram utilizados os cultivares Catuaí Amarelo (IAC 47, Obatã (IAC 1669-20, Acaiá (IAC 474-19 e Icatu Amarelo (IAC 2944 nas populações de 2.500 plantas ha-1 com duas plantas por cova; e, 5

  13. UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Good, Morris S.; Smith, Leon E.; Warren, Glen A.; Jones, Anthony M.; Ramuhalli, Pradeep; Roy, Surajit; Moran, Traci L.; Denslow, Kayte M.; Longoni, Gianluca

    2017-09-01

    A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using a surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.

  14. Effect of nitrogen fertiliser rates and plant density on grain yield of ...

    African Journals Online (AJOL)

    Low soil fertility has constrained maize production in Sidama district in the Southern region of Ethiopia. The effects of four levels of nitrogen fertiliser (0, 46, 92, 138 kg N ha-1) and four plant populations (44000, 53000, 67000 and 89000 plants ha-1) on grain yield of maize were evaluated over four years (1995-98) at Awassa ...

  15. Distribution and population development of Nasonovia ribisnigri (Homoptera: Aphididae) in iceberg lettuce.

    Science.gov (United States)

    Liu, Yong-Biao

    2004-06-01

    A field study was conducted to determine the distribution and development of aphid Nasonovia ribisnigri (Mosley) (Homoptera: Aphididae) populations in iceberg lettuce, Lactuca sativa L. 'Salinas'. Lettuce plants were transplanted and caged individually in the field and inoculated with apterous N. ribisnigri at 0, 1, 2, 3, and 4 wk after transplanting in spring and fall 2002. Plants were harvested 15-50 d after inoculations; numbers of alates and apterous N. ribisnigri were counted or estimated on each leaf for each plant. Inoculations during all 5 wk of plant development resulted in successful colonization of lettuce heads. Results indicated that head formation did not reduce the risk of colonization by N. ribisnigri to iceberg lettuce; plants were susceptible to colonization by N. ribisnigri throughout their development. For later inoculations, N. ribisnigri populations were relatively smaller, and aphids were found mostly within the heads. For earlier inoculations, N. ribisnigri populations were larger, and within-plant distributions shifted toward frame leaves. The shift of population distributions toward frame leaves correlated significantly with increases in N. ribisnigri population density. For most inoculations, more aphids were present on wrapper leaves than on other leaves. The proportion of alates did not vary significantly with population density. Population development of N ribisnigri also correlated significantly with heat unit accumulation. Yellow sticky cards were used to monitor alates in each cage. Catches of N. ribisnigri alates on yellow sticky cards were significantly correlated with total numbers of alates as well as with total population sizes on individual lettuce plants.

  16. Population Ecology of Caribou Populations without Predators: Southampton and Coats Island Herds

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Quellet

    1996-01-01

    Full Text Available This paper is a review of the ecology of two caribou populations inhabiting predator-free northern islands, Coats and Southampton Island. Findings are analyzed in light of the hypothesis that in absence of prédation or high human harvest, food competition results in delayed puberty, reduced calf production, increased winter starvation of caribou and regulates populations at high densities (>2 km-2. Caribou were hunted to extinction on Southampton Island (Northwest Territories, Canada by mid-century. In 1967, 48 caribou were captured on neighbouring Coats Island and released on Southampton Island. Southampton Island is characterized by a high per capita winter food availability in summer and in winter. The population on Southampton Island has been increasing at a rapid rate of growth since re-introduction (Lamba=1.27. Fast population growth was possible because females invested early in reproduction and over winter survival rate was high. The population on Coats Island is also characterized by high per capita food availability in summer but low food availability in winter. The population size has undergone some marked fluctuations, abrupt declines followed by relatively rapid recovery and, contrary to predictions, densities were always less than 1 km-2. Low population densities on Coats Island result primarily from low food availability. This review suggests that in the absence of prédation or high human harvest competition for food regulates caribou population abundance. However, caribou numbers can fluctuate markedly among years because inter-annual variation of weather conditions affects forage accessibility in winter. This review also emphasizes the importance of distinguishing between factors that determine absolute population density and variation in density among years (in our case probably plant production and winter weather conditions which influence forage accessibility from the regulatory factors, processes that stop population

  17. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests.

    Science.gov (United States)

    Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J

    2016-03-01

    Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species.

  18. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests

    Science.gov (United States)

    Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J

    2016-01-01

    Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species. PMID:26696137

  19. Plant extracts in the control of Phytophthora cryptogea.

    Science.gov (United States)

    Orlikowski, L B

    2001-01-01

    Grapefruit extract at dose 40 micrograms/cm3 inhibited Phytophtora cryptogea linear growth about 50% and almost completely suppressed zoosporangia formation. Drenching of gerbera plants with the extract at dose 165 micrograms/cm3 reduced population density of the pathogen about 70% and this high efficacy was noted at least one month after application. Treatment of gerberas with grapefruit extract resulted in protection of about 50% of plants against the pathogen. Biological activity of purple coneflower extract was lower than extract from grapefruit. Significant decrease of population density of the pathogen during the first 5 days and increase of gerbera healthy stand was observed, however, in peat treated with that extract.

  20. Use of remote sensing, geographic information systems, and spatial statistics to assess spatio-temporal population dynamics of Heterodera glycines and soybean yield quantity and quality

    Science.gov (United States)

    Moreira, Antonio Jose De Araujo

    Soybean, Glycine max (L.) Merr., is an important source of oil and protein worldwide, and soybean cyst nematode (SCN), Heterodera glycines, is among the most important yield-limiting factors in soybean production worldwide. Early detection of SCN is difficult because soybean plants infected by SCN often do not exhibit visible symptoms. It was hypothesized, however, that reflectance data obtained by remote sensing from soybean canopies may be used to detect plant stress caused by SCN infection. Moreover, reflectance measurements may be related to soybean growth and yield. Two field experiments were conducted from 2000 to 2002 to study the relationships among reflectance data, quantity and quality of soybean yield, and SCN population densities. The best relationships between reflectance and the quantity of soybean grain yield occurred when reflectance data were obtained late August to early September. Similarly, reflectance was best related to seed oil and seed protein content and seed size when measured during late August/early September. Grain quality-reflectance relationships varied spatially and temporally. Reflectance measured early or late in the season had the best relationships with SCN population densities measured at planting. Soil properties likely affected reflectance measurements obtained at the beginning of the season and somehow may have been related to SCN population densities at planting. Reflectance data obtained at the end of the growing season likely was affected by early senescence of SCN-infected soybeans. Spatio-temporal aspects of SCN population densities in both experiments were assessed using spatial statistics and regression analyses. In the 2000 and 2001 growing seasons, spring-to-fall changes in SCN population densities were best related to SCN population densities at planting for both experiments. However, within-season changes in SCN population densities were best related to SCN population densities at harvest for both experiments in

  1. The effect of application of chemical and organic fertilizers on yield and yield components of sesame (Sesamum indicum L. in different plant densities

    Directory of Open Access Journals (Sweden)

    P. Rezvani Moghaddam

    2016-04-01

    Full Text Available In order to understand the effect of plant density and different fertilizers on sesame (Sesamum indicum L. production, an experiment was conducted as a factorial arrangement based on completely randomized block design with three replications. The experimental treatments were fertilizers in four levels (cow manure (30 t.ha-1, municipal compost (30 t.ha-1, chemical fertilizer (250 kg ammonium phosphate + 100 kg urea and control (no-fertilizer and plant density in four levels (20, 30, 40 and 50 plant.m-2. The results showed that all treatments increased the plant height, number of capsule per plant, plant biomass, seed yield, seed weight and number of seed per plant compared to control, significantly. The highest amount of the traits was obtained in manure treatment. The seed yield was increased by increasing plant density, but decreased the plant height, number of capsule per plant, plant biomass, seed yield and weight and number of seed per plant, significantly. 1000-seed weight, harvest index and weight of seed per capsule had no affected by treatments. Our result indicated that the density of 40 plant.m-2 among using manure was the most appropriate of cropping pattern in our experiment.

  2. High population density of black-handed spider monkeys (Ateles geoffroyi) in Costa Rican lowland wet forest.

    Science.gov (United States)

    Weghorst, Jennifer A

    2007-04-01

    The main objective of this study was to estimate the population density and demographic structure of spider monkeys living in wet forest in the vicinity of Sirena Biological Station, Corcovado National Park, Costa Rica. Results of a 14-month line-transect survey showed that spider monkeys of Sirena have one of the highest population densities ever recorded for this genus. Density estimates varied, however, depending on the method chosen to estimate transect width. Data from behavioral monitoring were available to compare density estimates derived from the survey, providing a check of the survey's accuracy. A combination of factors has most probably contributed to the high density of Ateles, including habitat protection within a national park and high diversity of trees of the fig family, Moraceae. Although natural densities of spider monkeys at Sirena are substantially higher than those recorded at most other sites and in previous studies at this site, mean subgroup size and age ratios were similar to those determined in previous studies. Sex ratios were similar to those of other sites with high productivity. Although high densities of preferred fruit trees in the wet, productive forests of Sirena may support a dense population of spider monkeys, other demographic traits recorded at Sirena fall well within the range of values recorded elsewhere for the species.

  3. First-year plant density of seeded vegetation on amended lead-zinc chat tailing

    International Nuclear Information System (INIS)

    Norland, M.R.; Veith, D.L.

    1991-01-01

    Mining of lead and zinc sulfides began in the Kansas portion of the Tri-State Mining District in 1976 and continued until the 1950s when a decrease in the demand for lead and zinc forced operations to shut down. As a result of this shallow underground mining, chat tailing and other mine wastes were deposited on the soil surface or as mine waste piles. In 1983, the U.S. EPA added 285 km of Cherokee County, Kansas, to the National Priorities List due to the risks to human health and the environment by heavy metal contamination. In 1985, the EPA declared the Cherokee County portion of the Tri-State District to be a Superfund Site and began remedial action investigations at the Galena, Kansas subsite. The Bureau of Mines is evaluating site stabilization techniques in Galena, to minimize wind and water erosion, infiltration and percolation through the mine wastes. Vegetation and the use of locally available organic wastes are being tested as site stabilization techniques. A 4x3x3 factorial experiment arranged in a randomized complete block was initiated in 1990. Four organic waste materials (composted yard waste, composted cattle manure, spent mushroom compost and turkey litter) were applied with inorganic fertilizer. Control plots were included in the design. A total of 39 combinations were assigned to 2.5 by 4 m test plots at random and each combination was replicated three times. All experimental plots were seeded with a mix of introduced or native and cool or warm season grasses and leguminous forbs. First-year results of this long-term study suggest that the type of organic waste material used as a soil amendment has a significant effect on first-year plant density. Applications of composted cattle manure, composted yard waste and spent mushroom compost resulted in mean plant densities of 90, 83 and 76 plants M-2 which are significantly higher than the mean plant density of control plots and plots amended with turkey litter, 37 and 21 plants M-2

  4. Proteomic Markers of Functional Sperm Population in Bovines: Comparison of Low- and High-Density Spermatozoa Following Cryopreservation.

    Science.gov (United States)

    D'Amours, Olivier; Frenette, Gilles; Bourassa, Sylvie; Calvo, Ézéchiel; Blondin, Patrick; Sullivan, Robert

    2018-01-05

    Mammalian semen contains a heterogeneous population of sperm cells. This heterogeneity results from variability in the complex processes of cell differentiation in the testis, biochemical modifications undergone by spermatozoa during transit along the male reproductive tract, interactions with secretions from accessory sex glands at ejaculation, and, in the context of reproductive technologies, in the ability of ejaculated spermatozoa to resist damage associated with freeze-thaw procedures. When submitted to density gradient centrifugation, ejaculated spermatozoa distribute themselves into two distinct populations: a low-density population characterized by low motility parameters, and a high-density population with high motility characteristics. To understand the origin of ejaculated spermatozoa heterogeneity, cryopreserved semen samples from bulls used by the artificial insemination (A.I.) industry were submitted to Percoll gradient centrifugation. Proteins from low and high density spermatozoa were then extracted with sodium deoxycholate and submitted to proteomic analysis using iTRAQ (isobaric tag for relative and absolute quantitation) methodologies. Quantification of selected sperm proteins was confirmed by multiple reaction monitoring (MRM). Overall, 31 different proteins were more abundant in low-density spermatozoa, while 80 different proteins were more abundant in the high-density subpopulation. Proteins enriched in high-density spermatozoa were markers of sperm functionality such as the glycolytic process, binding to the egg zona pellucida, and motility. Low-density spermatozoa were not solely characterized by loss of proteins and their associated functions. Chaperonin-containing TCP1s and chaperones are hallmarks of the low-density subpopulation. iTRAQ analysis revealed that other proteins such as binder of sperm proteins, histone, GPX5, ELSPBP1, and clusterin are overexpressed in low-density spermatozoa suggesting that these proteins represent defects

  5. Social deprivation and population density are not associated with small area risk of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Rooney, James P K; Tobin, Katy; Crampsie, Arlene; Vajda, Alice; Heverin, Mark; McLaughlin, Russell; Staines, Anthony; Hardiman, Orla

    2015-10-01

    Evidence of an association between areal ALS risk and population density has been previously reported. We aim to examine ALS spatial incidence in Ireland using small areas, to compare this analysis with our previous analysis of larger areas and to examine the associations between population density, social deprivation and ALS incidence. Residential area social deprivation has not been previously investigated as a risk factor for ALS. Using the Irish ALS register, we included all cases of ALS diagnosed in Ireland from 1995-2013. 2006 census data was used to calculate age and sex standardised expected cases per small area. Social deprivation was assessed using the pobalHP deprivation index. Bayesian smoothing was used to calculate small area relative risk for ALS, whilst cluster analysis was performed using SaTScan. The effects of population density and social deprivation were tested in two ways: (1) as covariates in the Bayesian spatial model; (2) via post-Bayesian regression. 1701 cases were included. Bayesian smoothed maps of relative risk at small area resolution matched closely to our previous analysis at a larger area resolution. Cluster analysis identified two areas of significant low risk. These areas did not correlate with population density or social deprivation indices. Two areas showing low frequency of ALS have been identified in the Republic of Ireland. These areas do not correlate with population density or residential area social deprivation, indicating that other reasons, such as genetic admixture may account for the observed findings. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Imidacloprid-susceptible Nilaparvata lugens individuals exceeded resistant individuals in a mixture population with density pressure.

    Science.gov (United States)

    Yu, Na; Tian, Jiahua; Zhang, Yixi; Li, Zhong; Liu, Zewen

    2018-01-01

    Fitness costs associated with insecticide resistance in pest insects have mainly been studied under optimal laboratory conditions. However, resistant insects face more stressors than just insecticides in the field, and how the resistant population reacts to these stressors is of practical importance for the control of pest insects such as the brown planthopper Nilaparvata lugens. The aim of the present study was to explore the impact of population density on the competitiveness of resistant and susceptible individuals. Two isogenic N. lugens populations, a highly imidacloprid-resistant population (HZ-R) with a resistance ratio (RR) of 227.10 and a relatively susceptible population (HZ-S) with an RR of 2.99, were created from a field-resistant population (HZ; RR 62.51). The high resistance levels of HZ-R and HZ were mainly attributable to the overexpression of multiple cytochrome P450 (CYP) genes such as CYP6ER1, CYP6AY1, CYP6CW1 and CYP4CE1 compared with HZ-S, this being supported by piperonyl butoxide synergism. HZ-R was observed to be more resistant to thiacloprid and etofenprox compared with HZ and HZ-S. Most interestingly, in high population density treatments, HZ-S individuals were much more competitive than HZ-R individuals. Imidacloprid-resistant individuals of N. lugens are less competitive than their susceptible counterparts under density pressure. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Phenology of German Chamomile and its Changes under Different Irrigation Regimes and Plant Densities

    Directory of Open Access Journals (Sweden)

    Alireza PIRZAD

    2010-03-01

    Full Text Available In order to definite growth stages of Matricaria chamomilla L., 40 plants were planted with 200 200 cm distance from each other. To determine the phenology under different water stress condition and plant densities, an experiment was conducted in factorial based on randomized complete block design with two factors including irrigation at 4 levels (25, 50, 75, and 100 mm evaporation from pan class A, and plant density at 5 levels (cultivation in 30 cm rows with 5, 10, 15, 20 and 25 cm intra-row spaces with three replications. Definition of growth stages including the maximum number of nodes, sub stems and tillers were 21, 20 and 14 that were occurred at 970, 1088 and 1088 oC growth degree-days, respectively. The numbers of nodes were 28.6, 30.0, 30.2 and 27.8, of sub stem were 19.2, 18.4, 19.8 and 18.4; and of tillers were 14.8, 14.0, 15.0 and 14.4 that were obtained from irrigation at 25, 50, 75, and 100 mm evaporation from pan, respectively. In the other hand, the number of nodes as follow 28.25, 29.00, 29.75, 29.75 and 29.00; sub stem as 17.50, 20.00, 20.75, 19.00 and 17.50; and tillers were 15.00, 13.50, 14.75, 14.00 and 15.50 that were obtained from 5, 10, 15, 20 and 25 cm intra-row spacing, respectively. Differences by irrigation on GDDs values were observed at the second harvest. However the earliest observation of flower and seed receiving at the first harvest occurred on 5 cm intra-row spacing. These changes were identical by GDDs for second harvest of flower, but with mild slope of reduction. There were no differences in number of leaves and tillers among irrigation levels and plant densities.

  8. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots

    Science.gov (United States)

    Picard, Christine; Bosco, Marco

    2008-01-01

    Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

  9. Variable-density ground-water flow and paleohydrology in the Waste Isolation Pilot Plant (WIPP) region, southeastern New Mexico

    International Nuclear Information System (INIS)

    Davies, P.B.

    1989-01-01

    Variable-density groundwater flow was studied near the Waste Isolation Pilot Plant in southeastern New Mexico. An analysis of the relative magnitude of pressure-related and density-related flow-driving forces indicates that density-related gravity effects are not significant at the plant and to the west but are significant in areas to the north, northeast, and south. A regional-scale model of variable-density groundwater flow in the Culebra Dolomite member of the Rustler Formation indicates that the flow velocities are relatively rapid west of the site and extremely slow east and northeast of the site. In the transition zone between those two extremes, which includes the plant, velocities are highly variable. Sensitivity simulations indicates that the central and western parts of the region, including the plant, are fairly well isolated from the eastern and northeastern boundaries. Vertical-flux simulations indicate that as much as 25% of total inflow to the Culebra could be entering as vertical flow, with most of this flow occurring west of the plant. A simple cross-sectional model was developed to examine the flow system as it drains through time following recharge during a past glacial pluvial. This model indicates that the system as a whole drains very slowly and that it apparently could have sustained flow from purely transient drainage following recharge of the system during the Pleistocene

  10. Functional Responses and Resilience of Boreal Forest Ecosystem after Reduction of Deer Density

    Science.gov (United States)

    Bachand, Marianne; Pellerin, Stéphanie; Moretti, Marco; Aubin, Isabelle; Tremblay, Jean-Pierre; Côté, Steeve D.; Poulin, Monique

    2014-01-01

    The functional trait-based approach is increasingly used to predict responses of ecological communities to disturbances, but most studies target a single taxonomic group. Here, we assessed the resilience of a forest ecosystem to an overabundant herbivore population by assessing changes in 19 functional traits for plant, 13 traits for ground beetle and 16 traits for songbird communities after six years of controlled browsing on Anticosti Island (Quebec, Canada). Our results indicated that plants were more responsive to 6 years of reduced browsing pressure than ground beetles and songbirds. However, co-inertia analysis revealed that ground beetle communities responded in a similar way than plant communities with stronger relationships between plant and ground beetle traits at reduced deer density, a pattern not detected between plant and songbird. High deer density favored plants species that reproduce vegetatively and with abiotic pollination and seed dispersal, traits implying little interaction with animal. On the other hand, traits found at reduced deer density mostly involved trophic interaction. For example, plants in this treatment had fleshy fruits and large seeds dispersed by birds or other animals whereas ground beetle species were carnivorous. Overall, our results suggest that plant communities recovered some functional components to overabundant herbivore populations, since most traits associated with undisturbed forests were reestablished after six years of deer reduction. The re-establishment of functional plant communities with traits involving trophic interaction induces changes in the ground-beetle trait community, but forest structure remains likely insufficiently heterogeneous to shift the songbird trait community within six years. PMID:24587362

  11. Functional responses and resilience of boreal forest ecosystem after reduction of deer density.

    Directory of Open Access Journals (Sweden)

    Marianne Bachand

    Full Text Available The functional trait-based approach is increasingly used to predict responses of ecological communities to disturbances, but most studies target a single taxonomic group. Here, we assessed the resilience of a forest ecosystem to an overabundant herbivore population by assessing changes in 19 functional traits for plant, 13 traits for ground beetle and 16 traits for songbird communities after six years of controlled browsing on Anticosti Island (Quebec, Canada. Our results indicated that plants were more responsive to 6 years of reduced browsing pressure than ground beetles and songbirds. However, co-inertia analysis revealed that ground beetle communities responded in a similar way than plant communities with stronger relationships between plant and ground beetle traits at reduced deer density, a pattern not detected between plant and songbird. High deer density favored plants species that reproduce vegetatively and with abiotic pollination and seed dispersal, traits implying little interaction with animal. On the other hand, traits found at reduced deer density mostly involved trophic interaction. For example, plants in this treatment had fleshy fruits and large seeds dispersed by birds or other animals whereas ground beetle species were carnivorous. Overall, our results suggest that plant communities recovered some functional components to overabundant herbivore populations, since most traits associated with undisturbed forests were reestablished after six years of deer reduction. The re-establishment of functional plant communities with traits involving trophic interaction induces changes in the ground-beetle trait community, but forest structure remains likely insufficiently heterogeneous to shift the songbird trait community within six years.

  12. Predation and physical environment structure the density and population size structure of zebra mussels

    OpenAIRE

    Naddafi, Rahmat; Pettersson, Kurt; Eklöv, Peter

    2010-01-01

    The zebra mussel (Dreissena polymorpha) provides one example of successful invaders in novel environments. However, little attention has been devoted to exploring the factors regulating zebra mussel density and population size structure at the local scale. We tested effects of physicochemical factors and fish predation on the density of zebra mussels at several sites and between years in a natural lake. Water depth and roach (Rutilus rutilus) density were the most important variables affectin...

  13. Population density, call-response interval, and survival of out-of-hospital cardiac arrest

    Directory of Open Access Journals (Sweden)

    Ogawa Toshio

    2011-04-01

    Full Text Available Abstract Background Little is known about the effects of geographic variation on outcomes of out-of-hospital cardiac arrest (OHCA. The present study investigated the relationship between population density, time between emergency call and ambulance arrival, and survival of OHCA, using the All-Japan Utstein-style registry database, coupled with geographic information system (GIS data. Methods We examined data from 101,287 bystander-witnessed OHCA patients who received emergency medical services (EMS through 4,729 ambulatory centers in Japan between 2005 and 2007. Latitudes and longitudes of each center were determined with address-match geocoding, and linked with the Population Census data using GIS. The endpoints were 1-month survival and neurologically favorable 1-month survival defined as Glasgow-Pittsburgh cerebral performance categories 1 or 2. Results Overall 1-month survival was 7.8%. Neurologically favorable 1-month survival was 3.6%. In very low-density (2 and very high-density (≥10,000/km2 areas, the mean call-response intervals were 9.3 and 6.2 minutes, 1-month survival rates were 5.4% and 9.1%, and neurologically favorable 1-month survival rates were 2.7% and 4.3%, respectively. After adjustment for age, sex, cause of arrest, first aid by bystander and the proportion of neighborhood elderly people ≥65 yrs, patients in very high-density areas had a significantly higher survival rate (odds ratio (OR, 1.64; 95% confidence interval (CI, 1.44 - 1.87; p Conclusion Living in a low-density area was associated with an independent risk of delay in ambulance response, and a low survival rate in cases of OHCA. Distribution of EMS centers according to population size may lead to inequality in health outcomes between urban and rural areas.

  14. Population-based reference values for bone mineral density in young men

    DEFF Research Database (Denmark)

    Høiberg, M; Nielsen, T L; Wraae, Kristian

    2007-01-01

    Population-based reference values for peak bone mass density in Danish men. BMD of total hip (1.078 +/- 0,14 g/cm2) differed significantly from values from National Health and Nutrition Examination Survey III and of total lumbar spine ((1.073 +/- 0.125 g/cm2) differed significantly from Hologic...

  15. Determination of coefficient defining leaf area development in different genotypes, plant types and planting densities in peanut (Arachis hypogeae L.).

    Science.gov (United States)

    Halilou, Oumarou; Hissene, Halime Mahamat; Clavijo Michelangeli, José A; Hamidou, Falalou; Sinclair, Thomas R; Soltani, Afshin; Mahamane, Saadou; Vadez, Vincent

    2016-12-01

    Rapid leaf area development may be attractive under a number of cropping conditions to enhance the vigor of crop establishment and allow rapid canopy closure for maximizing light interception and shading of weed competitors. This study was undertaken to determine (1) if parameters describing leaf area development varied among ten peanut ( Arachis hypogeae L.) genotypes grown in field and pot experiments, (2) if these parameters were affected by the planting density, and (3) if these parameters varied between Spanish and Virginia genotypes. Leaf area development was described by two steps: prediction of main stem number of nodes based on phyllochron development and plant leaf area dependent based on main stem node number. There was no genetic variation in the phyllochron measured in the field. However, the phyllochron was much longer for plants grown in pots as compared to the field-grown plants. These results indicated a negative aspect of growing peanut plants in the pots used in this experiment. In contrast to phyllochron, there was no difference in the relationship between plant leaf area and main stem node number between the pot and field experiments. However, there was genetic variation in both the pot and field experiments in the exponential coefficient (PLAPOW) of the power function used to describe leaf area development from node number. This genetic variation was confirmed in another experiment with a larger number of genotypes, although possible G × E interaction for the PLAPOW was found. Sowing density did not affect the power function relating leaf area to main stem node number. There was also no difference in the power function coefficient between Spanish and Virginia genotypes. SSM (Simple Simulation model) reliably predicted leaf canopy development in groundnut. Indeed the leaf area showed a close agreement between predicted and observed values up to 60000 cm 2  m -2 . The slightly higher prediction in India and slightly lower prediction in

  16. Effects of population density on the growth and egg-laying capacity ...

    African Journals Online (AJOL)

    The effects of the population density of adult African giant land snail, Archachatina marginata on the egg-laying capacity and the growth of the brooders and hatchlings were investigated for 9 months. Ten culture pens were stocked with snails at 20%, 40%, 60%, 80% and 100% capacity with each group in 2 replicates.

  17. Growth Analysis of Fenugreek (Trigonella foenum- graecum L. under Various Levels of Nitrogen and Plant Density

    Directory of Open Access Journals (Sweden)

    L Bazrkar-Khatibani

    2018-02-01

    combinations, keeping nitrogen levels in main plots and levels of planting density in sub-plots, were replicated four times in a split-plot experiment on the basis of randomized complete block design (RCBD. Hand-sowing was done in lines (30 cm apart as per experimental treatment. Weeds were controlled regularly during the whole study. All other recommend management practices were followed.Observations on leaf area and dry matter accumulation were recorded from all subplots (6 plants per subplot with 15 day intervals up to crop maturity, initiating at 42 days after planting. Harvested plants were separated into remaining leaves, pods, and stems in the crown. The fresh weight of each sample was determined and the green leaf area of the remaining leaves was also measured immediately after harvest using a LI-3100 area meter (LI-COR, Lincoln, NB, USA. Shoot tissues were then oven-dried at 75°C for 24-48 h and dry weighs were calculated. STATGRAPH software was employed to find the best mathematical model to describe the relationship between total dry matter (TDM accumulation, leaf area index (LAI, crop growth rate (CGR, relative growth rate (RGR and growing degree-days (GDD. Results and Discussion Result indicated that the physiological indices were wholly influenced by applied treatments. The highest leaf area index was recorded in plots containing 120 plantsm-2 while receiving 50 kg pure N ha-1. Combined treatments of 120 plants m-2× 75 kg N ha-1 and 80 plants m-2× 50kg N ha-1 resulted in highest TDM and RGR rates, respectively. In all the applied interactions, among the podding and fully ripened pod stages, the CGR reached to its maximum rate (peak point at around 1043 GDD from sowing and almost had a steady and linear trend which then slowly declined down turn to reach zero value at about 1400 GDD and thereafter to negative values. CGR was the highest in combined treatment of 120 plants m-2× 75 kg as compared to other nitrogen levels in this plant population. Conclusions

  18. Plant Mating Systems Often Vary Widely Among Populations

    Directory of Open Access Journals (Sweden)

    Michael R. Whitehead

    2018-04-01

    Full Text Available Most flowering plants are hermaphroditic, yet the proportion of seeds fertilized by self and outcross pollen varies widely among species, ranging from predominant self-fertilization to exclusive outcrossing. A population's rate of outcrossing has important evolutionary outcomes as it influences genetic structure, effective population size, and offspring fitness. Because most mating system studies have quantified outcrossing rates for just one or two populations, past reviews of mating system diversity have not been able to characterize the extent of variation among populations. Here we present a new database of more than 30 years of mating system studies that report outcrossing rates for three or more populations per species. This survey, which includes 741 populations from 105 species, illustrates substantial and prevalent among-population variation in the mating system. Intermediate outcrossing rates (mixed mating are common; 63% of species had at least one mixed mating population. The variance among populations and within species was not significantly correlated with pollination mode or phylogeny. Our review underscores the need for studies exploring variation in the relative influence of ecological and genetic factors on the mating system, and how this varies among populations. We conclude that estimates of outcrossing rates from single populations are often highly unreliable indicators of the mating system of an entire species.

  19. The effects of landscape position on plant species density: Evidence of past environmental effects in a coastal wetland

    Science.gov (United States)

    Grace, J.B.; Guntenspergen, G.R.

    1999-01-01

    Here we propose that an important cause of variation in species density may be prior environmental conditions that continue to influence current patterns. In this paper we investigated the degree to which species density varies with location within the landscape, independent of contemporaneous environmental conditions. The area studied was a coastal marsh landscape subject to periodic storm events. To evaluate the impact of historical effects, it was assumed that the landscape position of a plot relative to the river's mouth ('distance from sea') and to the edge of a stream channel ('distance from shore') would correlate with the impact of prior storm events, an assumption supported by previous studies. To evaluate the importance of spatial location on species density, data were collected from five sites located at increasing distances from the river's mouth along the Middle Pearl River in Louisiana. At each site, plots were established systematically along transects perpendicular to the shoreline. For each of the 175 Plots, we measured elevation, soil salinity, percent of plot recently disturbed, percent of sunlight captured by the plant canopy (as a measure of plant abundance), and plant species density. Structural equation analysis ascertained the degree to which landscape position variables explained variation in species density that could not be explained by current environmental indicators. Without considering landscape variables, 54% of the variation in species density could be explained by the effects of salinity, flooding, and plant abundance. When landscape variables were included, distance from shore was unimportant but distance from sea explained an additional 12% of the variance in species density (R2 of final model = 66%). Based on these results it appears that at least some of the otherwise unexplained variation in species density can be attributed to landscape position, and presumably previous storm events. We suggest that future studies may gain

  20. The demographic consequences of mutualism: ants increase host-plant fruit production but not population growth.

    Science.gov (United States)

    Ford, Kevin R; Ness, Joshua H; Bronstein, Judith L; Morris, William F

    2015-10-01

    The impact of mutualists on a partner's demography depends on how they affect the partner's multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant's extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.

  1. Population density equations for stochastic processes with memory kernels

    Science.gov (United States)

    Lai, Yi Ming; de Kamps, Marc

    2017-06-01

    We present a method for solving population density equations (PDEs)-a mean-field technique describing homogeneous populations of uncoupled neurons—where the populations can be subject to non-Markov noise for arbitrary distributions of jump sizes. The method combines recent developments in two different disciplines that traditionally have had limited interaction: computational neuroscience and the theory of random networks. The method uses a geometric binning scheme, based on the method of characteristics, to capture the deterministic neurodynamics of the population, separating the deterministic and stochastic process cleanly. We can independently vary the choice of the deterministic model and the model for the stochastic process, leading to a highly modular numerical solution strategy. We demonstrate this by replacing the master equation implicit in many formulations of the PDE formalism by a generalization called the generalized Montroll-Weiss equation—a recent result from random network theory—describing a random walker subject to transitions realized by a non-Markovian process. We demonstrate the method for leaky- and quadratic-integrate and fire neurons subject to spike trains with Poisson and gamma-distributed interspike intervals. We are able to model jump responses for both models accurately to both excitatory and inhibitory input under the assumption that all inputs are generated by one renewal process.

  2. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi.

    Science.gov (United States)

    Liang, Minxia; Liu, Xubing; Gilbert, Gregory S; Zheng, Yi; Luo, Shan; Huang, Fengmin; Yu, Shixiao

    2016-12-01

    Negative density-dependent seedling mortality has been widely detected in tropical, subtropical and temperate forests, with soil pathogens as a major driver. Here we investigated how host density affects the composition of soil pathogen communities and consequently influences the strength of plant-soil feedbacks. In field censuses of six 1-ha permanent plots, we found that survival was much lower for newly germinated seedlings that were surrounded by more conspecific adults. The relative abundance of pathogenic fungi in soil increased with increasing conspecific tree density for five of nine tree species; more soil pathogens accumulated around roots where adult tree density was higher, and this greater pathogen frequency was associated with lower seedling survival. Our findings show how tree density influences populations of soil pathogens, which creates plant-soil feedbacks that contribute to community-level and population-level compensatory trends in seedling survival. © 2016 John Wiley & Sons Ltd/CNRS.

  3. Effects of planting pattern and density on growth indices, yield and yield component of corn (Zea mays in competition with redroot pigweed (Amaranthus retrofelexus(

    Directory of Open Access Journals (Sweden)

    alireza barkhi

    2009-06-01

    Full Text Available An experiment was conducted in 2002-2003 using split-split plot arrangement based on Rondomised Compelete Block Design with three replications at Feiz Abad Agricultural Research Station of Qazvin, in order to study of planting patterns and corn densitis effect in competition with redroot pigweed. Main plots inclouded two planting pattern of corn (P1: single row and P2: double row, sub plots inclouded two corn densities (D1:7 and D2:10 plant/m2 and sub sub plots inclouded 4 weed densities (C1:0, C2:2, C3:6, C4:12 plant/m2. Sampling conducted in 2-weekly intervals and growth indices evaluated. Results indicated that with increasing of weed density CGR, TDW, LAI, number of seeds in row, grain and ear yield decreased but plant height increased. Also LAI, CGR, TDW, number of weed seed and seed,s weight of weed increased. By increasing in corn density LAI, CGR, TDW, ear and grain yield increased, but length and diameter of ear and number of seeds in row decreased. Also LAI and CGR of weed increased, but TDW was decreased. In double row planting pattern just CGR, LAI, TDW of corn were higher significantly than single row planting pattern. But single row planting of weed caused higher LAI, NAR, RGR, CGR and TDW of weed in comparison with double row planting pattern. In 2-way interaction, double row planting pattern and zero densities and 2 weeds/m2 had highest grain yield respectively. There were no significant differences for 3-way interactions but double row planting pattern 10 plant density of corn/m2 zero weed/ m2 had highest grain yield.

  4. Density and climate influence seasonal population dynamics in an Arctic ungulate

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Moshøj, Charlotte; Forchhammer, Mads C.

    2016-01-01

    The locally migratory behavior of the high arctic muskox (Ovibos muschatus) is a central component of the breeding and winter survival strategies applied to cope with the highly seasonal arctic climate. However, altered climate regimes affecting plant growth are likely to affect local migration...... cover), forage availability (length of growth season), and the number of adult females available per male (operational sex ratio) influence changes in the seasonal density dependence, abundance, and immigration rate of muskoxen into the valley. The results suggested summer temperature as the major...... controlling factor in the seasonal, local-scale migration of muskoxen at Zackenberg. Specifically, higher summer temperatures, defined as the cumulative average daily positive degrees in June, July, and August, resulted in decreased density dependence and, consequently, increase in the seasonal abundance...

  5. Competition between Plant-Populations with Different Rooting Depths. 1. Theoretical Considerations

    NARCIS (Netherlands)

    Berendse, F.

    1979-01-01

    As an extension of De Wit's competition theory a theoretical description has been developed of competition between plant populations with different rooting depths. This model shows that in mixtures of plants with different rooting depths the value of the Relative Yield Total can be expected to

  6. Competition Between Plant Populations with Different Rooting Depths I. Theoretical Considerations

    NARCIS (Netherlands)

    Berendse, Frank

    1979-01-01

    As an extension of De Wit’s competition theory a theoretical description has been developed of competition between plant populations with different rooting depths. This model shows that in mixtures of plants with different rooting depths the value of the Relative Yield Total can be expected to

  7. Fine-scale spatial genetic structure in predominantly selfing plants with limited seed dispersal: A rule or exception?

    Directory of Open Access Journals (Sweden)

    Sergei Volis

    2016-04-01

    Full Text Available Gene flow at a fine scale is still poorly understood despite its recognized importance for plant population demographic and genetic processes. We tested the hypothesis that intensity of gene flow will be lower and strength of spatial genetic structure (SGS will be higher in more peripheral populations because of lower population density. The study was performed on the predominantly selfing Avena sterilis and included: (1 direct measurement of dispersal in a controlled environment; and (2 analyses of SGS in three natural populations, sampled in linear transects at fixed increasing inter-plant distances. We found that in A. sterilis major seed dispersal is by gravity in close (less than 2 m vicinity of the mother plant, with a minor additional effect of wind. Analysis of SGS with six nuclear SSRs revealed a significant autocorrelation for the distance class of 1 m only in the most peripheral desert population, while in the two core populations with Mediterranean conditions, no genetic structure was found. Our results support the hypothesis that intensity of SGS increases from the species core to periphery as a result of decreased within-population gene flow related to low plant density. Our findings also show that predominant self-pollination and highly localized seed dispersal lead to SGS at a very fine scale, but only if plant density is not too high.

  8. Bayesian inference on the effect of density dependence and weather on a guanaco population from Chile

    DEFF Research Database (Denmark)

    Zubillaga, Maria; Skewes, Oscar; Soto, Nicolás

    2014-01-01

    Understanding the mechanisms that drive population dynamics is fundamental for management of wild populations. The guanaco (Lama guanicoe) is one of two wild camelid species in South America. We evaluated the effects of density dependence and weather variables on population regulation based...

  9. Effects of plant densities on yield, yield components and some morphological characters of two cultivators of oilseed rape (Brassica napus L.)

    DEFF Research Database (Denmark)

    Al-Barzinjy, M.; Stölen, O.; Christiansen, Jørgen Lindskrog

    2003-01-01

    Effects of Plant Densities on Yield, Yield Components and some Morphological Characters of two Cultivators of Oilseed Rape (Brassica napus L.)......Effects of Plant Densities on Yield, Yield Components and some Morphological Characters of two Cultivators of Oilseed Rape (Brassica napus L.)...

  10. Imputation of genotypes from low density (50,000 markers) to high density (700,000 markers) of cows from research herds in Europe, North America, and Australasia using 2 reference populations

    DEFF Research Database (Denmark)

    Pryce, J E; Johnston, J; Hayes, B J

    2014-01-01

    detection in genome-wide association studies and the accuracy of genomic selection may increase when the low-density genotypes are imputed to higher density. Genotype data were available from 10 research herds: 5 from Europe [Denmark, Germany, Ireland, the Netherlands, and the United Kingdom (UK)], 2 from...... reference populations. Although it was not possible to use a combined reference population, which would probably result in the highest accuracies of imputation, differences arising from using 2 high-density reference populations on imputing 50,000-marker genotypes of 583 animals (from the UK) were...... information exploited. The UK animals were also included in the North American data set (n = 1,579) that was imputed to high density using a reference population of 2,018 bulls. After editing, 591,213 genotypes on 5,999 animals from 10 research herds remained. The correlation between imputed allele...

  11. Density estimation in tiger populations: combining information for strong inference

    Science.gov (United States)

    Gopalaswamy, Arjun M.; Royle, J. Andrew; Delampady, Mohan; Nichols, James D.; Karanth, K. Ullas; Macdonald, David W.

    2012-01-01

    A productive way forward in studies of animal populations is to efficiently make use of all the information available, either as raw data or as published sources, on critical parameters of interest. In this study, we demonstrate two approaches to the use of multiple sources of information on a parameter of fundamental interest to ecologists: animal density. The first approach produces estimates simultaneously from two different sources of data. The second approach was developed for situations in which initial data collection and analysis are followed up by subsequent data collection and prior knowledge is updated with new data using a stepwise process. Both approaches are used to estimate density of a rare and elusive predator, the tiger, by combining photographic and fecal DNA spatial capture–recapture data. The model, which combined information, provided the most precise estimate of density (8.5 ± 1.95 tigers/100 km2 [posterior mean ± SD]) relative to a model that utilized only one data source (photographic, 12.02 ± 3.02 tigers/100 km2 and fecal DNA, 6.65 ± 2.37 tigers/100 km2). Our study demonstrates that, by accounting for multiple sources of available information, estimates of animal density can be significantly improved.

  12. The effect of planting density on the wood quality of South African ...

    African Journals Online (AJOL)

    This paper presents the results of a wood property and sawn board quality study performed on disc samples and sawlogs taken from a 23-year-old Eucalyptus grandis Nelder 1a spacing trial at J.D.M. Keet plantation near Tzaneen. Ten trees from each of four markedly different planting densities were chosen to provide ...

  13. Rainfall effects on rare annual plants

    Science.gov (United States)

    Levine, J.M.; McEachern, A.K.; Cowan, C.

    2008-01-01

    Variation in climate is predicted to increase over much of the planet this century. Forecasting species persistence with climate change thus requires understanding of how populations respond to climate variability, and the mechanisms underlying this response. Variable rainfall is well known to drive fluctuations in annual plant populations, yet the degree to which population response is driven by between-year variation in germination cueing, water limitation or competitive suppression is poorly understood.We used demographic monitoring and population models to examine how three seed banking, rare annual plants of the California Channel Islands respond to natural variation in precipitation and their competitive environments. Island plants are particularly threatened by climate change because their current ranges are unlikely to overlap regions that are climatically favourable in the future.Species showed 9 to 100-fold between-year variation in plant density over the 5–12 years of censusing, including a severe drought and a wet El Niño year. During the drought, population sizes were low for all species. However, even in non-drought years, population sizes and per capita growth rates showed considerable temporal variation, variation that was uncorrelated with total rainfall. These population fluctuations were instead correlated with the temperature after the first major storm event of the season, a germination cue for annual plants.Temporal variation in the density of the focal species was uncorrelated with the total vegetative cover in the surrounding community, suggesting that variation in competitive environments does not strongly determine population fluctuations. At the same time, the uncorrelated responses of the focal species and their competitors to environmental variation may favour persistence via the storage effect.Population growth rate analyses suggested differential endangerment of the focal annuals. Elasticity analyses and life table response

  14. Inoculum density of Glomus mosseae and growth of onion plants in unsterilized bituminous coal spoil

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.G.

    1988-01-01

    The effect of inoculum, density (number of vesicular-arbuscular mycorrhizal (VAM) propagules g/sup -1/ of inoculum) on the growth of onions (Allium cepa L.) infected by Glomus mosseae (Nicol and Gerd). Gerdemann and Trappe, Comb nov in unsterilized coal spoil containing indigenous VAM fungi, including G. mosseae, was investigated. The amount of onion roots converted to mycorrhizas by inoculant fungus, estimated by a gridline intersect method, increased with inoculum density (..gamma..0.62, P0.05) until a plateau was reached. Onion growth responses also increased significantly (P<0.05) with the amount of VAM inoculum present in the coal spoil. The initial linear relationship between inoculum propagules (MPN estimates), percent colonization of onion roots and onion shoot dry weight became quadratic as the number of infection propagules increased. VAM infection had no significant effect on root:shoot ratios. Similarly there was no significant interaction (P>0.05) between the inoculum density, VAM-colonized root mass and the onion root:shoot fresh weight ratios. The amount of the windswept bituminous coal spoil bound to VAM (presumably because of VAM external hyphae) also increased as inoculum density increased (..gamma..0.63, P<0.05). There was a stronger correlation (ga0.85, P<0.05) between the amount of spoil adhered per plant and the root fresh wt plant/sup -1/ indicating that root effects were primarily responsible for increasing spoil adherence. There were negative correlations (P<0.05) between root fresh wt plant/sup -1/ (..gamma..-0.68), inoculum density (..gamma..-0.589), percent root elngth infected (..gamma..-0.73) and the amount of spoil adhered g/sup -1/ root fresh wt. The possible exploitation of VAM in revegetation of bituminous coal spoil is discussed. 25 refs., 2 tabs.

  15. Intervention analysis of power plant impact on fish populations

    International Nuclear Information System (INIS)

    Madenjian, C.P.

    1984-01-01

    Intervention analysis was applied to 10 yr (years 1973-1982) of field fish abundance data at the D. C. Cook Nuclear Power Plant, southeastern Lake Michigan. Three log-transformed catch series, comprising monthly observations, were examined for each combination of two species (alewife, Alosa pseudoharenga, or yellow perch, Perca flavescens) and gear (trawl or gill net): catch at the plant discharged transect, catch at the reference transect, and the ratio of plant catch to reference catch. Time series separated by age groups were examined. Based on intervention analysis, no change in the abundance of fish populations could be attributed to plant operation. Additionally, a modification of the intervention analysis technique was applied to investigate trends in abundance at both the plant discharge and reference transects. Significant declines were detected for abundance of alewife adults at both of the transects. Results of the trend analysis support the contention that the alewives have undergone a lakewide decrease in abundance during the 1970s

  16. Occupation and mammographic density: A population-based study (DDM-Occup).

    Science.gov (United States)

    García-Pérez, Javier; Pollán, Marina; Pérez-Gómez, Beatriz; González-Sánchez, Mario; Cortés Barragán, Rosa Ana; Maqueda Blasco, Jerónimo; González-Galarzo, María Carmen; Alba, Miguel Ángel; van der Haar, Rudolf; Casas, Silvia; Vicente, Cándida; Medina, Pilar; Ederra, María; Santamariña, Carmen; Moreno, María Pilar; Casanova, Francisco; Pedraz-Pingarrón, Carmen; Moreo, Pilar; Ascunce, Nieves; García, Montse; Salas-Trejo, Dolores; Sánchez-Contador, Carmen; Llobet, Rafael; Lope, Virginia

    2017-11-01

    High mammographic density is one of the main risk factors for breast cancer. Although several occupations have been associated with breast cancer, there are no previous occupational studies exploring the association with mammographic density. Our objective was to identify occupations associated with high mammographic density in Spanish female workers. We conducted a population-based cross-sectional study of occupational determinants of high mammographic density in Spain, based on 1476 women, aged 45-68 years, recruited from seven screening centers within the Spanish Breast Cancer Screening Program network. Reproductive, family, personal, and occupational history data were collected. The latest occupation of each woman was collected and coded according to the 1994 National Classification of Occupations. Mammographic density was assessed from the cranio-caudal mammogram of the left breast using a semi-automated computer-assisted tool. Association between mammographic density and occupation was evaluated by using mixed linear regression models, using log-transformed percentage of mammographic density as dependent variable. Models were adjusted for age, body mass index, menopausal status, parity, smoking, alcohol intake, educational level, type of mammography, first-degree relative with breast cancer, and hormonal replacement therapy use. Screening center and professional reader were included as random effects terms. Mammographic density was higher, although non-statistically significant, among secondary school teachers (e β = 1.41; 95%CI = 0.98-2.03) and nurses (e β = 1.23; 95%CI = 0.96-1.59), whereas workers engaged in the care of people (e β = 0.81; 95%CI = 0.66-1.00) and housewives (e β = 0.87; 95%CI = 0.79-0.95) showed an inverse association with mammographic density. A positive trend for every 5 years working as secondary school teachers was also detected (p-value = 0.035). Nurses and secondary school teachers were the occupations with the highest

  17. Interspecies Interactions in Relation to Root Distribution Across the Rooting Profile in Wheat-Maize Intercropping Under Different Plant Densities

    Directory of Open Access Journals (Sweden)

    Yifan Wang

    2018-04-01

    Full Text Available In wheat-maize intercropping systems, the maize is often disadvantageous over the wheat during the co-growth period. It is unknown whether the impaired growth of maize can be recovered through the enhancement of the belowground interspecies interactions. In this study, we (i determined the mechanism of the belowground interaction in relation to root growth and distribution under different maize plant densities, and (ii quantified the “recovery effect” of maize after wheat harvest. The three-year (2014–2016 field experiment was conducted at the Oasis Agriculture Research Station of Gansu Agricultural University, Wuwei, Northwest China. Root weight density (RWD, root length density (RLD, and root surface area density (RSAD, were measured in single-cropped maize (M, single-cropped wheat (W, and three intercropping systems (i wheat-maize intercropping with no root barrier (i.e., complete belowground interaction, IC, (ii nylon mesh root barrier (partial belowground interaction, IC-PRI, and (iii plastic sheet root barrier (no belowground interaction, IC-NRI. The intercropped maize was planted at low (45,000 plants ha−1 and high (52,000 plants ha−1 densities. During the wheat/maize co-growth period, the IC treatment increased the RWD, RLD, and RSAD of the intercropped wheat in the 20–100 cm soil depth compared to the IC-PRI and IC-NRI systems; intercropped maize had 53% lower RWD, 81% lower RLD, and 70% lower RSAD than single-cropped maize. After wheat harvest, the intercropped maize recovered the growth with the increase of RWD by 40%, RLD by 44% and RSAD by 11%, compared to the single-cropped maize. Comparisons among the three intercropping systems revealed that the “recovery effect” of the intercropped maize was attributable to complete belowground interspecies interaction by 143%, the compensational effect due to root overlap by 35%, and the compensational effect due to water and nutrient exchange (CWN by 80%. The higher maize plant

  18. Phenology of German Chamomile and its Changes under Different Irrigation Regimes and Plant Densities

    Directory of Open Access Journals (Sweden)

    Alireza PIRZAD

    2010-03-01

    Full Text Available In order to definite growth stages of Matricaria chamomilla L., 40 plants were planted with 200 � 200 cm distance from each other. To determine the phenology under different water stress condition and plant densities, an experiment was conducted in factorial based on randomized complete block design with two factors including irrigation at 4 levels (25, 50, 75, and 100 mm evaporation from pan class A, and plant density at 5 levels (cultivation in 30 cm rows with 5, 10, 15, 20 and 25 cm intra-row spaces with three replications. Definition of growth stages including the maximum number of nodes, sub stems and tillers were 21, 20 and 14 that were occurred at 970, 1088 and 1088 oC growth degree-days, respectively. The numbers of nodes were 28.6, 30.0, 30.2 and 27.8, of sub stem were 19.2, 18.4, 19.8 and 18.4; and of tillers were 14.8, 14.0, 15.0 and 14.4 that were obtained from irrigation at 25, 50, 75, and 100 mm evaporation from pan, respectively. In the other hand, the number of nodes as follow 28.25, 29.00, 29.75, 29.75 and 29.00; sub stem as 17.50, 20.00, 20.75, 19.00 and 17.50; and tillers were 15.00, 13.50, 14.75, 14.00 and 15.50 that were obtained from 5, 10, 15, 20 and 25 cm intra-row spacing, respectively. Differences by irrigation on GDDs values were observed at the second harvest. However the earliest observation of flower and seed receiving at the first harvest occurred on 5 cm intra-row spacing. These changes were identical by GDDs for second harvest of flower, but with mild slope of reduction. There were no differences in number of leaves and tillers among irrigation levels and plant densities.

  19. Managing Natural and Reintroduced Rare Plant Populations within a Large Government Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, T M; Paterson, L E; Alfaro, T M

    2009-07-15

    California is home to many large government reservations that have been in existence for decades. Many of these reservations were formed to support various Department of Defense and Department of Energy national defense activities. Often, only a very small percentage of the reservation is actively used for programmatic activities, resulting in large areas of intact habitat. In some cases, this has benefited rare plant populations, as surrounding lands have been developed for residential or industrial use. However, land management activities such as the suppression or active use of fire and other disturbance (such as fire trail grading) can also work to either the detriment or benefit of rare plant populations at these sites. A management regime that is beneficial to the rare plant populations of interest and is at best consistent with existing site programmatic activities, and at a minimum does not impact such activities, has the best potential for a positive outcome. As a result, some species may be 'difficult' while others may be 'easy' to manage in this context, depending on how closely the species biological requirements match the programmatic activities on the reservation. To illustrate, we compare and contrast two rare annual plant species found at Lawrence Livermore National Laboratory's Site 300. Although several populations of Amsinckia grandiflora have been restored on the site, and all populations are intensively managed, this species continues to decline. In contrast, Blepharizonia plumosa appears to take advantage of the annual controlled burns conducted on the site, and is thriving.

  20. Population density of Beauveria bassiana in soil under the action of fungicides and native microbial populations

    Directory of Open Access Journals (Sweden)

    Flávia Barbosa Soares

    2017-08-01

    Full Text Available This study investigated whether populations of naturally-occurring soil bacteria, fungi and actinomycetes influence the effect of fungicides on the survival and growth of Beauveria bassiana. The toxicity of methyl thiophanate, pyraclostrobin, mancozeb and copper oxychloride at the recommended doses was analyzed in culture medium and in soil inoculated with fungus at various time points after addition of fungicides. All fungicides completely inhibited the growth and sporulation of B. bassiana in the culture medium. The fungicides were less toxic in soil, emphasizing the action of the microbial populations, which interfered with the toxic effects of these products to the fungus. Actinomycetes had the greatest influence on the entomopathogen, inhibiting it or degrading the fungicides to contribute to the survival and growth of B. bassiana in soil. Native populations of fungi and bacteria had a smaller influence on the population density of B. bassiana and the action of fungicides towards entomopathogen. The toxic effect of the fungicides was greater when added to the soil one hour before or after inoculation than at 48h after inoculation.

  1. Effects of Copper-based Compounds, Antibiotics and a Plant Activator on Population Sizes and Spread of Clavibacter michiganensis subsp. michiganensis in Greenhouse Tomato Seedlings

    Directory of Open Access Journals (Sweden)

    Svetlana Milijašević

    2009-01-01

    Full Text Available Three copper-based compounds (copper hydroxide, copper oxychloride, copper sulphate, two antibiotics (streptomycin and kasugamycin and a plant activator (ASM significantly reduced population sizes and spread of C. michiganensis subsp. michiganensis among tomatoseedlings in the greenhouse. Streptomycin had the best effect in reducing pathogen population size in all sampling regions. Moreover, this antibiotic completely stopped the spread of C. michiganensis subsp. michiganensis in the region most distant from the inoculumfocus. Copper hydroxide mixed with streptomycin significantly limited the pathogen population, compared with copper hydroxide alone, the other copper-based compounds, ASM and kasugamycin. However, combining streptomycin with copper hydroxide did notcontribute to its greater efficacy against the pathogen population. Copper-based compounds, in general, were less effective in limiting pathogen population sizes than the other treatments in all three sampling regions, primarily copper oxychloride and the combinationof copper hydroxide and mancozeb. Among copper compounds, copper hydroxide was the most prominent in reducing the bacterial population, especially in the region closest to the inoculum focus, while its combination with mancozeb did not improve the effects. Kasugamycin significantly limited pathogen population size, compared to copper bactericides, but it was less effective than the other antibiotic compound, i.e. streptomycin. The plant activator ASM significantly reduced population density, and it was more effectivewhen used three days prior to inoculation than six days before inoculation.

  2. Nuclear power plant site evaluation using site population-meterology factor

    International Nuclear Information System (INIS)

    Rho, B.H.; Kang, C.H.

    1982-01-01

    In this paper, as a site evaluation technique, SPNF(Site Population Neteorology Factor) which is modified from SPF(Site Population Factor) of the USNRC model, is defined from site population and meteorology data in order to consider the radiological impacts to the population at large from the atmospheric dispersion of the radioactive effluents released during routine plant operation as well as accidental conditions. The SPMF model proved its propriety from the comparison of SPMF and SPF for Kori site. The relative suitability of Korean sites to the U.S. sites have been also examined using SPF. (Author)

  3. Mechanisms regulating amphipod population density within macroalgal communities with low predator impact

    Directory of Open Access Journals (Sweden)

    Hartvig Christie

    2004-04-01

    Full Text Available In eight mesocosms (land based basins macroalgae communities with associated fauna were transplanted from the sea and established during two years. Then, different doses of nutrients (N and P were added to the basins throughout the following three years. During the period of nutrient addition, macroinvertebrate grazers showed seasonal fluctuations with densities usually between 500,000 and 1 million individuals per mesocosm during summer and to a level of about 100,000 during winter. The macroinvertebrate grazers mainly consisted of about 10 species of amphipods and isopods, among which the amphipod Gammarus locusta dominated strongly by biomass. Although the number of predators was very low, the grazer populations never reached a density where considerable grazing impact could be found on the macroalgae. No increase in grazer density was found in the basins with improved nutrient conditions. Thus food quality may be insufficient for further population growth, or density dependant regulation mechanisms may have prevented the grazers from flourishing and overgrazing the system. In aquarium experiments we showed that G. locusta could grow and reproduce on Fucus serratus, Ulva lactuca, periphyton and detritus, and that cannibalism by adult G. locusta on juveniles may have great impact on the population growth. The basins were run with a water flow through system. Nets were placed in front of the inflow and outflow tubes to measure immigration and emigration. Only few individuals (and no Gammarus sp. were recorded in the inflowing water, while high numbers of both amphipods and isopods were found in the outflowing water. Emigration reached peak values during night-time, and it was then two to three times as high as during day-time. Emigration of mobile grazers from the basins amounted to 1-2% of the standing stock daily. These mechanisms that regulate grazers do contribute to maintenance of the seaweed dominance and thus the stability of the seaweed

  4. CS-137 transfer factors soil-plant and density of hyphae in soil of spruce forests

    International Nuclear Information System (INIS)

    Klemt, E.; Deuss, H.; Drissner, J.; Krapf, M.; Miller, R.; Zibold, G.

    1999-01-01

    Samples of soil and plants were taken at spruce stand sites in southern Baden-Wuerttemberg. Fern always had the highest aggregated Cs-137 transfer factor (T ag ) varying between 0.01 and 0.27 m 2 kg -1 . There is a tendency for higher T ag s in soils with thicker raw humus layers, lower pH, lower cation exchange capacity (CEC) in the O h horizon, and lower clay content below the organic deposit. The density of hyphae is determined by the season and its weather conditions and it usually decreases continuously from O f to top B horizon. In analyzing our data no correlation between aggregated or horizon-specific transfer factors of different plants and density of hyphae could be found. Refs. 5 (author)

  5. Use of plants in oral health care by the population of Mahajanga, Madagascar.

    Science.gov (United States)

    Ranjarisoa, Lala Nirina; Razanamihaja, Noëline; Rafatro, Herintsoa

    2016-12-04

    The use of medicinal plants to address oral health problems is not well documented in Madagascar, yet the country is full of endemic flora. The aim of this study was to collect information on the use of plants in the region of Mahajanga, Madagascar, for the treatments of oral diseases mainly tooth decay. The ethnobotanical survey with respect to the use of plants for curing dental problems was carried out in 2012. A cluster sampling at three levels was applied when choosing the study sites. The target population was made up of heads of household. The following data were collected from a semi-structured questionnaire: name of plants, part used, mode of preparation, and administration. The Informant Consensus Factor and Fidelity Level indexes were calculated for each condition treated and used plants. The Results revealed that 93 per cent of the targeted population has used plants to calm dental pain, whereas 44.2% have reported using plants due to financial problems. About 65 species of plants are commonly used for oral health care and 63 of them treated caries. Cajanus cajan (L.) Millsp. was the most plant used. It was mostly used in crushed form of 5 to 9 leaves which were prepared and placed directly on the affected oral part or in the tooth cavity. In general, the treatment lasted about 5 days or minus. The ICF were 0.83 for caries and 0.81 for periodontal diseases. This ethnobotanical survey will serve as database for further phytochemical and pharmacological study of plants in order to identify their active components and advise the population on the most effective administration. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Effects of reindeer density on vascular plant diversity on North Scandinavian mountains

    Directory of Open Access Journals (Sweden)

    Johan Olofsson

    2005-04-01

    Full Text Available We studied the effects of reindeer grazing on species richness and diversity of vascular plants on dolomite influenced low alpine sites in the species rich northern part of the Scandes using 8 sites with different reindeer densities. Two sites were situated inside Malla Strict Nature Reserve, where reindeer grazing have been totally prohibited since 1981, and strongly restricted since 1950s. The six other sites were located in other species rich hotspot sites standardized to be as similar to the dolomite-influenced sites in Malla Strict Reserve as possible but varying in reindeer densities commonly found in the Fennoscandian mountain chain. Each site with a habitat complex especially rich in rare vascular plants (the Dryas heath – low herb meadow complex was systematically sampled in four plots of 2 m x 10 m. The plots were divided to 20 squares of 1 m x 1 m, and complete species lists of vascular plants were compiled for each of the squares. The first DCA (detrended correspondence analysis axis was strongly related to an index of reindeer grazing, indicating that grazing has a strong impact on the composition of the vegetation. None of the characteristics indices of biodiversity (species richness, evenness or Shannon-Wiener H’ was correlated with reindeer density. The local abundances of categories consisting of relatively rare plants (Ca favored plants and red listed plants of Finland showed significant, positive correlation with the intensity of reindeer grazing. We conclude that even though the density of reindeer has no influence on the total species richness or diversity of vascular plants, reindeer may still be important for regional biodiversity as it seems to favour rare and threatened plants. Moreover, our results imply that standard diversity indices may have limited value in the context of conservation biology, as these indices are equally influenced by rarities and by trivial species.Abstract in Swedish / Sammandrag: Vi

  7. Density-independent population projection trajectories of chromosome-substituted lines resistant and susceptible to organophosphate insecticides in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Miyo Takahiro

    2004-11-01

    Full Text Available Abstract Background Seasonal fluctuations in susceptibility to organophosphate insecticides were observed in the Katsunuma population of Drosophila melanogaster for two consecutive years; susceptibility to three organophosphates tended to increase in the fall. To examine the hypothesis that variation in fitness among resistant and susceptible genotypes could trigger the change of genetic constitution within the fall population, we investigated density-independent population projection trajectories starting from single adult females with characteristics of chromosome-substituted lines resistant and susceptible to the three organophosphates. Results Density-independent population projection trajectories, expressed as the ratios of the number of each chromosome-substituted line to that of line SSS, for which all chromosomes were derived from the susceptible line, showed significant declines in numbers with time for all the resistant chromosome-substituted lines. Conclusion The declining tendency in the density-independent population projection trajectories of the resistant chromosome-substituted lines could explain the simultaneous decline in the levels of resistance to the three organophosphates, observed in the Katsunuma population in the fall.

  8. Disentangling the effects of climate, density dependence, and harvest on an iconic large herbivore's population dynamics

    DEFF Research Database (Denmark)

    Koons, David; Colchero, Fernando; Hersey, Kent

    2015-01-01

    Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semi-arid environments experiencing climate change. To address these issues for bison in southern Utah, we...... than precipitation and other temperature-related variables (model weight > 3 times more than that for other climate variables). Although we hypothesized that harvest is the primary driving force of bison population dynamics in southern Utah, our elasticity analysis indicated that changes in early...... spring temperature could have a greater ‘relative effect’ on equilibrium abundance than either harvest or the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife...

  9. A two-population sporadic meteoroid bulk density distribution and its implications for environment models

    Science.gov (United States)

    Moorhead, Althea V.; Blaauw, Rhiannon C.; Moser, Danielle E.; Campbell-Brown, Margaret D.; Brown, Peter G.; Cooke, William J.

    2017-12-01

    The bulk density of a meteoroid affects its dynamics in space, its ablation in the atmosphere, and the damage it does to spacecraft and lunar or planetary surfaces. Meteoroid bulk densities are also notoriously difficult to measure, and we are typically forced to assume a density or attempt to measure it via a proxy. In this paper, we construct a density distribution for sporadic meteoroids based on existing density measurements. We considered two possible proxies for density: the KB parameter introduced by Ceplecha and Tisserand parameter, TJ. Although KB is frequently cited as a proxy for meteoroid material properties, we find that it is poorly correlated with ablation-model-derived densities. We therefore follow the example of Kikwaya et al. in associating density with the Tisserand parameter. We fit two density distributions to meteoroids originating from Halley-type comets (TJ 2); the resulting two-population density distribution is the most detailed sporadic meteoroid density distribution justified by the available data. Finally, we discuss the implications for meteoroid environment models and spacecraft risk assessments. We find that correcting for density increases the fraction of meteoroid-induced spacecraft damage produced by the helion/antihelion source.

  10. Population Exposure Estimates in Proximity to Nuclear Power Plants, Locations

    Data.gov (United States)

    National Aeronautics and Space Administration — The Population Exposure Estimates in Proximity to Nuclear Power Plants, Locations data set combines information from a global data set developed by Declan Butler of...

  11. Microhabitat use, population densities, and size distributions of sulfur cave-dwelling Poecilia mexicana.

    Science.gov (United States)

    Jourdan, Jonas; Bierbach, David; Riesch, Rüdiger; Schießl, Angela; Wigh, Adriana; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Klaus, Sebastian; Zimmer, Claudia; Plath, Martin

    2014-01-01

    The Cueva del Azufre in Tabasco, Mexico, is a nutrient-rich cave and its inhabitants need to cope with high levels of dissolved hydrogen sulfide and extreme hypoxia. One of the successful colonizers of this cave is the poeciliid fish Poecilia mexicana, which has received considerable attention as a model organism to examine evolutionary adaptations to extreme environmental conditions. Nonetheless, basic ecological data on the endemic cave molly population are still missing; here we aim to provide data on population densities, size class compositions and use of different microhabitats. We found high overall densities in the cave and highest densities at the middle part of the cave with more than 200 individuals per square meter. These sites have lower H2S concentrations compared to the inner parts where most large sulfide sources are located, but they are annually exposed to a religious harvesting ceremony of local Zoque people called La Pesca. We found a marked shift in size/age compositions towards an overabundance of smaller, juvenile fish at those sites. We discuss these findings in relation to several environmental gradients within the cave (i.e., differences in toxicity and lighting conditions), but we also tentatively argue that the annual fish harvest during a religious ceremony (La Pesca) locally diminishes competition (and possibly, cannibalism by large adults), which is followed by a phase of overcompensation of fish densities.

  12. The interaction between the spatial distribution of resource patches and population density: consequences for intraspecific growth and morphology.

    Science.gov (United States)

    Jacobson, Bailey; Grant, James W A; Peres-Neto, Pedro R

    2015-07-01

    How individuals within a population distribute themselves across resource patches of varying quality has been an important focus of ecological theory. The ideal free distribution predicts equal fitness amongst individuals in a 1 : 1 ratio with resources, whereas resource defence theory predicts different degrees of monopolization (fitness variance) as a function of temporal and spatial resource clumping and population density. One overlooked landscape characteristic is the spatial distribution of resource patches, altering the equitability of resource accessibility and thereby the effective number of competitors. While much work has investigated the influence of morphology on competitive ability for different resource types, less is known regarding the phenotypic characteristics conferring relative ability for a single resource type, particularly when exploitative competition predominates. Here we used young-of-the-year rainbow trout (Oncorhynchus mykiss) to test whether and how the spatial distribution of resource patches and population density interact to influence the level and variance of individual growth, as well as if functional morphology relates to competitive ability. Feeding trials were conducted within stream channels under three spatial distributions of nine resource patches (distributed, semi-clumped and clumped) at two density levels (9 and 27 individuals). Average trial growth was greater in high-density treatments with no effect of resource distribution. Within-trial growth variance had opposite patterns across resource distributions. Here, variance decreased at low-population, but increased at high-population densities as patches became increasingly clumped as the result of changes in the levels of interference vs. exploitative competition. Within-trial growth was related to both pre- and post-trial morphology where competitive individuals were those with traits associated with swimming capacity and efficiency: larger heads/bodies/caudal fins

  13. Interactions between fluvial forces and vegetation size, density and morphology influence plant mortality during experimental floods

    Science.gov (United States)

    Stella, J. C.; Kui, L.; Manners, R.; Wilcox, A. C.; Lightbody, A.; Sklar, L. S.

    2015-12-01

    Introduction and methods Fluvial disturbance is a key driver of riparian vegetation dynamics in river corridors. Despite an increasing understanding of ecohydraulic interactions between plants and fluvial forces, the interactive influences of plant morphology and sediment supply on plant mortality, a key demographic factor, are largely unknown. To better understand these processes, we designed and conducted a series of flume experiments to: (1) quantify effects of plant traits that interact with flow and sediment transport on plant loss to scour during floods; and (2) predict plant dislodgement for different species across a range of plant sizes, patch densities, and sediment condition (equilibrium transport versus sediment deficit). We ran ten experimental floods in a 28 m long × 0.6 m wide × 0.71 m tall flume, using live, 1-3 year-old tamarisk and cottonwood seedlings with contrasting morphologies with varied combinations of size and density. Results and discussion Both sediment supply and plant traits (morphology and composition) have significant impacts on plant vulnerability during floods. Sediment deficit resulted in bed degradation and a 35% greater risk of plant loss compared to equilibrium sediment conditions. The probability of plant dislodgement in sparse patches was 4.5 times greater than in dense patches. Tamarisk plants and patches had greater frontal area, basal diameter and longer roots compared to cottonwood across all seedling heights. These traits, as well as its lower crown position reduced tamarisk's vulnerability to scour by 75%. Compared with cottonwood, tamarisk exhibits better resistance to floods, due to its greater root biomass and longer roots that stabilize soil, and its greater frontal area and lower crown that effectively trap sediment. These traits likely contribute to riverscape-scale changes in channel morphology that are evident where tamarisk has invaded native riparian communities, and explain the persistence of tamarisk

  14. The Impact of Different Habitat Conditions on the Variability of Wild Populations of a Medicinal Plant Betonica officinalis L.

    Directory of Open Access Journals (Sweden)

    Kinga Kostrakiewicz-Gierałt

    2015-06-01

    Full Text Available Plants are important source of beneficial bioactive compounds which may find various applications as functional ingredients, such as components of food supplements, cosmetics, and pharmaceuticals. One such medicinal plant is Betonica officinalis, populations of which were investigated in 2012‒13. The studies were conducted in patches of Molinietum caeruleae dominated by: small meadow taxa (patch I; the shrub willow Salix repens ssp. rosmarinifolia (patch II; large tussock grasses Deschampsia caespitosa and Molinia caerulaea (patch III; tall-growing macroforbs Filipendula ulmaria and Solidago canadensis (patch IV. Over successive patches, the average height of plant cover increased, as did soil moisture, while light availability at ground level decreased. Much greater abundance and density of the Betonica officinalis population were found in patches I, III and IV, while lower values for these parameters were noted in patch II. Individuals in pre-reproductive stages were absent during whole study period in all study plots, vegetative ramet clusters were observed in plots situated in patches I and III in the first year of observations, while only generative ramet clusters occurred in plots set in patches II and IV. The number of rosettes per ramet cluster, number and dimensions of rosette leaves, height of flowering stems, number of cauline leaves, length of inflorescences, as well as number and length of flowers increased gradually over successive patches, whereas the number of generative stems per ramet cluster did not differ remarkably among populations. On the basis of the performed studies it might be concluded that the condition of populations deteriorated from patches overgrown by large-tussock grasses and characterized by considerable share of native and alien tall-growing macroforbs, via patch dominated by small meadow taxa, to patch prevailed by shrub willows.

  15. Effect of planting density on root lodging resistance and its relationship to nodal root growth characteristics in maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Liu, Shengqun; Song, Fengbin; Liu, Fulai

    2012-01-01

    Increase of planting density has been widely used to increase grain yield in maize. However, it may lead to higher risk of root lodging hence causing significant yield loss of the crop. The objective of this study was to investigate the effect of planting density on maize nodal root growth...

  16. Biomass and biomass and biogas yielding potential of sorghum as affected by planting density, sowing time and cultivar

    International Nuclear Information System (INIS)

    Mahmood, A.; Hussain, A.; Shahzad, A. N.; Honermeier, B.

    2015-01-01

    Biogas from biomass is a promising renewable energy source whose importance is increasing in European as well as in other countries. A field experiment at one location (Experimental Station Giessen, Justus Liebig University of Giessen, Germany) over two years was designed to study the effect of altering sowing time (ST), planting density and cultivar on the biomass yield and chemical composition of biomass sorghum, and its potential for methane production. Of the two cultivars tested, cv. Goliath (intraspecific hybrid) was more productive with respect to biomass yield than cv. Bovital (S. bicolor x S. sudanense hybrid). ST also influenced biomass yield and most of the quality parameters measured. Delayed sowing was in general advantageous. The choice of cultivar had a marked effect on biogas and methane yield. The highest biogas and methane yields were produced by late sown cv. Bovital. Sub-optimal planting densities limited biomass accumulation of the crop, however neither the chemical composition nor the methane yield was affected by planting density. (author)

  17. Comportamento de cultivares de cafeeiro em diferentes densidades de plantio The behavior of coffee cultivars under different plant densities

    Directory of Open Access Journals (Sweden)

    Edison Martins Paulo

    2005-01-01

    Full Text Available Avaliou-se em Adamantina, na Região da Alta Paulista, em São Paulo, entre maio de 1995 e junho de 2000, o crescimento e quatro produções de cafeeiros das cultivares de porte baixo Catuaí Amarelo IAC 47 e Obatã IAC 1669-20 de Coffea arabica L., submetidas às densidades de plantio de 2.500, 5.000, 7.519 e 10.000 plantas ha-1, com uma planta por cova. Estudou-se também a população de 2.500 plantas.ha-1 em covas com duas plantas com 2,0 m de distância na linha de plantio. Adotou-se o delineamento estatístico de blocos ao acaso com três repetições, com parcelas subdivididas, onde as parcelas foram as populações e as subparcelas, as cultivares. Os resultados permitiram inferir que, no período estudado, o aumento da densidade influenciou positivamente a altura e negativamente o diâmetro do caule e da base da copa dos cafeeiros, mas não a altura da inserção do primeiro ramo plagiotrópico a partir do nível do solo. O aumento da população de cafeeiros acarretou menor produção de café beneficiado por planta, mas concorreu para o aumento da produtividade no período de 1997 a 2000. O plantio de duas mudas de café por cova acarretou também diminuição do diâmetro do caule e da produção individual dos cafeeiros. Observou-se na cultivar Catuaí Amarelo IAC 47 maior diâmetro da base da copa e maior crescimento em altura, enquanto a cv. Obatã IAC 1669-20 evidenciou seu maior diâmetro do caule. As cultivares Catuaí Amarelo IAC 47 e Obatã IAC 1669-20 não diferiram entre si quanto à produção individual e à produtividade de café beneficiado no quadriênio (1997-2000.This experiment was developed at Adamantina, west region of the State of São Paulo, Brazil, during May of 1995 to June of 2000. The plant growth and productivity of two coffee cultivars Catuaí Amarelo IAC 47 and Obatã IAC 1669-20, were evaluated considering to plant densities of 2.500, 5.000, 7.519 and 10.000 plants ha-1. The density of 2500 also was

  18. Spatially explicit models for inference about density in unmarked or partially marked populations

    Science.gov (United States)

    Chandler, Richard B.; Royle, J. Andrew

    2013-01-01

    Recently developed spatial capture–recapture (SCR) models represent a major advance over traditional capture–recapture (CR) models because they yield explicit estimates of animal density instead of population size within an unknown area. Furthermore, unlike nonspatial CR methods, SCR models account for heterogeneity in capture probability arising from the juxtaposition of animal activity centers and sample locations. Although the utility of SCR methods is gaining recognition, the requirement that all individuals can be uniquely identified excludes their use in many contexts. In this paper, we develop models for situations in which individual recognition is not possible, thereby allowing SCR concepts to be applied in studies of unmarked or partially marked populations. The data required for our model are spatially referenced counts made on one or more sample occasions at a collection of closely spaced sample units such that individuals can be encountered at multiple locations. Our approach includes a spatial point process for the animal activity centers and uses the spatial correlation in counts as information about the number and location of the activity centers. Camera-traps, hair snares, track plates, sound recordings, and even point counts can yield spatially correlated count data, and thus our model is widely applicable. A simulation study demonstrated that while the posterior mean exhibits frequentist bias on the order of 5–10% in small samples, the posterior mode is an accurate point estimator as long as adequate spatial correlation is present. Marking a subset of the population substantially increases posterior precision and is recommended whenever possible. We applied our model to avian point count data collected on an unmarked population of the northern parula (Parula americana) and obtained a density estimate (posterior mode) of 0.38 (95% CI: 0.19–1.64) birds/ha. Our paper challenges sampling and analytical conventions in ecology by demonstrating

  19. Effect of a Terminated Cover Crop and Aldicarb on Cotton Yield and Meloidogyne incognita Population Density.

    Science.gov (United States)

    Wheeler, T A; Leser, J F; Keeling, J W; Mullinix, B

    2008-06-01

    Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log(10) (J2 + 1)/500 cm(3) soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log(10)(J2 + 1)/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18 degrees C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10 degrees C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.

  20. Assessing the impact of power plant mortality on the compensatory reserve of fish populations

    International Nuclear Information System (INIS)

    Goodyear, C.P.

    1977-01-01

    A technique is presented to quantify the concepts of compensation and compensatory reserve in exploited fish populations. The technique was used to examine the impact of power plant mortality on a hypothetical striped bass population. Power plant mortality had a more severe impact on the compensation ratio and compensatory reserve for an exploited stock. The technique can be applied to determine a critical compensation ratio which could serve as a standard against which additional sources of mortality, such as those caused by power plants, could be measured

  1. Epizootic of sarcoptic mange in raccoon dogs (Nyctereutes procyonoides) in relation to population density.

    Science.gov (United States)

    Sugiura, Natsuko; Doi, Kandai; Kato, Takuya; Morita, Tatsushi; Hayama, Shin-Ichi

    2018-03-30

    To examine outbreaks of mange in raccoon dogs (Nyctereutes procyonoides) with respect to population density, we analyzed camera trap videos, and isolated mites from raccoon dog carcasses. In a camera trapping survey, we categorized the skin condition of raccoon dogs, and used a number of independent videos to calculate the relative abundance index (RAI). The RAI of raccoon dogs with alopecia increased following an increase in the RAI of those without alopecia. Among 27 raccoon dog carcasses, 12 showed mange-compatible skin lesions. Sarcoptes scabiei was isolated from 11 of these raccoon dogs, indicating that sarcoptic mange was endemic in our study area. Therefore, a high relative population density may be a factor underlying epizootics of sarcoptic mange in raccoon dogs.

  2. Forecasting climate change impacts on plant populations over large spatial extents

    Science.gov (United States)

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.; Homer, Collin G.; Kleinhesselink, Andrew R.; Adler, Peter B.

    2016-01-01

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. We overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates in the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.

  3. Relationship of cancer incidence to terrestrial radiation and population density in Connecticut, 1935-1974

    International Nuclear Information System (INIS)

    Walter, S.D.; Meigs, J.W.; Heston, J.F.

    1986-01-01

    The relationship of cancer incidence to terrestrial radiation and population density was investigated. Cancer incidence was obtained using 40 years of age-standardized data from the Connecticut Tumor Registry, and environmental radiation was estimated using data from an airborne gamma radiation survey of the entire state. These variables were examined ecologically, using the 169 towns of the state as the analytic units in a weighted regression analysis. The study design involves a large population base in a state having relatively high terrestrial radiation exposure levels overall and reasonable variation in exposure between towns. For all cancer combined, only one of the eight sex-specific analyses by decade yielded a significant radiation regression coefficient, and this was negative. In the sex- and site-specific analyses, almost all the coefficients for radiation were not significantly different from zero. In contrast, significant positive relationships of cancer incidence with population density were found for all cancer, for cancer of the lung for both sexes, for stomach, colonic, and prostatic cancer for males, and for lymphomas, thyroid, breast, and ovarian cancer for females. Both the radiation and population density relationships were adjusted for socioeconomic status. Socioeconomic status was significantly negatively associated with stomach and lung cancer in males and with cervical cancer in females; it was also positively associated with lymphomas and breast cancer in females. A power calculation revealed that, despite the relatively large size of this study, there was only a small probability of detecting a radiation effect of the strength anticipated from previous estimates

  4. The relationship between male moth density and female mating success in invading populations of Lymantria dispar

    Science.gov (United States)

    Patrick C. Tobin; Ksenia S. Onufrieva; Kevin W. Thorpe

    2012-01-01

    The successful establishment of non-native species in new areas can be affected by many factors including the initial size of the founder population. Populations comprised of fewer individuals tend to be subject to stochastic forces and Allee effects (positive-density dependence), which can challenge the ability of small founder populations to establish in a new area....

  5. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests

    NARCIS (Netherlands)

    Hofmeester, Tim R.; Sprong, Hein; Jansen, Patrick A.; Prins, Herbert H.T.; Wieren, Van Sipke E.

    2017-01-01

    Background: Understanding which factors drive population densities of disease vectors is an important step in assessing disease risk. We tested the hypothesis that the density of ticks from the Ixodes ricinus complex, which are important vectors for tick-borne diseases, is determined by the density

  6. Grazing damage to plants and gastropod and grasshopper densities in a CO 2-enrichment experiment on calcareous grassland

    Science.gov (United States)

    Ledergerber, Stephan; Thommen, G. Heinrich; Baur, Bruno

    Plant-herbivore interactions may change as atmospheric CO 2 concentrations continue to rise. We examined the effects of elevated atmospheric CO 2 and CO 2-exposure chambers on the grazing damage to plants, and on the abundances of potential herbivores (terrestrial gastropods and grasshoppers) in a calcareous grassland in the Jura mountains of Switzerland (village of Nenzlingen). Individuals of most plant species examined showed slight grazing damage. However, plots with CO 2 enrichment and plots with ambient atmosphere did not differ in the extent of grazing damage. Similarly, plots with CO 2 enrichment and plots with ambient atmosphere did not differ in either gastropod or grasshopper density. Experimental plots with and without chambers did not differ in the number of gastropods. However, the densities of gastropods and grasshoppers and extent of grazing damage to plants were generally lower in the experimental area than in the grassland outside the experimental field.

  7. Are invasive plants more competitive than native conspecifics? Patterns vary with competitors

    Science.gov (United States)

    Zheng, Yulong; Feng, Yulong; Valiente-Banuet, Alfonso; Li, Yangping; Liao, Zhiyong; Zhang, Jiaolin; Chen, Yajun

    2015-10-01

    Invasive plants are sometimes considered to be more competitive than their native conspecifics, according to the prediction that the invader reallocates resources from defense to growth due to liberation of natural enemies [‘Evolution of Increased Competitive Ability’ (EICA) hypothesis]. However, the differences in competitive ability may depend on the identity of competitors. In order to test the effects of competitors, Ageratina adenophora plants from both native and invasive ranges competed directly, and competed with native residents from both invasive (China) and native (Mexico) ranges respectively. Invasive A. adenophora plants were more competitive than their conspecifics from native populations when competing with natives from China (interspecific competition), but not when competing with natives from Mexico. Invasive A. adenophora plants also showed higher competitive ability when grown in high-density monoculture communities of plants from the same population (intrapopulation competition). In contrast, invasive A. adenophora plants showed lower competitive ability when competing with plants from native populations (intraspecific competition). Our results indicated that in the invasive range A. adenophora has evolved to effectively cope with co-occurring natives and high density environments, contributing to invasion success. Here, we showed the significant effects of competitors, which should be considered carefully when testing the EICA hypothesis.

  8. Wild Plant Species with Extremely Small Populations Require Conservation and Reintroduction in China

    Science.gov (United States)

    Hai Ren; Qianmei Zhang; Hongfang Lu; Hongxiao Liu; Qinfeng Guo; Jun Wang; Shuguang Jian; Hai’ou Bao

    2012-01-01

    China is exceptionally rich in biodiversity, with more than 30000 vascular plant species that include many endemic genera, species of ancient origin, and cultivated plants (Yang et al. 2005). Because of rapid economic development, population growth, pollution, and continuing resource exploitation, China’s plant diversity faces severe threats. According to the Chinese...

  9. International Consortium on Mammographic Density : Methodology and population diversity captured across 22 countries

    NARCIS (Netherlands)

    McCormack, Valerie A; Burton, Anya; Dos-Santos-Silva, Isabel; Hipwell, John H; Dickens, Caroline; Salem, Dorria; Kamal, Rasha; Hartman, Mikael; Lee, Charmaine Pei Ling; Chia, Kee-Seng; Ozmen, Vahit; Aribal, Mustafa Erkin; Flugelman, Anath Arzee; Lajous, Martín; Lopez-Riduara, Ruy; Rice, Megan; Romieu, Isabelle; Ursin, Giske; Qureshi, Samera; Ma, Huiyan; Lee, Eunjung; van Gils, Carla H; Wanders, Johanna O P; Vinayak, Sudhir; Ndumia, Rose; Allen, Steve; Vinnicombe, Sarah; Moss, Sue; Won Lee, Jong; Kim, Jisun; Pereira, Ana; Garmendia, Maria Luisa; Sirous, Reza; Sirous, Mehri; Peplonska, Beata; Bukowska, Agnieszka; Tamimi, Rulla M; Bertrand, Kimberly; Nagata, Chisato; Kwong, Ava; Vachon, Celine; Scott, Christopher; Perez-Gomez, Beatriz; Pollan, Marina; Maskarinec, Gertraud; Giles, Graham; Hopper, John; Stone, Jennifer; Rajaram, Nadia; Teo, Soo-Hwang; Mariapun, Shivaani; Yaffe, Martin J; Schüz, Joachim; Chiarelli, Anna M; Linton, Linda; Boyd, Norman F

    2015-01-01

    Mammographic density (MD) is a quantitative trait, measurable in all women, and is among the strongest markers of breast cancer risk. The population-based epidemiology of MD has revealed genetic, lifestyle and societal/environmental determinants, but studies have largely been conducted in women with

  10. Why high seed densities within buried mesh bags may overestimate depletion rates of soil seed banks

    NARCIS (Netherlands)

    Mourik, van T.A.; Stomph, T.J.; Murdoch, A.J.

    2005-01-01

    1. Estimates of seed bank depletion rates are essential for modelling and management of plant populations. The seed bag burial method is often used to measure seed mortality in the soil. However, the density of seeds within seed bags is higher than densities in natural seed banks, which may elevate

  11. Deer presence rather than abundance determines the population density of the sheep tick, Ixodes ricinus, in Dutch forests.

    NARCIS (Netherlands)

    Hofmeester, Tim R; Sprong, Hein; Jansen, Patrick A; Prins, Herbert H T; van Wieren, Sipke E

    2017-01-01

    Understanding which factors drive population densities of disease vectors is an important step in assessing disease risk. We tested the hypothesis that the density of ticks from the Ixodes ricinus complex, which are important vectors for tick-borne diseases, is determined by the density of deer, as

  12. EVALUATION OF NATURAL POPULATIONS AND HABITAT OF BLUE PALM (Yucca rigida IN MAPIMÍ, DURANGO, MÉXICO

    Directory of Open Access Journals (Sweden)

    A. Flores

    2010-10-01

    Full Text Available The improvement, conservation and propagation of Yucca have high perspectives in the North of México; due it is an important ornamental plant, endemic of the Comarca Lagunera. This study was developed in 2007 in natural populations of blue palm (Yucca rigida in the municipality of Mapimí, Durango, México. The objective was to characterize the habitat and natural populations in different altitude, based on population density and the characteristics of plant height, number of branches, stem diameter, number of fruit per plant, number of seeds per fruit and germination percentage. Results showed that growth of Yucca rigida occurs on superficial soils. It is associated with desert vegetation such as rosetophylla and microphylla, about 1200 to 1300 meter above the sea level. During this study, was found a population density of 890 plants ha-1, and the plant height and stem diameter showed a tendency to increase when the altitude increased.  A low percentage of immature seeds were found, showing that the pollinizer has a good efficiency, moreover offer a high biodiversity of plants, due to the crossed pollination, determining the diversity of population. It is necessary to increase the number of researches to quantify the plant potential and to conservation of genetic variability of this population.

  13. Effect of rooting depth, plant density and planting date on maize (Zea Mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop

    NARCIS (Netherlands)

    Nyakudya, I.W.; Stroosnijder, L.

    2014-01-01

    Under low and poorly distributed rainfall higher food production can be achieved by increasing crop water use efficiency (WUE) through optimum soil fertility management and selection of deep-rooting cultivars, appropriate plant density and planting dates. We explored AquaCrop's applicability in

  14. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    Science.gov (United States)

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density situation. © The Author(s) 2015.

  15. Effects of Student Population Density on Academic Achievement in Georgia Elementary Schools.

    Science.gov (United States)

    Swift, Diane O'Rourke

    The purpose of this study was to determine the relationship between school density and achievement test scores. The study utilized a bipolar sample in order to include schools whose achievement scores were at the top and bottom of the population spectrum when considering Iowa Tests of Basic Skills (ITBS) scores. Based on comparing test scores and…

  16. Relationship between tea drinking and bone mineral density in Bushehr population

    Directory of Open Access Journals (Sweden)

    Somayeh Amiri

    2011-09-01

    Full Text Available Background: Tea consumption is common throughout the world, especially in Iran and it was known as the most common beverages. Several studies evaluated negative effect of coffee and relationship between its caffeine content with bone density. But relationship between tea drinking and bone mineral density is less observed. Considering high amount of tea consumption and prevalence of osteoporosis in Iran, it is important to investigate this relationship.Materials and Method: Population study includes 1125 subjects (aged 20- 72 years randomly selected by cluster sampling in Bushehr, who participated in general project of prevention and treatment of osteoporosis. The participants were categorized based on degree of tea consumption: high tea drinkers (more than 4 cups of tea per day and low tea drinkers (equal or less than 4 cups of tea per day.Results: In high tea drinkers, mean score for bone density was significantly higher in neck and total femur. But this difference in isolated groups (according to sex, age and both of them was not seen.Conclusion: The result of this study indicates on a direct relationship between tea drinking and increasing of bone mineral density. Moreover, it shows the prevalence of osteoporosis is lower in people who have a regular daily habit of tea consumption

  17. Combined effects of patch size and plant nutritional quality on local densities of insect herbivores

    NARCIS (Netherlands)

    Bukovinszky, T.; Gols, R.; Kamp, A.; De Oliveira-Domingues, F.; Hambäck, P.A.; Jongema, Y.; Bezemer, T.M.; Dicke, M.; Van Dam, N.M.; Harvey, J.A.

    2010-01-01

    Plant–insect interactions occur in spatially heterogeneous habitats. Understanding how such interactions shape density distributions of herbivores requires knowledge on how variation in plant traits (e.g. nutritional quality) affects herbivore abundance through, for example, affecting movement rates

  18. Population density, sexual reproduction and diapause in monogonont rotifers: new data for Brachionus and a review

    Directory of Open Access Journals (Sweden)

    John J. GILBERT

    2004-09-01

    Full Text Available Diapausing, fertilized eggs in monogonont rotifers typically are formed after an environmental signal induces amictic females to produce mictic daughters. Mictic females lay haploid eggs that may develop parthenogenetically into males, or that may be fertilized and develop into diapausing, female embryos called resting eggs. Laboratory experiments demonstrate that crowding is the signal for production of mictic females in strains of Brachionus calyciflorus from Texas, Spain and Germany, and in a strain of Brachionus variabilis from Spain. In these experiments, newborn amictic females were cultured singly in large and small volumes to give lowand high-density treatments. Therefore, the induction of mictic females is due exclusively to population density and cannot be attributed to a grouping effect involving some interaction among individuals. B. variabilis is very sensitive to population density; females had to be cultured in 30 ml to prevent appreciable production of mictic daughters. Crowding is now known to be the signal for initiation of sexuality and diapause in four species of Brachionus, two species of Epiphanes, and Rhinoglena frontalis. The chemical that mediates this response somehow influences oocytes in the maternal body cavity to differentiate into mictic females. Aggregation of individuals in natural systems may facilitate the production of mictic females. In some of these rotifers, the response to crowding is suppressed in early generations from the resting egg, assuring that clonal populations will attain higher population densities before committing to sexual reproduction. Fitness benefits of the mictic-female response to crowding, and to other environmental signals in other rotifers (dietary tocopherol, long photoperiod, are discussed.

  19. Gamma-radiation effect on the parameters of the population recovery of plants

    Directory of Open Access Journals (Sweden)

    N.I. Ivanishvili

    2016-12-01

    Full Text Available Investigation of the effects of different physic-chemical factors on the ecosystems is one of the important scientific tasks. From this perspective, it is to be mentioned an effect of such a strong damaging factor as ionizing radiation. Radiation damage is reflected differently in relation to the levels of organization of living organisms. On the relatively early stage of radiation damage determination of post-irradiation regeneration indicators on population level gives possibility to forecast the sustainability of ecosystems. In order to determine the indicators of post-irradiation regeneration of plant populations we have used as a model water plant – Lemna minor L. During the exposure of radiation on different levels of organization differences are identified not only according to qualitative features but also by the character of direction of the development of the processes of postradiation regeneration. A conclusion is made that if during the acute radiation it is possible to determine radioresistance of certain plants, which is based on the plant potential to post-radiation regeneration, the investigation carried out through chronic irradiation gives the possibility to determine the indicators of the ability of the plant to adapt to the radiation.

  20. Effects of different irrigation methods and plant densities on silage quality parameters of PR 31Y43 hybrid corn cultivar (Zea mays L. var. indentata [Sturtev.] L.H. Bailey

    Directory of Open Access Journals (Sweden)

    Muhammet Karasahin

    2014-03-01

    Full Text Available The yield and quality of corn silage is related to genotype as well as factors such as climate, soil conditions, altitude, planting time, plant density, irrigation, and harvesting time. This study was conducted to determine the effects of different irrigation methods (drip, subsoil drip, and subsoil capillary and different plant densities (102 040, 119 040, and 142 850 plant ha-1 on silage quality parameters of PR 31Y43 hybrid corn (Zea mays L. var. indentata [Sturtev.] L.H. Bailey in 2011 and 2012 under ecological conditions in Eskipazar-Karabuk, Turkey. Plant densities were significantly different on fresh ear ratio and plant crude protein (CP yield in both years under study. The highest fresh ear ratio values were obtained with 102 040 and 119 040 plant ha-1 densities and the highest plant CP yield with 142 850 plant ha-1. While the irrigation method x plant density interactions were significant for silage CP ratio in the first year, they were significant on fresh ear ratio in the second year. The highest fresh ear ratio values were obtained from subsoil capillary x 119 040 plant ha-1 and drip x 119 040 plant ha-1 interactions; the highest plant and silage CP ratio values were obtained from subsoil capillary x 142 850 plant ha-1 and subsoil drip x 102 040 plant ha-1 interactions. As a result of the research, high Flieg scores were obtained from each irrigation method and plant density. When plant CP yield is taken into consideration, the 142 850 plant ha-1 density is more important.

  1. Boom or bust? A comparative analysis of transient population dynamics in plants

    DEFF Research Database (Denmark)

    Stott, Iain; Franco, Miguel; Carslake, David

    2010-01-01

    researchers as further possible effectors of complicated dynamics. Previously published methods of transient analysis have tended to require knowledge of initial population structure. However, this has been overcome by the recent development of the parametric Kreiss bound (which describes how large...... a population must become before reaching its maximum possible transient amplification following a disturbance) and the extension of this and other transient indices to simultaneously describe both amplified and attenuated transient dynamics. We apply the Kreiss bound and other transient indices to a data base...... worrying artefact of basic model parameterization. Synthesis. Transient indices describe how big or how small plant populations can get, en route to long-term stable rates of increase or decline. The patterns we found in the potential for transient dynamics, across many species of plants, suggest...

  2. Country roads, take me home… to my friends: How intelligence, population density, and friendship affect modern happiness.

    Science.gov (United States)

    Li, Norman P; Kanazawa, Satoshi

    2016-11-01

    We propose the savanna theory of happiness, which suggests that it is not only the current consequences of a given situation but also its ancestral consequences that affect individuals' life satisfaction and explains why such influences of ancestral consequences might interact with intelligence. We choose two varied factors that characterize basic differences between ancestral and modern life - population density and frequency of socialization with friends - as empirical test cases. As predicted by the theory, population density is negatively, and frequency of socialization with friends is positively, associated with life satisfaction. More importantly, the main associations of life satisfaction with population density and socialization with friends significantly interact with intelligence, and, in the latter case, the main association is reversed among the extremely intelligent. More intelligent individuals experience lower life satisfaction with more frequent socialization with friends. This study highlights the utility of incorporating evolutionary perspectives in the study of subjective well-being. © 2016 The British Psychological Society.

  3. Effect of plant density and mixing ratio on crop yield in sweet corn/mungbean intercropping.

    Science.gov (United States)

    Sarlak, S; Aghaalikhani, M; Zand, B

    2008-09-01

    In order to evaluate the ear and forage yield of sweet corn (Zea mays L. var. Saccarata) in pure stand and intercropped with mung bean (Vigna radiata L.), a field experiment was conducted at Varamin region on summer 2006. Experiment was carried out in a split plot design based on randomized complete blocks with 4 replications. Plant density with 3 levels [Low (D1), Mean (D2) and High (D3) respecting 6, 8 and 10 m(-2) for sweet corn, cultivar S.C.403 and 10, 20 and 30 m(-2) for mung bean cultivar, Partow] was arranged in main plots and 5 mixing ratios [(P1) = 0/100, (P2) = 25/75, (P3) = 50/50, (P4) = 75/25, (P5) = 100/0% for sweet corn/mung bean, respectively] were arranged in subplots. Quantitative attributes such as plant height, sucker numbers, LER, dry matter distribution in different plant organs were measured in sweet corn economical maturity. Furthermore the yield of cannable ear corn and yield components of sweet corn and mung bean were investigated. Results showed that plant density has not any significant effect on evaluated traits, while the effect of mixing ratio was significant (p ratio of 75/25 (sweet corn/mung bean) could be introduced as the superior mixing ratio; because of it's maximum rate of total sweet corn's biomass, forage yield, yield and yield components of ear corn in intercropping. Regarding to profitability indices of intercropping, the mixing ratio 75/25 (sweet corn/mung bean) in low density (D1P2) which showed the LER = 1.03 and 1.09 for total crop yield before ear harvesting and total forage yield after ear harvest respectively, was better than corn or mung bean monoculture.

  4. Floating nuclear power plant safety assurance principles

    International Nuclear Information System (INIS)

    Zvonarev, B.M.; Kuchin, N.L.; Sergeev, I.V.

    1993-01-01

    In the north regions of the Russian federation and low density population areas, there is a real necessity for ecological clean energy small power sources. For this purpose, floating nuclear power plants, designed on the basis of atomic ship building engineering, are being conceptualized. It is possible to use the ship building plants for the reactor purposes. Issues such as radioactive waste management are described

  5. Response of sesame to population densities and nitrogen fertilization on newly reclaimed sandy soils

    International Nuclear Information System (INIS)

    Noorka, I.R.; Hafiz, S.I.

    2011-01-01

    Two field experiments were conducted at the Experimental Farm of Faculty of Agriculture, Suez Canal University at Ismailia during 2008 and 2009 seasons to study the effect of nitrogen fertilization and planting density on growth , yield, its attributes as well as seed quality of new sesame variety (Taka 2 cv.). On newly reclaimed sandy soils of Ismailia Governorate, Egypt, experimental design in split plots form with four replications was used. Four levels of nitrogen fertilization 55, 105, 155 and 205 Kg/ha were arranged randomly in the main plots and three planting distances between hills (10, 15 and 20 cm, respectively) were distributed at random in the sub plots. Increasing N fertilizer level up to 205 Kg/ha significantly increased plant height, fruiting zone length, height of the first fruiting branch, number of branches and capsules/plant, 1000-seed weight, seed weight/plant, seed oil content (%) and seed and oil yields /ha. Decreasing planting distance from 20 to 15 and 10 cm consistently and significantly increased plant height, height of the first fruiting branch and seed and oil yields /ha. The reverse was true regarding the yield components. These results were expected, since experiment soil was newly reclaimed sandy soil and very poor in the nutrients and organic matter. (author)

  6. Effects of radiation exposure on plant populations and radiation protection of the environment

    Energy Technology Data Exchange (ETDEWEB)

    Geras' kin, St.A.; Dikarev, V.G.; Oudalova, A.A.; Vasiliev, D.V.; Dikareva, N.S.; Baykova, T.A. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation); Evseeva, T.I. [Institute of Biology, Komi Scientific Center, Ural Div. RAS, Syktyvkar (Russian Federation)

    2006-07-01

    The results of long-term field experiments in the 30-km Chernobyl NPP zone, In the vicinity of the radioactive wastes storage facility (Leningrad Region), at radium production industry storage cell (the Komi Republic), and in Bryansk Region affected by the ChNPP accident that have been carried out on different species of wild and agricultural plants are discussed. These findings indicate that plant populations growing in areas with relatively low levels of pollution are characterized by the increased level of both cytogenetic disturbances and genetic diversity. The chronic low-dose exposure appears to be an ecological factor creating preconditions for possible changes in the genetic structure of a population. These processes have a genetic basis; therefore, an understanding changes at the genetic level should help in an identifying more complex changes at higher levels. The presented findings add to filling an important gap in our knowledge on remote effects in plant populations and ecosystems from man-made impact. (author)

  7. Effects of radiation exposure on plant populations and radiation protection of the environment

    International Nuclear Information System (INIS)

    Geras'kin, St.A.; Dikarev, V.G.; Oudalova, A.A.; Vasiliev, D.V.; Dikareva, N.S.; Baykova, T.A.; Evseeva, T.I.

    2006-01-01

    The results of long-term field experiments in the 30-km Chernobyl NPP zone, In the vicinity of the radioactive wastes storage facility (Leningrad Region), at radium production industry storage cell (the Komi Republic), and in Bryansk Region affected by the ChNPP accident that have been carried out on different species of wild and agricultural plants are discussed. These findings indicate that plant populations growing in areas with relatively low levels of pollution are characterized by the increased level of both cytogenetic disturbances and genetic diversity. The chronic low-dose exposure appears to be an ecological factor creating preconditions for possible changes in the genetic structure of a population. These processes have a genetic basis; therefore, an understanding changes at the genetic level should help in an identifying more complex changes at higher levels. The presented findings add to filling an important gap in our knowledge on remote effects in plant populations and ecosystems from man-made impact. (author)

  8. Qualidade nutricional de cenoura e alface cultivadas em Mossoró-RN em função da densidade populacional Nutritional quality of carrot and lettuce grown in Mossoró-RN, Brazil, as affected by plant densities

    Directory of Open Access Journals (Sweden)

    Francisco Bezerra Neto

    2006-12-01

    out from June to September of 2003, in the experimental area of "Universidade Federal Rural do Semi-Árido" (UFERSA, in Mossoró, Rio Grande do Norte state, Brazil, in order to evaluate the effect of carrot and lettuce populational densities in a second growing period on their nutritional quality in a strip-intercropping system. A randomized complete block design was used with the treatments arranged in a 4 x 4 factorial scheme with three replications. The treatments consisted of the combination of four carrot-plant densities (40%, 60%, 80% and 100% of the recommended sole crop density - RSCD with four lettuce-plant densities (40%, 60%, 80% and 100% of the RSCD. The reference populations for carrot and lettuce in sole crop, corresponding to 100%, were of 500,000 plants.ha-1 and 250,000 plants.ha-1, respectively. Carrot cv. Brasília and lettuce cv. Tainá were planted. Quality characteristics evaluated were firmness and content of vitamin C, total carotenoids and beta-carotene for carrot roots and firmness, contents of vitamin C, total carotenoids and total chlorophyll for lettuce leaves. The associations of plant densities of carrot and lettuce did not affect any of the assessed characteristics in both crops. However, both carrot and lettuce plant densities affected the traits evaluated in both crops. The firmness, contents of vitamin C and beta-carotene in carrot roots decreased as the plant densities of carrot increased, while the content of total carotenoids increased as carrot population increased. The same decreasing behavior was observed in contents of vitamin C, total carotenoids and chlorophyll in the lettuce leaves with an increase in the plant densities of lettuce.

  9. Population density of oil palm pollinator weevil Elaeidobius kamerunicus based on seasonal effect and age of oil palm

    Science.gov (United States)

    Daud, Syarifah Nadiah Syed Mat; Ghani, Idris Abd.

    2016-11-01

    The pollinating weevil, Elaedobius kamerunicus (EK) has been known to be the most efficient insect pollinator of oil palm, and has successfully improved the oil palm pollination and increased the yield. Its introduction has greatly reduced the need for assisted pollination. The purpose of this study was to identify the population density of oil palm pollinator weevil EK using the concept of pollinator force and to relate the population density with the seasonal effect and the age of oil palm at Lekir Oil Palm Plantation Batu 14, Perak, Peninsular Malaysia. The pollinator force of the weevil was sustained at a range between 3095.2 to 19126.1 weevils per ha. The overall mean of weevil per spikelet shows that the range of weevil was between 13.51 and 54.06 per spikelet. There was no correlation between rainfall and population density of EK. However, positive correlation was obtained between weevil density and the number of anthesising female inflorescence of oil palm (r= 0.938, poil palm stands had significantly different population density than that of a 8-year old oil palm stand. The information of this study should be useful as a baseline data to investigate why there is such a wide range of weevils per ha or spikelet. Further study should also be done to relate the number pollinator force per spikelete and the Fresh fruit Bunch (FFB), fruit set or fruit to bunch ratio.

  10. Electrical conductivity of the nutrient solution and plant density in aeroponic production of seed potato under tropical conditions (winter/spring

    Directory of Open Access Journals (Sweden)

    Alex Humberto Calori

    Full Text Available ABSTRACT The recent introduction in Brazil of production of quality seed potatoes in hydroponic systems, such as aeroponics, demands studies on the nutritional and crop management. Thus, this study evaluated the influence of electrical conductivity of the nutrient solution and plant density on the seed potato minitubers production in aeroponics system. The Agata and Asterix cultivars were produced in a greenhouse under tropical conditions (winter/spring. The experimental design was a randomized block in a split-split plot design. The plot consisted of 4 electrical conductivities of the nutrient solution (1.0; 2.0; 3.0; and 4.0 dS∙m−1; the subplot, of 4 plant densities (25; 44; 66; and 100 plants∙m−2; and the subsubplot, of the 2 potato cultivars (Ágata and Asterix, totaling 4 blocks. The 2.2 and 2.1 dS∙m−1 electrical conductivities yielded the highest productivity of seed potato minitubers, for Ágata and Asterix cultivars, respectively, regardless of plant density. For both cultivars, the highest yield was observed for the 100 plants∙m−2 density.

  11. Evaluation Of The Exclusion And Low Population Areas Around A Nuclear Power Plant

    International Nuclear Information System (INIS)

    Tawfik, F.S.

    2011-01-01

    Being adjacent to the nuclear power plant (NPP) the exclusion area (EA) is the area of greatest importance. It essentially defines a buffer zone where the public has no access. It helps to define the fenced plant area, the site area and the public area. Also, the low population area is the area immediately surrounding the exclusion area near a licensed reactor in terms of public safety and the ability of residents to get away from the plant in an emergency. This study clarifies their significance and reviews the international approach on them. Assuming the nuclear power plant site at the north coast of Egypt, the exclusion area and low population area are determined according to CFR (2002). In this method, a maximum possible amount of radioactivity release (called a source term) should be assumed. The boiling water reactor (BWR) with a power 1000 MW was used to carry the calculation and assuming a severe loss of coolant accident with meltdown of reactor. The site specific data have been collected, investigated and processed. The effect of the degree of atmospheric stability and building width of the plant were examined. The proceeding factors that control the determination of exclusion area and low population area should be taken into consideration in the site evaluation stage and design basis of NPP to set a minimum distances for them

  12. The effect of plant density with different row spacing on quality of the ...

    African Journals Online (AJOL)

    This research was aimed to assess the influence of density with different row spacing on sunflower crop in two different locations in southern Italy. The experiment was laid out in a randomized block design with four replicates. It involved the comparison of sunflower grown in the field on 25 m2 (5 x 5 m) plots at three plant ...

  13. Using functional-structural plant modeling to explore the response of cotton to mepiquat chloride application and plant population density

    NARCIS (Netherlands)

    Gu, S.; Evers, J.B.; Zhang, L.; Mao, L.; Vos, J.; Li, Z.

    2013-01-01

    The crop growth regulator Mepiquat Chloride (MC) is widely used in cotton production to optimize the canopy structure in order to maximize the yield and fiber quality. Cotton plasticity in relation to MC and other agronomical practice was quantified using a functional-structural plant model of

  14. An Evaluation of Population Density Mapping and Built up Area Estimates in Sri Lanka Using Multiple Methodologies

    Science.gov (United States)

    Engstrom, R.; Soundararajan, V.; Newhouse, D.

    2017-12-01

    In this study we examine how well multiple population density and built up estimates that utilize satellite data compare in Sri Lanka. The population relationship is examined at the Gram Niladhari (GN) level, the lowest administrative unit in Sri Lanka from the 2011 census. For this study we have two spatial domains, the whole country and a 3,500km2 sub-sample, for which we have complete high spatial resolution imagery coverage. For both the entire country and the sub-sample we examine how consistent are the existing publicly available measures of population constructed from satellite imagery at predicting population density? For just the sub-sample we examine how well do a suite of values derived from high spatial resolution satellite imagery predict population density and how does our built up area estimate compare to other publicly available estimates. Population measures were obtained from the Sri Lankan census, and were downloaded from Facebook, WorldPoP, GPW, and Landscan. Percentage built-up area at the GN level was calculated from three sources: Facebook, Global Urban Footprint (GUF), and the Global Human Settlement Layer (GHSL). For the sub-sample we have derived a variety of indicators from the high spatial resolution imagery. Using deep learning convolutional neural networks, an object oriented, and a non-overlapping block, spatial feature approach. Variables calculated include: cars, shadows (a proxy for building height), built up area, and buildings, roof types, roads, type of agriculture, NDVI, Pantex, and Histogram of Oriented Gradients (HOG) and others. Results indicate that population estimates are accurate at the higher, DS Division level but not necessarily at the GN level. Estimates from Facebook correlated well with census population (GN correlation of 0.91) but measures from GPW and WorldPop are more weakly correlated (0.64 and 0.34). Estimates of built-up area appear to be reliable. In the 32 DSD-subsample, Facebook's built- up area measure

  15. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    Science.gov (United States)

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  16. Increase in density of genetically diverse invasive Asian shore crab (Hemigrapsus sanguineus) populations in the Gulf of Maine.

    Science.gov (United States)

    Lord, Joshua P; Williams, Larissa M

    2017-04-01

    Hemigrapsus sanguineus , the Asian shore crab, has rapidly replaced Carcinus maenas , the green crab, as the most abundant crab on rocky shores in the northwest Atlantic since its introduction to the United States (USA) in 1988. The northern edge of this progressing invasion is the Gulf of Maine, where Asian shore crabs are only abundant in the south. We compared H. sanguineus population densities to those from published 2005 surveys and quantified genetic variation using the cytochrome c oxidase subunit I gene. We found that the range of H. sanguineus had extended northward since 2005, that population density had increased substantially (at least 10-fold at all sites), and that Asian shore crabs had become the dominant intertidal crab species in New Hampshire and southern Maine. Despite the significant increase in population density of H. sanguineus , populations only increased by a factor of 14 in Maine compared to 70 in southern New England, possibly due to cooler temperatures in the Gulf of Maine. Genetically, populations were predominantly composed of a single haplotype of Japanese, Korean, or Taiwanese origin, although an additional seven haplotypes were found. Six of these haplotypes were of Asian origin, while two are newly described. Large increases in population sizes of genetically diverse individuals in Maine will likely have a large ecological impact, causing a reduction in populations of mussels, barnacles, snails, and other crabs, similar to what has occurred at southern sites with large populations of this invasive crab species.

  17. Anomalous dependence of population growth on the birth rate in the plant-herbivore system

    International Nuclear Information System (INIS)

    Cui, Xue M.; Han, Seung K.; Chung, Jean S.

    2010-01-01

    We performed a simulation of the two-species plant-herbivore system by using the agent-based NetLogo program and constructed a dynamic model of populations consistent with the simulation results. The dynamic model is a three-dimensional system including the mean energy of the herbivore in addition to two variables denoting the populations of plants and herbivores. A steady-state analysis of the dynamic model shows that the dependence of the herbivore population on the birth and the death rates observed from the agent model is consistent with the prediction of the dynamic model. Especially, the anomalous dependence of the herbivore population on the birth rate, where the population decreases with the birth rate for small death rate, is consistently explained by a phase plane analysis of the dynamic model.

  18. Effect of winter cover crops on nematode population levels in north Florida.

    Science.gov (United States)

    Wang, K-H; McSorley, R; Gallaher, R N

    2004-12-01

    Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor x S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.

  19. Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon.

    Science.gov (United States)

    Singh, Akanksha; Weisser, Wolfgang W; Hanna, Rachid; Houmgny, Raissa; Zytynska, Sharon E

    2017-10-01

    Intercropping can help reduce insect pest populations. However, the results of intercropping can be pest- and crop-species specific, with varying effects on crop yield, and pest suppression success. In Cameroon, okra vegetable is often grown in intercropped fields and sown with large distances between planting rows (∼ 2 m). Dominant okra pests include cotton aphids, leaf beetles and whiteflies. In a field experiment, we intercropped okra with maize and bean in different combinations (okra monoculture, okra-bean, okra-maize and okra-bean-maize) and altered plant densities (high and low) to test for the effects of diversity, crop identity and planting distances on okra pests, their predators and yield. We found crop identity and plant density, but not crop diversity to influence okra pests, their predators and okra yield. Only leaf beetles decreased okra yield and their abundance reduced at high plant density. Overall, okra grown with bean at high density was the most economically profitable combination. We suggest that when okra is grown at higher densities, legumes (e.g. beans) should be included as an additional crop. Intercropping with a leguminous crop can enhance nitrogen in the soil, benefiting other crops, while also being harvested and sold at market for additional profit. Manipulating planting distances and selecting plants based on their beneficial traits may thus help to eliminate yield gaps in sustainable agriculture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Effect of Plant Density and Nitrogen Fertilizeron Morphological Traits, Seed and Essential Oil Yield and Essential Oil Content of Ajowan (Carum copticum L.

    Directory of Open Access Journals (Sweden)

    S.Ali Tabatabaei

    2017-08-01

    Full Text Available Introduction: Ajowan (Carum copticum Benth. & Hook. is an annual herbaceous essential oil bearing plant belonging to the Apiaceae family, which grows in India, Iran, and Egypt. Ajowan seeds have essential oil as an active substance, which is used in pharmaceutical industry as a diuretic, antivomiting, analgesic, antiasthma, antispasmodic and a carminative. Nitrogen is a part of all living cells and is a necessary part of all proteins, enzymes and metabolic processes involved in the synthesis and transfer of energy. Also, nitrogen is a part of chlorophyll, the green pigment of the plant that is responsible for photosynthesis. Generally, proper agronomic management including suitable plant density has a high influence on growth and yield of medicinal plants. In this regard, Kloss et al., (2012 highlighted the need for strategies to improve crop growth, make irrigation more efficient and sustainable and conserve farmlands. In addition, yield is influenced by inter-row spacing and sowing density. Ghilavizadeh et al., (2013 have reported that application of suitable amount of nitrogen fertilizer and plant density of 25 plan/m2 increased seed yield, essential oil yield and essential oil content of ajowan. In another research, Borumand Rezazadeh et al., (2009 reported that the plant density of 50 plant/m2 have produced the highest seed yield, essential oil yield and essential oil content. Generally, with regard to importance of medicinal plants and the necessity of understanding their crop and the impact of plant density and nitrogen fertilizer on the performance of these plants, this study was conducted to investigate the impact of these factors on some traits of ajowan. Materials and Methods: In order to evaluate the effect of plant density and nitrogen fertilizer on different traits of ajowan (Carum copticum L., an experiment was conducted using factorial based on randomized complete block design with three replications at Agricultural and Natural

  1. Site selection and evaluation for nuclear power plants with respect to population distribution

    International Nuclear Information System (INIS)

    1980-01-01

    This safety guide, relating population distribution to site selection and evaluation, for nuclear power plants, forms part of the IAEA's programme, referred to as the NUSS programme (Nuclear Safety Standards). The guide presents population distribution data, requirements, examples of site screening methods, and an overview of radiological impact assessment with respect to population distribution

  2. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology.

    Science.gov (United States)

    Tompkins, Adrian M; Ermert, Volker

    2013-02-18

    The relative roles of climate variability and population related effects in malaria transmission could be better understood if regional-scale dynamical malaria models could account for these factors. A new dynamical community malaria model is introduced that accounts for the temperature and rainfall influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay between the rains and the malaria season. The rainfall drives a simple but physically based representation of the surface hydrology. The model accounts for the population density in the calculation of daily biting rates. Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite ratio as a function of population density observed in a large number of field surveys, although it underestimates malaria prevalence at high densities probably due to the neglect of population migration. A new dynamical community malaria model is publicly available that accounts for climate and population density to simulate malaria transmission on a regional scale. The model structure facilitates future development to incorporate migration, immunity and interventions.

  3. Shifts of community composition and population density substantially affect ecosystem function despite invariant richness

    NARCIS (Netherlands)

    Spaak, Jurg W.; Baert, Jan M.; Baird, Donald J.; Eisenhauer, Nico; Maltby, Lorraine; Pomati, Francesco; Radchuk, Viktoriia; Rohr, Jason R.; Brink, van den Paul J.; Laender, De Frederik

    2017-01-01

    There has been considerable focus on the impacts of environmental change on ecosystem function arising from changes in species richness. However, environmental change may affect ecosystem function without affecting richness, most notably by affecting population densities and community

  4. Estimating the population density of the Asian tapir (Tapirus indicus) in a selectively logged forest in Peninsular Malaysia.

    Science.gov (United States)

    Rayan, D Mark; Mohamad, Shariff Wan; Dorward, Leejiah; Aziz, Sheema Abdul; Clements, Gopalasamy Reuben; Christopher, Wong Chai Thiam; Traeholt, Carl; Magintan, David

    2012-12-01

    The endangered Asian tapir (Tapirus indicus) is threatened by large-scale habitat loss, forest fragmentation and increased hunting pressure. Conservation planning for this species, however, is hampered by a severe paucity of information on its ecology and population status. We present the first Asian tapir population density estimate from a camera trapping study targeting tigers in a selectively logged forest within Peninsular Malaysia using a spatially explicit capture-recapture maximum likelihood based framework. With a trap effort of 2496 nights, 17 individuals were identified corresponding to a density (standard error) estimate of 9.49 (2.55) adult tapirs/100 km(2) . Although our results include several caveats, we believe that our density estimate still serves as an important baseline to facilitate the monitoring of tapir population trends in Peninsular Malaysia. Our study also highlights the potential of extracting vital ecological and population information for other cryptic individually identifiable animals from tiger-centric studies, especially with the use of a spatially explicit capture-recapture maximum likelihood based framework. © 2012 Wiley Publishing Asia Pty Ltd, ISZS and IOZ/CAS.

  5. Insect herbivores drive real-time ecological and evolutionary change in plant populations.

    Science.gov (United States)

    Agrawal, Anurag A; Hastings, Amy P; Johnson, Marc T J; Maron, John L; Salminen, Juha-Pekka

    2012-10-05

    Insect herbivores are hypothesized to be major factors affecting the ecology and evolution of plants. We tested this prediction by suppressing insects in replicated field populations of a native plant, Oenothera biennis, which reduced seed predation, altered interspecific competitive dynamics, and resulted in rapid evolutionary divergence. Comparative genotyping and phenotyping of nearly 12,000 O. biennis individuals revealed that in plots protected from insects, resistance to herbivores declined through time owing to changes in flowering time and lower defensive ellagitannins in fruits, whereas plant competitive ability increased. This independent real-time evolution of plant resistance and competitive ability in the field resulted from the relaxation of direct selective effects of insects on plant defense and through indirect effects due to reduced herbivory on plant competitors.

  6. Effects of temperature and population density on von Bertalanffy growth parameters in Atlantic herring: a macro-ecological analysis

    NARCIS (Netherlands)

    Brunel, T.P.A.; Dickey-Collas, M.

    2010-01-01

    The effect of temperature and population density on the growth of Atlantic herring Clupea harengus was studied using a comparative approach applied to 15 North Atlantic populations. The von Bertalanffy (VB) equation was applied to describe mean growth of individuals in each population, both averaged

  7. The Effect of Organic Fertilizers and Flowering Plants on Sheet-Web and Wolf Spider Populations (Araneae: Lycosidae and Linyphiidae) and Its Importance for Pest Control.

    Science.gov (United States)

    El-Nabawy, El-Said M; Tsuda, Katsuo; Sakamaki, Yositaka; Oda, Asahi; Ushijima, Yurie

    2016-01-01

    The main goal of this study was to identify the treatment that increases the populations of spiders, which are effective predators in agroecosystems. In 2013 and 2014 the experimental eggplant (Solanum melongena L.) field was two different treatments, organic fertilizers and chemical fertilizer treatment, and in 2014 we surrounded organic fertilizer plots with the flowering plants mealy cup sage (Salvia farinacea Benth.), spearmint (Mentha spicata L.), and basil (Ocimum basilicum L.). Analysis using repeated measures ANOVA revealed significant influences of fertilizer type on the numbers of linyphiid spiders and Collembola in 2013. In 2014, the numbers of Collembola, thrips, and lycosid and linyphiid spider were higher in organic fertilizer with flowering plants treatment comparing with the chemical fertilizer treatment. Moreover, the numbers of Henosepilachna vigintioctopunctata (F.) were significantly lower in the organic fertilizer with flowering plants treatment than in chemical fertilizers treatment. Finally, we expect that Thysanoptera and Collembola were important alternative prey for linyphiid and lycosid spiders and the use of organic fertilizer and flowering plants enhanced the density of these spiders, and may increase their effectiveness in suppressing the populations of H. vigintioctopunctata (F.). © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  8. Occupational hazard evaluation of working population in a select automotive industrial plant.

    Science.gov (United States)

    Wójcik, Alicja; Borzecki, Zdzisław; Kowalska, Edyta; Borzecki, Andrzej

    2004-01-01

    The research was conducted in the selected vehicle industry plant. Work conditions were assessed on the assembly line by measuring chemical and physical factors. Exposure to noise in the investigated plant exceeded the values of permissible standards. The pollution on the posts did not exceed the standards except singular concentrations. While assessing the values of chemical factors concentration, no toxicological danger was revealed in the investigated population. The work conditions of the investigated plant did not create the danger of professional diseases.

  9. WITHIN-POPULATION GENETIC DIVERSITY OF CLIMBING PLANTS AND TREES IN A TEMPERATE FOREST IN CENTRAL CHILE

    OpenAIRE

    Torres-Díaz, Cristian; Ruiz, Eduardo; Salgado-Luarte, Cristian; Molina-Montenegro, Marco A; Gianoli, Ernesto

    2013-01-01

    The climbing habit is a key innovation in angiosperm evolution: climbing plant taxa have greater species richness than their non-climbing sister groups. It is considered that highly diversified clades should show increased among-population genetic differentiation. Less clear is the expected pattern regarding within-population genetic diversity in speciose lineages. We tested the hypothesis of greater within-population genetic diversity in climbing plants compared to trees in a temperate fores...

  10. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers.

    Directory of Open Access Journals (Sweden)

    Huihui Yu

    Full Text Available Huge efforts have been invested in the last two decades to dissect the genetic bases of complex traits including yields of many crop plants, through quantitative trait locus (QTL analyses. However, almost all the studies were based on linkage maps constructed using low-throughput molecular markers, e.g. restriction fragment length polymorphisms (RFLPs and simple sequence repeats (SSRs, thus are mostly of low density and not able to provide precise and complete information about the numbers and locations of the genes or QTLs controlling the traits. In this study, we constructed an ultra-high density genetic map based on high quality single nucleotide polymorphisms (SNPs from low-coverage sequences of a recombinant inbred line (RIL population of rice, generated using new sequencing technology. The quality of the map was assessed by validating the positions of several cloned genes including GS3 and GW5/qSW5, two major QTLs for grain length and grain width respectively, and OsC1, a qualitative trait locus for pigmentation. In all the cases the loci could be precisely resolved to the bins where the genes are located, indicating high quality and accuracy of the map. The SNP map was used to perform QTL analysis for yield and three yield-component traits, number of tillers per plant, number of grains per panicle and grain weight, using data from field trials conducted over years, in comparison to QTL mapping based on RFLPs/SSRs. The SNP map detected more QTLs especially for grain weight, with precise map locations, demonstrating advantages in detecting power and resolution relative to the RFLP/SSR map. Thus this study provided an example for ultra-high density map construction using sequencing technology. Moreover, the results obtained are helpful for understanding the genetic bases of the yield traits and for fine mapping and cloning of QTLs.

  11. Increasing plant density in eastern United States broccoli production systems to maximize marketable head yields

    Science.gov (United States)

    Increased demand for fresh market broccoli (Brassica oleracea L. var. italica) has led to increased production along the eastern seaboard of the United States. Maximizing broccoli yields is a primary concern for quickly expanding eastern commercial markets. Thus, a plant density study was carried ...

  12. Change in alcohol outlet density and alcohol-related harm to population health (CHALICE

    Directory of Open Access Journals (Sweden)

    Fone David

    2012-06-01

    Full Text Available Abstract Background Excess alcohol consumption has serious adverse effects on health and violence-related harm. In the UK around 37% of men and 29% of women drink to excess and 20% and 13% report binge drinking. The potential impact on population health from a reduction in consumption is considerable. One proposed method to reduce consumption is to reduce availability through controls on alcohol outlet density. In this study we investigate the impact of a change in the density of alcohol outlets on alcohol consumption and alcohol-related harms to health in the community. Methods/Design A natural experiment of the effect of change in outlet density between 2005–09, in Wales, UK; population 2.4 million aged 16 years and over. Data on outlets are held by the 22 local authorities in Wales under The Licensing Act 2003. The study outcomes are change in (1 alcohol consumption using data from annual Welsh Health Surveys, (2 alcohol-related hospital admissions using the Patient Episode Database for Wales, (3 Accident & Emergency department attendances between midnight–6am, and (4 alcohol-related violent crime against the person, using Police data. The data will be anonymously record-linked within the Secure Anonymised Information Linkage Databank at individual and 2001 Census Lower Super Output Area levels. New methods of network analysis will be used to estimate outlet density. Longitudinal statistical analysis will use (1 multilevel ordinal models of consumption and logistic models of admissions and Accident & Emergency attendance as a function of change in individual outlet exposure, adjusting for confounding variables, and (2 spatial models of the change in counts/rates of each outcome measure and outlet density. We will assess the impact on health inequalities and will correct for population migration. Discussion This inter-disciplinary study requires expertise in epidemiology and public health, health informatics, medical statistics

  13. Consistent individual differences and population plasticity in network-derived sociality: An experimental manipulation of density in a gregarious ungulate

    Science.gov (United States)

    O’Brien, Paul P.; Vander Wal, Eric

    2018-01-01

    In many taxa, individual social traits appear to be consistent across time and context, thus meeting the criteria for animal personality. How these differences are maintained in response to changes in population density is unknown, particularly in large mammals, such as ungulates. Using a behavioral reaction norm (BRN) framework, we examined how among- and within-individual variation in social connectedness, measured using social network analyses, change as a function of population density. We studied a captive herd of elk (Cervus canadensis) separated into a group of male elk and a group of female elk. Males and females were exposed to three different density treatments and we recorded social associations between individuals with proximity-detecting radio-collars fitted to elk. We constructed social networks using dyadic association data and calculated three social network metrics reflective of social connectedness: eigenvector centrality, graph strength, and degree. Elk exhibited consistent individual differences in social connectedness across densities; however, they showed little individual variation in their response to changes in density, i.e., individuals oftentimes responded plastically, but in the same manner to changes in density. Female elk had highest connectedness at an intermediate density. In contrast, male elk increased connectedness with increasing density. Whereas this may suggest that the benefits of social connectedness outweigh the costs of increased competition at higher density for males, females appear to exhibit a threshold in social benefits (e.g. predator detection and forage information). Our study illustrates the importance of viewing social connectedness as a density-dependent trait, particularly in the context of plasticity. Moreover, we highlight the need to revisit our understanding of density dependence as a population-level phenomenon by accounting for consistent individual differences not only in social connectedness, but likely

  14. Assessment of Genetic Heterogeneity in Structured Plant Populations Using Multivariate Whole-Genome Regression Models.

    Science.gov (United States)

    Lehermeier, Christina; Schön, Chris-Carolin; de Los Campos, Gustavo

    2015-09-01

    Plant breeding populations exhibit varying levels of structure and admixture; these features are likely to induce heterogeneity of marker effects across subpopulations. Traditionally, structure has been dealt with as a potential confounder, and various methods exist to "correct" for population stratification. However, these methods induce a mean correction that does not account for heterogeneity of marker effects. The animal breeding literature offers a few recent studies that consider modeling genetic heterogeneity in multibreed data, using multivariate models. However, these methods have received little attention in plant breeding where population structure can have different forms. In this article we address the problem of analyzing data from heterogeneous plant breeding populations, using three approaches: (a) a model that ignores population structure [A-genome-based best linear unbiased prediction (A-GBLUP)], (b) a stratified (i.e., within-group) analysis (W-GBLUP), and (c) a multivariate approach that uses multigroup data and accounts for heterogeneity (MG-GBLUP). The performance of the three models was assessed on three different data sets: a diversity panel of rice (Oryza sativa), a maize (Zea mays L.) half-sib panel, and a wheat (Triticum aestivum L.) data set that originated from plant breeding programs. The estimated genomic correlations between subpopulations varied from null to moderate, depending on the genetic distance between subpopulations and traits. Our assessment of prediction accuracy features cases where ignoring population structure leads to a parsimonious more powerful model as well as others where the multivariate and stratified approaches have higher predictive power. In general, the multivariate approach appeared slightly more robust than either the A- or the W-GBLUP. Copyright © 2015 by the Genetics Society of America.

  15. Effect of Drought Stress on Growth and Morphological Characteristics of Two Garlic (Allium sativum L. Ecotypes in Different Planting Densities

    Directory of Open Access Journals (Sweden)

    shiva akbari

    2017-10-01

    Full Text Available Introduction Plants may be exposed to various stresses and water deficit is the most important limiting factor of growth and yield in many parts of the world and Iran. Stress induced growth decrement can be because of cell development decrease due to decrement of turgor pressure and meiosis and photosynthesis decrease due to stomata closure. Determination of desired planting density is one of the success factors of plant growth and production. Garlic (Allium sativum has been an important medicinal plant over centuries in human life. According to the importance of medicinal plants and studying the effects of drought stress on them, the goal of this research is to investigate the effect of drought stress and planting density on growth and morphological characteristics of two ecotypes of garlic and determining the preferable ecotype and density from the perspective of these traits. Materials and methods This experiment was performed in 2012 in a farm in south east of Semnan. It was conducted on a split-plot factorial arrangement based on randomized complete blocks design with three replications. Three levels of drought stress with 60, 80 and 100 percent of crop evapotranspiration (ETc were the main plot factors and factorial combination of three planting density (30, 40 and 50 plants.m-2 and two ecotypes of Tabas and Toroud were the levels of sub plot factors. To estimate water requirement of garlic, daily measured meteorology parameters of Semnan synoptic station were used and water requirement was calculated based on FAO-56 instructions. From mid-January, the sampling of leaf area, bulb and leaf fresh and dry weight was started with destructive method every other week and continued until middle of Jun. three plant were selected randomly from each plot in each turn. From middle of May, height and number of leaves were measured. Leaf area measurement was done by leaf area meter (Delta-T. To estimate growth indices, dry weight of aerial and

  16. Population density of mediterranean fruit fly (Ceratitis capitata) on fruit orchards in south Baghdad

    International Nuclear Information System (INIS)

    Khalaf, M. Z.; Shbar, A. K.; Naher, F. H.; Jabo, N. F.; Abdulhamza, B. H.; Abod, R. S.

    2012-12-01

    In the recent years the mediterranean fruit fly, Ceratitis capitata distributed in the orchards of central Iraq and caused highly economic losses. This study was conducted in orchards in South Baghdad during 2009 and 2010 and made field survey of the insect in four types of orchards (Citrus, Apricot, Figs and Citrus and A mixture of fruit trees) and used for this purpose tephri traps supplied with Q-Lure and dimethyl dichlorovinyl phosphate (DDVP). The present preliminary study has shown that the Mediterranean fruit fly C.capitata has a year round presence in fruit orchards in central Iraq and reached its highest numerical density of the pest in citrus orchards during November and December were 345 and 363 insect / Trap per month in citrus orchards and the least numerical density during of January and February while the highest numerical density of the insect in orchards of orchards of apricot in Mrch 2010, Figs and Citrus in August 2009 and a Mixture of fruit trees in November 2009 were 45, 116, 311 Insect/ trap per month respectively. The population density of the pest was highest beginning 2010 compared with 2009 , but the high temperature degree (46 - o 5 2) in August 2010 caused a decrease in population density of this pest. C.capitata caused highly economic losses in citrus reaching 68, 71, 82% of the Mandarin, Kaki, Apricot fruits respectively. Currently in Iraq no control method to reduce the economic losses caused by this pest except the use of pesticides GF-120. Therefore, results of this study could be of benefit for orcharch owners when applying an integrated program for controlling fruit fly pests. (Author)

  17. Threatened species richness along a Himalayan elevational gradient: quantifying the influences of human population density, range size, and geometric constraints.

    Science.gov (United States)

    Paudel, Prakash Kumar; Sipos, Jan; Brodie, Jedediah F

    2018-02-07

    A crucial step in conserving biodiversity is to identify the distributions of threatened species and the factors associated with species threat status. In the biodiversity hotspot of the Himalaya, very little is known about which locations harbour the highest diversity of threatened species and whether diversity of such species is related to area, mid-domain effects (MDE), range size, or human density. In this study, we assessed the drivers of variation in richness of threatened birds, mammals, reptiles, actinopterygii, and amphibians along an elevational gradient in Nepal Himalaya. Although geometric constraints (MDE), species range size, and human population density were significantly related to threatened species richness, the interaction between range size and human population density was of greater importance. Threatened species richness was positively associated with human population density and negatively associated with range size. In areas with high richness of threatened species, species ranges tend to be small. The preponderance of species at risk of extinction at low elevations in the subtropical biodiversity hotspot could be due to the double impact of smaller range sizes and higher human density.

  18. Forest tent caterpillar, Malacosoma disstria (Lepidoptera: Lasiocampidae mate-finding behavior is greatest at intermediate population densities: Implications for interpretation of moth capture in pheromone-baited traps.

    Directory of Open Access Journals (Sweden)

    Maya L. Evenden

    2015-07-01

    Full Text Available The forest tent caterpillar, Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae is a native forest defoliator with a broad geographic range in North America. Forest tent caterpillars experience cyclical population changes and at high densities, repeated defoliation can cause reduced tree growth and tree mortality. Pheromone-based monitoring of forest tent caterpillar moths can provide information on spatial and temporal patterns of incipient outbreaks. Pheromone-baited trap capture of male moths correlates to the number of eggs and pupae in a population but this relationship breaks down at high population densities, when moth trap capture declines. The objective of the current study is to understand the mechanisms that reduce trap capture at high population densities. We tested two different hypotheses: 1 at high population densities, male moth orientation to pheromone sources is reduced due to competition for pheromone plumes; and 2 moths from high density populations will be in poor condition and less likely to conduct mate-finding behaviors than moths from low density populations. A field study showed non-linear effects of density on male moth capture in female-baited traps. The number of males captured increased up to an intermediate density level and declined at the highest densities. Field cage studies showed that female moth density affected male moth orientation to female-baited traps, as more males were recaptured at low than high female densities. There was no effect of male density on the proportion of males that oriented to female-baited traps. Moth condition was manipulated by varying larval food quantity. Although feeding regimes affected the moth condition (size, there was no evidence of an effect of condition on mate finding or close range mating behavior. In the field, it is likely that competition for pheromone plumes at high female densities during population outbreaks reduces the efficacy of pheromone-baited monitoring

  19. The ideal free distribution as an evolutionarily stable state in density-dependent population games

    Czech Academy of Sciences Publication Activity Database

    Cressman, R.; Křivan, Vlastimil

    2010-01-01

    Roč. 119, č. 8 (2010), s. 1231-1242 ISSN 0030-1299 R&D Projects: GA AV ČR IAA100070601 Institutional research plan: CEZ:AV0Z50070508 Keywords : density-dependent population games Subject RIV: EH - Ecology, Behaviour Impact factor: 3.393, year: 2010

  20. Effect of plant population and N fertilizer on the growth and yield of ...

    African Journals Online (AJOL)

    Responses of bambara groundnut (Vigna subterranea (L.) Verdc) to 3 levels of fertilizer N (0, 50, and 100 kg N/ha) and seven plant populations (55555, 63492, 74074, 88888, 111111, 148148 and 222222 plants/ha) were studied under field conditions in Nsukka, Nigeria. The experimental design was a randomized ...

  1. Plant-associated bacterial populations on native and invasive plant species: comparisons between 2 freshwater environments.

    Science.gov (United States)

    Olapade, Ola A; Pung, Kayleigh

    2012-06-01

    Plant-microbial interactions have been well studied because of the ecological importance of such relationships in aquatic systems. However, general knowledge regarding the composition of these biofilm communities is still evolving, partly as a result of several confounding factors that are attributable to plant host properties and to hydrodynamic conditions in aquatic environments. In this study, the occurrences of various bacterial phylogenetic taxa on 2 native plants, i.e., mayapple (Podophyllum peltatum L.) and cow parsnip (Heracleum maximum Bartram), and on an invasive species, i.e., garlic mustard (Alliaria petiolata (M. Bieb.) Cavara & Grande), were quantitatively examined using nucleic acid staining and fluorescence in situ hybridization. The plants were incubated in triplicates for about a week within the Kalamazoo River and Pierce Cedar Creek as well as in microcosms. The bacterial groups targeted for enumeration are known to globally occur in relatively high abundance and are also ubiquitously distributed in freshwater environments. Fluorescence in situ hybridization analyses of the bacterioplankton assemblages revealed that the majority of bacterial cells that hybridized with the different probes were similar between the 2 sites. In contrast, the plant-associated populations while similar on the 3 plants incubated in Kalamazoo River, their representations were highest on the 2 native plants relative to the invasive species in Pierce Cedar Creek. Overall, our results further suggested that epiphytic bacterial assemblages are probably under the influences of and probably subsequently respond to multiple variables and conditions in aquatic milieus.

  2. International Consortium on Mammographic Density: Methodology and Population Diversity captured across 22 Countries

    Science.gov (United States)

    McCormack, Valerie A.; Burton, Anya; dos-Santos-Silva, Isabel; Hipwell, John H.; Dickens, Caroline; Salem, Dorria; Kamal, Rasha; Hartman, Mikael; Ling Lee, Charmaine Pei; Chia, Kee-Seng; Ozmen, Vahit; Aribal, Mustafa Erkin; Flugelman, Anath Arzee; Lajous, Martín; Lopez-Riduara, Ruy; Rice, Megan; Romieu, Isabelle; Ursin, Giske; Qureshi, Samera; Ma, Huiyan; Lee, Eunjung; van Gils, Carla H.; Wanders, Johanna O.P.; Vinayak, Sudhir; Ndumia, Rose; Allen, Steve; Vinnicombe, Sarah; Moss, Sue; Lee, Jong Won; Kim, Jisun; Pereira, Ana; Garmendia, Maria Luisa; Sirous, Reza; Sirous, Mehri; Peplonska, Beata; Bukowska, Agnieszka; Tamimi, Rulla M.; Bertrand, Kimberly; Nagata, Chisato; Kwong, Ava; Vachon, Celine; Scott, Christopher; Perez-Gomez, Beatriz; Pollan, Marina; Maskarinec, Gertraud; Giles, Graham; Hopper, John; Stone, Jennifer; Rajaram, Nadia; Teo, Soo-Hwang; Mariapun, Shivaani; Yaffe, Martin J.; Schüz, Joachim; Chiarelli, Anna; Linton, Linda; Boyd, Norman F.

    2015-01-01

    Mammographic density (MD) is a quantitative trait, measurable in all women, and is among the strongest markers of breast cancer risk. The population-based epidemiology of MD has revealed genetic, lifestyle and societal/environmental determinants, but studies have largely been conducted in women with similar westernized lifestyles living in countries with high breast cancer incidence rates. To benefit from the heterogeneity in risk factors and their combinations worldwide, we created an International Consortium on Mammographic Density (ICMD) to pool individual-level epidemiological and MD data from general population studies worldwide. ICMD aims to characterize determinants of MD more precisely, and to evaluate whether they are consistent across populations worldwide. We included 11755 women, from 27 studies in 22 countries, on whom individual-level risk factor data were pooled and original mammographic images were re-read for ICMD by a core team to obtain standardized comparable MD data. In the present article, we present (i) the rationale for this consortium; (ii) characteristics of the studies and women included; and (iii) study methodology to obtain comparable MD data from original re-read films. We also highlight the risk factor heterogeneity captured by such an effort and, thus, the unique insight the pooled study promises to offer through wider exposure ranges, different confounding structures and enhanced power for sub-group analyses. PMID:26724463

  3. The Study on the Effect of Different Levels of Vermicompost and Plant Density on Oil Content and Components of Evening Primrose (Oenothera biennis L

    Directory of Open Access Journals (Sweden)

    M Azizi

    2014-03-01

    Full Text Available To investigate the effects of different levels of vermicompost and plant density on oil content of evening primrose and its components, an experiment was conducted as a factorial layout based on Randomised Complete Block Design with 12 treatments and 3 replications in experimental field of Faculty of Agriculture, Ferdowsi University of Mashhad during 2008-2009. The treatments were included 4 levels of vermicompost (0, 2, 3 and 5 kg.m-2 and 3 levels of plant density (9, 12 and 20 plant/m-2. Oil extraction was carried out by Soxhelet apparatus and its percentage was determined as weight. Analysis of fatty acids was done by Gas Chromatography device. Density and refractive index of the oil also was evaluated. According to the results, simple effect of vermicompost and plant density was significant only on oil percentage and its refractive index, while the interaction between them was significant on all of the traits. Fatty acids composition of oil in all treatment was the same. The major saturated fatty acid was palmitic acid and linoleic acid was the major unsaturated fatty acid. The amount of γ-linolenic acid was in optimum range (7-8 %. Overall, treatment of 2 kg.m2 vermicompost and plant density of 20 and 9 plant/m-2 was determined as the best treatments by considering the improving of oil production, oil quality and ratio of unsaturated fatty acids to saturated fatty acids, respectively.

  4. Produtividade e qualidade da flor-de-seda em diferentes densidades e sistemas de plantio Productivity and quality of rooster tree in different planting densities and planting systems

    Directory of Open Access Journals (Sweden)

    Maria Verônica Meira de Andrade

    2008-01-01

    detergent fiber (ADF, cellulose, hemicellulose, lignin, water soluble carbohydrates (WSC, total carbohydrates (TC, and productivity (DM kg/ha. It was observed that the soil handling systems and planting densities did not influence the OM, MM, NDF, EE, lignin, cellulose, WSC and TC. The planting density affected the DM, hemicellulose, and ADF. The CP concentration was lower when using the handling systems with furrow. The DM largest productivity (699.72 kg MS/ha of the rooster tree was verified in the more dense population (1.0 m × 1.5 m, corresponding to 6,666 plants/ha.

  5. Effects of demographic structure on key properties of stochastic density-independent population dynamics.

    Science.gov (United States)

    Vindenes, Yngvild; Sæther, Bernt-Erik; Engen, Steinar

    2012-12-01

    The development of stochastic demography has largely been based on age structured populations, although other types of demographic structure, especially permanent and dynamic heterogeneity, are likely common in natural populations. The combination of stochasticity and demographic structure is a challenge for analyses of population dynamics and extinction risk, because the population structure will fluctuate around the stable structure and the population size shows transient fluctuations. However, by using a diffusion approximation for the total reproductive value, density-independent dynamics of structured populations can be described with only three population parameters: the expected population growth rate, the environmental variance and the demographic variance. These parameters depend on population structure via the state-specific vital rates and transition rates. Once they are found, the diffusion approximation represents a substantial reduction in model complexity. Here, we review and compare the key population parameters across a wide range of demographic structure, from the case of no structure to the most general case of dynamic heterogeneity, and for both discrete and continuous types. We focus on the demographic variance, but also show how environmental stochasticity can be included. This study brings together results from recent models, each considering a specific type of population structure, and places them in a general framework for structured populations. Comparison across different types of demographic structure reveals that the reproductive value is an essential concept for understanding how population structure affects stochastic dynamics and extinction risk. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Low doses of six toxicants change plant size distribution in dense populations of Lactuca sativa.

    Science.gov (United States)

    Belz, Regina G; Patama, Marjo; Sinkkonen, Aki

    2018-08-01

    Toxicants are known to have negligible or stimulatory, i.e. hormetic, effects at low doses below those that decrease the mean response of a plant population. Our earlier observations indicated that at such low toxicant doses the growth of very fast- and slow-growing seedlings is selectively altered, even if the population mean remains constant. Currently, it is not known how common these selective low-dose effects are, whether they are similar among fast- and slow-growing seedlings, and whether they occur concurrently with hormetic effects. We tested the response of Lactuca sativa in complete dose-response experiments to six different toxicants at doses that did not decrease population mean and beyond. The tested toxicants were IAA, parthenin, HHCB, 4-tert-octylphenol, glyphosate, and pelargonic acid. Each experiment consisted of 14,400-16,800 seedlings, 12-14 concentrations, 24 replicates per concentration and 50 germinated seeds per replicate. We analyzed the commonness of selective low-dose effects and explored if toxic effects and hormetic stimulation among fast- and slow-growing individuals occurred at the same concentrations as they occur at the population level. Irrespective of the observed response pattern and toxicant, selective low-dose effects were found. Toxin effects among fast-growing individuals usually started at higher doses compared to the population mean, while the opposite was found among slow-growing individuals. Very low toxin exposures tended to homogenize plant populations due to selective effects, while higher, but still hormetic doses tended to heterogenize plant populations. Although the extent of observed size segregation varied with the specific toxin tested, we conclude that a dose-dependent alteration in size distribution of a plant population may generally apply for many toxin exposures. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Host plant use drives genetic differentiation in syntopic populations of Maculinea alcon

    DEFF Research Database (Denmark)

    Tartally, András; Kelager, Andreas; Fürst, Matthias Alois

    2016-01-01

    The rare socially parasitic butterfly Maculinea alcon occurs in two forms, which are characteristic of hygric or xeric habitats and which exploit different host plants and host ants. The status of these two forms has been the subject of considerable controversy. Populations of the two forms...... on different host plants, each with a distinct flowering phenology, providing a temporal rather than spatial barrier to gene flow....

  8. Efficacy of passive hair-traps for the genetic sampling of a low-density badger population

    Directory of Open Access Journals (Sweden)

    Alessandro Balestrieri

    2011-02-01

    Full Text Available

    A hair-trapping survey was carried out in the western River Po plain (NW Italy. We aimed to test whether barbed wire hair snares in combination with DNA profiling might represent an effective tool to study a low-density badger population. Traps were placed above the entrances of twelve badger setts between 15 February and 30 April 2010. Trapping effort was expressed as the number of trap-nights required to pluck a hair sample and the trend in the number of genotyped individual over time was analysed by regression analysis. Forty-three hair samples were collected, with an overall trapping effort of 54.8 trap-nights per one hair sample. Twenty-eight samples yielded reliable genotypes, allowing the identification of nine individual badgers. The length of storage period (1-3 months before DNA extraction did not seem to affect genotyping success. According to the regression model, trapping effort allowed to sample 75% of the overall population. Our results suggest that the efficacy of passive devices is affected by population density.

  9. Increase in Population Density and Aggravation of Social and Psychological Problems in Areas with High-Rise Construction

    Directory of Open Access Journals (Sweden)

    Romanova Elena

    2018-01-01

    Full Text Available High-rise apartment houses have technical and economic advantages in areas with dense population. Their placement in the central part of the city allows increasing the number of living space in the limited territory, to bring population to the place of employment and reduce pendular migration. But increase in population density leads to psychological problems: level of a stress, fatigue increases, the number of phobias grows, infectious diseases extend quicker. These problems can be solved at resettlement of inhabitants to the suburb. However such decision leads to aggravation of a transport problem and the pulsing increase in population density in the downtown and on its suburb. To solve a transport problem, it is necessary not to increase the square of the cities. Therefore in the suburbs is also used high-rise construction. But high-rise residential districts on the suburb of the city get own social problems which are capable to destroy all advantages of high-rise construction.

  10. Increase in Population Density and Aggravation of Social and Psychological Problems in Areas with High-Rise Construction

    Science.gov (United States)

    Romanova, Elena

    2018-03-01

    High-rise apartment houses have technical and economic advantages in areas with dense population. Their placement in the central part of the city allows increasing the number of living space in the limited territory, to bring population to the place of employment and reduce pendular migration. But increase in population density leads to psychological problems: level of a stress, fatigue increases, the number of phobias grows, infectious diseases extend quicker. These problems can be solved at resettlement of inhabitants to the suburb. However such decision leads to aggravation of a transport problem and the pulsing increase in population density in the downtown and on its suburb. To solve a transport problem, it is necessary not to increase the square of the cities. Therefore in the suburbs is also used high-rise construction. But high-rise residential districts on the suburb of the city get own social problems which are capable to destroy all advantages of high-rise construction.

  11. POPULATION STRUCTURE AND SPATIAL DISTRIBUTION OF Ceratozamia mexicana BRONGN. (ZAMIACEAE IN PRESERVED AND DISTURBED ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Andrés Rivera-Fernández

    2012-11-01

    Full Text Available Vegetal populations are affected by biotic and abiotic factors that influence the regeneration processes. The aims of this study were to know the population structure of Ceratozamia mexicana under two contrasting conditions (conserved site and disturbed site, and to determine if the sexual structure, the population density and the spatial distribution of C. mexicana are modified by effect of disturbance. Eight plots of 25 m2 within each site (conserved and disturbed were used. The structure and spatial distribution of the sites were determined. Methods included analysis of variance, spatial distribution indexes, and climatic and edaphic factors determined by conventional methods for their comparison. The conserved site showed a demographic structure of an inverted "J", while the disturbed site varied slightly with more discontinuous distribution. Population density was 0.78 individuals/m2 in the conserved site and 0.26 individuals/m2 in the disturbed site. Spatial distribution for all development stages of the plant was random, with the exception of the seedling stage, which was aggregated. Results showed that perturbation decreases the density of plants and removes reproductive individuals, which threatens the persistence of the population.

  12. Density and Habitat Relationships of the Endemic White Mountain Fritillary (Boloria chariclea montinus (Lepidoptera: Nymphalidae

    Directory of Open Access Journals (Sweden)

    Kent P. McFarland

    2017-06-01

    Full Text Available We conducted point counts in the alpine zone of the Presidential Range of the White Mountains, New Hampshire, USA, to estimate the distribution and density of the rare endemic White Mountain Fritillary (Boloria chariclea montinus. Incidence of occurrence and density of the endemic White Mountain Fritillary during surveys in 2012 and 2013 were greatest in the herbaceous-snowbank plant community. Densities at points in the heath-shrub-rush plant community were lower, but because this plant community is more widespread in the alpine zone, it likely supports the bulk of adult fritillaries. White Mountain Fritillary used cushion-tussock, the other alpine plant community suspected of providing habitat, only sparingly. Detectability of White Mountain Fritillaries varied as a consequence of weather conditions during the survey and among observers, suggesting that raw counts yield biased estimates of density and abundance. Point counts, commonly used to study and monitor populations of birds, were an effective means of sampling White Mountain Fritillary in the alpine environment where patches of habitat are small, irregularly shaped, and widely spaced, rendering line-transect methods inefficient and difficult to implement.

  13. Density, body size, and reproduction of feral house mice on Gough ...

    African Journals Online (AJOL)

    Feral house mice Mus musailus have occurred on Gough Island, South Atlantic Ocean, for about 180 years. The population was sampled during the austral spring of 1990. Estimated density on a live-trapping grid in dense cover (woody plants, ferns, grass) near the coast was 224 mice/ha. Snap-trapping at high altitude, ...

  14. Effect of Plant Density on Growth Characteristics and Yield of Summer Savory (Satureja hortensis L. and Persian Clover (Trifolium resupinatum L. Intercropping

    Directory of Open Access Journals (Sweden)

    f Hassanzadeh Aval

    2012-02-01

    Full Text Available Abstract In order to evaluate intercropping of summer savory (Satureja hortensis L. and Persian clover (Trifolium resupinatum L., an experiment was conducted in the Agricultural Research Station of Ferdowsi University of Mashhad in 2004 growing season. Treatments were sole cropping of Persian clover (eight rows, double-row intercropping of Persian clover and summer savory with 27, 40 and 80 plants.m-2 (eight rows and sole cropping of summer savory with 27, 40 and 80 plants m-2 (eight rows. For this purpose a complete randomized block design with 4 replications was used. Shoot and stem percentage of summer savory in sole crop treatments were significantly higher than in intercrop. In sole crop treatments, these parameters decreased by increasing plant density, in contrast to the intercrop. Leaf percentage and leaf and flower to stem ratio of summer savory in sole crop treatments were significantly lower than in intercrop. In sole crop treatments, these parameters were increased by increasing plant density, in contrast to intercrop. Effect of different treatments on essential oil percentage of summer savory was not significant. In sole cropping of Persian clover treatment, dry weight of vegetative organs and stem percentage of Persian clover in the first harvest, was lower than other treatments. By decreasing plant density these parameters were decreased in intercropping. In the second and third harvests a reversed pattern was observed. The highest Area Time Equivalent Ratio was obtained in intercropping of persian clover and summer savory with 27 plants.m-2. Keywords: Intercropping, Plant density, Satureja hortensis, Trifolium resupinatum, Essential oil percentage, Area Time Equivalent Ratio

  15. Increased population density of neurosurgeons associated with decreased risk of death from motor vehicle accidents in the United States.

    Science.gov (United States)

    Desai, Atman; Bekelis, Kimon; Zhao, Wenyan; Ball, Perry A

    2012-09-01

    Motor vehicle accidents (MVAs) are a leading cause of death and disability in young people. Given that a major cause of death from MVAs is traumatic brain injury, and neurosurgeons hold special expertise in this area relative to other members of a trauma team, the authors hypothesized that neurosurgeon population density would be related to reduced mortality from MVAs across US counties. The Area Resource File (2009-2010), a national health resource information database, was retrospectively analyzed. The primary outcome variable was the 3-year (2004-2006) average in MVA deaths per million population for each county. The primary independent variable was the density of neurosurgeons per million population in the year 2006. Multiple regression analysis was performed, adjusting for population density of general practitioners, urbanicity of the county, and socioeconomic status of the county. The median number of annual MVA deaths per million population, in the 3141 counties analyzed, was 226 (interquartile range [IQR] 151-323). The median number of neurosurgeons per million population was 0 (IQR 0-0), while the median number of general practitioners per million population was 274 (IQR 175-410). Using an unadjusted analysis, each increase of 1 neurosurgeon per million population was associated with 1.90 fewer MVA deaths per million population (p neurosurgeon per million population was associated with 1.01 fewer MVA deaths per million population (p neurosurgeons is associated with a significant reduction in deaths from MVAs, a major cause of death nationally. This suggests that the availability of local neurosurgeons is an important factor in the overall likelihood of survival from an MVA, and therefore indicates the importance of promoting neurosurgical education and practice throughout the country.

  16. EFFECTS OF PLANTING DENSITYAND ORGANIC FERTILIZATION DOSES ON PRODUCTIVE EFFICIENCY OF CACTUS PEAR

    Directory of Open Access Journals (Sweden)

    NALÍGIA GOMES DE MIRANDA E SILVA

    2016-01-01

    Full Text Available Cactus is crucial for the livestock of semi - arid regions in Brazil. This plant has shown the high productivity of forage, which is influenced by several management factors. This study aimed to evaluate the effect of organic fertilization doses (20, 40 and 80 t/ ha of bovine manure/ha/two years and planting densities (20, 40, 80 and 160 thousand plants/ha on the productivity of cactus pear Clone IPA - 20 ( Opuntia ficus - indica Mill. At the Experimental Station of Caruaru at the Agronomic Institute of Pernambuco, IPA has conducted the experiment. The experimental design was randomized blocks, with split plot arrangements. Higher shoot productivity was observed with increased population density and the application of manure at 80 t ha - 1two years - 1 with values of 61, 90, 117 and 139 t DM ha - 1 two years - 1 at densities of 20, 40, 80 and 160,000 plants ha - 1. The planting density influenced the productivity of cladode - plant and root dry weight, showing exponential responses, with higher cladode - plant and roots weight by area observed with increased plant density. The efficiency of organic fertilization decreased with the increase in manure doses. For increase cactus productivity, 40 t of bovine manure ha - 1 two years - 1 for plantations with 160,000 plants/ha is recommended.

  17. Population History and Pathways of Spread of the Plant Pathogen Phytophthora plurivora

    Science.gov (United States)

    Schoebel, Corine N.; Stewart, Jane; Gruenwald, Niklaus J.; Rigling, Daniel; Prospero, Simone

    2014-01-01

    Human activity has been shown to considerably affect the spread of dangerous pests and pathogens worldwide. Therefore, strict regulations of international trade exist for particularly harmful pathogenic organisms. Phytophthora plurivora, which is not subject to regulations, is a plant pathogen frequently found on a broad range of host species, both in natural and artificial environments. It is supposed to be native to Europe while resident populations are also present in the US. We characterized a hierarchical sample of isolates from Europe and the US and conducted coalescent-, migration, and population genetic analysis of sequence and microsatellite data, to determine the pathways of spread and the demographic history of this pathogen. We found P. plurivora populations to be moderately diverse but not geographically structured. High levels of gene flow were observed within Europe and unidirectional from Europe to the US. Coalescent analyses revealed a signal of a recent expansion of the global P. plurivora population. Our study shows that P. plurivora has most likely been spread around the world by nursery trade of diseased plant material. In particular, P. plurivora was introduced into the US from Europe. International trade has allowed the pathogen to colonize new environments and/or hosts, resulting in population growth. PMID:24427303

  18. Integration of Density Dependence and Concentration Response Models Provides an Ecologically Relevant Assessment of Populations Exposed to Toxicants

    Science.gov (United States)

    The assessment of toxic exposure on wildlife populations involves the integration of organism level effects measured in toxicity tests (e.g., chronic life cycle) and population models. These modeling exercises typically ignore density dependence, primarily because information on ...

  19. A macroevolutionary explanation for energy equivalence in the scaling of body size and population density.

    Science.gov (United States)

    Damuth, John

    2007-05-01

    Across a wide array of animal species, mean population densities decline with species body mass such that the rate of energy use of local populations is approximately independent of body size. This "energetic equivalence" is particularly evident when ecological population densities are plotted across several or more orders of magnitude in body mass and is supported by a considerable body of evidence. Nevertheless, interpretation of the data has remained controversial, largely because of the difficulty of explaining the origin and maintenance of such a size-abundance relationship in terms of purely ecological processes. Here I describe results of a simulation model suggesting that an extremely simple mechanism operating over evolutionary time can explain the major features of the empirical data. The model specifies only the size scaling of metabolism and a process where randomly chosen species evolve to take resource energy from other species. This process of energy exchange among particular species is distinct from a random walk of species abundances and creates a situation in which species populations using relatively low amounts of energy at any body size have an elevated extinction risk. Selective extinction of such species rapidly drives size-abundance allometry in faunas toward approximate energetic equivalence and maintains it there.

  20. Transgenerational Effects Alter Plant Defense and Resistance in Nature

    Science.gov (United States)

    Colicchio, Jack

    2017-01-01

    Trichomes, or leaf hairs, are epidermal extensions that take a variety of forms and perform many functions in plants, including herbivore defense. In this study, I document genetically determined variation, within-generation plasticity, and a direct role of trichomes in herbivore defense for Mimulus guttatus. After establishing the relationship between trichomes and herbivory, I test for transgenerational effects of wounding on trichome density and herbivore resistance. Patterns of inter-annual variation in herbivore density and the high cost of plant defense makes plant-herbivore interactions a system in which transgenerational phenotypic plasticity (TPP) is apt to evolve. Here, I demonstrate that parental damage alters offspring trichome density and herbivore resistance in nature. Moreover, this response varies between populations. This is among the first studies to demonstrate that TPP contributes to variation in nature, and also suggests that selection can modify TPP in response to local conditions. PMID:28102915

  1. The landscape configuration of zoonotic transmission of Ebola virus disease in West and Central Africa: interaction between population density and vegetation cover

    Directory of Open Access Journals (Sweden)

    Michael G. Walsh

    2015-01-01

    Full Text Available Ebola virus disease (EVD is an emerging infectious disease of zoonotic origin that has been responsible for high mortality and significant social disruption in West and Central Africa. Zoonotic transmission of EVD requires contact between susceptible human hosts and the reservoir species for Ebolaviruses, which are believed to be fruit bats. Nevertheless, features of the landscape that may facilitate such points of contact have not yet been adequately identified. Nor have spatial dependencies between zoonotic EVD transmission and landscape structures been delineated. This investigation sought to describe the spatial relationship between zoonotic EVD transmission events, or spillovers, and population density and vegetation cover. An inhomogeneous Poisson process model was fitted to all precisely geolocated zoonotic transmissions of EVD in West and Central Africa. Population density was strongly associated with spillover; however, there was significant interaction between population density and green vegetation cover. In areas of very low population density, increasing vegetation cover was associated with a decrease in risk of zoonotic transmission, but as population density increased in a given area, increasing vegetation cover was associated with increased risk of zoonotic transmission. This study showed that the spatial dependencies of Ebolavirus spillover were associated with the distribution of population density and vegetation cover in the landscape, even after controlling for climate and altitude. While this is an observational study, and thus precludes direct causal inference, the findings do highlight areas that may be at risk for zoonotic EVD transmission based on the spatial configuration of important features of the landscape.

  2. Comparative genomics of pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity

    Science.gov (United States)

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacter...

  3. WHEAT LEAF RUST SEVERITY AS AFFECTED BY PLANT DENSITY AND SPECIES PROPORTION IN SIMPLE COMMUNITIES OF WHEAT AND WILD OATS

    Science.gov (United States)

    While it is generally accepted that dense stands of plants exacerbate epidemics caused by foliar pathogens, there is little experimental evidence to support this view. We grew model plant communities consisting of wheat and wild oats at different densities and proportions and exp...

  4. Browsing Patterns of White-Tailed Deer Following Increased Timber Harvest and a Decline in Population Density

    Directory of Open Access Journals (Sweden)

    Shawn M. Crimmins

    2010-01-01

    Full Text Available We examined browsing patterns of white-tailed deer (Odocoileus virginianus on a site in the central Appalachians that experienced a substantial (>50% reduction in deer population density and an increase in the amount of timber harvest since 2001. We sampled woody browse in and immediately adjacent to 12 clearcuts ranging in age from 0–5 years postharvest in summer 2007. Clearcut-interior areas had higher woody browse abundance and browsing rates than clearcut-edge or mature forest areas. Woody browse abundance was slightly higher within individual clearcuts than in 2001 at higher population densities and lower timber harvest rates. Overall browsing rates declined from approximately 17% in 2001 to less than 5% during our study, suggesting that the combination of deer population control, and increasing the amount of timber harvest across the landscape can reduce herbivory to levels that may not impede growth and survival of forest vegetation.

  5. Mapping the Centimeter-Scale Spatial Variability of PAHs and Microbial Populations in the Rhizosphere of Two Plants.

    Directory of Open Access Journals (Sweden)

    Amélia Bourceret

    Full Text Available Rhizoremediation uses root development and exudation to favor microbial activity. Thus it can enhance polycyclic aromatic hydrocarbon (PAH biodegradation in contaminated soils. Spatial heterogeneity of rhizosphere processes, mainly linked to the root development stage and to the plant species, could explain the contrasted rhizoremediation efficiency levels reported in the literature. Aim of the present study was to test if spatial variability in the whole plant rhizosphere, explored at the centimetre-scale, would influence the abundance of microorganisms (bacteria and fungi, and the abundance and activity of PAH-degrading bacteria, leading to spatial variability in PAH concentrations. Two contrasted rhizospheres were compared after 37 days of alfalfa or ryegrass growth in independent rhizotron devices. Almost all spiked PAHs were degraded, and the density of the PAH-degrading bacterial populations increased in both rhizospheres during the incubation period. Mapping of multiparametric data through geostatistical estimation (kriging revealed that although root biomass was spatially structured, PAH distribution was not. However a greater variability of the PAH content was observed in the rhizosphere of alfalfa. Yet, in the ryegrass-planted rhizotron, the Gram-positive PAH-degraders followed a reverse depth gradient to root biomass, but were positively correlated to the soil pH and carbohydrate concentrations. The two rhizospheres structured the microbial community differently: a fungus-to-bacterium depth gradient similar to the root biomass gradient only formed in the alfalfa rhizotron.

  6. Effects of environmental radiation of Kori nuclear power plant on the human population

    International Nuclear Information System (INIS)

    Kim, Y.J.

    1979-01-01

    In order to clarify and protect the effects of environmental radiation according to the operation of Kori nuclear power plant on human population, the base line survey for the human monitoring, the fauna of land nocturnal insects, and the karyotypes of amphibian species which have been living around the power plant site were carried out. ''Kilchunri'' population which took for the human monitoring lie within a 2km distance from power plant site. Human monitoring, house and food characteristics, individual experience of X-ray exposures, human chromosome analysis and fauna of nocturnal land insects were surveyed and expressed in numerical tables. Chromosome number obtained from the amphibia which were collected around the power plant area was as follows; Kaloula borealis 2N=30, Rana amurensis 2N=26, Rana dybouskii 2N=24, Rana rugosa 2N=26, Rana migromaculata 2N=26, Rana plancyi 2N=26, Bombina orientalis 2N=24, Hyla arborea 2N=24, Bufo stejnegeri 2N=22, and Bufo bufo 2N=22. (author)

  7. The effect of sowing date and plant density on yield and yield components of safflower (Carthamus tinctorious L. in Rokh plateau .

    Directory of Open Access Journals (Sweden)

    seyd fazel fazeli kakhaki

    2009-06-01

    Full Text Available To investigate the effect of sowing date and plant density on yield and yield components of safflower ( Carthamus tinctorious as well as evaluating the possibility of the second sowing of the plant in Torbat Heidariyeh , a field experiment was conducted in Rokh, Cold Season Cereal Research Station 2005 . The experiment was conducted in split plot arrangement in complete randomized block design with four replications . Main plots were sowing date in five levels including 9 April, 10 May, 31 May, 20 June, 11 July and sub plots were plant density in three levels including 300000, 400000, 500000 plants per hectar. Some charactristics such as the number of capitulum per square meter, seed number in capitulum, seed weight, harvest index and seed yeild was evaluated.The highest seed yield was obtained in first sowing date in 3347 kg/ha and a delay in sowing date resulted a decrease in yield. The cold weather in (05/11/2005 caused flower fertility not accured, consequently, sowing was not successful . Results showed that the effect of sowing date on yield depends on the number of capitulum per unit area and the number of grains per capitulum. These two characteristics in th first sowing date in respect of the other dates were higher. The effect of density on yield was significant resulted on yield increase due to capitulum increase in unit area. As a result, the first sowing date with the highest density is recommended. However, The third and fourth sowing date can be considered as the second planting in a sequeational cropping system .

  8. Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere.

    Science.gov (United States)

    Essarioui, Adil; LeBlanc, Nicholas; Kistler, Harold C; Kinkel, Linda L

    2017-07-01

    Plant community characteristics impact rhizosphere Streptomyces nutrient competition and antagonistic capacities. However, the effects of Streptomyces on, and their responses to, coexisting microorganisms as a function of plant host or plant species richness have received little attention. In this work, we characterized antagonistic activities and nutrient use among Streptomyces and Fusarium from the rhizosphere of Andropogon gerardii (Ag) and Lespedeza capitata (Lc) plants growing in communities of 1 (monoculture) or 16 (polyculture) plant species. Streptomyces from monoculture were more antagonistic against Fusarium than those from polyculture. In contrast, Fusarium isolates from polyculture had greater inhibitory capacities against Streptomyces than isolates from monoculture. Although Fusarium isolates had on average greater niche widths, the collection of Streptomyces isolates in total used a greater diversity of nutrients for growth. Plant richness, but not plant host, influenced the potential for resource competition between the two taxa. Fusarium isolates had greater niche overlap with Streptomyces in monoculture than polyculture, suggesting greater potential for Fusarium to competitively challenge Streptomyces in monoculture plant communities. In contrast, Streptomyces had greater niche overlap with Fusarium in polyculture than monoculture, suggesting that Fusarium experiences greater resource competition with Streptomyces in polyculture than monoculture. These patterns of competitive and inhibitory phenotypes among Streptomyces and Fusarium populations are consistent with selection for Fusarium-antagonistic Streptomyces populations in the presence of strong Fusarium resource competition in plant monocultures. Similarly, these results suggest selection for Streptomyces-inhibitory Fusarium populations in the presence of strong Streptomyces resource competition in more diverse plant communities. Thus, landscape-scale variation in plant species richness may be

  9. Female fruit production depends on female flower production and crown size rather than male density in a continuous population of a tropical dioecious tree (Virola surinamensis).

    Science.gov (United States)

    Riba-Hernández, Pablo; Segura, Jorge Lobo; Muñoz-Valverde, Jenny

    2016-11-01

    Factors related to pollen and resource limitation were evaluated to predict female fruit production in a tropical dioecious tree. Pollen limitation via variation in the male density at local scales is expected to limit female reproduction success in dioecious plants. We modeled the roles of local male density, female crown size, crown illumination, and female flower production on female fruit initiation and mature fruit production in a continuous population (62 ha plot) of a tropical dioecious tree (Virola surinamensis). In addition, we used microsatellites to describe the scale of effective pollen flow, the male effective population size, and the spatial genetic structure within/between progenies and males. The local male density was not related to female fruit initiation or mature fruit production. Female floral production had a positive effect on fruit initiation. The female crown size was positively related to fruit maturation. Seeds from the same female and seeds from different but spatially proximal females were generally half-siblings; however, proximal females showed greater variation. Proximal male-female adult pairs were not significantly more genetically related than distant pairs. The probability of paternity was negatively affected by the distance between seeds and males; most effective pollen dispersal events (∼85%) occurred from males located less than 150 m from females. The number of males siring progenies was greater than the number of males found at local scales. Female fecundity in this continuous population of Virola surinamensis is not limited by the availability of pollen from proximal males. Rather, resource allocation to floral production may ultimately determine female reproductive success. © 2016 Botanical Society of America.

  10. [Relationships of bee population fluctuation and distribution with natural environment in Anhui province].

    Science.gov (United States)

    Yu, Linsheng; Zou, Yunding; Bi, Shoudong; Wu, Houzhang; Cao, Yifeng

    2006-08-01

    In 2002 to approximately 2004, an investigation was made on the bee population dynamics and its relationships with the ecological environment in four ecological regions of Anhui Province. The results indicated that in the mountainous areas of south and west Anhui, there were 46 and 37 species of nectariferous plants, and the distribution density of Apis cerena cerena population was 2.01 and 1.95 colony x km(-2), respectively. In Jianghuai area and Huaibei plain, there were 17 and 12 species of nectariferous plants, which had concentrated and short flowering period and fitted for Apis mellifera Ligustica oysterring and producing, and the distribution density of Apis cerena cerena population was 0. 06 and 0. 02 colony x km(-2), respectively. Bee population fluctuation and distribution was affected by wasp predation. The breeding proportion of Apis cerena cerena to local apis population was 41.5%, 36.8%, 3.1% and 1.1%, and that of Apis mellifera Ligustica was 58.5%, 63.2%, 96.9% and 98.9% in the mountainous areas of south and west Anhui, Jianghuai area, and Huaibei plain, respectively.

  11. Urban heat island effect on cicada densities in metropolitan Seoul

    Directory of Open Access Journals (Sweden)

    Hoa Q. Nguyen

    2018-01-01

    Full Text Available Background Urban heat island (UHI effect, the ubiquitous consequence of urbanization, is considered to play a major role in population expansion of numerous insects. Cryptotympana atrata and Hyalessa fuscata are the most abundant cicada species in the Korean Peninsula, where their population densities are higher in urban than in rural areas. We predicted a positive relationship between the UHI intensities and population densities of these two cicada species in metropolitan Seoul. Methods To test this prediction, enumeration surveys of cicada exuviae densities were conducted in 36 localities located within and in the vicinity of metropolitan Seoul. Samples were collected in two consecutive periods from July to August 2015. The abundance of each species was estimated by two resource-weighted densities, one based on the total geographic area, and the other on the total number of trees. Multiple linear regression analyses were performed to identify factors critical for the prevalence of cicada species in the urban habitat. Results C. atrata and H. fuscata were major constituents of cicada species composition collected across all localities. Minimum temperature and sampling period were significant factors contributing to the variation in densities of both species, whereas other environmental factors related to urbanization were not significant. More cicada exuviae were collected in the second rather than in the first samplings, which matched the phenological pattern of cicadas in metropolitan Seoul. Cicada population densities increased measurably with the increase in temperature. Age of residential complex also exhibited a significantly positive correlation to H. fuscata densities, but not to C. atrata densities. Discussion Effects of temperature on cicada densities have been discerned from other environmental factors, as cicada densities increased measurably in tandem with elevated temperature. Several mechanisms may contribute to the abundance of

  12. High population density of Little Owl (Athene noctua) in Hortobagy National Park, Hungary, Central Europe

    Czech Academy of Sciences Publication Activity Database

    Šálek, Martin; Chrenková, M.; Kipson, M.

    2013-01-01

    Roč. 61, č. 1 (2013), s. 165-169 ISSN 1505-2249 Institutional support: RVO:68081766 Keywords : Little Owl * population density * distribution * breeding places * Hortobagy National Park * Hungary Subject RIV: EH - Ecology, Behaviour Impact factor: 0.554, year: 2013

  13. Transients drive the demographic dynamics of plant populations in variable environments

    DEFF Research Database (Denmark)

    McDonald, Jenni L; Stott, Iain; Townley, Stuart

    2016-01-01

    clear patterns related to growth form. We find a surprising tendency for plant populations to boom rather than bust in response to temporal changes in vital rates and that stochastic growth rates increase with increasing tendency to boom. Synthesis. Transient dynamics contribute significantly...

  14. Neighbourhood density and genetic relatedness interact to determine fruit set and abortion rates in a continuous tropical tree population.

    Science.gov (United States)

    Jones, F A; Comita, L S

    2008-12-07

    Tropical trees may show positive density dependence in fruit set and maturation due to pollen limitation in low-density populations. However, pollen from closely related individuals in the local neighbourhood might reduce fruit set or increase fruit abortion in self-incompatible tree species. We investigated the role of neighbourhood density and genetic relatedness on individual fruit set and abortion in the neotropical tree Jacaranda copaia in a large forest plot in central Panama. Using nested neighbourhood models, we found a strong positive effect of increased conspecific density on fruit set and maturation. However, high neighbourhood genetic relatedness interacted with density to reduce total fruit set and increase the proportion of aborted fruit. Our results imply a fitness advantage for individuals growing in high densities as measured by fruit set, but realized fruit set is lowered by increased neighbourhood relatedness. We hypothesize that the mechanism involved is increased visitation by density-dependent invertebrate pollinators in high-density populations, which increases pollen quantity and carry-over and increases fruit set and maturation, coupled with self-incompatibility at early and late stages due to biparental inbreeding that lowers fruit set and increases fruit abortion. Implications for the reproductive ecology and conservation of tropical tree communities in continuous and fragmented habitats are discussed.

  15. Distinguishing plant population and variety with UAV-derived vegetation indices

    Science.gov (United States)

    Oakes, Joseph; Balota, Maria

    2017-05-01

    Variety selection and seeding rate are two important choice that a peanut grower must make. High yielding varieties can increase profit with no additional input costs, while seeding rate often determines input cost a grower will incur from seed costs. The overall purpose of this study was to examine the effect that seeding rate has on different peanut varieties. With the advent of new UAV technology, we now have the possibility to use indices collected with the UAV to measure emergence, seeding rate, growth rate, and perhaps make yield predictions. This information could enable growers to make management decisions early in the season based on low plant populations due to poor emergence, and could be a useful tool for growers to use to estimate plant population and growth rate in order to help achieve desired crop stands. Red-Green-Blue (RGB) and near-infrared (NIR) images were collected from a UAV platform starting two weeks after planting and continued weekly for the next six weeks. Ground NDVI was also collected each time aerial images were collected. Vegetation indices were derived from both the RGB and NIR images. Greener area (GGA- the proportion of green pixels with a hue angle from 80° to 120°) and a* (the average red/green color of the image) were derived from the RGB images while Normalized Differential Vegetative Index (NDVI) was derived from NIR images. Aerial indices were successful in distinguishing seeding rates and determining emergence during the first few weeks after planting, but not later in the season. Meanwhile, these aerial indices are not an adequate predictor of yield in peanut at this point.

  16. Disjunct populations of European vascular plant species keep the same climatic niches

    DEFF Research Database (Denmark)

    Wasof, Safaa; Lenoir, Jonathan; Aarrestad, Per Arild

    2015-01-01

    separated for thousands of years. Location: European Alps and Fennoscandia. Methods: Of the studied pool of 888 terrestrial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly......Aim: Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been...... to be largely valid for arctic-alpine plants....

  17. Nitrogen and plant population change radiation capture and utilization capacity of sunflower in semi-arid environment.

    Science.gov (United States)

    Awais, Muhammad; Wajid, Aftab; Bashir, Muhammad Usman; Habib-Ur-Rahman, Muhammad; Raza, Muhammad Aown Sammar; Ahmad, Ashfaq; Saleem, Muhammad Farrukh; Hammad, Hafiz Mohkum; Mubeen, Muhammad; Saeed, Umer; Arshad, Muhammad Naveed; Fahad, Shah; Nasim, Wajid

    2017-07-01

    The combination of nitrogen and plant population expresses the spatial distribution of crop plants. The spatial distribution influences canopy structure and development, radiation capture, accumulated intercepted radiation (Sa), radiation use efficiency (RUE), and subsequently dry matter production. We hypothesized that the sunflower crop at higher plant populations and nitrogen (N) rates would achieve early canopy cover, capture more radiant energy, utilize radiation energy more efficiently, and ultimately increase economic yield. To investigate the above hypothesis, we examined the influences of leaf area index (LAI) at different plant populations (83,333, 66,666, and 55,555 plants ha -1 ) and N rates (90, 120, and 150 kg ha -1 ) on radiation interception (Fi), photosynthetically active radiation (PAR) accumulation (Sa), total dry matter (TDM), achene yield (AY), and RUE of sunflower. The experimental work was conducted during 2012 and 2013 on sandy loam soil in Punjab, Pakistan. The sunflower crop captured more than 96% of incident radiant energy (mean of all treatments), 98% with a higher plant population (83,333 plants ha -1 ), and 97% with higher N application (150 kg ha -1 ) at the fifth harvest (60 days after sowing) during both study years. The plant population of 83,333 plants ha -1 with 150 kg N ha -1 ominously promoted crop, RUE, and finally productivity of sunflower (AY and TDM). Sunflower canopy (LAI) showed a very close and strong association with Fi (R 2  = 0.99 in both years), PAR (R 2  = 0.74 and 0.79 in 2012 and 2013, respectively), TDM (R 2  = 0.97 in 2012 and 0.91 in 2013), AY (R 2  = 0.95 in both years), RUE for TDM (RUE TDM ) (R 2  = 0.63 and 0.71 in 2012 and 2013, respectively), and RUE for AY (RUE AY ) (R 2  = 0.88 and 0.87 in 2012 and 2013, respectively). Similarly, AY (R 2  = 0.73 in 2012 and 0.79 in 2013) and TDM (R 2  = 0.75 in 2012 and 0.84 in 2013) indicated significant dependence on PAR accumulation of

  18. Effect of plant-animal interactions on individual performance and population dynamics of Scorzonera hispanica

    OpenAIRE

    Červenková, Zita

    2016-01-01

    The population dynamics of plants with regard to plant-animal interactions is a remarkably complex topic. To look into how individual life stages are influenced in different directions by various animals is beyond the scope of a single paper. For each of the studies described below, I and my co-authors attempted to collect data that would cover as much of the plant life cycle as possible, focusing on interactions between plants and different animals during the flowering period and their conse...

  19. Coral reef degradation is not correlated with local human population density

    Science.gov (United States)

    Bruno, John F.; Valdivia, Abel

    2016-07-01

    The global decline of reef-building corals is understood to be due to a combination of local and global stressors. However, many reef scientists assume that local factors predominate and that isolated reefs, far from human activities, are generally healthier and more resilient. Here we show that coral reef degradation is not correlated with human population density. This suggests that local factors such as fishing and pollution are having minimal effects or that their impacts are masked by global drivers such as ocean warming. Our results also suggest that the effects of local and global stressors are antagonistic, rather than synergistic as widely assumed. These findings indicate that local management alone cannot restore coral populations or increase the resilience of reefs to large-scale impacts. They also highlight the truly global reach of anthropogenic warming and the immediate need for drastic and sustained cuts in carbon emissions.

  20. Diminished UV-absorbing nets reduce the Spreads and population density of Macrosiphum euphorbiae in lettuce.

    OpenAIRE

    Legarrea, S.; Díaz, B. M.; Plaza, M.; Barrios, L.; Morales, Ignacio; Viñuela Sandoval, Elisa; Fereres Castiel, Alberto

    2012-01-01

    UV-absorbing covers reduce the incidence of injurious insect pests and viruses in protected crops. In the present study, the effect of a UV-absorbing net (Bionet) on the spatio-temporal dynamics of the potato aphid on lettuce plants was evaluated. A field experiment was conducted during three seasons in two identical tunnels divided in four plots. A set of lettuce plants were artificially infested with Macrosiphum euphorbiae adults and the population was estimated by counting aphids on ev...

  1. Using soil seed banks to assess temporal patterns of genetic variation in invasive plant populations

    OpenAIRE

    Fennell, Mark; Gallagher, Tommy; Vintro, Luis Leon; Osborne, Bruce

    2014-01-01

    Most research on the genetics of invasive plant species has focused on analyzing spatial differences among existing populations. Using a long-established Gunnera tinctoria population from Ireland, we evaluated the potential of using plants derived from seeds associated with different soil layers to track genetic variation through time. This species and site were chosen because (1) G. tinctoria produces a large and persistent seed bank; (2) it has been present in this locality, Sraheens, for ∼...

  2. Uncoupling the effects of seed predation and seed dispersal by granivorous ants on plant population dynamics.

    Directory of Open Access Journals (Sweden)

    Xavier Arnan

    Full Text Available Secondary seed dispersal is an important plant-animal interaction, which is central to understanding plant population and community dynamics. Very little information is still available on the effects of dispersal on plant demography and, particularly, for ant-seed dispersal interactions. As many other interactions, seed dispersal by animals involves costs (seed predation and benefits (seed dispersal, the balance of which determines the outcome of the interaction. Separate quantification of each of them is essential in order to understand the effects of this interaction. To address this issue, we have successfully separated and analyzed the costs and benefits of seed dispersal by seed-harvesting ants on the plant population dynamics of three shrub species with different traits. To that aim a stochastic, spatially-explicit individually-based simulation model has been implemented based on actual data sets. The results from our simulation model agree with theoretical models of plant response dependent on seed dispersal, for one plant species, and ant-mediated seed predation, for another one. In these cases, model predictions were close to the observed values at field. Nonetheless, these ecological processes did not affect in anyway a third species, for which the model predictions were far from the observed values. This indicates that the balance between costs and benefits associated to secondary seed dispersal is clearly related to specific traits. This study is one of the first works that analyze tradeoffs of secondary seed dispersal on plant population dynamics, by disentangling the effects of related costs and benefits. We suggest analyzing the effects of interactions on population dynamics as opposed to merely analyzing the partners and their interaction strength.

  3. Seasonal population dynamics of Homalodisca vitripennis (Hemiptera: Cicadellidae) in sweet orange trees maintained under continuous deficit irrigation.

    Science.gov (United States)

    Krugner, Rodrigo; Groves, Russell L; Johnson, Marshall W; Flores, Arnel P; Hagler, James R; Morse, Joseph G

    2009-06-01

    A 2-yr study was conducted in a citrus orchard (Citrus sinensis L. Osbeck cultivar Valencia) to determine the influence of plant water stress on the population dynamics of glassy-winged sharpshooter, Homalodisca vitripennis (Germar). Experimental treatments included irrigation at 100% of the crop evapotranspiration rate (ET(c)) and continuous deficit-irrigation regimens at 80 and 60% ET(c). Microclimate and plant conditions monitored included temperature and humidity in the tree canopy, leaf surface temperature, water potential, and fruit quality and yield. Glassy-winged sharpshooter population densities and activity were monitored weekly by a combination of visual inspections, beat net sampling, and trapping. Glassy-winged sharpshooter populations were negatively affected by severe plant water stress; however, population densities were not linearly related to decreasing water availability in plants. Citrus trees irrigated at 60% ET(c) had significantly warmer leaves, lower xylem water potential, and consequently hosted fewer glassy-winged sharpshooter eggs, nymphs, and adults than trees irrigated at 80% ET(c). Citrus trees irrigated at 100% ET(c) hosted similar numbers of glassy-winged sharpshooter stages as trees irrigated at 60% ET(c) and a lower number of glassy-winged sharpshooter nymphs than the 80% ET(c) treatment, specifically during the nymphal density peak in mid-April to early July. Irrigation treatments did not affect populations of monitored natural enemies. Although the adult glassy-winged sharpshooter population was reduced, on average, by 50% in trees under severe water stress, the total number of fruit and number of fruit across several fruit grade categories were significantly lower in the 60% ET(c) than in the 80 and 100% ET(c) irrigation treatments.

  4. Population density of Sotalia guianensis (Cetacea: Delphinidae in the Cananéia region, Southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Liisa Havukainen

    2011-09-01

    Full Text Available Population density in cetaceans can be estimated through photo-identification, mark-recapture, land-based observations and visual estimative. We the aim to contribute with conservation strategies, we used line transects (distance method to estimate the population density of the river dolphin, S. guianensis, in the estuarine region of Cananéia, Southeastern Brazil. The study, developed from May 2003 until April 2004, during dry and rainy seasons and different times of the day, included a sampling area divided into three sectors according to their proximity to the open sea: Sector I (the closest to the open sea; Sector II (with a large flow of fresh water and a salient declivity; and Sector III (with a large flow of fresh water and non salient declivity. Onboard random sampling was carried out in all three sectors, and dolphins seen from the bow to 90° on both port and starboard sides, were registered along with their position and distance from the boat. The total density found was 12.41ind/km² (CV=25.53% with an average of 2.2 individuals per group for both periods of the day, morning and afternoon. Densities also varied between dry and rainy seasons, being lower in the first with 5.77ind/km² (CV=27.87% than in the second 20.28ind/km² (CV=31.95%, respectively. Regarding the three sectors, a non-causal heterogeneous distribution was found: Sector I was the most populated (D=33.10ind/km², CV=13.34%, followed by Sector II (D=7.8ind/km², CV=21.07% and Sector III (D=3.04ind/km², CV=34.04%. The aforementioned area, due to its proximity to the open sea, has the highest salinity level and therefore has the greatest chance of holding most of the marine fish schools which can be cornered by dolphins on high declivity areas during fishing activities. This suggests that food availability may be the most important factor on the river dolphin’s distribution in the estuary. Similar studies will contribute to a better understanding of these populations

  5. Inferring cetacean population densities from the absolute dynamic topography of the ocean in a hierarchical Bayesian framework.

    Directory of Open Access Journals (Sweden)

    Mario A Pardo

    Full Text Available We inferred the population densities of blue whales (Balaenoptera musculus and short-beaked common dolphins (Delphinus delphis in the Northeast Pacific Ocean as functions of the water-column's physical structure by implementing hierarchical models in a Bayesian framework. This approach allowed us to propagate the uncertainty of the field observations into the inference of species-habitat relationships and to generate spatially explicit population density predictions with reduced effects of sampling heterogeneity. Our hypothesis was that the large-scale spatial distributions of these two cetacean species respond primarily to ecological processes resulting from shoaling and outcropping of the pycnocline in regions of wind-forced upwelling and eddy-like circulation. Physically, these processes affect the thermodynamic balance of the water column, decreasing its volume and thus the height of the absolute dynamic topography (ADT. Biologically, they lead to elevated primary productivity and persistent aggregation of low-trophic-level prey. Unlike other remotely sensed variables, ADT provides information about the structure of the entire water column and it is also routinely measured at high spatial-temporal resolution by satellite altimeters with uniform global coverage. Our models provide spatially explicit population density predictions for both species, even in areas where the pycnocline shoals but does not outcrop (e.g. the Costa Rica Dome and the North Equatorial Countercurrent thermocline ridge. Interannual variations in distribution during El Niño anomalies suggest that the population density of both species decreases dramatically in the Equatorial Cold Tongue and the Costa Rica Dome, and that their distributions retract to particular areas that remain productive, such as the more oceanic waters in the central California Current System, the northern Gulf of California, the North Equatorial Countercurrent thermocline ridge, and the more

  6. Effect of tillage and crop residue management on nematode densities on corn.

    Science.gov (United States)

    McSorley, R; Gallaher, R N

    1994-12-01

    Effects of winter cover crop management on nematode densities associated with a subsequent corn (Zea mays) crop were examined in five sites in north Florida. Two sites had received winter cover crops of lupine (Lupinus angustifolius), and one site each had rye (Secale cereale), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). In each site, five different management regimes were compared: 1) conventional tillage after the cover crop was removed for forage; 2) conventional tillage with the cover crop retained as green manure; 3) no-till with the cover crop mowed and used as a mulch; 4) no-till with the cover crop removed as forage; and 5) fallow. Sites were sampled at corn planting and harvest for estimates of initial (Pi) and final (Pf) nematode population densities, respectively. Whether the cover crop was removed as forage or retained as green manure or mulch had no effect (P > 0.10) on population densities of any plant-parasitic nematode before or after corn at any site. Differences between conventional-till and no-till treatments were significant (P cover crop residues had little consistent effect on nematodes, and these practices should be considered based on agronomic benefits rather than for nematode management.

  7. Dynamics of a low-density tiger population in Southeast Asia in the context of improved law enforcement.

    Science.gov (United States)

    Duangchantrasiri, Somphot; Umponjan, Mayuree; Simcharoen, Saksit; Pattanavibool, Anak; Chaiwattana, Soontorn; Maneerat, Sompoch; Kumar, N Samba; Jathanna, Devcharan; Srivathsa, Arjun; Karanth, K Ullas

    2016-06-01

    Recovering small populations of threatened species is an important global conservation strategy. Monitoring the anticipated recovery, however, often relies on uncertain abundance indices rather than on rigorous demographic estimates. To counter the severe threat from poaching of wild tigers (Panthera tigris), the Government of Thailand established an intensive patrolling system in 2005 to protect and recover its largest source population in Huai Kha Khaeng Wildlife Sanctuary. Concurrently, we assessed the dynamics of this tiger population over the next 8 years with rigorous photographic capture-recapture methods. From 2006 to 2012, we sampled across 624-1026 km(2) with 137-200 camera traps. Cameras deployed for 21,359 trap days yielded photographic records of 90 distinct individuals. We used closed model Bayesian spatial capture-recapture methods to estimate tiger abundances annually. Abundance estimates were integrated with likelihood-based open model analyses to estimate rates of annual and overall rates of survival, recruitment, and changes in abundance. Estimates of demographic parameters fluctuated widely: annual density ranged from 1.25 to 2.01 tigers/100 km(2) , abundance from 35 to 58 tigers, survival from 79.6% to 95.5%, and annual recruitment from 0 to 25 tigers. The number of distinct individuals photographed demonstrates the value of photographic capture-recapture methods for assessments of population dynamics in rare and elusive species that are identifiable from natural markings. Possibly because of poaching pressure, overall tiger densities at Huai Kha Khaeng were 82-90% lower than in ecologically comparable sites in India. However, intensified patrolling after 2006 appeared to reduce poaching and was correlated with marginal improvement in tiger survival and recruitment. Our results suggest that population recovery of low-density tiger populations may be slower than anticipated by current global strategies aimed at doubling the number of wild tigers

  8. Spatial relationship between human population density, land use intensity and biodiversity in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Vačkář, David; Chobot, K.; Orlitová, E.

    2012-01-01

    Roč. 27, č. 9 (2012), s. 1279-1290 ISSN 0921-2973 Institutional support: RVO:67179843 Keywords : species richness * landscape diversity * human population density * human appropriation of net primary production * Czech Republic Subject RIV: EH - Ecology, Behaviour Impact factor: 2.897, year: 2012

  9. Effects of larval population density on rates of development and interactions between two species of Chrysomya (Diptera: Calliphoridae) in laboratory culture.

    Science.gov (United States)

    Goodbrod, J R; Goff, M L

    1990-05-01

    Rearing of Chrysomya megacephala (F.) and Chrysomya rufifacies (Macquart) in pure cultures at seven different population densities (larvae per gram of liver) demonstrated an inverse relationship between density and the duration of the larval stage. In pure cultures, larval mortality rates decreased with increasing density until an optimum density was reached (8 larvae/g liver for C. megacephala and 10 larvae/g liver for C. rufifacies), then decreased directly with density. Puparial and adult weights varied inversely with density for both species in pure cultures. Internal feeding mass temperatures were above ambient temperatures for all cultures, with maximum temperatures recorded in cultures with 20 and 40 larvae/g liver for G. rufifacies and C. megacephala, respectively. In paired encounters, larvae of C. rufifacies were cannibalistic and predatory on C. megacephala larvae after the first instar. In mixed cultures of these two species, the larval mortality of C. rufifacies remained relatively stable, whereas the larval mortality of C. megacephala increased directly with population density.

  10. Escape from the competence state in Streptococcus mutans is governed by the bacterial population density.

    Science.gov (United States)

    Dufour, D; Villemin, C; Perry, J A; Lévesque, C M

    2016-12-01

    Horizontal gene transfer through natural DNA transformation is an important evolutionary mechanism among bacteria. Transformation requires that the bacteria are physiologically competent to take and incorporate free DNA directly from the environment. Although natural genetic transformation is a remarkable feature of many naturally competent bacteria, the process is energetically expensive for the cells. Consequently, a tight control of the competence state is necessary. The objective of the present work was to help decipher the molecular mechanisms regulating the escape from the competence state in Streptococcus mutans, the principal etiological agent responsible for tooth decay in humans. Our results showed that the cessation of competence in S. mutans was abrupt, and did not involve the accumulation of a competence inhibitor nor the depletion of a competence activator in the extracellular environment. The competence state was repressed at high cell population density via concomitant repression of sigX gene encoding the master regulator of the competence regulon. Co-culture experiments performed with oral and non-oral bacteria showed that S. mutans assesses its own population density and also the microbial density of its surroundings to regulate its competence escape. Interestingly, neither the intra-species and extra-species quorum-sensing systems nor the other 13 two-component regulatory systems identified in S. mutans were involved in the cell-density-dependent escape of the competence state. Altogether, our results suggest a complex mechanism regulating the competence shut-off involving cell-density-dependent repression of sigX through an as yet undefined system, and possibly SigX protein stability. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population.

    Directory of Open Access Journals (Sweden)

    Kiwako S Araki

    Full Text Available In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals. We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers. We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms

  12. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population.

    Science.gov (United States)

    Araki, Kiwako S; Kubo, Takuya; Kudoh, Hiroshi

    2017-01-01

    In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for

  13. Transgenerational effects alter plant defence and resistance in nature.

    Science.gov (United States)

    Colicchio, J

    2017-04-01

    Trichomes, or leaf hairs, are epidermal extensions that take a variety of forms and perform many functions in plants, including herbivore defence. In this study, I document genetically determined variation, within-generation plasticity, and a direct role of trichomes in herbivore defence for Mimulus guttatus. After establishing the relationship between trichomes and herbivory, I test for transgenerational effects of wounding on trichome density and herbivore resistance. Patterns of interannual variation in herbivore density and the high cost of plant defence makes plant-herbivore interactions a system in which transgenerational phenotypic plasticity (TPP) is apt to evolve. Here, I demonstrate that parental damage alters offspring trichome density and herbivore resistance in nature. Moreover, this response varies between populations. This is among the first studies to demonstrate that TPP contributes to variation in nature, and also suggests that selection can modify TPP in response to local conditions. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  14. Unique Features of High-Density Lipoproteins in the Japanese: In Population and in Genetic Factors

    Directory of Open Access Journals (Sweden)

    Shinji Yokoyama

    2015-04-01

    Full Text Available Despite its gradual increase in the past several decades, the prevalence of atherosclerotic vascular disease is low in Japan. This is largely attributed to difference in lifestyle, especially food and dietary habits, and it may be reflected in certain clinical parameters. Plasma high-density lipoprotein (HDL levels, a strong counter risk for atherosclerosis, are indeed high among the Japanese. Accordingly, lower HDL seems to contribute more to the development of coronary heart disease (CHD than an increase in non-HDL lipoproteins at a population level in Japan. Interestingly, average HDL levels in Japan have increased further in the past two decades, and are markedly higher than in Western populations. The reasons and consequences for public health of this increase are still unknown. Simulation for the efficacy of raising HDL cholesterol predicts a decrease in CHD of 70% in Japan, greater than the extent by reducing low-density lipoprotein cholesterol predicted by simulation or achieved in a statin trial. On the other hand, a substantial portion of hyperalphalipoproteinemic population in Japan is accounted for by genetic deficiency of cholesteryl ester transfer protein (CETP, which is also commonly unique in East Asian populations. It is still controversial whether CETP mutations are antiatherogenic. Hepatic Schistosomiasis is proposed as a potential screening factor for historic accumulation of CETP deficiency in East Asia.

  15. Evolution in plant populations as a driver of ecological changes in arthropod communities.

    Science.gov (United States)

    Johnson, Marc T J; Vellend, Mark; Stinchcombe, John R

    2009-06-12

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  16. Evolution in plant populations as a driver of ecological changes in arthropod communities

    Science.gov (United States)

    Johnson, Marc T.J.; Vellend, Mark; Stinchcombe, John R.

    2009-01-01

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  17. Damage of Rhopalosiphum padi (L.) (Hemiptera: Aphididae) on wheat plants related to duration time and density of infestation

    International Nuclear Information System (INIS)

    Roza-Gomes, Margarida F.; Salvadori, Jose R.; Schons, Jurema

    2008-01-01

    Aphids are considered relevant pests on wheat either by direct damage through sap sucking or by indirect damage vectoring BYDV (Barley yellow dwarf virus). Rhopalosiphum padi L. has been observed infesting wheat fields with an increasing frequency. The knowledge and the available technology, besides being more related to other aphids species already recognized as pests, they are insufficient to control the specific c problem of R. padi. Thus, this work evaluated the effects of feeding duration and infestation densities of R. padi on seedlings of wheat cv. EMBRAPA 16. rain yield, yield components and the extent of symptoms were recorded. The experiment was carried out in the fi eld under a completely randomized split-plot experimental design with four replications. The main plot was feeding duration (two and seven days) and the sub-plots were infestation densities (zero, two and 10 aphids per plant). Independent on feeding duration, 10 aphids per plant resulted in significant yield losses, reduction of number of heads and tillers per plant. Canopy dry matter was also reduced. Infestations of two and 10 aphids per plant resulted in continuous yellowing of wheat plants from tillering to the end of flowering stage. When aphids fed for seven days on wheat, more yellowing symptoms were observed at the flower stage in comparison with two days feeding. (author)

  18. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    Science.gov (United States)

    Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, ‘Wennong6’ and ‘Jimai20’, were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The results showed that the effects of spikelet and grain positions on grain weight varied with the grain number of spikelets. In both cultivars, the single-grain weight of the basal and middle two-grain spikelets was higher at the 2nd grain position than that at the 1st grain position, while the opposite occurred in the top two-grain spikelets. In the three-grain spikelets, the distribution of the single-grain weight was different between cultivars. In the four-grain spikelets of Wennong6, the single-grain weight was the highest at the 2nd grain position, followed by the 1st, 3rd, and 4th grain positions. Regardless of the spikelet and grain positions, the single-grain weight was the highest at the 1st and 2nd grain positions and the lowest at the 3rd and 4th grain positions. Overall, plant density affected the yield by controlling the seed-setting characteristics of the tiller spike. Therefore, wheat yield can be increased by decreasing the sterile basal and top spikelets and enhancing the grain weight at the 3rd and 4th grain positions, while maintaining it at the 1st and 2nd grain positions on the spikelet. PMID:27171343

  19. Dynamics of a recovering Arctic bird population: the importance of climate, density dependence, and site quality

    Science.gov (United States)

    Bruggeman, Jason E.; Swem, Ted; Andersen, David E.; Kennedy, Patricia L.; Nigro, Debora A.

    2015-01-01

    Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve–Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably

  20. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution – Application to the jaguar (Panthera onca)

    Science.gov (United States)

    Robinson, Hugh S.; Abarca, Maria; Zeller, Katherine A.; Velasquez, Grisel; Paemelaere, Evi A. D.; Goldberg, Joshua F.; Payan, Esteban; Hoogesteijn, Rafael; Boede, Ernesto O.; Schmidt, Krzysztof; Lampo, Margarita; Viloria, Ángel L.; Carreño, Rafael; Robinson, Nathaniel; Lukacs, Paul M.; Nowak, J. Joshua; Salom-Pérez, Roberto; Castañeda, Franklin; Boron, Valeria; Quigley, Howard

    2018-01-01

    Broad scale population estimates of declining species are desired for conservation efforts. However, for many secretive species including large carnivores, such estimates are often difficult. Based on published density estimates obtained through camera trapping, presence/absence data, and globally available predictive variables derived from satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar, across the species’ entire range. We then combined these models in a hierarchical framework to estimate the total population. Our models indicate that potential jaguar density is best predicted by measures of primary productivity, with the highest densities in the most productive tropical habitats and a clear declining gradient with distance from the equator. Jaguar distribution, in contrast, is determined by the combined effects of human impacts and environmental factors: probability of jaguar occurrence increased with forest cover, mean temperature, and annual precipitation and declined with increases in human foot print index and human density. Probability of occurrence was also significantly higher for protected areas than outside of them. We estimated the world’s jaguar population at 173,000 (95% CI: 138,000–208,000) individuals, mostly concentrated in the Amazon Basin; elsewhere, populations tend to be small and fragmented. The high number of jaguars results from the large total area still occupied (almost 9 million km2) and low human densities (conservation actions. PMID:29579129

  1. Effects of biological control agents and exotic plant invasion on deer mouse populations

    Science.gov (United States)

    Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey

    2004-01-01

    Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...

  2. Dynamic Responses in a Plant-Insect System to Fertilization by Cormorant Feces

    Directory of Open Access Journals (Sweden)

    Gundula Kolb

    2015-04-01

    Full Text Available Theoretical arguments suggest that increased plant productivity may not only increase consumer densities but also their fluctuations. While increased consumer densities are commonly observed in fertilization experiments, experiments are seldom performed at a spatial and temporal scale where effects on population fluctuations may be observed. In this study we used a natural gradient in soil fertility caused by cormorant nesting. Cormorants feed on fish but defecate on their nesting islands. On these islands we studied soil nutrient availability, plant nutrient content and the density of Galerucella beetles, main herbivores feeding on Lythrum salicaria. In a common garden experiment, we followed larval development on fertilized plants and estimated larval stoichiometry. Soil nutrient availability varied among islands, and several cormorant islands had very high N and P soil content. Plant nutrient content, however, did not vary among islands, and there was no correlation between soil and plant nutrient contents. Beetle densities increased with plant nutrient content in the field study. However, there was either no effect on temporal fluctuations in beetle density or that temporal fluctuations decreased (at high P. In the common garden experiment, we found limited responses in either larval survival or pupal weights to fertilization. A possible mechanism for the limited effect of fertilization on density fluctuations may be that the distribution of L. salicaria on nesting islands was restricted to sites with a lower N and P content, presumably because high N loads are toxic.

  3. Spatial heterogeneity in soil microbes alters outcomes of plant competition.

    Directory of Open Access Journals (Sweden)

    Karen C Abbott

    Full Text Available Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical

  4. Spatial heterogeneity in soil microbes alters outcomes of plant competition.

    Science.gov (United States)

    Abbott, Karen C; Karst, Justine; Biederman, Lori A; Borrett, Stuart R; Hastings, Alan; Walsh, Vonda; Bever, James D

    2015-01-01

    Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical results constitute an

  5. Productivity and water use by rain-fed early maturing Cassava (Manihot esculenta Crantz) varieties grown at different plant densities in a coastal savannah environment

    International Nuclear Information System (INIS)

    Amanor, Emmanuel Nartey

    2016-06-01

    The production of cassava (Manihot esculenta Crantz) under rain-fed conditions at the Kwabenya-Atomic area in the coastal savannah environment is constrained by low and erratic rainfall events. Improving cassava production in the area requires the use of cassava varieties which are efficient in the use of limited soil moisture. The objective of the study was to evaluate the response of two early maturing cassava varieties to three (3) planting densities to TDM, RY, and WUE. The actual evapotranspiration was also partitioned into crop transpiration and soil evaporation using LAI data. The field experiment was conducted at Biotechnology and Nuclear Agriculture Research Institute (BNARI) research farm, Atomic Energy Commission (GAEC), Kwabenya-Atomic in 2015. The split plot design in three replicates was used. The two (2) cassava varieties, Bankye Hemaa and Capevars Bankye, were assigned to the main plots and three (3) planting densities: 10,000, 13,333 and 20,000 plants ha"-1 to the subplots. Plants were sampled each month and moisture in the 120 cm soil profile monitored every two weeks using the neutron probe (CPN 503 Hydroprobe). Soil moisture data were used to estimate actual evapotranspiration (AET) using the water balance approach. Root yield (RY) for Bankye Hemaa and Capevars Bankye, ranged from 2.8 to 15.1 t/ha"-1 for the 10,000 plants ha"-1, 4.2 to 18.1 t/ha"-1 for the 13,333 plants ha"-1 and 5.1 to 21.3 t/ha"-1 for the 20,000 plants ha"-1. Additionally, water use efficiency in term of total dry matter (WUETDM ) for the two cassava varieties ranged from 1.7 to 11.6, 2.3 to 12.8 and 3.7 to 12.4 kg ha"-1 mm"-1 for the 10,000, 13,333 and 20,000 plants ha"-1 planting density, respectively. Bankye Hemaa grown at 20,000 plants ha"-1 produced the highest root yield of 21.3 t/ha"-1 and WUETDM of 12.4 kg ha"-1 mm"-1, because of the comparatively lower soil evaporation which led to increased available soil water for crop use and higher crop transpiration, leading to

  6. Maternal effects on male weaponry: female dung beetles produce major sons with longer horns when they perceive higher population density

    Directory of Open Access Journals (Sweden)

    Buzatto Bruno A

    2012-07-01

    Full Text Available Abstract Background Maternal effects are environmental influences on the phenotype of one individual that are due to the expression of genes in its mother, and are expected to evolve whenever females are better capable of assessing the environmental conditions that their offspring will experience than the offspring themselves. In the dung beetle Onthophagus taurus, conditional male dimorphism is associated with alternative reproductive tactics: majors fight and guard females whereas minors sneak copulations. Furthermore, variation in dung beetle population density has different fitness consequences for each male morph, and theory predicts that higher population density might select for a higher frequency of minors and/or greater expenditure on weaponry in majors. Because adult dung beetles provide offspring with all the nutritional resources for their development, maternal effects strongly influence male phenotype. Results Here we tested whether female O. taurus are capable of perceiving population density, and responding by changing the phenotype of their offspring. We found that mothers who were reared with other conspecifics in their pre-mating period produced major offspring that had longer horns across a wider range of body sizes than the major offspring of females that were reared in isolation in their pre-mating period. Moreover, our results indicate that this maternal effect on male weaponry does not operate through the amount of dung provided by females to their offspring, but is rather transmitted through egg or brood mass composition. Finally, although theory predicts that females experiencing higher density might produce more minor males, we found no support for this, rather the best fitting models were equivocal as to whether fewer or the same proportions of minors were produced. Conclusions Our study describes a new type of maternal effect in dung beetles, which probably allows females to respond to population density adaptively

  7. A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations.

    Science.gov (United States)

    Agrawal, Anurag A; Johnson, Marc T J; Hastings, Amy P; Maron, John L

    2013-05-01

    The extent to which evolutionary change occurs in a predictable manner under field conditions and how evolutionary changes feed back to influence ecological dynamics are fundamental, yet unresolved, questions. To address these issues, we established eight replicate populations of native common evening primrose (Oenothera biennis). Each population was planted with 18 genotypes in identical frequency. By tracking genotype frequencies with microsatellite DNA markers over the subsequent three years (up to three generations, ≈5,000 genotyped plants), we show rapid and consistent evolution of two heritable plant life-history traits (shorter life span and later flowering time). This rapid evolution was only partially the result of differential seed production; genotypic variation in seed germination also contributed to the observed evolutionary response. Since evening primrose genotypes exhibited heritable variation for resistance to insect herbivores, which was related to flowering time, we predicted that evolutionary changes in genotype frequencies would feed back to influence populations of a seed predator moth that specializes on O. biennis. By the conclusion of the experiment, variation in the genotypic composition among our eight replicate field populations was highly predictive of moth abundance. These results demonstrate how rapid evolution in field populations of a native plant can influence ecological interactions.

  8. The Effect of Drought Stress and Plant Density on Biochemical and Physiological Characteristics of Two Garlic (Allium sativum L. Ecotypes

    Directory of Open Access Journals (Sweden)

    Sh Akbari

    2017-03-01

    Full Text Available Introduction Drought stress is the most important growth limiting factor for crop production. Sugar accumulation under drought stress strengthens and stabilizes cell membranes and maintains the water absorption and turgid property. Under stress conditions, proline will also maintain the turgor pressure and decreased the damages caused to plant membrane. Although proline concentrations may have undesirable effects on plant growth, because of deflecting photosynthetic resources to the processes that are not involved in plant growth. Chloroplasts and its pigments are also affected by drought stress. Density is one of the factors that has a significant impact on plant growth. Garlic is one of the edible plants which has generated considerable interest throughout human history because of its pharmaceutical properties. This study aimed to determine the effects of drought stress and plant density on some biochemical and physiological treats of two garlic ecotypes and determining the more resistant ecotype. Materials and Methods The study was carried out in 2011-2012 in a farm land at the south east of Semnan city. The experimental layout was a split-plot factorial with a randomized complete block design in three replications. The treatments were comprised of three factors: irrigation regimes (60%, 80% and 100% of estimated crop evapotranspiration (ETC that were assigned as the main plot and the factorial combination of 3 levels of planting density (30, 40 and 50 plants. m-2 and two ecotypes (Tabas and Toroud made up the sub-plots. The water requirement was calculated based on FAO-56 crop water requirements instruction. FAO-56 Penman-Monteith equation was used to calculate evapotranspiration. To calculate the content of soluble sugar, proline and leaves pigment, the samples were collected in a random way from the youngest fully expended leaves one month before the final harvest. Relative water content was estimated by measuring dry weight, fresh weight

  9. Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat.

    Science.gov (United States)

    Naeem, Muhammad; Aslam, Zubair; Khaliq, Abdul; Ahmed, Jam Nazir; Nawaz, Ahmad; Hussain, Mubshar

    2018-04-24

    Plant growth promoting rhizobacteria increase plant growth and give protection against insect pests and pathogens. Due to the negative impact of chemical pesticides on environment, alternatives to these chemicals are needed. In this scenario, the biological methods of pest control offer an eco-friendly and an attractive option. In this study, the effect of two plant growth promoting rhizobacterial strains (Bacillus sp. strain 6 and Pseudomonas sp. strain 6K) on aphid population and wheat productivity was evaluated in an aphid susceptible (Pasban-90) and resistant (Inqlab-91) wheat cultivar. The seeds were inoculated with each PGPR strain, separately or the combination of both. The lowest aphid population (2.1tiller -1 ), and highest plant height (85.8cm), number of spikelets per spike (18), grains per spike (44), productive tillers (320m -2 ), straw yield (8.6Mgha -1 ), and grain yield (4.8Mgha -1 ) were achieved when seeds were inoculated with Bacillus sp. strain 6+Pseudomonas sp. strain 6K. The grain yield of both varieties was enhanced by 35.5-38.9% with seed inoculation with both bacterial strains. Thus, the combine use of both PGPR strains viz. Bacillus sp. strain 6+Pseudomonas sp. strain 6K offers an attractive option to reduce aphid population tied with better wheat productivity. Copyright © 2018 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Conservation state of populations of rare plant species in highly transformed meadow steppes of Southern Opillya

    Directory of Open Access Journals (Sweden)

    I. I. Dmytrash-Vatseba

    2016-09-01

    Full Text Available Degradation of natural habitats causes rapid extinction of rare plant populations. The diversity of rare plant species in the meadow steppes of Southern Opillya (Western Ukraine depends strongly on patch area, pasture digression of vegetation and a variety of eco-coenotical conditions. The main threats for the rare components of the meadow steppe flora are reduction of habitat and overgrazing. Spatial connections between sites are unable to support a constant rare plant population. The analysis of the composition of rare plant meadow-steppe species indicated that habitats with similar rare species composition usually have similar parameters of area, stages of pasture digression and eco-coenotical conditions. Spatial connectivity of patches does not ensure species similarity of rare components of the flora. Rare plant species were grouped according to their preferences for habitat , area and condition. In small patches subject to any stage of pasture digression grow populations of Adonis vernalis L., Pulsatilla patens (L. Mill., P. grandis Wender., Stipa capillata L., S. рennata L., Chamaecytisus blockianus (Pawł. Klásková etc. On the contrary, populations of other species (Carlina onopordifolia Besser. ex Szafer., Kuecz. et Pawł., Adenophora liliifolia (L. Ledeb. ex A. DC., Crambe tataria Sebeók, Euphorbia volhynica Besser ex Racib., Stipa tirsa Stev. etc. prefer large habitats, not changed by pasture digression. Prevention of reduction of rare species diversity requires preservation (also extension of patch area and regulation of grazing intensity.

  11. Effects of Tropical Rotation Crops on Meloidogyne arenaria Population Densities and Vegetable Yields in Microplots.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hewlett, T E; Frederick, J J

    1994-06-01

    The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P crops may provide a means for depressing M. arenaria population densities on a short-term basis to enhance yields in a subsequent susceptible vegetable crop.

  12. Density and spin linear response of atomic Fermi superfluids with population imbalance in the BCS–BEC crossover

    International Nuclear Information System (INIS)

    Guo, Hao; Li, Yang; He, Yan; Chien, Chih-Chun

    2014-01-01

    We present a theoretical study of the density and spin (representing the two components) linear response of Fermi superfluids with tunable attractive interactions and population imbalance. In both linear response theories, we find that the fluctuations of the order parameter must be treated on equal footing with the gauge transformations associated with the symmetries of the Hamiltonian so that important constraints including various sum rules can be satisfied. Both theories can be applied to the whole BCS–Bose–Einstein condensation crossover. The spin linear responses are qualitatively different with and without population imbalance because collective-mode effects from the fluctuations of the order parameter survive in the presence of population imbalance, even though the associated symmetry is not broken by the order parameter. Since a polarized superfluid becomes unstable at low temperatures in the weak and intermediate coupling regimes, we found that the density and spin susceptibilities diverge as the system approaches the unstable regime, but the emergence of phase separation preempts the divergence. (paper)

  13. Impact Of Different Time Planting In Soybeans And Neem Seed Extract Application To Insect Population On Rice Field

    Directory of Open Access Journals (Sweden)

    Tamrin Abdullah

    2015-08-01

    Full Text Available Abstract The purpose of research is to study impact of different time planting of soybean and neem seed extract application to pest insect population on rice field. The research was used Random Block Design in three treatment of insecticides application i.e neem seed extract together with rice planting neem seed extract on soybean 17 days after rice planting synthetic insecticides on 17 days after rice planting Delthametrin on soybean and Chlorpirifos on rice respectively. Research was conducted in rice fields with irrigation channels. The land area is 0.8 hectares with extensive experiments each rice terraces approximately 900 m2 with separate by rice terraces for every treatment. Each treatment consisted of three groups and using nine rice terraces. Samples of the rice plant population is 25 plants per sample unit. The results was showed treatment by neem seed extract with different time planting of soybeans able to reduce number of pest insects populations such as N. virescens 80.38 N. lugens 67.17 S. incertulas 66.5 and L. oratorius 93.46 when compared to treatment with synthetic insecticides Delthamethrin and Chlorpyrifos.

  14. Pressure and density measurements of selected fluid-bearing zones at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Winstanley, D.; Carrasco, R.; Zurkoff, J.

    1986-01-01

    A field effort is presently being conducted at the Waste Isolation Pilot Plant (WIPP) to collect accurate pressure and density information from the Culebra and Magenta dolomite members of the Rustler formation. The spatial variation of fluid density that occurs in these water-bearing units requires the use of numerical models to accurately solve for flow direction and velocity. The groundwater regime is a vital element in possible release scenarios of radionuclide-bearing fluid from the repository. Field tests were conducted on four wells utilizing a testing apparatus composed of two pressure and temperature monitoring systems and a point water sampler. Pressure versus depth plots are linear with a correlation coefficient of 0.999 or greater. Comparison of the calculated density and measured density of water obtained at depth agree within 2 percent of density measurements obtained after continuous pumping of the formation for several days before sampling. The temperature gradients ranged from 0.4 0 to 0.6 0 C per 100 feet. The data presented here are preliminary and serve as developmental information for the detailed operating plan currently under preparation

  15. Phytoseiulus persimilis response to herbivore-induced plant volatiles as a function of mite-days.

    Science.gov (United States)

    Nachappa, Punya; Margolies, David C; Nechols, James R; Loughin, Thomas

    2006-01-01

    The predatory mite, Phytoseiulus persimilis (Acari: Phytoseiidae), uses plant volatiles (i.e., airborne chemicals) triggered by feeding of their herbivorous prey, Tetranychus urticae (Acari: Tetranychidae), to help locate prey patches. The olfactory response of P. persimilis to prey-infested plants varies in direct relation to the population growth pattern of T. urticae on the plant; P. persimilis responds to plants until the spider mite population feeding on a plant collapses, after which infested plants do not attract predators. It has been suggested that this represents an early enemy-free period for T. urticae before the next generation of females is produced. We hypothesize that the mechanism behind the diminished response of predators is due to extensive leaf damage caused by T. urticae feeding, which reduces the production of volatiles irrespective of the collapse of T. urticae population on the plant. To test this hypothesis we investigated how the response of P. persimilis to prey-infested plants is affected by: 1) initial density of T. urticae, 2) duration of infestation, and 3) corresponding leaf damage due to T. urticae feeding. Specifically, we assessed the response of P. persimilis to plants infested with two T. urticae densities (20 or 40 per plant) after 2, 4, 6, 8, 10, 12 or 14 days. We also measured leaf damage on these plants. We found that predator response to T. urticae-infested plants can be quantified as a function of mite-days, which is a cumulative measure of the standing adult female mite population sampled and summed over time. That is, response to volatiles increased with increasing numbers of T. urticae per plant or with the length of time plant was infested by T. urticae, at least as long at the leaves were green. Predatory mites were significantly attracted to plants that were infested for 2 days with only 20 spider mites. This suggests that the enemy-free period might only provide a limited window of opportunity for T. urticae

  16. Population age and initial density in a patchy environment affect the occurrence of abrupt transitions in a birth-and-death model of Taylor's law

    Science.gov (United States)

    Jiang, Jiang; DeAngelis, Donald L.; Zhang, B.; Cohen, J.E.

    2014-01-01

    Taylor's power law describes an empirical relationship between the mean and variance of population densities in field data, in which the variance varies as a power, b, of the mean. Most studies report values of b varying between 1 and 2. However, Cohen (2014a) showed recently that smooth changes in environmental conditions in a model can lead to an abrupt, infinite change in b. To understand what factors can influence the occurrence of an abrupt change in b, we used both mathematical analysis and Monte Carlo samples from a model in which populations of the same species settled on patches, and each population followed independently a stochastic linear birth-and-death process. We investigated how the power relationship responds to a smooth change of population growth rate, under different sampling strategies, initial population density, and population age. We showed analytically that, if the initial populations differ only in density, and samples are taken from all patches after the same time period following a major invasion event, Taylor's law holds with exponent b=1, regardless of the population growth rate. If samples are taken at different times from patches that have the same initial population densities, we calculate an abrupt shift of b, as predicted by Cohen (2014a). The loss of linearity between log variance and log mean is a leading indicator of the abrupt shift. If both initial population densities and population ages vary among patches, estimates of b lie between 1 and 2, as in most empirical studies. But the value of b declines to ~1 as the system approaches a critical point. Our results can inform empirical studies that might be designed to demonstrate an abrupt shift in Taylor's law.

  17. Estimation of the adult male population of sweet potato weevil, Cylas formicarius (Fabricius) at its low-density period on Kikai Island in Japan

    International Nuclear Information System (INIS)

    Yamaguchi, T.; Hatono, T.; Izumi, S.; Nishihara, S.; Kimura, K.; Torigoe, H.; Tanaka, T.; Miyaji, K.; Hara, Y.; Ueda, A.; Shigei, F.

    2008-01-01

    The sweet potato weevil, Cylas formicarius (Fabricius) is a major insect pest of the sweet potato, Ipomoea batatas (L.) Lam. throughout the tropical and subtropical regions of the world. We estimated the entire adult male population of C. formicarius at its low-density period on Kikai Island, Kagoshima Pref., Japan. The population of adult males at the high-density period in September was about 5 times larger than that at its low-density period in May, both of which were estimated by Yamamura's method. Using this calculation in combination with an estimate of the maximal population size (4 x 10E6) by Sugimoto et al. in 1994, the total number of male weevils at their low-density period can be assumed to be less than 8 x 10E5

  18. Response of Onion ( Allium cepa L.) to Irrigation Intervals and Plant ...

    African Journals Online (AJOL)

    08 at the Teaching and Research Farm of the College of Agriculture, Zuru, Kebbi State, Nigeria. The objective was to investigate the response of onion to irrigation interval and plant population density. The treatments consisted of factorial ...

  19. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.

    Science.gov (United States)

    Mielczarek, Artur Tomasz; Nguyen, Hien Thi Thu; Nielsen, Jeppe Lund; Nielsen, Per Halkjær

    2013-03-15

    The enhanced biological phosphorus removal (EBPR) process is increasingly popular as a sustainable method for removal of phosphorus (P) from wastewater. This study consisted of a comprehensive three-year investigation of the identity and population dynamics of polyphosphate-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) in 28 Danish municipal wastewater treatment plants with nutrient removal. Fluorescence in situ hybridization was applied to quantify ten probe-defined populations of PAO and GAO that in total constituted a large fraction (30% on average) of the entire microbial community targeted by the EUBmix probes. Two PAO genera, Accumulibacter and Tetrasphaera, were very abundant in all EBPR plants (average of 3.7% and 27% of all bacteria, respectively), and their abundance was relatively stable in the Danish full-scale plants without clear temporal variations. GAOs were occasionally present in some plants (Competibacter in 11 plants, Defluviicoccus in 6 plants) and were consistent in only a few plants. This shows that these were not core species in the EBPR communities. The total GAO abundance was always lower than that of Accumulibacter. In plants without EBPR design, the abundance of PAO and GAO was significantly lower. Competibacter correlated in general with high fraction of industrial wastewater. In specific plants Accumulibacter correlated with high C/P ratio of the wastewater and Tetrasphaera with high organic loading. Interestingly, the relative microbial composition of the PAO/GAO species was unique to each plant over time, which gives a characteristic plant-specific "fingerprint". Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Effect of corm planting density, organic and chemical fertilizers on formation and phosphorus uptake of saffron (Crocus sativus L. replacement corms during phonological stages

    Directory of Open Access Journals (Sweden)

    Hassan Feizi

    2015-01-01

    Full Text Available Saffron (Crocus sativus L. propagates by replacement corms producing from the mother corm after flowering during each season. In order to investigate the effect of corm planting density, organic and chemical fertilizers on formation and phosphorus uptake of saffron replacement corms during phonological stages, a field experiment was conducted as factorial layout based on randomized complete block design with three replications, at Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, during 2013 and 2014 growing seasons. The experimental treatments were all combination of different levels of planting density (25, 50, 75 and 100 corms per m2 and fertilizer sources (manure 25 t. ha-1, chemical fertilizer (N 150 kg ha-1 + P 75 kg ha-1 and control. Due to different sampling dates of replacement corms during phonological stages (21 November, 21 December, 20 January, 20 April and 21 May, respectively, the experimental data were analyzed as factorial - split in time based on a randomized complete block design. Based on results, the highest number of replacement corms lower than 4 g (5.8 corms per plant were observed in fifth sampling stage and then decreased. In all levels of planting density (25 to 100 corms per m2, the effects of manure on increasing the number, weight and phosphorus content of replacement corms in range of 4.1 to 8 and 8.1 to 12 g per plant were significantly higher than chemical fertilizer. In fifth sampling stage, by applying the manure, the weight and phosphorus content of replacement corms in range of 8.1 to 12 g per plant were significantly increased (approximately twice, as compared to chemical fertilizer. It seems the decrease in saffron yield as result to decreasing the corm planting density can be slightly offset by increasing the percentage of larger corms formation per plant.