WorldWideScience

Sample records for plant physiological ecology

  1. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    Science.gov (United States)

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. © 2015 John Wiley & Sons Ltd.

  2. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.

    Science.gov (United States)

    Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J

    2015-04-01

    Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.

  3. Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities.

    Science.gov (United States)

    Holmgren, Milena; Gómez-Aparicio, Lorena; Quero, José Luis; Valladares, Fernando

    2012-06-01

    The combined effects of shade and drought on plant performance and the implications for species interactions are highly debated in plant ecology. Empirical evidence for positive and negative effects of shade on the performance of plants under dry conditions supports two contrasting theoretical models about the role of shade under dry conditions: the trade-off and the facilitation hypotheses. We performed a meta-analysis of field and greenhouse studies evaluating the effects of drought at two or more irradiance levels on nine response variables describing plant physiological condition, growth, and survival. We explored differences in plant response across plant functional types, ecosystem types and methodological approaches. The data were best fit using quadratic models indicating a humped-back shape response to drought along an irradiance gradient for survival, whole plant biomass, maximum photosynthetic capacity, stomatal conductance and maximal photochemical efficiency. Drought effects were ameliorated at intermediate irradiance, becoming more severe at higher or lower light levels. This general pattern was maintained when controlling for potential variations in the strength of the drought treatment among light levels. Our quantitative meta-analysis indicates that dense shade ameliorates drought especially among drought-intolerant and shade-tolerant species. Wet tropical species showed larger negative effects of drought with increasing irradiance than semiarid and cold temperate species. Non-linear responses to irradiance were stronger under field conditions than under controlled greenhouse conditions. Non-linear responses to drought along the irradiance gradient reconciliate opposing views in plant ecology, indicating that facilitation is more likely within certain range of environmental conditions, fading under deep shade, especially for drought-tolerant species.

  4. The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology.

    Science.gov (United States)

    Schiavon, Michela; Pilon-Smits, Elizabeth A H

    2017-03-01

    Contents 1582 I. 1582 II. 1583 III. 1588 IV. 1590 V. 1592 1592 References 1592 SUMMARY: The importance of selenium (Se) for medicine, industry and the environment is increasingly apparent. Se is essential for many species, including humans, but toxic at elevated concentrations. Plant Se accumulation and volatilization may be applied in crop biofortification and phytoremediation. Topics covered here include beneficial and toxic effects of Se on plants, mechanisms of Se accumulation and tolerance in plants and algae, Se hyperaccumulation, and ecological and evolutionary aspects of these processes. Plant species differ in the concentration and forms of Se accumulated, Se partitioning at the whole-plant and tissue levels, and the capacity to distinguish Se from sulfur. Mechanisms of Se hyperaccumulation and its adaptive significance appear to involve constitutive up-regulation of sulfate/selenate uptake and assimilation, associated with elevated concentrations of defense-related hormones. Hyperaccumulation has evolved independently in at least three plant families, probably as an elemental defense mechanism and perhaps mediating elemental allelopathy. Elevated plant Se protects plants from generalist herbivores and pathogens, but also gives rise to the evolution of Se-resistant specialists. Plant Se accumulation affects ecological interactions with herbivores, pollinators, neighboring plants, and microbes. Hyperaccumulation tends to negatively affect Se-sensitive ecological partners while facilitating Se-resistant partners, potentially affecting species composition and Se cycling in seleniferous ecosystems. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Chemicals on plant surfaces as a heretofore unrecognized, but ecologically informative, class for investigations into plant defence.

    Science.gov (United States)

    LoPresti, Eric F

    2016-11-01

    Plants produce and utilize a great diversity of chemicals for a variety of physiological and ecological purposes. Many of these chemicals defend plants against herbivores, pathogens and competitors. The location of these chemicals varies within the plant, some are located entirely within plant tissues, others exist in the air- (or water-) space around plants, and still others are secreted onto plant surfaces as exudates. I argue herein that the location of a given defensive chemical has profound implications for its ecological function; specifically, I focus on the characteristics of chemical defences secreted onto plant surfaces. Drawing from a broad literature encompassing ecology, evolution, taxonomy and physiology, I found that these external chemical defences (ECDs) are common and widespread in plants and algae; hundreds of examples have been detailed, yet they are not delineated as a separate class from internal chemical defences (ICDs). I propose a novel typology for ECDs and, using existing literature, explore the ecological consequences of the hypothesized unique characteristics of ECDs. The axis of total or proportional investment in ECDs versus ICDs should be considered as one axis of investment by a plant, in the same way as quantitative versus qualitative chemical defences or induced versus constitutive defences is considered. The ease of manipulating ECDs in many plant systems presents a powerful tool to help test plant defence theory (e.g. optimal defence). The framework outlined here integrates various disciplines of botany and ecology and suggests a need for further examinations of exudates in a variety of contexts, as well as recognition of the effects of within-plant localization of defences. © 2015 Cambridge Philosophical Society.

  6. Ecological and population genetics of locally rare plants: A review

    Science.gov (United States)

    Simon A. Lei

    2001-01-01

    Plant species with limited dispersal ability, narrow geographical and physiological tolerance ranges, as well as with specific habitat and ecological requirements are likely to be rare. Small and isolated populations and species contain low levels of within-population genetic variation in many plant species. The gene pool of plants is a product of phenotype-environment...

  7. Plant-aphid interactions: molecular and ecological perspectives.

    Science.gov (United States)

    Goggin, Fiona L

    2007-08-01

    Many aphids are major agricultural pests because of their unparalleled reproductive capacity and their ability to manipulate host plant physiology. Aphid population growth and its impact on plant fitness are strongly influenced by interactions with other organisms, including plant pathogens, endophytes, aphid endosymbionts, predators, parasitoids, ants, and other herbivores. Numerous molecular and genomic resources have recently been developed to identify sources of aphid resistance in plants, as well as potentially novel targets for control in aphids. Moreover, the same model systems that are used to explore direct molecular interactions between plants and aphids can be utilized to study the ecological context in which they occur.

  8. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy.

    Science.gov (United States)

    Cheng, Fang; Cheng, Zhihui

    2015-01-01

    Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment) or negative effects (e.g., autotoxicity, soil sickness, or biological invasion). To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory/inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides, and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1) Description of management practices related to allelopathy and allelochemicals in agriculture. (2) Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3) Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4) Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on plant

  9. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy

    Directory of Open Access Journals (Sweden)

    Fang eCheng

    2015-11-01

    Full Text Available Allelopathy is a common biological phenomenon by which one organism produces biochemicals that influence the growth, survival, development, and reproduction of other organisms. These biochemicals are known as allelochemicals and have beneficial or detrimental effects on target organisms. Plant allelopathy is one of the modes of interaction between receptor and donor plants and may exert either positive effects (e.g., for agricultural management, such as weed control, crop protection, or crop re-establishment or negative effects (e.g., autotoxicity, soil sickness, or biological invasion. To ensure sustainable agricultural development, it is important to exploit cultivation systems that take advantage of the stimulatory / inhibitory influence of allelopathic plants to regulate plant growth and development and to avoid allelopathic autotoxicity. Allelochemicals can potentially be used as growth regulators, herbicides, insecticides and antimicrobial crop protection products. Here, we reviewed the plant allelopathy management practices applied in agriculture and the underlying allelopathic mechanisms described in the literature. The major points addressed are as follows: (1 Description of management practices related to allelopathy and allelochemicals in agriculture. (2 Discussion of the progress regarding the mode of action of allelochemicals and the physiological mechanisms of allelopathy, consisting of the influence on cell micro- and ultra-structure, cell division and elongation, membrane permeability, oxidative and antioxidant systems, growth regulation systems, respiration, enzyme synthesis and metabolism, photosynthesis, mineral ion uptake, protein and nucleic acid synthesis. (3 Evaluation of the effect of ecological mechanisms exerted by allelopathy on microorganisms and the ecological environment. (4 Discussion of existing problems and proposal for future research directions in this field to provide a useful reference for future studies on

  10. Plant Physiology in Greenhouses

    NARCIS (Netherlands)

    Heuvelink, E.; Kierkels, T.

    2015-01-01

    Since 2004 Ep Heuvelink and Tijs Kierkels have been writing a continuing series of plant physiology articles for the Dutch horticultural journal Onder Glas and the international edition In Greenhouses. The book Plant Physiology in Greenhouses consists of 50 of their plant physiology articles. The

  11. Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities

    NARCIS (Netherlands)

    Holmgren, M.; Gomez-Aparicio, L.; Quero, J.L.; Valladares, F.

    2012-01-01

    The combined effects of shade and drought on plant performance and the implications for species interactions are highly debated in plant ecology. Empirical evidence for positive and negative effects of shade on the performance of plants under dry conditions supports two contrasting theoretical

  12. Plant physiological ecology and the global changes Ecofisiologia vegetal e as mudanças globais

    Directory of Open Access Journals (Sweden)

    João Paulo Rodrigues Alves Delfino Barbosa

    2012-06-01

    Full Text Available The global changes are marked by alteration on the normal patterns of important biochemical and biophysical processes of the Earth. However, the real effects as well as the feedbacks of the global changes over vegetation are still unclear. Part of this uncertainty can be attributed to the inattention of stakeholders and scientists towards vegetation and its complex interrelations with the environment, which drive plant physiological processes in different space-time scales. Notwithstanding, some key subjects of the global changes could be better elucidated with a more plant physiological ecology approach. We discuss some issues related to this topic, going through some limitations of approaching vegetation as a static component of the biosphere as the other sub-systems of the Earth-system change. With this perspective, this review is an initial reflection towards the assessment of the role and place of vegetation structure and function in the global changes context. We reviewed the Earth-system and global changes terminology; attempted to illustrate key plant physiological ecology researches themes in the global changes context; consider approaching plants as complex systems in order to adequately quantify systems characteristics as sensibility, homeostasis, and vulnerability. Moreover, we propose insights that would allow vegetation studies and scaling procedures in the context of the Earth-system. We hope this review will assist researchers on their strategy to identify, understand and anticipate the potential effects of global changes over the most vulnerable vegetation processes from the leaf to the global levels.As mudanças globais englobam importantes alterações nos padrões normais de processos bioquímicos e biofísicos da Terra. Os reais efeitos e retroalimentações das mudanças globais sobre a vegetação ainda são incertos. Parte das incertezas pode ser atribuída à falta de atenção de cientistas e políticos para a vegeta

  13. Plant Physiology and Development

    DEFF Research Database (Denmark)

    Taiz, Lincoln; Zeiger, Eduardo; Møller, Ian Max

    Throughout its twenty-two year history, the authors of Plant Physiology have continually updated the book to incorporate the latest advances in plant biology and implement pedagogical improvements requested by adopters. This has made Plant Physiology the most authoritative, comprehensive......, and widely used upper-division plant biology textbook. In the Sixth Edition, the Growth and Development section (Unit III) has been reorganized and expanded to present the complete life cycle of seed plants from germination to senescence. In recognition of this enhancement, the text has been renamed Plant...... Physiology and Development. As before, Unit III begins with updated chapters on Cell Walls and Signals and Signal Transduction. The latter chapter has been expanded to include a discussion of major signaling molecules, such as calcium ions and plant hormones. A new, unified chapter entitled Signals from...

  14. Quantitative plant ecology

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2014-01-01

    This e-book is written in the Wolfram' CDF format (download free CDF player from Wolfram.com) The objective of this e-book is to introduce the population ecological concepts for measuring and predicting the ecological success of plant species. This will be done by focusing on the measurement...... and statistical modelling of plant species abundance and the relevant ecological processes that control species abundance. The focus on statistical modelling and likelihood function based methods also means that more algorithm based methods, e.g. ordination techniques and boosted regression tress...

  15. Mirid (Hemiptera: Heteroptera) specialists of sticky plants: adaptations, interactions, and ecological implications.

    Science.gov (United States)

    Wheeler, Alfred G; Krimmel, Billy A

    2015-01-07

    Sticky plants-those having glandular trichomes (hairs) that produce adhesive, viscous exudates-can impede the movement of, and entrap, generalist insects. Disparate arthropod groups have adapted to these widespread and taxonomically diverse plants, yet their interactions with glandular hosts rarely are incorporated into broad ecological theory. Ecologists and entomologists might be unaware of even well-documented examples of insects that are sticky-plant specialists. The hemipteran family Miridae (more specifically, the omnivorous Dicyphini: Dicyphina) is the best-known group of arthropods that specializes on sticky plants. In the first synthesis of relationships with glandular plants for any insect family, we review mirid interactions with sticky hosts, including their adaptations (behavioral, morphological, and physiological) and mutualisms with carnivorous plants, and the ecological and agricultural implications of mirid-sticky plant systems. We propose that mirid research applies generally to tritrophic interactions on trichome-defended plants, enhances an understanding of insect-plant interactions, and provides information useful in managing crop pests.

  16. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap

    Czech Academy of Sciences Publication Activity Database

    Grosskinsky, D. K.; Svensgaard, J.; Christensen, S.; Roitsch, Thomas

    2015-01-01

    Roč. 66, č. 18 (2015), s. 5429-5440 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : External phenotype * genome–environment–management interaction * genome–phenome map * internal phenotype * phenomics * physiological traits * physiology * plant phenotyping * predictors Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  17. On the language and physiology of dormancy and quiescence in plants.

    Science.gov (United States)

    Considine, Michael J; Considine, John A

    2016-05-01

    The language of dormancy is rich and poetic, as researchers spanning disciplines and decades have attempted to understand the spell that entranced 'Sleeping Beauty', and how she was gently awoken. The misleading use of 'dormancy', applied to annual axillary buds, for example, has confounded progress. Language is increasingly important as genetic and genomic approaches become more accessible to species of agricultural and ecological importance. Here we examine how terminology has been applied to different eco-physiological states in plants, and with pertinent reference to quiescent states described in other domains of life, in order to place plant quiescence and dormancy in a more complete context than previously described. The physiological consensus defines latency or quiescence as opportunistic avoidance states, where growth resumes in favourable conditions. In contrast, the dormant state in higher plants is entrained in the life history of the organism. Competence to resume growth requires quantitative and specific conditioning. This definition applies only to the embryo of seeds and specialized meristems in higher plants; however, mechanistic control of dormancy extends to mobile signals from peripheral tissues and organs, such as the endosperm of seed or subtending leaf of buds. The distinction between dormancy, quiescence, and stress-hardiness remains poorly delineated, most particularly in buds of winter perennials, which comprise multiple meristems of differing organogenic states. Studies in seeds have shown that dormancy is not a monogenic trait, and limited study has thus far failed to canalize dormancy as seen in seeds and buds. We argue that a common language, based on physiology, is central to enable further dissection of the quiescent and dormant states in plants. We direct the topic largely to woody species showing a single cycle of growth and reproduction per year, as these bear the majority of global timber, fruit, and nut production, as well being

  18. Plant aquaporins: roles in plant physiology.

    Science.gov (United States)

    Li, Guowei; Santoni, Véronique; Maurel, Christophe

    2014-05-01

    Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms. Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts. In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots. Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. How do plants manage to survive on toxic spoil-mining sites? Physiological and structural properties of plants on substrates with high As and Hg contents

    OpenAIRE

    Kovářová, Monika

    2010-01-01

    The heavy metals contamination of environment represents a worldwide problem lately. Heavy metals cause harmful effects not only to plants, but also to other organisms. Throught their acumulation in plant biomass, heavy metals enter a food chain and could negatively influence the human health. The impact of heavy metals on plants and their defence mechanisms against toxicity of heavy metals have been in focus of plant physiology and ecology research for decades. Importance of this topic arise...

  20. Regulating plant physiology with organic electronics.

    Science.gov (United States)

    Poxson, David J; Karady, Michal; Gabrielsson, Roger; Alkattan, Aziz Y; Gustavsson, Anna; Doyle, Siamsa M; Robert, Stéphanie; Ljung, Karin; Grebe, Markus; Simon, Daniel T; Berggren, Magnus

    2017-05-02

    The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.

  1. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants

    Czech Academy of Sciences Publication Activity Database

    Großkinsky, D.K.; Syaifullah, S. J.; Roitsch, Thomas

    2017-01-01

    Roč. 99, č. 99 (2017), s. 1-20 ISSN 0022-0957 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : integrated approaches * multi-omics * phenomics * plant development * plant–environment interactions * plant phenotyping * plant physiology * plant senescence * senescence programme * systems biology Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 5.830, year: 2016

  2. Preliminary results of Physiological plant growth modelling for human life support in space

    Science.gov (United States)

    Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline

    2012-07-01

    Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the

  3. State of the interface between conservation and physiology: a bibliometric analysis

    Science.gov (United States)

    Lennox, Robert; Cooke, Steven J.

    2014-01-01

    Contemporary conservation science benefits from the perspectives of a variety of different disciplines, including a recent synergy with physiology, an interface known as ‘conservation physiology’. To evaluate the degree of interaction between conservation and animal/plant physiology, we conducted three bibliometric analyses. We first pursued the use of the term ‘conservation physiology’ since its first definition in 2006 to determine how frequently it has been used and in which publications. Secondly, we evaluated the occurrence of conservation terms in animal and plant physiology journals, physiological terms in conservation journals, and a combination of terms in ecology journals. Thirdly, we explored trends in a subset of conservation physiology articles published between 2006 and 2012. We identified a surge in the use of the term ‘conservation physiology’ in 2012, after only a slow increase in usage between 2006 and 2011. Conservation journals tend to have been significantly more active in publishing conservation physiology than animal physiology, plant physiology or ecology journals. However, we found evidence that ecology and animal physiology journals began to incorporate more conservation physiology after 2006, while conservation- and plant physiology-themed journals did not. Among 299 conservation physiology articles that we identified, vertebrate taxa have been over-represented in conservation physiology compared with their relative taxonomic abundance, invertebrate taxa have been under-represented, and plants have been represented in proportion to their relative taxonomic abundance; however, those findings are reasonably consistent with publication trends in conservation biology. Diffuse distribution of conservation physiology papers throughout the literature may have been a barrier to the growth of the subdiscipline when the interface was emerging. The introduction of the focused journal Conservation Physiology in 2013 may address that

  4. Plant Insecticidal Toxins in Ecological Networks

    Directory of Open Access Journals (Sweden)

    Sébastien Ibanez

    2012-04-01

    Full Text Available Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects’ vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  5. Plant insecticidal toxins in ecological networks.

    Science.gov (United States)

    Ibanez, Sébastien; Gallet, Christiane; Després, Laurence

    2012-04-01

    Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects' vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  6. Principles for ecologically based invasive plant management

    Science.gov (United States)

    Jeremy J. James; Brenda S. Smith; Edward A. Vasquez; Roger L. Sheley

    2010-01-01

    Land managers have long identified a critical need for a practical and effective framework for designing restoration strategies, especially where invasive plants dominate. A holistic, ecologically based, invasive plant management (EBIPM) framework that integrates ecosystem health assessment, knowledge of ecological processes, and adaptive management into a successional...

  7. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites.

    Science.gov (United States)

    Nishida, Ritsuo

    2014-01-01

    Plants produce a diverse array of secondary metabolites as chemical barriers against herbivores. Many phytophagous insects are highly adapted to these allelochemicals and use such unique substances as the specific host-finding cues, defensive substances of their own, and even as sex pheromones or their precursors by selectively sensing, incorporating, and/or processing these phytochemicals. Insects also serve as pollinators often effectively guided by specific floral fragrances. This review demonstrates the ecological significance of such plant secondary metabolites in the highly diverse interactions between insects and plants.

  8. Unique ecological impacts associated with offshore floating nuclear power plants

    International Nuclear Information System (INIS)

    Adams, S.M.; McLean, R.B.

    1979-01-01

    The ecological impacts that could occur as a result of site construction and operation of an offshore floating nuclear power plant are identified by comparing the principal ecological features associated with offshore siting with those associated with the siting of onshore estuarine plants. In general, the ecological impacts of offshore nuclear plants should be relatively smaller than those of estuarine plants. Possible factors that could increase the relative impacts of offshore plants are high frequency of contact with schools of fish, siting near inlets to estuaries or other ecologically important areas, and the persistence of halogen residuals. Identifying the potential ecological impacts associated with the siting of offshore plants permits the development of various monitoring programs and measures to minimize these impacts

  9. Physiology of woody plants

    CERN Document Server

    Hazewinkel, Michiel; Pallardy, Stephen G

    1996-01-01

    This completely revised classic volume is an up-to-date synthesis of the intensive research devoted to woody plants. Intended primarily as a text for students and a reference for researchers, this interdisciplinary book should be useful to a broad range of scientists from agroforesters, agronomists, and arborists to plant pathologists, ecophysiologists, and soil scientists. Anyone interested in plant physiology will find this text invaluable. Key Features * Includes supplementary chapter summaries and lists of general references * Provides a solid foundation of reference information * Thoroughly updated classic text/reference.

  10. Quantifying Physiological, Behavioral and Ecological Consequences of Hypoxic Events in Kelp Forest

    Science.gov (United States)

    Litvin, S. Y.; Beers, J. M.; Woodson, C. B.; Leary, P.; Fringer, O. B.; Goldbogen, J. A.; Micheli, F.; Monismith, S. G.; Somero, G. N.

    2016-02-01

    Rocky reef kelp forests that extend along the coast of central California, like many habitats in upwelling systems, often experience inundations of low dissolved oxygen (DO) or hypoxic waters. These events have the potential to influence the structure and function of coastal ecosystems. The ecological consequences of hypoxia for these systems will be mediated by physiological thresholds and behavioral responses of resident organisms in the context of the spatial and temporal variability of DO, and other potential stressors. Our research focuses on Sebastes (i.e. rockfish) because of their commercial, recreational and ecological importance, high abundance across near shore habitats and the potentially severe impacts of physiological stress due to hypoxia. In the lab, to investigate how hypoxic events physiologically effect rockfish, we exposed young of the year (YOY) of 5 species and two life stages of blue rockfish, S. mystinus (YOY and 1+), to DO concentrations representative of upwelling conditions and measured a suite of whole organisms and tissue level responses including metabolic rate, ventilation, tissue-level metabolism, and blood biochemistry. Results demonstrate species and life stage specific differences in physiological stress under upwelling driven hypoxic conditions and suggest YOY rockfishes may currently be living near their physiological limits. In the laboratory we further explored if physiological impacts result in behavioral consequences by examining the startle response of YOY rockfish, a relative measure of predator avoidance ability, under a range of DO concentrations and exposure durations. To further explore behavioral responses of rockfish to low in DO within the kelp forest we are using two approaches, monitoring the vertical distribution of fish communities across the water column using an acoustic imaging camera (ARIS 3000, Soundmetrics Inc.) and acoustic tagging, with 3-D positioning ability (VPS, VEMCO Inc.), of larger blue rockfish

  11. Evolutionary plant physiology: Charles Darwin's forgotten synthesis

    Science.gov (United States)

    Kutschera, Ulrich; Niklas, Karl J.

    2009-11-01

    Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin’s son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin’s work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

  12. Evolutionary plant physiology: Charles Darwin's forgotten synthesis.

    Science.gov (United States)

    Kutschera, Ulrich; Niklas, Karl J

    2009-11-01

    Charles Darwin dedicated more than 20 years of his life to a variety of investigations on higher plants (angiosperms). It has been implicitly assumed that these studies in the fields of descriptive botany and experimental plant physiology were carried out to corroborate his principle of descent with modification. However, Darwin's son Francis, who was a professional plant biologist, pointed out that the interests of his father were both of a physiological and an evolutionary nature. In this article, we describe Darwin's work on the physiology of higher plants from a modern perspective, with reference to the following topics: circumnutations, tropisms and the endogenous oscillator model; the evolutionary patterns of auxin action; the root-brain hypothesis; phloem structure and photosynthesis research; endosymbioses and growth-promoting bacteria; photomorphogenesis and phenotypic plasticity; basal metabolic rate, the Pfeffer-Kleiber relationship and metabolic optimality theory with respect to adaptive evolution; and developmental constraints versus functional equivalence in relationship to directional natural selection. Based on a review of these various fields of inquiry, we deduce the existence of a Darwinian (evolutionary) approach to plant physiology and define this emerging scientific discipline as the experimental study and theoretical analysis of the functions of green, sessile organisms from a phylogenetic perspective.

  13. Some Recent Advances in Plant Physiology

    Science.gov (United States)

    Stafford, G. A.

    1972-01-01

    A popular review of plant physiological research, emphasizing those apsects of plant metabolism where there has been a recent shift in emphasis that is not yet reflected in secondary school advanced texts. (AL)

  14. Ecology and evolution of plant-pollinator interactions.

    Science.gov (United States)

    Mitchell, Randall J; Irwin, Rebecca E; Flanagan, Rebecca J; Karron, Jeffrey D

    2009-06-01

    Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant-pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches. In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant-Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.

  15. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-06-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread. 

  16. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-02-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important for the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread.

  17. Game theory and plant ecology.

    Science.gov (United States)

    McNickle, Gordon G; Dybzinski, Ray

    2013-04-01

    The fixed and plastic traits possessed by a plant, which may be collectively thought of as its strategy, are commonly modelled as density-independent adaptations to its environment. However, plant strategies may also represent density- or frequency-dependent adaptations to the strategies used by neighbours. Game theory provides the tools to characterise such density- and frequency-dependent interactions. Here, we review the contributions of game theory to plant ecology. After briefly reviewing game theory from the perspective of plant ecology, we divide our review into three sections. First, game theoretical models of allocation to shoots and roots often predict investment in those organs beyond what would be optimal in the absence of competition. Second, game theoretical models of enemy defence suggest that an individual's investment in defence is not only a means of reducing its own tissue damage but also a means of deflecting enemies onto competitors. Finally, game theoretical models of trade with mutualistic partners suggest that the optimal trade may reflect competition for access to mutualistic partners among plants. In short, our review provides an accessible entrance to game theory that will help plant ecologists enrich their research with its worldview and existing predictions. © 2013 Blackwell Publishing Ltd/CNRS.

  18. Knowledge about plant is basis for successful cultivation : new international standard handbook on plant physiology

    NARCIS (Netherlands)

    Esch, van H.; Heuvelink, E.; Kierkels, T.

    2015-01-01

    Plant physiology in Greenhouses’ is the new international standard handbook on plant knowledge for the commercial greenhouse grower. It relates the functioning of the plant to the rapid developments in greenhouse cultivation. It is based on a continuing series of plant physiology articles published

  19. The importance of physiological ecology in conservation biology

    Science.gov (United States)

    Tracy, C.R.; Nussear, K.E.; Esque, T.C.; Dean-Bradley, K.; DeFalco, L.A.; Castle, K.T.; Zimmerman, L.C.; Espinoza, R.E.; Barber, A.M.

    2006-01-01

    Many of the threats to the persistence of populations of sensitive species have physiological or pathological mechanisms, and those mechanisms are best understood through the inherently integrative discipline of physiological ecology. The desert tortoise was listed under the Endangered Species Act largely due to a newly recognized upper respiratory disease thought to cause mortality in individuals and severe declines in populations. Numerous hypotheses about the threats to the persistence of desert tortoise populations involve acquisition of nutrients, and its connection to stress and disease. The nutritional wisdom hypothesis posits that animals should forage not for particular food items, but instead, for particular nutrients such as calcium and phosphorus used in building bones. The optimal foraging hypothesis suggests that, in circumstances of resource abundance, tortoises should forage as dietary specialists as a means of maximizing intake of resources. The optimal digestion hypothesis suggests that tortoises should process ingesta in ways that regulate assimilation rate. Finally, the cost-of-switching hypothesis suggests that herbivores, like the desert tortoise, should avoid switching food types to avoid negatively affecting the microbe community responsible for fermenting plants into energy and nutrients. Combining hypotheses into a resource acquisition theory leads to novel predictions that are generally supported by data presented here. Testing hypotheses, and synthesizing test results into a theory, provides a robust scientific alternative to the popular use of untested hypotheses and unanalyzed data to assert the needs of species. The scientific approach should focus on hypotheses concerning anthropogenic modifications of the environment that impact physiological processes ultimately important to population phenomena. We show how measurements of such impacts as nutrient starvation, can cause physiological stress, and that the endocrine mechanisms

  20. Ecological Risk Assessment of Genetically Modified Higher Plants (GMHP)

    DEFF Research Database (Denmark)

    Kjær, C.; Damgaard, C.; Kjellsson, G.

    Preface This publication is a first version of a manual identifying the data needs for ecological risk assessment of genetically modified higher plants (GMHP). It is the intention of the authors to stimulate further discussion of what data are needed in order to conduct a proper ecological risk...... of the project Biotechnology: elements in environmental risk assessment of genetically modified plants. December 1999 Christian Kjær Introduction In ecological risk assessment of transgenic plants, information on a wide range of subjects is needed for an effective and reliable assessment procedure...... in the amendment to the directive. This report suggests a structured way to identify the type of data needed to perform a sound ecological risk assessment for genetically modified higher plants (GMHP). The identified data types are intended to support the evaluation of the following risks: risk of invasion...

  1. Dewpoint - unstudied factor in ecology, physiology and plant introduction

    Directory of Open Access Journals (Sweden)

    Prokhorov Alexey

    2015-12-01

    Study of the mechanism of the condensation of atmospheric moisture on the surface of the plant and allow for modification of plant breeding with pronounced effect and reduce the temperature dependence on the least insolation. Such plants could be beneficial in reducing costs for irrigation of crops, and in the fight against desertification. The study of the mechanism of the phenomenon, allow for modification and selection of plants with the most pronounced effect of lowering the temperature and the lowest dependent on insolation. The plants, which are more efficient moisture capacitors can bring huge benefits in reducing costs for irrigation of crops, and in the fight against desertification.

  2. Water in the physiology of plant: thermodynamics and kinetic

    Directory of Open Access Journals (Sweden)

    Maurizio Cocucci

    2011-02-01

    Full Text Available Molecular properties of water molecule determine its role in plant physiology. At molecular level the properties of water molecules determine the behaviour of other plant molecules; in particular its physic characteristics are important in the operativeness of macromolecules and in plant thermoregulation. Plant water supply primarily dependent on thermodynamics properties in particular water chemical potential and its components, more recently there are evidences that suggest an important role in the water kinetic characteristics, depending, at cell membrane level, in particular plasmalemma, on the presence of specific water channel, the aquaporines controlled in its activity by a number of physiological and biochemical factors. Thermodynamics and kinetic factors controlled by physiological, biochemical properties and molecular effectors, control water supply and level in plants to realize their survival, growth and differentiation and the consequent plant production.

  3. A systematic review of the recent ecological literature on cushion plants: champions of plant facilitation

    Directory of Open Access Journals (Sweden)

    A. M. Reid

    2010-09-01

    Full Text Available Cushion-forming plant species are found in alpine and polar environments around the world. They modify the microclimate, thereby facilitating other plant species. Similar to the effectiveness of shrubs as a means to study facilitation in arid and semi-arid environments, we explore the potential for cushion plant species to expand the generality of research on this contemporary ecological interaction. A systematic review was conducted to determine the number of publications and citation frequency on relevant ecological topics whilst using shrub literature as a baseline to assess relative importance of cushions as a focal point for future ecological research. Although there are forty times more shrub articles, mean citations per paper is comparable between cushion and shrub literature. Furthermore, the scope of ecological research topics studied using cushions is broad including facilitation, competition, environmental gradients, life history, genetics, reproduction, community, ecosystem and evolution. The preliminary ecological evidence to date also strongly suggests that cushion plants can be keystone species in their ecosystems. Hence, ecological research on net interactions including facilitation and patterns of diversity can be successfully examined using cushion plants, and this is particularly timely given expectations associated with a changing climate in these regions.

  4. Elements of plant physiology in theophrastus' botany.

    Science.gov (United States)

    Pennazio, Sergio

    2014-01-01

    For thousands of years the plants were considered only as a source of food and medicine, and as ornamental objects. Only from the fifth century BC, some philosophers of Ancient Greece realized that the plants were living organisms but, unfortunately, their works have come to us as fragments that we often know from the biological works of Aristotle. This eminent philosopher and man of science, however, did not give us a complete work on the plants, which he often promised to write. From scattered fragments of his conspicuous biological work, it emerges a concept of nutritive soul that, in the presence of heat and moisture, allows plants to grow and reproduce. The task of writing a comprehensive botanical work was delegated to his first pupil, Theophrastus, who left us two treatises over time translated into the various languages up to the current versions (Enquiry into plants, On the causes of plants). The plant life is described and interpreted on the basis of highly accurate observations. The physiological part of his botany is essentially the nutrition: According to Theophrastus, plants get matter and moisture from the soil through root uptake and process the absorbed substances transforming them into food, thanks to the heat. The processing (pepsis, coction) of matter into the food represents an extraordinary physiological intuition because individual organs of a plant appear to perform its specific transformation. Despite that Theophrastus did not do scientific experiments or use special methods other than the sharpness of his observations, he can be considered the forerunner of a plant physiology that would take rebirth only after two millennia.

  5. Ecological distribution and population physiology defined by proteomics in a natural microbial community

    Science.gov (United States)

    Mueller, Ryan S.; Denef, Vincent J.; Kalnejais, Linda H.; Suttle, K. Blake; Thomas, Brian C.; Wilmes, Paul; Smith, Richard L.; Nordstrom, D. Kirk; McCleskey, R. Blaine; Shah, Menesh B.; VerBekmoes, Nathan C.; Hettich, Robert L.; Banfield, Jillian F.

    2010-01-01

    An important challenge in microbial ecology is developing methods that simultaneously examine the physiology of organisms at the molecular level and their ecosystem level interactions in complex natural systems. We integrated extensive proteomic, geochemical, and biological information from 28 microbial communities collected from an acid mine drainage environment and representing a range of biofilm development stages and geochemical conditions to evaluate how the physiologies of the dominant and less abundant organisms change along environmental gradients. The initial colonist dominates across all environments, but its proteome changes between two stable states as communities diversify, implying that interspecies interactions affect this organism's metabolism. Its overall physiology is robust to abiotic environmental factors, but strong correlations exist between these factors and certain subsets of proteins, possibly accounting for its wide environmental distribution. Lower abundance populations are patchier in their distribution, and proteomic data indicate that their environmental niches may be constrained by specific sets of abiotic environmental factors. This research establishes an effective strategy to investigate ecological relationships between microbial physiology and the environment for whole communities in situ.

  6. The Scientific Development of the Physiology of Plants in the American Tropics

    Directory of Open Access Journals (Sweden)

    Marco V. Gutiérrez

    2002-06-01

    Full Text Available This paper is a research and journalistic work that summarizes and synthesizes the scientific development of the physiology of plants in the American tropics, also known as the Neotropics. It contains the contributions of numerous biologists interested in the physiology of tropical plants. The fabulous structural and functional diversity of tropical forests is still the major driver of research in this field. Classical physiological work involving tropical plants, such as the discovery of C4 photosynthesis in sugarcane, is invoked to exemplify the historical and current importance of physiological research in the tropics, and its applications in agriculture, forestry and conservation. An historical background describing the early and more recent development of a tradition on the physiological study of tropical plants is followed by a summary of the research conducted on the physiology of tropical crops. Common areas of interest and influence between the fields of crop physiology and plant ecophysiology are identified and exemplified with problems on the environmental physiology of crops like coffee and cassava. The physiology of tropical forest plants is discussed in terms of its contributions to general plant physiological knowledge in areas such as photosynthetic metabolism and plant water relations. Despite the impressive technical advances achieved during the past decade, the importance of continuous development of appropriate instrumentation to study and measure the physiology of plants in situ is stressed. Although the basic metabolic processes that underlie the mechanisms of plant responses to the environment are probably highly conserved and qualitatively similar among tropical and temperate plants, it is also apparent that tropical plants exhibit metabolic peculiarities. These include aspects of photosynthetic metabolism, phloem transport physiology, sensitivity to low temperatures, reproduction, responses to climatic seasonality, and a

  7. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies.

    Science.gov (United States)

    Yamasaki, Hideo; Cohen, Michael F

    2016-05-01

    Hydrogen sulfide (H2S) is produced in the mammalian body through the enzymatic activities of cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST). A growing number of studies have revealed that biogenic H2S produced in tissues is involved in a variety of physiological responses in mammals including vasorelaxation and neurotransmission. It is now evident that mammals utilize H2S to regulate multiple signaling systems, echoing the research history of the gaseous signaling molecules nitric oxide (NO) and carbon monoxide (CO) that had previously only been recognized for their cytotoxicity. In the human diet, meats (mammals, birds and fishes) and vegetables (plants) containing cysteine and other sulfur compounds are the major dietary sources for endogenous production of H2S. Plants are primary producers in ecosystems on the earth and they synthesize organic sulfur compounds through the activity of sulfur assimilation. Although plant H2S-producing activities have been known for a long time, our knowledge of H2S biology in plant systems has not been updated to the extent of mammalian studies. Here we review recent progress on H2S studies, highlighting plants and bacteria. Scoping the future integration of H2S, NO and O2 biology, we discuss a possible linkage between physiology, ecology and evolutional biology of gas metabolisms that may reflect the historical changes of the Earth's atmospheric composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Ecological significance and complexity of N-source preference in plants.

    Science.gov (United States)

    Britto, Dev T; Kronzucker, Herbert J

    2013-10-01

    Plants can utilize two major forms of inorganic N: NO3(-) (nitrate) and NH4(+) (ammonium). In some cases, the preference of one form over another (denoted as β) can appear to be quite pronounced for a plant species, and can be an important determinant and predictor of its distribution and interactions with other species. In many other cases, however, assignment of preference is not so straightforward and must take into account a wide array of complex physiological and environmental features, which interact in ways that are still not well understood. This Viewpoint presents a discussion of the key, and often co-occurring, factors that join to produce the complex phenotypic composite referred to by the deceptively simple term 'N-source preference'. N-source preference is much more complex a biological phenomenon than is often assumed, and general models predicting how it will influence ecological processes will need to be much more sophisticated than those that have been so far developed.

  9. Using ecology to inform physiology studies: implications of high population density in the laboratory.

    Science.gov (United States)

    Newman, Amy E M; Edmunds, Nicholas B; Ferraro, Shannon; Heffell, Quentin; Merritt, Gillian M; Pakkala, Jesse J; Schilling, Cory R; Schorno, Sarah

    2015-03-15

    Conspecific density is widely recognized as an important ecological factor across the animal kingdom; however, the physiological impacts are less thoroughly described. In fact, population density is rarely mentioned as a factor in physiological studies on captive animals and, when it is infrequently addressed, the animals used are reared and housed at densities far above those in nature, making the translation of results from the laboratory to natural systems difficult. We survey the literature to highlight this important ecophysiological gap and bring attention to the possibility that conspecific density prior to experimentation may be a critical factor influencing results. Across three taxa: mammals, birds, and fish, we present evidence from ecology that density influences glucocorticoid levels, immune function, and body condition with the intention of stimulating discussion and increasing consideration of population density in physiology studies. We conclude with several directives to improve the applicability of insights gained in the laboratory to organisms in the natural environment. Copyright © 2015 the American Physiological Society.

  10. Nuclear techniques in plant pathology 1. Plant disease control and physiology of parasitism

    International Nuclear Information System (INIS)

    Menten, J.O.M.; Ando, A.; Tulmann Neto, A.

    1986-01-01

    Nuclear techniques are advantageously used in several areas of plant pathology. Among them are: induction of mutation for disease resistance, studies with pesticides, disease control through pathogen inactivation, induction of variability and stimulation in pathogens and natural enemies, studies of microorganism physiology and diseased plant physiology, effect of gamma radiation on pesticides, technology of pesticides application, etc. (Author) [pt

  11. 14-3-3 proteins in plant physiology.

    Science.gov (United States)

    Denison, Fiona C; Paul, Anna-Lisa; Zupanska, Agata K; Ferl, Robert J

    2011-09-01

    Plant 14-3-3 isoforms, like their highly conserved homologues in mammals, function by binding to phosphorylated client proteins to modulate their function. Through the regulation of a diverse range of proteins including kinases, transcription factors, structural proteins, ion channels and pathogen defense-related proteins, they are being implicated in an expanding catalogue of physiological functions in plants. 14-3-3s themselves are affected, both transcriptionally and functionally, by the extracellular and intracellular environment of the plant. They can modulate signaling pathways that transduce inputs from the environment and also the downstream proteins that elicit the physiological response. This review covers some of the key emerging roles for plant 14-3-3s including their role in the response to the plant extracellular environment, particularly environmental stress, pathogens and light conditions. We also address potential key roles in primary metabolism, hormone signaling, growth and cell division. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential

    KAUST Repository

    Soussi, Asma

    2015-08-28

    Background: Aridification is a worldwide serious threat directly affecting agriculture and crop production. In arid and desert areas, it has been found that microbial diversity is huge, built of microorganisms able to cope with the environmental harsh conditions by developing adaptation strategies. Plants growing in arid lands or regions facing prolonged abiotic stresses such as water limitation and salt accumulation have also developed specific physiological and molecular stress responses allowing them to thrive under normally unfavorable conditions. Scope: Under such extreme selection pressures, special root-associated bacterial assemblages, endowed with capabilities of plant growth promotion (PGP) and extremophile traits, are selected by the plants. In this review, we provide a general overview on the microbial diversity in arid lands and deserts versus specific microbial assemblages associated with plants. The ecological drivers that shape this diversity, how plant-associated microbiomes are selected, and their biotechnological potential are discussed. Conclusions: Selection and recruitment of the plant associated bacterial assemblages is mediated by the combination of the bio-pedo-agroclimatic conditions and the plant species or varieties. Diversity and functional redundancy of these associated PGPR makes them very active in supporting plant improvement, health and resistance to drought, salt and related stresses. Implementing proper biotechnological applications of the arid and desert-adapted PGPR constitute the challenge to be raised.

  13. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions.

    Science.gov (United States)

    Berger, Susanne; Sinha, Alok K; Roitsch, Thomas

    2007-01-01

    Phytopathogen infection leads to changes in secondary metabolism based on the induction of defence programmes as well as to changes in primary metabolism which affect growth and development of the plant. Therefore, pathogen attack causes crop yield losses even in interactions which do not end up with disease or death of the plant. While the regulation of defence responses has been intensively studied for decades, less is known about the effects of pathogen infection on primary metabolism. Recently, interest in this research area has been growing, and aspects of photosynthesis, assimilate partitioning, and source-sink regulation in different types of plant-pathogen interactions have been investigated. Similarly, phytopathological studies take into consideration the physiological status of the infected tissues to elucidate the fine-tuned infection mechanisms. The aim of this review is to give a summary of recent advances in the mutual interrelation between primary metabolism and pathogen infection, as well as to indicate current developments in non-invasive techniques and important strategies of combining modern molecular and physiological techniques with phytopathology for future investigations.

  14. A new approach to homeostatic regulation: towards a unified view of physiological and ecological concepts.

    Directory of Open Access Journals (Sweden)

    Cédric L Meunier

    Full Text Available Stoichiometric homeostasis is the ability of an organism to keep its body chemical composition constant, despite varying inputs. Stoichiometric homeostasis therefore constrains the metabolic needs of consumers which in turn often feed on resources not matching these requirements. In a broader context, homeostasis also relates to the capacity of an organism to maintain other biological parameters (e.g. body temperature at a constant level over ambient environmental variations. Unfortunately, there are discrepancies in the literature and ecological and physiological definitions of homeostasis are disparate and partly contradictory. Here, we address this matter by reviewing the existing knowledge considering two distinct groups, regulators and conformers and, based on examples of thermo- and osmoregulation, we propose a new approach to stoichiometric homeostasis, unifying ecological and physiological concepts. We suggest a simple and precise graphical way to identify regulators and conformers: for any given biological parameter (e.g. nutrient stoichiometry, temperature, a sigmoidal relation between internal and external conditions can be observed for conformers while an inverse sigmoidal response is characteristic of regulators. This new definition and method, based on well-studied physiological mechanisms, unifies ecological and physiological approaches and is a useful tool for understanding how organisms are affected by and affect their environment.

  15. PHYSIOLOGICAL AND BIOCHEMICAL MARKERS OF SALINITY TOLERANCE IN PLANTS

    Directory of Open Access Journals (Sweden)

    Mustafa YILDIZ

    2011-02-01

    Full Text Available Salt stress limits plant productivity in arid and semi arid regions. Salt stress causes decrease in plant growth by adversely affecting physiological processes, especially photosynthesis. Salinity tolerance is defined as the ability of plant to maintain normal rowth and development under salt conditions. Salt stress results in accumulation of low molecular weight compounds, termed compatible solutes, which do not interfere with the normal biochemical reactions. These compatible solutes such as carbohydrates, polyols, amino acids and amides, quaternary ammonium compounds, polyamines andsoluble proteins may play a crucial role in osmotic adjustment, protection of macromolecules, maintenance of cellular pH and detoxification of free radicals. On the other hand, plants subjected to environmental stresses such as salinity produce reactive oxygen species (ROS and these ROS are efficiently eliminated by antioxidant enzyme systems. In plant breeding studies, the use of some physiological and biochemical markers for improving the salt tolerance in plants is crucial. In this review, the possibility of using some physiological and biochemical markers as selection criteria for salt tolerance is discussed.

  16. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms.

    Science.gov (United States)

    Ohkama-Ohtsu, Naoko; Wasaki, Jun

    2010-08-01

    Mineral nutrients taken up from the soil become incorporated into a variety of important compounds with structural and physiological roles in plants. We summarize how plant nutrients are linked to many metabolic pathways, plant hormones and other biological processes. We also focus on nutrient uptake, describing plant-microbe interactions, plant exudates, root architecture, transporters and their applications. Plants need to survive in soils with mineral concentrations that vary widely. Describing the relationships between nutrients and biological processes will enable us to understand the molecular basis for signaling, physiological damage and responses to mineral stresses.

  17. Root bacterial endophytes alter plant phenotype, but not physiology

    DEFF Research Database (Denmark)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    2016-01-01

    (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light-Asat, and saturating CO2-Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf...... growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did......Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant...

  18. Macrophytes: Ecology of aquatic plants

    NARCIS (Netherlands)

    Bornette, G.; Puijalon, S.

    2009-01-01

    Aquatic plants contribute to maintaining key functions and related biodiversity in freshwater ecosystems, and to provide the needs of human societies. The way the ecological niches of macrophytes are determined by abiotic filters and biotic ones is considered. A simple, broadly applicable model of

  19. Seed isotopic analysis as a tool to understand ecological processes influencing plant development and physiology: the case study of Quercus rotundifolia Lam. in a desertification gradient in Mediterranean areas

    Science.gov (United States)

    Oliveira, Tatiana; Silva, Anabela; Rodrigues, Carla; Antunes Antunes, Cristina; Pinho, Pedro; Ramos, Alzira; João Pereira, Maria; Branquinho, Cristina; Máguas, Cristina

    2014-05-01

    Plant responses to climate change highly depend on the temporal variability in precipitation events and on plant specific strategies, such as drought tolerance and resilience. Within the different plant organs, seeds have become an important research tool in the past years to study plant development and nutrients allocation. Key features of seeds such as the tendency to accumulate and store nutrient compounds open many possibilities to explore isotope analysis (13C, 15N and 18O), with many outcomes in fields from ecology to food traceability. The application of light stable isotopes to plant materials have been used to study both physiological (i.e. photosynthesis and stomatal conductance), nutrients uptake and metabolism (origin of nitrogen and symbiotic associations) as well as many ecological processes, which will produce a distinctive isotope fingerprint on the plant tissues. Thus, the isotopic composition of certain bio and geo-elements of seeds, yielding relevant information on plant ecophysiology, are able to relate the plant functioning with local climatic conditions (e.g., temperature and precipitation). The application of isotope analysis in this way can be used as a proxy to understand complex environmental degradation processes such as land degradation in drylands resulting from various factors including climatic variations and human activities. In this study acorns of Quercus ilex plants were sampled during 2012-2013 in a region of southern Portugal, according to (i) soil land-use; (ii) aridity and desertification indexes. The approach developed combined plant seed analysis (seed morphology and compounds quantification) with isotope ratio mass spectrometry (δ13C, δ15N and δ18O) as a "tool" to study changes in plant ecophysiology over time and space. Seeds allow studies at specific temporal scale (development period) which varies according to its biology and depends on the climatic conditions where the plant is grown (i.e, seed's biomass integrate

  20. Physiology of Plants, Science (Experimental): 5315.41.

    Science.gov (United States)

    Gunn, William C.

    This unit of instruction deals with the physiological activities of plants. Attention is focused on the principles which underlie the activities of the typical green land plant. Emphasis is placed on biological processes such as photosynthesis, water transport, light responses, mineral nutrition, reproduction, and growth. The prerequisite for…

  1. Photosynthesis, environmental change, and plant adaptation: Research topics in plant molecular ecology. Summary report of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    As we approach the 21st Century, it is becoming increasingly clear that human activities, primarily related to energy extraction and use, will lead to marked environmental changes at the local, regional, and global levels. The realized and the potential photosynthetic performance of plants is determined by a combination of intrinsic genetic information and extrinsic environmental factors, especially climate. It is essential that the effects of environmental changes on the photosynthetic competence of individual species, communities, and ecosystems be accurately assessed. From October 24 to 26, 1993, a group of scientists specializing in various aspects of plant science met to discuss how our predictive capabilities could be improved by developing a more rational, mechanistic approach to relating photosynthetic processes to environmental factors. A consensus emerged that achieving this goal requires multidisciplinary research efforts that combine tools and techniques of genetics, molecular biology, biophysics, biochemistry, and physiology to understand the principles, mechanisms, and limitations of evolutional adaptation and physiological acclimation of photosynthetic processes. Many of these basic tools and techniques, often developed in other fields of science, already are available but have not been applied in a coherent, coordinated fashion to ecological research. The efforts of this research program are related to the broader efforts to develop more realistic prognostic models to forecast climate change that include photosynthetic responses and feedbacks at the regional and ecosystem levels.

  2. Communicative interactions involving plants: information, evolution, and ecology.

    Science.gov (United States)

    Mescher, Mark C; Pearse, Ian S

    2016-08-01

    The role of information obtained via sensory cues and signals in mediating the interactions of organisms with their biotic and abiotic environments has been a major focus of work on sensory and behavioral ecology. Information-mediated interactions also have important implications for broader ecological patterns emerging at the community and ecosystem levels that are only now beginning to be explored. Given the extent to which plants dominate the sensory landscapes of terrestrial ecosystems, information-mediated interactions involving plants should be a major focus of efforts to elucidate these broader patterns. Here we explore how such efforts might be enhanced by a clear understanding of information itself-a central and potentially unifying concept in biology that has nevertheless been the subject of considerable confusion-and of its relationship to adaptive evolution and ecology. We suggest that information-mediated interactions should be a key focus of efforts to more fully integrate evolutionary biology and ecology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ecological physiological characteristic of some species of natural vegetation in the Poles'e State Radiation Ecological Reservation

    International Nuclear Information System (INIS)

    Kravchenko, V.A.; Gaponenko, V.I.; Matsko, V.P.; Grushevskaya, O.M.; Bondar', Yu.I.; Evsievich, K.M.; Akadehmiya Navuk Belarusi, Minsk

    1996-01-01

    Influence of radiation on important ecological and physiological characteristics of Pinus silvestris L., Phleum pratense L. and Dactylis glomerata L. growing on territory of the Poles'e State Radiation Ecological Reservation has been investigated in 1992-1994. Significant changes in species and quantitative formation of natural vegetation growing on territory contaminated by the Chernobyl accident release were not observed. Positive correlation between the content of protein in needles of Pinus silvestris L., leaves of Agropyron repens L. and specific radioactivity of photosystem was established. Positive correlation between specific radioactivity of overground photosystem and quantity of nucleic acids (DNA+RNA) is leaves of Dactylis glomerata was found. 8 refs., 2 tabs., 2 figs

  4. A pharm-ecological perspective of terrestrial and aquatic plant-herbivore interactions.

    Science.gov (United States)

    Forbey, Jennifer Sorensen; Dearing, M Denise; Gross, Elisabeth M; Orians, Colin M; Sotka, Erik E; Foley, William J

    2013-04-01

    We describe some recent themes in the nutritional and chemical ecology of herbivores and the importance of a broad pharmacological view of plant nutrients and chemical defenses that we integrate as "Pharm-ecology". The central role that dose, concentration, and response to plant components (nutrients and secondary metabolites) play in herbivore foraging behavior argues for broader application of approaches derived from pharmacology to both terrestrial and aquatic plant-herbivore systems. We describe how concepts of pharmacokinetics and pharmacodynamics are used to better understand the foraging phenotype of herbivores relative to nutrient and secondary metabolites in food. Implementing these concepts into the field remains a challenge, but new modeling approaches that emphasize tradeoffs and the properties of individual animals show promise. Throughout, we highlight similarities and differences between the historic and future applications of pharm-ecological concepts in understanding the ecology and evolution of terrestrial and aquatic interactions between herbivores and plants. We offer several pharm-ecology related questions and hypotheses that could strengthen our understanding of the nutritional and chemical factors that modulate foraging behavior of herbivores across terrestrial and aquatic systems.

  5. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  6. Ecological impacts and damage - comparison of selected components for nuclear and conventional power plants (example of Mochovce nuclear power plant)

    International Nuclear Information System (INIS)

    Bucek, M.

    1984-01-01

    A comparison is given of ecological damage for the nuclear power plant in Mochovce and a conventional power plant with the same power. Ecological effects and damage are divided into three groups: comparable damage, ecological damage caused only by conventional power plants and ecological damage caused only by nuclear power plants. In the first group the factors compared are land requisition, consumption of utility water and air consumption. In the second group are enumerated losses of crops (cereals, sugar beet, potatoes, oleaginous plants) and losses caused by increased disease rate owing to polluted environment by conventional power plants. In the third group health hazards are assessed linked with ionizing radiation. Also considered are vent stack escapes. (E.S.)

  7. New handbook for standardised measurement of plant functional traits worldwide

    OpenAIRE

    Pérez-Harguindeguy N Díaz S Garnier E Lavorel S Poorter H Jaureguiberry P Bret-Harte MS Cor

    2013-01-01

    Plant functional traits are the features (morphological physiological phenological) that represent ecological strategies and determine how plants respond to environmental factors affect other trophic levels and influence ecosystem properties. Variation in plant functional traits and trait syndromes has proven useful for tackling many important ecological questions at a range of scales giving rise to a demand for standardised ways to measure ecologically meaningful plant traits. This line of r...

  8. Physiological response of soybean genotypes to plant density

    NARCIS (Netherlands)

    Gan, Y; Stulen, [No Value; van Keulen, H; Kuiper, PJC

    2002-01-01

    Response of soybean (Glycine max (L.) Merr.) to plant density has occupied a segment of agronomic research for most of the century. Genotype differences have been noted especially in response to planting date, lodging problems and water limitation. There is limited information on the physiological

  9. The direct and ecological costs of an ant-plant symbiosis.

    Science.gov (United States)

    Frederickson, Megan E; Ravenscraft, Alison; Miller, Gabriel A; Arcila Hernández, Lina M; Booth, Gregory; Pierce, Naomi E

    2012-06-01

    How strong is selection for cheating in mutualisms? The answer depends on the type and magnitude of the costs of the mutualism. Here we investigated the direct and ecological costs of plant defense by ants in the association between Cordia nodosa, a myrmecophytic plant, and Allomerus octoarticulatus, a phytoecious ant. Cordia nodosa trees produce food and housing to reward ants that protect them against herbivores. For nearly 1 year, we manipulated the presence of A. octoarticulatus ants and most insect herbivores on C. nodosa in a full-factorial experiment. Ants increased plant growth when herbivores were present but decreased plant growth when herbivores were absent, indicating that hosting ants can be costly to plants. However, we did not detect a cost to ant colonies of defending host plants against herbivores. Although this asymmetry in costs suggests that the plants may be under stronger selection than the ants to cheat by withholding investment in their partner, the costs to C. nodosa are probably at least partly ecological, arising because ants tend scale insects on their host plants. We argue that ecological costs should favor resistance or traits other than cheating and thus that neither partner may face much temptation to cheat.

  10. Introduction to the Special Issue: Beyond traits: integrating behaviour into plant ecology and biology.

    Science.gov (United States)

    Cahill, James F

    2015-10-26

    The way that plants are conceptualized in the context of ecological understanding is changing. In one direction, a reductionist school is pulling plants apart into a list of measured 'traits', from which ecological function and outcomes of species interactions may be inferred. This special issue offers an alternative, and more holistic, view: that the ecological functions performed by a plant will be a consequence not only of their complement of traits but also of the ways in which their component parts are used in response to environmental and social conditions. This is the realm of behavioural ecology, a field that has greatly advanced our understanding of animal biology, ecology and evolution. Included in this special issue are 10 articles focussing not on the tried and true metaphor that plant growth is similar to animal movement, but instead on how application of principles from animal behaviour can improve our ability to understand plant biology and ecology. The goals are not to draw false parallels, nor to anthropomorphize plant biology, but instead to demonstrate how existing and robust theory based on fundamental principles can provide novel understanding for plants. Key to this approach is the recognition that behaviour and intelligence are not the same. Many organisms display complex behaviours despite a lack of cognition (as it is traditionally understood) or any hint of a nervous system. The applicability of behavioural concepts to plants is further enhanced with the realization that all organisms face the same harsh forces of natural selection in the context of finding resources, mates and coping with neighbours. As these ecological realities are often highly variable in space and time, it is not surprising that all organisms-even plants-exhibit complex behaviours to handle this variability. The articles included here address diverse topics in behavioural ecology, as applied to plants: general conceptual understanding, plant nutrient foraging, root

  11. Fatality of salt stress to plants: Morphological, physiological and ...

    African Journals Online (AJOL)

    Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. ... This adverse effect of salt stress appears on whole plant level at almost all growth stages including germination, seedling, vegetative ... from 32 Countries:.

  12. Urban plant physiology: adaptation-mitigation strategies under permanent stress.

    Science.gov (United States)

    Calfapietra, Carlo; Peñuelas, Josep; Niinemets, Ülo

    2015-02-01

    Urban environments that are stressful for plant function and growth will become increasingly widespread in future. In this opinion article, we define the concept of 'urban plant physiology', which focuses on plant responses and long term adaptations to urban conditions and on the capacity of urban vegetation to mitigate environmental hazards in urbanized settings such as air and soil pollution. Use of appropriate control treatments would allow for studies in urban environments to be comparable to expensive manipulative experiments. In this opinion article, we propose to couple two approaches, based either on environmental gradients or manipulated gradients, to develop the concept of urban plant physiology for assessing how single or multiple environmental factors affect the key environmental services provided by urban forests. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Selenium accumulation in plants--phytotechnological applications and ecological implications.

    Science.gov (United States)

    Valdez Barillas, José Rodolfo; Quinn, Colin F; Pilon-Smits, Elizabeth A H

    2011-01-01

    Selenium (Se) is an essential trace element for many organisms including humans, yet toxic at higher levels. Both Se deficiency and toxicity are problems worldwide. Since plants readily accumulate and volatilize Se, they may be used both as a source of dietary Se and for removing excess Se from the environment. Plant species differ in their capacity to metabolize and accumulate Se, from non-Se accumulators ( 1,000 mg Se/kg DW). Here we review plant mechanisms of Se metabolism in these various plant types. We also summarize results from genetic engineering that have led to enhanced plant Se accumulation, volatilization, and/or tolerance, including field studies. Before using Se-accumulating plants at a large scale we need to evaluate the ecological implications. Research so far indicates that plant Se accumulation significantly affects the plant's ecological interactions below and above ground. Selenium canprotect plants from fungal pathogens and from a variety of invertebrate and vertebrate herbivores, due to both deterrence and toxicity. However, specialist (Se-tolerant herbivores), detritivores and endophytes appear to utilize Se hyperaccumulator plants as a resource. These findings are relevant for managing phytoremediation of Se and similar elements.

  14. Ecological aspects of nuclear power plants in coastal environment

    International Nuclear Information System (INIS)

    Lebreton, P.

    1976-01-01

    A review is presented about ecological effects of giant nuclear Power Plants (ca. 5,000 MWe) on coastal environment. From short to long time, the problems concern the following points of view: - physical: (sitology; necessity of ecological mapping); - mechanical: (the cooling systems. 'Courantology'. Disturbance of marine micro- and macro-organisms); - thermal: (the heated discharges; thermal pollution. Effects on dissolved chemicals and marine organisms. Acquaculture and its limits); - chemical and radiochemical: (synergistic pollutions. Chlorine vs. fouling. Acute or chronic radioactive effluents; concentration by food chains). The conclusions emphasize the necessity of 'pluridisciplinarity' and 'zero-point' definition. Three ecological categories can be distinguished on the basis of water physical turn-over; to this categories correspond various standards and recommandations for management of nuclear Power Plants in coastal zones [fr

  15. Physiological conjunction of allelochemicals and desert plants.

    Science.gov (United States)

    Yosef Friedjung, Avital; Choudhary, Sikander Pal; Dudai, Nativ; Rachmilevitch, Shimon

    2013-01-01

    Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds) were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  16. Physiological conjunction of allelochemicals and desert plants.

    Directory of Open Access Journals (Sweden)

    Avital Yosef Friedjung

    Full Text Available Plants exchange signals with other physical and biological entities in their habitat, a form of communication termed allelopathy. The underlying principles of allelopathy and secondary-metabolite production are still poorly understood, especially in desert plants. The coordination and role of secondary metabolites were examined as a cause of allelopathy in plants thriving under arid and semiarid soil conditions. Desert plant species, Origanum dayi, Artemisia sieberi and Artemisia judaica from two different sources (cultivar cuttings and wild seeds were studied in their natural habitats. Growth rate, relative water content, osmotic potential, photochemical efficiency, volatile composition and vital factors of allelopathy were analyzed at regular intervals along four seasons with winter showing optimum soil water content and summer showing water deficit conditions. A comprehensive analysis of the volatile composition of the leaves, ambient air and soil in the biological niche of the plants under study was carried out to determine the effects of soil water conditions and sample plants on the surrounding flora. Significant morpho-physiological changes were observed across the seasons and along different soil water content. Metabolic analysis showed that water deficit was the key for driving selective metabolomic shifts. A. judaica showed the least metabolic shifts, while A. sieberi showed the highest shifts. All the species exhibited high allelopathic effects; A. judaica displayed relatively higher growth-inhibition effects, while O. dayi showed comparatively higher germination-inhibition effects in germination assays. The current study may help in understanding plant behavior, mechanisms underlying secondary-metabolite production in water deficit conditions and metabolite-physiological interrelationship with allelopathy in desert plants, and can help cull economic benefits from the produced volatiles.

  17. An exceptional role for flowering plant physiology in the expansion of tropical rainforests and biodiversity.

    Science.gov (United States)

    Boyce, C Kevin; Lee, Jung-Eun

    2010-11-22

    Movement of water from soil to atmosphere by plant transpiration can feed precipitation, but is limited by the hydraulic capacities of plants, which have not been uniform through time. The flowering plants that dominate modern vegetation possess transpiration capacities that are dramatically higher than any other plants, living or extinct. Transpiration operates at the level of the leaf, however, and how the impact of this physiological revolution scales up to the landscape and larger environment remains unclear. Here, climate modelling demonstrates that angiosperms help ensure aseasonally high levels of precipitation in the modern tropics. Most strikingly, replacement of angiosperm with non-angiosperm vegetation would result in a hotter, drier and more seasonal Amazon basin, decreasing the overall area of ever-wet rainforest by 80 per cent. Thus, flowering plant ecological dominance has strongly altered climate and the global hydrological cycle. Because tropical biodiversity is closely tied to precipitation and rainforest area, angiosperm climate modification may have promoted diversification of the angiosperms themselves, as well as radiations of diverse vertebrate and invertebrate animal lineages and of epiphytic plants. Their exceptional potential for environmental modification may have contributed to divergent responses to similar climates and global perturbations, like mass extinctions, before and after angiosperm evolution.

  18. At the crossroads of physiology and ecology: food supply and the timing of avian reproduction.

    Science.gov (United States)

    Davies, Scott; Deviche, Pierre

    2014-06-01

    This article is part of a Special Issue “Energy Balance”. The decision of when to breed is crucial to the reproductive success and fitness of seasonally breeding birds. The availability of food for adults prior to breeding has long been thought to play a critical role in timing the initiation of seasonal reproductive events, in particular laying. However, unequivocal evidence for such a role remains limited and the physiological mechanisms by which an increase in food availability results in seasonal activation of the reproductive system are largely speculative. This lack of mechanistic information partly reflects a lack of integration of ecological and physiological approaches to study seasonal reproduction. Indeed, most work pertaining to the role of food availability for adults on the timing of avian reproduction has been ecological and has focused almost exclusively on female traits associated with reproductive timing (e.g., lay date and clutch size). By contrast, most work on the physiological bases of the relationship between food availability and the timing of reproduction has investigated male traits associated with reproductive development (e.g., reproductive hormones and gonadal development). To advance our understanding of these topics, we review the role of proximate factors including food availability, social factors, and ambient temperature in the control of breeding decisions, and discuss the role of three potential candidates (leptin, glucocorticoids, and GnIH-neuropeptide Y) that may mediate the effects of food availability on these decisions. We emphasize that future progress in this area is heavily contingent upon the use of physiology-based approaches and their integration into current ecological frameworks. Published by Elsevier Inc.

  19. Causes of Low and High Citation Potentials in Science: Citation Analysis of Biochemistry and Plant Physiology Journals.

    Science.gov (United States)

    Marton, Janos

    1983-01-01

    Citation data of 16 biochemistry and plant physiology journals show that reasons for lower citation potentials of plant physiology articles are: (1) readership is narrower for plant physiology journals; (2) plant physiologists can cite fewer thematically relevant new articles; and (3) plant physiology research fields are more isolated. References…

  20. Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences.

    Science.gov (United States)

    Gunderson, Alex R; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    A major focus of current ecological research is to understand how global change makes species vulnerable to extirpation. To date, mechanistic ecophysiological analyses of global change vulnerability have focused primarily on the direct effects of changing abiotic conditions on whole-organism physiological traits, such as metabolic rate, locomotor performance, cardiac function, and critical thermal limits. However, species do not live in isolation within their physical environments, and direct effects of climate change are likely to be compounded by indirect effects that result from altered interactions with other species, such as competitors and predators. The Society for Integrative and Comparative Biology 2017 Symposium "Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences" was designed to synthesize multiple approaches to investigating the indirect effects of global change by bringing together researchers that study the indirect effects of global change from multiple perspectives across habitat, type of anthropogenic change, and level of biological organization. Our goal in bringing together researchers from different backgrounds was to foster cross-disciplinary insights into the mechanistic bases and higher-order ecological consequences of indirect effects of global change, and to promote collaboration among fields. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Ethnomedicinal and ecological status of plants in Garhwal Himalaya, India

    Science.gov (United States)

    2011-01-01

    Background The northern part of India harbours a great diversity of medicinal plants due to its distinct geography and ecological marginal conditions. The traditional medical systems of northern India are part of a time tested culture and honored still by people today. These traditional systems have been curing complex disease for more than 3,000 years. With rapidly growing demand for these medicinal plants, most of the plant populations have been depleted, indicating a lack of ecological knowledge among communities using the plants. Thus, an attempt was made in this study to focus on the ecological status of ethnomedicinal plants, to determine their availability in the growing sites, and to inform the communities about the sustainable exploitation of medicinal plants in the wild. Methods The ecological information regarding ethnomedicinal plants was collected in three different climatic regions (tropical, sub-tropical and temperate) for species composition in different forest layers. The ecological information was assessed using the quadrate sampling method. A total of 25 quadrats, 10 × 10 m were laid out at random in order to sample trees and shrubs, and 40 quadrats of 1 × 1 m for herbaceous plants. In each climatic region, three vegetation sites were selected for ecological information; the mean values of density, basal cover, and the importance value index from all sites of each region were used to interpret the final data. Ethnomedicinal uses were collected from informants of adjacent villages. About 10% of inhabitants (older, experienced men and women) were interviewed about their use of medicinal plants. A consensus analysis of medicinal plant use between the different populations was conducted. Results Across the different climatic regions a total of 57 species of plants were reported: 14 tree species, 10 shrub species, and 33 herb species. In the tropical and sub-tropical regions, Acacia catechu was the dominant tree while Ougeinia oojeinensis in the

  2. Ethnomedicinal and ecological status of plants in Garhwal Himalaya, India

    Directory of Open Access Journals (Sweden)

    Sheikh Mehraj A

    2011-10-01

    Full Text Available Abstract Background The northern part of India harbours a great diversity of medicinal plants due to its distinct geography and ecological marginal conditions. The traditional medical systems of northern India are part of a time tested culture and honored still by people today. These traditional systems have been curing complex disease for more than 3,000 years. With rapidly growing demand for these medicinal plants, most of the plant populations have been depleted, indicating a lack of ecological knowledge among communities using the plants. Thus, an attempt was made in this study to focus on the ecological status of ethnomedicinal plants, to determine their availability in the growing sites, and to inform the communities about the sustainable exploitation of medicinal plants in the wild. Methods The ecological information regarding ethnomedicinal plants was collected in three different climatic regions (tropical, sub-tropical and temperate for species composition in different forest layers. The ecological information was assessed using the quadrate sampling method. A total of 25 quadrats, 10 × 10 m were laid out at random in order to sample trees and shrubs, and 40 quadrats of 1 × 1 m for herbaceous plants. In each climatic region, three vegetation sites were selected for ecological information; the mean values of density, basal cover, and the importance value index from all sites of each region were used to interpret the final data. Ethnomedicinal uses were collected from informants of adjacent villages. About 10% of inhabitants (older, experienced men and women were interviewed about their use of medicinal plants. A consensus analysis of medicinal plant use between the different populations was conducted. Results Across the different climatic regions a total of 57 species of plants were reported: 14 tree species, 10 shrub species, and 33 herb species. In the tropical and sub-tropical regions, Acacia catechu was the dominant tree while

  3. Introduction to special issue on the ecology of clonal plants

    Czech Academy of Sciences Publication Activity Database

    Gross, K. L.; Herben, T.; Klimešová, Jitka

    2017-01-01

    Roč. 52, 3-4 (2017), s. 265-267 ISSN 1211-9520 Institutional support: RVO:67985939 Keywords : Introduction to special issue * clonal plants * clonal meeting Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.017, year: 2016

  4. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants.

    Science.gov (United States)

    Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; del-Val, Ek; Larsen, John

    2016-04-01

    Trichodermaspp. are common soil and root inhabitants that have been widely studied due to their capacity to produce antibiotics, parasitize other fungi and compete with deleterious plant microorganisms. These fungi produce a number of secondary metabolites such as non-ribosomal peptides, terpenoids, pyrones and indolic-derived compounds. In the rhizosphere, the exchange and recognition of signaling molecules byTrichodermaand plants may alter physiological and biochemical aspects in both. For example, severalTrichodermastrains induce root branching and increase shoot biomass as a consequence of cell division, expansion and differentiation by the presence of fungal auxin-like compounds. Furthermore,Trichoderma, in association with plant roots, can trigger systemic resistance and improve plant nutrient uptake. The present review describes the most recent advances in understanding the ecological functions ofTrichodermaspp. in the rhizosphere at biochemical and molecular levels with special emphasis on their associations with plants. Finally, through a synthesis of the current body of work, we present potential future research directions on studies related toTrichodermaspp. and their secondary metabolites in agroecosystems. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. State of the science and challenges of breeding landscape plants with ecological function

    Science.gov (United States)

    Wilde, H Dayton; Gandhi, Kamal J K; Colson, Gregory

    2015-01-01

    Exotic plants dominate esthetically-managed landscapes, which cover 30–40 million hectares in the United States alone. Recent ecological studies have found that landscaping with exotic plant species can reduce biodiversity on multiple trophic levels. To support biodiversity in urbanized areas, the increased use of native landscaping plants has been advocated by conservation groups and US federal and state agencies. A major challenge to scaling up the use of native species in landscaping is providing ornamental plants that are both ecologically functional and economically viable. Depending on ecological and economic constraints, accelerated breeding approaches could be applied to ornamental trait development in native plants. This review examines the impact of landscaping choices on biodiversity, the current status of breeding and selection of native ornamental plants, and the interdisciplinary research needed to scale up landscaping plants that can support native biodiversity. PMID:26504560

  6. Study on remote sensing method for drawing up and utilizing ecological and natural map II; concentrated on drawing up a plant ecological classification map

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong Woo; Chung, Hwui Chul [Korea Environment Institute, Seoul (Korea)

    1999-12-01

    Following with the flows of the environmental conservation, Korea has revised the law of natural environmental conservation. In this law, it has suggested to draw up an ecological nature figure for efficient preservation and utilization of a country. To draw up an ecological nature figure, it requires several evaluating factors. Among them, a plant ecological classification is a very important evaluating factor since it can evaluate a habitation area of natural organisms. This study investigated a drawing up method of plant ecological classification using satellite image data. However the limit of satellite image data and the quality of required plant ecological classification are not quite matched but if the satellite image data and the infrared color aerial photograph are mixed, it can be expected to have an excellent quality of plant ecological classification. 85 refs., 86 figs., 45 tabs.

  7. X-ray microanalysis in plant physiology

    International Nuclear Information System (INIS)

    Neumann, D.

    1979-01-01

    X-ray microanalysis represents a highly sensitive and modern method for the measurement of ions in the very small compartments of the cell. The limitations of X-ray microanalysis in biological objects exist in the preparation of the tissues and the quantitation of the results. In plant physiology this method has provided several surprising results and new insights for further investigations. (author)

  8. [Isolation and physiological characteristics of endophytic actinobacteria from medicinal plants].

    Science.gov (United States)

    Du, Huijing; Su, Jing; Yu, Liyan; Zhang, Yuqin

    2013-01-04

    To isolate, incubate and characterize cultivable endophytic antinobacteria from medicinal plants, and analyze the diversity of the endophytic antinobacteria, then explore the novel microbial resources. Ten media were used to isolate endophytic antinobacteria from 37 fresh medicinal plant tissue samples. The optimal cultivation conditions for endophytic antinobacteria were determined by comparison. Based on the morphology of the colonies and cells of the new isolates, we chose 174 isolates to analyze their 16S rRNA gene sequences and the diversity of the medicinal plant endophytic antinobacteria. The physiological characteristics of 27 representative strains were studied using Biolog GEN III MicroPlates, API 50CH and API ZYM kits. In total 940 endophytics affiliated to 47 genera of 30 families were isolated, among which more than 600 actinobacteria belonged to 34 genera and 7 unknown taxa. Good growth of the endophytic antinobacteria on PYG (peptone-yeast-glycerol) medium with pH 7.2 at 28-32 degrees C was observed. Physiological characteristics differences of these isolates related to their phylogenetic relationships. Greater differences were shown among the strains from the same host plants than those from differ,ent plants grown in the same area. There are great diverse endophytic actinobacteria inside the medicinal plants. No direct relationship of the endophytic actinobacteria from medicinal plants with the host plants in the sole carbon source utilization, fermentation of carbon sources to produce acid and the enzyme activities was found, while it seemed that the physiological characteristics of the isolates related to the geographical distribution of their host.

  9. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview.

    Science.gov (United States)

    Gomes, Marcelo P; Smedbol, Elise; Chalifour, Annie; Hénault-Ethier, Louise; Labrecque, Michel; Lepage, Laurent; Lucotte, Marc; Juneau, Philippe

    2014-09-01

    It is generally claimed that glyphosate kills undesired plants by affecting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, disturbing the shikimate pathway. However, the mechanisms leading to plant death may also be related to secondary or indirect effects of glyphosate on plant physiology. Moreover, some plants can metabolize glyphosate to aminomethylphosphonic acid (AMPA) or be exposed to AMPA from different environmental matrices. AMPA is a recognized phytotoxin, and its co-occurrence with glyphosate could modify the effects of glyphosate on plant physiology. The present review provides an overall picture of alterations of plant physiology caused by environmental exposure to glyphosate and its metabolite AMPA, and summarizes their effects on several physiological processes. It particularly focuses on photosynthesis, from photochemical events to C assimilation and translocation, as well as oxidative stress. The effects of glyphosate and AMPA on several plant physiological processes have been linked, with the aim of better understanding their phytotoxicity and glyphosate herbicidal effects. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms

    Directory of Open Access Journals (Sweden)

    Nurmi ePangesti

    2013-10-01

    Full Text Available Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the host plant that influence interactions between plants and aboveground insects at several trophic levels. Aboveground, plants are under continuous attack by insect herbivores and mount multiple responses that also have systemic effects on belowground microbes. Until recently, both ecological and mechanistic studies have mostly focused on exploring these below- and above-ground interactions using simplified systems involving both single microbe and herbivore species, which is far from the naturally occurring interactions. Increasing the complexity of the systems studied is required to increase our understanding of microbe - plant - insect interactions and to gain more benefit from the use of non-pathogenic microbes in agriculture. In this review, we explore how colonization by either single non-pathogenic microbe species or a community of such microbes belowground affects plant growth and defense and how this affects the interactions of plants with aboveground insects at different trophic levels. Moreover, we review how plant responses to foliar herbivory by insects belonging to different feeding guilds affect interactions of plants with non-pathogenic soil-borne microbes. The role of phytohormones in coordinating plant growth, plant defenses against foliar herbivores while simultaneously establishing associations with non-pathogenic soil microbes is discussed.

  11. The importance of ecological costs for the evolution of plant defense against herbivory.

    Science.gov (United States)

    van Velzen, Ellen; Etienne, Rampal S

    2015-05-07

    Plant defense against herbivory comes at a cost, which can be either direct (reducing resources available for growth and reproduction) or indirect (through reducing ecological performance, for example intraspecific competitiveness). While direct costs have been well studied in theoretical models, ecological costs have received almost no attention. In this study we compare models with a direct trade-off (reduced growth rate) to models with an ecological trade-off (reduced competitive ability), using a combination of adaptive dynamics and simulations. In addition, we study the dependence of the level of defense that can evolve on the type of defense (directly by reducing consumption, or indirectly by inducing herbivore mortality (toxicity)), and on the type of herbivore against which the plant is defending itself (generalists or specialists). We find three major results: First, for both direct and ecological costs, defense only evolves if the benefit to the plant is direct (through reducing consumption). Second, the type of cost has a major effect on the evolutionary dynamics: direct costs always lead to a single optimal strategy against herbivores, but ecological costs can lead to branching and the coexistence of non-defending and defending plants; however, coexistence is only possible when defending against generalist herbivores. Finally, we find that fast-growing plants invest less than slow-growing plants when defending against generalist herbivores, as predicted by the Resource Availability Hypothesis, but invest more than slow-growing plants when defending against specialists. Our results clearly show that assumptions about ecological interactions are crucial for understanding the evolution of defense against herbivores. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context.

    Science.gov (United States)

    Terhorst, Casey P; Lennon, Jay T; Lau, Jennifer A

    2014-06-22

    Evolution can occur on ecological time-scales, affecting community and ecosystem processes. However, the importance of evolutionary change relative to ecological processes remains largely unknown. Here, we analyse data from a long-term experiment in which we allowed plant populations to evolve for three generations in dry or wet soils and used a reciprocal transplant to compare the ecological effect of drought and the effect of plant evolutionary responses to drought on soil microbial communities and nutrient availability. Plants that evolved under drought tended to support higher bacterial and fungal richness, and increased fungal : bacterial ratios in the soil. Overall, the magnitudes of ecological and evolutionary effects on microbial communities were similar; however, the strength and direction of these effects depended on the context in which they were measured. For example, plants that evolved in dry environments increased bacterial abundance in dry contemporary environments, but decreased bacterial abundance in wet contemporary environments. Our results suggest that interactions between recent evolutionary history and ecological context affect both the direction and magnitude of plant effects on soil microbes. Consequently, an eco-evolutionary perspective is required to fully understand plant-microbe interactions.

  13. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrã o, Só nia; Schmö ckel, S. M.; Tester, Mark A.

    2016-01-01

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making

  14. Ecological investigations on plant associations in differently disturbed heavy-metal contaminated soils of Great Britain

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, W

    1968-01-01

    In different areas of Great Britain comparing ecological studies have been made on disturbed and undisturbed heavy metal contaminated soils. In Grizedale (Pennine), sampling of an undisturbed transect having high levels of major nutrients showed marked differentiation within a small area, only related to the plant available levels of zinc, copper, and lead. However, studies on disturbed heavy metal soils and spoil-heaps revealed a low water capacity and a low supply of major nutrients, particularly of N and P. These suggest that here both the enrichment of heavy metals and the considerable decrease of other nutrients are important in determining the heavy metal vegetation, and in maintaining it against other species. The quantity of zinc in plants is not related to the total or plant-available amount of zinc in soil, but confirmed physiological experiments on the influence of phosphorus and different zinc compounds (complexed or inorganic) on the uptake and distribution of zinc in Thlaspi alpestre and Minnartia rerum. Also an antagonism between lead and copper was revealed. 24 references.

  15. Herbivore-mediated ecological costs of reproduction shape the life history of an iteroparous plant.

    Science.gov (United States)

    Miller, Tom E X; Tenhumberg, Brigitte; Louda, Svata M

    2008-02-01

    Plant reproduction yields immediate fitness benefits but can be costly in terms of survival, growth, and future fecundity. Life-history theory posits that reproductive strategies are shaped by trade-offs between current and future fitness that result from these direct costs of reproduction. Plant reproduction may also incur indirect ecological costs if it increases susceptibility to herbivores. Yet ecological costs of reproduction have received little empirical attention and remain poorly integrated into life-history theory. Here, we provide evidence for herbivore-mediated ecological costs of reproduction, and we develop theory to examine how these costs influence plant life-history strategies. Field experiments with an iteroparous cactus (Opuntia imbricata) indicated that greater reproductive effort (proportion of meristems allocated to reproduction) led to greater attack by a cactus-feeding insect (Narnia pallidicornis) and that damage by this herbivore reduced reproductive success. A dynamic programming model predicted strongly divergent optimal reproductive strategies when ecological costs were included, compared with when these costs were ignored. Meristem allocation by cacti in the field matched the optimal strategy expected under ecological costs of reproduction. The results indicate that plant reproductive allocation can strongly influence the intensity of interactions with herbivores and that associated ecological costs can play an important selective role in the evolution of plant life histories.

  16. New handbook for standardised measurement of plant functional traits worldwide.

    NARCIS (Netherlands)

    Perez-Harguindeguy, N.; Diaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; Urcelay, C.; Veneklaas, E.J.; Reich, P.B.; Poorter, L.; Wright, I.J.; Ray, P.; Enrico, L.; Pausas, J.G.; de Vos, A.C.; Buchmann, N.; Funes, G.; Quetier, F.; Hodgson, J.G.; Thompson, K.; Morgan, H.D.; ter Steege, H.; van der Heijden, M.G.A.; Sack, L.; Blonder, B.; Poschlod, P.; Vaieretti, M.V.; Conti, G.; Staver, A.C.; Aquino, S.; Cornelissen, J.H.C.

    2013-01-01

    Plant functional traits are the features (morphological, physiological, phenological) that represent ecological strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem properties. Variation in plant functional traits, and trait

  17. Plant Ecological Strategies Shift Across the Cretaceous–Paleogene Boundary

    Science.gov (United States)

    Blonder, Benjamin; Royer, Dana L.; Johnson, Kirk R.; Miller, Ian; Enquist, Brian J.

    2014-01-01

    The Chicxulub bolide impact caused the end-Cretaceous mass extinction of plants, but the associated selectivity and ecological effects are poorly known. Using a unique set of North Dakota leaf fossil assemblages spanning 2.2 Myr across the event, we show among angiosperms a reduction of ecological strategies and selection for fast-growth strategies consistent with a hypothesized recovery from an impact winter. Leaf mass per area (carbon investment) decreased in both mean and variance, while vein density (carbon assimilation rate) increased in mean, consistent with a shift towards “fast” growth strategies. Plant extinction from the bolide impact resulted in a shift in functional trait space that likely had broad consequences for ecosystem functioning. PMID:25225914

  18. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward.

    Science.gov (United States)

    Richards, Christina L; Alonso, Conchita; Becker, Claude; Bossdorf, Oliver; Bucher, Etienne; Colomé-Tatché, Maria; Durka, Walter; Engelhardt, Jan; Gaspar, Bence; Gogol-Döring, Andreas; Grosse, Ivo; van Gurp, Thomas P; Heer, Katrin; Kronholm, Ilkka; Lampei, Christian; Latzel, Vít; Mirouze, Marie; Opgenoorth, Lars; Paun, Ovidiu; Prohaska, Sonja J; Rensing, Stefan A; Stadler, Peter F; Trucchi, Emiliano; Ullrich, Kristian; Verhoeven, Koen J F

    2017-12-01

    Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non-model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non-model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  19. The biology of human sexuality: evolution, ecology and physiology

    Directory of Open Access Journals (Sweden)

    PW Bateman

    2006-09-01

    Full Text Available Many evolutionary biologists argue that human sexual behaviour can be studied in exactly the same way as that of other species. Many sociologists argue that social influences effectively obscure, and are more important than, a reductionist biological approach to human sexual behaviour. Here,we authors attempt to provide a broad introduction to human sexual behaviour from a biological standpoint and to indicate where the ambiguous areas are. We outline the evolutionary selective pressures that are likely to have influenced human behaviour and mate choice in the past and in the present; ecological features that influence such things as degree of parental care and polygamy; and the associated physiology of human sexuality. Then they end with a discussion of �abnormal� sexuality.

  20. Frontiers for research on the ecology of plant-pathogenic bacteria: fundamentals for sustainability: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Morris, Cindy E; Barny, Marie-Anne; Berge, Odile; Kinkel, Linda L; Lacroix, Christelle

    2017-02-01

    Methods to ensure the health of crops owe their efficacy to the extent to which we understand the ecology and biology of environmental microorganisms and the conditions under which their interactions with plants lead to losses in crop quality or yield. However, in the pursuit of this knowledge, notions of the ecology of plant-pathogenic microorganisms have been reduced to a plant-centric and agro-centric focus. With increasing global change, i.e. changes that encompass not only climate, but also biodiversity, the geographical distribution of biomes, human demographic and socio-economic adaptations and land use, new plant health problems will emerge via a range of processes influenced by these changes. Hence, knowledge of the ecology of plant pathogens will play an increasingly important role in the anticipation and response to disease emergence. Here, we present our opinion on the major challenges facing the study of the ecology of plant-pathogenic bacteria. We argue that the discovery of markedly novel insights into the ecology of plant-pathogenic bacteria is most likely to happen within a framework of more extensive scales of space, time and biotic interactions than those that currently guide much of the research on these bacteria. This will set a context that is more propitious for the discovery of unsuspected drivers of the survival and diversification of plant-pathogenic bacteria and of the factors most critical for disease emergence, and will set the foundation for new approaches to the sustainable management of plant health. We describe the contextual background of, justification for and specific research questions with regard to the following challenges: Development of terminology to describe plant-bacterial relationships in terms of bacterial fitness. Definition of the full scope of the environments in which plant-pathogenic bacteria reside or survive. Delineation of pertinent phylogenetic contours of plant-pathogenic bacteria and naming of strains

  1. Forest climbing plants of West Africa: diversity, ecology and management

    NARCIS (Netherlands)

    Bongers, F.J.J.M.; Parren, M.P.E.; Traoré, D.

    2005-01-01

    Climbing plants, including lianas, represent a fascinating component of the ecology of tropical forests. This book focuses on the climbing plants of West African forests. Based on original research, it presents information on the flora (including a checklist), diversity (with overviews at several

  2. Evolutionary History Underlies Plant Physiological Responses to Global Change Since the Last Glacial Maximum

    Science.gov (United States)

    Becklin, K. M.; Medeiros, J. S.; Sale, K. R.; Ward, J. K.

    2014-12-01

    Assessing family and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Ancient plant specimens preserved within packrat middens are invaluable in this context since they allow for comparisons between co-occurring plant lineages. Here we used modern and ancient plant specimens preserved within packrat middens from the Snake Range, NV to investigate the physiological responses of a mixed montane conifer community to global change since the last glacial maximum. We used a conceptual model to infer relative changes in stomatal conductance and maximum photosynthetic capacity from measures of leaf carbon isotopes, stomatal characteristics, and leaf nitrogen content. Our results indicate that most of the sampled taxa decreased stomatal conductance and/or photosynthetic capacity from glacial to modern times. However, plant families differed in the timing and magnitude of these physiological responses. Additionally, leaf-level responses were more similar within plant families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time.

  3. Probing the evolution, ecology and physiology of marine protists using transcriptomics.

    Science.gov (United States)

    Caron, David A; Alexander, Harriet; Allen, Andrew E; Archibald, John M; Armbrust, E Virginia; Bachy, Charles; Bell, Callum J; Bharti, Arvind; Dyhrman, Sonya T; Guida, Stephanie M; Heidelberg, Karla B; Kaye, Jonathan Z; Metzner, Julia; Smith, Sarah R; Worden, Alexandra Z

    2017-01-01

    Protists, which are single-celled eukaryotes, critically influence the ecology and chemistry of marine ecosystems, but genome-based studies of these organisms have lagged behind those of other microorganisms. However, recent transcriptomic studies of cultured species, complemented by meta-omics analyses of natural communities, have increased the amount of genetic information available for poorly represented branches on the tree of eukaryotic life. This information is providing insights into the adaptations and interactions between protists and other microorganisms and macroorganisms, but many of the genes sequenced show no similarity to sequences currently available in public databases. A better understanding of these newly discovered genes will lead to a deeper appreciation of the functional diversity and metabolic processes in the ocean. In this Review, we summarize recent developments in our understanding of the ecology, physiology and evolution of protists, derived from transcriptomic studies of cultured strains and natural communities, and discuss how these novel large-scale genetic datasets will be used in the future.

  4. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton.

    Science.gov (United States)

    Lin, Senjie; Litaker, Richard Wayne; Sunda, William G

    2016-02-01

    Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth-limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well-studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P-limitation of phytoplankton growth in oceanic and coastal waters, and the role of P-limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes). © 2015 Phycological Society of America.

  5. Physiological and ecological implications of ocean deoxygenation for vision in marine organisms

    Science.gov (United States)

    McCormick, Lillian R.; Levin, Lisa A.

    2017-08-01

    Climate change has induced ocean deoxygenation and exacerbated eutrophication-driven hypoxia in recent decades, affecting the physiology, behaviour and ecology of marine organisms. The high oxygen demand of visual tissues and the known inhibitory effects of hypoxia on human vision raise the questions if and how ocean deoxygenation alters vision in marine organisms. This is particularly important given the rapid loss of oxygen and strong vertical gradients in oxygen concentration in many areas of the ocean. This review evaluates the potential effects of low oxygen (hypoxia) on visual function in marine animals and their implications for marine biota under current and future ocean deoxygenation based on evidence from terrestrial and a few marine organisms. Evolutionary history shows radiation of eye designs during a period of increasing ocean oxygenation. Physiological effects of hypoxia on photoreceptor function and light sensitivity, in combination with morphological changes that may occur throughout ontogeny, have the potential to alter visual behaviour and, subsequently, the ecology of marine organisms, particularly for fish, cephalopods and arthropods with `fast' vision. Visual responses to hypoxia, including greater light requirements, offer an alternative hypothesis for observed habitat compression and shoaling vertical distributions in visual marine species subject to ocean deoxygenation, which merits further investigation. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  6. The Analysis of Sustainable Development Content in the Syllabus of Environmental Knowledge and Plants Ecology Lecture

    Science.gov (United States)

    Putra, A.; Rahmat, A.; Redjeki, S.

    2017-09-01

    This research aims to find out how much the content of sustainable development exist in the content of environmental knowledge and plant ecology courses. The focus indicators of sustainable development indicators is the environment. This research is a qualitative research type with qualitative descriptive approach. The analyzed variables are only 2 courses, which are environmental knowledge and plants ecology. The results showed that the syllabus contents analysis of environmental knowledge and plants ecology courses in private Lembaga Pendidikan Tenaga Kependidikan (LPTK) in the province of Nusa Tenggara Barat is already good enough and the sustainable development contents is very large, almost all syllabus contents has already prioritize the sustainable development load of both the subject of environmental knowledge and plants ecology, although there are still some syllabus contents that was not includes sustainable development load, but the percentage is quite small, especially in the course of Plant Ecology.

  7. Ecological investigations at the Pantex Plant Site, 1992

    International Nuclear Information System (INIS)

    Cushing, C.E.; Mazaika, R.R.; Phillips, R.C.

    1993-09-01

    In 1992, Pantex requested that Pacific Northwest Laboratory (PNL) conduct a series of ecological surveys to provide baseline information for designing detailed ecological studies on the various ecosystems present at the Pantex plant site near Amarillo, Texas. To this end, PNL scientist and technicians visited the site at different times to conduct investigations and collect samples: July 6--13: birds, small mammals, general habitat assessment; August 10--14: wetland vegetation, birds, small mammals, Playa invertebrates; and September 7--11: birds, small mammals. This report presents the results of these three surveys

  8. Circadian regulation of hormone signaling and plant physiology.

    Science.gov (United States)

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.

  9. PHYSIOLOGICAL RESPONSES OF DWARF COCONUT PLANTS UNDER WATER DEFICIT IN SALT - AFFECTED SOILS

    Directory of Open Access Journals (Sweden)

    ALEXANDRE REUBER ALMEIDA DA SILVA

    2017-01-01

    Full Text Available The objective of this study was to characterize the physiological acclimation responses of young plants of the dwarf coconut cultivar ̳Jiqui Green‘ associated with tolerance to conditions of multiple abiotic stresses (drought and soil salinity, acting either independently or in combination. The study was conducted under controlled conditions and evaluated the following parameters: leaf gas exchange, quantum yield of chlorophyll a fluorescence, and relative contents of total chlorophyll (SPAD index. The experiment was conducted under a randomized block experimental design, in a split plot arrangement. In the plots, plants were exposed to different levels of water stress, by imposing potential crop evapotranspiration replacement levels equivalent to 100%, 80%, 60%, 40%, and 20%, whereas in subplots, plants were exposed to different levels of soil salinity (1.72, 6.25, 25.80, and 40.70 dS m - 1 . Physiological mechanisms were effectively limited when water deficit and salinity acted separately and/or together. Compared with soil salinity, water stress was more effective in reducing the measured physiological parameters. The magnitudes of the responses of plants to water supply and salinity depended on the intensity of stress and evaluation period. The physiological acclimation responses of plants were mainly related to stomatal regulation. The coconut tree has a number of physiological adjustment mechanisms that give the species partial tolerance to drought stress and/or salt, thereby enabling it to revegetate salinated areas, provided that its water requirements are at least partially met.

  10. Demography and ecology of nuclear power plant location

    International Nuclear Information System (INIS)

    Stefanescu, P.; Ghitescu, P.

    1997-01-01

    To select and licence a NPP site, as well as, once built, to run it, both demography and ecology of the geographical zone are crucial factors to take into account. On the other side the location and running of a NPP is a major factor in the economic and social development of NPP site surroundings. Meanwhile the population distribution around the NPP site has a determining role on intervention and rehabilitation plans. Risk and danger studies should be done for initial situation as well as during NPP running. The character of radioactive risks and the importance of possible consequences of a hypothetical nuclear accident which could affect a big Nuclear Power Plant request a special attention to population distribution around the plant site and surroundings. Therefore safety studies to locate and licence a site should refer to demography and ecology. Available data examination will permit to locate NPP in less-populated and ecologically not-concerning zones. On-site investigation should identify the population groups to watch for in order to estimate the results of a normal evaluation. The inquires will give reference primary data before NPP construction starts. Also they evaluate the possibility of short term population retain on location in case of an accident. (authors)

  11. A beginner's guide to nutritional profiling in physiology and ecology.

    Science.gov (United States)

    Frost, Paul C; Song, Keunyea; Wagner, Nicole D

    2014-11-01

    The nutritional history of an organism is often difficult to ascertain. Nonetheless, this information on past diet can be particularly important when explaining the role of nutrition in physiological responses and ecological dynamics. One approach to infer the past dietary history of an individual is through characterization of its nutritional phenotype, an interrelated set of molecular and physiological properties that are sensitive to dietary stress. Comparisons of nutritional phenotypes between a study organism and reference phenotypes have the potential to provide insight into the type and intensity of past dietary constraints. Here, we describe this process of nutritional profiling for ecophysiological research in which a suite of molecular and physiological responses are cataloged for animals experiencing known types and intensities of dietary stress and are quantitatively compared with those of unknown individuals. We supplement this delineation of the process of nutritional profiling with a first-order analysis of its sensitivity to the number of response variables in the reference database, their responsiveness to diet, and the size of reference populations. In doing so, we demonstrate the considerable promise this approach has to transform future studies of nutrition by its ability to provide more and better information on responses to dietary stress in animals and their populations. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  12. Constraints imposed by pollinator behaviour on the ecology and evolution of plant mating systems.

    Science.gov (United States)

    Devaux, C; Lepers, C; Porcher, E

    2014-07-01

    Most flowering plants rely on pollinators for their reproduction. Plant-pollinator interactions, although mutualistic, involve an inherent conflict of interest between both partners and may constrain plant mating systems at multiple levels: the immediate ecological plant selfing rates, their distribution in and contribution to pollination networks, and their evolution. Here, we review experimental evidence that pollinator behaviour influences plant selfing rates in pairs of interacting species, and that plants can modify pollinator behaviour through plastic and evolutionary changes in floral traits. We also examine how theoretical studies include pollinators, implicitly or explicitly, to investigate the role of their foraging behaviour in plant mating system evolution. In doing so, we call for more evolutionary models combining ecological and genetic factors, and additional experimental data, particularly to describe pollinator foraging behaviour. Finally, we show that recent developments in ecological network theory help clarify the impact of community-level interactions on plant selfing rates and their evolution and suggest new research avenues to expand the study of mating systems of animal-pollinated plant species to the level of the plant-pollinator networks. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  13. An ecological interface design for BWR nuclear power plants

    International Nuclear Information System (INIS)

    Monta, K.; Itoh, J.

    1992-01-01

    An ecological interface design was applied to realize the support function for the operator's direct perception and analytical reasoning in the development of an intelligent man-machine system for BWR nuclear power plants. The abstraction-aggregation functional hierarchy representation of the work domain is a base of the ecological interface design. Another base is the concept of the level of cognitive control. The former was mapped into the interface to externalize the operator's normative mental model of the plants, which will reduce his/her cognitive work load and support knowledge-based problem solving. In addition, the same framework can be used for the analytical evaluation of man-machine interfaces. The information content and structure of a prototype interface were evaluated. This approach seems promising from these experiences. (author)

  14. Understanding the Biological Roles of Pectins in Plants through Physiological and Functional Characterizations of Plant and Fungal Mutants

    DEFF Research Database (Denmark)

    Stranne, Maria

    The plant cell wall is a dynamic structure and it is involved in regulating a number of physiological features of plants such as physical strength, growth, cell differentiation, intercellular communication, water movement and defense responses. Pectins constitute a major class of plant cell wall...... polysaccharides and consist of backbones rich in galacturonic acids, which are decorated with a range of functional groups including acetyl esters and arabinan sidechains. Although much effort has been made to uncover biological functions of pectins in plants and remarkable progresses have taken place, many...... aspects remain elusive. Studies described in this thesis aimed at gaining new insights into the biological roles of pectin acetylation and arabinosylation in the model plant Arabidopsis thaliana. The thesis consists of four chapters: physiological characterization of cell wall mutants affected in cell...

  15. Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants.

    Science.gov (United States)

    Barton, Ian S; Fuqua, Clay; Platt, Thomas G

    2018-01-01

    Many important pathogens maintain significant populations in highly disparate disease and non-disease environments. The consequences of this environmental heterogeneity in shaping the ecological and evolutionary dynamics of these facultative pathogens are incompletely understood. Agrobacterium tumefaciens, the causative agent for crown gall disease of plants has proven a productive model for many aspects of interactions between pathogens and their hosts and with other microbes. In this review, we highlight how this past work provides valuable context for the use of this system to examine how heterogeneity and transitions between disease and non-disease environments influence the ecology and evolution of facultative pathogens. We focus on several features common among facultative pathogens, such as the physiological remodelling required to colonize hosts from environmental reservoirs and the consequences of competition with host and non-host associated microbiota. In addition, we discuss how the life history of facultative pathogens likely often results in ecological tradeoffs associated with performance in disease and non-disease environments. These pathogens may therefore have different competitive dynamics in disease and non-disease environments and are subject to shifting selective pressures that can result in pathoadaptation or the within-host spread of avirulent phenotypes. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Dinosaur energetics: setting the bounds on feasible physiologies and ecologies.

    Science.gov (United States)

    Clarke, Andrew

    2013-09-01

    The metabolic status of dinosaurs has long been debated but remains unresolved as no consistent picture has emerged from a range of anatomical and isotopic evidence. Quantitative analysis of dinosaur energetics, based on general principles applicable to all vertebrates, shows that many features of dinosaur lifestyle are compatible with a physiology similar to that of extant lizards, scaled up to dinosaur body masses and temperatures. The analysis suggests that sufficient metabolic scope would have been available to support observed dinosaur growth rates and allow considerable locomotor activity, perhaps even migration. Since at least one dinosaur lineage evolved true endothermy, this study emphasizes there was no single dinosaur physiology. Many small theropods were insulated with feathers and appear to have been partial or full endotherms. Uninsulated small taxa, and all juveniles, presumably would have been ectothermic, with consequent diurnal and seasonal variations in body temperature. In larger taxa, inertial homeothermy would have resulted in warm and stable body temperatures but with a basal metabolism significantly below that of extant mammals or birds of the same size. It would appear that dinosaurs exhibited a range of metabolic levels to match the broad spectrum of ecological niches they occupied.

  17. Nurse plant theory and its application in ecological restoration in lower subtropics of China

    Institute of Scientific and Technical Information of China (English)

    Hai Ren; Long Yang; Nan Liu

    2008-01-01

    Nurse plants are those that facilitate the growth and development of other plant species (target species) beneath their canopy because they offer benign microhabitats that are more favorable for seed germination and/or seedling recruitment than their surrounding envi-ronment. Nurse plants have been mainly used to restore vegetation in arid and sub-arid zones in recent years. Based on summarizing the definition of nurse plant and target plant, we review the nursing effect mechanisms, ecological factors that influence nursing effect, relationships between nurse plant and ecological restoration. This review also brings forward possible pairs of nurse and target species at lower subtropical areas. Furthermore, we provide the potential tendency in nurse plant research and application.

  18. Socio/economic/ecological impacts of nuclear power plants

    International Nuclear Information System (INIS)

    Golden, J.; Watson, J.

    1975-01-01

    A nuclear facility has both radiological and non-radiological effects on the environment. To minimize radiological effects, limits are set on releases of radioactive materials that will cause either direct or indirect exposure (such as the food chain). Exposure pathways for man and other organisms are described with comparisons of typical calculated doses and design objective doses. Non-radiological impacts of nuclear plants are classified as ecological-physical and socio/economic considerations, which include eighteen areas affected during each phase of the nuclear facility cycle. The ecological-physical environment is impacted in the areas of hydrology, terrestrial and aquatic ecology, and air and water quality. The socio-economic environment is impacted in areas of land use, tax base, employment, economic stimulus, relocation, lifestyle, demand for service, aesthetics, and power needs. Case studies of large construction projects are described in the appendix

  19. The AquaDEB project (phase I): Analysing the physiological flexibility of aquatic species and connecting physiological diversity to ecological and evolutionary processes by using Dynamic Energy Budgets

    Science.gov (United States)

    Alunno-Bruscia, Marianne; van der Veer, Henk W.; Kooijman, Sebastiaan A. L. M.

    2009-08-01

    The European Research Project AquaDEB (2007-2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within a common theoretical framework for quantitative bioenergetics [Kooijman, S.A.L.M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge]. The main scientific objectives in AquaDEB are i) to study and compare the sensitivity of aquatic species (mainly molluscs and fish) to environmental variability of natural or human origin, and ii) to evaluate the related consequences at different biological levels (individual, population, ecosystem) and temporal scales (life cycle, population dynamics, evolution). At mid-term life, the AquaDEB collaboration has already yielded interesting results by quantifying bio-energetic processes of various aquatic species (e.g. molluscs, fish, crustaceans, algae) with a single mathematical framework. It has also allowed to federate scientists with different backgrounds, e.g. mathematics, microbiology, ecology, chemistry, and working in different fields, e.g. aquaculture, fisheries, ecology, agronomy, ecotoxicology, climate change. For the two coming years, the focus of the AquaDEB collaboration will be in priority: (i) to compare energetic and physiological strategies among species through the DEB parameter values and to identify the factors responsible for any differences in bioenergetics and physiology; and to compare dynamic (DEB) versus static (SEB) energy models to study the physiological performance of aquatic species; (ii) to consider different scenarios of environmental disruption (excess of nutrients, diffuse or massive pollution, exploitation by man, climate change) to forecast effects on growth, reproduction and survival of key species; (iii) to scale up the models for a few species from

  20. Correlation between plant physiology and CO2 removable

    Science.gov (United States)

    Leman, A. M.; Shamsuri, Mohd Mahathir Suhaimi; Hariri, Azian; Kadir, Aeslina Abdul; Idris, Ahmad Fu'ad; Afandi, Azizi

    2017-09-01

    Certain plants that are able to live in the building are known as indoor plants. Plants have tolerance with indoor environment in order to survive. Usually these plants are able to improve indoor air quality (IAQ). Absorption of carbon dioxide (CO2) by plants is one of the indicators that plants are still alive during photosynthesis process. The possibility of plants structure (plant physiology) to affect CO2 absorption had been the concerns of former researchers. This research intends to study the significant of plant structure (leaf area, fresh weight, and dry weight) that leads to reducing the concentration of CO2 by seven plant species (Anthurium, Dumb Cane, Golden Pothos, Kadaka Fern, Prayer Plants, Spider Plants, and Syngonium). The data of CO2 reduction by plants has been obtained from previous studies. Based on results show that, the leaf area is the most contributing the significant effect to the plant absorb CO2 compare to fresh weight and dry weight. It can be prove by Pearson Correlation, where only the value of leaf area is more than 0.5 for every four conditions. This study can be conclude that the leaf area is quite plays an important role to the plant treat air from CO2, while concentration of light and CO2 will become catalytic factor for the plants improve their photosynthesis process.

  1. The role of plant physiology in hydrology: looking backwards and forwards

    Science.gov (United States)

    Roberts, J.

    2007-01-01

    The implementation of plant physiological studies at the Institute of Hydrology focussed both on examining and understanding the physiological controls of transpiration as well as evaluating the value of using physiological methods to measure transpiration. Transpiration measurement by physiological methods would be particularly valuable where this could not be achieved by micrometeorological and soil physics methods. The principal physiological measurements used were determinations of leaf stomatal conductance and leaf water relations to monitor plant water stress. In this paper the value of these approaches is illustrated by describing a few case studies in which plant physiological insight, provided both as new measurements and existing knowledge, would aid in the interpretation of the hydrological behaviour of important vegetation. Woody vegetation figured largely in these studies, conducted in the UK and overseas. Each of these case studies is formulated as a quest to answer a particular question. A collaborative comparison of conifer forest transpiration in Thetford forest using micrometeorological and soil physics techniques exhibited a substantially larger (~1 mm day-1) estimate from the micrometeorological approach. So the question - Why is there a disagreement in the estimates of forest transpiration made using micrometeorological and soil physics approaches? A range of physiological studies followed that suggested that there was no one simple answer but that the larger estimate from the micrometeorology technique might include contributions of water taken up by deep roots, from shallow-rooted vegetation and possibly also from water previously stored in trees. These sources of water were probably not included in the soil physics estimate of transpiration. The annual transpiration from woodlands in NW Europe shows a low magnitude and notable similarity between different sites raising the question - Why is transpiration from European forests low and

  2. [Ecological risk assessment of dam construction for terrestrial plant species in middle reach of Lancangjiang River, Southwest China].

    Science.gov (United States)

    Li, Xiao-Yan; Dong, Shi-Kui; Liu, Shi-Liang; Peng, Ming-Chun; Li, Jin-Peng; Zhao, Qing-He; Zhang, Zhao-Ling

    2012-08-01

    Taking the surrounding areas of Xiaowan Reservoir in the middle reach of Lancangjiang River as study area, and based on the vegetation investigation at three sites including electricity transmission area (site 1), electricity-transfer substation and roadsides to the substation (site 2), and emigration area (site 3) in 1997 (before dam construction), another investigation was conducted on the vegetation composition, plant coverage, and dominant species at the same sites in 2010 (after dam construction), aimed to evaluate the ecological risk of the dam construction for the terrestrial plant species in middle reach of Lancangjiang River. There was an obvious difference in the summed dominance ratio of dominant species at the three sites before and after the dam construction. According the types of species (dominant and non-dominant species) and the changes of plant dominance, the ecological risk (ER) for the plant species was categorized into 0 to IV, i.e., no or extremely low ecological risk (0), low ecological risk (I), medium ecological risk (II), high ecological risk (III), and extremely high ecological risk (IV). As affected by the dam construction, the majority of the species were at ER III, and a few species were at ER IV. The percentage of the plant species at ER III and ER IV at site 3 was higher than that at sites 1 and 2. The decrease or loss of native plants and the increase of alien or invasive plants were the major ecological risks caused by the dam construction. Effective protection strategies should be adopted to mitigate the ecological risk of the dam construction for the terrestrial plants at species level.

  3. Phenolic metabolites in carnivorous plants: Inter-specific comparison and physiological studies.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj; Repčáková, Klára

    2012-03-01

    Despite intensive phytochemical research, data related to the accumulation of phenols in carnivorous plants include mainly qualitative reports. We have quantified phenolic metabolites in three species: Drosera capensis, Dionaea muscipula and Nepenthes anamensis in the "leaf" (assimilatory part) and the "trap" (digestive part). For comparison, commercial green tea was analysed. Phenylalanine ammonia-lyase (PAL) activities in Dionaea and Nepenthes were higher in the trap than in the leaf while the opposite was found in Drosera. Soluble phenols and majority of phenolic acids were mainly accumulated in the trap among species. Flavonoids were abundant in Drosera and Dionaea traps but not in Nepenthes. Phenolic acids were preferentially accumulated in a glycosidically-bound form and gallic acid was the main metabolite. Green tea contained more soluble phenols and phenolic acids but less quercetin. In vitro experiments with Drosera spathulata revealed that nitrogen deficiency enhances PAL activity, accumulation of phenols and sugars while PAL inhibitor (2-aminoindane-2-phosphonic acid) depleted phenols and some amino acids (but free phenylalanine and sugars were elevated). Possible explanations in physiological, biochemical and ecological context are discussed. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Plant selenium hyperaccumulation- Ecological effects and potential implications for selenium cycling and community structure.

    Science.gov (United States)

    Reynolds, R Jason B; Pilon-Smits, Elizabeth A H

    2018-04-25

    Selenium (Se) hyperaccumulation occurs in ~50 plant taxa native to seleniferous soils in Western USA. Hyperaccumulator tissue Se levels, 1000-15,000 mg/kg dry weight, are typically 100 times higher than surrounding vegetation. Relative to other species, hyperaccumulators also transform Se more into organic forms. We review abiotic and biotic factors influencing soil Se distribution and bioavailability, soil being the source of the Se in hyperaccumulators. Next, we summarize the fate of Se in plants, particularly hyperaccumulators. We then extensively review the impact of plant Se accumulation on ecological interactions. Finally, we discuss the potential impact of Se hyperaccumulators on local community composition and Se cycling. Selenium (hyper)accumulation offers ecological advantages: protection from herbivores and pathogens and competitive advantage over other plants. The extreme Se levels in and around hyperaccumulators create a toxic environment for Se-sensitive ecological partners, while offering a niche for Se-resistant partners. Through these dual effects, hyperaccumulators may influence species composition in their local environment, as well as Se cycling. The implied effects of Se hyperaccumulation on community assembly and local Se cycling warrant further investigations into the contribution of hyperaccumulators and general terrestrial vegetation to global Se cycling and may serve as a case study for how trace elements influence ecological processes. Furthermore, understanding ecological implications of plant Se accumulation are vital for safe implementation of biofortification and phytoremediation, technologies increasingly implemented to battle Se deficiency and toxicity. Copyright © 2018. Published by Elsevier B.V.

  5. Physiological measurements of coffee young plants coexisting with sourgrass

    Directory of Open Access Journals (Sweden)

    Pedro Luis da Costa Aguiar Alves

    2012-03-01

    Full Text Available Coffee is an important crop planted in Brazil and commonly infested by sourgrass plants. Crescent densities of sourgrass growing with coffee young plants were maintained up to weed full flowering when physiological measurements were performed in the crop to evaluate photosynthetic coffee plant responses to increasing of weed competition. Experiments were arranged in a completely randomized design with seven replicates. The concentration of CO2 within the leaf, the leaf transpiration, the stomatal conductance, the CO2 assimilation rate, and the ratio Fv/Fm of coffee plants were not affected by increasing of sourgrass density. On the other hand, relative content of total chlorophyll was reduced by 13.9% in the density of 8 sourgrass plants. Gas exchange and fluorescence of chlorophyll of young coffee plants were not dependent on increasing of the intensity of competition while an opposite response occurred for chlorophyll content.

  6. Response of Two Mytilids to a Heatwave: The Complex Interplay of Physiology, Behaviour and Ecological Interactions.

    Science.gov (United States)

    Olabarria, Celia; Gestoso, Ignacio; Lima, Fernando P; Vázquez, Elsa; Comeau, Luc A; Gomes, Filipa; Seabra, Rui; Babarro, José M F

    2016-01-01

    Different combinations of behavioural and physiological responses may play a crucial role in the ecological success of species, notably in the context of biological invasions. The invasive mussel Xenostrobus securis has successfully colonised the inner part of the Galician Rias Baixas (NW Spain), where it co-occurs with the commercially-important mussel Mytilus galloprovincialis. This study investigated the effect of a heatwave on the physiological and behavioural responses in monospecific or mixed aggregations of these species. In a mesocosm experiment, mussels were exposed to simulated tidal cycles and similar temperature conditions to those experienced in the field during a heat-wave that occurred in the summer of 2013, when field robo-mussels registered temperatures up to 44.5°C at low tide. The overall responses to stress differed markedly between the two species. In monospecific aggregations M. galloprovincialis was more vulnerable than X. securis to heat exposure during emersion. However, in mixed aggregations, the presence of the invader was associated with lower mortality in M. galloprovincialis. The greater sensitivity of M. galloprovincialis to heat exposure was reflected in a higher mortality level, greater induction of Hsp70 protein and higher rates of respiration and gaping activity, which were accompanied by a lower heart rate (bradycardia). The findings show that the invader enhanced the physiological performance of M. galloprovincialis, highlighting the importance of species interactions in regulating responses to environmental stress. Understanding the complex interactions between ecological factors and physiological and behavioural responses of closely-related species is essential for predicting the impacts of invasions in the context of future climate change.

  7. Physiological blockage in plants in response to postharvest stress

    African Journals Online (AJOL)

    Marcos

    2013-03-13

    Mar 13, 2013 ... response of the plant to cut stem (Ichimura et al., 1999). When the vessel is blocked, ... E-mail: m.r.s.v@hotmail.com. of complex physiological ... of cells which protrude into the vessel lumen xylem whose shape is similar to a.

  8. Eucalypt plants are physiologically and metabolically affected by infection with Ceratocystis fimbriata.

    Science.gov (United States)

    da Silva, André Costa; de Oliveira Silva, Franklin Magnum; Milagre, Jocimar Caiafa; Omena-Garcia, Rebeca Patricia; Abreu, Mário Castro; Mafia, Reginaldo Gonçalves; Nunes-Nesi, Adriano; Alfenas, Acelino Couto

    2018-02-01

    Ceratocystis wilt, caused by Ceratocystis fimbriata, is currently one of the most important disease in eucalypt plantations. Plants infected by C. fimbriata have lower volumetric growth, lower pulp yields and reduced timber values. The physiological bases of infection induced by this pathogen in eucalypt plant are not known. Therefore, this study aims to assess the physiological and metabolic changes in eucalypt clones that are resistant and susceptible to C. fimbriata. Once, we evaluated in detail their leaf gas exchange, chlorophyll a fluorescence, water potential, metabolite profiling and growth-related parameters. When inoculated, the susceptible clone displayed reduced water potential, CO 2 assimilation rate, stomatal conductance, transpiration rate, photochemical quenching coefficient, electron transport rate, and root biomass. Inoculated resistant and susceptible clones both presented higher respiration rates than healthy plants. Many compounds of primary and secondary metabolism were significantly altered after fungal infection in both clones. These results suggest that, C. fimbriata interferes in the primary and secondary metabolism of plants that may be linked to the induction of defense mechanisms and that, due to water restrictions caused by the fungus in susceptible plants, there is a partial closure of the stomata to prevent water loss and a consequent reduction in photosynthesis and the transpiration rate, which in turn, leads to a decrease in the plant's growth-related. These results combined, allowed for a better understanding of the physiological and metabolic changes following the infectious process of C. fimbriata, which limit eucalypt plant growth. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India

    OpenAIRE

    Bhat Jahangeer A; Kumar Munesh; Bussmann Rainer W

    2013-01-01

    Abstract Background Himalayan forests are the most important source of medicinal plants and with useful species for the local people. Kedarnath Wildlife Sanctuary (KWLS) is situated in the interior part of the Garhwal Himalayan region. The presented study was carried out in Madhmeshwar area of KWLS for the ecological status of medicinal plants and further focused on the ethnomedicinal uses of these plants in the study area. Methods Ecological information about ethnomedicinal plants were colle...

  10. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology.

    Science.gov (United States)

    Iversen, Colleen M; McCormack, M Luke; Powell, A Shafer; Blackwood, Christopher B; Freschet, Grégoire T; Kattge, Jens; Roumet, Catherine; Stover, Daniel B; Soudzilovskaia, Nadejda A; Valverde-Barrantes, Oscar J; van Bodegom, Peter M; Violle, Cyrille

    2017-07-01

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.

  11. Precipitation alters interactions in a grassland ecological community.

    Science.gov (United States)

    Deguines, Nicolas; Brashares, Justin S; Prugh, Laura R

    2017-03-01

    Climate change is transforming precipitation regimes world-wide. Changes in precipitation regimes are known to have powerful effects on plant productivity, but the consequences of these shifts for the dynamics of ecological communities are poorly understood. This knowledge gap hinders our ability to anticipate and mitigate the impacts of climate change on biodiversity. Precipitation may affect fauna through direct effects on physiology, behaviour or demography, through plant-mediated indirect effects, or by modifying interactions among species. In this paper, we examined the response of a semi-arid ecological community to a fivefold change in precipitation over 7 years. We examined the effects of precipitation on the dynamics of a grassland ecosystem in central California from 2007 to 2013. We conducted vegetation surveys, pitfall trapping of invertebrates, visual surveys of lizards and capture-mark-recapture surveys of rodents on 30 plots each year. We used structural equation modelling to evaluate the direct, indirect and modifying effects of precipitation on plants, ants, beetles, orthopterans, kangaroo rats, ground squirrels and lizards. We found pervasive effects of precipitation on the ecological community. Although precipitation increased plant biomass, direct effects on fauna were often stronger than plant-mediated effects. In addition, precipitation altered the sign or strength of consumer-resource and facilitative interactions among the faunal community such that negative or neutral interactions became positive or vice versa with increasing precipitation. These findings indicate that precipitation influences ecological communities in multiple ways beyond its recognized effects on primary productivity. Stochastic variation in precipitation may weaken the average strength of biotic interactions over time, thereby increasing ecosystem stability and resilience to climate change. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological

  12. The central regulation of plant physiology by adenylates.

    Science.gov (United States)

    Geigenberger, Peter; Riewe, David; Fernie, Alisdair R

    2010-02-01

    There have been many recent developments concerning the metabolic, transport and signalling functions of adenylates in plants, suggesting new roles for these compounds as central regulators of plant physiology. For example, altering the expression levels of enzymes involved in the equilibration, salvaging, synthesis and transport of adenylates leads to perturbations in storage, growth and stress responses, implying a role for adenylates as important signals. Furthermore, sensing of the internal energy status involves SNF1-related kinases, which control the expression and phosphorylation of key metabolic enzymes. ATP also acts as an apoplastic signalling molecule to control cell growth and pathogen responses. These new results could shed light on the emerging question of whether energy homeostasis in plant cells differs from mechanisms found in microbes and mammals. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Effects of Mulching Mode on Canopy Physiological, Ecological Characteristics and Yield of Upland Rice

    OpenAIRE

    Yu-zhu ZHANG; Yang LIU; Xiang ZENG; Kai-lin CHEN; Ze-hui HUANG; Hong-ke XIE

    2011-01-01

    The effects of mulching mode on population physiology and ecology of rice were studied using a combination P88S/1128 as the material under three mulching cultivation modes including plastic film mulching, straw mulching and liquid film mulching, as well as bare cultivation (control). The results indicated that mulching mode had significant effects on micro-meteorological factors and individual growth of rice, as shown by an increase of relative humidity, a better internal micro-meteorological...

  14. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    Science.gov (United States)

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  15. Reinforcing loose foundation stones in trait-based plant ecology.

    Science.gov (United States)

    Shipley, Bill; De Bello, Francesco; Cornelissen, J Hans C; Laliberté, Etienne; Laughlin, Daniel C; Reich, Peter B

    2016-04-01

    The promise of "trait-based" plant ecology is one of generalized prediction across organizational and spatial scales, independent of taxonomy. This promise is a major reason for the increased popularity of this approach. Here, we argue that some important foundational assumptions of trait-based ecology have not received sufficient empirical evaluation. We identify three such assumptions and, where possible, suggest methods of improvement: (i) traits are functional to the degree that they determine individual fitness, (ii) intraspecific variation in functional traits can be largely ignored, and (iii) functional traits show general predictive relationships to measurable environmental gradients.

  16. Response of Two Mytilids to a Heatwave: The Complex Interplay of Physiology, Behaviour and Ecological Interactions.

    Directory of Open Access Journals (Sweden)

    Celia Olabarria

    Full Text Available Different combinations of behavioural and physiological responses may play a crucial role in the ecological success of species, notably in the context of biological invasions. The invasive mussel Xenostrobus securis has successfully colonised the inner part of the Galician Rias Baixas (NW Spain, where it co-occurs with the commercially-important mussel Mytilus galloprovincialis. This study investigated the effect of a heatwave on the physiological and behavioural responses in monospecific or mixed aggregations of these species. In a mesocosm experiment, mussels were exposed to simulated tidal cycles and similar temperature conditions to those experienced in the field during a heat-wave that occurred in the summer of 2013, when field robo-mussels registered temperatures up to 44.5°C at low tide. The overall responses to stress differed markedly between the two species. In monospecific aggregations M. galloprovincialis was more vulnerable than X. securis to heat exposure during emersion. However, in mixed aggregations, the presence of the invader was associated with lower mortality in M. galloprovincialis. The greater sensitivity of M. galloprovincialis to heat exposure was reflected in a higher mortality level, greater induction of Hsp70 protein and higher rates of respiration and gaping activity, which were accompanied by a lower heart rate (bradycardia. The findings show that the invader enhanced the physiological performance of M. galloprovincialis, highlighting the importance of species interactions in regulating responses to environmental stress. Understanding the complex interactions between ecological factors and physiological and behavioural responses of closely-related species is essential for predicting the impacts of invasions in the context of future climate change.

  17. PHYSIOLOGICAL AND AGROECOLOGICAL ASPECTS OF CADMIUM INTERACTIONS WITH BARLEY PLANTS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    A VASSILEV

    2003-07-01

    Full Text Available This work is a review of author’s previous publications, unpublished results as well as available literature on barley responses to Cd contamination. The physiological backgrounds of the acute Cd toxicity in barley plants are briefly described. Some data characterizing the chronic Cd toxicity in barley have been also provided in relation to its possible use for seed production and Cd phytoextraction on Cd-contaminated agricultural soils. Information about the main physiological factors limiting growth of Cd-exposed barley plants and grain yield, seedling quality as well as Cd phytoextraction capacity of barley grown in Cd-contaminated soils is presented.

  18. Fatality of salt stress to plants: Morphological, physiological and ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-23

    Aug 23, 2010 ... are difficult to establish in crops since salt stress may occur as a catastrophic episode, ... as well as cellular levels through osmotic and ionic adjustments that result in reduced biomass ... plant physiology such as increased respiration rate, ion toxicity ... eventually death of leaf cells and tissues (Marschner,.

  19. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    Science.gov (United States)

    Clauss, Marcus; Steuer, Patrick; Müller, Dennis W H; Codron, Daryl; Hummel, Jürgen

    2013-01-01

    Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM) with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively) allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM.

  20. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    Directory of Open Access Journals (Sweden)

    Marcus Clauss

    Full Text Available Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM.

  1. Dominant role of plant physiology in trend and variability of gross primary productivity in North America

    Science.gov (United States)

    Zhou, Sha; Zhang, Yao; Ciais, Philippe; Xiao, Xiangming; Luo, Yiqi; Caylor, Kelly K.; Huang, Yuefei; Wang, Guangqian

    2017-02-01

    Annual gross primary productivity (GPP) varies considerably due to climate-induced changes in plant phenology and physiology. However, the relative importance of plant phenology and physiology on annual GPP variation is not clear. In this study, a Statistical Model of Integrated Phenology and Physiology (SMIPP) was used to evaluate the relative contributions of maximum daily GPP (GPPmax) and the start and end of growing season (GSstart and GSend) to annual GPP variability, using a regional GPP product in North America during 2000-2014 and GPP data from 24 AmeriFlux sites. Climatic sensitivity of the three indicators was assessed to investigate the climate impacts on plant phenology and physiology. The SMIPP can explain 98% of inter-annual variability of GPP over mid- and high latitudes in North America. The long-term trend and inter-annual variability of GPP are dominated by GPPmax both at the ecosystem and regional scales. During warmer spring and autumn, GSstart is advanced and GSend delayed, respectively. GPPmax responds positively to summer temperature over high latitudes (40-80°N), but negatively in mid-latitudes (25-40°N). This study demonstrates that plant physiology, rather than phenology, plays a dominant role in annual GPP variability, indicating more attention should be paid to physiological change under futher climate change.

  2. Potato type I and II proteinase inhibitors: modulating plant physiology and host resistance.

    Science.gov (United States)

    Turra, David; Lorito, Matteo

    2011-08-01

    Serine protease inhibitors (PIs) are a large and complex group of plant proteins. Members of the potato type I (Pin1) and II (Pin2) proteinase inhibitor families are among the first and most extensively characterized plant PIs. Many insects and phytopathogenic microorganisms use intracellular and extracellular serine proteases playing important roles in pathogenesis. Plants, however, are able to fight these pathogens through the activation of an intricate defence system that leads to the accumulation of various PIs, including Pin1 and Pin2. Several transgenic plants over-expressing members of the Pin1 and Pin2 families have been obtained in the last twenty years and their enhanced defensive capabilities demonstrated against insects, fungi and bacteria. Furthermore, Pin1 and Pin2 genetically engineered plants showed altered regulation of different plant physiological processes (e.g., dehydratation response, programmed cell death, plant growth, trichome density and branching), supporting an endogenous role in various plant species in addition to the well established defensive one. This review summarizes the current knowledge about Pin1 and Pin2 structure, the role of these proteins in plant defence and physiology, and their potential exploitation in biotechnology.

  3. Integral Indicator of Ecological Footprint for Croatian Power Plants

    International Nuclear Information System (INIS)

    Strijov, V.; Granic, G.; Juric, Z.; Jelavic, B.; Antesevic Maricic, S.

    2009-01-01

    The main goal of this paper is to present the methodology of construction of the Integral Indicator for Croatian Thermal Power Plants and Combined Heat and Power Plants. The Integral Indicator is necessary to compare Power Plants selected according to a certain criterion. The criterion of the Ecological Footprint is chosen. The following features of the Power Plants are used: generated electricity and heat; consumed coal and liquid fuel; sulphur content in fuel; emitted CO 2 , SO 2 , NO x and particles. To construct the Integral Indicator the linear model is used. The model parameters are tuned by the Principal Component Analysis algorithm. The constructed Integral Indicator is compared with several others, such as Pareto-Optimal Slicing Indicator and Metric Indicator. The Integral Indicator keeps as much information about features of the Power Plants as possible; it is simple and robust.(author).

  4. Physiological blockage in plants in response to postharvest stress ...

    African Journals Online (AJOL)

    Flowers have been designed primarily for cutting because of the diversity of shapes, colors and also durability. However, ornamental plants are used in floral arrangements in vases and have limited shelf-life. Thus, this study showed that one of the factors contributing to this limitation is the physiological blockage that occurs ...

  5. The ecological risks of transgenic plants.

    Science.gov (United States)

    Giovannetti, Manuela

    2003-01-01

    Biotechnologies have been utilized "ante litteram" for thousands of years to produce food and drink and genetic engineering techniques have been widely applied to produce many compounds for human use, from insulin to other medicines. The debate on genetically modified (GM) organisms broke out all over the world only when GM crops were released into the field. Plant ecologists, microbiologists and population geneticists carried out experiments aimed at evaluating the environmental impact of GM crops. The most significant findings concern: the spread of transgenes through GM pollen diffusion and its environmental impact after hybridisation with closely related wild species or subspecies; horizontal gene transfer from transgenic plants to soil microbes; the impact of insecticide proteins released into the soil by transformed plants on non-target microbial soil communities. Recent developments in genetic engineering produced a technology, dubbed "Terminator", which protects patented genes introduced in transgenic plants by killing the seeds in the second generation. This genetic construct, which interferes so heavily with fundamental life processes, is considered dangerous and should be ex-ante evaluated taking into account the data on "unexpected events", as here discussed, instead of relying on the "safe until proven otherwise" claim. Awareness that scientists, biotechnologists and genetic engineers cannot answer the fundamental question "how likely is that transgenes will be transferred from cultivated plants into the natural environment?" should foster long-term studies on the ecological risks and benefits of transgenic crops.

  6. How common is ecological speciation in plant-feeding insects? A 'Higher' Nematinae perspective

    Directory of Open Access Journals (Sweden)

    Nyman Tommi

    2010-09-01

    Full Text Available Abstract Background Ecological speciation is a process in which a transiently resource-polymorphic species divides into two specialized sister lineages as a result of divergent selection pressures caused by the use of multiple niches or environments. Ecology-based speciation has been studied intensively in plant-feeding insects, in which both sympatric and allopatric shifts onto novel host plants could speed up diversification. However, while numerous examples of species pairs likely to have originated by resource shifts have been found, the overall importance of ecological speciation in relation to other, non-ecological speciation modes remains unknown. Here, we apply phylogenetic information on sawflies belonging to the 'Higher' Nematinae (Hymenoptera: Tenthredinidae to infer the frequency of niche shifts in relation to speciation events. Results Phylogenetic trees reconstructed on the basis of DNA sequence data show that the diversification of higher nematines has involved frequent shifts in larval feeding habits and in the use of plant taxa. However, the inferred number of resource shifts is considerably lower than the number of past speciation events, indicating that the majority of divergences have occurred by non-ecological allopatric speciation; based on a time-corrected analysis of sister species, we estimate that a maximum of c. 20% of lineage splits have been triggered by a change in resource use. In addition, we find that postspeciational changes in geographic distributions have led to broad sympatry in many species having identical host-plant ranges. Conclusion Our analysis indicates that the importance of niche shifts for the diversification of herbivorous insects is at present implicitly and explicitly overestimated. In the case of the Higher Nematinae, employing a time correction for sister-species comparisons lowered the proportion of apparent ecology-based speciation events from c. 50-60% to around 20%, but such corrections are

  7. Suppressive composts: microbial ecology links between abiotic environments and healthy plants.

    Science.gov (United States)

    Hadar, Yitzhak; Papadopoulou, Kalliope K

    2012-01-01

    Suppressive compost provides an environment in which plant disease development is reduced, even in the presence of a pathogen and a susceptible host. Despite the numerous positive reports, its practical application is still limited. The main reason for this is the lack of reliable prediction and quality control tools for evaluation of the level and specificity of the suppression effect. Plant disease suppression is the direct result of the activity of consortia of antagonistic microorganisms that naturally recolonize the compost during the cooling phase of the process. Thus, it is imperative to increase the level of understanding of compost microbial ecology and population dynamics. This may lead to the development of an ecological theory for complex ecosystems as well as favor the establishment of hypothesis-driven studies.

  8. Induced mutations - a tool in plant research

    International Nuclear Information System (INIS)

    1981-01-01

    These proceedings include 34 papers and 18 brief descriptions of poster presentations in the following areas as they are affected by induced mutations: advancement of genetics, plant evolution, plant physiology, plant parasites, plant symbioses, in vitro culture, gene ecology and plant breeding. Only a relatively small number of papers are of direct nuclear interest essentially in view of the mutations being induced by ionizing radiations. The papers of nuclear interest have been entered as separate and individual items of input

  9. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms.

    Science.gov (United States)

    Sugio, Akiko; Dubreuil, Géraldine; Giron, David; Simon, Jean-Christophe

    2015-02-01

    Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions

  10. The plant phenology monitoring design for the National Ecological Observatory Network

    Science.gov (United States)

    Elmendorf, Sarah C; Jones, Katherine D; Cook, Benjamin I.; Diez, Jeffrey M.; Enquist, Carolyn A.F.; Hufft, Rebecca A.; Jones, Matthew O.; Mazer, Susan J.; Miller-Rushing, Abraham J.; Moore, David J. P.; Schwartz, Mark D.; Weltzin, Jake F.

    2016-01-01

    Phenology is an integrative science that comprises the study of recurring biological activities or events. In an era of rapidly changing climate, the relationship between the timing of those events and environmental cues such as temperature, snowmelt, water availability or day length are of particular interest. This article provides an overview of the plant phenology sampling which will be conducted by the U.S. National Ecological Observatory Network NEON, the resulting data, and the rationale behind the design. Trained technicians will conduct regular in situ observations of plant phenology at all terrestrial NEON sites for the 30-year life of the observatory. Standardized and coordinated data across the network of sites can be used to quantify the direction and magnitude of the relationships between phenology and environmental forcings, as well as the degree to which these relationships vary among sites, among species, among phenophases, and through time. Vegetation at NEON sites will also be monitored with tower-based cameras, satellite remote sensing and annual high-resolution airborne remote sensing. Ground-based measurements can be used to calibrate and improve satellite-derived phenometrics. NEON’s phenology monitoring design is complementary to existing phenology research efforts and citizen science initiatives throughout the world and will produce interoperable data. By collocating plant phenology observations with a suite of additional meteorological, biophysical and ecological measurements (e.g., climate, carbon flux, plant productivity, population dynamics of consumers) at 47 terrestrial sites, the NEON design will enable continentalscale inference about the status, trends, causes and ecological consequences of phenological change.

  11. A modelling framework for improving plant establishment during ecological restoration

    Science.gov (United States)

    Plants seeded during ecological restoration projects often perish en masse, and researchers are currently searching for traits promoting increased survival. In this study of a big sagebrush (Artemisia tridentata Nutt.) ecosystem, we found survivorship rankings of seeded grass species varied across 3...

  12. Timing effects of heat-stress on plant physiological characteristics and growth: a field study with prairie vegetation

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2016-11-01

    Full Text Available More intense, more frequent, and longer heat-waves are expected in the future due to global warming, which could have dramatic agricultural, economic and ecological impacts. This field study examined how plant responded to heat-stress (HS treatment at different timing in naturally-occurring vegetation. HS treatment (5 days at 40.5 ºC were applied to 12 1m2 plots in restored prairie vegetation dominated by Andropogon gerardii (warm-season C4 grass and Solidago canadensis (warm-season C3 forb at different growing stages. During and after HS, air, canopy, and soil temperature were monitored; net CO2 assimilation (Pn, quantum yield of photosystem II (ФPSII, stomatal conductance (gs, and internal CO2 level (Ci of the dominant species were measured. One week after the last HS treatment, all plots were harvested and the biomass of above-ground tissue and flower weight of the two dominant species was determined. HS decreased physiological performance and growth for both species, with S. canadensis being affected more than A. gerardii, indicated by negative heat stress effect on both physiological and growth responses. There were significant timing effect of heat stress on the two species, with greater reductions in the photosynthesis and productivity occurred when heat stress was applied at later-growing season. The reduction in aboveground productivity in S. canadensis but not A. gerardii could have important implications for plant community structure by increasing the competitive advantage of A. gerardii in this grassland. The present experiment showed that heat stress, though ephemeral, may promote long-term effects on plant community structure, vegetation dynamics, biodiversity, and ecosystem functioning of terrestrial biomes when more frequent and severe heat stress occur in the future.

  13. Baboquivari Mountain plants: Identification, ecology, and ethnobotany [Book Review

    Science.gov (United States)

    Rosemary L. Pendleton

    2011-01-01

    The Sky Islands of southern Arizona and northwestern Mexico make up a region that is rich, both biologically and culturally. These isolated mountain ranges, separated by desert "seas," contain a unique and diverse flora and have long been home to indigenous peoples of the southwestern US. This book, Baboquivari Mountain Plants: Identification, Ecology, and...

  14. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India

    Science.gov (United States)

    2013-01-01

    Background Himalayan forests are the most important source of medicinal plants and with useful species for the local people. Kedarnath Wildlife Sanctuary (KWLS) is situated in the interior part of the Garhwal Himalayan region. The presented study was carried out in Madhmeshwar area of KWLS for the ecological status of medicinal plants and further focused on the ethnomedicinal uses of these plants in the study area. Methods Ecological information about ethnomedicinal plants were collected using random quadrats in a random sampling technique along an altitudinal gradient in the KWLS. Information on medicinal properties of plants encountered in the present study was generated by questionnaire survey and was also compared with relevant literature. Results A total of 152 medicinally important plant species were reported, in which 103 were found herbs, 32 shrubs and 17 were tree species which represented 123 genera of 61 families. A total of 18 plant species fell into the rare, endangered (critically endangered) and vulnerable status categories. Conclusion The present study documented the traditional uses of medicinal plants, their ecological status and importance of these plants in the largest protected area of Garhwal Himalaya. This study can serve as baseline information on medicinal plants and could be helpful to further strengthen the conservation of this important resource. PMID:23281594

  15. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India.

    Science.gov (United States)

    Bhat, Jahangeer A; Kumar, Munesh; Bussmann, Rainer W

    2013-01-02

    Himalayan forests are the most important source of medicinal plants and with useful species for the local people. Kedarnath Wildlife Sanctuary (KWLS) is situated in the interior part of the Garhwal Himalayan region. The presented study was carried out in Madhmeshwar area of KWLS for the ecological status of medicinal plants and further focused on the ethnomedicinal uses of these plants in the study area. Ecological information about ethnomedicinal plants were collected using random quadrats in a random sampling technique along an altitudinal gradient in the KWLS. Information on medicinal properties of plants encountered in the present study was generated by questionnaire survey and was also compared with relevant literature. A total of 152 medicinally important plant species were reported, in which 103 were found herbs, 32 shrubs and 17 were tree species which represented 123 genera of 61 families. A total of 18 plant species fell into the rare, endangered (critically endangered) and vulnerable status categories. The present study documented the traditional uses of medicinal plants, their ecological status and importance of these plants in the largest protected area of Garhwal Himalaya. This study can serve as baseline information on medicinal plants and could be helpful to further strengthen the conservation of this important resource.

  16. Ecological status and traditional knowledge of medicinal plants in Kedarnath Wildlife Sanctuary of Garhwal Himalaya, India

    Directory of Open Access Journals (Sweden)

    Bhat Jahangeer A

    2013-01-01

    Full Text Available Abstract Background Himalayan forests are the most important source of medicinal plants and with useful species for the local people. Kedarnath Wildlife Sanctuary (KWLS is situated in the interior part of the Garhwal Himalayan region. The presented study was carried out in Madhmeshwar area of KWLS for the ecological status of medicinal plants and further focused on the ethnomedicinal uses of these plants in the study area. Methods Ecological information about ethnomedicinal plants were collected using random quadrats in a random sampling technique along an altitudinal gradient in the KWLS. Information on medicinal properties of plants encountered in the present study was generated by questionnaire survey and was also compared with relevant literature. Results A total of 152 medicinally important plant species were reported, in which 103 were found herbs, 32 shrubs and 17 were tree species which represented 123 genera of 61 families. A total of 18 plant species fell into the rare, endangered (critically endangered and vulnerable status categories. Conclusion The present study documented the traditional uses of medicinal plants, their ecological status and importance of these plants in the largest protected area of Garhwal Himalaya. This study can serve as baseline information on medicinal plants and could be helpful to further strengthen the conservation of this important resource.

  17. Plasma Membrane H(+)-ATPase Regulation in the Center of Plant Physiology.

    Science.gov (United States)

    Falhof, Janus; Pedersen, Jesper Torbøl; Fuglsang, Anja Thoe; Palmgren, Michael

    2016-03-07

    The plasma membrane (PM) H(+)-ATPase is an important ion pump in the plant cell membrane. By extruding protons from the cell and generating a membrane potential, this pump energizes the PM, which is a prerequisite for growth. Modification of the autoinhibitory terminal domains activates PM H(+)-ATPase activity, and on this basis it has been hypothesized that these regulatory termini are targets for physiological factors that activate or inhibit proton pumping. In this review, we focus on the posttranslational regulation of the PM H(+)-ATPase and place regulation of the pump in an evolutionary and physiological context. The emerging picture is that multiple signals regulating plant growth interfere with the posttranslational regulation of the PM H(+)-ATPase. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  18. Physiological and genetic basis of plant tolerance to excess boron

    Directory of Open Access Journals (Sweden)

    Kastori Rudolf R.

    2008-01-01

    Full Text Available Boron (B deficit as well as excess may significantly limit the organic production in plants. In extreme cases they may kill the affected plants. Boron excess occurs primarily in arid and semiarid regions, in saline soils or in consequence to human action. Excessive boron concentrations retard plant growth and cause physiological and morphological changes (chlorosis and necrosis first of all in leaf tips and then in marginal or intercostal parts of the lamina. Physiological mechanisms of plant tolerance to boron excess have not been studied in sufficient detail. The predominant opinion holds that they are based on restricted uptake and accumulation of boron in the root and aboveground plant parts. Significant differences in boron excess tolerance have been observed not only between different crops but even between different genotypes of the same crop. This has enabled the breeding of crop genotypes and crops adapted to growing on soils rich in available boron and intensified the research on the inheritance of plant tolerance to high B concentration. Sources of tolerance to high B concentration have been found in many crops (wheat, mustard, pea, lentil, eucalypt. Using different molecular techniques based on PCR (RAPD, SRAP, plant parents and progenies have been analyzed in an attempt to map as precisely as possible the position of B-tolerant genes. Small grains have been studied in greatest detail for inheritance of B tolerance. B tolerance in wheat is controlled by at least four additive genes, Bo1, Bo2, Bo3 and Bo4. Consequently, there exists a broad range of tolerance levels. Studies of Arabidopsis have broadened our understanding of regulation mechanisms of B transport from roots to above ground parts, allowing more direct genetic manipulations.

  19. Microbiomes: unifying animal and plant systems through the lens of community ecology theory.

    Science.gov (United States)

    Christian, Natalie; Whitaker, Briana K; Clay, Keith

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.

  20. Microbiomes: unifying animal and plant systems through the lens of community ecology theory

    Directory of Open Access Journals (Sweden)

    Natalie eChristian

    2015-09-01

    Full Text Available The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant-fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant-fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant-fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration. The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research.

  1. Physiological quality of soybean seeds under different yield environments and plant density

    Directory of Open Access Journals (Sweden)

    Felipe A. Baron

    Full Text Available ABSTRACT Yield potential of agricultural fields associated with plant spatial arrangement could determine the physiological quality of soybean (Glycine max L. seeds. Thus, this study aimed to evaluate the physiological quality of soybean seeds from different yield environments and plant densities. Experiments were carried out in Boa Vista das Missões-RS, Brazil, during the 2014/2015 growing season. Yield environments were delineated by overlapping yield maps from the 2008, 2009/2010 and 2011/2012 growing seasons. The experimental design was a randomized complete block in a 2 x 5 factorial arrangement with two yield environments (low and high and five plant densities, with four replicates. Two varieties were tested: Brasmax Ativa RR (10, 15, 20, 25 and 30 plants m-1 and Nidera 5909 RR (5, 10, 15, 20 and 25 plants m-1. After harvested, the seeds were analysed as following: first count index, germination, abnormal seedlings, dead seeds, electrical conductivity, accelerate aging test, root length, hypocotyl length and seedling length. The spatial variability of seed vigor in the production field could be reduced by adjusting plant density, but the adjustment should consider the variety. Harvest according to yield environment is a strategy to separate lots of seeds with higher vigor, originated from high-yield environments.

  2. Impacts of extreme winter warming events on plant physiology in a sub-Arctic heath community.

    Science.gov (United States)

    Bokhorst, Stef; Bjerke, Jarle W; Davey, Matthew P; Taulavuori, Kari; Taulavuori, Erja; Laine, Kari; Callaghan, Terry V; Phoenix, Gareth K

    2010-10-01

    Insulation provided by snow cover and tolerance of freezing by physiological acclimation allows Arctic plants to survive cold winter temperatures. However, both the protection mechanisms may be lost with winter climate change, especially during extreme winter warming events where loss of snow cover from snow melt results in exposure of plants to warm temperatures and then returning extreme cold in the absence of insulating snow. These events cause considerable damage to Arctic plants, but physiological responses behind such damage remain unknown. Here, we report simulations of extreme winter warming events using infrared heating lamps and soil warming cables in a sub-Arctic heathland. During these events, we measured maximum quantum yield of photosystem II (PSII), photosynthesis, respiration, bud swelling and associated bud carbohydrate changes and lipid peroxidation to identify physiological responses during and after the winter warming events in three dwarf shrub species: Empetrum hermaphroditum, Vaccinium vitis-idaea and Vaccinium myrtillus. Winter warming increased maximum quantum yield of PSII, and photosynthesis was initiated for E. hermaphroditum and V. vitis-idaea. Bud swelling, bud carbohydrate decreases and lipid peroxidation were largest for E. hermaphroditum, whereas V. myrtillus and V. vitis-idaea showed no or less strong responses. Increased physiological activity and bud swelling suggest that sub-Arctic plants can initiate spring-like development in response to a short winter warming event. Lipid peroxidation suggests that plants experience increased winter stress. The observed differences between species in physiological responses are broadly consistent with interspecific differences in damage seen in previous studies, with E. hermaphroditum and V. myrtillus tending to be most sensitive. This suggests that initiation of spring-like development may be a major driver in the damage caused by winter warming events that are predicted to become more

  3. A method for under-sampled ecological network data analysis: plant-pollination as case study

    Directory of Open Access Journals (Sweden)

    Peter B. Sorensen

    2012-01-01

    Full Text Available In this paper, we develop a method, termed the Interaction Distribution (ID method, for analysis of quantitative ecological network data. In many cases, quantitative network data sets are under-sampled, i.e. many interactions are poorly sampled or remain unobserved. Hence, the output of statistical analyses may fail to differentiate between patterns that are statistical artefacts and those which are real characteristics of ecological networks. The ID method can support assessment and inference of under-sampled ecological network data. In the current paper, we illustrate and discuss the ID method based on the properties of plant-animal pollination data sets of flower visitation frequencies. However, the ID method may be applied to other types of ecological networks. The method can supplement existing network analyses based on two definitions of the underlying probabilities for each combination of pollinator and plant species: (1, pi,j: the probability for a visit made by the i’th pollinator species to take place on the j’th plant species; (2, qi,j: the probability for a visit received by the j’th plant species to be made by the i’th pollinator. The method applies the Dirichlet distribution to estimate these two probabilities, based on a given empirical data set. The estimated mean values for pi,j and qi,j reflect the relative differences between recorded numbers of visits for different pollinator and plant species, and the estimated uncertainty of pi,j and qi,j decreases with higher numbers of recorded visits.

  4. Phage Therapy: Eco-Physiological Pharmacology

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2014-01-01

    Full Text Available Bacterial virus use as antibacterial agents, in the guise of what is commonly known as phage therapy, is an inherently physiological, ecological, and also pharmacological process. Physiologically we can consider metabolic properties of phage infections of bacteria and variation in those properties as a function of preexisting bacterial states. In addition, there are patient responses to pathogenesis, patient responses to phage infections of pathogens, and also patient responses to phage virions alone. Ecologically, we can consider phage propagation, densities, distribution (within bodies, impact on body-associated microbiota (as ecological communities, and modification of the functioning of body “ecosystems” more generally. These ecological and physiological components in many ways represent different perspectives on otherwise equivalent phenomena. Comparable to drugs, one also can view phages during phage therapy in pharmacological terms. The relatively unique status of phages within the context of phage therapy as essentially replicating antimicrobials can therefore result in a confluence of perspectives, many of which can be useful towards gaining a better mechanistic appreciation of phage therapy, as I consider here. Pharmacology more generally may be viewed as a discipline that lies at an interface between organism-associated phenomena, as considered by physiology, and environmental interactions as considered by ecology.

  5. Amplification of heat extremes by plant CO2 physiological forcing.

    Science.gov (United States)

    Skinner, Christopher B; Poulsen, Christopher J; Mankin, Justin S

    2018-03-15

    Plants influence extreme heat events by regulating land-atmosphere water and energy exchanges. The contribution of plants to changes in future heat extremes will depend on the responses of vegetation growth and physiology to the direct and indirect effects of elevated CO 2 . Here we use a suite of earth system models to disentangle the radiative versus vegetation effects of elevated CO 2 on heat wave characteristics. Vegetation responses to a quadrupling of CO 2 increase summer heat wave occurrence by 20 days or more-30-50% of the radiative response alone-across tropical and mid-to-high latitude forests. These increases are caused by CO 2 physiological forcing, which diminishes transpiration and its associated cooling effect, and reduces clouds and precipitation. In contrast to recent suggestions, our results indicate CO 2 -driven vegetation changes enhance future heat wave frequency and intensity in most vegetated regions despite transpiration-driven soil moisture savings and increases in aboveground biomass from CO 2 fertilization.

  6. Biological significance of complex N-glycans in plants and their impact on plant physiology.

    Science.gov (United States)

    Strasser, Richard

    2014-01-01

    Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of β1,2-xylose, core α1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signaling events. In contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review, I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.

  7. Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant

    International Nuclear Information System (INIS)

    Pang, Mingyue; Zhang, Lixiao; Ulgiati, Sergio; Wang, Changbo

    2015-01-01

    The belief that small hydropower (SHP) systems are sources of clean energy with few or no ecological problems has been driving the rapid expansion of SHP plants in China and elsewhere. This paper presents an evaluation of the ecological impacts of SHP based on an emergy analysis of a plant located in Guizhou Province in southwest China. The results suggest that periodic downstream drying-up of the river is the largest contributor to the induced ecological impacts in terms of emergy cost. In 2010, the ecosystem service losses caused by downstream ecosystem degradation totaled 2.35E+18 seJ, which accounts for 38% of the total emergy utilized in the annual operation of this plant. If such losses could be avoided, i.e., if the SHP operated as designed, SHP projects would produce relatively modest impacts on the environment. When the reaches downstream of the SHP plant are not affected, the environmental loading ratio (ELR) is 2.20 and the emergy sustainability index (ESI) is 0.93; however, the ELR increases to 3.82 and ESI decreases to 0.38 when river drying-up occurs. These results indicate that China should rigorously investigate potential ecological problems of SHP development and proceed with caution rather than readily believing unjustified assumptions. - Highlights: • Ecological impacts of a SHP plant in China are analyzed using emergy synthesis. • The ecosystem degradation due to periodic drying-up was the largest emergy cost. • The eco-friendliness of SHP is questionable when it is intensively developed. • China should proceed with caution regarding the potential ecological impact of SHP

  8. Ecological principles relevant to nuclear war

    International Nuclear Information System (INIS)

    Hutchinson, T.C.; Cropper, W.P. Jr.; Grover, H.D.

    1985-01-01

    The ecological principles outlined are very basic ones; the authors anticipate a readership trained in a broad range of disciplines, including those unfamiliar with the academic discipline of ecology. The authors include substantial discussion on ecophysiology (i.e., the responses of organisms to their environment) because this is relevant to the new understanding of the potential climatic consequences of nuclear war. In particular, the physiological sensitivity of organisms to reduced levels of light and temperature are a key part of the analysis of the potential ecological effects and agricultural effects of nuclear war. Much of the ecological analysis has been organized around major biological units called biomes. The authors describe the biome concept and discuss some of the environmental-climatic factors that are believed to control biome distribution. Emphasis is given to plants because of their controlling influence on ecosystem functions through their role as primary producers. Future reports are needed to address more fully the potential effects on animals. Much more research needs to be done on both plant and animal responses to the types of perturbations possible for the aftermath of a nuclear war. Another important element for analysis of the potential ecological consequences of nuclear war concerns recovery processes. As the post-nuclear war environmental extremes ameliorate, ecological communities in devastated regions would begin to reorganize. It is not possible to predict the course of such a succession precisely, but some principles concerning post-perturbation replacement (such as seed banks and germination), relevant successional patterns, and organism strategies are discussed

  9. Wired to the roots: impact of root-beneficial microbe interactions on aboveground plant physiology and protection.

    Science.gov (United States)

    Kumar, Amutha Sampath; Bais, Harsh P

    2012-12-01

    Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don't know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses.

  10. Physiological responses of planting frozen and thawed Douglas-fir seedlings

    Science.gov (United States)

    M. Anisul Islam; Kent G. Apostol; Douglass F. Jacobs; R. Kasten Dumroese

    2008-01-01

    We studied the short-term (7-day) physiological responses of planting thawed and frozen root plugs of Douglas-fir (Pseudotsuga menziesii) seedlings in 2 separate experiments under cool-moist and warm-dry growing conditions, respectively. Our results showed that shoot water potential, root hydraulic conductance, net photosynthesis (A), and...

  11. Tritrophic Interactions Mediated by Herbivore-Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential.

    Science.gov (United States)

    Turlings, Ted C J; Erb, Matthias

    2018-01-07

    Tritrophic interactions between plants, herbivores, and their natural enemies are an integral part of all terrestrial ecosystems. Herbivore-induced plant volatiles (HIPVs) play a key role in these interactions, as they can attract predators and parasitoids to herbivore-attacked plants. Thirty years after this discovery, the ecological importance of the phenomena is widely recognized. However, the primary function of HIPVs is still subject to much debate, as is the possibility of using these plant-produced cues in crop protection. In this review, we summarize the current knowledge on the role of HIPVs in tritrophic interactions from an ecological as well as a mechanistic perspective. This overview focuses on the main gaps in our knowledge of tritrophic interactions, and we argue that filling these gaps will greatly facilitate efforts to exploit HIPVs for pest control.

  12. Fifth workshop on seedling physiology and growth problems in oak plantings (abstracts).

    Science.gov (United States)

    Janette R. Thompson; Richard C. Schultz; J.W. Van Sambeek

    1993-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 30 abstracts.

  13. Constraints imposed by pollinator behaviour on the ecology and evolution of plant mating systems

    OpenAIRE

    Devaux, Christian; Lepers, C.; Porcher, E.

    2014-01-01

    Most flowering plants rely on pollinators for their reproduction. Plant-pollinator interactions, although mutualistic, involve an inherent conflict of interest between both partners and may constrain plant mating systems at multiple levels: the immediate ecological plant selfing rates, their distribution in and contribution to pollination networks, and their evolution. Here, we review experimental evidence that pollinator behaviour influences plant selfing rates in pairs of interacting specie...

  14. Ecology of Exercise in Wild Fish: Integrating Concepts of Individual Physiological Capacity, Behavior, and Fitness Through Diverse Case Studies.

    Science.gov (United States)

    Brownscombe, Jacob W; Cooke, Steven J; Algera, Dirk A; Hanson, Kyle C; Eliason, Erika J; Burnett, Nicholas J; Danylchuk, Andy J; Hinch, Scott G; Farrell, Anthony P

    2017-08-01

    , smallmouth bass parental care) energy stores may be more important. Interactions among environmental and ecological factors, fish behavior, and fish physiology offer important avenues of mechanistic inquiry to explain ecological dynamics and demonstrate how exercise is fundamental to the ecology of fish. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. On the Use of the Guild Concept in Plant Ecology

    NARCIS (Netherlands)

    Kroon, Hans de; Olff, Han

    1995-01-01

    The original defmition of the guild is reiterated and the concept discussed and placed in the context of related concepts such as resources and competition. From this conceptual framework the current use of guilds in studies of plant community ecology is evaluated. We discuss the criteria with which

  16. The movement ecology and dynamics of plant communities in fragmented landscapes.

    Science.gov (United States)

    Damschen, Ellen I; Brudvig, Lars A; Haddad, Nick M; Levey, Douglas J; Orrock, John L; Tewksbury, Joshua J

    2008-12-09

    A conceptual model of movement ecology has recently been advanced to explain all movement by considering the interaction of four elements: internal state, motion capacity, navigation capacities, and external factors. We modified this framework to generate predictions for species richness dynamics of fragmented plant communities and tested them in experimental landscapes across a 7-year time series. We found that two external factors, dispersal vectors and habitat features, affected species colonization and recolonization in habitat fragments and their effects varied and depended on motion capacity. Bird-dispersed species richness showed connectivity effects that reached an asymptote over time, but no edge effects, whereas wind-dispersed species richness showed steadily accumulating edge and connectivity effects, with no indication of an asymptote. Unassisted species also showed increasing differences caused by connectivity over time, whereas edges had no effect. Our limited use of proxies for movement ecology (e.g., dispersal mode as a proxy for motion capacity) resulted in moderate predictive power for communities and, in some cases, highlighted the importance of a more complete understanding of movement ecology for predicting how landscape conservation actions affect plant community dynamics.

  17. Plant growth regulator interactions in physiological processes for controlling plant regeneration and in vitro development of Tulbaghia simmleri

    Czech Academy of Sciences Publication Activity Database

    Kumari, A.; Baskaran, P.; Plačková, Lenka; Omámiková, Hana; Nisler, Jaroslav; Doležal, Karel; Van Staden, J.

    2018-01-01

    Roč. 223, APR (2018), s. 65-71 ISSN 0176-1617 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Endogenous hormone * Exogenous hormone application * In vitro regeneration * Ornamental and medicinal plant * Physiological process * Tulbaghia simmleri Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 3.121, year: 2016

  18. Plant ion channels: gene families, physiology, and functional genomics analyses.

    Science.gov (United States)

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  19. Student Misconceptions about Plants ? A First Step in Building a Teaching Resource?

    OpenAIRE

    Wynn, April N.; Pan, Irvin L.; Rueschhoff, Elizabeth E.; Herman, Maryann A. B.; Archer, E. Kathleen

    2017-01-01

    Plants are ubiquitous and found in virtually every ecosystem on Earth, but their biology is often poorly understood, and inaccurate ideas about how plants grow and function abound. Many articles have been published documenting student misconceptions about photosynthesis and respiration, but there are substantially fewer on such topics as plant cell structure and growth; plant genetics, evolution, and classification; plant physiology (beyond energy relations); and plant ecology. The available ...

  20. Evaluating physiological responses of plants to salinity stress

    KAUST Repository

    Negrão, Sónia

    2016-10-06

    Background Because soil salinity is a major abiotic constraint affecting crop yield, much research has been conducted to develop plants with improved salinity tolerance. Salinity stress impacts many aspects of a plant’s physiology, making it difficult to study in toto. Instead, it is more tractable to dissect the plant’s response into traits that are hypothesized to be involved in the overall tolerance of the plant to salinity. Scope and conclusions We discuss how to quantify the impact of salinity on different traits, such as relative growth rate, water relations, transpiration, transpiration use efficiency, ionic relations, photosynthesis, senescence, yield and yield components. We also suggest some guidelines to assist with the selection of appropriate experimental systems, imposition of salinity stress, and obtaining and analysing relevant physiological data using appropriate indices. We illustrate how these indices can be used to identify relationships amongst the proposed traits to identify which traits are the most important contributors to salinity tolerance. Salinity tolerance is complex and involves many genes, but progress has been made in studying the mechanisms underlying a plant’s response to salinity. Nevertheless, several previous studies on salinity tolerance could have benefited from improved experimental design. We hope that this paper will provide pertinent information to researchers on performing proficient assays and interpreting results from salinity tolerance experiments.

  1. Insect-plant interactions: new pathways to a better comprehension of ecological communities in Neotropical savannas.

    Science.gov (United States)

    Del-Claro, Kleber; Torezan-Silingardi, Helena M

    2009-01-01

    The causal mechanisms shaping and structuring ecological communities are among the most important themes in ecology. The study of insect-plant interactions in trophic nets is pointed out as basic to improve our knowledge on this issue. The cerrado tropical savanna, although extremely diverse, distributed in more than 20% of the Brazilian territory and filled up with rich examples of multitrophic interactions, is underexplored in terms of biodiversity interaction. Here, this ecosystem is suggested as valuable to the study of insect-plant interactions whose understanding can throw a new light at the ecological communities' theory. Three distinct systems: extrafloral nectary plants or trophobiont herbivores and the associated ant fauna; floral herbivores-predators-pollinators; and plants-forest engineers and associated fauna, will serve as examples to illustrate promising new pathways in cerrado. The aim of this brief text is to instigate young researchers, mainly entomologists, to initiate more elaborated field work, including experimental manipulations in multitrophic systems, to explore in an interactive way the structure that maintain preserved viable communities in the Neotropical savanna.

  2. Controlled ecological life support systems: Development of a plant growth module

    Science.gov (United States)

    Averner, Mel M.; Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity.

  3. Revisiting the Holy Grail: using plant functional traits to understand ecological processes.

    Science.gov (United States)

    Funk, Jennifer L; Larson, Julie E; Ames, Gregory M; Butterfield, Bradley J; Cavender-Bares, Jeannine; Firn, Jennifer; Laughlin, Daniel C; Sutton-Grier, Ariana E; Williams, Laura; Wright, Justin

    2017-05-01

    One of ecology's grand challenges is developing general rules to explain and predict highly complex systems. Understanding and predicting ecological processes from species' traits has been considered a 'Holy Grail' in ecology. Plant functional traits are increasingly being used to develop mechanistic models that can predict how ecological communities will respond to abiotic and biotic perturbations and how species will affect ecosystem function and services in a rapidly changing world; however, significant challenges remain. In this review, we highlight recent work and outstanding questions in three areas: (i) selecting relevant traits; (ii) describing intraspecific trait variation and incorporating this variation into models; and (iii) scaling trait data to community- and ecosystem-level processes. Over the past decade, there have been significant advances in the characterization of plant strategies based on traits and trait relationships, and the integration of traits into multivariate indices and models of community and ecosystem function. However, the utility of trait-based approaches in ecology will benefit from efforts that demonstrate how these traits and indices influence organismal, community, and ecosystem processes across vegetation types, which may be achieved through meta-analysis and enhancement of trait databases. Additionally, intraspecific trait variation and species interactions need to be incorporated into predictive models using tools such as Bayesian hierarchical modelling. Finally, existing models linking traits to community and ecosystem processes need to be empirically tested for their applicability to be realized. © 2016 Cambridge Philosophical Society.

  4. Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores

    NARCIS (Netherlands)

    Papadopoulou, G.V.; Dam, N.M. van

    2017-01-01

    Plant-mediated interactions between belowground (BG) and aboveground (AG) herbivores have received increasing interest recently. However, the molecular mechanisms underlying ecological consequences of BG–AG interactions are not fully clear yet. Herbivore-induced plant defenses are complex and

  5. The evolution of ethylene signaling in plant chemical ecology.

    Science.gov (United States)

    Groen, Simon C; Whiteman, Noah K

    2014-07-01

    Ethylene is a key hormone in plant development, mediating plant responses to abiotic environmental stress, and interactions with attackers and mutualists. Here, we provide a synthesis of the role of ethylene in the context of plant ecology and evolution, and a prospectus for future research in this area. We focus on the regulatory function of ethylene in multi-organismal interactions. In general, plant interactions with different types of organisms lead to reduced or enhanced levels of ethylene. This in turn affects not only the plant's response to the interacting organism at hand, but also to other organisms in the community. These community-level effects become observable as enhanced or diminished relationships with future commensals, and systemic resistance or susceptibility to secondary attackers. Ongoing comparative genomic and phenotypic analyses continue to shed light on these interactions. These studies have revealed that plants and interacting organisms from separate kingdoms of life have independently evolved the ability to produce, perceive, and respond to ethylene. This signature of convergent evolution of ethylene signaling at the phenotypic level highlights the central role ethylene metabolism and signaling plays in plant interactions with microbes and animals.

  6. Basic versus applied research: Julius Sachs (1832-1897) and the experimental physiology of plants.

    Science.gov (United States)

    Kutschera, Ulrich

    2015-01-01

    The German biologist Julius Sachs was the first to introduce controlled, accurate, quantitative experimentation into the botanical sciences, and is regarded as the founder of modern plant physiology. His seminal monograph Experimental-Physiologie der Pflanzen (Experimental Physiology of Plants) was published 150 y ago (1865), when Sachs was employed as a lecturer at the Agricultural Academy in Poppelsdorf/Bonn (now part of the University). This book marks the beginning of a new era of basic and applied plant science. In this contribution, I summarize the achievements of Sachs and outline his lasting legacy. In addition, I show that Sachs was one of the first biologists who integrated bacteria, which he considered to be descendants of fungi, into the botanical sciences and discussed their interaction with land plants (degradation of wood etc.). This "plant-microbe-view" of green organisms was extended and elaborated by the laboratory botanist Wilhelm Pfeffer (1845-1920), so that the term "Sachs-Pfeffer-Principle of Experimental Plant Research" appears to be appropriate to characterize this novel way of performing scientific studies on green, photoautotrophic organisms (embryophytes, algae, cyanobacteria).

  7. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants

    Czech Academy of Sciences Publication Activity Database

    Jammer, A.; Gapserl, A.; Luschin-Ebengreuth, N.; Heyneke, E.; Chu, H.; Cantero-Navarro, E.; Grosskinsky, D. K.; Albacete, A.; Stabentheiner, E.; Franzaring, J.; Fangmeier, A.; van der Graaff, E.; Roitsch, Thomas

    2015-01-01

    Roč. 66, č. 18 (2015), s. 5531-5542 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : Carbohydrate metabolism * dialysis * enzyme activities * kinetic assay * physiological phenotyping * physiological state * protein extraction * signatures Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  8. Plant interactions alter the predictions of metabolic scaling theory.

    Directory of Open Access Journals (Sweden)

    Yue Lin

    Full Text Available Metabolic scaling theory (MST is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of -4/3 between mean individual biomass and density during density-dependent mortality (self-thinning. Empirical tests have produced variable results, and the validity of MST is intensely debated. MST focuses on organisms' internal physiological mechanisms but we hypothesize that ecological interactions can be more important in determining plant mass-density relationships induced by density. We employ an individual-based model of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric, and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories. Slopes were significantly shallower than -4/3 if competition was size-symmetric. We conclude that when the size of survivors is influenced by strong ecological interactions, these can override predictions of MST, whereas when surviving plants are less affected by interactions, individual-level metabolic processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive.

  9. Sapfluxnet: a global database of sap flow measurements to unravel the ecological factors of transpiration regulation in woody plants

    Science.gov (United States)

    Poyatos, Rafael; Martínez-Vilalta, Jordi; Molowny-Horas, Roberto; Steppe, Kathy; Oren, Ram; Katul, Gabriel; Mahecha, Miguel

    2016-04-01

    Plant transpiration is one of the main components of the global water cycle, it controls land energy balance, determines catchment hydrological responses and exerts strong feedbacks on regional and global climate. At the same time, plant productivity, growth and survival are severely constrained by water availability, which is expected to decline in many areas of the world because of global-change driven increases in drought conditions. While global surveys of drought tolerance traits at the organ level are rapidly increasing our knowledge of the diversity in plant functional strategies to cope with drought stress, a whole-plant perspective of drought vulnerability is still lacking. Sap flow measurements using thermal methods have now been applied to measure seasonal patterns in water use and the response of transpiration to environmental drivers across hundreds of species of woody plants worldwide, covering a wide range of climates, soils and stand structural characteristics. Here, we present the first effort to build a global database of sub-daily, tree-level sap flow (SAPFLUXNET) that will be used to improve our understanding of physiological and structural determinants of plant transpiration and to further investigate the role of vegetation in controlling global water balance. We already have the expression of interest of data contributors representing >115 globally distributed sites, > 185 species and > 700 trees, measured over at least one growing season. However, the potential number of available sites and species is probably much higher given that > 2500 sap flow-related papers have been identified in a Scopus literature search conducted in November 2015. We will give an overview of how data collection, harmonisation and quality control procedures are implemented within the project. We will also discuss potential analytical strategies to synthesize hydroclimatic controls on sap flow into biologically meaningful traits related to whole-plant transpiration

  10. The phytotronist and the phenotype: plant physiology, Big Science, and a Cold War biology of the whole plant.

    Science.gov (United States)

    Munns, David P D

    2015-04-01

    This paper describes how, from the early twentieth century, and especially in the early Cold War era, the plant physiologists considered their discipline ideally suited among all the plant sciences to study and explain biological functions and processes, and ranked their discipline among the dominant forms of the biological sciences. At their apex in the late-1960s, the plant physiologists laid claim to having discovered nothing less than the "basic laws of physiology." This paper unwraps that claim, showing that it emerged from the construction of monumental big science laboratories known as phytotrons that gave control over the growing environment. Control meant that plant physiologists claimed to be able to produce a standard phenotype valid for experimental biology. Invoking the standards of the physical sciences, the plant physiologists heralded basic biological science from the phytotronic produced phenotype. In the context of the Cold War era, the ability to pursue basic science represented the highest pinnacle of standing within the scientific community. More broadly, I suggest that by recovering the history of an underappreciated discipline, plant physiology, and by establishing the centrality of the story of the plant sciences in the history of biology can historians understand the massive changes wrought to biology by the conceptual emergence of the molecular understanding of life, the dominance of the discipline of molecular biology, and the rise of biotechnology in the 1980s. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Pollinator-driven ecological speciation in plants: new evidence and future perspectives.

    Science.gov (United States)

    Van der Niet, Timotheüs; Peakall, Rod; Johnson, Steven D

    2014-01-01

    The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of 'pollination ecotypes', (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies further illustrate

  12. Pollinator-driven ecological speciation in plants: new evidence and future perspectives

    Science.gov (United States)

    Van der Niet, Timotheüs; Peakall, Rod; Johnson, Steven D.

    2014-01-01

    Background The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. Scope This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of ‘pollination ecotypes‘, (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies

  13. Do oxygen isotope values in collagen reflect the ecology and physiology of neotropical mammals?

    Directory of Open Access Journals (Sweden)

    Brooke eCrowley

    2015-11-01

    Full Text Available Stable isotope data provide insight into the foraging ecology of animals. Traditionally, carbon and nitrogen isotope values have been used to infer dietary and habitat preferences. Oxygen isotopes are used less frequently but may complement the ecological information provided by carbon and nitrogen, particularly in densely forested or arid environments. Additionally, because oxygen is preserved in both bioapatite and collagen, it is useful for paleoecological studies. To investigate the suitability of oxygen isotopes for complementing and building on ecological applications of carbon and nitrogen isotopes, we analyze all three isotopes in bone collagen for nearly identical assemblages of Costa Rican mammals in two ecologically distinct habitats - a evergreen rainforest and a seasonal dry forest. We assess the degree to which differences in habitat, activity pattern, diet, arboreality, and thermoregulation are revealed by each of the isotope systems. Our results highlight the potential of oxygen isotopes in modern and paleoecological contexts. In addition to reflecting habitat type, oxygen isotope values in collagen distinguish species on the basis of vertical habitat stratification and drinking behavior. Within a locality, individuals with low oxygen isotope values likely track meteoric water, whereas those with elevated values most likely consume evaporatively-enriched plant tissues, such as canopy leaves. These patterns will be useful in reconstructing paleoenvironments and interpreting ecological differences among taxa both extant and extinct.

  14. Integrating plant ecological responses to climate extremes from individual to ecosystem levels.

    Science.gov (United States)

    Felton, Andrew J; Smith, Melinda D

    2017-06-19

    Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  15. The ecology of plant secondary metabolites : from genes to global processes

    NARCIS (Netherlands)

    Iason, G.R.; Dicke, M.; Hartley, S.E.

    2012-01-01

    Plant secondary metabolites (PSM) such as terpenes and phenolic compounds are known to have numerous ecological roles, notably in defence against herbivores, pathogens and abiotic stresses and in interactions with competitors and mutualists. This book reviews recent developments in the field to

  16. Host physiological condition regulates parasitic plant performance: Arceuthobium vaginatum subsp. cryptopodum on Pinus ponderosa.

    Science.gov (United States)

    Bickford, Christopher P; Kolb, Thomas E; Geils, Brian W

    2005-12-01

    Much research has focused on effects of plant parasites on host-plant physiology and growth, but little is known about effects of host physiological condition on parasite growth. Using the parasitic dwarf mistletoe Arceuthobium vaginatum subsp. cryptopodum (Viscaceae) and its host Pinus ponderosa, we investigated whether changes in host physiological condition influenced mistletoe shoot development in northern Arizona forests. We conducted two studies in two consecutive years and used forest thinning (i.e., competitive release) to manipulate host physiological condition. We removed dwarf mistletoe shoots in April, before the onset of the growing season, and measured the amount of regrowth in the first season after forest thinning (Study I: n=38 trees; Study II: n=35 trees). Thinning increased tree uptake of water and carbon in both studies, but had no effect on leaf N concentration or delta13C. Mistletoe shoot growth was greater on trees with high uptake of water and carbon in thinned stands than trees with low uptake in unthinned stands. These findings show that increased resource uptake by host trees increases resources to these heterotrophic dwarf mistletoes, and links mistletoe performance to changes in host physiological condition.

  17. Polyamines in plant physiology

    Science.gov (United States)

    Galston, A. W.; Sawhney, R. K.

    1990-01-01

    The diamine putrescine, the triamine spermidine, and the tetramine spermine are ubiquitous in plant cells, while other polyamines are of more limited occurrence. Their chemistry and pathways of biosynthesis and metabolism are well characterized. They occur in the free form as cations, but are often conjugated to small molecules like phenolic acids and also to various macromolecules. Their titer varies from approximately micromolar to more than millimolar, and depends greatly on environmental conditions, especially stress. In cereals, the activity of one of the major polyamine biosynthetic enzymes, arginine decarboxylase, is rapidly and dramatically increased by almost every studied external stress, leading to 50-fold or greater increases in putrescine titer within a few hours. The physiological significance of this increase is not yet clear, although most recent work suggests an adaptive, protective role. Polyamines produced through the action of ornithine decarboxylase, by contrast, seem essential for DNA replication and cell division. The application of exogenous polyamines produces effects on patterns of senescence and morphogenesis, suggesting but not proving a regulatory role for polyamines in these processes. The evidence for such a regulatory role is growing.

  18. Plant signalling: the opportunities and dangers of chemical communication.

    Science.gov (United States)

    Adler, Frederick R

    2011-04-23

    The notion of chemical communication between plants and other organisms has gone from being viewed as a fringe idea to an accepted ecological phenomenon only recently. An Organized Oral Session at the August 2010 Ecological Society of America meeting in Pittsburgh examined the role of plant signalling both within and between plants, with speakers addressing the remarkably wide array of effects that plant signals have on plant physiology, species interactions and entire communities. In addition to the familiar way that plants communicate with mutualists like pollinators and fruit dispersers through both chemical and visual cues, speakers at this session described how plants communicate with themselves, with each other, with herbivores and with predators of those herbivores. These plant signals create a complex odour web superimposed upon the more classical food web itself, with its own dynamics in the face of exotic species and rapid community assembly and disassembly.

  19. Evolution in plant populations as a driver of ecological changes in arthropod communities.

    Science.gov (United States)

    Johnson, Marc T J; Vellend, Mark; Stinchcombe, John R

    2009-06-12

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  20. Evolution in plant populations as a driver of ecological changes in arthropod communities

    Science.gov (United States)

    Johnson, Marc T.J.; Vellend, Mark; Stinchcombe, John R.

    2009-01-01

    Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to

  1. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants.

    Science.gov (United States)

    Turley, Nash E; Johnson, Marc T J

    2015-07-01

    Genetic variation and contemporary evolution within populations can shape the strength and nature of species interactions, but the relative importance of these forces compared to other ecological factors is unclear. We conducted a field experiment testing the effects of genotypic variation, abundance, and presence/absence of green peach aphids (Myzus persicae) on the growth, leaf nitrogen, and carbon of two plant species (Brassica napus and Solanum nigrum). Aphid genotype affected B. napus but not S. nigrum biomass explaining 20 and 7% of the total variation, respectively. Averaging across both plant species, the presence/absence of aphids had a 1.6× larger effect size (Cohen's d) than aphid genotype, and aphid abundance had the strongest negative effects on plant biomass explaining 29% of the total variation. On B. napus, aphid genotypes had different effects on leaf nitrogen depending on their abundance. Aphids did not influence leaf nitrogen in S. nigrum nor leaf carbon in either species. We conducted a second experiment in the field to test whether contemporary evolution could affect plant performance. Aphid populations evolved in as little as five generations, but the rate and direction of this evolution did not consistently vary between plant species. On one host species (B. napus), faster evolving populations had greater negative effects on host plant biomass, with aphid evolutionary rate explaining 23% of the variation in host plant biomass. Together, these results show that genetic variation and evolution in an insect herbivore can play important roles in shaping host plant ecology.

  2. Ecological turmoil in evolutionary dynamics of plant-insect interactions: defense to offence.

    Science.gov (United States)

    Mishra, Manasi; Lomate, Purushottam R; Joshi, Rakesh S; Punekar, Sachin A; Gupta, Vidya S; Giri, Ashok P

    2015-10-01

    Available history manifests contemporary diversity that exists in plant-insect interactions. A radical thinking is necessary for developing strategies that can co-opt natural insect-plant mutualism, ecology and environmental safety for crop protection since current agricultural practices can reduce species richness and evenness. The global environmental changes, such as increased temperature, CO₂ and ozone levels, biological invasions, land-use change and habitat fragmentation together play a significant role in re-shaping the plant-insect multi-trophic interactions. Diverse natural products need to be studied and explored for their biological functions as insect pest control agents. In order to assure the success of an integrated pest management strategy, human activities need to be harmonized to minimize the global climate changes. Plant-insect interaction is one of the most primitive and co-evolved associations, often influenced by surrounding changes. In this review, we account the persistence and evolution of plant-insect interactions, with particular focus on the effect of climate change and human interference on these interactions. Plants and insects have been maintaining their existence through a mutual service-resource relationship while defending themselves. We provide a comprehensive catalog of various defense strategies employed by the plants and/or insects. Furthermore, several important factors such as accelerated diversification, imbalance in the mutualism, and chemical arms race between plants and insects as indirect consequences of human practices are highlighted. Inappropriate implementation of several modern agricultural practices has resulted in (i) endangered mutualisms, (ii) pest status and resistance in insects and (iii) ecological instability. Moreover, altered environmental conditions eventually triggered the resetting of plant-insect interactions. Hence, multitrophic approaches that can harmonize human activities and minimize their

  3. Physiological integration affects growth form and competitive ability in clonal plants

    Czech Academy of Sciences Publication Activity Database

    Herben, Tomáš

    2004-01-01

    Roč. 18, - (2004), s. 493-520 ISSN 0269-7653 R&D Projects: GA ČR(CZ) GA206/02/0953 Institutional research plan: CEZ:AV0Z6005908 Keywords : competitive ability * Physiological integration * clonal plants Subject RIV: EF - Botanics Impact factor: 3.215, year: 2004

  4. Is physiological performance a good predictor for fitness? Insights from an invasive plant species.

    Directory of Open Access Journals (Sweden)

    Marco A Molina-Montenegro

    Full Text Available Is physiological performance a suitable proxy of fitness in plants? Although, several studies have been conducted to measure some fitness-related traits and physiological performance, direct assessments are seldom found in the literature. Here, we assessed the physiology-fitness relationship using second-generation individuals of the invasive plant species Taraxacum officinale from 17 localities distributed in five continents. Specifically, we tested if i the maximum quantum yield is a good predictor for seed-output ii whether this physiology-fitness relationship can be modified by environmental heterogeneity, and iii if this relationship has an adaptive consequence for T. officinale individuals from different localities. Overall, we found a significant positive relationship between the maximum quantum yield and fitness for all localities evaluated, but this relationship decreased in T. officinale individuals from localities with greater environmental heterogeneity. Finally, we found that those individuals from localities where environmental conditions are highly seasonal performed better under heterogeneous environmental conditions. Contrarily, under homogeneous controlled conditions, those individuals from localities with low environmental seasonality performed much better. In conclusion, our results suggest that the maximum quantum yield seem to be good predictors for plant fitness. We suggest that rapid measurements, such as those obtained from the maximum quantum yield, could provide a straightforward proxy of individual's fitness in changing environments.

  5. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  6. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues.

    Science.gov (United States)

    Lima, Leonardo Warzea; Pilon-Smits, Elizabeth A H; Schiavon, Michela

    2018-04-04

    Selenium (Se) is a micronutrient required for many life forms, but toxic at higher concentration. Plants do not have a Se requirement, but can benefit from Se via enhanced antioxidant activity. Some plant species can accumulate Se to concentrations above 0.1% of dry weight and seem to possess mechanisms that distinguish Se from its analog sulfur (S). Research on these so-called Se hyperaccumulators aims to identify key genes for this remarkable trait and to understand ecological implications. This review gives a broad overview of the current knowledge about Se uptake and metabolism in plants, with a special emphasis on hypothesized mechanisms of Se hyperaccumulation. The role of Se in plant defense responses and the associated ecological implications are discussed. Hyperaccumulators have enhanced expression of S transport and assimilation genes, and may possess transporters with higher specificity for selenate over sulfate. Genes involved in antioxidant reactions and biotic stress resistance are also upregulated. Key regulators in these processes appear to be the growth regulators jasmonic acid, salicylic acid and ethylene. Hyperaccumulation may have evolved owing to associated ecological benefits, particularly protection against pathogens and herbivores, and as a form of elemental allelopathy. Understanding plant Se uptake and metabolism in hyperaccumulators has broad relevance for the environment, agriculture and human and animal nutrition and may help generate crops with selenate-specific uptake and high capacity to convert selenate to less toxic, anticarcinogenic, organic Se compounds. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The use of stable isotopes for studies on the physiology of plants

    International Nuclear Information System (INIS)

    Moyse, Alexis.

    1982-01-01

    The use of the stable isotopes 15 N, 18 O, 13 C for studies on the physiology of plants especially of plants grown under natural environment conditions is reviewed. Analysis of isotopic discrimination give estimates of the various patterns of carbon and nitrogen nutrition and of the rate of water circulation. The method can also be used for paleoclimatology and for the detection of frauds in food products [fr

  8. Potassium-modulated physiological performance of mango plants infected by Ceratocystis fimbriata

    Directory of Open Access Journals (Sweden)

    Isaias Severino Cacique

    2017-08-01

    Full Text Available ABSTRACT Mango wilt, caused by the fungus Ceratocystis fimbriata, is an important disease affecting mango production. In view of the beneficial effects of potassium (K in other profitable crops and the lack of information about the effect of macronutrients on mango wilt development, the present study aimed to evaluate how mango plants supplied with K respond physiologically when infected by C. fimbriata. Mango plants (» 3 years old from cultivar Ubá were grown in plastic pots containing 58 mg of K·dm−3 (original K level based on the chemical analysis of the substrate or in plastic pots with substrate amended with a solution of 0.5 M potassium chloride (KCl to achieve the rate of 240 mg K·dm−3. Disease symptoms were more pronounced in inoculated plants grown at the lower K level. Substantial declines in stomatal conductance, in line with decreases in the internal-to-ambient CO2 concentration ratio and the absence of detectable changes in the chlorophyll a fluorescence parameters, suggest that the decrease in the net carbon assimilation rate is due, at least initially, to stomatal limitations. High concentrations of K and manganese were found in the stem tissues of inoculated plants and supplied with the highest K rate, most likely due to the involvement of these tissues in the local development of defense mechanisms. The results of this study suggest that the supply of K favored the physiological performance of mango plants and their resistance against C. fimbriata infection.

  9. How to Do It. Plant Eco-Physiology: Experiments on Crassulacean Acid Metabolism, Using Minimal Equipment.

    Science.gov (United States)

    Friend, Douglas J. C.

    1990-01-01

    Features of Crassulacean Acid Metabolism plants are presented. Investigations of a complex eco-physiological plant adaptation to the problems of growth in an arid environment are discussed. Materials and procedures for these investigations are described. (CW)

  10. The water economy of South American desert rodents: from integrative to molecular physiological ecology.

    Science.gov (United States)

    Bozinovic, Francisco; Gallardo, Pedro

    2006-01-01

    Rodents from arid and semi-arid habitats live under conditions where the spatial and temporal availability of free water is limited, or scarce, thus forcing these rodents to deal with the problem of water conservation. The response of rodents to unproductive desert environments and water deficits has been intensively investigated in many deserts of the world. However, current understanding of the cellular, systemic and organismal physiology of water economy relies heavily on short-term, laboratory-oriented experiments, which usually focus on responses at isolated levels of biological organization. In addition, studies in small South American mammals are scarce. Indeed xeric habitats have existed in South America for a long time and it is intriguing why present day South American desert rodents do not show the wide array of adaptive traits to desert life observed for rodents on other continents. Several authors have pointed out that South American desert rodents lack physiological and energetic specialization for energy and water conservation, hypothesizing that their success is based more on behavioral and ecological strategies. We review phenotypic flexibility and physiological diversity in water flux rate, urine osmolality, and expression of water channels in South American desert-dwelling rodents. As far as we know, this is the first review of integrative studies at cellular, systemic and organismal levels. Our main conclusion is that South American desert rodents possess structural as well as physiological systems for water conservation, which are as remarkable as those found in "classical" rodents inhabiting other desert areas of the world.

  11. Pollen viability, physiology, and production of maize plants exposed to pyraclostrobin+epoxiconazole.

    Science.gov (United States)

    Junqueira, Verônica Barbosa; Costa, Alan Carlos; Boff, Tatiana; Müller, Caroline; Mendonça, Maria Andréia Corrêa; Batista, Priscila Ferreira

    2017-04-01

    The use of fungicides in maize has been more frequent due to an increase in the incidence of diseases and also the possible physiological benefits that some of these products may cause. However, some of these products (e.g., strobilurins and triazoles) may interfere with physiological processes and the formation of reproductive organs. Therefore, the effect of these products on plants at different developmental stages needs to be better understood to reduce losses and maximize production. The effect of the fungicide pyraclostrobin+epoxiconazole (P+E) was evaluated at different growth stages in meiosis, pollen grain viability and germination, physiology, and production of maize plants in the absence of disease. An experiment was carried out with the hybrid DKB390 PROII and the application of pyraclostrobin+epoxiconazole at the recommended dose and an untreated control at 3 different timings (S1 - V10; S2 - V14; S3 - R1) with 5 replications. Gas exchange, chlorophyll fluorescence, pollen viability and germination, as well as the hundred-grain weight were evaluated. Anthers were collected from plants of S1 for cytogenetic analysis. The fungicide pyraclostrobin+epoxiconazole reduced the viability of pollen grains (1.4%), but this was not enough to reduce production. Moreover, no differences were observed in any of the other parameters analyzed, suggesting that P+E at the recommended dose and the tested stages does not cause toxic effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Central receiver power plant: an environmental, ecological, and socioeconomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Davison, M.; Grether, D.

    1977-06-01

    The technical details of the central receiver design are reviewed. Socio-economic questions are considered including: market penetration, air industrial sector model, demands on industry, employment, effluents associated with manufacture of components, strains due to intensive construction, water requirements, and land requirements. The ecological effects in the vicinity of the central receiver plant site are dealt with, with emphasis on effects on land surface, mammals, and reptiles and amphibians. Climatological considerations are reviewed including: desert types, effects of surface albedo modification, effects of aerosols, effects on evaporation rates, the heliostat canopy, effects on turbulent transfer rates, effects on the wind profile, a model of convection about a central receiver plant, and a global scenario. Drawings of heliostat and plant design are included in appendices. (MHR)

  13. Hormones and phenotypic plasticity in an ecological context: linking physiological mechanisms to evolutionary processes.

    Science.gov (United States)

    Lema, Sean C

    2014-11-01

    Hormones are chemical signaling molecules that regulate patterns of cellular physiology and gene expression underlying phenotypic traits. Hormone-signaling pathways respond to an organism's external environment to mediate developmental stage-specific malleability in phenotypes, so that environmental variation experienced at different stages of development has distinct effects on an organism's phenotype. Studies of hormone-signaling are therefore playing a central role in efforts to understand how plastic phenotypic responses to environmental variation are generated during development. But, how do adaptive, hormonally mediated phenotypes evolve if the individual signaling components (hormones, conversion enzymes, membrane transporters, and receptors) that comprise any hormone-signaling pathway show expressional flexibility in response to environmental variation? What relevance do these components hold as molecular targets for selection to couple or decouple correlated hormonally mediated traits? This article explores how studying the endocrine underpinnings of phenotypic plasticity in an ecologically relevant context can provide insights into these, and other, crucial questions into the role of phenotypic plasticity in evolution, including how plasticity itself evolves. These issues are discussed in the light of investigations into how thyroid hormones mediate morphological plasticity in Death Valley's clade of pupfishes (Cyprinodon spp.). Findings from this work with pupfish illustrate that the study of hormone-signaling from an ecological perspective can reveal how phenotypic plasticity contributes to the generation of phenotypic novelty, as well as how physiological mechanisms developmentally link an organism's phenotype to its environmental experiences. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  14. Insect herbivores drive real-time ecological and evolutionary change in plant populations.

    Science.gov (United States)

    Agrawal, Anurag A; Hastings, Amy P; Johnson, Marc T J; Maron, John L; Salminen, Juha-Pekka

    2012-10-05

    Insect herbivores are hypothesized to be major factors affecting the ecology and evolution of plants. We tested this prediction by suppressing insects in replicated field populations of a native plant, Oenothera biennis, which reduced seed predation, altered interspecific competitive dynamics, and resulted in rapid evolutionary divergence. Comparative genotyping and phenotyping of nearly 12,000 O. biennis individuals revealed that in plots protected from insects, resistance to herbivores declined through time owing to changes in flowering time and lower defensive ellagitannins in fruits, whereas plant competitive ability increased. This independent real-time evolution of plant resistance and competitive ability in the field resulted from the relaxation of direct selective effects of insects on plant defense and through indirect effects due to reduced herbivory on plant competitors.

  15. Parasitic plants in agriculture: Chemical ecology of germination and host-plant location as targets for sustainable control: A review

    Science.gov (United States)

    Justin B. Runyon; John F. Tooker; Mark C. Mescher; Consuelo M. De Moraes

    2009-01-01

    Parasitic plants are among the most problematic pests of agricultural crops worldwide. Effective means of control are generally lacking, in part because of the close physiological connection between the established parasite and host plant hindering efficient control using traditional methods. Seed germination and host location are critical early-growth stages that...

  16. Near-UV radiation acts as a beneficial factor for physiological responses in cucumber plants.

    Science.gov (United States)

    Mitani-Sano, Makiko; Tezuka, Takafumi

    2013-11-05

    Effects of near-UV radiation on the growth and physiological activity of cucumber plants were investigated morphologically, physiologically and biochemically using 3-week-old seedlings grown under polyvinyl chloride films featuring transmission either above 290 nm or above 400 nm in growth chambers. The hypocotyl length and leaf area of cucumber seedlings were reduced but the thickness of leaves was enhanced by near-UV radiation, due to increased upper/lower epidermis thickness, palisade parenchyma thickness and volume of palisade parenchyma cells. Photosynthetic and respiratory activities were also promoted by near-UV radiation, associated with general enhancement of physiological/biochemical responses. Particularly, metabolic activities in the photosynthetic system of chloroplasts and the respiratory system of mitochondria were analyzed under the conditions of visible light with and without near-UV radiation. For example, the activities of NAD(P)-dependent enzymes such as glyceraldehyde-3-phosphate dehydrogenase (G3PDH) in chloroplasts and isocitrate dehydrogenase (ICDH) in mitochondria were elevated, along with levels of pyridine nucleotides (nicotinamide coenzymes) [NAD(H) and NADP(H)] and activity of NAD kinase (NADP forming enzyme). Taken together, these data suggest that promotion of cucumber plant growth by near-UV radiation involves activation of carbon and nitrogen metabolism in plants. The findings of this research showed that near-UV radiation reaching the Earth's surface is a beneficial factor for plant growth. Copyright © 2013. Published by Elsevier B.V.

  17. Global Invader Impact Network (GIIN): toward standardized evaluation of the ecological impacts of invasive plants.

    Science.gov (United States)

    Barney, Jacob N; Tekiela, Daniel R; Barrios-Garcia, Maria Noelia; Dimarco, Romina D; Hufbauer, Ruth A; Leipzig-Scott, Peter; Nuñez, Martin A; Pauchard, Aníbal; Pyšek, Petr; Vítková, Michaela; Maxwell, Bruce D

    2015-07-01

    Terrestrial invasive plants are a global problem and are becoming ubiquitous components of most ecosystems. They are implicated in altering disturbance regimes, reducing biodiversity, and changing ecosystem function, sometimes in profound and irreversible ways. However, the ecological impacts of most invasive plants have not been studied experimentally, and most research to date focuses on few types of impacts, which can vary greatly among studies. Thus, our knowledge of existing ecological impacts ascribed to invasive plants is surprisingly limited in both breadth and depth. Our aim was to propose a standard methodology for quantifying baseline ecological impact that, in theory, is scalable to any terrestrial plant invader (e.g., annual grasses to trees) and any invaded system (e.g., grassland to forest). The Global Invader Impact Network (GIIN) is a coordinated distributed experiment composed of an observational and manipulative methodology. The protocol consists of a series of plots located in (1) an invaded area; (2) an adjacent removal treatment within the invaded area; and (3) a spatially separate uninvaded area thought to be similar to pre-invasion conditions of the invaded area. A standardized and inexpensive suite of community, soil, and ecosystem metrics are collected allowing broad comparisons among measurements, populations, and species. The method allows for one-time comparisons and for long-term monitoring enabling one to derive information about change due to invasion over time. Invader removal plots will also allow for quantification of legacy effects and their return rates, which will be monitored for several years. GIIN uses a nested hierarchical scale approach encompassing multiple sites, regions, and continents. Currently, GIIN has network members in six countries, with new members encouraged. To date, study species include representatives of annual and perennial grasses; annual and perennial forbs; shrubs; and trees. The goal of the GIIN

  18. Current issues in the evolutionary ecology of ant-plant symbioses.

    Science.gov (United States)

    Mayer, Veronika E; Frederickson, Megan E; McKey, Doyle; Blatrix, Rumsaïs

    2014-05-01

    Ant-plant symbioses involve plants that provide hollow structures specialized for housing ants and often food to ants. In return, the inhabiting ants protect plants against herbivores and sometimes provide them with nutrients. Here, we review recent advances in ant-plant symbioses, focusing on three areas. First, the nutritional ecology of plant-ants, which is based not only on plant-derived food rewards, but also on inputs from other symbiotic partners, in particular fungi and possibly bacteria. Food and protection are the most important 'currencies' exchanged between partners and they drive the nature and evolution of the relationships. Secondly, studies of conflict and cooperation in ant-plant symbioses have contributed key insights into the evolution and maintenance of mutualism, particularly how partner-mediated feedbacks affect the specificity and stability of mutualisms. There is little evidence that mutualistic ants or plants are under selection to cheat, but the costs and benefits of ant-plant interactions do vary with environmental factors, making them vulnerable to natural or anthropogenic environmental change. Thus, thirdly, ant-plant symbioses should be considered good models for investigating the effects of global change on the outcome of mutualistic interactions. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. The AquaDEB project (phase I): Analysing the physiological flexibility of aquatic species and connecting physiological diversity to ecological and evolutionary processes by using Dynamic Energy Budgets

    OpenAIRE

    Alunno-bruscia, Marianne; Van Der Veer, Henk W.; Kooijman, Sebastiaan A.l.m.

    2009-01-01

    The European Research Project AquaDEB (2007–2011, http://www.ifremer.fr/aquadeb/) is joining skills and expertise of some French and Dutch research institutes and universities to analyse the physiological flexibility of aquatic organisms and to link it to ecological and evolutionary processes within a common theoretical framework for quantitative bioenergetics [Kooijman, S.A.L.M., 2000. Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge]. The main sci...

  20. An extension of the plant ontology project supporting wood anatomy and development research

    Science.gov (United States)

    Federic Lens; Laurel Cooper; Maria Alejandra Gandolfo; Andrew Groover; Pankaj Jaiswal; Barbara Lachenbruch; Rachel Spicer; Margaret E. Staton; Dennis W. Stevenson; Ramona L. Walls; Jill. Wegrzyn

    2012-01-01

    A wealth of information on plant anatomy and morphology is available in the current and historical literature, and molecular biologists are producing massive amounts of transcriptome and genome data that can be used to gain better insights into the development, evolution, ecology, and physiological function of plant anatomical attributes. Integrating anatomical and...

  1. Overview of the physiological ecology of carbon metabolism in seagrasses.

    Science.gov (United States)

    Touchette; Burkholder

    2000-07-30

    carbon sink to source. Unlike terrestrial plants, SPS apparently is not light-activated, and is positively influenced by increasing temperature and salinity. This response may indicate an osmotic adjustment in marine angiosperms, analogous to increased SPS activity as a cryoprotectant response in terrestrial non-halophytic plants. Sucrose synthase (SS, involved in sucrose metabolism and degradation in sink tissues) of both above- and belowground tissues decreases with tissue age. In belowground tissues, SS activity increases under low oxygen availability and with increasing temperatures, likely indicating increased metabolic carbohydrate demand. Respiration in seagrasses is primarily influenced by temperature and, in belowground tissues, by oxygen availability. Aboveground tissues (involved in C assimilation and other energy-costly processes) generally have higher respiration rates than belowground (mostly storage) tissues. Respiration rates increase with increasing temperature (in excess of 40 degrees C) and increasing water-column nitrate enrichment (Z. marina), which may help to supply the energy and carbon needed to assimilate and reduce nitrate. Seagrasses translocate oxygen from photosynthesizing leaves to belowground tissues for aerobic respiration. During darkness or extended periods of low light, belowground tissues can sustain extended anerobiosis. Documented alternate fermentation pathways have yielded high alanine, a metabolic 'strategy' that would depress production of the more toxic product ethanol, while conserving carbon skeletons and assimilated nitrogen. In comparison to the wealth of information available for terrestrial plants, little is known about the physiological ecology of seagrasses in carbon acquisition and metabolism. Many aspects of their carbon metabolism - controls by interactive environmental factors; and the role of carbon metabolism in salt tolerance, growth under resource-limited conditions, and survival through periods of dormancy

  2. Two-way plant mediated interactions between root-associated microbes and insects: from ecology to mechanisms

    NARCIS (Netherlands)

    Pangesti, N.P.D.; Pineda Gomez, A.M.; Pieterse, C.M.J.; Dicke, M.; Loon, van J.J.A.

    2013-01-01

    Plants are members of complex communities and function as a link between above- and below-ground organisms. Associations between plants and soil-borne microbes commonly occur and have often been found beneficial for plant fitness. Root-associated microbes may trigger physiological changes in the

  3. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology.

    Science.gov (United States)

    Cruzan, Mitchell B; Weinstein, Ben G; Grasty, Monica R; Kohrn, Brendan F; Hendrickson, Elizabeth C; Arredondo, Tina M; Thompson, Pamela G

    2016-09-01

    Low-elevation surveys with small aerial drones (micro-unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology.

  4. Mycorrhizal association between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum alters plant physiology and fitness to arid conditions.

    Science.gov (United States)

    Turgeman, Tidhar; Ben Asher, Jiftach; Roth-Bejerano, Nurit; Kagan-Zur, Varda; Kapulnik, Yoram; Sitrit, Yaron

    2011-10-01

    The host plant Helianthemum sessiliflorum was inoculated with the mycorrhizal desert truffle Terfezia boudieri Chatin, and the subsequent effects of the ectomycorrhizal relationship on host physiology were determined. Diurnal measurements revealed that mycorrhizal (M) plants had higher rates of photosynthesis (35%), transpiration (18%), and night respiration (49%) than non-mycorrhizal (NM) plants. Consequently, M plants exhibited higher biomass accumulation, higher shoot-to-root ratios, and improved water use efficiency compared to NM plants. Total chlorophyll content was higher in M plants, and the ratio between chlorophyll a to chlorophyll b was altered in M plants. The increase in chlorophyll b content was significantly higher than the increase in chlorophyll a content (2.58- and 1.52-fold, respectively) compared to control. Calculation of the photosynthetic activation energy indicated lower energy requirements for CO(2) assimilation in M plants than in NM plants (48.62 and 61.56 kJ mol(-1), respectively). Continuous measurements of CO(2) exchange and transpiration in M plants versus NM plants provided a complete picture of the daily physiological differences brought on by the ectomycorrhizal relationships. The enhanced competence of M plants to withstand the harsh environmental conditions of the desert is discussed in view of the mycorrhizal-derived alterations in host physiology. © Springer-Verlag 2011

  5. Physiological and gene expression responses of sunflower (Helianthus annuus L.) plants differ according to irrigation placement.

    Science.gov (United States)

    Aguado, Ana; Capote, Nieves; Romero, Fernando; Dodd, Ian C; Colmenero-Flores, José M

    2014-10-01

    To investigate effects of soil moisture heterogeneity on plant physiology and gene expression in roots and leaves, three treatments were implemented in sunflower plants growing with roots split between two compartments: a control (C) treatment supplying 100% of plant evapotranspiration, and two treatments receiving 50% of plant evapotranspiration, either evenly distributed to both compartments (deficit irrigation - DI) or unevenly distributed to ensure distinct wet and dry compartments (partial rootzone drying - PRD). Plants receiving the same amount of water responded differently under the two irrigation systems. After 3 days, evapotranspiration was similar in C and DI, but 20% less in PRD, concomitant with decreased leaf water potential (Ψleaf) and increased leaf xylem ABA concentration. Six water-stress responsive genes were highly induced in roots growing in the drying soil compartment of PRD plants, and their expression was best correlated with local soil water content. On the other hand, foliar gene expression differed significantly from that of the root and correlated better with xylem ABA concentration and Ψleaf. While the PRD irrigation strategy triggered stronger physiological and molecular responses, suggesting a more intense and systemic stress reaction due to local dehydration of the dry compartment of PRD plants, the DI strategy resulted in similar water savings without strongly inducing these responses. Correlating physiological and molecular responses in PRD/DI plants may provide insights into the severity and location of water deficits and may enable a better understanding of long-distance signalling mechanisms. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Genome-Wide Association Studies In Plant Pathosystems: Toward an Ecological Genomics Approach

    Directory of Open Access Journals (Sweden)

    Claudia Bartoli

    2017-05-01

    Full Text Available The emergence and re-emergence of plant pathogenic microorganisms are processes that imply perturbations in both host and pathogen ecological niches. Global change is largely assumed to drive the emergence of new etiological agents by altering the equilibrium of the ecological habitats which in turn places hosts more in contact with pathogen reservoirs. In this context, the number of epidemics is expected to increase dramatically in the next coming decades both in wild and crop plants. Under these considerations, the identification of the genetic variants underlying natural variation of resistance is a pre-requisite to estimate the adaptive potential of wild plant populations and to develop new breeding resistant cultivars. On the other hand, the prediction of pathogen's genetic determinants underlying disease emergence can help to identify plant resistance alleles. In the genomic era, whole genome sequencing combined with the development of statistical methods led to the emergence of Genome Wide Association (GWA mapping, a powerful tool for detecting genomic regions associated with natural variation of disease resistance in both wild and cultivated plants. However, GWA mapping has been less employed for the detection of genetic variants associated with pathogenicity in microbes. Here, we reviewed GWA studies performed either in plants or in pathogenic microorganisms (bacteria, fungi and oomycetes. In addition, we highlighted the benefits and caveats of the emerging joint GWA mapping approach that allows for the simultaneous identification of genes interacting between genomes of both partners. Finally, based on co-evolutionary processes in wild populations, we highlighted a phenotyping-free joint GWA mapping approach as a promising tool for describing the molecular landscape underlying plant - microbe interactions.

  7. The genetics of indirect ecological effects - plant parasites and aphid herbivores

    Directory of Open Access Journals (Sweden)

    Jennifer K Rowntree

    2014-04-01

    Full Text Available When parasitic plants and aphid herbivores share a host, both direct and indirect ecological effects (IEEs can influence evolutionary processes. We used a hemiparasitic plant (Rhinanthus minor, a grass host (Hordeum vulgare and a cereal aphid (Sitobion avenae to investigate the genetics of IEEs between the aphid and the parasitic plant, and looked to see how these might affect or be influenced by the genetic diversity of the host plants. Survival of R. minor depended on the parasite’s population of origin, the genotypes of the aphids sharing the host and the genetic diversity in the host plant community. Hence the indirect effects of the aphids on the parasitic plants depended on the genetic environment of the system. Here, we show that genetic variation can be important in determining the outcome of IEEs. Therefore, IEEs have the potential to influence evolutionary processes and the continuity of species interactions over time.

  8. Effect of Ecological Restoration on Body Condition of a Predator.

    Directory of Open Access Journals (Sweden)

    Daniel González-Tokman

    Full Text Available Ecological restoration attempts to recover the structure and function of ecosystems that have been degraded by human activities. A crucial test of ecosystem recovery would be to determine whether individuals in restored environments are as healthy as those in conserved environments. However, the impact of restoration on physiology of terrestrial animals has never been tested. Here, we evaluated the effect of two restoration methods on body condition measured as body size, body mass, lipid and muscle content of the spider Nephila clavipes in a tropical dry forest that has suffered chronic disturbance due to cattle grazing. We used experimental plots that had been excluded from disturbance by cattle grazing during eight years. Plots were either planted with native trees (i. e. maximal intervention, or only excluded from disturbance (i. e. minimal intervention, and were compared with control conserved (remnants of original forest and disturbed plots (where cattle is allowed to graze. We predicted (1 better body condition in spiders of conserved and restored sites, compared to disturbed sites, and (2 better body condition in plots with maximal intervention than in plots with minimal intervention. The first prediction was not supported in males or females, and the second prediction was only supported in females: body dry mass was higher in planted than in conserved plots for spiders of both sexes and also higher that in disturbed plots for males, suggesting that plantings are providing more resources. We discuss how different life histories and environmental pressures, such as food availability, parasitism, and competition for resources can explain our contrasting findings in male and female spiders. By studying animal physiology in restoration experiments it is possible to understand the mechanistic basis of ecological and evolutionary processes that determine success of ecological restoration.

  9. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments

    Science.gov (United States)

    Xu, Liang; Zhou, Zhen-Feng

    2017-03-01

    The effects of physiological integration on clonal plants growing in aquatic and terrestrial habitats have been extensively studied, but little is known about the role in the extension of amphibious clonal plants in the heterogeneous aquatic-terrestrial ecotones, especially when the water environments are polluted by heavy metals. Ramets of the amphibious clonal herb Alternanthera philoxeroides were rooted in unpolluted soil and polluted water at three concentrations of Cu. The extension of populations from unpolluted terrestrial to polluted aqueous environments mainly relied on stem elongation rather than production of new ramets. The absorbed Cu in the ramets growing in polluted water could be spread horizontally to other ramets in unpolluted soil via physiological integration and redistributed in different organs. The performances of ramets in both terrestrial and aquatic habitats were negatively correlated with Cu intensities in different organs of plants. It is concluded that physiological integration might lessen the fitness of connected ramets in heterogeneously polluted environments. The mechanical strength of the stems decreased with increasing Cu levels, especially in polluted water. We suggest that, except for direct toxicity to growth and expansion, heavy metal pollution might also increase the mechanical risk in breaking failure of plants.

  10. Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions

    Directory of Open Access Journals (Sweden)

    Victoria L. SCAVEN, Nicole E. RAFFERTY

    2013-06-01

    Full Text Available Growing concern about the influence of climate change on flowering plants, pollinators, and the mutualistic interactions between them has led to a recent surge in research. Much of this research has addressed the consequences of warming for phenological and distributional shifts. In contrast, relatively little is known about the physiological responses of plants and insect pollinators to climate warming and, in particular, how these responses might affect plant-pollinator interactions. Here, we summarize the direct physiological effects of temperature on flowering plants and pollinating insects to highlight ways in which plant and pollinator responses could affect floral resources for pollinators, and pollination success for plants, respectively. We also consider the overall effects of these responses on plant-pollinator interaction networks. Plant responses to warming, which include altered flower, nectar, and pollen production, could modify floral resource availability and reproductive output of pollinating insects. Similarly, pollinator responses, such as altered foraging activity, body size, and life span, could affect patterns of pollen flow and pollination success of flowering plants. As a result, network structure could be altered as interactions are gained and lost, weakened and strengthened, even without the gain or loss of species or temporal overlap. Future research that addresses not only how plant and pollinator physiology are affected by warming but also how responses scale up to affect interactions and networks should allow us to better understand and predict the effects of climate change on this important ecosystem service [Current Zoolo­gy 59 (3: 418–426, 2013].

  11. Physiological responses of Vetiver plant (Vetiver zizanioides to municipal waste leachate

    Directory of Open Access Journals (Sweden)

    Sasan Mohsenzadeh

    2016-06-01

    Full Text Available Vetiver plant is tolerant to acidity and temperature variations. Has rapid growth for biomass production and has high tolerance to organic and non-organic compounds in municipal waste leachate for example heavy metals. So this plant is good for landfill cultivation. In this study, physiological responses to municipal waste leachate were studied. Statistical design was a randomized complete block and each block treated with different concentrations of latex at levels of zero, 15, 30, 45 and 60 percent compared to the original latex waste. The leachate collected from the Shiraz landfill and brought into the greenhouse. The physiological characterization including leaf area, dry weight, chlorophyll, anthocyanin, proline, soluble sugars and total protein were measured. The result indicated that the dry weight, chlorophyll and anthocyanin decrease with increasing of latex concentration. The leaf area, leaf relative water, soluble sugars and total protein increased with increasing latex concentration. Proline concentration at 15 percent of leachate increased significantly compared to controls, whereas at higher concentrations decreased. According to the results, it is recommended that 45 percent of leachate in a landfill can be used to irrigate Vetiver. This is the maximum concentration of leachate that Vetiver plant can survive as green space. Primary filtration of leachate before using is recommended. If the aim is more growth or perfume application from root, less concentration of leachate is better.

  12. Evaluating the influence of plant-specific physiological parameterizations on the partitioning of land surface energy fluxes

    Science.gov (United States)

    Sulis, Mauro; Langensiepen, Matthias; Shrestha, Prabhakar; Schickling, Anke; Simmer, Clemens; Kollet, Stefan

    2015-04-01

    Vegetation has a significant influence on the partitioning of radiative forcing, the spatial and temporal variability of soil water and soil temperature. Therefore plant physiological properties play a key role in mediating and amplifying interactions and feedback mechanisms in the soil-vegetation-atmosphere continuum. Because of the direct impact on latent heat fluxes, these properties may also influence weather generating processes, such as the evolution of the atmospheric boundary layer (ABL). In land surface models, plant physiological properties are usually obtained from literature synthesis by unifying several plant/crop species in predefined vegetation classes. In this work, crop-specific physiological characteristics, retrieved from detailed field measurements, are included in the bio-physical parameterization of the Community Land Model (CLM), which is a component of the Terrestrial Systems Modeling Platform (TerrSysMP). The measured set of parameters for two typical European mid-latitudinal crops (sugar beet and winter wheat) is validated using eddy covariance measurements (sensible heat and latent heat) over multiple years from three measurement sites located in the North Rhine-Westphalia region, Germany. We found clear improvements of CLM simulations, when using the crop-specific physiological characteristics of the plants instead of the generic crop type when compared to the measurements. In particular, the increase of latent heat fluxes in conjunction with decreased sensible heat fluxes as simulated by the two new crop-specific parameter sets leads to an improved quantification of the diurnal energy partitioning. These findings are cross-validated using estimates of gross primary production extracted from net ecosystem exchange measurements. This independent analysis reveals that the better agreement between observed and simulated latent heat using the plant-specific physiological properties largely stems from an improved simulation of the

  13. The Physiology of Adventitious Roots1

    Science.gov (United States)

    Steffens, Bianka; Rasmussen, Amanda

    2016-01-01

    Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental stress response), and for human existence (food production). To improve sustainable food production under environmentally extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3). PMID:26697895

  14. Emerging use of gene expression microarrays in plant physiology.

    Science.gov (United States)

    Wullschleger, Stan D; Difazio, Stephen P

    2003-01-01

    Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.

  15. Human pathogens in plant biofilms: Formation, physiology, and detection.

    Science.gov (United States)

    Ximenes, Eduardo; Hoagland, Lori; Ku, Seockmo; Li, Xuan; Ladisch, Michael

    2017-07-01

    Fresh produce, viewed as an essential part of a healthy life style is usually consumed in the form of raw or minimally processed fruits and vegetables, and is a potentially important source of food-borne human pathogenic bacteria and viruses. These are passed on to the consumer since the bacteria can form biofilms or otherwise populate plant tissues, thereby using plants as vectors to infect animal hosts. The life cycle of the bacteria in plants differs from those in animals or humans and results in altered physiochemical and biological properties (e.g., physiology, immunity, native microflora, physical barriers, mobility, and temperature). Mechanisms by which healthy plants may become contaminated by microorganisms, develop biofilms, and then pass on their pathogenic burden to people are explored in the context of hollow fiber microfiltration by which plant-derived microorganisms may be recovered and rapidly concentrated to facilitate study of their properties. Enzymes, when added to macerated plant tissues, hydrolyze or alter macromolecules that would otherwise foul hollow-fiber microfiltration membranes. Hence, microfiltration may be used to quickly increase the concentration of microorganisms to detectable levels. This review discusses microbial colonization of vegetables, formation and properties of biofilms, and how hollow fiber microfiltration may be used to concentrate microbial targets to detectable levels. The use of added enzymes helps to disintegrate biofilms and minimize hollow fiber membrane fouling, thereby providing a new tool for more time effectively elucidating mechanisms by which biofilms develop and plant tissue becomes contaminated with human pathogens. Biotechnol. Bioeng. 2017;114: 1403-1418. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Air pollutants and the cuticle: implications for plant physiology

    International Nuclear Information System (INIS)

    Riederer, M.; Jetter, R.; Markstaedter, C.; Schreiber, L.

    1994-01-01

    The physiologically most important function of the plant cuticle is to control the loss of water and of inorganic and organic constituents of plants via the surfaces of leaves and fruits. In a polluted environment, the cuticle may also affect the rates of uptake of extraneous chemicals. It will be shown how the essential transport properties of plant cuticles can be determined experimentally using intact leaves, isolated cuticles, and reconstituted cuticular waxes. The transport properties will be related to the physico-chemical properties of the permeants in order to achieve a general description of pollutant transport across the leaf/atmosphere interface and to assess the relative contributions of the cuticular and the stomatal pathways to the total flow rate. The correlation of the transport properties of cuticles with their chemical composition will be discussed and a model of the molecular structure of the transport-limiting barrier of the cuticle and of epicuticular waxes be presented. The effects of chemicals of anthropogenic and biogenic origin on cuticular permeability will be described quantitatively. (orig.)

  17. Physiological and biochemical responses of thyme plants to some antioxidants

    Directory of Open Access Journals (Sweden)

    SALWA A. ORABI

    2014-11-01

    Full Text Available Orabi SA, Talaat IM, Balbaa LK. 2014. Physiological and biochemical responses of thyme plants to some antioxidants. Nusantara Bioscience 6: 118-125. Two pot experiments were conducted to investigate the effect of tryptophan, nicotinamide and α-tocopherol (each at 50 and 100 mg/L on plant growth, essential oil yield and its main constituents. All treatments significantly promoted plant height, and increased fresh and dry mass (g/plant of thyme (Thymus vulgaris L.. The treatment with 100 mg/L nicotinamide showed increasing in total potassium mainly in the first cut. Total soluble sugars, oil percentage and oil yield and protein recorded increments with tryptophan treatments. Treatment of Thymus plants with 100 mg/L nicotinamide observed the highest percentage of thymol (67.61%. Oxygenated compounds recorded the highest value with 50 mg/L α-tocopherol treatment, while the maximum non-oxygenated ones resulted from the application of 100 mg/L nicotinamide. All treatments under study significantly affected the activity of oxidoreductase enzymes (POX and PPO. Nicotinamide at the concentration of 100 mg/L recorded the highest increments in APX and GR and the lowest values in oxidoreductase enzyme activities added to the lowest values of lipid peroxidation to enhance the best protection of thyme plants.

  18. Evolution of specialization and ecological character displacement along a gradient of plant quality.

    OpenAIRE

    Egas, C.J.M.; Sabelis, M.W.; Dieckmann, U.

    2005-01-01

    We study the combined evolutionary dynamics of herbivore specialization and eco-logical character displacement, taking into account foraging behavior of the herbivores, and a quality gradient of plant types. Herbivores can adapt by changing two adaptive traits: their level of specialization in feeding efficiency and their point of maximum feeding efficiency along the plant gradient. The number of herbivore phenotypes, their levels of specialization, and the amount of character displacement am...

  19. Management, use and ecology of medicinal plants in the degraded dry lands of Tigray, Northern Ethiopia

    NARCIS (Netherlands)

    Hizikias, E.B.; Aynekulu, E.; Mekuria, W.; Endale, D.

    2011-01-01

    An ethnomedicinal study was conducted to document the indigenous medicinal plant knowledge on the management, use, and ecology of locally important medicinal plants in Tigray, Northern Ethiopia. Ethnobotanical data were collected from 250 people, using semi-structured questionnaires, field

  20. Global plant-responding mechanisms to salt stress: physiological and molecular levels and implications in biotechnology.

    Science.gov (United States)

    Tang, Xiaoli; Mu, Xingmin; Shao, Hongbo; Wang, Hongyan; Brestic, Marian

    2015-01-01

    The increasing seriousness of salinization aggravates the food, population and environmental issues. Ameliorating the salt-resistance of plants especially the crops is the most effective measure to solve the worldwide problem. The salinity can cause damage to plants mainly from two aspects: hyperosmotic and hyperionic stresses leading to the restrain of growth and photosynthesis. To the adverse effects, the plants derive corresponding strategies including: ion regulation and compartmentalization, biosynthesis of compatible solutes, induction of antioxidant enzymes and plant hormones. With the development of molecular biology, our understanding of the molecular and physiology knowledge is becoming clearness. The complex signal transduction underlying the salt resistance is being illuminated brighter and clearer. The SOS pathway is the central of the cell signaling in salt stress. The accumulation of the compatible solutes and the activation of the antioxidant system are the effective measures for plants to enhance the salt resistance. How to make full use of our understanding to improve the output of crops is a huge challenge for us, yet the application of the genetic engineering makes this possible. In this review, we will discuss the influence of the salt stress and the response of the plants in detail expecting to provide a particular account for the plant resistance in molecular, physiological and transgenic fields.

  1. Ecological Insights into the Dynamics of Plant Biomass-Degrading Microbial Consortia.

    Science.gov (United States)

    Jiménez, Diego Javier; Dini-Andreote, Francisco; DeAngelis, Kristen M; Singer, Steven W; Salles, Joana Falcão; van Elsas, Jan Dirk

    2017-10-01

    Plant biomass (PB) is an important resource for biofuel production. However, the frequent lack of efficiency of PB saccharification is still an industrial bottleneck. The use of enzyme cocktails produced from PB-degrading microbial consortia (PB-dmc) is a promising approach to optimize this process. Nevertheless, the proper use and manipulation of PB-dmc depends on a sound understanding of the ecological processes and mechanisms that exist in these communities. This Opinion article provides an overview of arguments as to how spatiotemporal nutritional fluxes influence the successional dynamics and ecological interactions (synergism versus competition) between populations in PB-dmc. The themes of niche occupancy, 'sugar cheaters', minimal effective consortium, and the Black Queen Hypothesis are raised as key subjects that foster our appraisal of such systems. Here we provide a conceptual framework that describes the critical topics underpinning the ecological basis of PB-dmc, giving a solid foundation upon which further prospective experimentation can be developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Advanced ecological and economical power plant technology based on CFB combustion

    International Nuclear Information System (INIS)

    Samant, G.; Hirschfelder, H.

    1993-01-01

    The scenario of the power plant industry is worldwide affected by one important issue, namely the stringent and steadily increasing environment regulations. Fluidized bed boilers, based on Circulating Fluidized Bed (CFB) technology with in-situ emission control, and improved economics as well as with proven record of high efficiency and reliability meets the ecological, economical and technical requirements. It should be noted that in addition to their attractive performance, regarding efficiency and pollution control, coal fired CFB boilers have been successfully introduced not only in power plant industry, but also in other industrial units such as chemical plants, automobile industry, paper mills, cement, etc. The experience gained to date confirms the advantages and also the reliability of this technology. (author)

  3. Physiological factors into plant uptake models for pollutant

    International Nuclear Information System (INIS)

    Goncharova, N.; Kalinkevich, E.; Pytyrskaya, V.; Lopareva, E.; Suvorov, D.

    2002-01-01

    The main principles of biological control of the intensity of pollutant flow into system soil-plant have been analysed. It demonstrated that functional state of plants is so far significant factor in determination of rate of pollutant turn on trophic chains as physical-chemical property of mineral elements Most biosphere and contamination assessment models are based on uniform soil conditions,since single coefficients are used to describe the transfer of contaminants to the plant. The main pathway of the functional control intensity of pollutant flow such as possibility of plant to increase mobility of mineral elements into soil and change of ion's exchange characteristics of plant tissues, which determine the degree of attraction and capacity of accumulation of non biogenic elements by a plant have been considered. It is known that there are two groups of factors which determine the level of pollutant accumulation by plant. The first group is connected with determination of the level of biological availability of pollutants for a plant in soil, the second group of factors determine attractive of the higher plants and capacity of radionuclides and heavy metals accumulation in biomass. At the same time in accordance with modern eco physiological data, different alive organisms can play active part in processes of the mineral elements migration. Metabolites of the coil microorganisms and especially root excretion of higher plants. Our investigations carried out earlier demonstrated that there is high correlation between the level of Cs, Cu, Zn and Co accumulation and cation exchange capacity of the intact plant tissues and on the other hand similar changes of these characteristics in condition of the experimental modification of radionuclide and heavy metals accumulation by different environmental factors. These data suggest that namely cation exchange capacity may be one of the main 'driving force' and physiological characteristics in absorption of non biogenic

  4. Troublesome toxins: Time to re-think plant-herbivore interactions in vertebrate ecology

    Science.gov (United States)

    Swihart, R.K.; DeAngelis, D.L.; Feng, Z.; Bryant, J.P.

    2009-01-01

    Earlier models of plant-herbivore interactions relied on forms of functional response that related rates of ingestion by herbivores to mechanical or physical attributes such as bite size and rate. These models fail to predict a growing number of findings that implicate chemical toxins as important determinants of plant-herbivore dynamics. Specifically, considerable evidence suggests that toxins set upper limits on food intake for many species of herbivorous vertebrates. Herbivores feeding on toxin-containing plants must avoid saturating their detoxification systems, which often occurs before ingestion rates are limited by mechanical handling of food items. In light of the importance of plant toxins, a new approach is needed to link herbivores to their food base. We discuss necessary features of such an approach, note recent advances in herbivore functional response models that incorporate effects of plant toxins, and mention predictions that are consistent with observations in natural systems. Future ecological studies will need to address explicitly the importance of plant toxins in shaping plant and herbivore communities.

  5. Heavy metal contamination and ecological risk of farmland soils adjoining steel plants in Tangshan, Hebei, China.

    Science.gov (United States)

    Yang, Liyun; Yang, Maomao; Wang, Liping; Peng, Fei; Li, Yuan; Bai, Hao

    2018-01-01

    The purpose of this study was to determine the heavy metal concentrations and ecological risks to farmland soils caused by atmospheric deposition adjoining five industrial steel districts in Tangshan, Hebei, China. A total of 39 topsoil samples from adjoining these plants were collected and analyzed for Pb, Zn, Cu, Cr, and As. The geo-accumulation index (Igeo) and potential ecological risk index (PERI) were calculated to assess the heavy metal pollution level in soils. The results showed that the levels of Pb and As in farmland soils adjoining all steel plants were more than the background value, with the As content being excessively high. The Cr and Cu contents of some samples were over the background values, but the Zn content was not. In all the research areas, the largest Igeo value of the heavy metals was for As, followed by Pb, and the largest monomial PERI ([Formula: see text]) was As, which showed that the pollution of As in farmland soils was significant and had considerable ecological risk. Additionally, the heavy metal sequential extraction experiments showed that Pb and Cr, which exceeded the background value, were present in about 20% of the exchangeable and carbonate-bound fractions in the soils surrounding some steel plants. This would imply the risk of these heavy metals being absorbed and accumulated by the crops. Therefore, the local government needs to control the pollution of heavy metals in the farmland soils adjoining the steel plant as soon as possible, in order to avoid possible ecological and food safety risks.

  6. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    Science.gov (United States)

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  7. Interpreting the Possible Ecological Role(s of Cyanotoxins: Compounds for Competitive Advantage and/or Physiological Aide?

    Directory of Open Access Journals (Sweden)

    Susan Kinnear

    2013-06-01

    Full Text Available To date, most research on freshwater cyanotoxin(s has focused on understanding the dynamics of toxin production and decomposition, as well as evaluating the environmental conditions that trigger toxin production, all with the objective of informing management strategies and options for risk reduction. Comparatively few research studies have considered how this information can be used to understand the broader ecological role of cyanotoxin(s, and the possible applications of this knowledge to the management of toxic blooms. This paper explores the ecological, toxicological, and genetic evidence for cyanotoxin production in natural environments. The possible evolutionary advantages of toxin production are grouped into two main themes: That of “competitive advantage” or “physiological aide”. The first grouping illustrates how compounds produced by cyanobacteria may have originated from the need for a cellular defence mechanism, in response to grazing pressure and/or resource competition. The second grouping considers the contribution that secondary metabolites make to improved cellular physiology, through benefits to homeostasis, photosynthetic efficiencies, and accelerated growth rates. The discussion also includes other factors in the debate about possible evolutionary roles for toxins, such as different modes of exposures and effects on non-target (i.e., non-competitive species. The paper demonstrates that complex and multiple factors are at play in driving evolutionary processes in aquatic environments. This information may provide a fresh perspective on managing toxic blooms, including the need to use a “systems approach” to understand how physico-chemical conditions, as well biological stressors, interact to trigger toxin production.

  8. Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and/or physiological aide?

    Science.gov (United States)

    Holland, Aleicia; Kinnear, Susan

    2013-06-27

    To date, most research on freshwater cyanotoxin(s) has focused on understanding the dynamics of toxin production and decomposition, as well as evaluating the environmental conditions that trigger toxin production, all with the objective of informing management strategies and options for risk reduction. Comparatively few research studies have considered how this information can be used to understand the broader ecological role of cyanotoxin(s), and the possible applications of this knowledge to the management of toxic blooms. This paper explores the ecological, toxicological, and genetic evidence for cyanotoxin production in natural environments. The possible evolutionary advantages of toxin production are grouped into two main themes: That of "competitive advantage" or "physiological aide". The first grouping illustrates how compounds produced by cyanobacteria may have originated from the need for a cellular defence mechanism, in response to grazing pressure and/or resource competition. The second grouping considers the contribution that secondary metabolites make to improved cellular physiology, through benefits to homeostasis, photosynthetic efficiencies, and accelerated growth rates. The discussion also includes other factors in the debate about possible evolutionary roles for toxins, such as different modes of exposures and effects on non-target (i.e., non-competitive) species. The paper demonstrates that complex and multiple factors are at play in driving evolutionary processes in aquatic environments. This information may provide a fresh perspective on managing toxic blooms, including the need to use a "systems approach" to understand how physico-chemical conditions, as well biological stressors, interact to trigger toxin production.

  9. Ecological Fitness of Non-vector Planthopper Sogatella furcifera on Rice Plants Infected with Rice Black Streaked Dwarf Virus

    Directory of Open Access Journals (Sweden)

    Xiao-chan HE

    2012-12-01

    Full Text Available We evaluated the effects of rice black streak dwarf virus (RBSDV-infested rice plants on the ecological parameters and its relevant defensive and detoxification enzymes of white-backed planthopper (WBPH in laboratory for exploring the relationship between RBSDV and the non-vector planthopper. The results showed that nymph survival rate, female adult weight and fecundity, and egg hatchability of WBPH fed on RBSDV-infested rice plants did not markedly differ from those on healthy plants, whereas the female adult longevity and egg duration significantly shortened on diseased plants. Furthermore, significantly higher activities of defensive enzymes (dismutase, catalase and peroxidase and detoxification enzymes (acetylcholinesterase, carboxylesterase and glutathione S-transferase were found in WBPH adults fed on infected plants. Results implied that infestation by RBSDV increased the ecological fitness of non-vector planthopper population.

  10. Emerging Use of Gene Expression Microarrays in Plant Physiology

    Directory of Open Access Journals (Sweden)

    Stephen P. Difazio

    2006-04-01

    Full Text Available Microarrays have become an important technology for the global analysis of gene expression in humans, animals, plants, and microbes. Implemented in the context of a well-designed experiment, cDNA and oligonucleotide arrays can provide highthroughput, simultaneous analysis of transcript abundance for hundreds, if not thousands, of genes. However, despite widespread acceptance, the use of microarrays as a tool to better understand processes of interest to the plant physiologist is still being explored. To help illustrate current uses of microarrays in the plant sciences, several case studies that we believe demonstrate the emerging application of gene expression arrays in plant physiology were selected from among the many posters and presentations at the 2003 Plant and Animal Genome XI Conference. Based on this survey, microarrays are being used to assess gene expression in plants exposed to the experimental manipulation of air temperature, soil water content and aluminium concentration in the root zone. Analysis often includes characterizing transcript profiles for multiple post-treatment sampling periods and categorizing genes with common patterns of response using hierarchical clustering techniques. In addition, microarrays are also providing insights into developmental changes in gene expression associated with fibre and root elongation in cotton and maize, respectively. Technical and analytical limitations of microarrays are discussed and projects attempting to advance areas of microarray design and data analysis are highlighted. Finally, although much work remains, we conclude that microarrays are a valuable tool for the plant physiologist interested in the characterization and identification of individual genes and gene families with potential application in the fields of agriculture, horticulture and forestry.

  11. Ecology of some mire and bog plant communities in the Western Italian Alps

    Directory of Open Access Journals (Sweden)

    Giorgio BUFFA

    2003-02-01

    Full Text Available During a mire vegetation study, conducted mainly in the subalpine-alpine sector of the Western Italian Alps, the ecology of several plant communities and numerous moss species of this kind of vegetation was evaluated. The study area covered the Piedmontese sector of the Graian Alps, the eastern sector of the Aosta Valley as well as certain localities of the Pennine Alps, the Canavese district and the Maritime Alps. They have a rocky substratum representative of the various regional lithologies and include the main sectors characterised by the highest precipitation. Three hundred and twenty two relevées were made using the phytosociological method and the pH and the conductivity of the water table and its depth were measured directly. Cluster Analysis allowed a classification of the samples and the identification of various groups of plant communities. Ordination performed by DCA and CCA allowed us to identify the ecological features of the various plant communities by using the values of the main environmental parameters, measured directly in the field, and certain climatic parameters (altitude and mean annual precipitation available. The use of climatic parameters is an important result for identifying communities which show greater oceanicity, something that is underlined also by the presence of indicator species such as Sphagnum papillosum and S. subnitens. Furthermore the communities are arranged in a "poor-rich" gradient, and are also profoundly influenced by depth to water table which is inversely correlated to the pH. Therefore we find certain kinds of communities all with a very low water table and which are little affected by its chemistry. Other groups share the fact that the water table is outcropping or near the surface and are distinguishable for their pH values and conductivity. We discuss the different response of the bryophytes and vascular plants of these communities to the environmental parameters considered, in light of their

  12. Identifying plant traits: a key aspect for suitable species selection in ecological restoration of semiarid slopes

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio

    2017-04-01

    In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In

  13. Non-indigenous plant species and their ecological range in Central European pine (Pinus sylvestris L.) forests

    OpenAIRE

    Zerbe , Stefan; Wirth , Petra

    2006-01-01

    International audience; In this study, forest ecosystems were analysed with regard to the occurrence and ecological range of non-indigenous plant species. Pine forests in the NE German lowland, which naturally and anthropogenically occur on a broad range of different sites, were taken as an example. The analysis is based on a data set of about 2 300 vegetation plots. The ecological range was assessed applying Ellenberg's ecological indicator values. Out of a total of 362 taxa recorded in the ...

  14. Evolution of specialization and ecological character displacement along a gradient of plant quality.

    NARCIS (Netherlands)

    Egas, C.J.M.; Sabelis, M.W.; Dieckmann, U.

    2005-01-01

    We study the combined evolutionary dynamics of herbivore specialization and eco-logical character displacement, taking into account foraging behavior of the herbivores, and a quality gradient of plant types. Herbivores can adapt by changing two adaptive traits: their level of specialization in

  15. Does plant-Microbe interaction confer stress tolerance in plants: A review?

    Science.gov (United States)

    Kumar, Akhilesh; Verma, Jay Prakash

    2018-03-01

    The biotic and abiotic stresses are major constraints for crop yield, food quality and global food security. A number of parameters such as physiological, biochemical, molecular of plants are affected under stress condition. Since the use of inorganic fertilizers and pesticides in agriculture practices cause degradation of soil fertility and environmental pollutions. Hence it is necessary to develop safer and sustainable means for agriculture production. The application of plant growth promoting microbes (PGPM) and mycorrhizal fungi enhance plant growth, under such conditions. It offers an economically fascinating and ecologically sound ways for protecting plants against stress condition. PGPM may promote plant growth by regulating plant hormones, improve nutrition acquisition, siderophore production and enhance the antioxidant system. While acquired systemic resistance (ASR) and induced systemic resistance (ISR) effectively deal with biotic stress. Arbuscular mycorrhiza (AM) enhance the supply of nutrients and water during stress condition and increase tolerance to stress. This plant-microbe interaction is vital for sustainable agriculture and industrial purpose, because it depends on biological processes and replaces conventional agriculture practices. Therefore, microbes may play a key role as an ecological engineer to solve environmental stress problems. So, it is a feasible and potential technology in future to feed global population at available resources with reduced impact on environmental quality. In this review, we have attempted to explore about abiotic and biotic stress tolerant beneficial microorganisms and their modes of action to enhance the sustainable agricultural production. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Physiological and Biochemical Responses of Saltmarsh Plant Spartina alterniflora to Long-term Wave Exposure

    Science.gov (United States)

    Zhou, W.

    2017-12-01

    In recent years, ecosystem-based flood defence, i.e., eco-shoreline or living shoreline, that is more sustainable and cost-effective than conventional coastal engineering structures has been brought into large-scale practice. Numerous laboratory experiments have been performed to explore the wave-attenuation effects of saltmarsh plants that are widely used in eco-shoreline, and yet no study has ever been conducted on the physiological and biochemical responses of saltmarsh plants to long-term wave exposure, presumably due to the constraint that traditional wave generator fails to provide long-term stable wave conditions necessary for physiological experiments. In this study, a long-term shallow water wave environment simulator using crank-yoke mechanism was built in the laboratory to address this gap. Experiments using the wave simulator were conducted for 8 weeks in a greenhouse and the temperature was maintained at 24-30°C. 5‰ artificial sea water was filled in the test tank, and the water was changed every week. After being acclimatized, nine S. alterniflora individual plants (initial height 30 cm) were planted in each of the three streamlined cuboid containers (12cm×12cm×20cm), which were partially submerged in a test tank, and undertook horizontal sinusoidal motion imposed by the crank-yoke mechanism to mimic plants exposed to shallow water waves. The substrate filled in the containers were soils collected from the Yellow River Delta, so were the S. alterniflora plants. A realistic stem density of 400 stems/m2 was tested, which corresponded to a grid spacing of 5.0 cm. Shallow water waves with six wave heights (H: 0.041, 0.055, 0.069, 0.033, 0.044 and 0.056m), one plants submerged depth (0.1m) and two wave periods (2s and 3s) were simulated in the experiments. A no wave condition was also tested as control. Key physiological and biochemical parameters, such as stem length, peroxidase activity, catalase, superoxide dismutase, ascorbate peroxidase, etc

  17. Ecological context of the evolution of self-pollination in Clarkia xantiana: population size, plant communities, and reproductive assurance.

    Science.gov (United States)

    Moeller, David A; Geber, Monica A

    2005-04-01

    The repeated evolutionary transition from outcrossing to self-pollination in flowering plants has been suggested to occur because selfing provides reproductive assurance. Reports from biogeographical and ecological surveys indicate that selfing taxa are often associated with stressful and ephemeral environments, situations in which plant abundance is low (e.g., Baker's law) and with novel plant communities, however experimental tests of ecological hypotheses are few. In this study, we examined the ecological context of selection on mating system traits (herkogamy and protandry) in a California annual, Clarkia xantiana, where natural selfing populations differ from outcrossing populations in that they are often of small size or low density and occur mainly outside the range of pollinator-sharing congeners. We constructed artificial populations of plants with broad genetic variation in floral traits and manipulated two ecological factors, plant population size, and the presence versus absence of pollinator-sharing congeners, in the center of the geographic range of outcrossing populations. We found evidence for context-dependent selection on herkogamy and protandry via female fitness in which reduced traits, which promote autonomous selfing, were favored in small populations isolated from congeners whereas selection was comparatively weak in large populations or when congeners were present. In small, isolated populations, the fertility of plants with low herkogamy or protandry was elevated by 66% and 58%, respectively, compared to those with high herkogamy or protandry. The presence of pollinator-sharing congeners augmented bee visitation rates to C. xantiana flowers by 47% for all bees and by 93% for pollen specialists. By facilitating pollinator visitation, congeners mitigated selection on mating system traits in small populations, where outcross mating success is often low (the Allee effect). We also found support for the hypothesis that pollinator availability

  18. On the Use of the Guild Concept in Plant Ecology

    OpenAIRE

    Kroon, Hans de; Olff, Han

    1995-01-01

    The original defmition of the guild is reiterated and the concept discussed and placed in the context of related concepts such as resources and competition. From this conceptual framework the current use of guilds in studies of plant community ecology is evaluated. We discuss the criteria with which species are assigned to guilds, the association of guilds with specific communities, the resource classes on which guilds are based, and the competitive relationships between species of a guild. W...

  19. Ecological and economic interests in design process of thermal power plant

    International Nuclear Information System (INIS)

    Sander, M.

    1996-01-01

    In design process of thermal power plant various ecological and economic contradictory interests are brought in focus. Requests on environmental protection written in laws, standards and international treaties are increasing investment costs and energy production costs. In a design phase there is a task to reconcile these contradictory requests. The paper presents relationship between technology and environmental protection with a focus on air pollution. Air pollution and human health is considered taking in account the role of design phase in thermal power plants project and human health problems. International laws and standards are presented with moral dilemmas concerning low investment costs and high environmental standards. (author)

  20. Ecological implications of plants ability to tell the time.

    Science.gov (United States)

    Resco, Víctor; Hartwell, James; Hall, Anthony

    2009-06-01

    The circadian clock (the endogenous mechanism that anticipates diurnal cycles) acts as a central coordinator of plant activity. At the molecular and organism level, it regulates key traits for plant fitness, including seed germination, gas exchange, growth and flowering, among others. In this article, we explore current evidence on the effect of the clock for the scales of interest to ecologists. We begin by synthesizing available knowledge on the effect of the clock on biosphere-atmosphere interactions and observe that, at least in the systems where it has been tested, the clock regulates gas exchange from the leaf to the ecosystem level, and we discuss its implications for estimates of the carbon balance. Then, we analyse whether incorporating the action of the clock may help in elucidating the effects of climate change on plant distributions. Circadian rhythms are involved in regulating the range of temperatures a species can survive and affects plant interactions. Finally, we review the involvement of the clock in key phenological events, such as flowering time and seed germination. Because the clock may act as a common mechanism affecting many of the diverse branches of ecology, our ultimate goal is to stimulate further research into this pressing, yet unexplored, topic.

  1. Social and ecological factors in the formation of population health in surveillance zone of nuclear power plants

    International Nuclear Information System (INIS)

    Prilipko, V.A.; Petrichenko, O.O.

    2014-01-01

    Most people of radiation-control area estimated ecological state as safe. Respondents pointed to such ecological factors as radionuclide pollutions, irresponsible ecological behavior of people, Rivne Nuclear Power Plant functioning consequences. The last one affects changes of water sanitation and ecological parameters.There is no significant difference between mental state of people of radiation-control area and control group of people by GHQ-28 indices, by somatization scale, anxiety, social disfunction and reactive anxiety. The living life peculiarities are grounded by double risk: life in conditions of radioactive polluted territory and life in radiation-control area. Authors defined the correlation between mental state and factors that characterize ecological living conditions

  2. Halophytic Companion Plants Improve Growth and Physiological Parameters of Tomato Plants Grown under Salinity

    International Nuclear Information System (INIS)

    Karakas, S.; Cullu, M. A.; Kaya, C.; Dikilitas, M.

    2016-01-01

    Salinity becomes a major concern when soil salt concentration becomes excessive in growth medium. Halophytes are capable of accumulating high concentrations of NaCl in their tissues, thus using halophytic plants in crop rotations or even in mixed cropping systems may be a promising management practices to mitigate salt stress related yield loses. Salinity induced yield losses and related physiological parameters on tomato plants (Lycopersicon esculentum Mill. cv. SC2121) grown with or without halophytic companion plants (SalsolasodaL. and Portulacaoleracea L.) were investigated in pot experiment. Treatments consist of four soil type (collected from Harran plain-Turkey) with similar physical properties but varying in salinity level: electrical conductivity (EC): 0.9, 4.2, 7.2, and 14.1 dS m/sup -1/. The reduction in plant total dry weight was 24, 19, and 48 percent in soils with slight (4.2dS m/sup -1/), moderate (7.2 dS m/sup -1/) and high (14.1 dS m/sup -1/) salinity as compared to non-saline soil (0.9 dS m/sup -1/), respectively. Leaf content of proline, malondialdehyde (MDA), catalase (CAT) and peroxidase (POX) enzyme activity increased with increasing level of salinity. In tomato plants grown in consociation with Salsolasoda, salinity induced DM decrease was only 6, 12 and 28% in soils with slight, moderate and high salinity as compared to non-saline soil, respectively. However, when Portulaca oleracea used as companion plant, no significant change in biomass or fruit yield was observed. This study showed that mixed planting with Salsolasodain high saline soils may be an effective phyto-remediation technique that may secure yield formation and quality of tomato. (author)

  3. Gene expression profiling--Opening the black box of plant ecosystem responses to global change

    Energy Technology Data Exchange (ETDEWEB)

    Leakey, A.D.B.; Ainsworth, E.A.; Bernard, S.M.; Markelz, R.J.C.; Ort, D.R.; Placella, S.A.P.; Rogers, A.; Smith, M.D.; Sudderth, E.A.; Weston, D.J.; Wullschleger, S.D.; Yuan, S.

    2009-11-01

    The use of genomic techniques to address ecological questions is emerging as the field of genomic ecology. Experimentation under environmentally realistic conditions to investigate the molecular response of plants to meaningful changes in growth conditions and ecological interactions is the defining feature of genomic ecology. Since the impact of global change factors on plant performance are mediated by direct effects at the molecular, biochemical and physiological scales, gene expression analysis promises important advances in understanding factors that have previously been consigned to the 'black box' of unknown mechanism. Various tools and approaches are available for assessing gene expression in model and non-model species as part of global change biology studies. Each approach has its own unique advantages and constraints. A first generation of genomic ecology studies in managed ecosystems and mesocosms have provided a testbed for the approach and have begun to reveal how the experimental design and data analysis of gene expression studies can be tailored for use in an ecological context.

  4. Evolutionary Ecology of Multitrophic Interactions between Plants, Insect Herbivores and Entomopathogens.

    Science.gov (United States)

    Shikano, Ikkei

    2017-06-01

    Plants play an important role in the interactions between insect herbivores and their pathogens. Since the seminal review by Cory and Hoover (2006) on plant-mediated effects on insect-pathogen interactions, considerable progress has been made in understanding the complexity of these tritrophic interactions. Increasing interest in the areas of nutritional and ecological immunology over the last decade have revealed that plant primary and secondary metabolites can influence the outcomes of insect-pathogen interactions by altering insect immune functioning and physical barriers to pathogen entry. Some insects use plant secondary chemicals and nutrients to prevent infections (prophylactic medication) and medicate to limit the severity of infections (therapeutic medication). Recent findings suggest that there may be selectable plant traits that enhance entomopathogen efficacy, suggesting that entomopathogens could potentially impose selection pressure on plant traits that improve both pathogen and plant fitness. Moreover, plants in nature are inhabited by diverse communities of microbes, in addition to entomopathogens, some of which can trigger immune responses in insect herbivores. Plants are also shared by numerous other herbivorous arthropods with different modes of feeding that can trigger different defensive responses in plants. Some insect symbionts and gut microbes can degrade ingested defensive phytochemicals and be orally secreted onto wounded plant tissue during herbivory to alter plant defenses. Since non-entomopathogenic microbes and other arthropods are likely to influence the outcomes of plant-insect-entomopathogen interactions, I discuss a need to consider these multitrophic interactions within the greater web of species interactions.

  5. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens.

    Science.gov (United States)

    Hol, W H Gera; Bezemer, T Martijn; Biere, Arjen

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) are increasingly appreciated for their contributions to primary productivity through promotion of growth and triggering of induced systemic resistance in plants. Here we focus on the beneficial effects of one particular species of PGPR (Pseudomonas fluorescens) on plants through induced plant defense. This model organism has provided much understanding of the underlying molecular mechanisms of PGPR-induced plant defense. However, this knowledge can only be appreciated at full value once we know to what extent these mechanisms also occur under more realistic, species-diverse conditions as are occurring in the plant rhizosphere. To provide the necessary ecological context, we review the literature to compare the effect of P. fluorescens on induced plant defense when it is present as a single species or in combination with other soil dwelling species. Specifically, we discuss combinations with other plant mutualists (bacterial or fungal), plant pathogens (bacterial or fungal), bacterivores (nematode or protozoa), and decomposers. Synergistic interactions between P. fluorescens and other plant mutualists are much more commonly reported than antagonistic interactions. Recent developments have enabled screenings of P. fluorescens genomes for defense traits and this could help with selection of strains with likely positive interactions on biocontrol. However, studies that examine the effects of multiple herbivores, pathogens, or herbivores and pathogens together on the effectiveness of PGPR to induce plant defenses are underrepresented and we are not aware of any study that has examined interactions between P. fluorescens and bacterivores or decomposers. As co-occurring soil organisms can enhance but also reduce the effectiveness of PGPR, a better understanding of the biotic factors modulating P. fluorescens-plant interactions will improve the effectiveness of introducing P. fluorescens to enhance plant production and defense.

  6. Physiological relevance of plant 2-Cys peroxiredoxin overoxidation level and oligomerization status.

    Science.gov (United States)

    Cerveau, Delphine; Ouahrani, Djelloul; Marok, Mohamed Amine; Blanchard, Laurence; Rey, Pascal

    2016-01-01

    Peroxiredoxins are ubiquitous thioredoxin-dependent peroxidases presumed to display, upon environmental constraints, a chaperone function resulting from a redox-dependent conformational switch. In this work, using biochemical and genetic approaches, we aimed to unravel the factors regulating the redox status and the conformation of the plastidial 2-Cys peroxiredoxin (2-Cys PRX) in plants. In Arabidopsis, we show that in optimal growth conditions, the overoxidation level mainly depends on the availability of thioredoxin-related electron donors, but not on sulfiredoxin, the enzyme reducing the 2-Cys PRX overoxidized form. We also observed that upon various physiological temperature, osmotic and light stress conditions, the overoxidation level and oligomerization status of 2-Cys PRX can moderately vary depending on the constraint type. Further, no major change was noticed regarding protein conformation in water-stressed Arabidopsis, barley and potato plants, whereas species-dependent up- and down-variations in overoxidation were observed. In contrast, both 2-Cys PRX overoxidation and oligomerization were strongly induced during a severe oxidative stress generated by methyl viologen. From these data, revealing that the oligomerization status of plant 2-Cys PRX does not exhibit important variation and is not tightly linked to the protein redox status upon physiologically relevant environmental constraints, the possible in planta functions of 2-Cys PRX are discussed. © 2015 John Wiley & Sons Ltd.

  7. Troublesome toxins: time to re-think plant-herbivore interactions in vertebrate ecology

    Directory of Open Access Journals (Sweden)

    Feng Zhilan

    2009-02-01

    Full Text Available Abstract Earlier models of plant-herbivore interactions relied on forms of functional response that related rates of ingestion by herbivores to mechanical or physical attributes such as bite size and rate. These models fail to predict a growing number of findings that implicate chemical toxins as important determinants of plant-herbivore dynamics. Specifically, considerable evidence suggests that toxins set upper limits on food intake for many species of herbivorous vertebrates. Herbivores feeding on toxin-containing plants must avoid saturating their detoxification systems, which often occurs before ingestion rates are limited by mechanical handling of food items. In light of the importance of plant toxins, a new approach is needed to link herbivores to their food base. We discuss necessary features of such an approach, note recent advances in herbivore functional response models that incorporate effects of plant toxins, and mention predictions that are consistent with observations in natural systems. Future ecological studies will need to address explicitly the importance of plant toxins in shaping plant and herbivore communities.

  8. HOW ECOLOGICAL ENGINEERING HELPED TO CONTINUE BUILDING AND UPGRADE OF THE OPOLE POWER PLANT

    Directory of Open Access Journals (Sweden)

    Jan Siuta

    2016-09-01

    Full Text Available Principles of ecological engineering were applied for upgrading the Opole Power Plant under construction, complete with modern installation to protect the environment. The modernized project was a subject of „Integrated environmental impact assessment of the Opole Power Plant” developed by the Institute of Environmental Protection in 1981. The main issues covered by the impact assessment were presented and discussed at the national scientific conference attended, among others, by the representatives of local community from Opole. The conference was organized by the Polish Society of Ecological Engineering on June 5 and 6, 1992. The main aim of the conference was to identify and deliver as broad as possible analysis of environmental conditions for designing, building and operating coal fired power plants. A secondary goal, though of main concern for the Opole agglomeration, was to evaluate many-sided environmental risks resulting from the construction and operation of the Power Plant. The feasibility of continuing the construction of a power generating facility that meets the requirements of the 21st century was demonstrated by the fact that the Opole Power Plant S.A. was awarded the ISO 14001 - Environmental Management System certificate by the British Standards Institution. Advanced construction of the two consecutive blocks of a combined power of 1800 MW in the Opole Power Plant substantiates the validity and effectiveness of the conference organized in 1992.

  9. The gravitational plant physiology facility-Description of equipment developed for biological research in spacelab

    Science.gov (United States)

    Heathcote, D. G.; Chapman, D. K.; Brown, A. H.; Lewis, R. F.

    1994-01-01

    In January 1992, the NASA Suttle mission STS 42 carried a facility designed to perform experiments on plant gravi- and photo-tropic responses. This equipment, the Gravitational Plant Physiology Facility (GPPF) was made up of a number of interconnected units mounted within a Spacelab double rack. The details of these units and the plant growth containers designed for use in GPPF are described. The equipment functioned well during the mission and returned a substantial body of time-lapse video data on plant responses to tropistic stimuli under conditions of orbital microgravity. GPPF is maintained by NASA Ames Research Center, and is flight qualifiable for future spacelab missions.

  10. Economic and ecologic considerations for bidding procedures and contracting for bio-waste fermentation plants

    International Nuclear Information System (INIS)

    Raussen, Thomas; Lootsma, Auke; Oldhafer, Nils

    2013-01-01

    The use of the energetic and mass potentials of biological wastes in an integrated fermentation and composting plant needs extensive conceptual and planning activities. The call for tenders for the construction of plants is an EU-wide open procedure. Public waste management organizations are interested to receive profitable solutions with reliable operation and minimized ecological impacts. The minimum requirements and technical aspects are defined by the public waste management organizations.

  11. Physiological and biochemical perspectives of non-salt tolerant plants during bacterial interaction against soil salinity.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Baek, Kwang Hyun

    2017-07-01

    Climatic changes on earth affect the soil quality of agricultural lands, especially by increasing salt deposition in soil, which results in soil salinity. Soil salinity is a major challenge to growth and reproduction among glycophytes (including all crop plants). Soil bacteria present in the rhizosphere and/or roots naturally protect plants from the adverse effects of soil salinity by reprogramming the stress-induced physiological changes in plants. Bacteria can enrich the soil with major nutrients (nitrogen, phosphorus, and potassium) in a form easily available to plants and prevent the transport of excess sodium to roots (exopolysaccharides secreted by bacteria bind with sodium ions) for maintaining ionic balance and water potential in cells. Salinity also affects plant growth regulators and suppresses seed germination and root and shoot growth. Bacterial secretion of indole-3-acetic acid and gibberellins compensates for the salt-induced hormonal decrease in plants, and bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesis decreases ethylene production to stimulate plant growth. Furthermore, bacteria modulate the redox state of salinity-affected plants by enhancing antioxidants and polyamines, which leads to increased photosynthetic efficiency. Bacteria-induced accumulation of compatible solutes in stressed plants regulates plant cellular activities and prevents salt stress damage. Plant-bacterial interaction reprograms the expression of salt stress-responsive genes and proteins in salinity-affected plants, resulting in a precise stress mitigation metabolism as a defense mechanism. Soil bacteria increase the fertility of soil and regulate the plant functions to prevent the salinity effects in glycophytes. This review explains the current understanding about the physiological changes induced in glycophytes during bacterial interaction to alleviate the adverse effects of soil salinity stress. Copyright © 2017 Elsevier Masson SAS. All rights

  12. Hydrogen Fuel as Ecological Contribution to Operation of the Existing Coal-Fired Thermal Power Plants

    International Nuclear Information System (INIS)

    Cosic, D.

    2009-01-01

    The analysis is carried out of the application of a new hydrogen based alternative fuel as ecological contribution of the coal thermal power plants operation. Given the fact that coal thermal power plants are seen as the largest producers, not only of CO 2 , but of all others harmful gases, the idea is initiated to use the new alternative fuel as an additive to the coal which would result in much better performance of the coal power plants from an ecological point of view. It is possible to use such a fuel in relation of 10-30% of former coal use. The positive influence of such an application is much bigger than relative used quantity. This lecture has a goal to incite potential investors to create conditions for industrial testing of the new fuel. It will be very interesting to animate investors for large-scale production of the new fuel, too.(author).

  13. Do seedling functional groups reflect ecological strategies of woody plant species in Caatinga?

    Directory of Open Access Journals (Sweden)

    Tatiane Gomes Calaça Menezes

    2017-11-01

    Full Text Available ABSTRACT It is assumed that morphological traits of seedlings reflect different strategies in response to environmental conditions. The ecological significance of this has been widely documented in rainforests, where habitat structure and species interactions play an important role in community assembly. However, in seasonally dry ecosystems, where environmental filtering is expected to strongly influence community structure, this relationship is poorly understood. We investigated this relationship between functional groups of seedlings and life history traits and tested whether functional group predicts the ecological strategies employed by woody species to deal with the stressful conditions in seasonally dry ecosystems. Seedling functional groups, life history traits and traits that reflect ecological strategies for occupying seasonally dry environments were described for twenty-six plant species. Seedlings of species from the Caatinga vegetation exhibited a functional profile different from that observed in rainforests ecosystems. Phanerocotylar-epigeal seedlings were the most frequently observed groups, and had the largest range of ecological strategies related to dealing with seasonally dry environments, while phanerocotylar-hypogeal-reserve seedlings exhibited an increase in frequency with seasonality. We discuss these results in relation to those observed in other tropical forests and their ecological significance in seasonally dry environments.

  14. Ecological plant epigenetics: Evidence from model and non-model species, and the way forward

    Czech Academy of Sciences Publication Activity Database

    Richards, C. L.; Alonso, C.; Becker, C.; Bossdorf, O.; Bucher, E.; Colomé-Tatché, M.; Durka, W.; Engelhardt, J.; Gaspar, B.; Gogol-Döring, A.; Grosse, I.; van Gurp, T. P.; Heer, K.; Kronholm, I.; Lampei, C.; Latzel, Vít; Mirouze, M.; Opgenoorth, L.; Paun, O.; Prohaska, S. A.; Rensing, S. A.; Stadler, P. f.; Trucchi, E.; Ullrich, K.; Verhoeven, K. J. F.

    2017-01-01

    Roč. 20, č. 12 (2017), s. 1576-1590 ISSN 1461-023X Institutional support: RVO:67985939 Keywords : bioinformatics * ecological epigenetic s * genomics Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 9.449, year: 2016

  15. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3.

    Science.gov (United States)

    Guerrero-Molina, M F; Lovaisa, N C; Salazar, S M; Martínez-Zamora, M G; Díaz-Ricci, J C; Pedraza, R O

    2015-05-01

    The plant growth-promoting strain REC3 of Azospirillum brasilense, isolated from strawberry roots, prompts growth promotion and systemic protection against anthracnose disease in this crop. Hence, we hypothesised that A. brasilense REC3 can induce different physiological, structural and molecular responses in strawberry plants. Therefore, the aim of this work was to study these traits activated in Azospirillum-colonised strawberry plants, which have not been assessed until now. Healthy, in vitro micropropagated plants were root-inoculated with REC3 under hydroponic conditions; root and leaf tissues were sampled at different times, and oxidative burst, phenolic compound content, malondialdehyde (MDA) concentration, callose deposition, cell wall fortification and gene expression were evaluated. Azospirillum inoculation enhanced levels of soluble phenolic compounds after 12 h post-inoculation (hpi), while amounts of cell wall bound phenolics were similar in inoculated and control plants. Other early responses activated by REC3 (at 24 hpi) were a decline of lipid peroxidation and up-regulation of strawberry genes involved in defence (FaPR1), bacterial recognition (FaFLS2) and H₂O₂ depuration (FaCAT and FaAPXc). The last may explain the apparent absence of oxidative burst in leaves after bacterial inoculation. Also, REC3 inoculation induced delayed structural responses such as callose deposition and cell wall fortification (at 72 hpi). Results showed that A. brasilense REC3 is capable of exerting beneficial effects on strawberry plants, reinforcing their physiological and cellular characteristics, which in turns contribute to improve plant performance. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. On Some New Indicators for the Energo-Ecological Assessment of Thermo-Power Plants Operation

    International Nuclear Information System (INIS)

    Cardu, M.; Sandu, D.; Negoitescu, A.S.

    2008-01-01

    The authors offer a critical analysis of pollution indicators currently applied for the ecological assessment of the thermo power plant's operation. They forward new energo-ecological indicators to highlight both the qualitative aspect of polluting emissions and their quantitative aspect, by relating their concentration in the flue gases purged into the atmosphere to the energy produced during the same interval. The application of these indicators contributes to the attenuation of the global warming phenomenon and to the protection of the world's resources of fossil fuels.

  17. Protocol: optimising hydroponic growth systems for nutritional and physiological analysis of Arabidopsis thaliana and other plants

    Science.gov (United States)

    2013-01-01

    Background Hydroponic growth systems are a convenient platform for studying whole plant physiology. However, we found through trialling systems as they are described in the literature that our experiments were frequently confounded by factors that affected plant growth, including algal contamination and hypoxia. We also found the way in which the plants were grown made them poorly amenable to a number of common physiological assays. Results The drivers for the development of this hydroponic system were: 1) the exclusion of light from the growth solution; 2) to simplify the handling of individual plants, and 3) the growth of the plant to allow easy implementation of multiple assays. These aims were all met by the use of pierced lids of black microcentrifuge tubes. Seed was germinated on a lid filled with an agar-containing germination media immersed in the same solution. Following germination, the liquid growth media was exchanged with the experimental solution, and after 14-21 days seedlings were transferred to larger tanks with aerated solution where they remained until experimentation. We provide details of the protocol including composition of the basal growth solution, and separate solutions with altered calcium, magnesium, potassium or sodium supply whilst maintaining the activity of the majority of other ions. We demonstrate the adaptability of this system for: gas exchange measurement on single leaves and whole plants; qRT-PCR to probe the transcriptional response of roots or shoots to altered nutrient composition in the growth solution (we demonstrate this using high and low calcium supply); producing highly competent mesophyll protoplasts; and, accelerating the screening of Arabidopsis transformants. This system is also ideal for manipulating plants for micropipette techniques such as electrophysiology or SiCSA. Conclusions We present an optimised plant hydroponic culture system that can be quickly and cheaply constructed, and produces plants with similar

  18. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.

    Science.gov (United States)

    Wang, Yucheng; Gao, Caiqiu; Liang, Yenan; Wang, Chao; Yang, Chuanping; Liu, Guifeng

    2010-02-15

    Basic leucine zipper proteins (bZIPs) are transcription factors that bind abscisic acid (ABA)-responsive elements (ABREs) and enable plants to withstand adverse environmental conditions. In the present study, a novel bZIP gene, ThbZIP1 was cloned from Tamarix hispida. Expression studies in T. hispida showed differential regulation of ThbZIP1 in response to treatment with NaCl, polyethylene glycol (PEG) 6000, NaHCO(3), and CdCl(2), suggesting that ThbZIP1 is involved in abiotic stress responses. To identify the physiological responses mediated by ThbZIP1, transgenic tobacco plants overexpressing exogenous ThbZIP1 were generated. Various physiological parameters related to salt stress were measured and compared between transgenic and wild type (WT) plants. Our results indicate that overexpression of ThbZIP1 can enhance the activity of both peroxidase (POD) and superoxide dismutase (SOD), and increase the content of soluble sugars and soluble proteins under salt stress conditions. These results suggest that ThbZIP1 contributes to salt tolerance by mediating signaling through multiple physiological pathways. Furthermore, ThbZIP1 confers stress tolerance to plants by enhancing reactive oxygen species (ROS) scavenging, facilitating the accumulation of compatible osmolytes, and inducing and/or enhancing the biosynthesis of soluble proteins. Copyright 2009 Elsevier GmbH. All rights reserved.

  19. Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients.

    Science.gov (United States)

    Pellissier, Loïc; Ndiribe, Charlotte; Dubuis, Anne; Pradervand, Jean-Nicolas; Salamin, Nicolas; Guisan, Antoine; Rasmann, Sergio

    2013-05-01

    Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait-space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables. © 2013 Blackwell Publishing Ltd/CNRS.

  20. Physiological Roles of Plant Post-Golgi Transport Pathways in Membrane Trafficking.

    Science.gov (United States)

    Uemura, Tomohiro

    2016-10-01

    Membrane trafficking is the fundamental system through which proteins are sorted to their correct destinations in eukaryotic cells. Key regulators of this system include RAB GTPases and soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs). Interestingly, the numbers of RAB GTPases and SNAREs involved in post-Golgi transport pathways in plant cells are larger than those in animal and yeast cells, suggesting that plants have evolved unique and complex post-Golgi transport pathways. The trans-Golgi network (TGN) is an important organelle that acts as a sorting station in the post-Golgi transport pathways of plant cells. The TGN also functions as the early endosome, which is the first compartment to receive endocytosed proteins. Several endocytosed proteins on the plasma membrane (PM) are initially targeted to the TGN/EE, then recycled back to the PM or transported to the vacuole for degradation. The recycling and degradation of the PM localized proteins is essential for the development and environmental responses in plant. The present review describes the post-Golgi transport pathways that show unique physiological functions in plants. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Methodologies for assessment of power plant ecological effects in the marine environment

    International Nuclear Information System (INIS)

    Adams, S.M.

    1978-01-01

    Various types of models or methodologies relevant to the assessment of entrainment, thermal, and impingement impacts of power plant operation in the marine environment are presented. The majority of methodologies available for assessing power plant effects are focused at the organism or population level. The most widely applied approaches for estimating entrainment effects on fish populations are the equivalent adult and trophic-conversion methodologies. Current methods to predict the number of fish and distribution of species impinged consider physical factors of the environment but not the biological or behavorial characteristics of fish. With proper validation, ecosystem-level models that consider aggregate responses of biological components to stress may prove to be a viable approach for investigating power plant ecological effects

  2. The estimation ecological risk for ground ecosystems in case of nuclear power plant failures

    International Nuclear Information System (INIS)

    Kremlenkov, D.Yu.; Kremlenkov, M.Yu.

    2004-01-01

    The results of probabilistic estimation of the damage for forest and agricultural ecosystems connected with cesium-137 and strontium-90 release during hypothetical accidents at NPPs are analyzed. The concept of radioecological risk including application of the models for radioactivity transport in atmosphere and calculation of of absorbed doses in ecosystem critical groups is used for the analysis. It is proved that the probable ecological damage expressed in terms of ecosystem destruction area depends on the scale of accidental radioisotope releases, meteorological conditions and radiation resistance of critical groups in plant associations. The conclusion is made that ecological risks expressed in the form of probable area of ecosystem destruction in the zone where dose loads lay in the range from minimal ecologically significant limit up to ecologically significant limit amount to 4-9% for conifers contaminated with cesium-137 and to 2-4% for agricultural crops contaminated with strontium-90 [ru

  3. Outline of research on plant physiological functions using Positron Emitting Tracer

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2000-01-01

    Application of Positron Emitting Tracer Imaging System (Pets) for the plant has been investigated under JAERI-Universities Joint Research Project. Five university groups are studying a dynamic image of plant transport or a static image of the result of tracer movement using 11 C (half-life 20 min), 13 N (10 min), 18 F (110 min), etc. The Pets consisted of two-dimensional block detectors (48 x 50 mm square) which were composed of a Bi 4 Ge 3 O 12 scintillator array coupled to a position sensitive photomultiplier tube. In the system, the plant samples are placed at the mid position between the two opposing detectors and annihilation γ-rays from the samples are detected in coincidence. The positron emitting tracer images are obtained by accumulating these signals. The spatial resolution was 2.4 mm and images with a good S/N ratio can be obtained in real time. Using TIARA AVF cyclotron, 13 NO 3 - , 13 NH 4 + , 18 F-water, 11 C-methionine, etc. were produced and supplied to the plants. The transport of these labeled compounds introduced into plants was followed dynamically by PETIS. The results show that the system is effective in observing the uptake and transport of nutrients in plants and is useful for the study of physiological functions of plants. (author)

  4. Watermill and Small-Scale Hydroelectric Power Plant Landscapes Assessed According to Ecological Aspects

    Directory of Open Access Journals (Sweden)

    Lilita Lazdāne

    2013-10-01

    Full Text Available Research of watermill and small-scale hydroelectric power plant (HPP landscapes in Latvia according to ecological aspects is a part of a more complex research. The aim of this research is to examine the existing situation of watermill and small-scale HPP landscapes in Latvia by applying the ecological assessment criteria, and then try to formulate a definition of common tendencies of the landscape character. This paper provides a landscape inventory matrix for research in the field stu­dies of landscape identification at the local planning level. The duration of the research was from 2010 to 2012. The research includes 42 territories starting with the three most densely developed areas in Latvia: in Latgale, Kurzeme and Vidzeme uplands distribution ranges. The research results reflect tendencies of the landscape features assessed according to the previously developed criteria of ecological aspects.

  5. Relationship between Aflatoxin Contamination and Physiological Responses of Corn Plants under Drought and Heat Stress

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    2012-11-01

    Full Text Available Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54 at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.

  6. Relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress.

    Science.gov (United States)

    Kebede, Hirut; Abbas, Hamed K; Fisher, Daniel K; Bellaloui, Nacer

    2012-11-20

    Increased aflatoxin contamination in corn by the fungus Aspergillus flavus is associated with frequent periods of drought and heat stress during the reproductive stages of the plants. The objective of this study was to evaluate the relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. The study was conducted in Stoneville, MS, USA under irrigated and non-irrigated conditions. Five commercial hybrids, P31G70, P33F87, P32B34, P31B13 and DKC63-42 and two inbred germplasm lines, PI 639055 and PI 489361, were evaluated. The plants were inoculated with Aspergillus flavus (K-54) at mid-silk stage, and aflatoxin contamination was determined on the kernels at harvest. Several physiological measurements which are indicators of stress response were determined. The results suggested that PI 639055, PI 489361 and hybrid DKC63-42 were more sensitive to drought and high temperature stress in the non-irrigated plots and P31G70 was the most tolerant among all the genotypes. Aflatoxin contamination was the highest in DKC63-42 and PI 489361 but significantly lower in P31G70. However, PI 639055, which is an aflatoxin resistant germplasm, had the lowest aflatoxin contamination, even though it was one of the most stressed genotypes. Possible reasons for these differences are discussed. These results suggested that the physiological responses were associated with the level of aflatoxin contamination in all the genotypes, except PI 639055. These and other physiological responses related to stress may help examine differences among corn genotypes in aflatoxin contamination.

  7. Small unmanned aerial vehicles (micro-UAVs, drones) in plant ecology1

    Science.gov (United States)

    Cruzan, Mitchell B.; Weinstein, Ben G.; Grasty, Monica R.; Kohrn, Brendan F.; Hendrickson, Elizabeth C.; Arredondo, Tina M.; Thompson, Pamela G.

    2016-01-01

    Premise of the study: Low-elevation surveys with small aerial drones (micro–unmanned aerial vehicles [UAVs]) may be used for a wide variety of applications in plant ecology, including mapping vegetation over small- to medium-sized regions. We provide an overview of methods and procedures for conducting surveys and illustrate some of these applications. Methods: Aerial images were obtained by flying a small drone along transects over the area of interest. Images were used to create a composite image (orthomosaic) and a digital surface model (DSM). Vegetation classification was conducted manually and using an automated routine. Coverage of an individual species was estimated from aerial images. Results: We created a vegetation map for the entire region from the orthomosaic and DSM, and mapped the density of one species. Comparison of our manual and automated habitat classification confirmed that our mapping methods were accurate. A species with high contrast to the background matrix allowed adequate estimate of its coverage. Discussion: The example surveys demonstrate that small aerial drones are capable of gathering large amounts of information on the distribution of vegetation and individual species with minimal impact to sensitive habitats. Low-elevation aerial surveys have potential for a wide range of applications in plant ecology. PMID:27672518

  8. Environmental study of the Wairakei Power Plant. [Effects of hydroelectric power plant on ecology of Waikato River Basin, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Axtmann, R C

    1974-12-01

    Physical, chemical, biological, ecological, and aesthetic aspects of the Wairakei Power Plant are examined, in varying detail, but with primary emphasis on the chemical and thermal effluents. When flows are average or higher in the Waikato River, the Plant's environmental effects are not overly severe. However, operating requirements for the Waikato Hydro-electric System are such that the Plant sporadically produces wastes that may affect the human and natural environment adversely. These adverse effects are not presently too serious, but suggestions are made for improving the Plant's overall environmental performance. Although the point is not discussed in detail, it is clear from the results of the study that any additional thermal plants on the Waikato could strain the river's absorptive capacities severely, unless alternative disposal techniques are used for the various effluents.

  9. The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos.

    Science.gov (United States)

    Ovejero Aguilar, Ramiro J A; Jahn, Graciela A; Soto-Gamboa, Mauricio; Novaro, Andrés J; Carmanchahi, Pablo

    2016-01-01

    Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life's challenges is the activation of the Stress (HPA) and Gonadal (HPG) axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T) and Glucocorticoid (GCs) in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. All of the data for individuals were collected by non-invasive methods (fecal samples) to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. As expected, there was a marked adrenal ( p -value = .3.4e-12) and gonadal ( p -value = 0.002656) response due to seasonal variation in Lama guanicoe . No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period ( p -value = 0.2839). Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation ( p -value = 1.952e-11, COR = 0.50) between the adrenal and gonadal system. The marked endocrine ( r 2  = 0.806) and gonad ( r 2  = 0.7231) response due to seasonal

  10. The Ecology of Stress: linking life-history traits with physiological control mechanisms in free-living guanacos

    Directory of Open Access Journals (Sweden)

    Ramiro J.A. Ovejero Aguilar

    2016-11-01

    Full Text Available Background Providing the context for the evolution of life-history traits, habitat features constrain successful ecological and physiological strategies. In vertebrates, a key response to life’s challenges is the activation of the Stress (HPA and Gonadal (HPG axes. Much of the interest in stress ecology is motivated by the desire to understand the physiological mechanisms in which the environment affects fitness. As reported in the literature, several intrinsic and extrinsic factors affect variability in hormone levels. In both social and non-social animals, the frequency and type of interaction with conspecifics, as well as the status in social species, can affect HPA axis activity, resulting in changes in the reproductive success of animals. We predicted that a social environment can affect both guanaco axes by increasing the secretion of testosterone (T and Glucocorticoid (GCs in response to individual social interactions and the energetic demands of breeding. Assuming that prolonged elevated levels of GCs over time can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG axis and causes T levels to decrease, as GCs increase. Methods All of the data for individuals were collected by non-invasive methods (fecal samples to address hormonal activities. This is a novel approach in physiological ecology because feces are easily obtained through non-invasive sampling in animal populations. Results As expected, there was a marked adrenal (p-value = .3.4e−12 and gonadal (p-value = 0.002656 response due to seasonal variation in Lama guanicoe. No significant differences were found in fecal GCs metabolites between males/females*season for the entire study period (p-value = 0.2839. Despite the seasonal activity variation in the hormonal profiles, our results show a positive correlation (p-value = 1.952e−11, COR = 0.50 between the adrenal and gonadal system. The marked endocrine (r2 = 0.806 and gonad (r2 = 0

  11. [Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress].

    Science.gov (United States)

    Wang, Jianfei; Shen, Qirong

    2006-11-01

    Organic acids not only act as the intermediates in carbon metabolism, but also exert key roles in the plant adaptation to nutrient deficiency and metal stress and in the plant-microbe interactions at root-soil interface. From the viewpoint of plant nutrition, this paper reviewed the research progress on the formation and physiology of organic acids in plant, and their functions in nitrogen metabolism, phosphorus and iron uptake, aluminum tolerance, and soil ecology. New findings in the membrane transport of organic acids and the biotechnological manipulation of organic acids in transgenic model were also discussed. This novel perspectives of organic acid metabolism and its potential manipulation might present a possibility to understand the fundamental aspects of plant physiology, and lead to the new strategies to obtain crop varieties better adapted to environmental and metal stress.

  12. Evolution and Ecology of Actinobacteria and Their Bioenergy Applications.

    Science.gov (United States)

    Lewin, Gina R; Carlos, Camila; Chevrette, Marc G; Horn, Heidi A; McDonald, Bradon R; Stankey, Robert J; Fox, Brian G; Currie, Cameron R

    2016-09-08

    The ancient phylum Actinobacteria is composed of phylogenetically and physiologically diverse bacteria that help Earth's ecosystems function. As free-living organisms and symbionts of herbivorous animals, Actinobacteria contribute to the global carbon cycle through the breakdown of plant biomass. In addition, they mediate community dynamics as producers of small molecules with diverse biological activities. Together, the evolution of high cellulolytic ability and diverse chemistry, shaped by their ecological roles in nature, make Actinobacteria a promising group for the bioenergy industry. Specifically, their enzymes can contribute to industrial-scale breakdown of cellulosic plant biomass into simple sugars that can then be converted into biofuels. Furthermore, harnessing their ability to biosynthesize a range of small molecules has potential for the production of specialty biofuels.

  13. Ecological status of high altitude medicinal plants and their sustainability: Lingshi, Bhutan.

    Science.gov (United States)

    Lakey; Dorji, Kinley

    2016-10-11

    Human beings use plants for a multitude of purposes of which a prominent one across the globe is for their medicinal values. Medicinal plants serve as one of the major sources of income for high altitude inhabitants in the Himalaya, particularly in countries like Nepal, and Bhutan. People here harvest huge volumes of medicinal plants indiscriminately, risking their sustainability. This paper attempts to identify some of the priority medicinal plant species harvested in the wild and assess their ecological status for their judicious utilization, and to help provide policy guidance for possible domestication and support strategic conservation frameworks. Out of the 16 priority species identified by the expert group, collectors' perception on ecological status of the priority species differed from survey findings. Chrysosplenium nudicaule (clumps) ranked as most threatened species followed by Corydalis dubia, and Meconopsis simplicifolia. Onosma hookeri, Corydalis crispa and Delphinium glaciale were some of the species ranked as threatened species followed by Halenia elliptica (not in priority list). Percent relative abundance showed irregular pattern of species distribution. High species evenness was recorded among Nardostachys grandiflora, Chrysosplenium nudicaule, Saussurea gossypiphora and Aconitum orochryseum with average species density of 8 plant m -2 . Rhodiola crenulata, and Dactylorhiza hatagirea followed by Meconopsis horridula and Meconopsis simplicifolia were ranked as most threatened species with average species density of 0.4, 0.4, 5.6 and 6.0 plant m -2 , respectively. The most abundant (common) species was Onosma hookeri (plant m -2 ). Species composition and density also differed with vegetation, altitude, slope and its aspects. Priority species identified by expert group were found vulnerable and patchy in distribution. Survey results and collectors' perceptions tally to an extent. Some of the species (Dactylorhiza hatagirea, Rhodiola crenulata

  14. [Effects of plant viruses on vector and non-vector herbivorous arthropods and their natural enemies: a mini review].

    Science.gov (United States)

    He, Xiao-Chan; Xu, Hong-Xing; Zhou, Xiao-Jun; Zheng, Xu-Song; Sun, Yu-Jian; Yang, Ya-Jun; Tian, Jun-Ce; Lü, Zhong-Xian

    2014-05-01

    Plant viruses transmitted by arthropods, as an important biotic factor, may not only directly affect the yield and quality of host plants, and development, physiological characteristics and ecological performances of their vector arthropods, but also directly or indirectly affect the non-vector herbivorous arthropods and their natural enemies in the same ecosystem, thereby causing influences to the whole agro-ecosystem. This paper reviewed the progress on the effects of plant viruses on herbivorous arthropods, including vector and non-vector, and their natural enemies, and on their ecological mechanisms to provide a reference for optimizing the management of vector and non-vector arthropod populations and sustainable control of plant viruses in agro-ecosystem.

  15. Frugivores and seed dispersal: mechanisms and consequences for biodiversity of a key ecological interaction.

    Science.gov (United States)

    Jordano, Pedro; Forget, Pierre-Michel; Lambert, Joanna E; Böhning-Gaese, Katrin; Traveset, Anna; Wright, S Joseph

    2011-06-23

    The 5th Symposium on Frugivores and Seed Dispersal, held in Montpellier (France), 13-18 June 2010, brought together more than 220 researchers exemplifying a wide diversity of approaches to the study of frugivory and dispersal of seeds. Following Ted Fleming and Alejandro Estrada's initiative in 1985, this event was a celebration of the 25th anniversary of the first meeting in Veracruz, Mexico. Frugivory and seed dispersal are active research areas that have diversified in multiple directions since 1985 to include evolution (e.g. phylogenetic diversity and dispersal adaptations), physiology (e.g. sensory cues and digestion), landscape ecology (movement patterns), molecular ecology (e.g. gene flow, genetic diversity and structure), community ecology (e.g. mutualistic interaction networks) and conservation biology (effects of hunting, fragmentation, invasion and extinction), among others. This meeting provided an opportunity to assess conceptual and methodological progress, to present ever more sophisticated insights into frugivory in animals and dispersal patterns in plants, and to report the advances made in examining the mechanisms and consequences of seed dispersal for plants and frugivores.

  16. Physiological plant investigations for the purpose of growing smoke resistant conifers

    Energy Technology Data Exchange (ETDEWEB)

    Polster, H; Bortitz, S; Vogl, M

    1965-01-01

    Spruce and pine are the main commercial wood varieties used in East Germany. These are also the most sensitive to smoke. Usually replacement of the damaged trees is necessary. The Department of Smoke Research of the Institute for Plant Chemistry of the Dresden Institute of Technology has been able to develop conifers resistant to SO2. In order to select smoke resistant trees for breeding, the Institute for Forestry and Plant Physiology of the Institute of Forestry Breeding in Graupa, East Germany has developed a rapid selection test. It is based on subjecting a small branch to doses of SO2. A method of breeding smoke resistant conifers is given in detail. It takes approximately ten years to produce the seeds.

  17. Physiological changes in leaves of mungbean plants infected with Meloidogyne javanica

    Directory of Open Access Journals (Sweden)

    N. Ahmed

    2009-09-01

    Full Text Available Sequential changes induced by the root-knot nematode Meloidogyne javanica (Treub Chitwood in mung bean (Vigna radiata (L. Wilczek cv. MN95 were studied. Physiological and biochemical changes were recorded 15, 30 and 45 days after nematode inoculation. The changes noted varied with the length of exposure to the nematode. Chlorophyll and carotenoid contents decreased in nematode-infected plants. Total phenols increased in the leaves compared with the controls for up to 30 days after inoculation. Protein content declined significantly at 30 days after exposure to the nematodes. Amylase activity was enhanced in both the leaves and the stems as compared with the controls. The results suggested that plants responded to the nematode by adopting biochemical strategies to withstand the adverse effects of infection.

  18. Resolving the role of plant glutamate dehydrogenase: II. Physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously.

    Science.gov (United States)

    Tercé-Laforgue, Thérèse; Bedu, Magali; Dargel-Grafin, Céline; Dubois, Frédéric; Gibon, Yves; Restivo, Francesco M; Hirel, Bertrand

    2013-10-01

    Glutamate dehydrogenase (GDH; EC 1.4.1.2) is able to carry out the deamination of glutamate in higher plants. In order to obtain a better understanding of the physiological function of GDH in leaves, transgenic tobacco (Nicotiana tabacum L.) plants were constructed that overexpress two genes from Nicotiana plumbaginifolia (GDHA and GDHB under the control of the Cauliflower mosiac virus 35S promoter), which encode the α- and β-subunits of GDH individually or simultaneously. In the transgenic plants, the GDH protein accumulated in the mitochondria of mesophyll cells and in the mitochondria of the phloem companion cells (CCs), where the native enzyme is normally expressed. Such a shift in the cellular location of the GDH enzyme induced major changes in carbon and nitrogen metabolite accumulation and a reduction in growth. These changes were mainly characterized by a decrease in the amount of sucrose, starch and glutamine in the leaves, which was accompanied by an increase in the amount of nitrate and Chl. In addition, there was an increase in the content of asparagine and a decrease in proline. Such changes may explain the lower plant biomass determined in the GDH-overexpressing lines. Overexpressing the two genes GDHA and GDHB individually or simultaneously induced a differential accumulation of glutamate and glutamine and a modification of the glutamate to glutamine ratio. The impact of the metabolic changes occurring in the different types of GDH-overexpressing plants is discussed in relation to the possible physiological function of each subunit when present in the form of homohexamers or heterohexamers.

  19. The Fluctuation Niche in Plants

    International Nuclear Information System (INIS)

    Terradas, J.; Penuelas, J.; Lloret, F.; Penuelas, J.

    2009-01-01

    Classical approaches to niche in coexisting plants have undervalued temporal fluctuations. We propose that fluctuation niche is an important dimension of the total niche and interacts with habitat and life-history niches to provide a better understanding of the multidimensional niche space where ecological interactions occur. To scale a fluctuation niche, it is necessary to relate environmental constrictions or species performance not only to the absolute values of the usual environmental and eco physiological variables but also to their variances or other measures of variability. We use Mediterranean plant communities as examples, because they present characteristic large seasonal and inter annual fluctuations in water and nutrient availabilities, along an episodic-constant gradient, and because the plant responses include a number of syndromes coupled to this gradient.

  20. Adaptive Transgenerational Plasticity in Plants: Case Studies, Mechanisms, and Implications for Natural Populations

    OpenAIRE

    Herman, Jacob J.; Sultan, Sonia E.

    2011-01-01

    Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in ...

  1. Plant Host Finding by Parasitic Plants: A New Perspective on Plant to Plant Communication

    OpenAIRE

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-01-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much d...

  2. Beyond the climate envelope: using trait filtering models to predict biome boundaries from plant physiology.

    Science.gov (United States)

    Fisher, R.; Hoffmann, W. A.; Muszala, S.

    2014-12-01

    The introduction of second-generation dynamic vegetation models - which simulate the distribution of light resources between plant types along the vertical canopy profile, and therefore facilitate the representation of plant competition explicitly - is a large increase in the complexity and fidelity with which the terrestrial biosphere is abstracted into Earth System Models. In this new class of model, biome boundaries are predicted as the emergent properties of plant physiology, and are therefore sensitive to the high-dimensional parameterizations of plant functional traits. These new approaches offer the facility to quantitatively test ecophysiological hypotheses of plant distribution at large scales, a field which remains surprisingly under-developed. Here we describe experiments conducted with the Community Land Model Ecosystem Demography component, CLM(ED), in which we reduce the complexity of the problem by testing how individual plant functional trait changes to control the location of biome boundaries between functional types. Specifically, we investigate which physiological trade-offs determine the boundary between frequently burned savanna and forest biomes, and attempt to distinguish how each strategic life-history trade-off (carbon storage, bark investment, re-sprouting strategy) contributes towards the maintenance of sharp geographical gradients between fire adapted and typically inflammable closed canopy ecosystems. This study forms part of the planning for a model-inspired fire manipulation experiment at the cerrado-forest boundary in South-Eastern Brazil, and the results will be used to guide future data-collection and analysis strategies.

  3. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition.

    Science.gov (United States)

    Kováčik, Jozef; Klejdus, Bořivoj

    2014-01-01

    Alternative tools, such as the manipulation of mineral nutrition, may affect secondary metabolite production and thus the nutritional value of food/medicinal plants. We studied the impact of nitrogen (N) nutrition (nitrate/NO3(-) or ammonium/NH4(+) nitrogen) and subsequent nitrogen deficit on phenolic metabolites and physiology in Matricaria chamomilla plants. NH4(+)-fed plants revealed a strong induction of selected phenolic metabolites but, at the same time, growth, Fv/Fm, tissue water content and soluble protein depletion occurred in comparison with NO3(-)-fed ones. On the other hand, NO3(-)-deficient plants also revealed an increase in phenolic metabolites but growth depression was not observed after the given exposure period. Free amino acids were more accumulated in NH4(+)-fed shoots (strong increase in arginine and proline mainly), while the pattern of roots' accumulation was independent of N form. Among phenolic acids, NH4(+) strongly elevated mainly the accumulation of chlorogenic acid. Within flavonoids, flavonols decreased while flavones strongly increased in response to N deficiency. Coumarin-related metabolites revealed a similar increase in herniarin glucosidic precursor in response to N deficiency, while herniarin was more accumulated in NO3(-)- and umbelliferone in NH4(+)-cultured plants. These data indicate a negative impact of NH4(+) as the only source of N on physiology, but also a higher stimulation of some valuable phenols. Nitrogen-induced changes in comparison with other food/crop plants are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Physiological and ecological factors influencing the radiocaesium contamination of fish species from Kiev reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Koulikov, A.O. [A.N. Severtzov Institute of Evolutionary Morphology and Ecology of Animals, Russian Academy of Sciences, Moscow (Russian Federation)

    1995-11-23

    The monitoring of {sup 137}Cs contamination of fish from the northern part of the Kiev reservoir between 1987 and 1992 indicated systematic differences in the long-term average contamination levels of different species, which are closely related to their trophic levels. The average contamination of the predatory species: perch (Perca fluviatilis) and pike (Esox lucius) were roughly factors of 6.3 and 4.4 respectively, higher than those of the nonpredatory species: bream (Abramis brama), silver bream (Blicca bjoerkna) and rudd (Scardinius erythrophothalmus). For tench (Tinca tinca) and goldfish (Carassius sp.), this factor is 2. The solution of the caesium balance equation in fish obtained for equilibrium conditions, which is applicable to the long-term contamination, provides some explanations for these accumulation differences between the species with respect to influences by different ecological and physiological factors.

  5. Population and community ecology of the rare plant amsinckia grandiflora

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, T.M.

    1996-11-01

    Research was conducted between the fall of 1992 and the spring on the population and community ecology of the rare annual plant, Amsinckia glandiflora (Gray) Kleeb. ex Greene (Boraginaceae). The research goal was to investigate the causes of the species rarity, data useful to restorative efforts. The work focused on the examination of competitive suppression by exotic annual grasses; comparisons with common, weedy congener; and the role of litter cover and seed germination and seedling establishment. Annual exotic grasses reduced A. grandiflora reproductive output to a greater extent than did the native perennial bunch grass.

  6. PHYSIOLOGY OF ION TRANSPORT ACROSS THE TONOPLAST OF HIGHER PLANTS.

    Science.gov (United States)

    Barkla, Bronwyn J.; Pantoja, Omar

    1996-06-01

    The vacuole of plant cells plays an important role in the homeostasis of the cell. It is involved in the regulation of cytoplasmic pH, sequestration of toxic ions and xenobiotics, regulation of cell turgor, storage of amino acids, sugars and CO2 in the form of malate, and possibly as a source for elevating cytoplasmic calcium. All these activities are driven by two primary active transport mechanisms present in the vacuolar membrane (tonoplast). These two mechanisms employ high-energy metabolites to pump protons into the vacuole, establishing a proton electrochemical potential that mediates the transport of a diverse range of solutes. Within the past few years, great advances at the molecular and functional levels have been made on the characterization and identification of these mechanisms. The aim of this review is to summarize these studies in the context of the physiology of the plant cell.

  7. Impact of a plant-based diet on behavioural and physiological traits in sea bass (Dicentrarchus labrax)

    OpenAIRE

    Benhaim, David; Begout, Marie-laure; Pean, Samuel; Manca, Michael; Prunet, Patrick; Chatain, Beatrice

    2013-01-01

    Replacing aquaculture feeds based on fisheries-derived resources with plant-based diets could be a relevant strategy to improve the sustainability of aquaculture. Recent studies on sea bass have shown that the total and early replacement of marine products by plant products would have a moderate effect on fish growth and body lipid content. Whether a plant-based diet impacts behavioural and physiological traits possibly linked to fish welfare, is not known, however. Here, we studied the effec...

  8. Water supplementation affects the behavioral and physiological ecology of Gila monsters (Heloderma suspectum) in the Sonoran Desert.

    Science.gov (United States)

    Davis, Jon R; DeNardo, Dale F

    2009-01-01

    In desert species, seasonal peaks in animal activity often correspond with times of higher rainfall. However, the underlying reason for such seasonality can be hard to discern because the rainy season is often associated with shifts in temperature as well as water and food availability. We used a combination of the natural climate pattern of the Sonoran Desert and periodic water supplementation to determine the extent to which water intake influenced both the behavioral ecology and the physiological ecology of a long-lived desert lizard, the Gila monster (Heloderma suspectum) (Cope 1869). Water-supplemented lizards had lower plasma osmolality (i.e., were more hydrated) and maintained urinary bladder water reserves better during seasonal drought than did control lizards. During seasonal drought, water-supplemented lizards were surface active a significantly greater proportion of time than were controls. This increased surface activity can lead to greater food acquisition for supplemental Gila monsters because tail volume (an index of caudal lipid stores) was significantly greater in supplemented lizards compared with controls in one of the two study years.

  9. Planting spacing and NK fertilizing on physiological indexes and fruit production of papaya under semiarid climate

    Directory of Open Access Journals (Sweden)

    Eduardo Monteiro Santos

    2015-01-01

    Full Text Available ABSTRACT The nutritional requirements of papaya (Carica papaya L. increase continuously throughout the crop cycle, especially for potassium and nitrogen, which are the most required nutrients and act on plant vital functions such as photosynthetic activity, respiration, transpiration and stomatal regulation. An experiment was conducted from November 2010 to December 2012 to evaluate physiological indexes and fruit production of papaya cv. Caliman-01 as a function of planting spacing and NK fertilizing. The experimental design consisted of randomized blocks, with treatments distributed in a factorial arrangement (2 × 4 × 4, using 2 planting spacing [simple rows (3.8 × 2.0 m and double rows (3.8 × 2.0 × 1.8 m], 4 nitrogen doses (320, 400, 480 and 560 g of N per plant-1 and 4 potassium doses (380, 475, 570 and 665 g of K2O per plant-1 with 4 replications of 3 plants each. The following variables were evaluated: leaf area index (LAI, leaf chlorophyll index (a, b and total index, intercepted photosynthetically active radiation (Int.PAR, in µmol∙m-2∙s-1, efficiency use of photosynthetically active radiation (Ef.PAR and fruit yield. The fruit production and physiological characteristics of papaya cv. Caliman-01 depend on planting spacing. Under the soil, climate and plant conditions of this study, 665 g of K2O and 320 g of N per plant under double spacing could be recommended for the production of papaya cv. Caliman-01.

  10. A computer-assisted personalized approach in an undergraduate plant physiology class

    Science.gov (United States)

    Artus; Nadler

    1999-04-01

    We used Computer-Assisted Personalized Approach (CAPA), a networked teaching and learning tool that generates computer individualized homework problem sets, in our large-enrollment introductory plant physiology course. We saw significant improvement in student examination performance with regular homework assignments, with CAPA being an effective and efficient substitute for hand-graded homework. Using CAPA, each student received a printed set of similar but individualized problems of a conceptual (qualitative) and/or quantitative nature with quality graphics. Because each set of problems is unique, students were encouraged to work together to clarify concepts but were required to do their own work for credit. Students could enter answers multiple times without penalty, and they were able to obtain immediate feedback and hints until the due date. These features increased student time on task, allowing higher course standards and student achievement in a diverse student population. CAPA handles routine tasks such as grading, recording, summarizing, and posting grades. In anonymous surveys, students indicated an overwhelming preference for homework in CAPA format, citing several features such as immediate feedback, multiple tries, and on-line accessibility as reasons for their preference. We wrote and used more than 170 problems on 17 topics in introductory plant physiology, cataloging them in a computer library for general access. Representative problems are compared and discussed.

  11. Identification an characterization of QTL underlying whole plant physiology in Arabidopsis taliana: 13C, stomatal conduction and transpiration efficiency

    NARCIS (Netherlands)

    Juenger, T.E.; McKay, J.K.; Hausmann, N.; Keurentjes, J.J.B.; Sen, S.; Stowe, K.A.; Dawson, T.E.; Simms, E.L.; Richards, J.H.

    2005-01-01

    Water limitation is one of the most important factors limiting crop productivity world-wide and has likely been an important selective regime influencing the evolution of plant physiology. Understanding the genetic and physiological basis of drought adaptation is therefore important for improving

  12. Vascular plants of the Nevada Test Site and Central-Southern Nevada: ecologic and geographic distributions

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1976-01-01

    The physical environment of the Nevada Test Site and surrounding area is described with regard to physiography, geology, soils, and climate. A discussion of plant associations is given for the Mojave Desert, Transition Desert, and Great Basin Desert. The vegetation of disturbed sites is discussed with regard to introduced species as well as endangered and threatened species. Collections of vascular plants were made during 1959 to 1975. The plants, belonging to 1093 taxa and 98 families are listed together with information concerning ecologic and geographic distributions. Indexes to families, genera, and species are included. (HLW)

  13. Study on human physiological parameters for monitoring of mental works in the nuclear power plant

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Yoshino, Kenji; Ishii, Keiichiro; Nakasa, Hiroyasu; Shigeta, Sadayoshi.

    1982-01-01

    To prevent outbreaks of the wrong operation and judgement in the nuclear power plant, human conditions of body and mind should be taken into consideration particularly for the mental works such as inspection and monitoring. To estimate human conditions quantitatively by the measurement of human physiological parameters, this paper presents the following experimental results. (1) Physiological parameters are estimated from both sides of biological meanings and the applicability to field works. (2) Time variation of the parameters is investigated in mental simulation tests in order to select a good indicator of mental fatigue. (3) Correlation analysis between mental fatigue indexes and physiological parameters shows that the heart rate is a best indicator. (author)

  14. Plant Survival and Mortality during Drought Can be Mediated by Co-occurring Species' Physiological and Morphological Traits: Results from a Model

    Science.gov (United States)

    Tai, X.; Mackay, D. S.

    2015-12-01

    Interactions among co-occurring species are mediated by plant physiology, morphology and environment. Without proper mechanisms to account for these factors, it remains difficult to predict plant mortality/survival under changing climate. A plant ecophysiological model, TREES, was extended to incorporate co-occurring species' belowground interaction for water. We used it to examine the interaction between two commonly co-occurring species during drought experiment, pine (Pinus edulis) and juniper (Juniperus monosperma), with contrasting physiological traits (vulnerability to cavitation and leaf water potential regulation). TREES was parameterized and validated using field-measured plant physiological traits. The root architecture (depth, profile, and root area to leaf area ratio) of juniper was adjusted to see how root morphology could affect the survival/mortality of its neighboring pine under both ambient and drought conditions. Drought suppressed plant water and carbon uptake, as well increased the average percentage loss of conductivity (PLC). Pine had 59% reduction in water uptake, 48% reduction in carbon uptake, and 38% increase in PLC, while juniper had 56% reduction in water uptake, 50% reduction in carbon and 29% increase in PLC, suggesting different vulnerability to drought as mediated by plant physiological traits. Variations in juniper root architecture further mediated drought stress on pine, from negative to positive. Different juniper root architecture caused variations in response of pine over drought (water uptake reduction ranged 0% ~63%, carbon uptake reduction ranged 0% ~ 70%, and PLC increase ranged 2% ~ 91%). Deeper or more uniformly distributed roots of juniper could effectively mitigate stress experienced by pine. In addition, the total water and carbon uptake tended to increase as the ratio of root area to leaf area increased while PLC showed non-monotonic response, suggesting the potential trade-off between maximizing resource uptake and

  15. Between Design and Ecology

    DEFF Research Database (Denmark)

    Bjørn, Mona Chor

    such vegetation, based on concepts and theories in plant community ecology. If these communities are based on local forbs there is a continuum in anthropogenic intervention from designed and intensively maintained to semi-natural herbaceous vegetation. Results from a large field experiment show that, after three...... colonised by grasses and eventually woody species. This thesis adds useful basic knowledge in plant community ecology and species-specific growth, which are relevant to research and planning in landscape architecture and ecology....

  16. Does plasticity in plant physiological traits explain the rapid increase in water use efficiency? An ecohydrological modeling approach

    Science.gov (United States)

    Mastrotheodoros, Theodoros; Fatichi, Simone; Pappas, Christoforos; Molnar, Peter; Burlando, Paolo

    2016-04-01

    The rise of atmospheric CO2 concentration is expected to stimulate plant productivity by enhancing photosynthesis and reducing stomatal conductance and thus increasing plant water use efficiency (WUE) worldwide. An analysis of eddy covariance flux tower data from 21 forested ecosystems across the north hemisphere detected an unexpectedly large increase in WUE (Keenan et al, 2013), which was six times larger than the increase found by most previous studies based on controlled experiments (e.g., FACE), leaf-scale analyses, and numerical modelling. This increase could be solely attributed to the increase in atmospheric CO2 since other confounding factors were ruled out. Here, we investigate the potential contribution of plant plasticity, reflected in the temporal adjustment of major plant physiological traits, on changes in WUE using the ecohydrological model Tethys and Chloris (T&C). We hypothesize that the increase in WUE can be attributed to small variations in plant physiological traits, undetectable through observations, eventually triggered by the atmospheric CO2 increase. Data from the 21 sites in the above mentioned study are used to force the model. Simulation results with and without plasticity in the physiological traits (i.e., model parameters in our numerical experiments) are compared with the observed trends in WUE. We test several plant adaptation strategies in being effective in explaining the observed increase in WUE using a multifactorial numerical experiment in which we perturb in a systematic way selected plant parameters. Keenan, T. F., Hollinger, D. Y., Bohrer, G., Dragoni, D., Munger, J. W., Schmid, H. P., and Richardson, A. D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324-7.

  17. Metagenomic analysis of an ecological wastewater treatment plant's microbial communities and their potential to metabolize pharmaceuticals.

    Science.gov (United States)

    Balcom, Ian N; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm.

  18. Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants.

    Science.gov (United States)

    Desalme, Dorine; Binet, Philippe; Chiapusio, Geneviève

    2013-05-07

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that raise environmental concerns because of their toxicity. Their accumulation in vascular plants conditions harmful consequences to human health because of their position in the food chain. Consequently, understanding how atmospheric PAHs are taken up in plant tissues is crucial for risk assessment. In this review we synthesize current knowledge about PAH atmospheric deposition, accumulation in both gymnosperms and angiosperms, mechanisms of transfer, and ecological and physiological effects. PAHs emitted in the atmosphere partition between gas and particulate phases and undergo atmospheric deposition on shoots and soil. Most PAH concentration data from vascular plant leaves suggest that contamination occurs by both direct (air-leaf) and indirect (air-soil-root) pathways. Experimental studies demonstrate that PAHs affect plant growth, interfering with plant carbon allocation and root symbioses. Photosynthesis remains the most studied physiological process affected by PAHs. Among scientific challenges, identifying specific physiological transfer mechanisms and improving the understanding of plant-symbiont interactions in relation to PAH pollution remain pivotal for both fundamental and applied environmental sciences.

  19. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight

    Science.gov (United States)

    Zupanska, Agata K.; Schultz, Eric R.; Yao, JiQiang; Sng, Natasha J.; Zhou, Mingqi; Callaham, Jordan B.; Ferl, Robert J.; Paul, Anna-Lisa

    2017-11-01

    Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.

  20. Sloth biology: an update on their physiological ecology, behavior and role as vectors of arthropods and arboviruses

    Directory of Open Access Journals (Sweden)

    Gilmore D.P.

    2001-01-01

    Full Text Available This is a review of the research undertaken since 1971 on the behavior and physiological ecology of sloths. The animals exhibit numerous fascinating features. Sloth hair is extremely specialized for a wet tropical environment and contains symbiotic algae. Activity shows circadian and seasonal variation. Nutrients derived from the food, particularly in Bradypus, only barely match the requirements for energy expenditure. Sloths are hosts to a fascinating array of commensal and parasitic arthropods and are carriers of various arthropod-borne viruses. Sloths are known reservoirs of the flagellate protozoan which causes leishmaniasis in humans, and may also carry trypanosomes and the protozoan Pneumocystis carinii.

  1. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations

    Directory of Open Access Journals (Sweden)

    Jacob J. Herman

    2011-12-01

    Full Text Available Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in some cases, these inherited environmental effects can include specific growth adjustments that are functionally adaptive to the parental conditions that induced them, which can range from contrasting states of controlled laboratory environments to the complex habitat variation encountered by natural plant populations. Preliminary findings suggest that adaptive transgenerational effects can be transmitted by means of diverse mechanisms including changes to seed provisioning and biochemistry, and epigenetic modifications such as DNA methylation that can persist across multiple generations. These non-genetically inherited adaptations can influence the ecological breadth and evolutionary dynamics of plant taxa and promote the spread of invasive plants. Interdisciplinary studies that join mechanistic and evolutionary ecology approaches will be an important source of future insights.

  2. Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations.

    Science.gov (United States)

    Herman, Jacob J; Sultan, Sonia E

    2011-01-01

    Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in some cases, these inherited environmental effects can include specific growth adjustments that are functionally adaptive to the parental conditions that induced them, which can range from contrasting states of controlled laboratory environments to the complex habitat variation encountered by natural plant populations. Preliminary findings suggest that adaptive transgenerational effects can be transmitted by means of diverse mechanisms including changes to seed provisioning and biochemistry, and epigenetic modifications such as DNA methylation that can persist across multiple generations. These non-genetically inherited adaptations can influence the ecological breadth and evolutionary dynamics of plant taxa and promote the spread of invasive plants. Interdisciplinary studies that join mechanistic and evolutionary ecology approaches will be an important source of future insights.

  3. Evolution of polyploidy and the diversification of plant-pollinator interactions.

    Science.gov (United States)

    Thompson, John N; Merg, Kurt F

    2008-08-01

    One of the major mechanisms of plant diversification has been the evolution of polyploid populations that differ from their diploid progenitors in morphology, physiology, and environmental tolerances. Recent studies have indicated that polyploidy may also have major effects on ecological interactions with herbivores and pollinators. We evaluated pollination of sympatric diploid and tetraploid plants of the rhizomatous herb Heuchera grossulariifolia (Saxifragaceae) along the Selway and Salmon Rivers of northern Idaho, USA, during four consecutive years. Previous molecular and ecological analyses had indicated that the tetraploid populations along these two river systems are independently derived and differ from each other in multiple traits. In each region, we evaluated floral visitation rate by all insect visitors, pollination efficacy of all major visitors, and relative contribution of all major pollinators to seed set. In both regions, diploid and tetraploid plants attracted different suites of floral visitors. Most pollination was attributable to several bee species and the moth Greya politella. Lasioglossum bees preferentially visited diploid plants at Lower Salmon but not at Upper Selway, queen Bombus centralis preferentially visited tetraploids at both sites, and worker B. centralis differed between sites in their cytotype preference. Hence, diploid and autotetraploid H. grossulariifolia plants act essentially as separate ecological species and may experience partial reproductive isolation through differential visitation and pollination by their major floral visitors. Overall the results, together with recent results from other studies, suggest that the repeated evolution of polyploidy in plants may contribute importantly to the structure and diversification of ecological interactions in terrestrial communities.

  4. MORPHOLOGICAL AND PHYSIOLOGICAL CHANGES ON Schizolobium parahybaVAR .Amazonicum(HUBER EX DUCKE BARNEBY PLANTS INTOXICATED BY GLYPHOSATE

    Directory of Open Access Journals (Sweden)

    Kaléo Dias Pereira

    2017-06-01

    Full Text Available The objective of this study was to evaluate the morphological and physiological changes in paricá plants (Schizolobium parahyba var. amazonicum intoxicated by glyphosate. The experiment was conducted in a protected environment using paricá plants during their planting stage, which were intoxicated with increasing doses of glyphosate: 0 (control; 43.2; 86.2; 129.6 and 172.8 g.ha-1. At 7 and 21 days after the application of the herbicide, the photosynthesis, transpiration, stomatal conductance and leaf temperature were measured. The visual intoxication degree and the growth of the shoot and the root of the plants were evaluated 21 days after the application. Paricá shows symptoms of visual intoxication characterized by chlorosis/winding, evolving to necrosis/abscission of the youngest leaflets. The growth of the stem and the roots of the intoxicated plants is preserved; however, an expressive leaf loss occurs, and paricá may have adaptation mechanisms to tolerate the action of the herbicide molecule. The photosynthesis decrease promoted by an indirect action of glyphosate represents the main reduction on the growth of plants. The decrease on the stomatal conductance, which was the most sensitive physiological variable to glyphosate, resulted in lower transpiration rates, which, consequently, caused increases on the leaf temperature.

  5. Utility of stable isotope analysis in studying foraging ecology of herbivores: Examples from moose and caribou

    Science.gov (United States)

    Ben-David, Merav; Shochat, Einav; Adams, Layne G.

    2001-01-01

    Recently, researchers emphasized that patterns of stable isotope ratios observed at the individual level are a result of an interaction between ecological, physiological, and biochemical processes. Isotopic models for herbivores provide additional complications because those mammals consume foods that have high variability in nitrogen concentrations. In addition, distribution of amino acids in plants may differ greatly from that required by a herbivore. At northern latitudes, where the growing season of vegetation is short, isotope ratios in herbivore tissues are expected to differ between seasons. Summer ratios likely reflect diet composition, whereas winter ratios would reflect diet and nutrient recycling by the animals. We tested this hypothesis using data collected from blood samples of caribou (Rangifer tarandus) and moose (Alces alces) in Denali National Park and Preserve, Alaska, USA. Stable isotope ratios of moose and caribou were significantly different from each other in late summer-autumn and winter. Also, late summer-autumn and winter ratios differed significantly between seasons in both species. Nonetheless, we were unable to evaluate whether differences in seasonal isotopic ratios were a result of diet selection or a response to nutrient recycling. We believe that additional studies on plant isotopic ratios as related to ecological factors in conjunction with investigations of diet selection by the herbivores will enhance our understanding of those interactions. Also, controlled studies investigating the relation between diet and physiological responses in herbivores will increase the utility of isotopic analysis in studying foraging ecology of herbivores.

  6. Plant physiology in theory and practice: an analysis of the WBE model for vascular plants.

    Science.gov (United States)

    Petit, Giai; Anfodillo, Tommaso

    2009-07-07

    The theoretical model of West, Brown and Enquist (hereafter WBE) proposed the fractal geometry of the transport system as the origin of the allometric scaling laws observed in nature. The WBE model has either been criticized for some restrictive and biologically unrealistic constraints or its reliability debated on the evidence of empirical tests. In this work, we revised the structure of the WBE model for vascular plants, highlighting some critical assumptions and simplifications and discuss them with regard to empirical evidence from plant anatomy and physiology. We conclude that the WBE model had the distinct merit of shedding light on some important features such as conduit tapering. Nonetheless, it is over-simplistic and a revised model would be desirable with an ontogenetic perspective that takes some important phenomena into account, such as the transformation of the inner sapwood into heartwood and the effect of hydraulic constraints in limiting the growth in height.

  7. CAUSES OF PHYSIOLOGICAL ABNORMALITIES IN TOMATO AND CUCUMBER PLANTS GROWN IN GREENHOUSES IN THE SOUTH OF RUSSIA

    Directory of Open Access Journals (Sweden)

    A. Yu. Barbaritskiy

    2017-01-01

    Full Text Available The physiological abnormalities of plants under protected conditions are one of the most common and economically dangerous phenomena for the grower. One of the frequent causes of this phenomenon in plastic houses is the damage of plants by herbicides; the symptoms of this are very similar to the damages of viral infections.

  8. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities

    Directory of Open Access Journals (Sweden)

    Martin A. Mörsdorf

    2015-03-01

    Full Text Available In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in

  9. Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities.

    Science.gov (United States)

    Mörsdorf, Martin A; Ravolainen, Virve T; Støvern, Leif Einar; Yoccoz, Nigel G; Jónsdóttir, Ingibjörg Svala; Bråthen, Kari Anne

    2015-01-01

    In ecology, expert knowledge on habitat characteristics is often used to define sampling units such as study sites. Ecologists are especially prone to such approaches when prior sampling frames are not accessible. Here we ask to what extent can different approaches to the definition of sampling units influence the conclusions that are drawn from an ecological study? We do this by comparing a formal versus a subjective definition of sampling units within a study design which is based on well-articulated objectives and proper methodology. Both approaches are applied to tundra plant communities in mesic and snowbed habitats. For the formal approach, sampling units were first defined for each habitat in concave terrain of suitable slope using GIS. In the field, these units were only accepted as the targeted habitats if additional criteria for vegetation cover were fulfilled. For the subjective approach, sampling units were defined visually in the field, based on typical plant communities of mesic and snowbed habitats. For each approach, we collected information about plant community characteristics within a total of 11 mesic and seven snowbed units distributed between two herding districts of contrasting reindeer density. Results from the two approaches differed significantly in several plant community characteristics in both mesic and snowbed habitats. Furthermore, differences between the two approaches were not consistent because their magnitude and direction differed both between the two habitats and the two reindeer herding districts. Consequently, we could draw different conclusions on how plant diversity and relative abundance of functional groups are differentiated between the two habitats depending on the approach used. We therefore challenge ecologists to formalize the expert knowledge applied to define sampling units through a set of well-articulated rules, rather than applying it subjectively. We see this as instrumental for progress in ecology as only rules

  10. The Effect of Zinc Oxide Nanoparticles on Safflower Plant Growth and Physiology

    Directory of Open Access Journals (Sweden)

    Z. Hafizi

    2018-02-01

    Full Text Available In this paper, a study of the effect of ZnO nanoparticles on safflower growth and physiology was performed. Each of these elements plays a particular role in the plant life, the presence of these elements is necessary for plant’s life cycle and growth. Zinc deficiency causes the biggest problems in safflower’s production. Considering the importance of nanoparticles in today's world, this research investigated the effect of Zinc oxide nanoparticles on the concentration of guaiacol peroxidase, polypeptide oxidase, dehydrogenase and malondialdehyde in four plant sample groups in greenhouse and laboratory conditions. Results of showed that malondialdehyde enzyme increased with different treatments of various concentrations of Zinc oxide. The enzyme guaiacol oxidase increased at concentrations of 100 mg/L and polyphenol oxide at concentrations of 10 and 500 mg/L and dehydrogenase in 1000 mg/L and decreased in other treatments. In addition to showing the effect of nanoparticles in plants, these findings determine the beneficial concentrations of nanoparticles that have a positive effect on the level of enzymes in plants.

  11. A global database of sap flow measurements (SAPFLUXNET) to link plant and ecosystem physiology

    Science.gov (United States)

    Poyatos, Rafael; Granda, Víctor; Flo, Víctor; Molowny-Horas, Roberto; Mencuccini, Maurizio; Oren, Ram; Katul, Gabriel; Mahecha, Miguel; Steppe, Kathy; Martínez-Vilalta, Jordi

    2017-04-01

    Regional and global networks of ecosystem CO2 and water flux monitoring have dramatically increased our understanding of ecosystem functioning in the last 20 years. More recently, analyses of ecosystem-level fluxes have successfully incorporated data streams at coarser (remote sensing) and finer (plant traits) organisational scales. However, there are few data sources that capture the diel to seasonal dynamics of whole-plant physiology and that can provide a link between organism- and ecosystem-level function. Sap flow measured in plant stems reveals the temporal patterns in plant water transport, as mediated by stomatal regulation and hydraulic architecture. The widespread use of thermometric methods of sap flow measurement since the 1990s has resulted in numerous data sets for hundreds of species and sites worldwide, but these data have remained fragmentary and generally unavailable for syntheses of regional to global scope. We are compiling the first global database of sub-daily sap flow measurements in individual plants (SAPFLUXNET), aimed at unravelling the environmental and biotic drivers of plant transpiration regulation globally. I will present the SAPFLUXNET data infrastructure and workflow, which is built upon flexible, open-source computing tools within the R environment (dedicated R packages and classes, interactive documents and apps with Rmarkdown and Shiny). Data collection started in mid-2016, we have already incorporated > 50 datasets representing > 40 species and > 350 individual plants, globally distributed, and the number of contributed data sets is increasing rapidly. I will provide a general overview of the distribution of available data sets according to climate, measurement method, species, functional groups and plant size attributes. In parallel to the sap flow data compilation, we have also collated published results from calibrations of sap flow methods, to provide a first quantification on the variability associated with different sap

  12. Complex Outcomes from Insect and Weed Control with Transgenic Plants: Ecological Surprises?

    Directory of Open Access Journals (Sweden)

    Thomas Bøhn

    2017-09-01

    Full Text Available Agriculture is fundamental for human survival through food production and is performed in ecosystems that, while simplified, still operate along ecological principles and retain complexity. Agricultural plants are thus part of ecological systems, and interact in complex ways with the surrounding terrestrial, soil, and aquatic habitats. We discuss three case studies that demonstrate how agricultural solutions to pest and weed control, if they overlook important ecological and evolutionary factors, cause “surprises”: (i the fast emergence of resistance against the crop-inserted Bt-toxin in South Africa, (ii the ecological changes generated by Bt-cotton landscapes in China, and (iii the decline of the monarch butterfly, Danaus plexippus, in North America. The recognition that we work with complex systems is in itself important, as it should limit the belief in reductionist solutions. Agricultural practices lacking eco-evolutionary understanding result in “surprises” like resistance evolution both in weeds and pest insects, risking the reappearance of the “pesticide treadmill”—with increased use of toxic pesticides as the follow-up. We recommend prioritization of research that counteracts the tendencies of reductionist approaches. These may be beneficial on a short term, but with trade-off costs on a medium- to long-term. Such costs include loss of biodiversity, ecosystem services, long-term soil productivity, pollution, and reduced food quality.

  13. Climate change as an ecosystem architect: implications to rare plant ecology, conservation, and restoration

    Science.gov (United States)

    Constance I. Millar

    2003-01-01

    Recent advances in earth system sciences have revealed significant new information relevant to rare plant ecology and conservation. Analysis of climate change at high resolution with new and precise proxies of paleotemperatures reveals a picture over the past two million years of oscillatory climate change operating simultaneously at multiple timescales. Low-frequency...

  14. Role of population genetics in guiding ecological responses to climate.

    Science.gov (United States)

    Rehfeldt, Gerald E; Leites, Laura P; Joyce, Dennis G; Weiskittel, Aaron R

    2018-02-01

    Population responses to climate were assessed using 3-7 years height growth data gathered for 266 populations growing in 12 common gardens established in the 1980s as part of five disparate studies of Pinus contorta var. latifolia. Responses are interpreted according to three concepts: the ecological optimum, the climate where a population is competitively exclusive and in which, therefore, it occurs naturally; the physiological optimum, the climate where a population grows best but is most often competitively excluded; and growth potential, the innate capacity for growth at the physiological optimum. Statistical analyses identified winter cold, measured by the square root of negative degree-days calculated from the daily minimum temperature (MINDD0 1/2 ), as the climatic effect most closely related to population growth potential; the colder the winter inhabited by a population, the lower its growth potential, a relationship presumably molded by natural selection. By splitting the data into groups based on population MINDD0 1/2 and using a function suited to skewed normal distributions, regressions were developed for predicting growth from the distance in climate space (MINDD0 1/2 ) populations had been transferred from their native location to a planting site. The regressions were skewed, showing that the ecological optimum of most populations is colder than the physiological optimum and that the discrepancy between the two increases as the ecological optimum becomes colder. Response to climate change is dependent on innate growth potential and the discrepancy between the two optima and, therefore, is population-specific, developing out of genotype-environment interactions. Response to warming in the short-term can be either positive or negative, but long term responses will be negative for all populations, with the timing of the demise dependent on the amount of skew. The results pertain to physiological modeling, species distribution models, and climate

  15. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus)

    Science.gov (United States)

    Oszust, Karolina; Frąc, Magdalena; Gryta, Agata; Bilińska, Nina

    2014-01-01

    The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions) significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential). Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a) ecological based on the use of probiotic preparations and organic fertilization (b) conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA) was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP) of PCR ammonia monooxygenase α-subunit (amoA) gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application. PMID:24897025

  16. The Influence of Ecological and Conventional Plant Production Systems on Soil Microbial Quality under Hops (Humulus lupulus

    Directory of Open Access Journals (Sweden)

    Karolina Oszust

    2014-06-01

    Full Text Available The knowledge about microorganisms—activity and diversity under hop production is still limited. We assumed that, different systems of hop production (within the same soil and climatic conditions significantly influence on the composition of soil microbial populations and its functional activity (metabolic potential. Therefore, we compared a set of soil microbial properties in the field experiment of two hop production systems (a ecological based on the use of probiotic preparations and organic fertilization (b conventional—with the use of chemical pesticides and mineral fertilizers. Soil analyses included following microbial properties: The total number microorganisms, a bunch of soil enzyme activities, the catabolic potential was also assessed following Biolog EcoPlates®. Moreover, the abundance of ammonia-oxidizing archaea (AOA was characterized by terminal restriction fragment length polymorphism analysis (T-RFLP of PCR ammonia monooxygenase α-subunit (amoA gene products. Conventional and ecological systems of hop production were able to affect soil microbial state in different seasonal manner. Favorable effect on soil microbial activity met under ecological, was more probably due to livestock-based manure and fermented plant extracts application. No negative influence on conventional hopyard soil was revealed. Both type of production fulfilled fertilizing demands. Under ecological production it was due to livestock-based manure fertilizers and fermented plant extracts application.

  17. Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Intawongse, Marisa [Biomolecular and Biomedical Research Centre, School of Applied Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom); Dean, John R. [Biomolecular and Biomedical Research Centre, School of Applied Sciences, University of Northumbria at Newcastle, Ellison Building, Newcastle upon Tyne NE1 8ST (United Kingdom)], E-mail: john.dean@unn.ac.uk

    2008-03-15

    The oral bioaccessibility of metals in vegetable plants grown on contaminated soil was assessed. This was done using the physiologically-based extraction test (PBET) to simulate the human digestion of plant material. A range of vegetable plants, i.e. carrot, lettuce, radish and spinach, were grown on metal contaminated soil. After reaching maturity the plants were harvested and analysed for their total metal content (i.e. Cr, Cd, Cu, Fe, Mn, Mo, Ni, Pb and Zn) by inductively coupled plasma-mass spectrometry (ICP-MS). The plant samples were then subsequently extracted using an in vitro gastrointestinal approach or PBET to assess the likelihood of oral bioaccessibility if the material was consumed by humans. - Evaluation of a physiologically-based extraction test to assess the risk to humans of consuming contaminated vegetables.

  18. Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil

    International Nuclear Information System (INIS)

    Intawongse, Marisa; Dean, John R.

    2008-01-01

    The oral bioaccessibility of metals in vegetable plants grown on contaminated soil was assessed. This was done using the physiologically-based extraction test (PBET) to simulate the human digestion of plant material. A range of vegetable plants, i.e. carrot, lettuce, radish and spinach, were grown on metal contaminated soil. After reaching maturity the plants were harvested and analysed for their total metal content (i.e. Cr, Cd, Cu, Fe, Mn, Mo, Ni, Pb and Zn) by inductively coupled plasma-mass spectrometry (ICP-MS). The plant samples were then subsequently extracted using an in vitro gastrointestinal approach or PBET to assess the likelihood of oral bioaccessibility if the material was consumed by humans. - Evaluation of a physiologically-based extraction test to assess the risk to humans of consuming contaminated vegetables

  19. Human factors estimation methods using physiological informations

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Yoshino, Kenji; Nakasa, Hiroyasu

    1984-01-01

    To enhance the operational safety in the nuclear power plant, it is necessary to decrease abnormal phenomena due to human errors. Especially, it is essential to basically understand human behaviors under the work environment for plant maintenance workers, inspectors, and operators. On the above stand point, this paper presents the results of literature survey on the present status of human factors engineering technology applicable to the nuclear power plant and also discussed the following items: (1) Application fields where the ergonomical evaluation is needed for workers safety. (2) Basic methodology for investigating the human performance. (3) Features of the physiological information analysis among various types of ergonomical techniques. (4) Necessary conditions for the application of in-situ physiological measurement to the nuclear power plant. (5) Availability of the physiological information analysis. (6) Effectiveness of the human factors engineering methodology, especially physiological information analysis in the case of application to the nuclear power plant. The above discussions lead to the demonstration of high applicability of the physiological information analysis to nuclear power plant, in order to improve the work performance. (author)

  20. Ecological modules and roles of species in heathland plant-insect flower visitor networks

    DEFF Research Database (Denmark)

    Dupont, Yoko; Olesen, Jens Mogens

    2009-01-01

    1.  Co-existing plants and flower-visiting animals often form complex interaction networks. A long-standing question in ecology and evolutionary biology is how to detect nonrandom subsets (compartments, blocks, modules) of strongly interacting species within such networks. Here we use a network...... analytical approach to (i) detect modularity in pollination networks, (ii) investigate species composition of modules, and (iii) assess the stability of modules across sites. 2.  Interactions between entomophilous plants and their flower-visitors were recorded throughout the flowering season at three...... heathland sites in Denmark, separated by ≥ 10 km. Among sites, plant communities were similar, but composition of flower-visiting insect faunas differed. Visitation frequencies of visitor species were recorded as a measure of insect abundance. 3.  Qualitative (presence-absence) interaction networks were...

  1. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  2. Extension of the irradiation system at TIARA for production of radioisotopes to be used in plant physiology

    International Nuclear Information System (INIS)

    Ishioka, N.S.; Watanabe, S.; Fujimaki, S.; Sakamoto, K.; Matsuhashi, S.

    2005-01-01

    A target irradiation system for radioisotope production at the TIARA AVF cyclotron facility has been improved for extending physiological studies of plants. Experiments using a position imaging technique require a variety of positron-emitting radioisotopes and their labelled compounds. Therefore, a compact revolver equipped with six target cambers for gas and liquid targets were newly constructed, in addition to the original target irradiation system consisting of two solid target chambers and one gas target chamber, placed on the movable table. The control system was also reconstructed with a local area network for communication between the control station beside the irradiation port and the hot laboratory. Use of this system enables us to produce routinely positron-emitting tracers for plant physiology. (author)

  3. Ecological analyses and applications

    International Nuclear Information System (INIS)

    Brocksen, R.W.

    1977-01-01

    Progress is reported on the following: analysis of ecological impacts of construction and operation of nuclear power plants; fossil energy environmental project; ecological analysis of geothermal energy development; HUD modular integrated utility systems; expansion of uranium enrichment facilities at Portsmouth; environmental standard review plans; environmental assessment of cooling reservoirs; and analysis of fish impingement at power plants in the southeastern United States

  4. Beyond cellular detoxification: a plethora of physiological roles for MDR transporter homologs in plants

    Science.gov (United States)

    Remy, Estelle; Duque, Paula

    2014-01-01

    Higher plants possess a multitude of Multiple Drug Resistance (MDR) transporter homologs that group into three distinct and ubiquitous families—the ATP-Binding Cassette (ABC) superfamily, the Major Facilitator Superfamily (MFS), and the Multidrug And Toxic compound Extrusion (MATE) family. As in other organisms, such as fungi, mammals, and bacteria, MDR transporters make a primary contribution to cellular detoxification processes in plants, mainly through the extrusion of toxic compounds from the cell or their sequestration in the central vacuole. This review aims at summarizing the currently available information on the in vivo roles of MDR transporters in plant systems. Taken together, these data clearly indicate that the biological functions of ABC, MFS, and MATE carriers are not restricted to xenobiotic and metal detoxification. Importantly, the activity of plant MDR transporters also mediates biotic stress resistance and is instrumental in numerous physiological processes essential for optimal plant growth and development, including the regulation of ion homeostasis and polar transport of the phytohormone auxin. PMID:24910617

  5. Biological/ecological investigations parallel to wind power plant construction and operation. Final report. Biologisch-oekologische Begleituntersuchungen zum Bau und Betrieb von Windkraftanlagen. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, M; Clemens, T; Grote, G; Hartmann, G; Hartwig, E; Lammen, C; Vauk-Hentzelt, E

    1990-01-01

    In view of the fact that there is no validated knowledge in Germany on the environmental effects of wind power plant construction and operation, the Norddeutsche Naturschutzakademie was asked by the BMFT to carry out a study in this field. The following problems were investigated: General ecological assessment and ornithological assessment of sites; investigations parallel to plant construction and operation, ecological effects; long-term effects; proposal of landscape conservation measures in regions with wind power plants. The report presents the results of the investigation. (BWI).

  6. A Computer-Assisted Personalized Approach in an Undergraduate Plant Physiology Class1

    Science.gov (United States)

    Artus, Nancy N.; Nadler, Kenneth D.

    1999-01-01

    We used Computer-Assisted Personalized Approach (CAPA), a networked teaching and learning tool that generates computer individualized homework problem sets, in our large-enrollment introductory plant physiology course. We saw significant improvement in student examination performance with regular homework assignments, with CAPA being an effective and efficient substitute for hand-graded homework. Using CAPA, each student received a printed set of similar but individualized problems of a conceptual (qualitative) and/or quantitative nature with quality graphics. Because each set of problems is unique, students were encouraged to work together to clarify concepts but were required to do their own work for credit. Students could enter answers multiple times without penalty, and they were able to obtain immediate feedback and hints until the due date. These features increased student time on task, allowing higher course standards and student achievement in a diverse student population. CAPA handles routine tasks such as grading, recording, summarizing, and posting grades. In anonymous surveys, students indicated an overwhelming preference for homework in CAPA format, citing several features such as immediate feedback, multiple tries, and on-line accessibility as reasons for their preference. We wrote and used more than 170 problems on 17 topics in introductory plant physiology, cataloging them in a computer library for general access. Representative problems are compared and discussed. PMID:10198076

  7. Water use, productivity and interactions among desert plants

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Water plays a central role affecting all aspects of the dynamics in aridland ecosystems. Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. The ecological studies in this project revolve around one fundamental premise: that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process. In contrast, hydrogen is not fractionated during water uptake through the root. Soil water availability in shallow, deep, and/or groundwater layers vary spatially; therefore hydrogen isotope ratios of xylem sap provide a direct measure of the water source currently used by a plant. The longer-term record of carbon and hydrogen isotope ratios is recorded annually in xylem tissues (tree rings). The research in this project addresses variation in stable isotopic composition of aridland plants and its consequences for plant performance and community-level interactions.

  8. Monitoring ethylene emissions from plants cultured for a controlled ecological life support system

    Science.gov (United States)

    Corey, Kenneth A.

    1995-01-01

    Emission of hydrocarbons and other volatile compounds by materials and organisms in closed environments will be a major concern in the design and management of advanced life support systems with a bioregenerative component. Ethylene, a simple hydrocarbon synthesized by plants, is involved in the elicitation of a wide range of physiological responses. In closed environments, ethylene may build up to levels which become physiologically active. In several growouts of 'Yecora Rojo' wheat in Kennedy Space Center's Biomass Production Chamber (BPC), it was observed that leaf flecking and rolling occurred in the sealed environment and was virtually eliminated when potassium permanganate was used to scrub the atmospheric environment. It was suggested that ethylene, which accumulated to about 60 ppb in the chamber and which was effectively absorbed by potassium permanganate, was responsible for the symptoms. The objectives of this work were to: (1) determine rates of ethylene evolution from lettuce (Lactuca sativa cultivar Waldemann's Green) and wheat (Triticum aestivum cultivar Yecora Rojo) plants during growth and development; (2) determine the effects of exposure of whole, vegetative stage plants to exogenous ethylene concentrations in the range of what would develop in closed environment growth chambers; and (3) develop predictive functions for changes in ethylene concentration that would develop under different cropping and closed environment configurations. Results will lead to the development of management strategies for ethylene in bioregenerative life support systems.

  9. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.

    Science.gov (United States)

    Shao, Hong-Bo; Chu, Li-Ye; Jaleel, C Abdul; Manivannan, P; Panneerselvam, R; Shao, Ming-An

    2009-01-01

    Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of

  10. About possibility of creation of ecologically pure, safe nuclear power plants on the basis of high-effective resonant neutron interaction with splitting substances

    International Nuclear Information System (INIS)

    Irdyncheyev, L.A.; Malofeyev, A.M.; Frid, E.S.; Abramov, E.P.

    1993-01-01

    Currently the most important problem in nuclear engineering is creation of ecologically pure, safe nuclear power plants in the context of real danger of global ecological pollution of the environment with long-lived fission products and the resultant transuranium nuclides. The problem can be solved by creating nuclear power plants on the basis of high-effective resonant interaction (HERI). Such power plants would provide the total cycle, including nuclear fuel production (Plutonium-239 from Uranium-238), combustion and waste products salvaging by way of transformation of radioactive nuclides into stable isotopes

  11. Physiology of man and animals in the Tenth Five-Year Plan: Proceedings of the Thirteenth Congress of the I. P. Pavlov All-Union Physiological Society

    Science.gov (United States)

    Lange, K. A.

    1980-01-01

    Research in the field of animal and human physiology is reviewed. The following topics on problems of physiological science and related fields of knowledge are discussed: neurophysiology and higher nervous activity, physiology of sensory systems, physiology of visceral systems, evolutionary and ecological physiology, physiological cybernetics, computer application in physiology, information support of physiological research, history and theory of development of physiology. Also discussed were: artificial intelligence, physiological problems of reflex therapy, correlation of structure and function of the brain, adaptation and activity, microcirculation, and physiological studies in nerve and mental diseases.

  12. Effect of low dosage biochar amendment on plant physiology parameters of sunflowers

    Science.gov (United States)

    María De la Rosa, José; Paneque, Marina; Franco-Navarro, Juan D.; Colmenero-Flores, José Manuel; Knicker, Heike

    2017-04-01

    Four different biochars were used as organic ameliorants in a typical agricultural soil of the Mediterranean region a (Calcic Cambisol). This field study was performed with plants of sunflower (Helianthus annuus L.) at the experimental station "La Hampa", located in the Guadalquivir river valley (SW Spain). The soil was amended with doses equivalent to 1.5 and 15 t ha-1 of the four biochars in two independent plantations. In addition, un-amended plots were prepared for comparison purposes 1. This study showed that the amendment with 1.5 t biochar ha-1 did not modify significantly soil properties, or the agronomic productivity of sunflowers. However, in spite of this low dose of biochar, positive effects on plant physiology were observed. The efficiency of Photosystem-II (quantum yield (QYPSII)), is a stress marker, related to the water status of the plant, and is reduced under drought stress. The QYPSII values of the plants grown with 1.5 t biochar ha-1 were higher than in the control and ranged between 72 and 77%. Values between 70 and 80% correspond to non-stressed (well-watered) sunflower plants. Biochar reduced stomatal conductance (gs, leaf transpiration) in both treatments. Therefore, the dependence of agronomic productivity on biochar dose was not observed, since both doses resulted in similar gs reductions. In C3 plants, such as sunflower, an increase of leaf area (LA) is usually associated to a decrease of gs caused by a reduction of stomatal frequency and increases the water use efficiency and drought tolerance 2. However, here no clear correlation could be established between biochar-induced LA stimulation and gs response after application of biochar. Thus, gs reduction was evident but not a consequence of LA increase. We hypothesize that biochar addition to soils alters anatomical and/or physiological parameters of the plants that in turn reduces stomatal conductance and increases water use efficiency of sunflower plants. After the last rain, increasing

  13. Plants in alpine environments

    Science.gov (United States)

    Germino, Matthew J.

    2014-01-01

    Alpine and subalpine plant species are of special interest in ecology and ecophysiology because they represent life at the climate limit and changes in their relative abundances can be a bellwether for climate-change impacts. Perennial life forms dominate alpine plant communities, and their form and function reflect various avoidance, tolerance, or resistance strategies to interactions of cold temperature, radiation, wind, and desiccation stresses that prevail in the short growing seasons common (but not ubiquitous) in alpine areas. Plant microclimate is typically uncoupled from the harsh climate of the alpine, often leading to substantially warmer plant temperatures than air temperatures recorded by weather stations. Low atmospheric pressure is the most pervasive, fundamental, and unifying factor for alpine environments, but the resulting decrease in partial pressure of CO2 does not significantly limit carbon gain by alpine plants. Factors such as tree islands and topographic features create strong heterogeneous mosaics of microclimate and snow cover that are reflected in plant community composition. Factors affecting tree establishment and growth and formation of treeline are key to understanding alpine ecology. Carbohydrate and other carbon storage, rapid development in a short growing season, and physiological function at low temperature are prevailing attributes of alpine plants. A major contemporary research theme asks whether chilling at alpine-treeline affects the ability of trees to assimilate the growth resources and particularly carbon needed for growth or whether the growth itself is limited by the alpine environment. Alpine areas tend to be among the best conserved, globally, yet they are increasingly showing response to a range of anthropogenic impacts, such as atmospheric deposition.

  14. How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation.

    Science.gov (United States)

    Pentzold, Stefan; Zagrobelny, Mika; Rook, Fred; Bak, Søren

    2014-08-01

    Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points, before and during feeding as well as during digestion, and at several levels such as the insects’ feeding behaviour, physiology and metabolism. Insect adaptations frequently circumvent or counteract the activity of the plant β-glucosidases, bioactivating enzymes that are a key element in the plant’s two-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists and specialists, and can act on different classes of defence compounds. We discuss how generalist and specialist insects appear to differ in their ability to use these different types of adaptations: in generalists, adaptations are often inducible, whereas in specialists they are often constitutive. Future studies are suggested to investigate in detail how insect adaptations act in combination to overcome plant chemical defences and to allow ecologically relevant conclusions.

  15. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil.

    Science.gov (United States)

    Saleem, Muhammad; Asghar, Hafiz Naeem; Zahir, Zahir Ahmad; Shahid, Muhammad

    2018-03-01

    Present study was conducted to evaluate the effect of lead tolerant plant growth promoting rhizobacteria (LTPGPR) on growth, physiology, yield, antioxidant activities and lead uptake in sunflower in soil contaminated with lead under pot conditions. Three pre-characterized LTPGP strains (S2 (Pseudomonas gessardii strain BLP141), S5 (Pseudomonas fluorescens A506) and S10 (Pseudomonas fluorescens strain LMG 2189)) were used to inoculate sunflower growing in soil contaminated with different levels (300, 600 and 900 mg kg -1 ) of lead by using lead nitrate salt as source of lead. Treatments were arranged according to completely randomized design with factorial arrangements. At harvesting, data regarding growth attributes (root shoot length, root shoot fresh and dry weights), yield per plant, physiological attributes (Chlorophyll 'a', 'b' and carotenoids content), antioxidant activities (Ascorbate peroxidase, catalase, superoxide dismutase and glutathione reductase), proline and malanodialdehyde content, and lead content in root, shoot and achenes of sunflower were recorded. Data were analysed by standard statistical procedures. Results showed that lead contamination reduced the plants growth, physiology and yield at all levels of lead stress. But application of LTPGPR in soil contaminated with lead improved plant growth, physiology, yield, and antioxidant activities, proline, and reduced the malanodialdehyde content (that is reduced by the application of different strains in lead contamination) of sunflower as compared to plants grown in soil without inoculation. Inoculation also promoted the uptake of lead in root, shoots and reduced the uptake of lead in achenes of plants as compared to plants in lead contamination without inoculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Sixth workshop on seedling physiology and growth problems in oak plantings (abstracts); 1995 September 18-20; Tomahawk, WI.

    Science.gov (United States)

    Ronald M. Teclaw

    1996-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination ,and natural regeneration for oaks are described in 29 abstracts.

  17. Eighth workshop on seedling physiology and growth problems in oak plantings (abstracts). 2001 September 9-12; Hiwassee, GA.

    Science.gov (United States)

    S. Sung; P.P. Kormanik; W.J. Ostrosina; J.G. Isebrands

    2002-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 21 abstracts.

  18. Comparative effects of partial rootzone drying and deficit irrigation on growth and physiology of tomato plants

    Directory of Open Access Journals (Sweden)

    Savić Slađana

    2009-01-01

    Full Text Available The effects of partial rootzone drying (PRD, deficit irrigation (DI, and full irrigation (FI on tomato physiology were investigated. In PRD and DI plants, leaf water potential values and stomatal conductance were significantly lower, while xylem ABA concentration was greater compared to FI plants. Photosynthesis was similar for all treatments. Water use efficiency was improved by PRD and DI, which reduced fruit dry weight, but had no effect on dry weight of leaves and stems.

  19. Despite phylogenetic effects, C3-C4 lineages bridge the ecological gap to C4 photosynthesis.

    Science.gov (United States)

    Lundgren, Marjorie R; Christin, Pascal-Antoine

    2017-01-01

    C 4 photosynthesis is a physiological innovation involving several anatomical and biochemical components that emerged recurrently in flowering plants. This complex trait evolved via a series of physiological intermediates, broadly termed 'C 3 -C 4 ', which have been widely studied to understand C 4 origins. While this research program has focused on biochemistry, physiology, and anatomy, the ecology of these intermediates remains largely unexplored. Here, we use global occurrence data and local habitat descriptions to characterize the niches of multiple C 3 -C 4 lineages, as well as their close C 3 and C 4 relatives. While C 3 -C 4 taxa tend to occur in warm climates, their abiotic niches are spread along other dimensions, making it impossible to define a universal C 3 -C 4 niche. Phylogeny-based comparisons suggest that, despite shifts associated with photosynthetic types, the precipitation component of the C 3 -C 4 niche is particularly lineage specific, being highly correlated with that of closely related C 3 and C 4 taxa. Our large-scale analyses suggest that C 3 -C 4 lineages converged toward warm habitats, which may have facilitated the transition to C 4 photosynthesis, effectively bridging the ecological gap between C 3 and C 4 plants. The intermediates retained some precipitation aspects of their C 3 ancestors' habitat, and likely transmitted them to their C 4 descendants, contributing to the diversity among C 4 lineages seen today. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. What is conservation physiology? Perspectives on an increasingly integrated and essential science†

    Science.gov (United States)

    Cooke, Steven J.; Sack, Lawren; Franklin, Craig E.; Farrell, Anthony P.; Beardall, John; Wikelski, Martin; Chown, Steven L.

    2013-01-01

    Globally, ecosystems and their constituent flora and fauna face the localized and broad-scale influence of human activities. Conservation practitioners and environmental managers struggle to identify and mitigate threats, reverse species declines, restore degraded ecosystems, and manage natural resources sustainably. Scientific research and evidence are increasingly regarded as the foundation for new regulations, conservation actions, and management interventions. Conservation biologists and managers have traditionally focused on the characteristics (e.g. abundance, structure, trends) of populations, species, communities, and ecosystems, and simple indicators of the responses to environmental perturbations and other human activities. However, an understanding of the specific mechanisms underlying conservation problems is becoming increasingly important for decision-making, in part because physiological tools and knowledge are especially useful for developing cause-and-effect relationships, and for identifying the optimal range of habitats and stressor thresholds for different organisms. When physiological knowledge is incorporated into ecological models, it can improve predictions of organism responses to environmental change and provide tools to support management decisions. Without such knowledge, we may be left with simple associations. ‘Conservation physiology’ has been defined previously with a focus on vertebrates, but here we redefine the concept universally, for application to the diversity of taxa from microbes to plants, to animals, and to natural resources. We also consider ‘physiology’ in the broadest possible terms; i.e. how an organism functions, and any associated mechanisms, from development to bioenergetics, to environmental interactions, through to fitness. Moreover, we consider conservation physiology to include a wide range of applications beyond assisting imperiled populations, and include, for example, the eradication of invasive

  1. Ecological improvements to hydroelectric power plants under EEG. Guidance to environmental verifiers and water rights authorities

    International Nuclear Information System (INIS)

    Meyr, Christoph; Pfeifer, Hansjoerg; Schnell, Johannes; Hanfland, Sebastian

    2011-11-01

    The use of hydropower as a renewable form of energy is experiencing a renaissance due to the energy transition in Bavaria. The fishery evaluate not uncritically this development, because hydroelectric plants generally normally represent a considerable intervention in water and therefore in the habitat of the fish. In this case it should be noted that just often not even the minimum requirements of ecology are fulfilled at existing plants according to the Federal Water Act. [de

  2. Sex-related differences in stress tolerance in dioecious plants: a critical appraisal in a physiological context.

    Science.gov (United States)

    Juvany, Marta; Munné-Bosch, Sergi

    2015-10-01

    Sex-related differences in reproductive effort can lead to differences in vegetative growth and stress tolerance. However, do all dioecious plants show sex-related differences in stress tolerance? To what extent can the environmental context and modularity mask sex-related differences in stress tolerance? Finally, to what extent can physiological measurements help us understand secondary sexual dimorphism? This opinion paper aims to answer these three basic questions with special emphasis on developments in research in this area over the last decade. Compelling evidence indicates that dimorphic species do not always show differences in stress tolerance between sexes; and when sex-related differences do occur, they seem to be highly species-specific, with greater stress tolerance in females than males in some species, and the opposite in others. The causes of such sex-related species-specific differences are still poorly understood, and more physiological studies and diversity of plant species that allow comparative analyses are needed. Furthermore, studies performed thus far demonstrate that the expression of dioecy can lead to sex-related differences in physiological traits-from leaf gas exchange to gene expression-but the biological significance of modularity and sectoriality governing such differences has been poorly investigated. Future studies that consider the importance of modularity and sectoriality are essential for unravelling the mechanisms underlying stress adaptation in male and female plants growing in their natural habitat. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions.

    Science.gov (United States)

    Blatrix, Rumsaïs; Djiéto-Lordon, Champlain; Mondolot, Laurence; La Fisca, Philippe; Voglmayr, Hermann; McKey, Doyle

    2012-10-07

    Usually studied as pairwise interactions, mutualisms often involve networks of interacting species. Numerous tropical arboreal ants are specialist inhabitants of myrmecophytes (plants bearing domatia, i.e. hollow structures specialized to host ants) and are thought to rely almost exclusively on resources derived from the host plant. Recent studies, following up on century-old reports, have shown that fungi of the ascomycete order Chaetothyriales live in symbiosis with plant-ants within domatia. We tested the hypothesis that ants use domatia-inhabiting fungi as food in three ant-plant symbioses: Petalomyrmex phylax/Leonardoxa africana, Tetraponera aethiops/Barteria fistulosa and Pseudomyrmex penetrator/Tachigali sp. Labelling domatia fungal patches in the field with either a fluorescent dye or (15)N showed that larvae ingested domatia fungi. Furthermore, when the natural fungal patch was replaced with a piece of a (15)N-labelled pure culture of either of two Chaetothyriales strains isolated from T. aethiops colonies, these fungi were also consumed. These two fungi often co-occur in the same ant colony. Interestingly, T. aethiops workers and larvae ingested preferentially one of the two strains. Our results add a new piece in the puzzle of the nutritional ecology of plant-ants.

  4. Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant–plant interactions

    Science.gov (United States)

    Blatrix, Rumsaïs; Djiéto-Lordon, Champlain; Mondolot, Laurence; La Fisca, Philippe; Voglmayr, Hermann; McKey, Doyle

    2012-01-01

    Usually studied as pairwise interactions, mutualisms often involve networks of interacting species. Numerous tropical arboreal ants are specialist inhabitants of myrmecophytes (plants bearing domatia, i.e. hollow structures specialized to host ants) and are thought to rely almost exclusively on resources derived from the host plant. Recent studies, following up on century-old reports, have shown that fungi of the ascomycete order Chaetothyriales live in symbiosis with plant-ants within domatia. We tested the hypothesis that ants use domatia-inhabiting fungi as food in three ant–plant symbioses: Petalomyrmex phylax/Leonardoxa africana, Tetraponera aethiops/Barteria fistulosa and Pseudomyrmex penetrator/Tachigali sp. Labelling domatia fungal patches in the field with either a fluorescent dye or 15N showed that larvae ingested domatia fungi. Furthermore, when the natural fungal patch was replaced with a piece of a 15N-labelled pure culture of either of two Chaetothyriales strains isolated from T. aethiops colonies, these fungi were also consumed. These two fungi often co-occur in the same ant colony. Interestingly, T. aethiops workers and larvae ingested preferentially one of the two strains. Our results add a new piece in the puzzle of the nutritional ecology of plant-ants. PMID:22859596

  5. Distribution, Fraction, and Ecological Assessment of Heavy Metals in Sediment-Plant System in Mangrove Forest, South China Sea

    Science.gov (United States)

    Li, Ruili; Chai, Minwei; Qiu, Guo Yu

    2016-01-01

    Overlying water, sediment, rhizosphere sediment and mangrove seedlings in the Futian mangrove forest were analyzed for heavy metals. The results showed that mangrove plant acidified sediment and increased organic matter contents. Except for chromium (Cr), nickel (Ni) and copper (Cu) in Aegiceras corniculatum sediment, heavy metals in all sediments were higher than in overlying water, rhizosphere sediment and mangrove root. Heavy metals in Avicennia marina sediments were higher than other sediments. The lower heavy metal biological concentration factors (BCFs) and translocation factors (TFs) indicated that mangrove plant adopted exclusion strategy. The geo-accumulation index, potential ecological risk index and risk assessment code (RAC) demonstrated that heavy metals have posed a considerable ecological risk, especially for cadmium (Cd). Heavy metals (Cr, Ni, Cu and Cd) mainly existed in the reducible fractions. These findings provide actual heavy metal accumulations in sediment-plant ecosystems in mangrove forest, being important in designing the long-term management and conservation policies for managers of mangrove forest. PMID:26800267

  6. Bioinformatic and Biometric Methods in Plant Morphology

    Directory of Open Access Journals (Sweden)

    Surangi W. Punyasena

    2014-08-01

    Full Text Available Recent advances in microscopy, imaging, and data analyses have permitted both the greater application of quantitative methods and the collection of large data sets that can be used to investigate plant morphology. This special issue, the first for Applications in Plant Sciences, presents a collection of papers highlighting recent methods in the quantitative study of plant form. These emerging biometric and bioinformatic approaches to plant sciences are critical for better understanding how morphology relates to ecology, physiology, genotype, and evolutionary and phylogenetic history. From microscopic pollen grains and charcoal particles, to macroscopic leaves and whole root systems, the methods presented include automated classification and identification, geometric morphometrics, and skeleton networks, as well as tests of the limits of human assessment. All demonstrate a clear need for these computational and morphometric approaches in order to increase the consistency, objectivity, and throughput of plant morphological studies.

  7. Influence of ecological factors on the production of active substances in the anti-cancer plant Sinopodophyllum hexandrum (Royle) T.S. Ying.

    Science.gov (United States)

    Liu, Wei; Liu, Jianjun; Yin, Dongxue; Zhao, Xiaowen

    2015-01-01

    The quality of traditional Chinese herbal medicine, which plays a very important role in the health system of China, is determined by the active substances produced by the plants. The type, content, and proportion of these substances may vary depending on ecological factors in areas where the plants are grown. Sinopodophyllum hexandrum (Royle) T.S. Ying, an endangered plant species with great medical value, was investigated in eight production locations representative of its natural geographical distribution range in China. The correlation between the contents of the active ingredients extracted from the roots and rhizomes of S. hexandrum and the ecological factors were evaluated step-by-step using a series of computational biology methodologies. The results showed that ecological factors had significant effects on the contents but not on the types of the active ingredients in eight production locations. The primary ecological factors influencing the active substances included the annual average precipitation, July mean temperature, frost-free period, sunshine duration, soil pH, soil organic matter, and rapidly available potassium in the soil. The annual average precipitation was the most important determinant factor and was significantly and negatively correlated with the active ingredient contents (P Shangri-La, Yunnan Province, and Nyingchi, Tibet, conditions were favorable to the production of quercetin and kaempferol.

  8. Revisiting the evolution of ecological specialization, with emphasis on insect-plant interactions.

    Science.gov (United States)

    Forister, M L; Dyer, L A; Singer, M S; Stireman, J O; Lill, J T

    2012-05-01

    Ecological specialization is a fundamental and well-studied concept, yet its great reach and complexity limit current understanding in important ways. More than 20 years after the publication of D. J. Futuyma and G. Moreno's oft-cited, major review of the topic, we synthesize new developments in the evolution of ecological specialization. Using insect-plant interactions as a model, we focus on important developments in four critical areas: genetic architecture, behavior, interaction complexity, and macroevolution. We find that theory based on simple genetic trade-offs in host use is being replaced by more subtle and complex pictures of genetic architecture, and multitrophic interactions have risen as a necessary framework for understanding specialization. A wealth of phylogenetic data has made possible a more detailed consideration of the macroevolutionary dimension of specialization, revealing (among other things) bidirectionality in transitions between generalist and specialist lineages. Technological advances, including genomic sequencing and analytical techniques at the community level, raise the possibility that the next decade will see research on specialization spanning multiple levels of biological organization in non-model organisms, from genes to populations to networks of interactions in natural communities. Finally, we offer a set of research questions that we find to be particularly pressing and fruitful for future research on ecological specialization.

  9. CMEIAS bioimage informatics that define the landscape ecology of immature microbial biofilms developed on plant rhizoplane surfaces

    Directory of Open Access Journals (Sweden)

    Frank B Dazzo

    2015-10-01

    Full Text Available Colonization of the rhizoplane habitat is an important activity that enables certain microorganisms to promote plant growth. Here we describe various types of computer-assisted microscopy that reveal important ecological insights of early microbial colonization behavior within biofilms on plant root surfaces grown in soil. Examples of the primary data are obtained by analysis of processed images of rhizoplane biofilm landscapes analyzed at single-cell resolution using the emerging technology of CMEIAS bioimage informatics software. Included are various quantitative analyses of the in situ biofilm landscape ecology of microbes during their pioneer colonization of white clover roots, and of a rhizobial biofertilizer strain colonized on rice roots where it significantly enhances the productivity of this important crop plant. The results show that spatial patterns of immature biofilms developed on rhizoplanes that interface rhizosphere soil are highly structured (rather than distributed randomly when analyzed at the appropriate spatial scale, indicating that regionalized microbial cell-cell interactions and the local environment can significantly affect their cooperative and competitive colonization behaviors.

  10. Impact of field dodder (Cuscuta campestris Yunk. on physiological and anatomical changes in untreated and herbicide-treated alfalfa plants

    Directory of Open Access Journals (Sweden)

    Sarić-Krsmanović Marija

    2016-01-01

    Full Text Available The effects of field dodder on physiological processes and the anatomy of alfalfa plants were examined under controlled conditions. The experiment included the following variants: N - noninfested alfalfa plants (control; I - infested alfalfa plants (untreated; T - infested plants treated with imazethapyr. Imazethapyr application rate was 100 g a.i. ha-1. The following parameters were checked: physiological - pigment content (chlorophyll ɑ, chlorophyll b, total carotenoids; anatomical - stem parameters: thickness of epidermis and cortex, and diameter of stem and central cylinder; leaf parameters: thickness of epidermis, parenchyma and spongy tissue, mesophyll and underside leaf epidermis, and diameter of bundle sheath cells in alfalfa plants. Pigment contents and anatomical parameters were measured: prior to herbicide treatment (0 assessment, then 7 (I assessment, 14 (II assessment, 21 (III assessment, 28 (IV assessment and 35 (V assessment days after application (DAA. Field dodder was found to affect the contents of chlorophyll ɑ, chlorophyll ɑ and carotenoids in untreated alfalfa plants, causing significant reductions in pigment content. Conversely, percent reduction in the treated plants decreased 22-5% for chlorophyll ɑ, 25-1%, for chlorophyll b, and 21-11% for carotenoids, while a stimulating effect of 1-6% was observed for the contents of chlorophyll b and carotenoids 35 DAA. Plants infested (untreated by field dodder had lower values of most anatomical parameters, compared to noninfested plants. The measured anatomical parameters of alfalfa stems and leaves had significantly higher values in noninfested plants and plants treated with imazethapyr than in untreated plants.

  11. Plant-pathogen interactions: leaf physiology alterations in poplars infected with rust (Melampsora medusae).

    Science.gov (United States)

    Gortari, Fermín; Guiamet, Juan José; Graciano, Corina

    2018-01-23

    Rust produced by Melampsora sp. is considered one of the most relevant diseases in poplar plantations. Growth reduction in poplar plantations takes place because rust, like other pathogens, alters leaf physiology. There is not a complete evaluation of several of the physiological traits that can be affected by rust at leaf level. Therefore, the aim of this work was to evaluate, in an integrative way and in the same pathosystem, which physiological processes are affected when Populus deltoides Bartr. ex Marsh. leaves are infected by rust (Melampsora medusae Thümen). Leaves of two clones with different susceptibility to rust were analyzed. Field and pot experiments were performed, and several physiological traits were measured in healthy and infected leaves. We conclude that rust affects leaf mesophyll integrity, and so water movement in the leaf in liquid phase is affected. As a consequence, gas exchange is reduced, affecting both carbon fixation and transpiration. However, there is an increase in respiration rate, probably due to plant and fungal respiration. The increase in respiration rate is important in the reduction of net photosynthetic rate, but also some damage in the photosynthetic apparatus limits leaf capacity to fix carbon. The decrease in chlorophyll content would start later and seems not to explain the reduction in net photosynthetic rate. Both clones, although they have different susceptibility to rust, are affected in the same physiological mechanisms. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Photochemical oxidants injury in rice plants. III. Effect of ozone on physiological activities in rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H; Saka, H

    1978-01-01

    Experiments were made to determine the effect of photochemical oxidants on physiological activities of rice plants. Rice plants were fumigated with ozone at concentrations of 0.12-0.20 ppm for 2-3 hr to investigate acute injury and at 0.05 and 0.09 ppm for daily exposure from 3.0 leaf stage to assess the effect of ozone on growth. It was observed that malondialdehyde produced by disruption of the components of the membrane increased in the leaves exposed to ozone. Ozone reduced the RuBP-carboxylase activity in both young and old leaves 12-24 hr after fumigation. In the young leaves the activity of this enzyme recovered to some extent after 48 hr, but it did not show any recovery in the old leaves. On the other hand, ozone remarkably increased the peroxidase activity and slightly increased acid phosphatase in all leaves. Abnormally high ethylene evolution and oxygen uptake were detected in leaves soon after ozone fumigation. In general, high molecular protein and chlorophyll contents in the detached leaves decreased with incubation in dark, particularly in the old ones. These phenomena were more accelerated by ozone fumigation. Kinetin and benzimidazole showed significant effects on chlorophyll retention in ozone-exposed leaves. Reduction of plant growth and photosynthetic rate was recognized even in low concentration of ozone in daily exposure at 0.05 and 0.09 ppm. From these results it was postulated that ozone may cause the senescence of leaves in rice plants.

  13. Ecological and physiological/toxicological effects of petroleum on aquatic birds: A summary of research activities FY76 through FY78

    Science.gov (United States)

    Stickel, Lucille F.; Dieter, Michael P.

    1979-01-01

    Oil and gas development and exploration in marine coastal areas and the Great Lakes will result in unavoidable spills of polluting oil. Although large oil spills may kill thousands of birds and stimulate much public concern, the bulk of oil that reaches aquatic environmentS released in the course of normal operations, with a total input into the world's oceans estimated at 6 million metric tons per year. The effects of sublethal low-level oil pollution may be more deleterious to bird populations over the long term than the spectacular bird kills resulting from oil spills.The physiological and ecological effects of oil on waterbirds were examined in a series of laboratory and field experiments, including studies of the effects of oiling on hatchability of eggs; the effects of an oil-contaminated diet on physiological condition, reproduction, and survival; and the accumulation of oil in body tissues. Chemical methodology was developed in support of these studies.

  14. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome.

    Science.gov (United States)

    Colla, Giuseppe; Hoagland, Lori; Ruzzi, Maurizio; Cardarelli, Mariateresa; Bonini, Paolo; Canaguier, Renaud; Rouphael, Youssef

    2017-01-01

    Plant-derived protein hydrolysates (PHs) have gained prominence as plant biostimulants because of their potential to increase the germination, productivity and quality of a wide range of horticultural and agronomic crops. Application of PHs can also alleviate the negative effects of abiotic plant stress due to salinity, drought and heavy metals. Recent studies aimed at uncovering the mechanisms regulating these beneficial effects indicate that PHs could be directly affecting plants by stimulating carbon and nitrogen metabolism, and interfering with hormonal activity. Indirect effects could also play a role as PHs could enhance nutrient availability in plant growth substrates, and increase nutrient uptake and nutrient-use efficiency in plants. Moreover, the beneficial effects of PHs also could be due to the stimulation of plant microbiomes. Plants are colonized by an abundant and diverse assortment of microbial taxa that can help plants acquire nutrients and water and withstand biotic and abiotic stress. The substrates provided by PHs, such as amino acids, could provide an ideal food source for these plant-associated microbes. Indeed, recent studies have provided evidence that plant microbiomes are modified by the application of PHs, supporting the hypothesis that PHs might be acting, at least in part, via changes in the composition and activity of these microbial communities. Application of PHs has great potential to meet the twin challenges of a feeding a growing population while minimizing agriculture's impact on human health and the environment. However, to fully realize the potential of PHs, further studies are required to shed light on the mechanisms conferring the beneficial effects of these products, as well as identify product formulations and application methods that optimize benefits under a range of agro-ecological conditions.

  15. Formation of higher plant component microbial community in closed ecological system

    Science.gov (United States)

    Tirranen, L. S.

    2001-07-01

    Closed ecological systems (CES) place at the disposal of a researcher unique possibilities to study the role of microbial communities in individual components and of the entire system. The microbial community of the higher plant component has been found to form depending on specific conditions of the closed ecosystem: length of time the solution is reused, introduction of intrasystem waste water into the nutrient medium, effect of other component of the system, and system closure in terms of gas exchange. The higher plant component formed its own microbial complex different from that formed prior to closure. The microbial complex of vegetable polyculture is more diverse and stable than the monoculture of wheat. The composition of the components' microflora changed, species diversity decreased, individual species of bacteria and fungi whose numbers were not so great before the closure prevailed. Special attention should be paid to phytopathogenic and conditionally pathogenic species of microorganisms potentially hazardous to man or plants and the least controlled in CES. This situation can endanger creation of CES and make conjectural existence of preplanned components, man, specifically, and consequently, of CES as it is.

  16. Transgenerational stress-adaption: an opportunity for ecological epigenetics.

    Science.gov (United States)

    Weinhold, Arne

    2018-01-01

    In the recent years, there has been considerable interest to investigate the adaptive transgenerational plasticity of plants and how a "stress memory" can be transmitted to the following generation. Although, increasing evidence suggests that transgenerational adaptive responses have widespread ecological relevance, the underlying epigenetic processes have rarely been elucidated. On the other hand, model plant species have been deeply investigated in their genome-wide methylation landscape without connecting this to the ecological reality of the plant. What we need is the combination of an ecological understanding which plant species would benefit from transgenerational epigenetic stress-adaption in their natural habitat, combined with a deeper molecular analysis of non-model organisms. Only such interdisciplinary linkage in an ecological epigenetic study could unravel the full potential that epigenetics could play for the transgenerational stress-adaption of plants.

  17. Replication data for: Management, use and ecology of medicinal plants in the degraded dry lands of Tigray, Northern Ethiopia (version 4)

    NARCIS (Netherlands)

    Hizikias, Emiru-Birhane; Aynekulu, E.; Mekuria, W.; Endale, D.

    2011-01-01

    An ethnomedicinal study was conducted to document the indigenous medicinal plant knowledge on the management, use, and ecology of locally important medicinal plants in Tigray, Northern Ethiopia. Ethnobotanical data were collected from 250 people, using semi-structured questionnaires, field

  18. INTERNATIONAL SCIENTIFIC CONFERENCE «PLANT PHYSIOLOGY AND GENETICS – SUCCESSES AND CHALLENGES», 24\\26 SEPTEMBER 2014, SOFIA, REPUBLIC OF BULGARIA

    OpenAIRE

    F. B. Musayev; E. G. Kozar

    2014-01-01

    24-26 September 2014 in the Republic of Bulgaria the International scientific and practical conference entitled «Plant Physiology and Genetics – Achievements and Challenges» was hold. The forum discussed the biotechnology and genetic approaches for environmental and sustainable agriculture; genetic resources and biodiversity; efficient use of plant nutrition and symbiotic interaction; regulation of plant growth and development; photosynthesis under stress conditions.

  19. EFFECT OF DROUGHT STRESS INDUCED BY MANNITOL ON PHYSIOLOGICAL PARAMETERS OF MAIZE (ZEA MAYS L. SEEDLINGS AND PLANTS

    Directory of Open Access Journals (Sweden)

    Katarzyna Możdżeń

    2015-02-01

    Full Text Available Plants are exposed to various stress factors which might lead to structural damage and physiological function abnormalities. Drought is one of the environmental stress factors that reduce the productivity of plants. The aim of our study was to determine the influence of drought stress induced by mannitol (-0.5 and -1.5MPa on selected physiological processes in Z. mays L. In the first stage we studied the effect of mannitol on the germination. In the second stage the effect of mannitol on the growth of plants germinated on distilled water and watered with mannitol in growth phase were measured. Mannitol, which decreased the water content in a concentration-dependent manner, had an inhibitory effect on germination and growth of seedlings and adult plants. Electrolyte leakage of cell membranes of the Z. mays seedlings showed high disturbances in the functioning of the membrane structures in the osmotic drought conditions. Similar results were obtained for maize roots, shoots and leaves in both treatment studies. Chlorophyll content showed only significant differences in plants from treated during the growth phase. Drought stress caused a decrease in chlorophyll content by almost a half compared to the control plants. Measurements of chlorophyll fluorescence of plant leaves from the second stage of experiments showed changes in fluorescence activity parameters Fv/Fm, NPQ, Rfd, qP, ect.; gas exchange measurements also showed changes in activity in each of the two phases.

  20. René Dubos, tuberculosis, and the "ecological facets of virulence".

    Science.gov (United States)

    Honigsbaum, Mark

    2017-09-01

    Reflecting on his scientific career toward the end of his life, the French-educated medical researcher René Dubos presented his flowering as an ecological thinker as a story of linear progression-the inevitable product of the intellectual seeds planted in his youth. But how much store should we set by Dubos's account of his ecological journey? Resisting retrospective biographical readings, this paper seeks to relate the development of Dubos's ecological ideas to his experimental practices and his career as a laboratory researcher. In particular, I focus on Dubos's studies of tuberculosis at the Rockefeller Institute in the period 1944-1956-studies which began with an inquiry into the tubercle bacillus and the physiochemical determinants of virulence, but which soon encompassed a wider investigation of the influence of environmental forces and host-parasite interactions on susceptibility and resistance to infection in animal models. At the same time, through a close reading of Dubos's scientific papers and correspondence, I show how he both drew on and distinguished his ecological ideas from those of other medical researchers such as Theobald Smith, Frank Macfarlane Burnet, and Frank Fenner. However, whereas Burnet and Fenner tended to view ecological interactions at the level of populations, Dubos focused on the interface of hosts and parasites in the physiological environments of individuals. The result was that although Dubos never fully engaged with the science of ecology, he was able to incorporate ecological ideas into his thought and practices, and relate them to his holistic views on health and the natural harmony of man and his environment.

  1. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; Svensgaard, Jesper; Christensen, Svend

    2015-01-01

    Plants are affected by complex genome×environment×management interactions which determine phenotypic plasticity as a result of the variability of genetic components. Whereas great advances have been made in the cost-efficient and high-throughput analyses of genetic information and non-invasive ph......Plants are affected by complex genome×environment×management interactions which determine phenotypic plasticity as a result of the variability of genetic components. Whereas great advances have been made in the cost-efficient and high-throughput analyses of genetic information and non......-invasive phenotyping, the large-scale analyses of the underlying physiological mechanisms lag behind. The external phenotype is determined by the sum of the complex interactions of metabolic pathways and intracellular regulatory networks that is reflected in an internal, physiological, and biochemical phenotype......, ultimately enabling the in silico assessment of responses under defined environments with advanced crop models. This will allow generation of robust physiological predictors also for complex traits to bridge the knowledge gap between genotype and phenotype for applications in breeding, precision farming...

  2. FPGA-Based Smart Sensor for Drought Stress Detection in Tomato Plants Using Novel Physiological Variables and Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Carlos Duarte-Galvan

    2014-10-01

    Full Text Available Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics. In such cases, a device capable of detecting and quantifying the impact of drought stress in plants is desirable. This article focuses on testing if the monitoring of physiological process through a gas exchange methodology provides enough information to detect drought stress conditions in plants. The experiment consists of using a set of smart sensors based on Field Programmable Gate Arrays (FPGAs to monitor a group of plants under controlled drought conditions. The main objective was to use different digital signal processing techniques such as the Discrete Wavelet Transform (DWT to explore the response of plant physiological processes to drought. Also, an index-based methodology was utilized to compensate the spatial variation inside the greenhouse. As a result, differences between treatments were determined to be independent of climate variations inside the greenhouse. Finally, after using the DWT as digital filter, results demonstrated that the proposed system is capable to reject high frequency noise and to detect drought conditions.

  3. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant.

    Science.gov (United States)

    Giron, David; Huguet, Elisabeth; Stone, Graham N; Body, Mélanie

    2016-01-01

    Gall-inducing insects are iconic examples in the manipulation and reprogramming of plant development, inducing spectacular morphological and physiological changes of host-plant tissues within which the insect feeds and grows. Despite decades of research, effectors involved in gall induction and basic mechanisms of gall formation remain unknown. Recent research suggests that some aspects of the plant manipulation shown by gall-inducers may be shared with other insect herbivorous life histories. Here, we illustrate similarities and contrasts by reviewing current knowledge of metabolic and morphological effects induced on plants by gall-inducing and leaf-mining insects, and ask whether leaf-miners can also be considered to be plant reprogrammers. We review key plant functions targeted by various plant reprogrammers, including plant-manipulating insects and nematodes, and functionally characterize insect herbivore-derived effectors to provide a broader understanding of possible mechanisms used in host-plant manipulation. Consequences of plant reprogramming in terms of ecology, coevolution and diversification of plant-manipulating insects are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Assessing Morphological and Physiological Properties of Forest Species Using High Throughput Plant Phenotyping and Imaging Techniques

    Science.gov (United States)

    Mazis, A.; Hiller, J.; Morgan, P.; Awada, T.; Stoerger, V.

    2017-12-01

    High throughput plant phenotyping is increasingly being used to assess morphological and biophysical traits of economically important crops in agriculture. In this study, the potential application of this technique in natural resources management, through the characterization of woody plants regeneration, establishment, growth, and responses to water and nutrient manipulations was assessed. Two woody species were selected for this study, Quercus prinoides and Quercus bicolor. Seeds were collected from trees growing at the edge of their natural distribution in Nebraska and Missouri, USA. Seeds were germinated in the greenhouse and transferred to the Nebraska Innovation Campus Lemnatec3D High Throughput facility at the University of Nebraska-Lincoln. Seedlings subjected to water and N manipulations, were imaged twice or three times a week using four cameras (Visible, Fluorescence, Infrared and Hyperspectral), throughout the growing season. Traditional leaf to plant levels ecophysiological measurements were concurrently acquired to assess the relationship between these two techniques. These include gas exchange (LI 6400 and LI 6800, LICOR Inc., Lincoln NE), chlorophyll content, optical characteristics (Ocean Optics USB200), water and osmotic potentials, leaf area and weight and carbon isotope ratio. In the presentation, we highlight results on the potential use of high throughput plant phenotyping techniques to assess the morphology and physiology of woody species including responses to water availability and nutrient manipulation, and its broader application under field conditions and natural resources management. Also, we explore the different capabilities imaging provides us for modeling the plant physiological and morphological growth and how it can complement the current techniques

  5. Terrestrial Ecology Guide.

    Science.gov (United States)

    Morrison, James W., Ed.; Hall, James A., Ed.

    This collection of study units focuses on the study of the ecology of land habitats. Considered are such topics as map reading, field techniques, forest ecosystem, birds, insects, small mammals, soils, plant ecology, preparation of terrariums, air pollution, photography, and essentials of an environmental studies program. Each unit contains…

  6. Effects of Introduced and Indigenous Viruses on Native Plants: Exploring Their Disease Causing Potential at the Agro-Ecological Interface

    Science.gov (United States)

    Vincent, Stuart J.; Coutts, Brenda A.; Jones, Roger A. C.

    2014-01-01

    The ever increasing movement of viruses around the world poses a major threat to plants growing in cultivated and natural ecosystems. Both generalist and specialist viruses move via trade in plants and plant products. Their potential to damage cultivated plants is well understood, but little attention has been given to the threat such viruses pose to plant biodiversity. To address this, we studied their impact, and that of indigenous viruses, on native plants from a global biodiversity hot spot in an isolated region where agriculture is very recent (plant species, we used introduced generalist and specialist viruses, and indigenous viruses, to inoculate plants of 15 native species belonging to eight families. We also measured resulting losses in biomass and reproductive ability for some host–virus combinations. In addition, we sampled native plants growing over a wide area to increase knowledge of natural infection with introduced viruses. The results suggest that generalist introduced viruses and indigenous viruses from other hosts pose a greater potential threat than introduced specialist viruses to populations of native plants encountered for the first time. Some introduced generalist viruses infected plants in more families than others and so pose a greater potential threat to biodiversity. The indigenous viruses tested were often surprisingly virulent when they infected native plant species they were not adapted to. These results are relevant to managing virus disease in new encounter scenarios at the agro-ecological interface between managed and natural vegetation, and within other disturbed natural vegetation situations. They are also relevant for establishing conservation policies for endangered plant species and avoiding spread of damaging viruses to undisturbed natural vegetation beyond the agro-ecological interface. PMID:24621926

  7. Physiological responses of sweet potato (Ipomoea batatas L. plants due to different copper concentrations

    Directory of Open Access Journals (Sweden)

    Cristina Copstein Cuchiara

    2015-12-01

    Full Text Available At low concentrations, Cu is considered as an essential micronutrient for plants and as a constituent and activator of several enzymes. However, when in excess, Cu can negatively affect plant growth and metabolism. Therefore, the aim of this study was to evaluate physiological responses of sweet potato plants at different Cu concentrations by measuring morphological parameters, antioxidant metabolism, stomatal characteristics, and mineral profile. For this purpose, sweet potato plants were grown hydroponically in complete nutrient solution for six days. Then, the plants were transferred to solutions containing different Cu concentrations, 0.041 (control, 0.082, and 0.164 mM, and maintained for nine days. The main effect of increased Cu concentration was observed in the roots. The sweet potato plants grown in 0.082 mM Cu solution showed increased activity of antioxidant enzymes and no changes in growth parameters. However, at a concentration of 0.164 mM, Cu was transported from the roots to the shoots. This concentration altered morpho-anatomical characteristics and activated the antioxidant system because of the stress generated by excess Cu. On the basis of the results, it can be concluded that the sweet potato plants were able to tolerate Cu toxicity until 0.082 mM.

  8. Contribution to the studies on the mineral content of plant material through radioactivation analysis

    International Nuclear Information System (INIS)

    Fourcy, A.

    1968-03-01

    Radioactivation analysis is by its great sensibility or its rapidity quite helpful in plant biology and agronomy. Specific composition of plants and results to obtain in biological experimentation have needed a practical research on analytical methods for plant materials, using for radioactivation swimming-pool reactor neutrons and 14 MeV neutrons from a generator. Dosage process for 25 elements is exposed, taking account of the interest of the analysis for each element, the average amount occurring in plants and the result obtained. Many applications are developed, concerning nutrition physiology, genetics, parasitology, toxicology, control of manufactured agricultural and pharmaceutical products industrial and pesticides residues, ecology, radioecology and biochemistry. (author) [fr

  9. Recent advances in primate nutritional ecology.

    Science.gov (United States)

    Righini, Nicoletta

    2017-04-01

    Nutritional ecology seeks to explain, in an ecological and evolutionary context, how individuals choose, acquire, and process food to satisfy their nutritional requirements. Historically, studies of primate feeding ecology have focused on characterizing diets in terms of the botanical composition of the plants consumed. Further, dietary studies have demonstrated how patch and food choice in relation to time spent foraging and feeding are influenced by the spatial and temporal distribution of resources and by social factors such as feeding competition, dominance, or partner preferences. From a nutritional perspective, several theories including energy and protein-to-fiber maximization, nutrient mixing, and toxin avoidance, have been proposed to explain the food choices of non-human primates. However, more recently, analytical frameworks such as nutritional geometry have been incorporated into primatology to explore, using a multivariate approach, the synergistic effects of multiple nutrients, secondary metabolites, and energy requirements on primate food choice. Dietary strategies associated with nutrient balancing highlight the tradeoffs that primates face in bypassing or selecting particular feeding sites and food items. In this Special Issue, the authors bring together a set of studies focusing on the nutritional ecology of a diverse set of primate taxa characterized by marked differences in dietary emphasis. The authors present, compare, and discuss the diversity of strategies used by primates in diet selection, and how species differences in ecology, physiology, anatomy, and phylogeny can affect patterns of nutrient choice and nutrient balancing. The use of a nutritionally explicit analytical framework is fundamental to identify the nutritional requirements of different individuals of a given species, and through its application, direct conservation efforts can be applied to regenerate and protect specific foods and food patches that offer the opportunity of a

  10. Smoke produced from plants waste material elicits growth of wheat (Triticum aestivum L. by improving morphological, physiological and biochemical activity

    Directory of Open Access Journals (Sweden)

    Muhammad Iqbal

    2018-03-01

    Full Text Available The experimental work presented in this study was carried out with the hypothesis that plant derived smoke enhanced the morphological, physiological and biochemical attributes of a cereal crop, wheat (Triticum aestivum L.. Furthermore, this study supported the hypothesis that plant derived smoke acts as vegetative growth promoter, inexpensive, rapid and most appropriate eco-friendly bio-fertilizer for sustainable agriculture. Plant derived smoke was generated by burning of plant material (leaf, straws etc in a specially designed furnace, and seeds were treated with this smoke for different time duration. Four level of plant derived smoke (1 h, 2 h, 3 h and 4 h along with control were tested on four wheat cultivars in CRD repeated pot experiment. The smoke-related treatments modified number of morphological, physiological and biochemical features of wheat. Compared with the control, aerosol smoke treatment of the seeds significantly improved root length (2.6%, shoot length (7.7%, RFW (0.04%, SFW (0.7%, SDW (0.1% and leaf area (63.9%. All the smoke-related treatments significantly promoted RWC (17.3%, water potential (1.5%, osmotic potential (1.4% and MSI (14.6% whereas a pronounced increase in chlorophyll a (24.9%, chlorophyll b (21.7% and total chlorophyll contents (15.5% were recorded in response to aerosol-smoke treatments. Plant derived smoke exposure applied for short time i.e. 1 h & 2 h induced significant results as compared to prolonged PDS exposure (3 h and 4 h. The best results were observed in Pak-13 and Glaxy-13 wheat cultivars. These findings indicated that the plant-derived smoke treatment has a great potential to improve morphological, physiological and biochemical features of wheat crop.

  11. Allelopatic Potential of Dittrichia viscosa (L. W. Greuter Mediated by VOCs: A Physiological and Metabolomic Approach.

    Directory of Open Access Journals (Sweden)

    Fabrizio Araniti

    Full Text Available Dittrichia viscosa (L. W. Greuter is a pioneer species belonging to the Compositae family. It is widespread in the Mediterranean basin, where it is considered invasive. It is a source of secondary metabolites, playing an important ecological role. D. viscosa plant extracts showed a phytotoxic activity on several physiological processes of different species. In the current study, the allelopathic potential of D. viscosa VOCs, released by its foliage, was evaluated on seed germination and root growth of lettuce. The VOCs effect was also studied on lettuce adult plants in microcosm systems, which better mimicked the open field conditions. D. viscosa VOCs inhibited both seed germination and root growth of lettuce. The VOCs composition revealed a large presence of terpenoids, responsible of the effects observed. Moreover, D. viscosa VOCs caused an alteration on plant water status accompanied by oxidative damages and photoinhibition on lettuce adult plants.

  12. Plant host finding by parasitic plants: a new perspective on plant to plant communication.

    Science.gov (United States)

    Mescher, Mark C; Runyon, Justin B; De Moraes, Consuelo M

    2006-11-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-documented examples of plant-to-plant communication via volatiles, and the ecological significance of such interactions has been much debated. To date, nearly all studies of volatile-mediated interactions among plant species have focused on the reception of herbivore-induced volatiles by neighboring plants. We recently documented volatile effects in another system, demonstrating that the parasitic plant Cuscuta pentagona uses volatile cues to locate its hosts. This finding may broaden the discussion regarding plant-to-plant communication, and suggests that new classes of volatile-meditated interactions among plant species await discovery.

  13. Extraction of Plant Physiological Status from Hyperspectral Signatures Using Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Daniel Doktor

    2014-12-01

    Full Text Available The machine learning method, random forest (RF, is applied in order to derive biophysical and structural vegetation parameters from hyperspectral signatures. Hyperspectral data are, among other things, characterized by their high dimensionality and autocorrelation. Common multivariate regression approaches, which usually include only a limited number of spectral indices as predictors, do not make full use of the available information. In contrast, machine learning methods, such as RF, are supposed to be better suited to extract information on vegetation status. First, vegetation parameters are extracted from hyperspectral signatures simulated with the radiative transfer model, PROSAIL. Second, the transferability of these results with respect to laboratory and field measurements is investigated. In situ observations of plant physiological parameters and corresponding spectra are gathered in the laboratory for summer barley (Hordeum vulgare. Field in situ measurements focus on winter crops over several growing seasons. Chlorophyll content, Leaf Area Index and phenological growth stages are derived from simulated and measured spectra. RF performs very robustly and with a very high accuracy on PROSAIL simulated data. Furthermore, it is almost unaffected by introduced noise and bias in the data. When applied to laboratory data, the prediction accuracy is still good (C\\(_{ab}\\: \\(R^2\\ = 0.94/ LAI: \\(R^2\\ = 0.80/BBCH (Growth stages of mono-and dicotyledonous plants : \\(R^2\\ = 0.91, but not as high as for simulated spectra. Transferability to field measurements is given with prediction levels as high as for laboratory data (C\\(_{ab}\\: \\(R^2\\ = 0.89/LAI: \\(R^2\\ = 0.89/BBCH: \\(R^2\\ = \\(\\sim\\0.8. Wavelengths for deriving plant physiological status based on simulated and measured hyperspectral signatures are mostly selected from appropriate spectral regions (both field and laboratory: 700–800 nm regressing on C\\(_{ab}\\ and 800–1300

  14. Ecological risks of DOE's programmatic environmental restoration alternatives

    International Nuclear Information System (INIS)

    1994-06-01

    This report assesses the ecological risks of the Department of Energy's (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representative facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant

  15. Separating the effects of partial submergence and soil oxygen demand on plant physiology.

    Science.gov (United States)

    van Bodegom, Peter M; Sorrell, Brian K; Oosthoek, Annelies; Bakker, Chris; Aerts, Rien

    2008-01-01

    In wetlands, a distinct zonation of plant species composition occurs along moisture gradients, due to differential flooding tolerance of the species involved. However, "flooding" comprises two important, distinct stressors (soil oxygen demand [SOD] and partial submergence) that affect plant survival and growth. To investigate how these two flooding stressors affect plant performance, we executed a factorial experiment (water depth x SOD) for six plant species of nutrient-rich and nutrient-poor conditions, occurring along a moisture gradient in Dutch dune slacks. Physiological, growth, and biomass responses to changed oxygen availability were quantified for all species. The responses were consistent with field zonation, but the two stressors affected species differently. Increased SOD increased root oxygen deprivation, as indicated by either raised porosity or increased alcohol dehydrogenase (ADH) activity in roots of flood-intolerant species (Calamagrostis epigejos and Carex arenaria). While SOD affected root functioning, partial submergence tended more to reduce photosynthesis (as shown both by gas exchange and 13C assimilation), leaf dark respiration, 13C partitioning from shoots to roots, and growth of these species. These processes were especially affected if the root oxygen supply was depleted by a combination of flooding and increased SOD. In contrast, the most flood-tolerant species (Juncus subnodulosus and Typha latifolia) were unaffected by any treatment and maintained high internal oxygen concentrations at the shoot : root junction and low root ADH activity in all treatments. For these species, the internal oxygen transport capacity was well in excess of what was needed to maintain aerobic metabolism across all treatments, although there was some evidence for effects of SOD on their nitrogen partitioning (as indicated by 865N values) and photosynthesis. Two species intermediate in flooding tolerance (Carex nigra and Schoenus nigricans) responded more

  16. Influence of ecological factors on the production of active substances in the anti-cancer plant Sinopodophyllum hexandrum (Royle T.S. Ying.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available The quality of traditional Chinese herbal medicine, which plays a very important role in the health system of China, is determined by the active substances produced by the plants. The type, content, and proportion of these substances may vary depending on ecological factors in areas where the plants are grown. Sinopodophyllum hexandrum (Royle T.S. Ying, an endangered plant species with great medical value, was investigated in eight production locations representative of its natural geographical distribution range in China. The correlation between the contents of the active ingredients extracted from the roots and rhizomes of S. hexandrum and the ecological factors were evaluated step-by-step using a series of computational biology methodologies. The results showed that ecological factors had significant effects on the contents but not on the types of the active ingredients in eight production locations. The primary ecological factors influencing the active substances included the annual average precipitation, July mean temperature, frost-free period, sunshine duration, soil pH, soil organic matter, and rapidly available potassium in the soil. The annual average precipitation was the most important determinant factor and was significantly and negatively correlated with the active ingredient contents (P < 0.001. In contrast, organic matter was the most important limiting factor and was significantly and positively correlated with the active substances. These ecological factors caused 98.13% of the total geographical variation of the active ingredient contents. The climate factors contributed more to the active ingredient contents than did the soil factors. It was concluded that from the view of the contents of the secondary metabolites and ecological factors of each growing location, in Jingyuan, Ningxia Province, and Yongdeng, Gansu Province, conditions were favorable to the production of podophyllotoxin and lignans, whereas in Shangri-La, Yunnan

  17. Methods of ecological capability evaluation of forest

    International Nuclear Information System (INIS)

    Hosseini, M.; Makhdoum, M.F.; Akbarnia, M.; Saghebtalebi, Kh.

    2000-01-01

    In this research common methods of ecological capability evaluation of forests were reviewed and limitations for performance were analysed. Ecological capability of forests is an index that show site potential in several role of wood production, soil conservation, flood control, biodiversity, conservation and water supply. This index is related to ecological characteristics of land, such as soil, micro climate, elevation, slope and aspect that affect potential of sites. Suitable method of ecological capability evaluation must be chosen according to the objective of forestry. Common methods for ecological capability evaluation include plant and animal diversity, site index curve, soil and land form, inter branches, index plants, leave analyses, analyses regeneration and ecological mapping

  18. Cytogenetic effects of weak and combined actions in plants in connection with a problem of ecological rating

    International Nuclear Information System (INIS)

    Geras'kin, S.A.; Dikarev, V.G.; Udalova, A.A.; Dikareva, N.S.; Vasil'ev, D.V.; Evseeva, T.I.

    2002-01-01

    It is compared sanitary-hygienic and ecological approaches to rating of ionizing radiation action. The features of formation of cytogenetic effects in plants in conditions of separate and combined with factors of other nature action of ionizing radiation low doses are considered. (author)

  19. The maximization of the productivity of aquatic plants for use in controlled ecological life support systems (CELSS)

    Science.gov (United States)

    Thompson, B. G.

    Lemna minor (common duckweed) and a Wolffia sp. were grown in submerged growth systems. Submerged growth increased the productivity/unit volume (P/UV) of the organisms and may allow these plants to be used in a controlled ecological life support system (CELSS).

  20. The changes in the ecology and physiology of soil invertebrates under influences of radioactive contamination

    International Nuclear Information System (INIS)

    Maksimova, S.

    2006-01-01

    The soil biota is important in building and maintaining soil structure and fertility. Invertebrates are ideal as potential bio indicators of the environmental impact of radioactive contamination: they are widely distributed, often abundant and generally thought of as having low dispersive capacity. They can use as test organisms to detect the side-effects of radioactive contamination. The long-term analysis of ecological and physiological after-effects and biodiversity changes had been studied in the zone of radioactive contamination. Material was collected in the Gomel Region (Belarus), 30 km away from the CNPP in 1986-2004 applying usual pedobiological techniques (soil samples and Barber's pitfall traps) at reference points subjected to radioactive contamination. Soil samples were collected at 0 to 25 cm depth. Samples were taken in locations, which had received considerable radionuclide contaminations. These sites differed in contamination by the composition of fall-out, the forms of radionuclide content in soils, their intake into trophic chains and accumulation in animal and plant organisms. The impacts have been investigated at the: 1) organism and population levels , in terms of individual life histories (birth rate, growth, mortality) or species selection; 2) at the community level: to species diversity and to effects on trophic structure. The invertebrates were determined to species or genera, including juvenile stages. Radioactive contamination caused a distinct decrease in species number; the dominance structure of the community changed. The saprophagous are especially sensitive to environmental disturbances. An initial sharp reduction of animal biodiversity and simplification of the community structure of soil fauna were observed, followed by a long-term process of returning to the initial parameters. Changes in hemolymph, necroses of epithelium and cell structure in connective tissue were registered. The most drastic after-effects were manifested in

  1. Physiological response of lovage (levisticum officinale, koch) plant to gamma radiation and organic fertilizers

    International Nuclear Information System (INIS)

    Taha, A.T.A.

    2009-01-01

    The main objective of this work is to study physiological response of lovage plant to gamma radiation and organic fertilizers.Two field experiments were conduct under conditions of newly reclaimed soil (sandy loam soil) during two successive seasons (2003/2004 and 2004/2005) in experimental farm , NRC,AEA Inshas. lovage fruits were irradiated before sowing with gamma rays at 0,20,40,60 and 80 Gy. Before planting farm yard manure (FYM) at rates of 0,20,30 and 40 m 3 /fed. Was applied to soil in combination with gamma doses in the first experiment, in the second one, chicken manure at 0,10,15 and 20 m 3 /fed. was added to soil before planting in combination with the same used gamma doses in first experiment. Growth of lovage plants was considerably stimulated by irradiating fruits before sowing with low gamma doses, in particularly at 60 Gy, which greatly increased plant height, number of branches/plant, stem thickness and dry matter yield of shoots. Similar trend was also observed with leaf chlorophyll content which increased due to low gamma doses . Low gamma doses markedly encouraged nutrients uptake by lovage plants which increased levels and total contents of N, P, K, Fe,Zn and Mn in plant shoots. Fruits yield, volatile oil % and oil yield and fruits index value were increased by low gamma doses particularly at 60 Gy.

  2. Annual report of ecological research at the Savannah River Ecology Laboratory

    International Nuclear Information System (INIS)

    1984-09-01

    This report summarizes research conducted at the Savannah River Ecology Laboratory (SREL) during the annual period ending August 1, 1984. SREL is a regional research facility at the Savannah River Plant operated by the University of Georgia through a contract with the Department of Energy. It is part of the University of Georgia's Institute of Ecology. The overall goal of the research is to develop an understanding of the impact of various energy technologies and management practices on the ecosystems of the southeastern United States. SREL research is conducted by interdisciplinary research teams organized under three major divisions: (1) Biogeochemical Ecology, (2) Wetlands Ecology, and (3) Stress and Wildlife Ecology

  3. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    Science.gov (United States)

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that

  4. Optimal plant water use across temporal scales: bridging eco-hydrological theories and plant eco-physiological responses

    Science.gov (United States)

    Manzoni, S.; Vico, G.; Palmroth, S.; Katul, G. G.; Porporato, A. M.

    2013-12-01

    In terrestrial ecosystems, plant photosynthesis occurs at the expense of water losses through stomata, thus creating an inherent hydrologic constrain to carbon (C) gains and productivity. While such a constraint cannot be overcome, evolution has led to a number of adaptations that allow plants to thrive under highly variable and often limiting water availability. It may be hypothesized that these adaptations are optimal and allow maximum C gain for a given water availability. A corollary hypothesis is that these adaptations manifest themselves as coordination between the leaf photosynthetic machinery and the plant hydraulic system. This coordination leads to functional relations between the mean hydrologic state, plant hydraulic traits, and photosynthetic parameters that can be used as bridge across temporal scales. Here, optimality theories describing the behavior of stomata and plant morphological features in a fluctuating soil moisture environment are proposed. The overarching goal is to explain observed global patterns of plant water use and their ecological and biogeochemical consequences. The problem is initially framed as an optimal control problem of stomatal closure during drought of a given duration, where maximizing the total photosynthesis under limited and diminishing water availability is the objective function. Analytical solutions show that commonly used transpiration models (in which stomatal conductance is assumed to depend on soil moisture) are particular solutions emerging from the optimal control problem. Relations between stomatal conductance, vapor pressure deficit, and atmospheric CO2 are also obtained without any a priori assumptions under this framework. Second, the temporal scales of the model are expanded by explicitly considering the stochasticity of rainfall. In this context, the optimal control problem becomes a maximization problem for the mean photosynthetic rate. Results show that to achieve maximum C gains under these

  5. Conservation physiology of marine fishes: state of the art and prospects for policy

    DEFF Research Database (Denmark)

    McKenzie, David J.; Axelsson, Michael; Chabot, Denis

    2016-01-01

    The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes...... broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however......, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change...

  6. Plant genetic variation mediates an indirect ecological effect between belowground earthworms and aboveground aphids.

    Science.gov (United States)

    Singh, Akanksha; Braun, Julia; Decker, Emilia; Hans, Sarah; Wagner, Agnes; Weisser, Wolfgang W; Zytynska, Sharon E

    2014-10-21

    Interactions between aboveground and belowground terrestrial communities are often mediated by plants, with soil organisms interacting via the roots and aboveground organisms via the shoots and leaves. Many studies now show that plant genetics can drive changes in the structure of both above and belowground communities; however, the role of plant genetic variation in mediating aboveground-belowground interactions is still unclear. We used an earthworm-plant-aphid model system with two aphid species (Aphis fabae and Acyrthosiphon pisum) to test the effect of host-plant (Vicia faba) genetic variation on the indirect interaction between the belowground earthworms (Eisenia veneta) on the aboveground aphid populations. Our data shows that host-plant variety mediated an indirect ecological effect of earthworms on generalist black bean aphids (A. fabae), with earthworms increasing aphid growth rate in three plant varieties but decreasing it in another variety. We found no effect of earthworms on the second aphid species, the pea aphid (A. pisum), and no effect of competition between the aphid species. Plant biomass was increased when earthworms were present, and decreased when A. pisum was feeding on the plant (mediated by plant variety). Although A. fabae aphids were influenced by the plants and worms, they did not, in turn, alter plant biomass. Previous work has shown inconsistent effects of earthworms on aphids, but we suggest these differences could be explained by plant genetic variation and variation among aphid species. This study demonstrates that the outcome of belowground-aboveground interactions can be mediated by genetic variation in the host-plant, but depends on the identity of the species involved.

  7. Cenotic and physiological control of the radionuclides migration into system soil-plant

    International Nuclear Information System (INIS)

    Kravets, A.P.

    1998-01-01

    Some biological - cenotic and physiological - factors which determine the availability of radionuclides for a plant and the general capacity for the accumulation of pollutants were investigated and analysed. Metabolites of soil microorganisms and especially root excretion of higher plants increase the rate of destruction of solid forms of pollution and enhance the leaching of radionuclides from the solid matrix. The following facts were demonstrated in the conditions of contamination heterogeneity of Chernobyl fallout: (i) During the period of vegetation the plants of different species of f. Poacea, 1 .5 to 2.7-fold increase in the chemical mobility and biological availability of radionuclides; (ii) Additional increase in the concentration of soil microorganisms (micromycetes) leads to enhanced contents of the mobile form of the pollutant in soil and increases the level of accumulation of the radionuclides by higher plants; (iii) Increase in the density of sowing (and competition, respectively) of the different species of the plants also leads to an enhanced availability of the radionuclides and 1 .7 to 2.4- fold increase in the level of accumulation of the radionuclides by the plants. Other aspect of formation of the level of plant pollution include the peculiarities of radionuclide absorption and accumulation by the plant biomass. The effects of a high density of sowing, high level of the watering and gamma irradiation on the changes in the level of radionuclide accumulation and, at the same time, the cation exchange capacity (CEC) of the plant biomass were investigated in the laboratory and in a greenhouse experiment. In parallel, increased CEC and radionuclide accumulation by a factor of 1.5 to 2.7 was demonstrated. These facts suggest that the biological factors are a powerful tool of control of the pollutants availability and accumulation and may be take into account under development of the modern agricultural technology for clear products formation

  8. Hydroelectric plants: economical and ecological consequences of equipment and exploitation variants

    International Nuclear Information System (INIS)

    Maire, P.; Bansard, J.F.; Do, T.

    1995-01-01

    The increasing number of renewal demands for hydroelectric plants authorizations has raised the question of the pertinency and efficiency of the equipments used. Choices are rarely clearly justified by the petitioners. After reminding the reasons and consequences of a given choice and equipment, the necessary steps of an authorization demand are illustrated by a concrete case. It shows that some equipment-management combinations can lead to a more satisfying economical and ecological balance-sheet than those generally proposed. The popularization of computer use allows the examining services to dispose of clear and pedagogical elements to select the regular choices. (J.S.). 10 refs., 11 figs., 2 tabs

  9. Seed dispersal and establishment of endangered plants on Oceanic Islands: the Janzen-Connell model, and the use of ecological analogues.

    Directory of Open Access Journals (Sweden)

    Dennis M Hansen

    Full Text Available BACKGROUND: The Janzen-Connell model states that plant-specific natural enemies may have a disproportionately large negative effect on progeny close to maternal trees. The majority of experimental and theoretical studies addressing the Janzen-Connell model have explored how it can explain existing patterns of species diversity in tropical mainland areas. Very few studies have investigated how the model's predictions apply to isolated oceanic islands, or to the conservation management of endangered plants. Here, we provide the first experimental investigation of the predictions of the Janzen-Connell model on an oceanic island, in a conservation context. In addition, we experimentally evaluate the use of ecological analogue animals to resurrect the functional component of extinct frugivores that could have dispersed seeds away from maternal trees. METHODOLOGY/PRINCIPAL FINDINGS: In Mauritius, we investigated seed germination and seedling survival patterns of the critically endangered endemic plant Syzygium mamillatum (Myrtaceae in relation to proximity to maternal trees. We found strong negative effects of proximity to maternal trees on growth and survival of seedlings. We successfully used giant Aldabran tortoises as ecological analogues for extinct Mauritian frugivores. Effects of gut-passage were negative at the seed germination stage, but seedlings from gut-passed seeds grew taller, had more leaves, and suffered less damage from natural enemies than any of the other seedlings. CONCLUSIONS/SIGNIFICANCE: We provide the first experimental evidence of a distance-dependent Janzen-Connell effect on an oceanic island. Our results potentially have serious implications for the conservation management of rare plant species on oceanic islands, which harbour a disproportionately large fraction of the world's endemic and endangered plants. Furthermore, in contrast to recent controversy about the use of non-indigenous extant megafauna for re

  10. The genetic architecture of a complex ecological trait: host plant use in the specialist moth, HELIOTHIS SUBFLEXA

    Science.gov (United States)

    The study of the genetic basis of ecological adaptation remains in its infancy, and most studies have focused on phenotypically simple traits. Host plant use by herbivorous insects is phenotypically complex. While research has illuminated the evolutionary determinants of host use, knowledge of its...

  11. Global Invader Impact Network (GIIN): toward standardized evaluation of the ecological impacts of invasive plants

    Czech Academy of Sciences Publication Activity Database

    Barney, J. N.; Tekiela, D. R.; Barrios-Garcia, M. N.; Dimarco, R. D.; Hufbauer, R. A.; Leipzig-Scott, P.; Nunez, M. A.; Pauchard, A.; Pyšek, Petr; Vítková, Michaela; Maxwell, B. D.

    2015-01-01

    Roč. 5, č. 14 (2015), s. 2878-2889 ISSN 2045-7758 R&D Projects: GA ČR(CZ) GAP505/11/1112 Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : invasive plants * coordinated distributed experiment * impact assessment Subject RIV: EH - Ecology, Behaviour Impact factor: 2.537, year: 2015

  12. Effects of introduced and indigenous viruses on native plants: exploring their disease causing potential at the agro-ecological interface.

    Science.gov (United States)

    Vincent, Stuart J; Coutts, Brenda A; Jones, Roger A C

    2014-01-01

    The ever increasing movement of viruses around the world poses a major threat to plants growing in cultivated and natural ecosystems. Both generalist and specialist viruses move via trade in plants and plant products. Their potential to damage cultivated plants is well understood, but little attention has been given to the threat such viruses pose to plant biodiversity. To address this, we studied their impact, and that of indigenous viruses, on native plants from a global biodiversity hot spot in an isolated region where agriculture is very recent (viruses readily. To establish their potential to cause severe or mild systemic symptoms in different native plant species, we used introduced generalist and specialist viruses, and indigenous viruses, to inoculate plants of 15 native species belonging to eight families. We also measured resulting losses in biomass and reproductive ability for some host-virus combinations. In addition, we sampled native plants growing over a wide area to increase knowledge of natural infection with introduced viruses. The results suggest that generalist introduced viruses and indigenous viruses from other hosts pose a greater potential threat than introduced specialist viruses to populations of native plants encountered for the first time. Some introduced generalist viruses infected plants in more families than others and so pose a greater potential threat to biodiversity. The indigenous viruses tested were often surprisingly virulent when they infected native plant species they were not adapted to. These results are relevant to managing virus disease in new encounter scenarios at the agro-ecological interface between managed and natural vegetation, and within other disturbed natural vegetation situations. They are also relevant for establishing conservation policies for endangered plant species and avoiding spread of damaging viruses to undisturbed natural vegetation beyond the agro-ecological interface.

  13. Effects of Planting Date and Plant Density on Physiological Indices, Quantity and Quality Traits of Two Varieties of Marigold (Calendula officinalis L.

    Directory of Open Access Journals (Sweden)

    A Sepehri

    2016-07-01

    Full Text Available Introduction Marigold (Calendula officinalis L. is originated from North West Africa and Mediterranean area, is a medicinal plant used for several purposes. It is an annual herb or short-lived perennial from the Asteraceae family with yellow or orange flowers. The Marigold has been used as a traditional medicine and food dye, but is currently used as an anti-inflammatory and wound healer. It is grown for drug, obtained from the flowers. The flowers blossom during summer three or more times per year. The essential oil of yellow or orange petals of Calendula officinalis L. is one of the important yield components which is used for food and medicine. Moreover, the seed has an oil content of 5-20 %. Seed oil could be used as a binder in paints, coating and cosmetics. Growth, development and production of medicinal plants, as well as other plants are affected by genetic and agronomic factors. Planting date and plant density are two most important factors that can affect yield and yield components. Planting date affects the quantity and quality of secondary metabolites of medicinal plants. The optimum sowing date and plant density can improve the light and temperature absorption and other factors during the growing season. The positive effects of optimal planting date and plant density has been described by a number of researchers. The Plant population is dependent on the plant characters, growth period, time and method of cultivation. Also, the suitable sowing date has advantages for maximum production. Early sowing in the spring causes weakly establishment of plant and late planting date shortens growth period and simultaneous flowering period due to high temperature in summer. In this study, the effects of plant density and planting date on physiological indices, quantity and quality of two varieties of spare and compact marigold has been evaluated. Materials and Methods In order to determine the effects of planting date and plant density on

  14. Reinforcing loose foundation stones in trait-based plant ecology

    Czech Academy of Sciences Publication Activity Database

    Shipley, B.; de Bello, Francesco; Cornelissen, J.H.C.; Lariberté, E.; Laughlin, D. C.; Reich, P. B.

    2016-01-01

    Roč. 180, č. 4 (2016), s. 923-931 ISSN 0029-8549 Institutional support: RVO:67985939 Keywords : Comparative ecology * Functional ecology * Intraspecific variation Subject RIV: EH - Ecology, Behaviour Impact factor: 3.130, year: 2016

  15. Microbiomes: unifying animal and plant systems through the lens of community ecology theory

    Science.gov (United States)

    Christian, Natalie; Whitaker, Briana K.; Clay, Keith

    2015-01-01

    The field of microbiome research is arguably one of the fastest growing in biology. Bacteria feature prominently in studies on animal health, but fungi appear to be the more prominent functional symbionts for plants. Despite the similarities in the ecological organization and evolutionary importance of animal-bacterial and plant–fungal microbiomes, there is a general failure across disciplines to integrate the advances made in each system. Researchers studying bacterial symbionts in animals benefit from greater access to efficient sequencing pipelines and taxonomic reference databases, perhaps due to high medical and veterinary interest. However, researchers studying plant–fungal symbionts benefit from the relative tractability of fungi under laboratory conditions and ease of cultivation. Thus each system has strengths to offer, but both suffer from the lack of a common conceptual framework. We argue that community ecology best illuminates complex species interactions across space and time. In this synthesis we compare and contrast the animal-bacterial and plant–fungal microbiomes using six core theories in community ecology (i.e., succession, community assembly, metacommunities, multi-trophic interactions, disturbance, restoration). The examples and questions raised are meant to spark discussion amongst biologists and lead to the integration of these two systems, as well as more informative, manipulatory experiments on microbiomes research. PMID:26441846

  16. Instrumentation enabling study of plant physiological response to elevated night temperature

    Directory of Open Access Journals (Sweden)

    Tarpley Lee

    2009-06-01

    Full Text Available Abstract Background Global climate warming can affect functioning of crops and plants in the natural environment. In order to study the effects of global warming, a method for applying a controlled heating treatment to plant canopies in the open field or in the greenhouse is needed that can accept either square wave application of elevated temperature or a complex prescribed diurnal or seasonal temperature regime. The current options are limited in their accuracy, precision, reliability, mobility or cost and scalability. Results The described system uses overhead infrared heaters that are relatively inexpensive and are accurate and precise in rapidly controlling the temperature. Remote computer-based data acquisition and control via the internet provides the ability to use complex temperature regimes and real-time monitoring. Due to its easy mobility, the heating system can randomly be allotted in the open field or in the greenhouse within the experimental setup. The apparatus has been successfully applied to study the response of rice to high night temperatures. Air temperatures were maintained within the set points ± 0.5°C. The incorporation of the combination of air-situated thermocouples, autotuned proportional integrative derivative temperature controllers and phase angled fired silicon controlled rectifier power controllers provides very fast proportional heating action (i.e. 9 ms time base, which avoids prolonged or intense heating of the plant material. Conclusion The described infrared heating system meets the utilitarian requirements of a heating system for plant physiology studies in that the elevated temperature can be accurately, precisely, and reliably controlled with minimal perturbation of other environmental factors.

  17. Ecology and Education in Landscape Architecture

    Directory of Open Access Journals (Sweden)

    James Miller

    2004-06-01

    Full Text Available Landscape architects engage in a wide range of projects relating to environmental quality. Indeed, the goals of preserving biodiversity and maintaining the integrity of ecological function is implicit in the charters of several of the discipline's professional organisations. Nonetheless, there is widespread opinion that much of the potential of design to contribute to environmental solutions goes unrealised. There are numerous explanations that purport to account for this situation; in this paper, we focus on one, the assertion that degree programmes in landscape architecture generally do a poor job of preparing students for practice grounded in ecological awareness. We examined the validity of this assertion by quantifying the amount and form of ecology-based coursework required of landscape architecture students. We surveyed the curricula of all 63 accredited, first-professional degree programmes in North America (28 offering a BLA, 17 offering an MLA and 18 offering both. We focused on required courses that could be categorised as emphasising information-based ecology, ecology/design integration, or plant identification and ecology. We recorded the level (introductory or advanced and number of credit hours for each course, and the total number of credits required for graduation in each programme. Thirty-seven undergraduate programmes required an introductory information-based ecology course. Only 13 required an advanced class in ecology and, of these, only three required coursework in landscape ecology. All of the undergraduate programmes except one required a plant class. Ten of the graduate programmes required an information-based class, an advanced, except one. Six required a course in landscape ecology. Eight required at least one ecology-design integration course, yet had no requirements regarding information-based courses. Thirty graduate programmes required at least one plant course. We discuss the implications of these results and

  18. ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development.

    Science.gov (United States)

    Alba, Rob; Fei, Zhangjun; Payton, Paxton; Liu, Yang; Moore, Shanna L; Debbie, Paul; Cohn, Jonathan; D'Ascenzo, Mark; Gordon, Jeffrey S; Rose, Jocelyn K C; Martin, Gregory; Tanksley, Steven D; Bouzayen, Mondher; Jahn, Molly M; Giovannoni, Jim

    2004-09-01

    Gene expression profiling holds tremendous promise for dissecting the regulatory mechanisms and transcriptional networks that underlie biological processes. Here we provide details of approaches used by others and ourselves for gene expression profiling in plants with emphasis on cDNA microarrays and discussion of both experimental design and downstream analysis. We focus on methods and techniques emphasizing fabrication of cDNA microarrays, fluorescent labeling, cDNA hybridization, experimental design, and data processing. We include specific examples that demonstrate how this technology can be used to further our understanding of plant physiology and development (specifically fruit development and ripening) and for comparative genomics by comparing transcriptome activity in tomato and pepper fruit.

  19. Applications of flow cytometry in plant pathology for genome size determination, detection and physiological status.

    Science.gov (United States)

    D'Hondt, Liesbet; Höfte, Monica; Van Bockstaele, Erik; Leus, Leen

    2011-10-01

    Flow cytometers are probably the most multipurpose laboratory devices available. They can analyse a vast and very diverse range of cell parameters. This technique has left its mark on cancer, human immunodeficiency virus and immunology research, and is indispensable in routine clinical diagnostics. Flow cytometry (FCM) is also a well-known tool for the detection and physiological status assessment of microorganisms in drinking water, marine environments, food and fermentation processes. However, flow cytometers are seldom used in plant pathology, despite FCM's major advantages as both a detection method and a research tool. Potential uses of FCM include the characterization of genome sizes of fungal and oomycete populations, multiplexed pathogen detection and the monitoring of the viability, culturability and gene expression of plant pathogens, and many others. This review provides an overview of the history, advantages and disadvantages of FCM, and focuses on the current applications and future possibilities of FCM in plant pathology. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  20. Linking microbial and ecosystem ecology using ecological stoichiometry: a synthesis of conceptual and empirical approaches

    Science.gov (United States)

    Hall, E.K.; Maixner, F.; Franklin, O.; Daims, H.; Richter, A.; Battin, T.

    2011-01-01

    Currently, one of the biggest challenges in microbial and ecosystem ecology is to develop conceptual models that organize the growing body of information on environmental microbiology into a clear mechanistic framework with a direct link to ecosystem processes. Doing so will enable development of testable hypotheses to better direct future research and increase understanding of key constraints on biogeochemical networks. Although the understanding of phenotypic and genotypic diversity of microorganisms in the environment is rapidly accumulating, how controls on microbial physiology ultimately affect biogeochemical fluxes remains poorly understood. We propose that insight into constraints on biogeochemical cycles can be achieved by a more rigorous evaluation of microbial community biomass composition within the context of ecological stoichiometry. Multiple recent studies have pointed to microbial biomass stoichiometry as an important determinant of when microorganisms retain or recycle mineral nutrients. We identify the relevant cellular components that most likely drive changes in microbial biomass stoichiometry by defining a conceptual model rooted in ecological stoichiometry. More importantly, we show how X-ray microanalysis (XRMA), nanoscale secondary ion mass spectroscopy (NanoSIMS), Raman microspectroscopy, and in situ hybridization techniques (for example, FISH) can be applied in concert to allow for direct empirical evaluation of the proposed conceptual framework. This approach links an important piece of the ecological literature, ecological stoichiometry, with the molecular front of the microbial revolution, in an attempt to provide new insight into how microbial physiology could constrain ecosystem processes.

  1. Effects of foliage plants on human physiological and psychological responses at different temperatures

    Science.gov (United States)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  2. Seventh workshop on seedling physiology and growth problems in oak plantings (abstracts); 1998 September 27-29; South Lake Tahoe, CA.

    Science.gov (United States)

    D.D. McCreary; J.G. Isebrands

    1999-01-01

    Research results and ongoing research activities in field performance of planted trees, seedling propagation, physiology, genetics, acorn germination, and natural regeneration for oaks are described in 17 abstracts.

  3. Ecological risks of DOE`s programmatic environmental restoration alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report assesses the ecological risks of the Department of Energy`s (DOE) Environmental Restoration Program. The assessment is programmatic in that it is directed at evaluation of the broad programmatic alternatives outlined in the DOE Implementation Plan. It attempts to (1) characterize the ecological resources present on DOE facilities, (2) describe the occurrence and importance of ecologically significant contamination at major DOE facilities, (3) evaluate the adverse ecological impacts of habitat disturbance caused by remedial activities, and (4) determine whether one or another of the programmatic alternatives is clearly ecologically superior to the others. The assessment focuses on six representative facilities: the Idaho National Engineering Laboratory (INEL); the Fernald Environmental Management Project (FEMP); the Oak Ridge Reservation (ORR), including the Oak Ridge National Laboratory (ORNL), Y-12 plant, and K-25 plant; the Rocky Flats Plant; the Hanford Reservation; and the Portsmouth Gaseous Diffusion Plant.

  4. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight?

    Directory of Open Access Journals (Sweden)

    Anna-Lisa Paul

    Full Text Available Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response

  5. A strategy for maximizing native plant material diversity for ecological restoration, germplasm conservation and genecology research

    Science.gov (United States)

    Berta Youtie; Nancy Shaw; Matt Fisk; Scott Jensen

    2012-01-01

    One of the most important steps in planning a restoration project is careful selection of ecologically adapted native plant material. As species-specific seed zone maps are not available for most species in the Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) ecoregion in the Great Basin, USA, we are employing a provisional seed zone map based on annual...

  6. On application potential of root analyzer in ecological and physiological studies of pleurocarpous mosses

    Directory of Open Access Journals (Sweden)

    LI Qian

    2012-10-01

    Full Text Available A software of root analyzer (WinRHIZO was used to analyze the gametophytic morphology of 32 specimens of Hypnum plumaeforme Wils., Thuidium cymbifolium (Dozy et Molk. Dozy et Molk.and Entodon compressus (Hedw. Müll.Hal..The length of stems and branches,projected area,surface area,average diameter,length/volume,volume,tips,forks,and the crossings number of links of gametophytes of these 32 specimens were obtained.Based on the above morphological parameters,the cluster dendrogram and ordination plots were produced by using cluster analysis and non-metric multi-dimensional scaling method.The results showed that the 32 specimens could be divided into three groups,which match well with Hypnum plumaeforme Wils., Thuidium cymbifolium (Dozy et Molk. Dozy et Molk.and Entodon compressus (Hedw. Müll.Hal.,respectively.One-way ANOVA of the 10 characters among the three species shows that most morphological parameters are statistically different among the above three species.Therefore,the above 10 characters are relative stable in the genus level,the root analyzer and its attached software have a potential in the physiological and ecological studies in pleurocarpous mosses.

  7. Ecology. 2nd German ed.

    International Nuclear Information System (INIS)

    Remmert, H.

    1980-01-01

    The second edition of this outstanding textbook is now available in translation to English-speaking readers. Revised and expanded from the first edition, it brings into even greater focus the relationship between ecology and sensory physiology. (orig./HP)

  8. Ancient ecology of 15-million-year-old browsing mammals within C3 plant communities from Panama.

    Science.gov (United States)

    MacFadden, Bruce J; Higgins, Pennilyn

    2004-06-01

    Middle Miocene mammals are known from approximately 15 million-year-old sediments exposed along the Panama Canal of Central America, a region that otherwise has an exceedingly poor terrestrial fossil record. These land mammals, which represent a part of the ancient terrestrial herbivore community, include an oreodont Merycochoerus matthewi, small camel-like protoceratid artiodactyl Paratoceras wardi, two horses Anchitherium clarencei and Archaeohippus sp., and two rhinos Menoceras barbouri and Floridaceras whitei. Bulk and serial carbon and oxygen isotope analyses of the tooth enamel carbonate allow reconstruction of the ancient climate and ecology of these fossil mammals. Ancient Panama had an equable climate with seasonal temperature and rainfall fluctuations less than those seen today. The middle Miocene terrestrial community consisted predominantly, or exclusively, of C3 plants, i.e., there is no evidence for C4 grasses. Statistically different mean carbon isotope values for the mammalian herbivores indicate niche partitioning of the C3 plant food resources. The range of individual carbon isotope analyses, i.e., delta13C from -15.9 to -10.1 per thousand, indicates herbivores feeding on diverse plants from different habitats with extrapolated delta13C values of -29.9 to -24.2 per thousand, possibly ranging from dense forest to more open country woodland. The ecological niches of individual mammalian herbivore species were differentiated either by diet or body size.

  9. Exergo-Ecological Assessment of Waste to Energy Plants Supported by Solar Energy

    Directory of Open Access Journals (Sweden)

    Barbara Mendecka

    2018-03-01

    Full Text Available Hybridization of Waste to Energy (WtE plants with solar facilities can take competing energy technologies and make them complementary. However, realizing the benefits of the solar integration requires careful consideration of its efficiency. To analyse such systems from the point of view of resource efficiency, the pure energy analysis is not sufficient since the quality of particular energy carriers is not evaluated. This work applies the exergo-ecological analysis using the concepts of thermoecological cost (TEC and exergy cost for the performance evaluation of an integrated Solar-Waste to Energy plant scheme, where solar energy is used for steam superheating. Different plant layouts, considering several design steam parameters as well as different solar system configurations, in terms of area of heliostats and size of the thermal storage tank, were studied. The results for the solar integrated plant scheme were compared with the scenarios where superheating is performed fully by a non-renewable energy source. The presented results of exergy cost analysis indicate that the most favorable system is the one supported by non-renewable energy. Such an analysis does not consider the advantage of the use of renewable energy sources. By extending the system boundary to the level of natural resource and applying the thermoecological cost analysis, an opposite result was obtained.

  10. Conventional and ecological public health.

    Science.gov (United States)

    Rayner, G

    2009-09-01

    This paper suggests that current models of public health are no longer sufficient as a means for understanding the health challenges of the anthropogenic age, and argues for an alternative based upon an ecological model. The roots of this perspective originated within the Victorian era, although it found only limited expression at that time. Ecological thinking in public health has only been revived relatively recently. Derived from an analysis of obesity, this paper proposes the development of an approach to ecological public health based on four dimensions of existence: the material, the physiological, the social and the cultural-cognitive. The implications for public policy are considered.

  11. Physiological, morphological and allocation plasticity of a semi-deciduous shrub

    Science.gov (United States)

    Zunzunegui, M.; Ain-Lhout, F.; Barradas, M. C. Díaz; Álvarez-Cansino, L.; Esquivias, M. P.; García Novo, F.

    2009-05-01

    The main objective of this study was to look into the phenotypic plasticity of the semi-deciduous Mediterranean shrub, Halimium halimifolium. We studied morphological, allocation and physiological traits to determine which characters were more plastic and contribute in a greater extent to the acclimation ability of the species. We present a phenotypic plasticity index for morphological, physiological and allocation traits, which we have applied in the most contrasted plant communities where the species grows naturally. Data published by Díaz Barradas, M.C., García Novo, F. [1987. The vertical structure of Mediterranean scrub in Doñana National Park (SW Spain). Folia Geobotanica Phytotaxonomica 22, 415-433; 1988. Modificación y extinción de la luz a través de la copa en cuatro especies de matorral en el Parque Nacional de Doñana. Monografias Instituto Pirenaico de Ecologia 4, 503-516; 1990. Seasonal changes in canopy structure in two mediterranean dune shrubs. Journal of Vegetation Science 1, 31-40.], Díaz Barradas, M.C., Zunzunegui, M., García Novo, F. [1999a. Autoecological traits of Halimium halimifolium in contrasted habitats under Mediterranean type climate. Folia Geobotanica 34, 189-208.] and Zunzunegui et al. [Zunzunegui, M., Díaz Barradas, M.C., García Novo, F. 1997. Autoecological notes of Halimium halimifolium. Lagascalia 19, 725-736. Sevilla, Spain; Zunzunegui, M., Díaz Barradas, M.C., Fernández Baco, L., García Novo, F. 1999. Seasonal changes in photochemical efficiency in leaves of Halimium halimifolium a Mediterranean semideciduous shrub. Photosynthetica 36, 17-31; Zunzunegui, M., Díaz Barradas, M.C., García Novo, F. 2000. Different phenotypic response of Halimium halimifolium in relation to groundwater availability. Plant Ecology 148, 165-174; Zunzunegui, M., Díaz Barradas, M.C., Aguilar, F., Ain-Lhout, F., Clavijo, A., García Novo, F. 2002. Growth response of Halimium halimifolium at four sites with different soil water availability

  12. Plant growth and physiology of vegetable plants as influenced by carbon dioxide environment

    International Nuclear Information System (INIS)

    Ito, Tadashi

    1973-01-01

    In order to obtain basic knowledge on the increased giving of carbon dioxide to vegetables, the carbon dioxide environment in growing houses was analyzed, and the physiological and ecological properties of vegetables cultivated in carbon dioxide environment were elucidated. To improve the carbon dioxide environment, giving increased quantity of carbon dioxide, air flow, ventilation, and others were examined. The concentration of carbon dioxide began to decrease when the illumination intensity on growing layer reached 1 -- 1.5 lux, owing to the photo-synthetic activity of vegetables, and decreased rapidly at 3 -- 5 lux. The lowering of carbon dioxide concentration lowered the photo-synthesis of vegetables extremely, and the transfer of synthesized carbohydrate to roots was obstructed. The effect suffered in low carbon dioxide concentration left some aftereffect even after ventilation and the recovery of carbon dioxide concentration. But this aftereffect was not observed in case of cucumber. To improve carbon dioxide environment, the air flow or ventilation required for minimizing the concentration lowering was determined, but giving increased quantity of carbon dioxide was most effective. The interaction of carbon dioxide concentration and light was examined regarding the effect on photo-synthesis, and some knowledge of practical application was obtained. The effect of giving more carbon dioxide was more remarkable as the treatment was given to younger seedlings and in the period when the capacity of absorbing assimilation products was higher. (Kako, I.)

  13. Effect of Planting Date on Physiological and MorphologicalCharacteristics of Four Canola Cultivars in Yasouj

    Directory of Open Access Journals (Sweden)

    M. H. Fallah Heki

    2012-08-01

    Full Text Available In order to study the physiological and morphological characteristics of canola cultivars at different planting dates, an experiment was carried out in 2008-2009 at the Agriculture Research Station of Yasouj. A factorial with Randomized Complete Block Design with four replications was conducted. Four planting dates (September 12, September 22, October 2 and October 12 and four cultivars (Zarfam, Okapi, Elite and SLM-046 were used in this study. Results showed that cultivars and planting dates had significant effects on more characteristics. In addition, interaction of planting date and cultivar was significant on plant height, height to lowest silique, number of branches, growth indices and grain yield. Zarfam and Elite cultivars had lower initial fluorescence (Fo and higher maximum fluorescence (Fm and photochemical capacity of photosystem II (Fv/Fm than Okapi and SLM-046 cultivars. Elite cultivar at September 12 planting date had the highest plant height (173 cm and height to lowest silique (87.5 cm and Okapi cultivar at October 12 planting date showed the lowest plant height (91 cm and height to lowest silique (43.7 cm. At September 12 planting date, Elite cultivar had the greatest leaf area index (5.21 and grain yield (5231 kg/ha. At other planting dates, Zarfam cultivar because of priority in leaf area index, crop growth rate and total dry matter have the greatest grain yield than other cultivars. In general, seems at September 12 planting date, Elite cultivar and for delayed sowing, Zarfam cultivar had better reaction than other cultivars.

  14. Martin Gibbs (1922-2006): Pioneer of (14)C research, sugar metabolism & photosynthesis; vigilant Editor-in-Chief of Plant Physiology; sage Educator; and humanistic Mentor.

    Science.gov (United States)

    Black, Clanton C

    2008-01-01

    The very personal touch of Professor Martin Gibbs as a worldwide advocate for photosynthesis and plant physiology was lost with his death in July 2006. Widely known for his engaging humorous personality and his humanitarian lifestyle, Martin Gibbs excelled as a strong international science diplomat; like a personal science family patriarch encouraging science and plant scientists around the world. Immediately after World War II he was a pioneer at the Brookhaven National Laboratory in the use of (14)C to elucidate carbon flow in metabolism and particularly carbon pathways in photosynthesis. His leadership on carbon metabolism and photosynthesis extended for four decades of working in collaboration with a host of students and colleagues. In 1962, he was selected as the Editor-in-Chief of Plant Physiology. That appointment initiated 3 decades of strong directional influences by Gibbs on plant research and photosynthesis. Plant Physiology became and remains a premier source of new knowledge about the vital and primary roles of plants in earth's environmental history and the energetics of our green-blue planet. His leadership and charismatic humanitarian character became the quintessence of excellence worldwide. Martin Gibbs was in every sense the personification of a model mentor not only for scientists but also shown in devotion to family. Here we pay tribute and honor to an exemplary humanistic mentor, Martin Gibbs.

  15. Development of sensors for monitoring oxygen and free radicals in plant physiology

    Science.gov (United States)

    Chaturvedi, Prachee

    Oxygen plays a critical role in the physiology of photosynthetic organisms, including bioenergetics, metabolism, development, and stress response. Oxygen levels affect photosynthesis, respiration, and alternative oxidase pathways. Likewise, the metabolic rate of spatially distinct plant cells (and therefore oxygen flux) is known to be affected by biotic stress (e.g., herbivory) and environmental stress (e.g., salt/nutrient stress). During aerobic metabolism, cells produce reactive oxygen species (ROS) as a by product. Plants also produce ROS during adaptation to stress (e.g., abscisic acid (ABA) mediated stress responses). If stress conditions are prolonged, ROS levels surpass the capacity of detoxifying mechanisms within the cell, resulting in oxidative damage. While stress response pathways such as ABA-mediated mechanisms have been well characterized (e.g., water stress, inhibited shoot growth, synthesis of storage proteins in seeds), the connection between ROS production, oxygen metabolism and stress response remains unknown. In part, this is because details of oxygen transport at the interface of cell(s) and the surrounding microenvironment remains nebulous. The overall goal of this research was to develop oxygen and Free radical sensors for studying stress signaling in plants. Recent developments in nanomaterials and data acquisition systems were integrated to develop real-time, non-invasive oxygen and Free radical sensors. The availability of these sensors for plant physiologists is an exciting opportunity to probe the functional realm of cells and tissues in ways that were not previously possible.

  16. Phytotoxicity: An Overview of the Physiological Responses of Plants Exposed to Fungicides

    Directory of Open Access Journals (Sweden)

    Maria Celeste Dias

    2012-01-01

    Full Text Available In the last decades, the use of fungicides in agriculture for fungi diseases control has become crucial. Fungicide research has produced a diverse range of products with novel modes of action. However, the extensive use of these compounds in the agriculture system raises public concern because of the harmful potential of such substances in the environment and human health. Moreover, the phytotoxic effects of some fungicides are already recognized but little is known about the impact of these compounds on the photosynthetic apparatus. This paper presents a comprehensive overview of the literature considering different classes of fungicides and their effects on plant physiology, with particular emphasis on photosynthesis.

  17. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Aranjuelo, Iker; Molero, Gemma; Erice, Gorka; Avice, Jean Christophe; Nogués, Salvador

    2011-01-01

    Despite its relevance, protein regulation, metabolic adjustment, and the physiological status of plants under drought is not well understood in relation to the role of nitrogen fixation in nodules. In this study, nodulated alfalfa plants were exposed to drought conditions. The study determined the physiological, metabolic, and proteomic processes involved in photosynthetic inhibition in relation to the decrease in nitrogenase (N(ase)) activity. The deleterious effect of drought on alfalfa performance was targeted towards photosynthesis and N(ase) activity. At the leaf level, photosynthetic inhibition was mainly caused by the inhibition of Rubisco. The proteomic profile and physiological measurements revealed that the reduced carboxylation capacity of droughted plants was related to limitations in Rubisco protein content, activation state, and RuBP regeneration. Drought also decreased amino acid content such as asparagine, and glutamic acid, and Rubisco protein content indicating that N availability limitations were caused by N(ase) activity inhibition. In this context, drought induced the decrease in Rubisco binding protein content at the leaf level and proteases were up-regulated so as to degrade Rubisco protein. This degradation enabled the reallocation of the Rubisco-derived N to the synthesis of amino acids with osmoregulant capacity. Rubisco degradation under drought conditions was induced so as to remobilize Rubisco-derived N to compensate for the decrease in N associated with N(ase) inhibition. Metabolic analyses showed that droughted plants increased amino acid (proline, a major compound involved in osmotic regulation) and soluble sugar (D-pinitol) levels to contribute towards the decrease in osmotic potential (Ψ(s)). At the nodule level, drought had an inhibitory effect on N(ase) activity. This decrease in N(ase) activity was not induced by substrate shortage, as reflected by an increase in total soluble sugars (TSS) in the nodules. Proline accumulation

  18. Silicon Regulates Potential Genes Involved in Major Physiological Processes in Plants to Combat Stress

    Directory of Open Access Journals (Sweden)

    Abinaya Manivannan

    2017-08-01

    Full Text Available Silicon (Si, the quasi-essential element occurs as the second most abundant element in the earth's crust. Biological importance of Si in plant kingdom has become inevitable particularly under stressed environment. In general, plants are classified as high, medium, and low silicon accumulators based on the ability of roots to absorb Si. The uptake of Si directly influence the positive effects attributed to the plant but Si supplementation proves to mitigate stress and recover plant growth even in low accumulating plants like tomato. The application of Si in soil as well as soil-less cultivation systems have resulted in the enhancement of quantitative and qualitative traits of plants even under stressed environment. Silicon possesses several mechanisms to regulate the physiological, biochemical, and antioxidant metabolism in plants to combat abiotic and biotic stresses. Nevertheless, very few reports are available on the aspect of Si-mediated molecular regulation of genes with potential role in stress tolerance. The recent advancements in the era of genomics and transcriptomics have opened an avenue for the determination of molecular rationale associated with the Si amendment to the stress alleviation in plants. Therefore, the present endeavor has attempted to describe the recent discoveries related to the regulation of vital genes involved in photosynthesis, transcription regulation, defense, water transport, polyamine synthesis, and housekeeping genes during abiotic and biotic stress alleviation by Si. Furthermore, an overview of Si-mediated modulation of multiple genes involved in stress response pathways such as phenylpropanoid pathway, jasmonic acid pathway, ABA-dependent or independent regulatory pathway have been discussed in this review.

  19. Effects of Three Fire-Suppressant Foams on the Germination and Physiological Responses of Plants

    Science.gov (United States)

    Song, Uhram; Mun, Saeromi; Waldman, Bruce; Lee, Eun Ju

    2014-10-01

    Suppressant foams used to fight forest fires may leave residual effects on surviving biota that managers need to consider prior to using them. We examined how three fire-suppressant foams (FSFs) (Forexpan S, Phos-Chek-WD881, and Silv-ex) affected seed germination and physiological responses of three plant species. Exposure to FSFs, whether in diluted concentrations or those typical in the field, reduced final germination percentages of seeds grown in petri dishes and within growth chambers. However, the FSFs did not cause total germination failure in any treatment. Inhibition of germination increased with longer exposure times, but only to diluted FSF solutions. Unlike in the laboratory experiments, none of the three FSFs affected seedling emergence when tested in field conditions. Further, we found no evidence of long-term phytotoxic effects on antioxidant enzyme activity nor chlorophyll content of the plant saplings. Therefore, although the three FSFs showed evidence of phytotoxicity to plants in laboratory tests, their actual impact on terrestrial ecosystems may be minimal. We suggest that the benefits of using these FSFs to protect plants in threatened forest ecosystems outweigh their minor risks.

  20. Invasive plant species in the West Indies: geographical, ecological, and floristic insights.

    Science.gov (United States)

    Rojas-Sandoval, Julissa; Tremblay, Raymond L; Acevedo-Rodríguez, Pedro; Díaz-Soltero, Hilda

    2017-07-01

    The level of invasion (number or proportion of invasive species) in a given area depends on features of the invaded community, propagule pressure, and climate. In this study, we assess the invasive flora of nine islands in the West Indies to identify invasion patterns and evaluate whether invasive species diversity is related to geographical, ecological, and socioeconomic factors. We compiled a database of invasive plant species including information on their taxonomy, origin, pathways of introduction, habitats, and life history. This database was used to evaluate the similarity of invasive floras between islands and to identify invasion patterns at regional (West Indies) and local (island) scales. We found a total of 516 alien plant species that are invasive on at least one of the nine islands studied, with between 24 to 306 invasive species per island. The invasive flora on these islands includes a wide range of taxonomic groups, life forms, and habitats. We detected low similarity in invasive species diversity between islands, with most invasive species (>60%) occurring on a single island and 6% occurring on at least five islands. To assess the importance of different models in predicting patterns of invasive species diversity among islands, we used generalized linear models. Our analyses revealed that invasive species diversity was well predicted by a combination of island area and economic development (gross domestic product per capita and kilometers of paved roadways). Our results provide strong evidence for the roles of geographical, ecological, and socioeconomic factors in determining the distribution and spread of invasive species on these islands. Anthropogenic disturbance and economic development seem to be the major drivers facilitating the spread and predominance of invasive species over native species.

  1. Specific developmental pathways underlie host specificity in the parasitic plant Orobanche

    Science.gov (United States)

    Hiscock, Simon

    2010-01-01

    Parasitic angiosperms are an ecologically and economically important group of plants. However our understanding of the basis for host specificity in these plants is embryonic. Recently we investigated host specificity in the parasitic angiosperm Orobanche minor, and demonstrated that this host generalist parasite comprises genetically defined races that are physiologically adapted to specific hosts. Populations occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota subsp. gummifer) respectively, showed distinct patterns of host specificity at various developmental stages, and a higher fitness on their natural hosts, suggesting these races are locally adapted. Here we discuss the implications of our findings from a broader perspective. We suggest that differences in signal responsiveness and perception by the parasite, as well as qualitative differences in signal production by the host, may elicit host specificity in this parasitic plant. Together with our earlier demonstration that these O. minor races are genetically distinct based on molecular markers, our recent data provide a snapshot of speciation in action, driven by host specificity. Indeed, host specificity may be an underestimated catalyst for speciation in parasitic plants generally. We propose that identifying host specific races using physiological techniques will complement conventional molecular marker-based approaches to provide a framework for delineating evolutionary relationships among cryptic host-specific parasitic plants. PMID:20081361

  2. Plant host finding by parasitic plants: A new perspective on plant to plant communication

    Science.gov (United States)

    Mark C. Mescher; Justin B. Runyon; Consuelo M. De Moraes

    2006-01-01

    Plants release airborne chemicals that can convey ecologically relevant information to other organisms. These plant volatiles are known to mediate a large array of, often complex, interactions between plants and insects. It has been suggested that plant volatiles may have similar importance in mediating interactions among plant species, but there are few well-...

  3. Simulation and experimental studies of operators' decision styles and crew composition while using an ecological and traditional user interface for the control room of a nuclear power plant

    International Nuclear Information System (INIS)

    Meshkati, N.; Buller, B.J.; Azadeh, M.A.

    1995-01-01

    The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators' individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and a mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators' individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators' decision styles affect on both their performance and preference for the Ecological interface

  4. Simulation and experimental studies of operators` decision styles and crew composition while using an ecological and traditional user interface for the control room of a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Meshkati, N.; Buller, B.J.; Azadeh, M.A. [Univ. of Southern California, Los Angeles, CA (United States)

    1995-04-01

    The goal of this research is threefold: (1) use of the Skill-, Rule-, and Knowledge-based levels of cognitive control -- the SRK framework -- to develop an integrated information processing conceptual framework (for integration of workstation, job, and team design); (2) to evaluate the user interface component of this framework -- the Ecological display; and (3) to analyze the effect of operators` individual information processing behavior and decision styles on handling plant disturbances plus their performance on, and preference for, Traditional and Ecological user interfaces. A series of studies were conducted. In Part I, a computer simulation model and a mathematical model were developed. In Part II, an experiment was designed and conducted at the EBR-II plant of the Argonne National Laboratory-West in Idaho Falls, Idaho. It is concluded that: the integrated SRK-based information processing model for control room operations is superior to the conventional rule-based model; operators` individual decision styles and the combination of their styles play a significant role in effective handling of nuclear power plant disturbances; use of the Ecological interface results in significantly more accurate event diagnosis and recall of various plant parameters, faster response to plant transients, and higher ratings of subject preference; and operators` decision styles affect on both their performance and preference for the Ecological interface.

  5. Impact of plant growth promoting bacillus subtilis on growth and physiological parameters of bassia indica (indian bassia) grown udder salt stress

    International Nuclear Information System (INIS)

    Abeer, H.; Asma, A. H.; Allah, A.; Qarawi, A.; Shalawi, A.; Dilfuza, E.

    2015-01-01

    In this study, the role of a salt-tolerant plant growth-promoting bacterium (PGPR), Bacillus subtilis, in the alleviation of salinity stress during the growth of Indian bassia (Bassia indica (Wight) A.J. Scott), was studied under ccontrolled growth chamber conditions following seed inoculation. Physiological parameters such as neutral and phospholipids, fatty acid composition as well as photosynthetic pigments, were investigated. Salinity inhibited shoot and root length by 16 and 42 percentage, dry weight by 37 and 23 percentage respectively and negatively affected physiological parameters. Inoculation of unstressed and salt-stressed Indian bassia with B. subtilis significantly improved root and shoot growth, total lipid content, the phospholipid fraction, photosynthetic pigments (chlorophyll a and b and carotenoid contents) and also increased oleic (C 18:1 ), linoleic (C 18:2 ) and linolenic (C 18:3 ) acids in plant leaves compared to uninoculated plants. The salt-tolerant PGPR, B. subtilis could act synergistically to promote the growth and fitness of Indian bassia plants under salt stress by providing an additional supply of an auxin (IAA) and induce salt stress resistance by reducing stress ethylene levels. (author)

  6. Ecological trade-offs between jasmonic acid-dependent direct and indirect plant defences in tritrophic interactions.

    Science.gov (United States)

    Wei, Jianing; Wang, Lizhong; Zhao, Jiuhai; Li, Chuanyou; Ge, Feng; Kang, Le

    2011-01-01

    Recent studies on plants genetically modified in jasmonic acid (JA) signalling support the hypothesis that the jasmonate family of oxylipins plays an important role in mediating direct and indirect plant defences. However, the interaction of two modes of defence in tritrophic systems is largely unknown. In this study, we examined the preference and performance of a herbivorous leafminer (Liriomyza huidobrensis) and its parasitic wasp (Opius dissitus) on three tomato genotypes: a wild-type (WT) plant, a JA biosynthesis (spr2) mutant, and a JA-overexpression 35S::prosys plant. Their proteinase inhibitor production and volatile emission were used as direct and indirect defence factors to evaluate the responses of leafminers and parasitoids. Here, we show that although spr2 mutant plants are compromised in direct defence against the larval leafminers and in attracting parasitoids, they are less attractive to adult flies compared with WT plants. Moreover, in comparison to other genotypes, the 35S::prosys plant displays greater direct and constitutive indirect defences, but reduced success of parasitism by parasitoids. Taken together, these results suggest that there are distinguished ecological trade-offs between JA-dependent direct and indirect defences in genetically modified plants whose fitness should be assessed in tritrophic systems and under natural conditions. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  7. Ecological Stoichiometry of Ocean Plankton

    Science.gov (United States)

    Moreno, Allison R.; Martiny, Adam C.

    2018-01-01

    Marine plankton elemental stoichiometric ratios can deviate from the Redfield ratio (106C:16N:1P); here, we examine physiological and biogeochemical mechanisms that lead to the observed variation across lineages, regions, and seasons. Many models of ecological stoichiometry blend together acclimative and adaptive responses to environmental conditions. These two pathways can have unique molecular mechanisms and stoichiometric outcomes, and we attempt to disentangle the two processes. We find that interactions between environmental conditions and cellular growth are key to understanding stoichiometric regulation, but the growth rates of most marine plankton populations are poorly constrained. We propose that specific physiological mechanisms have a strong impact on plankton and community stoichiometry in nutrient-rich environments, whereas biogeochemical interactions are important for the stoichiometry of the oligotrophic gyres. Finally, we outline key areas with missing information that is needed to advance understanding of the present and future ecological stoichiometry of ocean plankton.

  8. Chemical ecology of fungi.

    Science.gov (United States)

    Spiteller, Peter

    2015-07-01

    Fungi are widespread in nature and have conquered nearly every ecological niche. Fungi occur not only in terrestrial but also in freshwater and marine environments. Moreover, fungi are known as a rich source of secondary metabolites. Despite these facts, the ecological role of many of these metabolites is still unknown and the chemical ecology of fungi has not been investigated systematically so far. This review intends to present examples of the various chemical interactions of fungi with other fungi, plants, bacteria and animals and to give an overview of the current knowledge of fungal chemical ecology.

  9. Coordination of physiological and structural traits in Amazon forest trees

    Science.gov (United States)

    Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.

    2012-02-01

    Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants integrate their structural and physiological investments, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1020 individual trees (encompassing 661 species) located in 52 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C, and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five taxonomically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to some components of the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components for tropical tree species. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions influenced structural traits with ρx of individual species decreasing with increased soil fertility and higher temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus, although genetically determined foliar traits such as those associated with leaf

  10. The effect of lichen-dominated biological soil crusts on growth and physiological characteristics of three plant species in a temperate desert of northwest China.

    Science.gov (United States)

    Zhuang, W W; Serpe, M; Zhang, Y M

    2015-11-01

    Biocrusts (biological soil crusts) cover open spaces between vascular plants in most arid and semi-arid areas. Information on effects of biocrusts on seedling growth is controversial, and there is little information on their effects on plant growth and physiology. We examined impacts of biocrusts on growth and physiological characteristics of three habitat-typical plants, Erodium oxyrhynchum, Alyssum linifolium and Hyalea pulchella, growing in the Gurbantunggut Desert, northwest China. The influence of biocrusts on plant biomass, leaf area, leaf relative water content, photosynthesis, maximum quantum efficiency of PSII (F(v)/F(m)), chlorophyll, osmotic solutes (soluble sugars, protein, proline) and antioxidant enzymes (superoxide dismutase, catalase, peroxidase) was investigated on sites with or without biocrust cover. Biomass, leaf area, leaf water content, photosynthesis, F(v)/F(m) and chlorophyll content in crusted soils were higher than in uncrusted soils during early growth and lower later in the growth period. Soluble sugars, proline and antioxidant enzyme activity were always higher in crusted than in uncrusted soils, while soluble protein content was always lower. These findings indicate that biocrusts have different effects on these three ephemeral species during growth in this desert, primarily via effects on soil moisture, and possibly on soil nutrients. The influence of biocrusts changes during plant development: in early plant growth, biocrusts had either positive or no effect on growth and physiological parameters. However, biocrusts tended to negatively influence plants during later growth. Our results provide insights to explain why previous studies have found different effects of biocrusts on vascular plant growth. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. New horizons for (p)ppGpp in bacterial and plant physiology.

    Science.gov (United States)

    Braeken, Kristien; Moris, Martine; Daniels, Ruth; Vanderleyden, Jos; Michiels, Jan

    2006-01-01

    A hyperphosphorylated guanosine nucleotide, (p)ppGpp, was initially identified as the effector molecule responsible for the stringent response in Escherichia coli. However, a rapidly growing number of reports proves that (p)ppGpp-mediated regulation is conserved in many bacteria and even in plants. It is now clear that (p)ppGpp acts as a global regulator during physiological adaptation of the organism to a plethora of environmental conditions. Adaptation is not only essential for surviving periods of stress and nutrient exhaustion but also for the interaction of bacteria with their eukaryotic host, as observed during pathogenesis and symbiosis, and for bacterial multicellular behaviour. Recently, there have been several new discoveries about the effects of (p)ppGpp levels, balanced by RelA-SpoT homologue proteins, in diverse organisms.

  12. Principles and applications of TAL effectors for plant physiology and metabolism.

    Science.gov (United States)

    Bogdanove, Adam J

    2014-06-01

    Recent advances in DNA targeting allow unprecedented control over gene function and expression. Targeting based on TAL effectors is arguably the most promising for systems biology and metabolic engineering. Multiple, orthogonal TAL-effector reagents of different types can be used in the same cell. Furthermore, variation in base preferences of the individual structural repeats that make up the TAL effector DNA recognition domain makes targeting stringency tunable. Realized applications range from genome editing to epigenome modification to targeted gene regulation to chromatin labeling and capture. The principles that govern TAL effector DNA recognition make TAL effectors well suited for applications relevant to plant physiology and metabolism. TAL effector targeting has merits that are distinct from those of the RNA-based DNA targeting CRISPR/Cas9 system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Microbial and plant ecology of a long-term TNT-contaminated site

    International Nuclear Information System (INIS)

    Travis, Emma R.; Bruce, Neil C.; Rosser, Susan J.

    2008-01-01

    The contamination of the environment with explosive residues presents a serious ecological problem at sites across the world, with the highly toxic compound trinitrotoluene (TNT) the most widespread contaminant. This study examines the soil microbial community composition across a long-term TNT-contaminated site. It also investigates the extent of nitroaromatic contamination and its effect on vegetation. Concentrations of TNT and its metabolites varied across the site and this was observed to dramatically impact on the extent and diversity of the vegetation, with the most heavily contaminated area completely devoid of vegetation. Bryophytes were seen to be particularly sensitive to TNT contamination. The microbial population experienced both a reduction in culturable bacterial numbers and a shift in composition at the high concentrations of TNT. DGGE and community-level physiological profiling (CLPP) revealed a clear change in both the genetic and functional diversity of the soil when soil was contaminated with TNT. - Long-term contamination of soil with TNT reduces the extent and diversity of vegetation, decreases culturable bacterial numbers and shifts the microbial community composition

  14. Ecological analyses and applications

    International Nuclear Information System (INIS)

    Kroodsma, R.L.; Craig, R.B.; Hildebrand, S.G.

    1978-01-01

    Progress is reported on the following: assessment of nuclear power plants; ecological analysis of uranium mining, milling, and fuel fabrication; environmental impact statements concerning uranium enrichment facilities; site evaluations for storage of radioactive wastes; ecological analysis of geothermal energy development; enhanced oil recovery; environmental monitoring plan for modular integrated utility systems; and fossil energy environmental project

  15. Interaction intimacy of pathogens and herbivores with their host plants influences the topological structure of ecological networks in different ways.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley

    2015-04-01

    • Over the past two decades an interest in the role that plant-animal mutualistic networks play in the organization and dynamic of biodiversity has steadily risen. Despite the ecological, evolutionary, and economic importance of plant-herbivore and plant-pathogen antagonistic relationships, however, few studies have examined these interactions in an ecological network framework.• We describe for the first time the topological structure of multitrophic networks involving congeneric tropical plant species of the genus Heliconia (Heliconiaceae, Zingiberales) and their herbivores and pathogens in the state of Pernambuco, Brazil. We based our study on the available literature describing the organisms (e.g., insects, mites, fungi, and bacteria) that attack 24 different species, hybrids, and cultivated varieties of Heliconia.• In general, pathogen- and herbivore-Heliconia networks differed in their topological structure (more modular vs. more nested, respectively): pathogen-Heliconia networks were more specialized and compartmentalized than herbivore-Heliconia networks. High modularity was likely due to the high intimacy that pathogens have with their host plants as compared with the more generalized feeding modes and behavior of herbivores. Some clusters clearly reflected the clustering of closely related cultivated varieties of Heliconia sharing the same pathogens.• From a commercial standpoint, different varieties of the same Heliconia species may be more susceptible to being attacked by the same species of pathogens. In summary, our study highlights the importance of interaction intimacy in structuring trophic relationships between plants and pathogens in the tropics. © 2015 Botanical Society of America, Inc.

  16. Plant growth promoting effect of Bacillus amyloliquefaciens H-2-5 on crop plants and influence on physiological changes in soybean under soil salinity.

    Science.gov (United States)

    Kim, Min-Ji; Radhakrishnan, Ramalingam; Kang, Sang-Mo; You, Young-Hyun; Jeong, Eun-Ju; Kim, Jong-Guk; Lee, In-Jung

    2017-07-01

    This study was aimed to identify plant growth-promoting bacterial isolates from soil samples and to investigate their ability to improve plant growth and salt tolerance by analysing phytohormones production and phosphate solubilisation. Among the four tested bacterial isolates (I-2-1, H-1-4, H-2-3, and H-2-5), H-2-5 was able to enhance the growth of Chinese cabbage, radish, tomato, and mustard plants. The isolated bacterium H-2-5 was identified as Bacillus amyloliquefaciens H-2-5 based on 16S rDNA sequence and phylogenetic analysis. The secretion of gibberellins (GA 4 , GA 8 , GA 9 , GA 19 , and GA 20 ) from B. amyloliquefaciens H-2-5 and their phosphate solubilisation ability may contribute to enhance plant growth. In addition, the H-2-5-mediated mitigation of short term salt stress was tested on soybean plants that were affected by sodium chloride. Abscisic acid (ABA) produced by the H-2-5 bacterium suppressed the NaCl-induced stress effects in soybean by enhancing plant growth and GA 4 content, and by lowering the concentration of ABA, salicylic acid, jasmonic acid, and proline. These results suggest that GAs, ABA production, and the phosphate solubilisation capacity of B. amyloliquefaciens H-2-5 are important stimulators that promote plant growth through their interaction and also to improve plant growth by physiological changes in soybean at saline soil.

  17. Physiology of in vitro culture

    Directory of Open Access Journals (Sweden)

    Maria Jesús Cañal

    2001-01-01

    Full Text Available The culture procedures described up to the eighties, did not made any mention to the environmental control of in vitro plant development. However, growth rate, development and many of the physiologic-morphologic features of the in vitro grown plants are influenced by the culture vessel. The increasing knowledge about the environmental control of culture vessels under sterile conditions, is helping to change micorpropagation procedures. The in vitro environment with lower rate ventilation, brings about low flow rates of matter and energy, with minimum variations of temperature, high relative humidity and large daily changes of the concentration of CO2 inside the culture vessel. The type of culture vessel (size, shape, fabric and closing system can influence the evolution of the atmosphere along the time of culture. Although submitted to different stresses factors plant can be grown in vitro, but plants can be faulty in their anatomy, morphology and physiology. As a consequence, these plants shown a phenotype unable to survive to ex vitro conditions. Different strategies can be used to control the atmosphere along the different phases of micropropagation, in heterotrophic, mixotrophic or autotrophic cultures. The election of the best strategy will be based on different factors as species, number of transplantes required, or quality-price relationship. enviromental control, tissue culture, micropropagation Keywords: in vitro enviromental, characteristic physiology,

  18. Developing remediation criteria on the basis of health and ecological risks at a former sour gas plant site

    International Nuclear Information System (INIS)

    Brown, G. L.; Wilson, R. M.; Clyde, G. A.; Chollak, D. F.

    1997-01-01

    A human health and ecological risk assessment was completed for the Okotoks sour gas processing gas plant, based on the existing environmental sampling and toxicity testing that has been collected at the site since 1987. For the human health risk assessment, two potential scenarios were considered, including industrial use and parkland use. The ecological risk assessment involved synthesis of existing sampling and toxicity testing results as well as the assessment of potential risk to ecological receptors such as the meadow vole, red-tailed hawk and cattle. The assessment included chemical screening, receptor and exposure pathway selection, toxicity assessment of chemicals of concern, estimation of exposures, risk characterization and generation of soil and groundwater remediation criteria. Results of the assessments to date indicate that limited subsurface remediation is required for the protection of human health under industrial/parkland use. In contrast, ecological considerations will require remediation or reclamation of surface soil and the imposition of certain risk management controls, such as e. g. encumbrances on land title. 2 figs

  19. Physiological selection criteria in forage grasses

    International Nuclear Information System (INIS)

    Cooper, J.P.

    1975-01-01

    The plant breeder has to develop varieties that provide the most efficient conversion of environmental inputs and have sufficient resistance to environmental stress. The most important physiological features that determine crop production and for which the plant breeder will have to select are discussed. Tracer studies may be of help to the breeder at the investigational level but in the longer term may also provide direct screening techniques for certain of the important physiological characteristics. (author)

  20. Ecological and evolutionary consequences of niche construction for its agent.

    Science.gov (United States)

    Kylafis, Grigoris; Loreau, Michel

    2008-10-01

    Niche construction can generate ecological and evolutionary feedbacks that have been underinvestigated so far. We present an eco-evolutionary model that incorporates the process of niche construction to reveal its effects on the ecology and evolution of the niche-constructing agent. We consider a simple plant-soil nutrient ecosystem in which plants have the ability to increase the input of inorganic nutrient as an example of positive niche construction. On an ecological time scale, the model shows that niche construction allows the persistence of plants under infertile soil conditions that would otherwise lead to their extinction. This expansion of plants' niche, however, requires a high enough rate of niche construction and a high enough initial plant biomass to fuel the positive ecological feedback between plants and their soil environment. On an evolutionary time scale, we consider that the rates of niche construction and nutrient uptake coevolve in plants while a trade-off constrains their values. Different evolutionary outcomes are possible depending on the shape of the trade-off. We show that niche construction results in an evolutionary feedback between plants and their soil environment such that plants partially regulate soil nutrient content. The direct benefit accruing to plants, however, plays a crucial role in the evolutionary advantage of niche construction.

  1. Current scientific literature on tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) ecology in Mississippi, and critical information needs

    Science.gov (United States)

    Understanding the basic ecological patterns of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), is required for implementing a successful integrated pest management program. As the primary pest of cotton in Mississippi and across the mid-south, L. lineolaris is a highly polyphagous m...

  2. Physiological response to etho-ecological stressors in male Alpine chamois: timescale matters!

    Science.gov (United States)

    Corlatti, Luca; Palme, Rupert; Lovari, Sandro

    2014-07-01

    From a life history perspective, glucocorticoids secreted by the neuroendocrine system, integrating different sources of stress through an adaptive feedback mechanism, may have important consequences on individual fitness. Although stress responses have been the object of several investigations, few studies have explored the role of proximate mechanisms responsible for the potential trade-offs between physiological stress and life history traits integrating social and environmental stressors. In 2011 and 2012, we collected data on faecal cortisol metabolites (FCM) in a marked male population of Alpine chamois, within the Gran Paradiso National Park (Italy). Using a model selection approach we analysed the effect of potential etho-ecological stressors such as age, social status (territorial vs. non-territorial males), minimum temperature, snow depth and precipitation on FCM variation. To correctly interpret environmentally and socially induced stress responses, we conducted model selections over multiple temporal scales defined a priori: year, cold months, spring, warm months, mating season. Over the year, FCM levels showed a negative relationship with minimum temperature, but altogether, climatic stressors had negligible effects on glucocorticoid secretion, possibly owing to good adaptations of chamois to severe weather conditions. Age was negatively related to FCM during the rut, possibly due to greater experience of older males in agonistic contests. Social status was an important determinant of FCM excretion: while both the `stress of subordination' and the `stress of domination' hypotheses received some support in spring and during the mating season, respectively, previous data suggest that only the latter may have detrimental fitness consequences on male chamois.

  3. Ecologically Sound Procedural Generation of Natural Environments

    Directory of Open Access Journals (Sweden)

    Benny Onrust

    2017-01-01

    Full Text Available Current techniques for the creation and exploration of virtual worlds are largely unable to generate sound natural environments from ecological data and to provide interactive web-based visualizations of such detailed environments. We tackle this challenge and propose a novel framework that (i explores the advantages of landscape maps and ecological statistical data, translating them to an ecologically sound plant distribution, and (ii creates a visually convincing 3D representation of the natural environment suitable for its interactive visualization over the web. Our vegetation model improves techniques from procedural ecosystem generation and neutral landscape modeling. It is able to generate diverse ecological sound plant distributions directly from landscape maps with statistical ecological data. Our visualization model integrates existing level of detail and illumination techniques to achieve interactive frame rates and improve realism. We validated with ecology experts the outcome of our framework using two case studies and concluded that it provides convincing interactive visualizations of large natural environments.

  4. Exploitation of physiological and genetic variability to enhance crop productivity

    International Nuclear Information System (INIS)

    Harper, J.E.; Schrader, L.E.; Howell, R.W.

    1985-01-01

    The American Society of Plant Physiologists recognizes the need to identify primary physiological limitations to crop productivity. This basic information is essential to facilitate and accelerate progress towards the goal of enhanced productivity on a global scale. Plant breeders currently select for desirable physiological traits intuitively by selecting for enhanced yield capability. Identification of specific physiological limitations by plant physiologists could potentially foster interdisciplinary research and accelerate progress in breeding for improved cultivars. The recent upsurge in research interest and funding in the area of biotechnology further exemplifies the importance of identification of specific physiological traits which may be amenable to manipulation at the molecular as well as the whole plant level. The theme of this symposium was to focus attention on current progress in identification of possible physiological limitations. The purpose of this publication is to document that progress and hopefully to extend the stimulating ideas to those who were unable to attend the symposium

  5. Ecological and physiological factors affecting brood patch area and prolactin levels in arctic-nesting geese

    Science.gov (United States)

    Jonsson, J.E.; Afton, A.D.; Alisauskas, R.T.; Bluhm, C.K.; El Halawani, M.E.

    2006-01-01

    We investigated effects of ecological and physiological factors on brood patch area and prolactin levels in free-ranging Lesser Snow Geese (Chen caerulescens caerulescens; hereafter “Snow Geese”) and Ross's Geese (C. rossii). On the basis of the body-size hypothesis, we predicted that the relationships between prolactin levels, brood patch area, and body condition would be stronger in Ross's Geese than in the larger Snow Geese. We found that brood patch area was positively related to clutch volume and inversely related to prolactin levels in Ross's Geese, but not in Snow Geese. Nest size, nest habitat, and first egg date did not affect brood patch area in either species. Prolactin levels increased as incubation progressed in female Snow Geese, but this relationship was not significant in Ross's Geese. Prolactin levels and body condition (as indexed by size-adjusted body mass) were inversely related in Ross's Geese, but not in Snow Geese. Our findings are consistent with the prediction that relationships between prolactin levels, brood patch area, and body condition are relatively stronger in Ross's Geese, because they mobilize endogenous reserves at faster rates than Snow Geese.

  6. Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants.

    Science.gov (United States)

    Haworth, Matthew; Elliott-Kingston, Caroline; McElwain, Jennifer C

    2013-01-01

    Plant stomata display a wide range of short-term behavioural and long-term morphological responses to atmospheric carbon dioxide concentration ([CO(2)]). The diversity of responses suggests that plants may have different strategies for controlling gas exchange, yet it is not known whether these strategies are co-ordinated in some way. Here, we test the hypothesis that there is co-ordination of physiological (via aperture change) and morphological (via stomatal density change) control of gas exchange by plants. We examined the response of stomatal conductance (G(s)) to instantaneous changes in external [CO(2)] (C(a)) in an evolutionary cross-section of vascular plants grown in atmospheres of elevated [CO(2)] (1,500 ppm) and sub-ambient [O(2)] (13.0 %) compared to control conditions (380 ppm CO(2), 20.9 % O(2)). We found that active control of stomatal aperture to [CO(2)] above current ambient levels was not restricted to angiosperms, occurring in the gymnosperms Lepidozamia peroffskyana and Nageia nagi. The angiosperm species analysed appeared to possess a greater respiratory demand for stomatal movement than gymnosperm species displaying active stomatal control. Those species with little or no control of stomatal aperture (termed passive) to C(a) were more likely to exhibit a reduction in stomatal density than species with active stomatal control when grown in atmospheres of elevated [CO(2)]. The relationship between the degree of stomatal aperture control to C(a) above ambient and the extent of any reduction in stomatal density may suggest the co-ordination of physiological and morphological responses of stomata to [CO(2)] in the optimisation of water use efficiency. This trade-off between stomatal control strategies may have developed due to selective pressures exerted by the costs associated with passive and active stomatal control.

  7. Ecology of the Nevada Test Site. I. Geographic and ecologic distributions of the vascular flora (annotated checklist)

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J C

    1965-04-01

    A checklist of vascular plants of the Nevada Test Site is presented for use in studies of plant ecology. Data on the occurrence and distribution of plant species are included. Collections were made from both undisturbed and disturbed sites.

  8. The neural bases of host plant selection in a Neuroecology framework.

    Science.gov (United States)

    Reisenman, Carolina E; Riffell, Jeffrey A

    2015-01-01

    Understanding how animals make use of environmental information to guide behavior is a fundamental problem in the field of neuroscience. Similarly, the field of ecology seeks to understand the role of behavior in shaping interactions between organisms at various levels of organization, including population-, community- and even ecosystem-level scales. Together, the newly emerged field of "Neuroecology" seeks to unravel this fundamental question by studying both the function of neurons at many levels of the sensory pathway and the interactions between organisms and their natural environment. The interactions between herbivorous insects and their host plants are ideal examples of Neuroecology given the strong ecological and evolutionary forces and the underlying physiological and behavioral mechanisms that shaped these interactions. In this review we focus on an exemplary herbivorous insect within the Lepidoptera, the giant sphinx moth Manduca sexta, as much is known about the natural behaviors related to host plant selection and the involved neurons at several level of the sensory pathway. We also discuss how herbivore-induced plant odorants and secondary metabolites in floral nectar in turn can affect moth behavior, and the underlying neural mechanisms.

  9. Ecological state of the Rance marine basin after 30 years of functioning of the tidal power plant

    International Nuclear Information System (INIS)

    Retiere, Ch.; Desroy, N.; Bonnot-Courtois, C.; Le Mao, P.

    1997-01-01

    The Rance basin on the Brittany coast (France) is the unique site in the world where the long term ecological impacts of the functioning of a tidal power plant can be evaluated. Two aspects are distinguished: the consequences due to the building the plant and those due to the functioning of the plant. During the building of the barrage which lasted 3 years, the estuary was isolated from the sea and led to an increase of sedimentation and organic matter and to important variations of the water salinity. Thus the whole marine flora and fauna disappeared. Today, the operation of the plant has changed the rhythm and amplitude of the tide inside the basin. Ten to fifteen years were necessary for the marine fauna and flora to recover a new equilibrium inside the basin after the plant was built. The functioning of the new ecosystem is governed by the relationship between species independently of the initial perturbation and its equilibrium is based on the regular functioning of the plant. (J.S.)

  10. New Approaches to Ecologically Based, Designed Urban Plant Communities in Britain: Do These Have Any Relevance in the United States?

    Directory of Open Access Journals (Sweden)

    James Hitchmough

    2008-01-01

    Full Text Available This paper discusses the reasoning behind the development of a new approach to designed urban planting with grasses, forbs and geophytes that has been undertaken at the University of Sheffield over the past 15 years. The resulting plant communities are the result of applying contemporary ecological science to planting design, to maximize their sustainability while at the same time meeting the aesthetic and functional needs of the users of urban public landscapes. The geographical origin of the plants used in these communities varies according to the physical, ecological, and cultural context in which they are to be used. In some cases species are entirely native, in others entirely non-native. In many cases, a mixture of both is used. In discussing the rationale for the development of this approach in the United Kingdom context, the paper raises important issues about increasing the capacity of urban landscapes to support a greater diversity of native animals and to engage ordinary citizens in these activities at a time of dramatic climatic and social change. The approach we outline addresses some of these issues in the United Kingdom context, but it is uncertain whether there is merit in these approaches in the context of American towns and cities.

  11. Plant interactions alter the predictions of metabolic scaling theory

    DEFF Research Database (Denmark)

    Lin, Yue; Berger, Uta; Grimm, Volker

    2013-01-01

    Metabolic scaling theory (MST) is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of 24/3 between mean individual biomass and density during densitydependent mortality (self-thinning). Empirical tests have...... processes can scale up to the population level. MST, like thermodynamics or biomechanics, sets limits within which organisms can live and function, but there may be stronger limits determined by ecological interactions. In such cases MST will not be predictive....... of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric), and different resource levels. Our model is consistent with