WorldWideScience

Sample records for plant pfp cementation

  1. ALARA Design Review for the Resumption of the Plutonium Finishing Plant (PFP) Cementation Process Project Activities

    CERN Document Server

    Dayley, L

    2000-01-01

    The requirements for the performance of radiological design reviews are codified in 10CFR835, Occupational Radiation Protection. The basic requirements for the performance of ALARA design reviews are presented in the Hanford Site Radiological Control Manual (HSRCM). The HSRCM has established trigger levels requiring radiological reviews of non-routine or complex work activities. These requirements are implemented in site procedures HNF-PRO-1622 and 1623. HNF-PRO-1622 Radiological Design Review Process requires that ''radiological design reviews [be performed] of new facilities and equipment and modifications of existing facilities and equipment''. In addition, HNF-PRO-1623 Radiological Work Planning Process requires a formal ALARA Review for planned activities that are estimated to exceed 1 person-rem total Dose Equivalent (DE). The purpose of this review is to validate that the original design for the PFP Cementation Process ensures that the principles of ALARA (As Low As Reasonably Achievable) were included...

  2. Plutonium Finishing Plant (PFP) Dangerous Waste Training Plan

    Energy Technology Data Exchange (ETDEWEB)

    ENTROP, G.E.

    1999-12-03

    This training plan describes general requirements, worker categories, and provides course descriptions for operation of the plutonium finishing plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas.

  3. Project Plan Remove Special Nuclear Material (SNM) from Plutonium Finishing Plant (PFP) Project

    Energy Technology Data Exchange (ETDEWEB)

    BARTLETT, W.D.

    1999-09-14

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove SNM Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev.0. This project plan is the top-level definitive project management document for the PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baseline to manage the execution of the Remove SNM Materials project. Any deviation to the document must be authorized through the appropriate change control process. The Remove SNM Materials project provides the necessary support and controls required for DOE-HQ, DOE-RL, BWHC, and other DOE Complex Contractors the path forward to negotiate shipped/receiver agreements, schedule shipments, and transfer material out of PFP to enable final deactivation.

  4. CSER 00-001 Criticality Safety Evaluation Report for Cementation Operations at the PFP

    Energy Technology Data Exchange (ETDEWEB)

    DOBBIN, K.D.

    2000-04-18

    Glovebox HA-20MB is located in Room 235B of the 234-5Z Building at the Plutonium Finishing Plant. This enclosure contains mixers, mixer bowls, a crusher unit, an isolated inoperable conveyor unit, plutonium residue feed cans, cemented cans, and a feedwater container. Plutonium residue, not conducive to other forms of stabilization, is prepared for storage and ultimate disposal by cementation. The feed residue material cans can have plutonium contents of only a few grams or up to 200 grams. This evaluation accommodates this wide range of container fissile concentrations.

  5. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    Energy Technology Data Exchange (ETDEWEB)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  6. ASSESSING CHEMICAL HAZARDS AT THE PLUTONIUM FINISHING PLANT (PFP) FOR PLANNING FUTURE D&D

    Energy Technology Data Exchange (ETDEWEB)

    HOPKINS, A.M.; KLOS, D.B.; MINETT, M.J.

    2007-01-25

    This paper documents the fiscal year (FY) 2006 assessment to evaluate potential chemical and radiological hazards associated with vessels and piping in the former plutonium process areas at Hanford's Plutonium Finishing Plant (PFP). Evaluations by PFP engineers as design authorities for specific systems and other subject-matter experts were conducted to identify the chemical hazards associated with transitioning the process areas for the long-term layup of PFP before its eventual final decontamination and decommissioning (D and D). D and D activities in the main process facilities were suspended in September 2005 for a period of between 5 and 10 years. A previous assessment conducted in FY 2003 found that certain activities to mitigate chemical hazards could be deferred safely until the D and D of PFP, which had been scheduled to result in a slab-on-grade condition by 2009. As a result of necessary planning changes, however, D and D activities at PFP will be delayed until after the 2009 time frame. Given the extended project and plant life, it was determined that a review of the plant chemical hazards should be conducted. This review to determine the extended life impact of chemicals is called the ''Plutonium Finishing Plant Chemical Hazards Assessment, FY 2006''. This FY 2006 assessment addresses potential chemical and radiological hazard areas identified by facility personnel and subject-matter experts who reevaluated all the chemical systems (items) from the FY 2003 assessment. This paper provides the results of the FY 2006 chemical hazards assessment and describes the methodology used to assign a hazard ranking to the items reviewed.

  7. Plutonium Finishing Plant (PFP) Standards/Requirements Identification Document (S/RID)

    Energy Technology Data Exchange (ETDEWEB)

    Maddox, B.S.

    1996-01-01

    This Standards/Requirements Identification Document (S/RID) sets forth the Environmental Safety and Health (ESH) standards/requirements for the Plutonium Finishing Plant (PFP). This S/RID is applicable to the appropriate life cycle phases of design, construction, operation, and preparation for decommissioning. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

  8. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent

  9. Pretreatment of Plutonium Finishing Plant (PFP) sludge: Report for the period October 1990--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, G.J.; Swanson, J.L.

    1993-04-01

    The current mission of the US Department of Energy`s Hanford Site is one of environmental restoration. A major task within this mission is the disposal of large volumes of high-level wastes (HLW) that are stored in underground tanks on the site. Under the current planning assumptions, all high-level tank waste will be vitrified as borosilicate glass and then disposed of in a geologic repository. The costs associated with this disposal scheme are very high. Thus, methods to reduce the volume of glass required to vitrify these wastes are currently being investigated. Plutonium Finishing Plant (PFP) sludge is a unique transuranic waste that is stored in tank 241- SY-102 on the Hanford site. As the name implies, the bulk of this material consists of waste from operations at the Plutonium Finishing Plant; but, other wastes have also been added (e.g., wastes from decontamination activities). Because the quantities of plutonium and americium in the PFP sludge are greater than 100 nCi/g, this sludge must be handled as a HLW. Approximately 6000 glass canisters would result from vitrifying this waste directly. Sludge washing would reduce the required number of canisters to {approximately}2500, with the volume of glass being driven by the low allowable concentration limit for Cr in the vitrification plant feed. The cost of production and subsequent geologic disposal of each canister of glass is expected to be $0.5 M to $1 M. Thus, an economic incentive exists to develop methods of pretreating the sludge to reduce the number of glass canisters needed to contain the final vitrified product.

  10. Pretreatment of Plutonium Finishing Plant (PFP) sludge: Report for the period October 1990--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, G.J.; Swanson, J.L.

    1993-04-01

    The current mission of the US Department of Energy's Hanford Site is one of environmental restoration. A major task within this mission is the disposal of large volumes of high-level wastes (HLW) that are stored in underground tanks on the site. Under the current planning assumptions, all high-level tank waste will be vitrified as borosilicate glass and then disposed of in a geologic repository. The costs associated with this disposal scheme are very high. Thus, methods to reduce the volume of glass required to vitrify these wastes are currently being investigated. Plutonium Finishing Plant (PFP) sludge is a unique transuranic waste that is stored in tank 241- SY-102 on the Hanford site. As the name implies, the bulk of this material consists of waste from operations at the Plutonium Finishing Plant; but, other wastes have also been added (e.g., wastes from decontamination activities). Because the quantities of plutonium and americium in the PFP sludge are greater than 100 nCi/g, this sludge must be handled as a HLW. Approximately 6000 glass canisters would result from vitrifying this waste directly. Sludge washing would reduce the required number of canisters to [approximately]2500, with the volume of glass being driven by the low allowable concentration limit for Cr in the vitrification plant feed. The cost of production and subsequent geologic disposal of each canister of glass is expected to be $0.5 M to $1 M. Thus, an economic incentive exists to develop methods of pretreating the sludge to reduce the number of glass canisters needed to contain the final vitrified product.

  11. Total Measurement Uncertainty for the Plutonium Finishing Plant (PFP) Segmented Gamma Scan Assay System

    CERN Document Server

    Fazzari, D M

    2001-01-01

    This report presents the results of an evaluation of the Total Measurement Uncertainty (TMU) for the Canberra manufactured Segmented Gamma Scanner Assay System (SGSAS) as employed at the Hanford Plutonium Finishing Plant (PFP). In this document, TMU embodies the combined uncertainties due to all of the individual random and systematic sources of measurement uncertainty. It includes uncertainties arising from corrections and factors applied to the analysis of transuranic waste to compensate for inhomogeneities and interferences from the waste matrix and radioactive components. These include uncertainty components for any assumptions contained in the calibration of the system or computation of the data. Uncertainties are propagated at 1 sigma. The final total measurement uncertainty value is reported at the 95% confidence level. The SGSAS is a gamma assay system that is used to assay plutonium and uranium waste. The SGSAS system can be used in a stand-alone mode to perform the NDA characterization of a containe...

  12. History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, M.S., Fluor Daniel Hanford

    1997-02-18

    The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

  13. Plan for the Startup of HA-21I Furnace Operations at the Plutonium Finishing Plant (PFP)

    Energy Technology Data Exchange (ETDEWEB)

    WILLIS, H.T.

    2000-02-17

    Achievement of Thermal Stabilization mission elements require the installation and startup of three additional muffle furnaces for the thermal stabilization of plutonium and plutonium bearing materials at the Plutonium Finishing Plant (PFP). The release to operate these additional furnaces will require an Activity Based Startup Review. The conduct of the Activity Based Startup Review (ABSR) was approved by Fluor Daniel Hanford on October 15, 1999. This plan has been developed with the objective of identifying those activities needed to guide the controlled startup of five furnaces from authorization to unrestricted operations by adding the HA-211 furnaces in an orderly and safe manner after the approval to Startup has been given. The Startup Plan provides a phased approach that bridges the activities between the completion of the Activity Based Startup Review authorizing the use of the three additional furnaces and the unrestricted operation of the five thermal stabilization muffle furnaces. The four phases are: (1) the initiation of five furnace operations using three empty (simulated full) boat charges from HA-211 and two full charges from HC-21C; (2) three furnace operations (one full charge from HA-211 and two full charges from HC-21C); (3) four furnace operations (two full charges from HA-211 and two full charges from HC-21C); and (4) integrated five furnace operations and unrestricted operations. Phase 1 of the Plan will be considered as the cold runs. This Plan also provides management oversight and administrative controls that are to be implemented until unrestricted operations are authorized. It also provides a formal review process for ensuring that all preparations needed for full five furnace operations are completed and formally reviewed prior to proceeding to the increased activity levels associated with five furnace operations. Specific objectives include: (1) To ensure that activities are conducted in a safe manner. (2) To provide supplemental

  14. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and

  15. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and

  16. PFP deactivation project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, D.M.

    1997-07-28

    This document identifies the overall approach for deactivation of the Plutonium Finishing Plant (PFP) Complex, excluding the vaults, and includes a draft set of End Point Criteria for all buildings being deactivated.

  17. Notice of Construction for the Magnesium Hydroxide Precipitation Process at the Plutonium Finishing Plant (PFP)

    Energy Technology Data Exchange (ETDEWEB)

    JANSKY, M.T.

    1999-12-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. Additionally, the following description, attachments and references are provided to the US Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40, Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem per year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also will constitute EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with the Construction and operation activities involving the magnesium hydroxide precipitation process of plutonium solutions within the Plutonium Finishing Plant (PFP).

  18. PFP solution stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Aftanas, B.L.

    1996-04-30

    This Functional Design Criteria (FDC) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  19. AN APPROACH TO CHARACTERIZING & EVALUATING ALTERNATIVES FOR THE DECOMMISSIONING OF SUB-GRADE STRUCTURES AT THE PLUTONIUM FINISHING PLANT (PFP)

    Energy Technology Data Exchange (ETDEWEB)

    HOPKINS, A.M.; KLOS, D.B.

    2007-01-25

    In 2002, the Richland Operations Office (RL) of the US Department of Energy (DOE), the US Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) developed milestones for transitioning the Plutonium Finishing Plant (PFP) facility to a clean slab-on-grade configuration. These milestones required developing an engineering evaluation/cost analysis (EF/CA) for the facility's sub-grade structures and installations as part of a series of evaluations intended to provide for the transition of the facility to a clean slab-on-grade configuration. In addition to supporting decisions for interim actions, the analyses of sub-grade structures and installations performed through this EE/CA will contribute to the remedial investigation feasibility study(ies) and subsequently to the final records of decision for the relevant operable units responsible for site closure in the 200 West Area of the Hanford Site.

  20. THE CREATIVE APPLICATION OF SCIENCE TECHNOLOGY & WORK FORCE INNOVATIONS TO THE D&D OF PLUTONIUM FINISHING PLANT (PFP) AT THE HANFORD NUCLEAR RESERVATION

    Energy Technology Data Exchange (ETDEWEB)

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) consists of a number of process and support buildings for handling plutonium. Building construction began in the late 1940's to meet national priorities and became operational in 1950 producing refined plutonium salts and metal for the United States nuclear weapons program. The primary mission of the PFP was to provide plutonium used as special nuclear material for fabrication into a nuclear device for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race. PFP has now completed its mission and is fully engaged in deactivation, decontamination and decommissioning (D&D). At this time the PFP buildings are planned to be reduced to ground level (slab-on-grade) and the site remediated to satisfy national, Department of Energy (DOE) and Washington state requirements. The D&D of a highly contaminated plutonium processing facility presents a plethora of challenges. PFP personnel approached the D&D mission with a can-do attitude. They went into D&D knowing they were facing a lot of challenges and unknowns. There were concerns about the configuration control associated with drawings of these old process facilities. There were unknowns regarding the location of electrical lines and process piping containing chemical residues such as strong acids and caustics. The gloveboxes were highly contaminated with plutonium and chemical residues. Most of the glovebox windows were opaque with splashed process chemicals that coated the windows or etched them, reducing visibility to near zero. Visibility into the glovebox was a serious worker concern. Additionally, all the gloves in the gloveboxes were degraded and unusable. Replacing gloves in gloveboxes was necessary to even begin glovebox cleanout. The sheer volume of breathing air needed was also an issue. These and other challenges and PFP's approach to overcome these

  1. Plutonium Finishing Plant (PFP) Safety Class and Safety Significant Commercial Grade Items (CGI) Critical Characteristic

    Energy Technology Data Exchange (ETDEWEB)

    THOMAS, R.J.

    2000-04-24

    This document specifies the critical characteristics for Commercial Grade Items (CGI) procured for use in the Plutonium Finishing Plant as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics of any one item.

  2. Plutonium contamination issues in Hanford soils and sediments: Discharges from the Z-Plant (PFP) complex

    Science.gov (United States)

    Felmy, Andrew R.; Cantrell, Kirk J.; Conradson, Steven D.

    Beginning in 1945, weapons production activities at the Hanford Nuclear Reservation resulted in the discharge of large quantities of Pu and other transuranic elements to the subsurface. The vast majority of the transuranics was disposed in the Hanford central plateau (200 areas) predominately associated with activities at the Z-Plant (Plutonium Finishing Plant) complex. In the past Pu and Am migrated deep into the subsurface at certain locations, although Pu and other transuranics are not currently being detected in significant concentration in any associated groundwaters. Evaluation of the chemical form of the transuranics in the subsurface along with determining the mechanism(s) of the past subsurface migration is important in establishing strategies for long-term site management practices. Unfortunately, the chemical form of the transuranics in the deep subsurface sediments and the past mechanism of vertical migration remain largely unknown. However, initial studies performed as part of this research indicate that the chemical form of Pu can vary from disposal site to disposal site depending upon the waste type and the chemical form can also differ between surface sediments and deep subsurface sediments at the same site. This paper present a summary of the different waste types and locations where transuranics were disposed, the factors that could have lead to subsurface migration via different transport vectors, the information currently available on the chemical form of Pu in the subsurface, and a summary of current research needs.

  3. Plutonium Contamination Issues in Hanford Soils and Sediments: Discharges from the Z-Plant (PFP) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, Andrew R.; Cantrell, Kirk J.; Conradson, Steven D.

    2010-08-23

    Beginning in 1945, weapons production activities at the Hanford Nuclear Reservation resulted in the discharge of large quantities of Pu and other transuranic elements to the subsurface. The vast majority of the transuranics were disposed in the Hanford central plateau (200 areas) predominately associated with activities at the Z-Plant (Plutonium Finishing Plant) complex. In the past the Pu and Am migrated deep into the subsurface at certain locations, although the Pu and other transuranics are not currently being detected in significant concentration in any associated groundwaters. Evaluation of the chemical form of the transuranics in the subsurface along with determining the mechanism(s) of the past subsurface migration is important in establishing strategies for long-term site management practices. Unfortunately, the chemical form of the transuranics in the deep subsurface sediments and the past mechanism of vertical migration remain largely unknown. This paper present a summary of the different waste types and locations where transuranics were disposed, the factors that could have lead to subsurface migration via different transport vectors, the information currently available on the chemical form of Pu in the subsurface, and a summary of current research needs.

  4. System Design Description PFP Thermal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.

    2000-04-25

    The purpose of this document is to provide a system design description (SDD) and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The chief objective of the SDD is to document the Structures, Systems, and Components (SSCs) that establish and maintain the facility Safety Envelope necessary for normal safe operation of the facility; as identified in the FSAR, the OSRs, and Safety Assessment Documents (SADs). This safety equipment documentation should satisfy guidelines for the SDD given in WHC-SD-CP-TI-18 1, Criteria for Identification and Control of Equipment Necessary for Preservation of the Safety Envelope and Safe Operation of PFP. The basis for operational, alarm response, maintenance, and surveillance procedures are also identified and justified in this document. This document and its appendices address the following elements of the PFP Thermal Stabilization project: Functional and design requirements; Design description; Safety Envelope Analysis; Safety Equipment Class; and Operational, maintenance and surveillance procedures.

  5. Cement Manufacturing Plant Guidelines: An Approach to Reconciling the Financing of Cement with Climate Change Objectives

    OpenAIRE

    2010-01-01

    Cement manufacturing is an energy-intensive process, requiring high fuel consumption to operate cement kilns, which in turn generates carbon dioxide (CO2). These Guidelines aim to provide clear and quantitative Minimum Climate Change Performance Criteria necessary for IDB to support projects, as well as guidance on assessing and reducing the greenhouse gas (GHG) emissions of projects. The purpose of the Cement Manufacturing Plant guidelines is to set forth an approach for the financing of new...

  6. Yemen watched from cement plant construction work. Cement plant koji wo toshite mita Yemen

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, M. (Kajima Corp., Tokyo (Japan))

    1993-06-25

    Construction of a cement plant was planned at southern part of Yemen. This is a cement plant with annual production 500,000 tons. The term of work was from January, 1990 to February, 1993. The present paper describes an outline the construction of this Cement Plant, the nationality and living environment in Yemen, and construction equipment which was used. The construction work consisted of 113,000m[sup 3] of digging, 82,000m[sup 3] of backfilling, 66,100m[sup 3] of concreting, and 29,285m[sup 3] of asphalt pavement. Reinforcing steel weighing 6,400 tons and steel frame weighing 3,600 tons were totally used. Equipment weighing 7,912 tons and electric devices weighing 1,299 tons were totally installed. For this construction work, two crawler cranes, six hydraulic cranes, aggregate plant, concrete mixers, and construction equipment, such as bulldozers, shovels, and dumpers, were brought from Japan. 5 figs.

  7. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    CERN Document Server

    Cooper, J R

    2000-01-01

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  8. Carbonate Looping for De-Carbonization of Cement Plants

    OpenAIRE

    2011-01-01

    Cement industry is one of the largest emitter of CO2 other than power generation plants, which includes the emissions from combustion of fuel and also from calcination of limestone for clinker production. In order to reduce CO2 emissions from the cement industry an effective an economically feasible technology is to be developed. The carbonate looping process is a promising technology, which is particularly suitable for the cement industry as limestone could be used for capture and release of...

  9. System design description PFP thermal stabilization

    Energy Technology Data Exchange (ETDEWEB)

    LARKIN, K.A.

    1999-02-23

    The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing Plant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: functional design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides.

  10. Engineering report (conceptual design) PFP solution stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Witt, J.B.

    1997-07-17

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  11. Anticipated Radiological Dose to Worker for Plutonium Stabilization and Handling at PFP - Project W-460

    CERN Document Server

    Weiss, E V

    2000-01-01

    This report provides estimates of the expected whole body and extremity radiological dose, expressed as dose equivalent (DE), to workers conducting planned plutonium (Pu) stabilization processes at the Hanford Site Plutonium Finishing Plant (PFP). The report is based on a time and motion dose study commissioned for Project W-460, Plutonium Stabilization and Handling, to provide personnel exposure estimates for construction work in the PFP storage vault area plus operation of stabilization and packaging equipment at PFP.

  12. Petroleum Sludge as gypsum replacement in cement plants: Its Impact on Cement Strength

    Science.gov (United States)

    Benlamoudi, Ali; Kadir, Aeslina Abdul; Khodja, Mohamed

    2017-08-01

    Due to high cost of cement manufacturing and the huge amount of resources exhaustion, companies are trying to incorporate alternative raw materials or by-products into cement production so as to produce alternative sustainable cement. Petroleum sludge is a dangerous waste that poses serious imparts on soil and groundwater. Given that this sludge contains a high percentage of anhydrite (CaSO4), which is the main component of gypsum (CaSO4.2H2O), it may play the same gypsum role in strength development. In this research, a total replacement of gypsum (100%) has been substituted by petroleum sludge in cement production and has led to an increase of 28.8% in UCS values after 28 curing days. Nevertheless, the burning of this waste has emitted a considerable amount of carbon monoxide (CO) gas that needs to be carefully considered prior to use petroleum sludge within cement plants.

  13. Carbonate Looping for De-Carbonization of Cement Plants

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Andersen, Maria Friberg; Lin, Weigang

    2011-01-01

    Cement industry is one of the largest emitter of CO2 other than power generation plants, which includes the emissions from combustion of fuel and also from calcination of limestone for clinker production. In order to reduce CO2 emissions from the cement industry an effective an economically...... feasible technology is to be developed. The carbonate looping process is a promising technology, which is particularly suitable for the cement industry as limestone could be used for capture and release of CO2. Integration of carbonate looping process into cement pyroprocess has two advantages: 1...... integrated into cement pyro-process. The energy required for regeneration in the calciner increases with increase in average conversion of calcined limestone and energy that can be extracted from carbonator decreases with increasing average conversion. Further the influence of type of limestone...

  14. Utilization of waste tires as alternative fuel in cement plant

    OpenAIRE

    2016-01-01

    Cement industry is regulated by legislation in which various measures are specified for prevention and reduction of air pollution as well as protection of human health, due to atmospheric emissions, which occur during cement production. Legislation also holds emission limit values for co-incineration of wastes i.e. alternative fuels. Waste tires as an alternative fuel can be co-incinerated i.e. co-processed in cement plants, where the high calorific value of the rubber is used to substitute f...

  15. Plant Test of Industrial Waste Disposal in a Cement Kiln

    Institute of Scientific and Technical Information of China (English)

    刘阳生; 韩杰; 等

    2003-01-01

    Destruction of industrial waste in cement rotary kilins(CRKs) is an alternative technology for the treatment of certain types of industrial waste(IW).In this paper,three typical types of industrial wastes were co-incinerated in the CRK at Beijing Cement Plant to determine the effects of waste disposal(especially solid waste disposal )on the quality of clinker and the concentration of pollutants in air emission.Experimental results show that(1) waste disposal does not affect the quality of clinker and fly ash,and fly ash after the IW disposal can still be used in the cement production,(2) heavy metals from IW are immobilized and stabilized in the clinker and cement,and (3) concentration of pollutants in air emission is far below than the permitted values in the China National Standard-Air Pollutants Emission Standard(GB 16297-1996).

  16. Preparation of calcium sulphoaluminate cement using fertiliser plant wastes.

    Science.gov (United States)

    Singh, Maneesh; Kapur, P C; Pradip

    2008-08-30

    Phosphochalks from fertiliser plants contain significant amount of calcium sulphate along with P(2)O(5) and fluorine. The presence of these impurities makes them unsuitable for most applications and, hence its availability in millions of tons. We demonstrate that it is possible to prepare calcium sulphoaluminate-aluminoferrite based special cements having strength values comparable to ordinary Portland cement (OPC) using these waste chalks. Such cements are insensitive to the presence of impurities in the raw mixture, clinker at low temperatures (1,230 degrees C) and the clinkers produced are soft and friable. An empirical technique has been developed to predict the phase composition of the clinkers given the chemical composition of the starting raw mixture. The proposed low temperature clinkering route appears to be a promising method for converting waste phosphochalks into construction grade cements.

  17. An assessment of gas-side fouling in cement plants

    Science.gov (United States)

    Marner, W. J.

    1982-01-01

    The cement industry is the most energy-intensive industry in the United States in terms of energy cost as a percentage of the total product cost. An assessment of gas-side fouling in cement plants with special emphasis on heat recovery applications is provided. In the present context, fouling is defined as the buildup of scale on a heat-transfer surface which retards the transfer of heat and includes the related problems of erosion and corrosion. Exhaust gases in the cement industry which are suitable for heat recovery range in temperature from about 100 to 1300 K, are generally dusty, may be highly abrasive, and are often heavily laden with alkalies, sulfates, and chlorides. Particulates in the exhaust streams range in size from molecular to about 100 micrometers in diameter and come from both the raw feed as well as the ash in the coal which is the primary fuel used in the cement industry. The major types of heat-transfer equipment used in the cement industry include preheaters, gas-to-air heat exchangers, waste heat boilers, and clinker coolers. At the present time, the trend in this country is toward suspension preheater systems, in which the raw feed is heated by direct contact with the hot kiln exit gases, and away from waste heat boilers as the principal method of heat recovery. The most important gas-side fouling mechanisms in the cement industry are those due to particulate, chemical reaction, and corrosion fouling.

  18. System Design Description PFP Thermal Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.

    2000-01-27

    DOE has authorized in their letter of August 2, 1999, the operation of these three furnaces, quote ''Operation of the three uncompleted muffle furnaces (No.3, No.4, and No.5) located in Room 235B is authorized, using the same feed charge limits as the two existing furnaces (No.1, and No.2) located in Room 230C,''. The above statement incorrectly refers to Room 230C whereas the correct location is Room 230A. The current effort is directed to initiate the operation and to complete the design activities DOE authorized the operation of the furnaces based on their Safety Evaluation Report (SER). Based on analogy and the principle of similarity, the risks and consequences of accidents both onsite and offsite due to operation of three furnaces are not significantly larger than those already evaluated with the two operating furnaces. Thermal stabilization operations and the material of feed for furnaces in Glovebox HA-21 I are essentially the same as those currently being stabilized in furnaces in Glovebox HC-21 C. Therefore the accident analysis has utilized identical accident scenarios in evaluation and no additional failure modes are introduced by HA-21 I muffle furnace operation that would enhance the consequences of accidents. Authorization Basis documents as referenced below (PFP FSAR and DOE Letter authorizing the operation) appear to contradict each other, i.e. one allows and authorizes the operation and the other imposes the restriction on the operation. The purpose of the PFP FSAR restrictions was to review thoroughly the design and installation of three furnaces and perform acceptance testing before approving the startup for operation. With the experience of operating the two furnaces in Glovebox HC-21C, and the knowledge of risks and hazards the facility operation, the plant is adequately prepared to operate these additional furnaces. ECN 653595 has been prepared to incorporate operation of the muffle furnaces in Glovebox HA-21 I into the

  19. COLLABORATIVE NEGOTIATIONS A SUCCESSFUL APPROACH FOR NEGOTIATING COMPLIANCE MILESTONES FOR THE TRANSITION OF THE PLUTONIUM FINISHING PLANT (PFP), HANFORD NUCLEAR RESERVATION, AND HANFORD, WASHINGTON

    Energy Technology Data Exchange (ETDEWEB)

    Hebdon, J.; Yerxa, J.; Romine, L.; Hopkins, AM; Piippo, R.; Cusack, L.; Bond, R.; Wang, Oliver; Willis, D.

    2003-02-27

    The Hanford Nuclear Reservation is a former U. S. Department of Energy Defense Production Site. The site is currently listed on the National Priorities List of the Comprehensive Environmental Response Compensation and Liability Act of 1980 (CERCLA) and is undergoing cleanup and environmental restoration. The PFP is a former Plutonium metal production facility. The operating mission of the PFP ended with a DOE Headquarters shutdown letter in October of 1996. Generally, the receipt of a shutdown letter initiates the start of Transition (as the first step of Decommissioning) of a facility. The Hanford site is subject to the Hanford Federal Facilities Compliance Act and Consent Order (HFFCCO), an order on consent signed by the DOE, the U. S. Environmental Protection Agency, (EPA) and the Washington Department of Ecology (WDOE). Under the HFFCCO, negotiations for transition milestones begin within six months after the issuance of a shutdown order. In the case of the PFP, the Nuclear Materials disposition and stabilization activities, a DOE responsibility, were necessary as precursor activities to Transition. This situation precipitated a crisis in the negotiations between the agencies, and formal negotiations initiated in 1997 ended in failure. The negotiations reached impasse on several key regulatory and operational issues. The 1997 negotiation was characterized by a strongly positional style. DOE and the regulatory personnel took hard lines early in the negotiations and were unable to move to resolution of key issues after a year and a half. This resulted in unhappy stakeholders, poor publicity and work delays as well as wounded relationships between DOE and the regulatory community. In the 2000-2001 PFP negotiations, a completely different approach was suggested and eventually initiated: Collaborative Negotiations. The collaborative negotiation style resulted in agreement between the agencies on all key issues within 6 months of initiation. All parties were very

  20. Integration of oxygen membranes for oxygen production in cement plants

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Søgaard, Martin; Hjuler, Klaus;

    2015-01-01

    The present paper describes the integration of oxygen membranes in cement plants both from an energy, exergy and economic point of view. Different configurations for oxygen enrichment of the tertiary air for combustion in the pre-calciner and full oxy-fuel combustion in both pre-calciner and kiln...

  1. Cement plant gaseous pollutant emission reduction technologies

    Directory of Open Access Journals (Sweden)

    Andrés Emilio Hoyos Barreto

    2010-10-01

    Full Text Available A brief description of SOX, NOX and CO2 formation is presented, these being the main pollutants emitted in the cement industry gas stream Several technologies for reducing NOX, SOX and CO2 emissions in long wet kilns are introduced: primary measures preventing contaminant formation and secondary/tube end emission reduction measures. Strategies for preventing CO2 (green-house effect gas formation are also addressed, such as fuel and raw material substitution and CO2 capture technologies which are still being developed.

  2. CSER 99-001: PFP LAB Dentirating calciner

    Energy Technology Data Exchange (ETDEWEB)

    MILLER, E.M.; DOBBIN, K.D.

    1999-02-22

    A criticality safety evaluation report was prepared for the Plutonium Finishing Plant (PFP) laboratory denigrating calciner, located in Glovebox 188-1, that converts Pu(NO{sub 3}){sub 4} solutions to the high fired stable oxide PuO{sub 2}. Fissile mass limits and volume limits are set for the glovebox for testing operations and training operators using only nitric acid feed to a plutonium oxide bed in the calciner.

  3. CFD Modeling of Particulate Matter Dispersion from Kerman Cement Plant

    Directory of Open Access Journals (Sweden)

    M. Panahandeh

    2010-04-01

    Full Text Available "n "n "nBackgrounds and Objectives: The dispersion of particulate matter has been known as the most serious environmental pollution of cement plants. In the present work, dispersion of the particulate matter from stack of Kerman Cement Plant was investigated using Computational Fluid Dynamics (CFD modeling."nMaterials and Methods: In order to study the dispersion of particulate matter from the stack, a calculation domain with dimensions of 8000m × 800m × 400m was considered. The domain was divided to 936781 tetrahedral control volumes. The mixture two-phase model was employed to model the interaction of the particulate matter (dispersed phase and air (continuous phase. The Large Eddy Simulation (LES method was used for turbulence modeling."nResults: The concentration of particulate matter in the whole calculation domain was computed. The predicted concentrations were compared to the measured values from the literature and a good agreement was observed. The predicted concentration profiles at different cross sections were analyzed."nConclusion:The results of the present work showed that CFD is a useful tool for understanding the dispersion of particulate matter in air. Although the obtained results were promising, more investigations on the properties of the dispersed phase, turbulent parameters and the boundary layer effect is needed to obtain more accurate results.

  4. NEURO-FUZZY MODELLING OF BLENDING PROCESS IN CEMENT PLANT

    Directory of Open Access Journals (Sweden)

    Dauda Olarotimi Araromi

    2015-11-01

    Full Text Available The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX model was developed for comparison purpose. ARX model gave high root mean square error (RMSE of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.

  5. Cement dust pollution induces toxicity or deficiency of some essential elements in wild plants growing around a cement factory.

    Science.gov (United States)

    Mutlu, Salih; Atici, Ökkes; Gülen, Yasir

    2013-06-01

    In the present study, it was aimed to determine the effects of cement dust pollution on contents of some significant essential elements (P, S, K, Ca, Fe and Cl) in wild plants (Medigago varia, Anchusa leptophylla, Euphorbia orientalis, Lactuca serriola, Artemisia spicigera, Crambe orientalis, Convolvulus sepium and Senecio vernalis) using wavelength-dispersive spectrometer X-ray fluorescence technique. Plant samples were collected from different locations around a cement factory which is located at Askale about 50 km from Erzurum (Turkey). The element contents in the plant specimens that existed in both 0-100 m (dense dusted) and 2000 m (undusted) areas were compared. P, S, K and Cl contents were found to be high in the plants growing in areas 0-100 m from the cement factory, compared to same plants at 2000 m far from the factory. However, Ca and Fe contents were determined to be low in plants growing in 0-100 m area from the factory. Results of the study can contribute to understand how mineral deficiency and toxicity lead to detrimental effects on plant growth and development in the fields contaminated by cement dust.

  6. Effects of cement flue dusts from a Nigerian cement plant on air, water and planktonic quality.

    Science.gov (United States)

    Olaleye, Victor F; Oluyemi, Emmanuel A

    2010-03-01

    Effects of cement flue dust from Ewekoro cement Kilns were monitored at some aquatic receptor locations. High levels of total suspended particulates (TSPs) and atmospheric deposition rates (ADRs) were recorded within the factory compared to ancillary locations outside the factory. The TSP and ADR levels which were location dependent were significantly higher (P cement factory catchment areas.

  7. Effect of Heavy Metal Present in Cement Dust on Soil and Plants of Nokha (Bikaner

    Directory of Open Access Journals (Sweden)

    Dr.(Mrs.Suruchi Gupta

    2013-08-01

    Full Text Available In Nokha(Bikaner cement industries emittes cement dust in nearby farmers fields. In these industries cement dust emitted contains traces of hexavalent chromium and lead well above permissible limit in area under investigation. However, cadmium and nickel were found below limits prescribed. To analyse heavy metals viz, Cr+6, lead, Cadmium and nickel one hundred and twenty samples were collected from four directions on surface and 20 cm depth, and analyzed on atomic absorption spectrophotometer. From the above study it is clear that in case of Sarvottam cement works only lead content was higher in all directions and depths than other two plants. At tiger and Nokha cement works contamination of lead was more over limited in the first 1 km except in east direction. Mobility of lead was relatively more on top soil than 20cm depth. Hexavalent chromium content in south western direction was more for Nokha cement. Whereas, it was more in east direction in case of tiger cement. This indicated influence of prevailing direction of wind on distribution of heavy metals present in cement dust.Heavy metal toxicity results in reduction in plant height, burning of leaf margins and tip, slow leaf growth and over all wilting of Prosopis cineraria, Pearlmillet and clusterbean plants, when this metal deposits in Human body results in genetic disorders. Electrostatic precipitator can be installed to reduce the cement dust emission.

  8. Plutonium Finishing Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Plutonium Finishing Plant, also known as PFP, represented the end of the line (the final procedure) associated with plutonium production at Hanford.PFP was also...

  9. Study the air pollution due to Dorud Cement Plant (in Iran

    Directory of Open Access Journals (Sweden)

    Vahid Mokhtari

    2016-09-01

    Full Text Available Cement industry is one of the most important industries in the country. Dorud Cement Plant is one of the largest and oldest Iran's cement factories, which is working in the center of the city of Dorud. In this study, aimed to investigate air pollution resulting from Dorud cement plant, the parameters of CO, CO2, O2, NO, NO2, NOx, SO2, dry dust particles, particles weight and environmental particulates of PM10 and PM2.5 were measured with conventional methods of measuring emissions from industrial chimneys and by using automatic measuring equipment, and the rates of emissions from the chimneys of the plant were calculated during a working year. These measurements were made over three months, from February 20, 2015 to May 21, 2015, at 3 stations of Link1-k1, Link2-k1 and Link3-k1, which are the chimneys of the three-lines of the plant. It was found in this study that the chimney No. 3 enters the maximum contaminant into the environment. The results also showed that based on the standards defined for the cement industry, Dorud cement plant meets the relative optimal conditions in terms of comparing performance with the standards, and the emissions from the factory are less than the enacted standards for this industry. Also, the preventive measures and equipment for reducing emissions established in this industrial unit have a relative utility. In this study, the factors including type of raw materials used, old production lines and old factory equipment, type of producing cement and proximity to the city were determined as main reasons for the emissions produced by this industry. Also, some management solutions such as the use of environment designing inside the manufacturing process of the plant and outside the plant, using flame-reducing, construction of a new phase and relocating the plant were suggested to reduce emissions from Dorud cement plants.

  10. CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)

    Energy Technology Data Exchange (ETDEWEB)

    HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

    2007-01-25

    This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

  11. Mercury enrichment and its effects on atmospheric emissions in cement plants of China

    Science.gov (United States)

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming

    2014-08-01

    The cement industry is one of the most significant anthropogenic sources of atmospheric mercury emissions worldwide. In this study of three typical Chinese cement plants, mercury in kiln flue gas was sampled using the Ontario Hydro Method (OHM), and solid samples were analyzed. Particulate matter recycling, preheating of raw materials, and the use of coal and flue gas desulfurization derived gypsum contributed to emissions of Hg in the air and to accumulation in cement. Over 90% of the mercury input was emitted into the atmosphere. Mercury emission factors were 0.044-0.072 g/t clinker for the test plants. The major species emitted into the atmosphere from cement plants is oxidized mercury, accounting for 61%-91% of the total mercury in flue gas. The results of this study help improve the accuracy of the mercury emission inventory in China and provide useful information for developing mercury controls.

  12. Research of fluidized bed cement clinker sintering system by pilot plant; Ryudosho cement shosei gijutsu no kaihatsu. 7

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T. [Center for Coal Utilization, Japan, Tokyo (Japan); Sato, N.; Hashimoto, I.; Nakatsuka, M. [The Cement Association of Japan, Tokyo (Japan)

    1996-09-01

    While a cement manufacturing process generally performs sintering by using a rotary kiln, a development work has been carried out as a subsidy operation of the Agency of Natural Resources and Energy on a cement sintering technology using a fluidized bed consisted of two furnaces: a jet flow bed granulating furnace and a fluidized bed sintering furnace. This paper reports the results of tests and researches performed during fiscal 1995. A plant with a scale of 20 ton-a-day production started in 1993 after having gone through bench scale tests. The year 1995 conducted by August its performance evaluation, review of the operation method and the safety criteria, and generalization of the tests. A multi-stage cyclone system has been employed in the preheating equipment for cement material powder. A number of improvements have been realized in the aspects of construction and operation, such as stabilization of dust collecting efficiency by employing a high-efficiency type cyclone, and operation with reduced pressure variation. Based on these results, a construction had been progressed in parallel on a new plant upscaled to 200 ton-a-day production. The new plant was completed in December, 1995. 9 figs., 8 tabs.

  13. Effects of cement flue dust from a cement factory on stress parameters and diversity of aquatic plants.

    Science.gov (United States)

    Erdal, Serkan; Demirtas, Ayten

    2010-07-01

    Cement kiln dusts, made of a complex mixture of elements, include high levels of heavy metals such as fluoride, magnesium, lead, cadmium, nickel, zinc, copper, beryllium and some toxic compounds. Because of the toxic element compositions and radioactive isotope properties of cement kiln dusts, not only terrestrial but also aquatic ecosystems are subjected to greater stress. In the present paper, we investigated the effects of pollution caused by Askale-Erzurum cement factory (CF) on the stress parameters and diversity of aquatic plants. For this purpose, aquatic plant species were collected from the outer zone of the CF. Only three (Lemna minor, Ceratophyllum submersum and Potamogeton natans) of these species were able to be determined in the CF zone. Antioxidant enzyme activities of the collected aquatic plants were measured and compared to their controls. Superoxide dismutase (SOD) activity of P. natans in the CF zone was significantly high compared to their respective control, while it was low in L. minor and C. submersum compared to their controls. Similarly, peroxidase (POX) activity of P. natans was high, while those of L. minor and C. submersum were low compared to their respective controls. On the other side, while catalase (CAT) activities of L. minor and C. submersum were low, that of P. natans did not show an important change compared to their respective controls. Furthermore, we found that hydrogen peroxide (H(2)O(2)) and malondialdehyde (MDA) levels of all the studied plants were also very high compared to their controls. According to these results, it is clear that pollution caused by the CF reduced diversity and number of aquatic plant species. Besides, the obtained data revealed that P. natans have a more resistant defense system than other species.

  14. Biomonitoring of airborne particulate matter emitted from a cement plant and comparison with dispersion modelling results

    Science.gov (United States)

    Abril, Gabriela A.; Wannaz, Eduardo D.; Mateos, Ana C.; Pignata, María L.

    2014-01-01

    The influence of a cement plant that incinerates industrial waste on the air quality of a region in the province of Córdoba, Argentina, was assessed by means of biomonitoring studies (effects of immission) and atmospheric dispersion (effects of emission) of PM10 with the application of the ISC3 model (Industrial Source Complex) developed by the USEPA (Environmental Protection Agency). For the biomonitoring studies, samples from the epiphyte plant Tillandsia capillaris Ruíz & Pav. f. capillaris were transplanted to the vicinities of the cement plant in order to determine the physiological damage and heavy metal accumulation (Ca, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb). For the application of the ISC3 model, point and area sources from the cement plant were considered to obtain average PM10 concentration results from the biomonitoring exposure period. This model permitted it to be determined that the emissions from the cement plant (point and area sources) were confined to the vicinities, without significant dispersion in the study area. This was also observed in the biomonitoring study, which identified Ca, Cd and Pb, pH and electric conductivity (EC) as biomarkers of this cement plant. Vehicular traffic emissions and soil re-suspension could be observed in the biomonitors, giving a more complete scenario. In this study, biomonitoring studies along with the application of atmospheric dispersion models, allowed the atmospheric pollution to be assessed in more detail.

  15. Assessing Metal Exposures in a Community near a Cement Plant in the Northeast U.S.

    OpenAIRE

    2015-01-01

    Cement production is a major source of metals and metalloids in the environment, while exposures to metals and metalloids may impact human health in the surrounding communities. We recruited 185 participants living in the vicinity of a cement plant in the northeast U.S., and measured the levels of aluminum (Al), arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg), and selenium (Se) in blood and Hg in hair samples from them. A questionnaire was used to assess potential sources of Hg exposure...

  16. Magnetic properties of the lichen Pseudevernia furfuracea transplanted near a cement plant in NE Italy

    Science.gov (United States)

    Winkler, Aldo; Kodnik, Danijela; Candotto Carniel, Fabio; Tretiach, Mauro

    2015-04-01

    The magnetic properties of transplanted samples of the epiphytic lichen Pseudevernia furfuracea (L.) Zopf var. furfuracea have been analyzed in the framework of a biomonitoring study in NE Italy focused on a middle-sized cement plant (clinker production: 556,000 ton year-1 in 2012). The lichen transplants were exposed for 2 months in 40 sites distributed all around the cement plant: 37 sites were located at the knots of a 700 m step grid covering agricultural, forest and urban areas and a large industrial zone, and 3 sites were located in the nearby urban centers. The elemental analysis of the exposed samples revealed a limited impact of the cement plant on the territory, while that of the industrial zone, located in the SW corner of the study area, seemed to be generally stronger. The magnetic properties of the transplanted lichens statistically agree with the elemental concentration dataset, showing that the cement plant has no significant impact on the magnetic properties of the lichens transplanted in the whole area. The samples from the industrial area show the highest values of magnetic susceptibility and of saturation magnetization and saturation remanent magnetization, in coherence with the spatial distribution of the elemental concentration values. The magnetic mineralogy is reasonably uniform throughout the whole set of samples, and is dominated by magnetite-like minerals. The magnetic mineralogy of the sample nearest to the cement plant is not magnetically distinguishable from that of the other lichen samples and does not seem to be linked to the magnetic properties of the cement therein produced. The full agreement between the magnetic and elemental datasets underlines a modest environmental impact of the cement plant, with respect to the other industrial activities in the same area.

  17. CO₂ capture from cement plants using oxyfired precalcination and/or calcium looping.

    Science.gov (United States)

    Rodríguez, Nuria; Murillo, Ramón; Abanades, J Carlos

    2012-02-21

    This paper compares two alternatives to capture CO(2) from cement plants: the first is designed to exploit the material and energy synergies with calcium looping technologies, CaL, and the second implements an oxyfired circulating fluidized bed precalcination step. The necessary mass and heat integration balances for these two options are solved and compared with a common reference cement plant and a cost analysis exercise is carried out. The CaL process applied to the flue gases of a clinker kiln oven is substantially identical to those proposed for similar applications to power plants flue gases. It translates into avoided cost of of 23 $/tCO(2) capturing up to 99% of the total CO(2) emitted in the plant. The avoided cost of an equivalent system with an oxyfired CFBC precalcination only, goes down to 16 $/tCO(2) but only captures 89% of the CO(2) emitted in the plant. Both cases reveal that the application of CaL or oxyfired CFBC for precalcination of CaCO(3) in a cement plant, at scales in the order of 50 MWth (referred to the oxyfired CFB calciner) is an important early opportunity for the development of CaL processes in large scale industrial applications as well as for the development of zero emissions cement plants.

  18. Operating experience with CFB technology for waste utilization at a cement production plant

    Energy Technology Data Exchange (ETDEWEB)

    Wirthwein, R.; Scur, P.; Scharf, K.F. [Rudersdorfer Zement GmbH, (Germany); Hirschfelder, H. [Lurgi Energie und Entsorgung GmbH, (Germany)

    2002-07-01

    The Rudersdorf cement plant in Germany strives for high environmental standards, a high quality product and low production costs. The plant was the first to use circulating fluidized bed (CFB) technology in combination with a cement kiln. The following objectives were defined for the CFB: (1) use of waste as a low-cost raw materials and fuel for cement production, (2) ensure good combustion conditions even when using low quality fuels, and (3) produce raw material components which can be homogeneously integrated into the cement kiln feed stream. A gasification process was developed for processing a diverse waste stream to produce lean gas for use as a secondary fuel along with an inert ash that serves as a raw material component. The CFB unit was put into service in 1996. Since its launch, various plant components and waste pre-processing equipment have been optimized. The CFB unit has an availability of more than 90 per cent, and can process 120,000 tpa of secondary fuels, 150,000 tpa of ash, and 50,000 tpa of other mineral residues. Its use has contributed significantly to fuel costs savings and improved environmental performance at the cement production plant. 9 figs.

  19. [Utilizing the wastewater treatment plant sludge for the production of eco-cement].

    Science.gov (United States)

    Lin, Yi-Ming; Zhou, Shao-Qi; Zhou, De-Jun; Wu, Yan-Yu

    2011-02-01

    The aim of this paper was to study the effect on cement property by using of municipal sewage as additive in the process of clinker burning. Based on the standard sample P. 042. 5 from cement plant, the properties of eco-cement samples adding municipal sewage to unit raw material by 0%, 0.50%, 1.00%, 1.50%, 2.00%, 2.50% respectively and the standard sample from the cement plant were compared. According to the analysis of X-ray diffraction, microstructure, the particles size determination material change, the setting time, specific surface area, leaching toxicity and strength of cement mortar of the cement, respectively, it showed that the strength of the productions were similar to the P. 042.5 standard sample. The metal ion concentrations of Al, Fe, Ba, Mn and Ti in clinkers and raw material decreased, the initial and setting time increased, as well as the strength of the paste within the curing time of 3 days decreased with the increase of municipal sewage ratio. However, after the curing of 7 days, the strength was similar to non-sludge-mortar or even higher.

  20. Utilization of waste heat from rotary kiln for burning clinker in the cement plant

    Directory of Open Access Journals (Sweden)

    Sztekler Karol

    2016-01-01

    Full Text Available Cement subsector next to the glass industry is counted among one of the most energy-intensive industries, which absorbs approx. 12-15% of the total energy consumed by the industry. In the paper various methods of energy consumption reduction of in the cement industry are discussed. Cement production carries a very large emissions of greenhouse gases, where CO2 emissions on a global scale with the industry than approx. 5%. Great opportunity in CO2 emissions reduction in addition to the recovery of waste heat is also alternative fuels co-firing in cement kilns [1], [2]. In the cement sector interest in fitting-usable waste energy is growing in order to achieve high rates of savings and hence the financial benefits, as well as the environment ones [3]. In the process of cement production is lost irretrievably lot of energy and reduction of these losses on a global scale gives a visible saving of consumed fuel. The aim of this study is to investigate the possibility of waste heat use in Rudniki Cement Plant near to Czestochowa. After analyzing of all waste heat sources will be analyzed the heat emitted by radiation from the surface of the rotary kiln at the relevant facility. On the basis of thermal-flow calculations the most favorable radiative heat exchanger will be designed. The calculations based on available measurements provided by the cement plant, a thermal power of the heat exchanger, the heat exchange surface, the geometry of the heat exchanger, and other important parameters will be established. In addition the preliminary calculations of hydraulic losses and set directions for further work will be carried out. Direct benefits observed with the introduction of the broader heat recovery technology, is a significant increase in energy efficiency of the industrial process, which is reflected in the reduction of energy consumption and costs. Indirectly it leads to a reduction of pollution and energy consumption.

  1. Mortality from stomach cancer in United States cement plant and quarry workers, 1950-80.

    OpenAIRE

    1986-01-01

    In 1978 a study of the mortality of United States cement plant and quarry workers was initiated. The vital status of a cohort of 5292 men who had been employed for at least five years in a cement plant between 1950 and 1980 was traced to 1 January 1980. The mortality experience was evaluated for 4231 white men for whom complete work histories and demographic information were available. Deaths from stomach cancer were significantly increased during 1965-9 but not over the entire follow up peri...

  2. Design and analysis of a cogeneration plant using heat recovery of a cement factory

    OpenAIRE

    2015-01-01

    There is a more potential in a cement factory for electric power generation using waste heat recovery compared to the other industries. A case study has been done at a cement factory having two units, 1600 TPD and 5500 TPD, identified three waste heat rejections at 176 °C, 330 °C and 420 °C and designed a suitable power plant configuration. In this work, an attempt has been made to quantify the power generation capacity with plant analysis. It has been resulted that 12.5 MW of power can be pr...

  3. Lignite coke moving bed adsorber for cement plants - BAT or beyond BAT?

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberger, H. [European Commission, Seville (Spain). Joint Research Center

    2011-06-15

    The IPPC Directive requires permits which must contain emission limit values and other conditions based on BAT. The BAT are characterised and the terms 'conditional BAT' and 'beyond BAT' are defined and explained. The borderline between BAT and beyond BAT is explained by means of an outstanding example which is the lignite coke moving bed adsorber for the abatement of the waste gas from a cement plant where waste for co-incineration is fed to a considerable extent is described in detail. Worldwide, this technique has been successfully applied at one cement plant for sixteen years.

  4. Increasing Plant Availability by Mechanical Checking of the Cement Rotary Kiln Axis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A periodic check of the cement rotary kiln axis is needed within the framework of preventive maintenance for maintaining high plant availability. The fourth generation “KAS-4” measuring system was developed by Wuhan University of Technology in 1999. The system can be carried out with rotating or stationary kiln plant. The same is true of the measurement of tire and supporting roller diameters, the clearance of tires, the position of rollers, the machining of tires and rollers, the slopes of roller surfaces, the deflection of gear, the axis of kiln. The system has been applied to the measurement for 10 sets of cement rotary kiln in China.

  5. Severe particulate pollution from the deposition practices of the primary materials of a cement plant.

    Science.gov (United States)

    Kourtidis, K; Rapsomanikis, S; Zerefos, C; Georgoulias, A K; Pavlidou, E

    2014-01-01

    Global cement production has increased twofold during the last decade. This increase has been accompanied by the installation of many new plants, especially in Southeast Asia. Although various aspects of pollution related to cement production have been reported, the impact of primary material deposition practices on ambient air quality has not yet been studied. In this study, we show that deposition practices can have a very serious impact on levels of ambient aerosols, far larger than other cement production-related impacts. Analyses of ambient particulates sampled near a cement plant show 1.3-30.4 mg/m(3) total suspended particulates in the air and concentrations of particles with a diameter of 10 μm or less at 0.04-3 mg/m(3). These concentrations are very high and seriously exceed air quality standards. We unequivocally attribute these levels to outdoor deposition of cement primary materials, especially clinker, using scanning electron microscopy/energy-dispersive X-ray spectroscopy. We also used satellite-derived aerosol optical depth maps over the area of study to estimate the extent of the spatial impact. The satellite data indicate a 33% decrease in aerosol optical depth during a 10-year period, possibly due to changing primary material deposition practices. Although the in situ sampling was performed in one location, primary materials used in cement production are common in all parts of the world and have not changed significantly over the last decades. Hence, the results reported here demonstrate the dominant impact of deposition practices on aerosol levels near cement plants.

  6. CSER 97-004: PFP production denitration calciner system

    Energy Technology Data Exchange (ETDEWEB)

    Hillesland, K.E.

    1997-09-11

    The plutonium stabilization program at the Plutonium Finishing Plant (PFP) includes conversion of acidic plutonium nitrate solution into plutonium oxide. Conversion is facilitated through use of a vertical calciner installed in Glovebox HC-23OC-2, which is located in RM 230C of this facility. This evaluation supports the Criticality Prevention Specification for the calcining process inside this glovebox. As the product of the calciner is a high density plutonium oxide, a number of limits are required to insure criticality safety. The containers allowed are product receiver vessels and 0.5 C slip lid cans and polyjars. The limits allow for two ``unit masses`` of 2 V total volume each, separated by a distance of at least 25.4 cm (10 in.). This evaluation allows for operation of the calciner for product densities not in excess of 5.5 g Pu/cm{sup 3}.

  7. System design description PFP thermal stabilization

    Energy Technology Data Exchange (ETDEWEB)

    RISENMAY, H.R.

    1998-11-10

    The purpose of this document is to provide a system design description and design basis for the Plutonium Finishing P1ant (PFP) Thermal Stabilization project. The sources of material for this project are residues scraped from glovebox floors and materials already stored in vault storage that need further stabilizing to meet the 3013 storage requirements. Stabilizing this material will promote long term storage and reduced worker exposure. This document addresses: function design, equipment, and safety requirements for thermal stabilization of plutonium residues and oxides.

  8. Recovery Act Production of Algal BioCrude Oil from Cement Plant Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Robert Weber; Norman Whitton

    2010-09-30

    The consortium, led by Sunrise Ridge Algae Inc, completed financial, legal, siting, engineering and environmental permitting preparations for a proposed demonstration project that would capture stack gas from an operating cement plant and convert the carbon dioxide to beneficial use as a liquid crude petroleum substitute and a coal substitute, using algae grown in a closed system, then harvested and converted using catalyzed pyrolysis.

  9. Assessment of air pollution tolerance levels of selected plants around cement industry, Coimbatore, India.

    Science.gov (United States)

    Radhapriya, P; NavaneethaGopalakrishnan, A; Malini, P; Ramachandran, A

    2012-05-01

    Being the second largest manufacturing industry in India, cement industry is one of the major contributors of suspended particulate matter (SPM). Since plants are sensitive to air pollution, introducing suitable plant species as part of the greenbelt around cement industry was the objective of the present study. Suitable plant species were selected based on the Air pollution tolerance index (APTI) calculated by analyzing ascorbic acid (AA), pH, relative water content (RWC) and total chlorophyll (TChl) of the plants occuring in the locality. Plants were selected within a 6 km radius from the industry and were graded as per their tolerance levels by analyzing the biochemical parameters. From the statistical analysis at 0.05 level of significance a difference in the APTI values among the 27 plant species was observed, but they showed homogenous results when analysed zone wise using one-way analyses of variance. Analyses of individual parameters showed variation in the different zones surrounding the cement industry, whereas the APTI value (which is a combination of the parameter viz. AA, RWC, TChl, pH) showed more or less same gradation. Significant variation in individual parameters and APTI was seen with in the species. All the plants surrounding the cement industry are indicative of high pollution exposure comparable to the results obtain for control plants. Based on the APTI value, it was observed that about 37% of the plant species were tolerant. Among them Mangifera indica, Bougainvillea species, Psidum quajava showed high APTI values. 33% of the species were highly susceptible to the adverse effects of SPM, among which Thevetia neriifolia, Saraca indica, Phyllanthus emblica and Cercocarpus ledifolius showed low APTI values. 15% each of the species were at the intermediary and moderate tolerance levels.

  10. Comparative Analysis of Air Emission from Cement Plant Using TDF as Partial Substitute for Coal

    OpenAIRE

    2014-01-01

    Tyre derived fuel (TDF) has a potential advantage for its use as a co-fuel with coal in rotary kilns of cement plants.  In this study we analyzed the emissions of selected criteria pollutants; CO2, CO, NOx, SOx and PM to suggest suitable proportion of TDF to replace coal when different proportions of TDF and coal were used as cement kiln feed. Emissions of CO2, CO, NO, NO2, SO2 and total PM from stack and concentrations of CO, NOx, SOx and PM10 in ambient air were assessed using USEPA recomme...

  11. Technogenic Magnetic Particles in Alkaline Dusts from Power and Cement Plants

    OpenAIRE

    2012-01-01

    During this study, we investigated the mineralogical characterization of technogenic magnetic particles (TMPs) contained in alkaline industrial dust and fly ash emitted by coal burning power plants and cement plants. The reaction of tested dust samples varied between values of pH 8 and pH 12. Their magnetic properties were characterized by measurement of magnetic susceptibility (χ), frequency dependence of magnetic susceptibility (χfd), and temperature dependence of magnetic susceptibility. M...

  12. Notice of Construction (NOC) Application for Criteria and Toxic Air Pollutant Emissions from Thermal Stabilization of Polycubes at the PFP

    Energy Technology Data Exchange (ETDEWEB)

    RANADE, D.G.

    2000-11-01

    This is a notice of construction (NOC) application for thermal stabilization of plutonium in a polystyrene matrix (polycubes) in the muffle furnaces at the Plutonium Finishing Plant (PFP). This NOC application is required by Washington Administrative Code (WAC) 173-460-040. During the 1960's and 1970's, polycubes were thermally stabilized using a pyrolysis process at PFP. The proposed process of thermal stabilization of polycubes in muffle furnaces results in emissions of air contaminants not emitted since implementation of WAC 173-460 (effective 9/18/91). The new process and related air contaminants are the basis for this NOC application. The proposed activity would use the muffle furnaces in the 234-52 Building to stabilize polycubes. The resulting plutonium oxides would be packaged to meet storage requirements specified in Stabilization, Packaging, and Storage of Plutonium Bearing Materials (DOE-STD-3013). The PFP is located in the 200 West Area of the Hanford Site. The PFP consists of several large and small buildings that are grouped to form the processing complex. The PFP activities are focused on the stabilization of plutonium-bearing materials to a form suitable for long-term storage; immobilization of residual plutonium-bearing materials; and removal of readily retrievable, plutonium-bearing materials left behind in process equipment and process areas.

  13. Assessing metal exposures in a community near a cement plant in the Northeast U.S.

    Science.gov (United States)

    Dong, Zhao; Bank, Michael S; Spengler, John D

    2015-01-19

    Cement production is a major source of metals and metalloids in the environment, while exposures to metals and metalloids may impact human health in the surrounding communities. We recruited 185 participants living in the vicinity of a cement plant in the northeast U.S., and measured the levels of aluminum (Al), arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg), and selenium (Se) in blood and Hg in hair samples from them. A questionnaire was used to assess potential sources of Hg exposure. Multivariate regressions and spatial analyses were performed to evaluate the relative importance of different routes of exposures. The metal concentrations in blood or hair samples of our study participants were comparable to the U.S. general or regional population. Smoking contributed significantly to Cd and Pb exposures, and seafood consumption contributed significantly to Hg and As exposures, while variables related to the cement plant were not significantly associated with metal concentrations. Our results suggest that our study population was not at elevated health risk due to metal exposures, and that the contribution of the cement plant to metal exposures in the surrounding community was minimal.

  14. A Hybrid Multidimensional Approach to Select a Country for Global Cement Plant Location

    Directory of Open Access Journals (Sweden)

    Muhammad Khurram Ali

    2015-04-01

    Full Text Available The globalization and saturated domestic markets force international firms to gradually expand their businesses across the borders to capture potential emerging markets. The decision to select a country for a new cement plant location demands analysis of a large number of factors. It is a multifaceted problem which requires investigation and prioritization of factors in a hierarchical way.This paper uses an FAHP (Fuzzy Analytic Hierarchy Process based procedure proposing a practical framework for solution of the GCPLP (Global Cement Plant Location Problem. It deals with real world ambiguities and handles a broader spectrum of influencing factors. The criteria for selection of a country for a new cement plant installation are prioritized from the FAHP based evaluation made by experts. Different global databases including the World Bank are used for the fuzzy ratings of the alternatives. It has been learnt in this particular problem that cement specific and cost related factors are the most sensitive while legal regulations and economic conditions are relatively less sensitive for the decision makers. Therefore, the countries having strong lime stone reserves, cheaper fuel costs and good internal marketing positions are higher in ranking. The paper concludes with different rankings of the four countries analyzed which assist the strategic managers in making decisions on the basis of mathematically computed results.

  15. Design and analysis of a cogeneration plant using heat recovery of a cement factory

    Directory of Open Access Journals (Sweden)

    G.V. Pradeep Varma

    2015-03-01

    Full Text Available There is a more potential in a cement factory for electric power generation using waste heat recovery compared to the other industries. A case study has been done at a cement factory having two units, 1600 TPD and 5500 TPD, identified three waste heat rejections at 176 °C, 330 °C and 420 °C and designed a suitable power plant configuration. In this work, an attempt has been made to quantify the power generation capacity with plant analysis. It has been resulted that 12.5 MW of power can be produced with the available heat recovery against a cement factory demand of 15 MW. The available process heat for cement production and power generation has been estimated at a capacity range from 5000 to 9000 TPD. The analysis recommended a low steam pressure for power generation at above said heat recovery gas temperature.

  16. Health effects for the population living near a cement plant: an epidemiological assessment.

    Science.gov (United States)

    Bertoldi, Martina; Borgini, Alessandro; Tittarelli, Andrea; Fattore, Elena; Cau, Alessandro; Fanelli, Roberto; Crosignani, Paolo

    2012-05-01

    Epidemiological studies have shown the association between the exposure to air pollution and several adverse health effects. To evaluate the possible acute health effects of air pollution due to the emissions of a cement plant in two small municipalities in Italy (Mazzano and Rezzato), a case-control study design was used. The risks of hospital admission for cardiovascular or respiratory diseases for increasing levels of exposure to cement plant emissions were estimated, separately for adults (age>34 years) and children (0-14 years). Odds ratios (OR) were estimated using unconditional regression models. Attributable risks were also calculated. Statistically significant risks were found mainly for respiratory diseases among children: OR 1.67 (95% CI 1.08-2.58) for the moderately exposed category (E1), OR 1.88 (95% CI 1.19-2.97) for the highly exposed category (E2), with an attributable risk of 38% of hospital admissions due to the exposure to cement plant exhausts. Adults had a weaker risk: OR 1.38 (95% CI 1.18-1.61) for group E1, OR 1.31 (95% CI 1.10-1.56) for group E2; the attributable risk was 23%. Risks were higher for females and for the age group 35-64. These results showed an association between the exposure to plant emissions and the risk of hospital admission for cardiovascular or respiratory causes; this association was particularly strong for children.

  17. Review: Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Jappe Frandsen, Flemming;

    2015-01-01

    Cement production is an energy-intensive process, which traditionally has been dependent on fossil fuels. However, the use of alternative fuels, i.e., selected waste, biomass, and byproducts with recoverable calorific value, is constantly increasing. Combustion of these fuels is more challenging......, compared to fossil fuels, because of a lack of experience and different chemical and physical properties. When complete oxidation Of fuels in the calciner and main burner is not achieved, they burn in direct contact with the bed material of the rotary kiln, causing local reducing conditions and increasing...... the internal circulation of S, Cl, Na, and K. Compounds containing these elements, such as alkali salts, evaporate when exposed to high temperatures and subsequently condense in colder parts of the plant. The transformation of the volatile inorganic species at different locations in the cement plant...

  18. GIS Based Multi-Criteria Decision Analysis For Cement Plant Site Selection For Cuddalore District

    Science.gov (United States)

    Chhabra, A.

    2015-12-01

    India's cement industry is a vital part of its economy, providing employment to more than a million people. On the back of growing demands, due to increased construction and infrastructural activities cement market in India is expected to grow at a compound annual growth rate (CAGR) of 8.96 percent during the period 2014-2019. In this study, GIS-based spatial Multi Criteria Decision Analysis (MCDA) is used to determine the optimum and alternative sites to setup a cement plant. This technique contains a set of evaluation criteria which are quantifiable indicators of the extent to which decision objectives are realized. In intersection with available GIS (Geographical Information System) and local ancillary data, the outputs of image analysis serves as input for the multi-criteria decision making system. Moreover, the following steps were performed so as to represent the criteria in GIS layers, which underwent the GIS analysis in order to get several potential sites. Satellite imagery from LANDSAT 8 and ASTER DEM were used for the analysis. Cuddalore District in Tamil Nadu was selected as the study site as limestone mining is already being carried out in that region which meets the criteria of raw material for cement production. Several other criteria considered were land use land cover (LULC) classification (built-up area, river, forest cover, wet land, barren land, harvest land and agriculture land), slope, proximity to road, railway and drainage networks.

  19. Microstructure of a Planting Material Consisting of Nutrition-Expansive Perlitic-Cement Composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-ru; LIU Zu-de

    2003-01-01

    An ecotypic revetment material consisting of nutrition-expansive perlitic-cement composites is introduced. This planting material can combine vegetation recovery with slope protection. The XRD, SEM and image analysis techniques were used to study its composition and microstructure. Its strength was measured by an electro-hydraulic servo-controlled testing machine. The results show the unconfined compressive strength is about 393.6 kPa, and the average elastic modulus is about 47.0 MPa. The quartz, felspar, chlorite and calcite are the main non-clay minerals in the planting material. Its particles are mainly spherical,and the range of the equivalent diameter is 1.83 to 15.96 μm. The results also show the planting material contains a large amount of micro non-capillary and capillary pores, and has a microstructure characteristic of honeycomb and coralline. CSH gel produced by hydration of cement increases the strength and water stability of the particles. The anisotropy and slight orientation of the particles increase the void cross-section area,providing an explanation of the high permeability for the planting material.The better porosity of the planting material is apt tokeep moisture and nutriment, provides oxygen for plant root breathing, and aids to exhaust the carbon dioxide by means of exchanging with atmosphere, hence it can facilitate vegetation.

  20. Severe particulate pollution from deposition practices of primary materials of cement plants

    Science.gov (United States)

    Kourtidis, Konstantinos; Rapsomanikis, Spyridon; Zerefos, Christos; Georgoulias, Aristeidis; Pavlidou, Eleni

    2014-05-01

    Analysis of ambient particulates sampled at a residential area near a cement manufacturing plant in Greece, showed total aerosol mass in the sampled air 1.3-30.4 mg/m3 and PM10 concentrations 0.04-3 mg/m3. These concentrations are very high and seriously exceed air quality standards. Morphological examination and elemental analysis of air samples and primary materials with Scanning Electron Microscopy (SEM)/Energy Dispersive X-Ray Spectroscopy (EDS) showed that ambient particulates shared appearance features and had similar elemental synthesis to clinker and fly ash, showing heavy impacts on the ambient aerosol load from the cement plant practice of open deposition of primary materials. Satellite-derived AOD over the area during the period 2000-2010 shows extended spatial impact, while satellite overpass data indicate a 33% decrease in AOD over this period, possibly due to changing production and primary material deposition practices. Although the sampling was performed more than one decade ago in Greece, environmental legislation and its reinforcement practices at that time in Greece are similar to current ones in many parts of the world. The global increase in cement production, especially in south-east Asia, make these measurements particularly relevant.

  1. Comparative Analysis of Air Emission from Cement Plant Using TDF as Partial Substitute for Coal

    Directory of Open Access Journals (Sweden)

    Syeda Fateeha Arshed

    2014-07-01

    Full Text Available Tyre derived fuel (TDF has a potential advantage for its use as a co-fuel with coal in rotary kilns of cement plants.  In this study we analyzed the emissions of selected criteria pollutants; CO2, CO, NOx, SOx and PM to suggest suitable proportion of TDF to replace coal when different proportions of TDF and coal were used as cement kiln feed. Emissions of CO2, CO, NO, NO2, SO2 and total PM from stack and concentrations of CO, NOx, SOx and PM10 in ambient air were assessed using USEPA recommended methods. Substitution such as 85% coal and 15% TDF, 80% coal and 20% TDF, 75% coal and 25% TDF and 70% coal and 30% TDF were applied in this study. Results of the current study revealed a rise in CO and TPM stack emissions with an increase in proportions of TDF and crossed standards at 80% coal and 20% TDF. Decline in NOx emissions up-till 15% proportion of TDF was observed and remained lower than the emission of NOx at 100% coal use in spite of an increase in its concentration at each increased proportion of TDF above 15% TDF use. No significant difference (p > 0.05 in ambient air pollutant concentration with and without TDF use was observed. The study suggested 15% TDF substitution as a preferable proportion for the selected cement plant. DOI: http://dx.doi.org/10.5755/j01.erem.68.2.6471

  2. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    Science.gov (United States)

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO₂) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced.

  3. Experimental study on cement clinker co-generation in pulverized coal combustion boilers of power plants.

    Science.gov (United States)

    Wang, Wenlong; Luo, Zhongyang; Shi, Zhenglun; Cen, Kefa

    2006-06-01

    The idea to co-generate cement clinker in pulverized coal combustion (PCC) boilers of power plants is introduced and discussed. An experimental study and theoretical analysis showed this idea to be feasible and promising. By adding quick lime as well as other mineralizers to the coal and grinding the mixture before combustion, sulfoaluminate cement clinker with a high content of silicate (SCCHS) could be generated. The main mineral phases in SCCHS are 2CaO x SiO2 (dicalcium-silicate), 3CaO x 3Al2O3 x CaSO4 (calcium-sulfoaluminate) and 2CaO x A12O3 SiO2 (gehlenite). Performance tests showed that the SCCHS met the requirements for utilization in common construction. Based on this idea, zero solid waste generation from PCC would be realized. Furthermore, thermal power production and cement production could be combined, and this would have a significant effect on both environmental protection and natural resource saving.

  4. Technogenic Magnetic Particles in Alkaline Dusts from Power and Cement Plants.

    Science.gov (United States)

    Magiera, Tadeusz; Gołuchowska, Beata; Jabłońska, Mariola

    2013-01-01

    During this study, we investigated the mineralogical characterization of technogenic magnetic particles (TMPs) contained in alkaline industrial dust and fly ash emitted by coal burning power plants and cement plants. The reaction of tested dust samples varied between values of pH 8 and pH 12. Their magnetic properties were characterized by measurement of magnetic susceptibility (χ), frequency dependence of magnetic susceptibility (χ(fd)), and temperature dependence of magnetic susceptibility. Mineralogical and geochemical analyses included scanning electron microscopy with energy dispersive spectroscopy, microprobe analysis and X-ray diffraction. The TMPs in fly ash from hard coal combustion have the form of typical magnetic spherules with a smooth or corrugated surface as well as a skeletal morphology, composed of iron oxides (magnetite, maghemite, and magnesioferrite) that occurred in the form of incrustation on the surface of mullite, amorphous silica, or aluminosilicate particles. The TMPs observed in fly ash from lignite combustion have a similar morphological form but a different mineralogical composition. Instead of magnetite and magnesioferrite, maghemite and hematite with lower χ values were the prevailing magnetic minerals, which explains the much lower magnetic susceptibility of this kind of ash in comparison with the ash from hard coal combustion, and probably results from the lower temperature of lignite combustion. Morphology and mineralogical composition of TMPs in cement dust is more diverse. The magnetic fraction of cement dust occurs mostly in the form of angular and octahedral grains of a significantly finer granulation (cement dust is calcium ferrite (CaFe(3)O(5)). The greatest impact on the magnetic susceptibility of cement dust results from iron-bearing additives (often waste materials from other branches of industry), which should be considered the most dangerous to the environment. Stoichiometric analysis of micro-particles confirmed

  5. Observations on the shelter-belt planted around the Danube Cement Works (near Vac, Hungary)

    Energy Technology Data Exchange (ETDEWEB)

    Klincsek, P.

    1977-01-01

    Almost simultaneously with the establishment of the Danube Cement Works, an experimental shelter belt composed of a variety of tree species was planted in the neighborhood. The volumes of the different tree species were determined in order to discover which of them was able to grow, in spite of the constant pollution. The development of the 15 tree species showed considerable variation. Under the conditions of this test, the tree species Populus robusta, Cerasus avium, Elaeagnus angustifolia, and Pinus silvestris are excellently suited for the establishment of a green belt. 14 references, 6 figures.

  6. Process Simulation of Oxy-combustion CO2 Capture in Cement Plant

    OpenAIRE

    2014-01-01

    The objectives of this master thesis have been to model and simulate oxy-combustion CO2 capture in a cement plant. The model developed is a process simulation of the calcination process with varying degree of air in-leakage, where heat is supplied by combustion in an oxygen rich environment, followed by capture of the CO2. The further gas separation after H2O condensation to achieve the required CO2 quality was evaluated. In addition to the process simulations, a review of literature related ...

  7. Biomonitoring of Air Pollution by Magnetic Measurements of Native and Transplanted Lichens; Two Case Studies Around Cement Plants

    Science.gov (United States)

    Winkler, A.; Paoli, L.; Kodnik, D.; Candotto Carniel, F.; Guttová, A.; Loppi, S.; Sagnotti, L.; Tretiach, M.

    2015-12-01

    A cement plant is a source of dust pollution and lichens are suitable biomonitors of the impact of airborne pollutants released during cement production. We investigated the magnetic and chemical properties of lichens exposed around two cement plants, located in SW Slovakia and in NE Italy, respectively. We characterized the magnetic properties of the lichen Evernia prunastri exposed for 180 days at selected sites around a Slovak cement plant in order to define the magnetic mineralogy and test the correlations between the concentration-dependent magnetic parameters and the content of heavy metals and crustal elements in the thalli. In addition, we compared the magnetic properties of the transplants to those carried by native thalli of the lichen Xanthoria parietina and neighboring soils, barks and rocks. The data indicated a substantial homogenous magnetic mineralogy, with the exception of a sample collected from a basalt quarry. The transplants showed an excellent correlation between the saturation remanent magnetization (Mrs) and the concentration of Fe; the concentrations of the elements linked to cement production also correlated to Mrs values, apart from the basalt quarry sample. In the second context, we characterized the magnetic properties of the lichen Pseudevernia furfuracea transplanted near a cement plant in NE Italy. The transplants were exposed for 2 months in 40 sites distributed in surrounding rural, urban and industrial areas. In this case, the agreement between the magnetic and elemental datasets pointed out a modest environmental impact of the cement plant compared to the neighboring industrial activities, which resulted in significantly higher values of the concentration-dependent magnetic parameters. Magnetic analyses on lichens can expand the dataset of passive dust collectors in environmental magnetism, with the advantage, for the transplants, of precisely knowing the exposure time and the initial conditions.

  8. Biomonitoring with epiphytic lichens as a complementary method for the study of mercury contamination near a cement plant.

    Science.gov (United States)

    Ljubič Mlakar, Tanja; Horvat, Milena; Kotnik, Jože; Jeran, Zvonka; Vuk, Tomaž; Mrak, Tanja; Fajon, Vesna

    2011-10-01

    The study was focused on understanding the mercury contamination caused by a cement plant. Active and passive biomonitoring with epiphytic lichens was combined with other instrumental measurements of mercury emissions, mercury concentrations in raw materials, elemental mercury concentrations in air, quantities of dust deposits, temperatures, precipitation and other measurements from the cement plant's regular monitoring programme. Active biomonitoring with transplanted lichens Pseudevernia furfuracea (L.) Zopf was performed at seven of the most representative sites around the cement plant and one distant reference site for periods of 3, 6 and 12 months. In situ lichens of different species were collected at the beginning of the monitoring period at the same sites. Mercury speciation of the plant exhaust gas showed that the main form of emitted mercury is reactive gaseous mercury Hg²⁺, which is specific for cement plants. Elemental mercury in air was measured in different meteorological conditions using a portable mercury detector. Concentrations in air were relatively low (on average below 10 ng m⁻³). In situ lichens showed Hg concentrations comparable to lichens taken from the background area for transplantation, indicating that the local pollution is not severe. Transplanted lichens showed an increase of mercury, especially at one site near the cement plant. A correlation between precipitation and Hg uptake was not found probably due to a rather uniform rainfall in individual periods. Dust deposits did not influence Hg uptake significantly. Lichens vitality was affected over longer biomonitoring periods, probably due to some elements in dust particles, their alkalinity and the influence of other emissions. Mercury uptake measured in vital transplanted lichens was in a good correlation with the working hours (i.e. emitted Hg quantity) of the kiln. The study showed that selected lichens could be used to detect low to moderate Hg emissions from a cement plant

  9. Air Monitoring Modeling of Radioactive Releases During Proposed PFP Complex Demolition Activities

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Droppo, James G.; Rishel, Jeremy P.

    2011-01-24

    This report is part of the planning process for the demolition of the 234-5Z, 236-Z, 242-Z, and 291-Z-1 structures at the Plutonium Finishing Plant (PFP) facilities on the Hanford Site. Pacific Northwest National Laboratory (PNNL) supports the U.S. Department of Energy (DOE) and the CH2M HILL Plateau Remediation Company (CHPRC) demolition planning effort by making engineering estimates of potential releases for various potential demolition alternatives. This report documents an analysis considering open-air demolition using standard techniques. It does not document any decisions about the decommissioning approaches; it is expected that this report will be revisited as demolition plans are finalized.

  10. Use of sewage sludge as secondary fuel in a cement plant: human health risks.

    Science.gov (United States)

    Rovira, Joaquim; Mari, Montse; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2011-01-01

    Since 2008, sewage sludge is being used as alternative fuel in a cement plant placed in Vallcarca (Catalonia, Spain). To evaluate the temporal trend of the environmental levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and a number of metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sn, Tl, V, and Zn), as well as the potentially associated human health risks, samples of soil, herbage, and air were collected around the facility, after approximately one year of the permanent partial substitution of fuel. The temporal evolution of the pollutant levels was assessed by comparing the measured concentrations (2009) with those from samples collected in previous surveys (2003 and 2006) at the same sampling sites. The concentrations of PCDD/Fs in herbage and soil were 0.10 and 1.11 ng I-TEQ·kg⁻¹ dw, respectively, values very similar to those found in our previous surveys. For metals, although a clear tendency could not be observed, there were fluctuations through time. In this study, the levels of metals, which had not been analyzed in previous campaigns, were also determined in air, additionally to soil and vegetation. Airborne metal concentrations were similar to those found in other industrial areas worldwide. The human health risks for the population living around the cement plant were comparable to those obtained in previous studies, when petroleum coke was exclusively used as combustible, being in both cases tolerable according to the international standards.

  11. Monitoring environmental pollutants in the vicinity of a cement plant: a temporal study.

    Science.gov (United States)

    Rovira, Joaquim; Mari, Montse; Schuhmacher, Marta; Nadal, Martí; Domingo, José L

    2011-02-01

    From 2008 to 2009, we evaluated the environmental impact of a cement plant (Montcada i Reixac, Catalonia, Spain) that is located close to densely populated areas. The potential health risks for the population living in the neighborhood were also assessed. The levels of various heavy metals and the concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in soil, vegetation, and air samples collected at different directions and distances from the facility. Three 6-monthly consecutive campaigns were performed to establish temporal and seasonal trends. Multivariate statistical techniques, such as principal component analysis, were used. Human exposure to metals and PCDD/Fs, as well as the associated carcinogenic and noncarcinogenic risks, were also calculated. Environmental pollutant concentrations, especially those found in urban sites, were noted to be slightly higher than those recently reported around other cement plants in Catalonia. A seasonal pattern was observed, with higher values recorded during the colder sampling periods. Despite this, the carcinogenic and noncarcinogenic risks derived from human exposure to metals and PCDD/Fs were within the ranges considered acceptable by international regulatory organisms.

  12. Alternative Fuel Implementation in a Cement Plant: Human Health Risks and Economical Valuation.

    Science.gov (United States)

    Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2016-11-01

    In June 2010, the cement plant of Montcada i Reixac (MR) (Catalonia, Spain) began a gradual implementation of alternative fuel to replace fossil fuel. Between December 2010 and November 2014, we conducted three monitoring surveys to evaluate the state of the environment around the facility. Data were compared with results from three monitoring surveys performed in 2008-2009. In all these studies, samples of soil, vegetation, and air were collected, being the content of a number of trace elements and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in these matrices determined. In general terms, a decrease of metal and PCDD/F concentrations was found. Human health risks followed a similar temporal trend, being acceptable according to national and international standards and independent on the fuel used. The Disability-Adjusted Life Year and the costs of cancer cases were also estimated for the population living around the MR cement plant, accounting for 4 years and 31,000 €/year, respectively.

  13. Tracking the Spatial Fate of PCDD/F Emissions from a Cement Plant by Using Lichens as Environmental Biomonitors.

    Science.gov (United States)

    Augusto, Sofia; Pinho, Pedro; Santos, Artur; Botelho, Maria João; Palma-Oliveira, José; Branquinho, Cristina

    2016-03-01

    In an area with multiple sources of air pollution, it is difficult to evaluate the spatial impact of a minor source. Here, we describe the use of lichens to track minor sources of air pollution. The method was tested by transplanting lichens from a background area to the vicinity of a cement manufacturing plant that uses alternative fuel and is located in a Natural Park in an area surrounded by other important sources of pollution. After 7 months of exposure, the lichens were collected and analyzed for 17 PCDD/F congeners. The PCDD/F profiles of the exposed lichens were dominated by TCDF (50%) and OCDD (38%), which matched the profile of the emissions from the cement plant. The similarity in the profiles was greatest for lichens located northeast of the plant (i.e., in the direction of the prevailing winds during the study period), allowing us to evaluate the spatial impact of this source. The best match was found for sites located on the tops of mountains whose slopes faced the cement plant. Some of the sites with highest influence of the cement plant were the ones with the highest concentrations, whereas others were not. Thus, our newly developed lichen-based method provides a tool for tracking the spatial fate of industrially emitted PCDD/Fs regardless of their concentrations. The results showed that the method can be used to validate deposition models for PCDD/F industrial emissions in sites with several sources and characterized by complex orography.

  14. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  15. FUZZY LOGIC CONTROLLER AS MODELING TOOL FOR THE BURNING PROCESS OF A CEMENT PRODUCTION PLANT

    Directory of Open Access Journals (Sweden)

    P.B. Osofisan

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: A comprehensive optimisation of the cement production process presents a problem since the input variables as well as the output variables are non-linear, interdependent and contain uncertainties. To arrive at a solution, a Fuzzy Logic controller has been designed to achieve a well-defined relationship between the main and vital variables through the instrumentality of a Fuzzy Model. The Fuzzy Logic controller has been simulated on a digital computer using MATLAB 5.0 Fuzzy Logic Tool Box, using data from a local cement production plant.

    AFRIKAANSE OPSOMMING: Die omvattende optimisering van 'n proses wat sement vervaardig, word beskryf deur nie-linieêre inset- en uitsetveranderlikes wat onderling afhanklik is, en ook van onsekere aard is. Om 'n optimum oplossing te verkry, word 'n Wasigheidsmodel gebruik. Die model word getoets deur gebruik te maak van die MATLAB 5.0 Fuzzy Logic Tool Box en data vanaf 'n lokale sementvervaardigingsaanleg.

  16. Lithological and land-use based assessment of heavy metal pollution in soils surrounding a cement plant in SW Europe.

    Science.gov (United States)

    Cutillas-Barreiro, Laura; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos

    2016-08-15

    We study the influence of phasing out a cement plant on the heavy metal (Hg, Pb and Cr) content in the surrounding soils, taking into account factors often neglected, such as contributions due to local lithology or land use. The range of total Hg was 10-144µg kg(-1), reaching up to 41 and 145mgkg(-1) for total contents of Pb and Cr, respectively. Forest soils showed higher concentration of Hg than prairie soils, indicating the importance of land use on the accumulation of volatile heavy metals in soils. In forest soils, total Hg showed a trend to decrease with soil depth, whereas in prairie soils the vertical pattern of heavy metal concentrations was quite homogeneous. In most cases, the distance to the cement plant was not a factor of influence in the soils content of the analyzed heavy metals. Total Pb and Cr contents in soils nearby the cement plant were quite similar to those found in the local lithology, resulting in enrichment factor values (EF's) below 2. This suggests that soil parent material is the main source of these heavy metals in the studied soils, while the contribution of the cement plant to Pb and Cr soil pollution was almost negligible. On the contrary, the soils surrounding the cement plant accumulate a significant amount of Hg, compared to the underlying lithology. This was especially noticeable in forest soils, where Hg EF achieved values up to 36. These results are of relevance, bearing in mind that Hg accumulation in soils may be an issue of environmental concern, particularly in prairie soils, where temporal flooding can favor Hg transformation to highly toxic methyl-Hg. In addition, the concurrence of acid soils and total-Cr concentrations in the range of those considered phytotoxic should be also stressed.

  17. Destruction of meat and bone meals in cement plants; Destruction des farines animales dans les cimenteries

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-10-01

    Following the crisis of the bovine spongiform encephalopathy disease ('mad cow' disease), the French cement industrialists have been requested by the government since 1996 to eliminate the forbidden meat and bone meals in cement kilns where they are used as fuel substitutes. This article presents the advantages of the cement industry file in the destruction of such wastes, the validation and the safety aspects of this process. Meat and bone meal represents a high-grade fuel that lowers the environmental impact of cement production and does not affect the quality of cement. (J.S.)

  18. Levels of metals and PCDD/Fs in the vicinity of a cement plant: assessment of human health risks.

    Science.gov (United States)

    Rovira, Joaquim; Mari, Montse; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2011-01-01

    In April 2009, a cement plant located in Sant Feliu de Llobregat (Catalonia, NE Spain) stopped its normal operations. To establish the environmental impact of the facility and the health risks for the population living in the neighbourhood, the concentrations of a number of metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were determined in soil, vegetation and air samples in three different surveys, which were carried out before and after the facility stopped the cement production. The influence of the cement plant was found to be low in comparison with other potential emission sources in the area, as no decrease in the immission concentrations was noted after the facility ceased its industrial activity. No significant differences were observed in human health risks derived from the exposure to metals and PCDD/Fs before and after the plant ceased the cement production. Risk values for the population living near the facility were similar to those found for residents living in a number of urban and suburban areas.

  19. Effects of Riyadh cement industry pollutions on some physiological and morphological factors of Datura innoxia Mill. plant.

    Science.gov (United States)

    Salama, Hediat M H; Al-Rumaih, M M; Al-Dosary, M A

    2011-07-01

    Cement factory emissions into air cause serious air pollution and affect the plant and animal life in the environment. Herein, we report the effects of cement industry emissions (O3, SO2 and NO2) in air, as pollutants, at Riyadh City on Datura innoxia Mill. plant. Morphological characters including plant height, leaves area and number, fresh and dry weight of shoot and root systems of D. innoxia showed a significant reduction from their normal control plants as a response to exposure to pollutant emissions. Chlorophyll and carotenoid contents recorded reductions in values compared to control plant, and the lowest values of chlorophyll A, B, total chlorophyll, carotenoids and total pigments were 0.431, 0.169, 0.60, 0.343 and 0.943 mg/g respectively at a distance of 1-5 m from the cement factory in fruiting stage. These changes in values may be attributed to a probable deceleration of the biosynthetic process rather than degradation of pigments. Further D. innoxia showed a significant (P plant. The root system recorded the lowest values of reducing sugars (0.350 mg/g f. wt.), non-reducing sugars (0.116 mg/g f. wt.), total sugars (0.466 mg/g f. wt.), protein content (0.931 mg/g f. wt.) and total lipids content (0.669 mg/g f. wt.) in fruiting stage at a distance of 1-5 m from the cement factory. The peroxidase activity of shoot and root systems of the studied plant was also significantly higher than those of control plant. Thus a highest value of (29.616 units/g f. wt.) peroxidase activity was recorded in vegetative stage of shoot system at a distance 1-5 m from the cement factory. Results of the study indicated that cement industry emission strongly influence the physiology and morphology of date palm D. innoxia which contribute date fruits, a staple food in the Arab world.

  20. Study Analysis of Flue Gas Utilization as Alternative Power Generation in Cement Plant Using Organic Rankine Cycle System

    Directory of Open Access Journals (Sweden)

    Rahmat Ranggonang Anwar

    2017-01-01

    Full Text Available Abstract—Cement plant produce large amount of heat source in cement making process, due to inefficiency of system there still waste heat available in form of flue gas that can be utilize. Flue gas  in cement plant can be utilized as alternative power generation. With the 200-300oC temperature output range of flue gas from suspension preheater and air quenching cooler (AQC in cement plant, organic rankine cycle (ORC can be suitable option for alternative power generation. ORC is development of rankine cycle, the different is the working fluid in ORC using refrigerant. In cement plant that produce 8466 TPD kiln production, used flue gas from suspension preheater to dry raw material and produce 163888 m3/h flue gas from AQC that still not utilized. Flue gas with 235oC temperature from AQC can utilized for power generation purpose using ORC system. Waste heat recovery calculation carried out to know the potential recovery. Operating condition of the ORC system will determine power produced that can be generated and ORC components calculated and selected according to the operating condition of the system. Using R141b as working fluid with 8 bar pressure and 110oC temperature inlet to turbine, power produced by turbine is 666 kW. For the components, evaporator and condenser use shell and tube heat exchanger, with evaporator heat transfer area is 676.49 m2 while condenser has 510 m2 of heat transfer area. And for working fluid pump it needs 16.235 Kw power to pump R141b back to evaporator.

  1. Effect of Heavy Metal Present in Cement Dust on Soil and Plants of Nokha (Bikaner)

    OpenAIRE

    Dr.(Mrs).Suruchi Gupta; Sarika Sharma

    2013-01-01

    In Nokha(Bikaner) cement industries emittes cement dust in nearby farmers fields. In these industries cement dust emitted contains traces of hexavalent chromium and lead well above permissible limit in area under investigation. However, cadmium and nickel were found below limits prescribed. To analyse heavy metals viz, Cr+6, lead, Cadmium and nickel one hundred and twenty samples were collected from four directions on surface and 20 cm depth, and analyzed on atomic absorption spectrophotomete...

  2. Impact assessment of PM10 cement plants emissions on urban air quality using the SCIPUFF dispersion model.

    Science.gov (United States)

    Leone, Vincenzo; Cervone, Guido; Iovino, Pasquale

    2016-09-01

    The Second-order Closure Integrated Puff (SCIPUFF) model was used to study the impact on urban air quality caused by two cement plants emissions located near the city of Caserta, Italy, during the entire year of 2015. The simulated and observed PM10 concentrations were compared using three monitoring stations located in urban and sub-urban area of Caserta city. Both simulated and observed concentrations are shown to be highest in winter, lower in autumn and spring and lowest in summer. Model results generally follow the pattern of the observed concentrations but have a systematic under-prediction of the concentration values. Measures of the bias, NMSE and RMSE indicate a good correlation between observed and estimated values. The SCIPUFF model data analysis suggest that the cement plants are major sources for the measured PM10 values and are responsible for the deterioration of the urban air quality in the city of Caserta.

  3. PFP MICON maintenance manual. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Silvan, G.R.

    1995-01-25

    This manual covers the use of maintenance displays, maintenance procedures, system alarms and common system failures. This manual is intended to supplement the MICON maintenance training not replace it. It also assumes that the user is familiar with the normal operation of the MICON A/S system. The MICON system is a distributed control computer and, among other things, controls the HVAC system for the Plutonium Finishing Plant.

  4. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.; Silvers, Kurt L.; Baker, Aaron B.; Gano, Susan R.; Thornton, Brenda M.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantify the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.

  5. Air Dispersion Modeling of Radioactive Releases During Proposed PFP Complex Demolition Activities

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Droppo, James G.; Rishel, Jeremy P.

    2011-01-11

    This report is part of the planning process for the demolition of the 234-5Z, 236-Z, 242-Z, and 291-Z-1 structures at the Plutonium Finishing Plant (PFP) on the Hanford Site. Pacific Northwest National Laboratory (PNNL) supports the U.S. Department of Energy (DOE) and the CH2M HILL Plateau Remediation Company (CHPRC) demolition planning effort by making engineering estimates of potential releases for various potential demolition alternatives. This report documents an analysis considering open-air demolition using standard techniques. It does not document any decisions about the decommissioning approaches; it is expected that this report will be revisited as the final details of the demolition are developed.

  6. Utilization of waste heat from rotary kiln for burning clinker in the cement plant

    OpenAIRE

    2016-01-01

    Cement subsector next to the glass industry is counted among one of the most energy-intensive industries, which absorbs approx. 12-15% of the total energy consumed by the industry. In the paper various methods of energy consumption reduction of in the cement industry are discussed. Cement production carries a very large emissions of greenhouse gases, where CO2 emissions on a global scale with the industry than approx. 5%. Great opportunity in CO2 emissions reduction in addition to the recover...

  7. Plutonium Finishing Plant (PFP) HVAC System Component Index

    Energy Technology Data Exchange (ETDEWEB)

    DIAZ, E.N.; DICK, J.D.

    2000-07-26

    This document lists safety class (SC) and safety significant (SS) components for the Heating Ventilation Air Conditioning (HVAC) and specifies the critical characteristics for Commercial Grade Items (CGI), as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item.

  8. Plastics wastes as secondary fuel in a cement plant; Residuos plasticos como combustible secundario en una cementera

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, R.; Irasarri, L.; Arnaiz, S.; Cacho, I.

    2000-07-01

    The use of secondary fuel derived from plastics wastes from municipal source has been tested in an industrial cement plant. The recovered materials have been conditioned in order to fulfill the texture, composition and energetic requirements of the cement kiln. The performed long-term trials have shown the stability of the industrial facility during the operation with this alternative fuels. Several controls carried out over gaseous emissions confirmed the absence of differences in the emitted pollutant levels when compared with normal operation. The quality of the obtained clinker, checked using the established standard measurements, was found identical to the one in a clinker prepared using conventional fuels. The LCA (Life Cycle Analysis) tool was applied to evaluate a series of environmental impacts and proved that the energetic valorization alternative is more favourable then the disposal practice. Finally, a positive economical balance reinforced the option of energy recovery previously supported by favourable technical and environmental considerations. (Author) 16 refs.

  9. Reuse of By-Products from Ready-Mixed Concrete Plants for the Production of Cement Mortars

    Directory of Open Access Journals (Sweden)

    Monika Zervaki

    2013-06-01

    Full Text Available This study was motivated by the necessity to recycle sludge water resulting from washing out concrete mixing trucks - a problem of both environmental and economic importance for the ready-mixed concrete industry. Sludge water from ready-mixed concrete plants as well as dry sludge, which is derived from the settling of the water, are hazardous for disposal due to their high pH value (pH>11.5. In this work, cement mortars were composed using either sludge water after various treatment, or dry sludge in several ratios. The cement mortars were tested for their workability and strength development. The purpose of this experimental design was to prove that sludge water, as well as sludge in a wet or dry form, can be used in the production of mortars without degrading any of their properties.

  10. Test plan for N2 HEPA filters assembly shop stock used on PFP E4 exhaust system

    Energy Technology Data Exchange (ETDEWEB)

    DICK, J.D.

    1999-09-01

    At Plutonium Finishing Plant (PFP) and Plutonium Reclamation Facility (PRF) Self-contained HEPA filters, encased in wooden frames and boxes, are installed in the E4 Exhaust Ventilation System to provide confinement of radioactive releases to the environment and confinement of radioactive contamination within designated zones inside the facility. Recently during the routine testing in-leakage was discovered downstream of the Self-contained HEPA filters boxes. This Test Plan describes the approach to conduct investigation of the root causes for the in-leakage of HEPA filters.

  11. Plutonium Finishing Plant safety evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

  12. Ecophysiological and ultrastructural effects of dust pollution in lichens exposed around a cement plant (SW Slovakia).

    Science.gov (United States)

    Paoli, Luca; Guttová, Anna; Grassi, Alice; Lackovičová, Anna; Senko, Dušan; Sorbo, Sergio; Basile, Adriana; Loppi, Stefano

    2015-10-01

    The study investigated the ecophysiological and ultrastructural effects of dust pollution from a cement industry in the lichen species Evernia prunastri and Xanthoria parietina, which were exposed for 30, 90 and 180 days around a cement mill, two quarries, and inhabited and agricultural sites in SW Slovakia. The results showed that dust deposition from quarrying activities and cement works at the cement mill (mainly enriched in Ca, Fe and Ti) significantly affected the photosynthetic apparatus of E. prunastri (sensitive to dust and habitat eutrophication), while X. parietina (tolerant to dust and habitat eutrophication) adapted to the new environment. The length of the exposure strongly affected the vitality of the mycobiont (measured as dehydrogenase activity) in transplanted lichens. Dust deposition led to ultrastructural alterations, including lipid droplets increase, swelling of cellular components, thylakoid degeneration and sometimes plasmolysis, which, on the whole, gave the cells an aged appearance. Photosynthetic parameters deserve further attention as potential indicators for monitoring early biological symptoms of the air pollution caused during cement production.

  13. Through Lean Manufacturing Techniques Improvement InProduction of Cement Plant

    Directory of Open Access Journals (Sweden)

    Udai Singh Chouhan

    2016-07-01

    Full Text Available The production of cement is a process industry which is distinct from manufacturing and the main objective here is to apply lean manufacturing technique to the eradicate waste to the processes and parameters which are common between process and discrete manufacturing. Lean signifies a major advance over traditional mass production methods. Value stream mapping is used first to identify different waste present in the current state. This paper will describe work undertaken investigating the application of lean thinking to a continuous production environment, in this instance exemplified by the cement industry. Implementation of lean helps many organizations to improve their productivity and efficiency Cement plays a vital role in economic development of any country. Having more than a hundred and fifty years history, it has been used extensively in construction of anything, from a small building to a mammoth multi-purpose project. The need for improving the efficiency of the cement production line is widely acknowledged in order to reduce the downtime rates, and satisfy high levels of market demand where the demand for cement is mostly second substance behind water. This paper articulates a methodology for data collection, knowledge extraction, model creation and experimentation that combines the use of process mapping, computational simulation. A detailed description of each step of the process is given and is illustrated by results from a case study undertaken during the research. This paper describes work undertaken to implement lean practices in the continuous process sector as represented by cement production. One of the major barriers to lean implementation is providing evidence of its potential benefit to end-users. This work aims to overcome this obstacle by producing a tool which can be used to easily visualize the benefits of adopting lean practices without requiring disruption to the production environment

  14. Experimental research on mathematical modelling and unconventional control of clinker kiln in cement plants

    Science.gov (United States)

    Rusu-Anghel, S.

    2017-01-01

    Analytical modeling of the flow of manufacturing process of the cement is difficult because of their complexity and has not resulted in sufficiently precise mathematical models. In this paper, based on a statistical model of the process and using the knowledge of human experts, was designed a fuzzy system for automatic control of clinkering process.

  15. 水泥窑处理工业废物的工厂实验研究%Plant Test of Industrial Waste Disposal in a Cement Kiln

    Institute of Scientific and Technical Information of China (English)

    刘阳生; 韩杰; 白庆中

    2003-01-01

    Destruction of industrial waste in cement rotary kilns (CRKs) is an alternative technology for thetreatment of certain types of industrial waste (IW). In this paper, three typical types of industrial wastes wereco-incinerated in the CRK at Beijing Cement Plant to determine the effects of waste disposal (especially solid wastedisposal) on the quality of clinker and the concentration of pollutants in air emission. Experimental results showthat (1) waste disposal does not affect the quality of clinker and fly ash, and fly ash after the IW disposal can still beused in the cement production, (2) heavy metals from IW are immobilized and stabilized in the clinker and cement,and (3) concentration of pollutants in air emission is far below than the permitted values in the China NationalStandard-Air Pollutants Emission Standard (GB 16297-1996).

  16. PCDD/F and metal concentrations in soil and herbage samples collected in the vicinity of a cement plant.

    Science.gov (United States)

    Schuhmacher, M; Bocio, A; Agramunt, M C; Domingo, J L; de Kok, H A M

    2002-07-01

    In May 2000, the levels of a number of metals (As, Cd, Pb, Hg, Zn, Co, Cu, Mn, Sn, Tl, Cr, Ni and V) were determined in 16 soil and herbage samples collected in the vicinity of a cement plant from Sta. Margarida i els Monjos (Catalonia, Spain). Metal concentrations were also analyzed in air filters from three sampling stations placed nearthe facility. For most metals, concentrations were similar or even lower than previously reported values for other areas from Catalonia. On the other hand, the levels of polychlorinated dibenzo-p-dioxins (PCDD) and dibenzofurans (PCDF) were also determined in four soil and 16 herbage samples. Mean values were 0.37 and 0.16 ng I-TEQ/kg for soils and herbage, respectively, values which in comparison with data from other surveys are rather low. No significant differences between metal and PCDD/F concentrations in samples collected at distances lower or greater than 3.5 km of the facility were noted. The current results show that the cement plant has a low impact on the metal and PCDD/F levels in the environment under direct influence of the facility. These results should be of interest to assess future temporal variations in the levels of metals and PCDD/Fs in this area.

  17. Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns. Audit Report of Two Cement Plants in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhou, Nan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thekdi, Arvind [E3M, Inc., St. Paul, MN (United States); Lan, Wang [China Building Materials Academy, Beijing (China)

    2011-07-01

    The study documented in this report was initiated in order to conduct an energy assessment and to identify the relationship between combustion issues and emissions from cement kilns. A new suspension preheater/precalciner (NSP) rotary cement kiln at one cement manufacturing facility (referred to as Shui Ni 1 in this report) and a vertical shaft kiln (VSK) at another cement manufacturing facility (referred to as Shui Ni 2 in this report), which are both in Shandong Province, were selected to conduct the energy and emission assessments through collection of data. Based on analysis of the data collected during this assessment, several actions are suggested that could lead to reduction in coal use and reduction in emission of gaseous pollutants from the system.

  18. The partitioning behavior of trace element and its distribution in the surrounding soil of a cement plant integrated utilization of hazardous wastes.

    Science.gov (United States)

    Yang, Zhenzhou; Chen, Yan; Sun, Yongqi; Liu, Lili; Zhang, Zuotai; Ge, Xinlei

    2016-07-01

    In the present study, the trace elements partitioning behavior during cement manufacture process were systemically investigated as well as their distribution behaviors in the soil surrounding a cement plant using hazardous waste as raw materials. In addition to the experimental analysis, the thermodynamic equilibrium calculations were simultaneously conducted. The results demonstrate that in the industrial-scale cement manufacture process, the trace elements can be classified into three groups according to their releasing behaviors. Hg is recognized as a highly volatile element, which almost totally partitions into the vapor phase. Co, Cu, Mn, V, and Cr are considered to be non-volatile elements, which are largely incorporated into the clinker. Meanwhile, Cd, Ba, As, Ni, Pb, and Zn can be classified into semi-volatile elements, as they are trapped into clinker to various degrees. Furthermore, the trace elements emitted into the flue gas can be adsorbed onto the fine particles, transport and deposit in the soil, and it is clarified here that the soil around the cement plant is moderately polluted by Cd, slightly polluted by As, Cr, Ba, Zn, yet rarely influenced by Co, Mn, Ni, Cu, Hg, and V elements. It was also estimated that the addition of wastes can efficiently reduce the consumption of raw materials and energy. The deciphered results can thus provide important insights for estimating the environmental impacts of the cement plant on its surroundings by utilizing wastes as raw materials.

  19. Cement Conundrum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China aims to streamline the crowded cement industry Policymakers are looking to build a concrete wall around the cement-making industry as they seek to solidify the fluid cement market and cut excessive production.

  20. A New Property of Conjugated Polymer PFP: Catalytic Degradation of Methylene Blue Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new property of conjugated polymer poly(furancarbinol-co-phenol)(PFP) was studied.The target copolymer was used as a catalyst after proper heating treatment. And dye methylene blue (MB) could be fully degraded and largely mineralized on PFP, under natural light or even in dark, in a few minutes. Furthermore, the catalytic activity could be preserved after several runs and the catalyst was readily separated. The effect of calcination temperature was also observed.

  1. Assessment of polycyclic aromatic hydrocarbons (PAHs) in soil of a Natural Reserve (Isola delle Femmine) (Italy) located in front of a plant for the production of cement.

    Science.gov (United States)

    Orecchio, Santino

    2010-01-15

    Isola delle Femmine Natural Reserve is a very little isle about 15 km from the centre of Palermo, in front of a plant for the production of cement and about 600 m from coast. In the present research, profiles soil PAHs were obtained for 16 sites within the reserve and for 8 stations on the rural soil taken as reference. summation Sigma PAHs, in the soil of investigated area, ranged from 35 to 545 microg/kg. With the aim to find the origin of PAHs in the soil of Isola delle Femmine, we compare the distribution of single analytes in the investigated area with those of the reference rural area (Monte Raffo Rosso), with those of atmospheric urban particulate collected at Palermo along with reported of emissions of some cement plants. The island's investigated area showed a high amount of 4- and 5-rings PAHs, whereas 3-ring PAHs are present mainly in the emission of cement plants (from literature). The percentage of 3-, 4-, 5- and 6-rings PAHs determined in samples of Isola delle Femmine are similar to those of the reference rural soils and to those of urban atmospheric particulate. Cement plant activity has a negligible weight on the presence of PAHs in the soil of Isola delle Femmine.

  2. The Magnetic Properties of Lichens Exposed Around a Cement Plant in Slovakia

    Science.gov (United States)

    Winkler, Aldo; Paoli, Luca; Guttová, Anna; Loppi, Stefano; Sagnotti, Leonardo

    2015-04-01

    A cement industry is a source of dust pollution, from quarrying and grinding of the raw material to kiln operations. Airborne pollutants related to combustion processes are also emitted, especially during kiln operations and power generation. The use of biomonitors can provide valuable information about the impact of airborne pollutants released during cement production and lichens are suitable bioindicators of air pollution, providing reliable information on the quality of the environment. We investigated the magnetic hysteresis properties and the elemental concentrations of epiphytic lichens from selected sites (a cement mill, two quarries, agricultural areas, and villages) in SW Slovakia; in particular, both transplanted and in situ lichens, bark, soil and rock samples from the sampling sites, as well as pre-transplant samples have been characterized. Evernia prunastri transplants, exposed up to 180 days, showed excellent correlations between the saturation magnetization (Ms) and saturation remanent magnetization (Mrs) values and the Fe concentrations; the analyzed samples were magnetically homogeneous, with marked differences only for the sample from a basalt quarry. Xanthoria parietina autochthonous samples have also a similar magnetic mineralogy; anyway their Ms and Mrs values were two orders of magnitude higher with respect to those from the transplants, implying increased concentration of magnetic particles according to the different lichen species and to the prolonged exposure. Magnetic methods can be valuable for discriminating various natural and anthropogenic sources of dust. In this study, we point out that the magnetic properties may also reflect the influence of the basalt quarry activity, of the soil and of the bedrock. For a proper evaluation of the pollution related to human activities, it is thus essential to verify the nature of the substrate and to select suitable and homogeneous pre/post lichen transplant sites.

  3. Review: Circulation of Inorganic Elements in Combustion of Alternative Fuels in Cement Plants

    DEFF Research Database (Denmark)

    Cortada Mut, Maria del Mar; Nørskov, Linda Kaare; Jappe Frandsen, Flemming

    2015-01-01

    Cement production is an energy-intensive process, which traditionally has been dependent on fossil fuels. However, the use of alternative fuels, i.e., selected waste, biomass, and byproducts with recoverable calorific value, is constantly increasing. Combustion of these fuels is more challenging......, compared to fossil fuels, because of a lack of experience and different chemical and physical properties. When complete oxidation Of fuels in the calciner and main burner is not achieved, they burn in direct contact with the bed material of the rotary kiln, causing local reducing conditions and increasing...

  4. Partial replacement of fossil fuel in a cement plant: risk assessment for the population living in the neighborhood.

    Science.gov (United States)

    Rovira, Joaquim; Mari, Montse; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2010-10-15

    In cement plants, the substitution of traditional fossil fuels not only allows a reduction of CO(2), but it also means to check-out residual materials, such as sewage sludge or municipal solid wastes (MSW), which should otherwise be disposed somehow/somewhere. In recent months, a cement plant placed in Alcanar (Catalonia, Spain) has been conducting tests to replace fossil fuel by refuse-derived fuel (RDF) from MSW. In July 2009, an operational test was progressively initiated by reaching a maximum of partial substitution of 20% of the required energy. In order to study the influence of the new process, environmental monitoring surveys were performed before and after the RDF implementation. Metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in soil, herbage, and air samples collected around the facility. In soils, significant decreases of PCDD/F levels, as well as in some metal concentrations were found, while no significant increases in the concentrations of these pollutants were observed. In turn, PM(10) levels remained constant, with a value of 16μgm(-3). In both surveys, the carcinogenic and non-carcinogenic risks derived from exposure to metals and PCDD/Fs for the population living in the vicinity of the facility were within the ranges considered as acceptable according to national and international standards. This means that RDF may be a successful choice in front of classical fossil fuels, being in accordance with the new EU environmental policies, which entail the reduction of CO(2) emissions and the energetic valorization of MSW. However, further long-term environmental studies are necessary to corroborate the harmlessness of RDF, in terms of human health risks. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Mesothelioma incidence in the neighbourhood of an asbestos-cement plant located in a national priority contaminated site

    Directory of Open Access Journals (Sweden)

    Lucia Fazzo

    2014-12-01

    Full Text Available BACKGROUND: An epidemic of asbestos-related disease is ongoing in most industrialized countries, mainly attributable to past occupational exposure but partly due to environmental exposure. In this perspective, the incidence of pleural mesothelioma close to a former asbestos-cement plant in a national contaminated site was estimated. METHODS: The census-tracts interested by atmospheric dispersion of facilities in the contaminated site were identified. Two subareas with different estimated environmental asbestos impact were distinguished. An ecological study at micro-geographic level was performed. The standardized incidence ratios (SIR for study area and the two subareas, in comparison with region and municipality were computed. The standardized incidence rate ratio (IRR between the two subareas was computed. RESULTS: Mesothelioma incidence in the study area was increased: 46 cases were observed with respect to 22.23 expected (SIR: 2.02. The increase was confirmed in analysis considering only the subjects without an occupationally exposure to asbestos: 19 cases among men (SIR = 2.48; 95% CI: 1.49-3.88; 11 case among women (SIR = 1.34; 95% CI: 0.67-2.40. The IRR between the two subareas is less than one in overall population considering all age-classes and of 3 fold (IRR = 3.14, 95% CI: 0.65-9.17 in the age-classes below 55 years. CONCLUSIONS: The findings indicate an increased incidence of pleural mesothelioma in the neighbourhood of asbestos-cement plant, and a possible etiological contribution of asbestos environmental exposure in detected risks.

  6. Definition and means of maintaining the supply ventilation system seismic shutdown portion of the PFP safety envelope

    Energy Technology Data Exchange (ETDEWEB)

    Keck, R.D.

    1997-01-21

    The purpose of this document is to record the technical evaluation of the Limiting Condition for Operation (LCO) described in the Plutonium Finishing Plant (PFP) Operational Safety Requirements, WHC-SD-CP-OSR- 010, Rev. 0. Kay 1994, Section 3.2.3, `Supply Ventilation System Seismic Shutdown.` This document, with its appendices, provides the following: 1. The system functional requirements for determining system operability (Section 3). 2. Evaluations of equipment to determine the safety boundary for the system (Section 4). 3. A list of annotated drawings which show the safety envelope boundaries (Appendix C). 4. A list of the safety envelope equipment (Appendix B). 5. Functional requirements for the individual safety envelope equipment, including appropriate setpoints and process parameters (Section 4.1). 6. A list of the operational, maintenance and surveillance procedures necessary to operate and maintain the system equipment within the safety envelope (Sections 5 and 6 and Appendix A).

  7. Association between PM10 concentrations and school absences in proximity of a cement plant in northern Italy.

    Science.gov (United States)

    Marcon, Alessandro; Pesce, Giancarlo; Girardi, Paolo; Marchetti, Pierpaolo; Blengio, Gianstefano; de Zolt Sappadina, Simona; Falcone, Salvatore; Frapporti, Guglielmo; Predicatori, Francesca; de Marco, Roberto

    2014-03-01

    Dusts are one of the main air pollutants emitted during cement manufacturing. A substantial part of these are breathable particles that are less than 10 μm in diameter (PM10), which represent a potential threat for the health of the exposed population. This study aimed at evaluating the short-term effects of PM10 concentrations on the health of children, aged 6-14 years, who attended the schools in Fumane (Italy), in proximity (1.2 km) to a large cement plant. School absenteeism was used as a proxy indicator of child morbidity. Time series of daily school absences and PM10 concentrations were collected for 3 school-years from 2007 to 2010 (541 school-days, 462 children on average). The associations between PM10 concentrations and school absence rates in the same day (lag0) and in the following 4 days (lag1 to lag4) were evaluated using generalised additive models, smoothed for medium/long term trends and adjusted for day of the week, influenza outbreaks, daily temperature and rain precipitations. The average concentration of PM10 in the period was 34 (range: 4-183) μg/m(3). An average 10 μg/m(3) increase of PM10 concentration in the previous days (lag0-4) was associated with a statistically significant 2.5% (95%CI: 1.1-4.0%) increase in the rate of school absences. The highest increase in the absence rates (2.4%; 95%CI: 1.2-3.5%) was found 2 days after exposure (lag2). These findings provide epidemiological evidence of the acute health effects of PM10 in areas with annual concentrations that are lower than the legal European Union limit of 40 μg/m(3), and support the need to establish more restrictive legislative standards.

  8. Maintenance implementation plan for the Plutonium Finishing Plant. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Meldrom, C.A.

    1996-03-01

    This document outlines the Maintenance Implementation Plan (MIP) for the Plutonium Finishing Plant (PFP) located at the Hanford site at Richland, Washington. This MIP describes the PFP maintenance program relative to DOE order 4330.4B. The MIP defines the key actions needed to meet the guidelines of the Order to produce a cost-effective and efficient maintenance program. A previous report identified the presence of significant quantities of Pu-bearing materials within PFP that pose risks to workers. PFP`s current mission is to develop, install and operate processes which will mitigate these risks. The PFP Maintenance strategy is to equip the facility with systems and equipment able to sustain scheduled PFP operations. The current operating run is scheduled to last seven years. Activities following the stabilization operation will involve an Environmental Impact Statement (EIS) to determine future plant activities. This strategy includes long-term maintenance of the facility for safe occupancy and material storage. The PFP maintenance staff used the graded approach to dictate the priorities of the improvement and upgrade actions identified in Chapter 2 of this document. The MIP documents PFP compliance to the DOE 4330.4B Order. Chapter 2 of the MIP follows the format of the Order in addressing the eighteen elements. As this revision is a total rewrite, no sidebars are included to highlight changes.

  9. Study of Compressive Strength of Concrete with Coal Power Plant Fly Ash as Partial Replacement of Cement and Fine Aggregate

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2010-10-01

    Full Text Available This research study comprises of concrete cubes made with Ordinary Portland Cement and with different configurations of fly ash by replacing cement and fine aggregate. To achieve the aim of this study, total 81 concrete cubes were cast. Among 81 cubes, 9 cubes were made with normal concrete, 36 cubes were made by replacing 25%, 50%, 75% and 100% of fine aggregate with fly ash and 36 cubes were made by replacing 10%, 25%, 50%, and 75% of cement with fly ash. The cubes were 6\\" x 6\\" in cross-section, and the mix design was aimed for 5000 psi. After proper curing of all 81 cubes, they were tested at 3, 7 and 28 days curing age. The cubes were tested in Forney Universal Testing Machine. By analyzing the test results of all the concrete cubes, the following main findings have been drawn. The compressive strength of concrete cubes made by replacing 100 % fine aggregate by fly ash was higher than the concrete cubes made with Ordinary Portland Cement at all 3, 7 and 28 days curing ages. On the other hand, the compressive strength of concrete cubes made by replacing 10 % and 25 % cement by fly ash was slightly lower than the concrete cubes made with Ordinary Portland Cement at all curing ages, whereas, the compressive strength of concrete cubes made by replacing 50 % and 75 % of cement by fly ash were quite lower than the concrete cubes made with Ordinary Portland Cement at all curing ages.

  10. The effect of statistical analytical measurement variations on the plant control parameters and production costs in cement manufacturing – a case study

    Directory of Open Access Journals (Sweden)

    A. D. Love

    2010-01-01

    Full Text Available Raw materials used in cement manufacturing normally have varying chemical compositions and require regular analyses for plant control purposes. This is achieved by using several analytical instruments, such as XRF and ICP. The values obtained for the major elements Ca, Si, Fe and Al, are used to calculate the plant control parameters Lime Saturation Factor (LSF, Silica Ratio (SR and Alumina Modulus (AM. These plant control parameters are used to regulate the mixing and blending of various raw meal components and to operate the plant optimally. Any errors and large fluctuations in these plant parameters not only influence the quality of the cement produced, but also have a major effect on the cost of production of cement clinker through their influence on the energy consumption and residence time in the kiln. This paper looks at the role that statistical variances in the analytical measurements of the major elements Ca, Si, Fe and Al can have on the ultimate LSF, SR and AM values calculated from these measurements. The influence of too high and too low values of the LSF, SR and AM on clinker quality and energy consumption is discussed, and acceptable variances in these three parameters, based on plant experiences, are established. The effect of variances in the LSF, SR and AM parameters on the production costs is then analysed, and it is shown that variations of as large as 30% and as little as 5% can potentially occur. The LSF calculation incorporates most chemical elements and therefore is prone to the largest number of variations due to statistical variances in the analytical determinations of the chemical elements. Despite all these variations in LSF values they actually produced the smallest influence on the production cost of the clinker. It is therefore concluded that the LSF value is the most practical parameter for plant control purposes.

  11. Levels, congener profile and inventory of polychlorinated biphenyls in sediment from the Songhua River in the vicinity of cement plant, China: a case study.

    Science.gov (United States)

    Cui, Song; Fu, Qiang; Li, Yi-Fan; Li, Wen-Long; Li, Tian-Xiao; Wang, Min; Xing, Zhen-Xiang; Zhang, Lu-Ji

    2016-08-01

    This study investigated the contamination levels, homologue, and congener profiles and evaluated the residue inventory of polychlorinated biphenyls (PCBs) in sediment of the Songhua River in the vicinity of cement plant. The total concentration of detected 35 PCB congeners ranged from 1.12 to 2.19 ng/g dry weight (dw) in sediment, with a mean value of 1.56 ng/g dw, and the concentration of PCBs decreased in the following order: the downstream > cement plant > upstream. The results of total organic carbon (TOC)-normalized PCB concentrations indicate that the sediments have low potential ecological risk in this area. The study results on homologue and congener of PCBs show that the emissions from cement production could be the major sources of PCBs in sediment, and the low-chlorinated PCBs will be exchanged among air, water, and sediment with increasing temperature during summer and flow to downstream with water during the wet season. The spatial density and total burden of PCBs in the surface sediments were 17.2 ng/cm(2) and 1.2 kg, respectively. To our knowledge, this study is the first to explore the pollution characteristics of unintentionally produced PCB emissions from cement industry by means of monitoring sediment samples.

  12. Assessment of nitrous oxide emission from cement plants: real data measured with both Fourier transform infrared and nondispersive infrared techniques.

    Science.gov (United States)

    Mosca, Silvia; Benedetti, Paolo; Guerriero, Ettore; Rotatori, Mauro

    2014-11-01

    Nitrous oxide (N2O) is the third most important greenhouse gas after carbon dioxide and methane, and contributes about 6% to the greenhouse effect. Nitrous oxide is a minor component of the atmosphere, and it is a thousand times less than carbon dioxide (CO2). Nevertheless, it is much more potent than CO2 and methane, owing to its long stay in the atmosphere of approximately 120 yr and the high global warmingpotential (GWP) of298 times that of CO2. Although greenhouse gases are natural in the atmosphere, human activities have changed the atmospheric concentrations. Most of the values of emission of nitrous oxide are still obtained by means ofemission factors and not actually measured; the lack ofreal data may result in an underestimation ofcurrent emissions. The emission factors used for the calculation of N2O can be obtained from the "Guidelines for the implementation of the national inventory of emissions" of the Intergovernmental Panel on Climate Change, which refer to all nations for the realization of their inventory. This study will present real data, measured in several Italian cement plants with different characteristics. The work also shows a comparison between N2O concentration measured with in situ-Fourier transform IR (FTIR) and the reference method EN ISO 21258 based on nondispersive IR (NDIR), in order to investigate the interfering compounds in the measurement with NDIR.

  13. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid...

  14. CSER 00-006 Storage of Plutonium Residue Containers in 55 Gallon Drums at the PFP

    Energy Technology Data Exchange (ETDEWEB)

    DOBBIN, K.D.

    2000-05-24

    This criticality safety evaluation report (CSER) provides the required limit set and controls for safe transit and storage of these drums in the 234-5Z Building at the PFP. A mass limit of 200 g of plutonium or fissile equivalent per drum is acceptable

  15. Main components and human health risks assessment of PM10, PM2.5, and PM1 in two areas influenced by cement plants

    Science.gov (United States)

    Sánchez-Soberón, Francisco; Rovira, Joaquim; Mari, Montse; Sierra, Jordi; Nadal, Martí; Domingo, José L.; Schuhmacher, Marta

    2015-11-01

    Particulate matter (PM) is widely recorded as a source of diseases, being more harmful those particles with smaller size. PM is released to the environment as a consequence of different activities, being one of them cement production. The objective of this pilot study was to characterize PM of different sizes around cement facilities to have a preliminary approach of their origin, and evaluate their potential health risks. For that purpose, three fractions of PM (10, 2.5, and 1) were collected in the nearby area of two cement plants with different backgrounds (urban and rural) in different seasons. Subsequently, main components, outdoor and indoor concentrations, exposure, and human health risks were assessed. Greatest levels of PM1, organic matter, and metals were found in urban location, especially in winter. Consequently, environmental exposure and human health risks registered their highest values in the urban plant during wintertime. Exposure was higher for indoor activities, expressing some metals their peak values in the PM1 fraction. Non-carcinogenic risks were below the safety threshold (HQ < 1). Carcinogenic risks for most of the metals were below the limit of 10-5, except for Cr (VI), which exceeded it in both locations, but being in the range considered as assumable (10-6-10-4).

  16. Emissions of PCDD/Fs, PBDD/Fs, dioxin like-PCBs and PAHs from a cement plant using a long-term monitoring system.

    Science.gov (United States)

    Conesa, Juan A; Ortuño, Nuria; Abad, Esteban; Rivera-Austrui, Joan

    2016-11-15

    The aim of the present work was to assess the emission of different persistent organic pollutants from a cement plant over a period of one year, under normal operational conditions. Thus, a long-term sampling device was installed in the clinker kiln stack of the cement plant. The factory uses petroleum coke as primary fuel, but also alternative fuels such as solid recovered fuel (SRF), automotive shredder residue (ASR), sewage sludge, waste tires, and meat and bone meal (MBM) wastes, with an energy substitution level of about 40%. Both PCDD/Fs (together with dl-PCBs) and PBDD/Fs were continuously sampled, with a total of ten samples collected in 2-4week periods. Also, PAHs were sampled during one-week periods, in order to evaluate their emissions in three different samples. The emission levels throughout the year were much lower than the set legal limits in all substances, being cement sector, which were 8.5ng I-TEQ/ton clinker for PCDD/Fs and 3.2ng WHO-TEQ/ton clinker for PCBs. With respect to the congener distribution, 2,3,7,8-TCDF accounts for 60 to 68% of the total toxicity for PCDD/Fs, and in PBDD/F emissions, a clear predominance of octa-substituted species (both dioxin and furan) was found.

  17. TSP, PM depositions, and trace elements in the vicinity of a cement plant and their source apportionments using chemical mass balance model in Izmir, Turkey.

    Science.gov (United States)

    Yatkin, Sinan; Bayram, Abdurrahman

    2010-08-01

    Total suspended particles mass concentrations (TSP) and bulk depositions of particulate matter (PM depositions) were measured around a cement plant located in the multi-impacted area to assess the affect of the plant on the ambient air in the vicinity in Izmir, Turkey. TSP samples were collected five times a month whereas PM depositions were sampled monthly at four sites between August 2003 and January 2004. The concentrations of Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, and Zn in TSP and PM depositions (except Cu) were reported. Chemical mass balance (CMB) receptor model with local source profiles was run in order to calculate the source contributions of the PM sources to the concentrations of TSP, PM depositions, and trace elements. Traffic was found to be the major contributor to TSP whereas PM depositions dominantly result from area sources including several stone quarries, concrete plants, lime kilns, and asphalt plants in the region. CMB model results indicate that the cement plant is a significant contributor to TSP, PM depositions, and trace elements, particularly Cd.

  18. Case study of an MBT plant producing SRF for cement kiln co-combustion, coupled with a bioreactor landfill for process residues.

    Science.gov (United States)

    Grosso, Mario; Dellavedova, Stefano; Rigamonti, Lucia; Scotti, Sergio

    2016-01-01

    The paper describes the performances of the energy recovery pathway from the residual waste based on the production of a Solid Recovered Fuel (SRF) to be exploited via co-combustion in a cement kiln. The SRF is produced in a single stream Mechanical-Biological Treatment plant, where bio-drying of the waste is followed by mechanical refining in order to fulfil the quality requirements by the cement kilns. Peculiar of this MBT is the fact that sorting residues are disposed in a nearby landfill, managed according to a bioreactor approach, where landfill gas is collected for electric energy recovery. A detailed mass and energy balance of the system is presented based on one year operational data, followed by its Life Cycle Assessment. Results show that the system is energetically and environmentally effective, with most of the impacts being more than compensated by the savings of materials and energy. Major role in determining such outcome is the displacement of petcoke in the cement kiln, both in terms of its fossil CO2 emissions and of its life cycle impacts, including the trans-oceanic transport. To check the robustness of the results, two sensitivity analyses are performed on the landfill gas collection efficiency and on the avoided electric energy mix.

  19. Environmental monitoring of PCDD/Fs and metals in the vicinity of a cement plant after using sewage sludge as a secondary fuel.

    Science.gov (United States)

    Schuhmacher, Marta; Nadal, Martí; Domingo, José L

    2009-03-01

    In 2005, the partial substitution (20%) of fossil fuel by sewage sludge was tested in a Spanish cement plant. In order to establish the environmental impact for the surroundings, in 2006, the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and heavy metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sn, Tl, V, and Zn) were monitored in soil and vegetation samples collected near the cement plant. The temporal trends in the pollutant levels were studied by comparing the concentrations with those obtained in a previous survey (2003) in the same sampling sites. Very slight changes of the PCDD/F concentrations in both monitors were registered in the period 2003-2006 (0.17-0.15 and 0.94-1.10 ng I-TEQ kg(-1) dw in herbage and soil, respectively). In turn, there was a notable heterogeneity in the evolution of metal levels, which varied according to each particular element. Anyhow, the current levels of organic and inorganic pollutants are in the low part of the range in comparison with other zones impacted by cement plants, as well as industrial and urban areas worldwide. The human health risks derived from the exposure to PCDD/Fs and metals were also assessed. Although the cancer risks due to PCDD/Fs slightly increased, a reduction of the total carcinogenic risks, including metals, was noted. In conclusion, there were not observed impact changes for the environmental and the local population as a consequence of using sewage sludge as secondary fuel.

  20. Spatial variation of eco-physiological parameters in the lichen Pseudevernia furfuracea transplanted in an area surrounding a cement plant (S Italy).

    Science.gov (United States)

    Lucadamo, Lucio; Corapi, Anna; Loppi, Stefano; Paoli, Luca; Gallo, Luana

    2015-08-01

    Thalli of the lichen Pseudevernia furfuracea were transplanted for 3 months (November 2010-January 2011) at 61 monitoring sites around a cement plant near Castrovillari (Calabria, southern Italy). NH3, NO x and SO2 concentrations were monitored monthly in a subarea of 10 sites (SA10) where the cement plant was located. At the end of the exposure period, the integrity of cell membranes; membrane lipid peroxidation (thiobarbituric acid reactive substances, TBARS level); vitality (cell respiration); chlorophyll a; chlorophyll b; carotenoids; phaeophytization quotient; photosynthetic efficiency and thalli concentrations of Al, Ca, Mg, V and Fe were measured. NO x concentrations correlated with the site distance from the cement plant while NH3 concentrations correlated with lichen vitality within SA10. For the monitoring area as a whole, only Fe and Mg concentrations correlated with membrane lipid peroxidation, while TBARS levels showed a significant increase and chlorophyll a, chlorophyll b and carotenoids a significant decrease with respect to the lichen origin area. Multivariate analysis (detrended correspondence analysis, cluster analysis and multi-response permutation procedure) of the eco-physiological parameters × monitoring sites data set resulted in four clusters termed C1, C2, C3 and C4. The eco-physiological parameters were compared among the four clusters and lichen origin area by one-way ANOVA. An index of environmental favourableness (IEF) to lichens was calculated to evaluate the spatial recovery of impaired values of TBARS, chlorophyll a, chlorophyll b, xanthophylls + carotenoids and phaeophytization quotient. The results indicate that there is no clear spatial trend in mycobiont impairment even though the IEF values suggest a higher number of sites with low levels of membrane lipid peroxidation in the 2--3-km distance band from the cement plant (the outermost) than in the two other distance bands (0-1 and 1-2 km). The photobiont seems to be

  1. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    NARCIS (Netherlands)

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    2013-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity see

  2. Environmental levels of PCDD/Fs and metals around a cement plant in Catalonia, Spain, before and after alternative fuel implementation. Assessment of human health risks

    Energy Technology Data Exchange (ETDEWEB)

    Rovira, Joaquim [Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain); Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia (Spain); Nadal, Martí, E-mail: marti.nadal@urv.cat [Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain); Schuhmacher, Marta [Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain); Environmental Engineering Laboratory, Departament d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia (Spain); Domingo, José L. [Laboratory of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia (Spain)

    2014-07-01

    The concentrations of As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sn, Tl, V, and Zn, and the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans were determined in samples of soil, vegetation, and air, collected in the vicinity of a cement plant (Catalonia, Spain), before (January 2011 and July 2011) and after (January 2012 and June 2013) alternative fuel partial substitution (fossil fuels by sewage sludge). Seven sampling points were selected at different directions and distances to the facility including two background sampling points. The results were used to assess the health risk assessment for the population living near the facility. Only few significant differences were found before and after alternative fuel partial substitution (Mn in soils and Cd in vegetation). Non-carcinogenic risks were below the safety threshold (HQ < 1), while carcinogenic risks were below 10{sup −5}, or exceeding slightly that value, always in the range considered as assumable (10{sup −6}–10{sup −4}). - Highlights: • The environmental impact of a cement plant using alternative fuel was monitored. • No significant differences in most pollutants were noted after the fuel change. • Traffic has a notable influence on the environmental levels of PCDD/Fs and metals. • Human health risks were below safety thresholds regardless of the used fuel.

  3. Annual variation in the levels of metals and PCDD/PCDFs in soil and herbage samples collected near a cement plant.

    Science.gov (United States)

    Schuhmacher, M; Agramunt, M C; Bocio, A; Domingo, J L; de Kok, H A M

    2003-07-01

    In May 2000, the levels of a number of metals (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sn, Tl, V and Zn) and polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were determined in soil and herbage samples collected near a cement plant from Sta. Margarida i els Monjos (Catalonia, Spain). To determine the temporal variation in the concentrations of metals and PCDD/PCDFs, in May 2001 soil and herbage samples were again collected at the same sampling points and analyzed for the levels of metals and PCDD/PCDFs. In general terms, metal concentrations in soils did not change between May 2000 and May 2001, while significant decreases in the levels of Cr, Ni and V were found in herbage. On the other hand, no significant differences in the mean I-TEQ values of PCDD/PCDFs were found in soil and herbage samples. The results of this survey show that according to the annual variation in the levels of metals and PCDD/PCDFs the environmental impact of the cement plant on the area under its direct influence is not relevant.

  4. Evaluation of physical stability and leachability of Portland pozzolona cement (PPC) solidified chemical sludge generated from textile wastewater treatment plants.

    Science.gov (United States)

    Patel, Hema; Pandey, Suneel

    2012-03-15

    The chemical sludge generated from the treatment of textile dyeing wastewater is a hazardous waste as per Indian Hazardous Waste Management rules. In this paper, stabilization/solidification of chemical sludge was carried out to explore its reuse potential in the construction materials. Portland pozzolona cement (PPC) was selected as the binder system which is commercially available cement with 10-25% fly ash interground in it. The stabilized/solidified blocks were evaluated in terms of unconfined compressive strength, block density and leaching of heavy metals. The compressive strength (3.62-33.62 MPa) and block density (1222.17-1688.72 kg/m3) values as well as the negligible leaching of heavy metals from the stabilized/solidified blocks indicate that there is a potential of its use for structural and non-structural applications.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making An ENERGY STAR® Guide for Energy and Plant Managers

    OpenAIRE

    Worrell, E.; Kermeli, Katerina; Galitsky, Christina

    2013-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, typically at 20 to 40% of operational costs, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. A variety of waste fuels, including tires,...

  6. 中国水泥生产碳排放系数测算典型研究%Carbon Emission Factors for Cement Plants in China

    Institute of Scientific and Technical Information of China (English)

    赵建安; 魏丹青

    2013-01-01

    The carbon emission coefficient system of cement production is the most important basic parameter when calculating cement carbon emissions. This paper briefly introduces the accuracy and applicability of these methods, most of which contain four aspects: operational boundaries, raw material calcination emission, fuel combustion emissions and indirect emission. We selected two typical NSP clinker production lines form western China and found that the CO2 emissions factor can be reduced by using acetylene sludge, steel slag and pyrite cinder as alternative raw material, because these materials provide CaO, the basic ingredients necessary for production, and no CO2 emissions. As a result, the usual calculation method for raw material calcination emissions will not be applicable. The correct approach is to convert the type and weight ratio of all alternative raw material with CaO and MgO into a corrected parameter. There is a significant difference in classification standards, low calorific value and CO2 emission factors of coal between the IPCC default-value and China's actual use of coal in cement production. Almost all the China' s cement plants using bituminous coal as their production fuel, therefor the fuel combustion CO2 emission factor should be in the range of 250~350 kgCO2 per tonne clinker, which is 27% lower than IPCC default-value. The CO2 emission factor of unit cement is overvalued by 10%, because international researchers believe that the clinker/cement ratio of China' s cement manufacturing plants ranges from 80%~85%, while the practical value is approximately 65%. On this basis of the above, we hold opinion that CO2 emissions of China's cement production will be seriously overvalued using IPCC or WBCSD default calculation factors. Last, four techniques to reduce CO2 emissions from the cement manufacturing industries are reviewed: using alternative raw material, using alternative fuels instead of fossil fuels, reducing electricity consumption, and

  7. Plasmodium Riboprotein PfP0 Induces a Deviant Humoral Immune Response in Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Sulabha Pathak

    2012-01-01

    Full Text Available Passive immunization with antibodies to recombinant Plasmodium falciparum P0 riboprotein (rPfP0, 61–316 amino acids provides protection against malaria. Carboxy-terminal 16 amino acids of the protein (PfP0C0 are conserved and show 69% identity to human and mouse P0. Antibodies to this domain are found in 10–15% of systemic lupus erythematosus patients. We probed the nature of humoral response to PfP0C0 by repeatedly immunizing mice with rPfP0. We failed to raise stable anti-PfP0C0 hybridomas from any of the 21 mice. The average serum anti-PfP0C0 titer remained low (5.1±1.3×104. Pathological changes were observed in the mice after seven boosts. Adsorption with dinitrophenyl hapten revealed that the anti-PfP0C0 response was largely polyreactive. This polyreactivity was distributed across all isotypes. Similar polyreactive responses to PfP0 and PfP0C0 were observed in sera from malaria patients. Our data suggests that PfP0 induces a deviant humoral response, and this may contribute to immune evasion mechanisms of the parasite.

  8. Recycled water technological design of a cement plant in Shanxi Province%山西省某水泥厂中水回用工艺设计

    Institute of Scientific and Technical Information of China (English)

    尤伟静; 邓先涛; 杨亮

    2014-01-01

    The combined process,full automatic purifier+ultra-filtration,has been used for the pretreatment of dis-charged wastewater from a cement plant in Shanxi Province. Then the subsequent reverse osmosis process has been used for realizing recycled water reuse. Its treatment capacity of water is 28 t/h. The quality of the final effluent is favorable. For example,the turbidity drops from 34.1 NTU to 0,and total hardness drops from 3 160 mg/L to 40 mg/L. Therefore,it can directly be reused as make-up water for the excess heat power circulating water in the cement plant. The water yield is 20 t/h,and the rate of reuse up to 75%. It has been proved by practical application that the com-bined process could guarantee that the advanced treatment of discharge wastewater from cement plants is stable and its recycle quality is high.%采用全自动净水器+超滤组合工艺,对山西省某水泥厂排放废水进行预处理,联合后续反渗透工艺以实现中水回用,处理水量为28 t/h。经该工艺处理后,最终出水水质良好,浊度由34.1 NTU降至0,总硬度由3160 mg/L降至40 mg/L,可直接回用于该水泥厂余热发电循环水补充用水,出水量为20 t/h,回用率达75%。工程实践表明,该联合工艺可实现对水泥厂排放废水的深度处理和高质回用。

  9. Heavy metal pollution in topsoils near a cement plant: the role of organic matter and distance to the source to predict total and hcl-extracted heavy metal concentrations.

    Science.gov (United States)

    Bermudez, Gonzalo M A; Moreno, Mónica; Invernizzi, Rodrigo; Plá, Rita; Pignata, María Luisa

    2010-01-01

    Heavy metal and trace element concentrations were examined in topsoils to evaluate a cement plant and an industrial waste incinerator as pollution sources. As, Ba, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Se, Sm, Ta, Tb, Th, U, Yb and Zn were measured by Neutron Activation Analysis (NAA), and Co, Cu, Fe, Ni, Pb and Zn by a 0.5M-hydrochloric extraction technique using an Atomic Absorption Spectrophotometer (AAS). The Cr total concentration and HCl-extracted Co and Mn were possibly related to wind transportation from an industrial area in the north of Córdoba city (Argentina). Cu, Pb and Zn in partial HCl extraction were influenced by the cement plant and the industrial area in the north of Córdoba city. The mean total Ba concentration was above the residential and agricultural land use limits stated in national and international legislation and was related to the distance to the cement plant. The concentrations of HCl-extracted heavy metals could be predicted by the organic matter percentage and the distance to the cement plant (with R(2) values of 0.50-0.74). The Ca total concentration was seen to have little influence whereas the organic matter percentage strongly affected HCl-extracted heavy metals according to the correlation analysis and multiple regression models. According to soil quality guidelines for environmental health, the human and wildlife populations in Yocsina might be experiencing toxic Ba and Cr effects.

  10. 76 FR 2832 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Science.gov (United States)

    2011-01-18

    ... the Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants... (NESHAP) from the Portland Cement Manufacturing Industry and Standards of Performance (NSPS) for Portland Cement Plants. The final rules were published on September 9, 2010. This direct final action...

  11. 77 FR 46371 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Science.gov (United States)

    2012-08-03

    ... the Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants... Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants,'' which was published in the Federal Register on July 18, 2012....

  12. 76 FR 28318 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Science.gov (United States)

    2011-05-17

    ... the Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants... Pollutants emitted by the Portland Cement Industry and the New Source Performance Standards for Portland Cement Plants issued under sections 112(d) and 111(b) of the Clean Air Act, respectively. The EPA is...

  13. 76 FR 2860 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Science.gov (United States)

    2011-01-18

    ... the Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants... of Performance (NSPS) for Portland Cement Plants. The final rules were published on September 9, 2010... Portland Cement Manufacturing Industry Docket, Docket ID No. EPA-HQ-OAR-2002-0051, 1200 Pennsylvania...

  14. Mass Balance Reconciliation for Bilinear Systems: A Case Study of a Raw Mill Separator in a Typical Moroccan Cement Plant

    Directory of Open Access Journals (Sweden)

    S. Fellaou

    2016-06-01

    Full Text Available Stream flow rates and their several compositions are measured in a typical cement raw mill separator. In order to simultaneously reconcile flow and composition measurements in this circuit, the component mass balances was included as constraints which contain the products of flow rate and composition variables in the data reconciliation problem. In this paper, the effectiveness of simultaneous procedures for bilinear data reconciliation is established, the numerical problem constraints were coded in MATLAB and a mass balance model is built. Moreover, based on the difference between the measured and reconciled data it was found that it performs optimally.

  15. Environmental levels of PCDD/Fs and metals around a cement plant in Catalonia, Spain, before and after alternative fuel implementation. Assessment of human health risks.

    Science.gov (United States)

    Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2014-07-01

    The concentrations of As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sn, Tl, V, and Zn, and the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans were determined in samples of soil, vegetation, and air, collected in the vicinity of a cement plant (Catalonia, Spain), before (January 2011 and July 2011) and after (January 2012 and June 2013) alternative fuel partial substitution (fossil fuels by sewage sludge). Seven sampling points were selected at different directions and distances to the facility including two background sampling points. The results were used to assess the health risk assessment for the population living near the facility. Only few significant differences were found before and after alternative fuel partial substitution (Mn in soils and Cd in vegetation). Non-carcinogenic risks were below the safety threshold (HQ<1), while carcinogenic risks were below 10(-5), or exceeding slightly that value, always in the range considered as assumable (10(-6)-10(-4)).

  16. Physical, chemical and mineralogical characterization of water treatment plant waste for use in soil-cement brick; Caracterizacao fisica, quimica e mineralogica de residuo de estacao de tratamento de aguas para aproveitamento em tijolo solo-cimento

    Energy Technology Data Exchange (ETDEWEB)

    Pessin, L.R.; Destefani, A.Z.; Holanda, J.N.F., E-mail: larapessin@hotmail.com [Universidade Estadual do Norte Fluminense Darcy Ribeiro (CCT/PPGECM/UENF), Campos dos Goytacazes, RJ (Brazil)

    2011-07-01

    The water treatment plants (WTP) for human consumption generate huge amounts of waste in the form of sludge (sludge) that have been over the years mostly inadequately prepared in water resources and the environment. Moreover, traditional methods of disposal of waste water treatment plants commonly used are generally costly activities. An alternative method for disposal of this waste abundant is its incorporation in ceramic products. This work is focused on the physical-chemical and mineralogical composition of a sample of waste water treatment plants from the region of Campos dos Goytacazes-RJ to their use in the manufacture of soil-cement brick. Several characterization techniques were used including X-ray diffraction, X-ray fluorescence, scanning electron microscopy, picnometry, particle size analysis and plasticity. The experimental results indicate that the waste water treatment plants have the potential to be used in the manufacture of ecologic soil-cement bricks. (author)

  17. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  18. TECHNOLOGICAL CHANGES IN THE CEMENT MANUFACTURING INDUSTRY.

    Science.gov (United States)

    WESSON, CARL E.

    THE PURPOSE OF THIS STUDY IS TO PRESENT A PRELIMINARY PICTURE OF OCCUPATIONAL CHANGES BROUGHT ABOUT IN THE MANUFACTURE OF CEMENT AS A RESULT OF INTRODUCING AUTOMATED EQUIPMENT. ONE AUTOMATED AND SEVERAL CONVENTIONAL TYPE CEMENT PLANTS WERE STUDIED. ANALYSIS OF DATA OBTAINED THROUGH RESEARCH AND DATA COLLECTED DURING THE STUDY REVEALED THAT…

  19. Cementation of the medium-activity AMOR waste solution at VKTA Rossendorf with the MOSS-200 mobile plant

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, F.; Pfefferkorn, G. [Nuclear Process Engineering and Analysis Association Rossendorf e. V. (VKTA), Dresden (Germany); Ekberg, A. [Westinghouse Atom AB, Vaesteras (Sweden); Mika, S. [Westinghouse Reaktor GmbH, Mannheim (Germany)

    2001-07-01

    Molybdenum-99 has been isolated since 1985 at the former Central Institute for Nuclear Research at Rossendorf from aluminium-clad fuel assemblies exposed in the research reactor for production of technetium-99m generators. The Rossendorf molybdenum production plant operated for this (abbreviated to AMOR - a German acronym), consisted of three plant sections. Plant section AMOR I was responsible for the resolution process and molybdenum extraction. Plant AMOR II was used for nuclear fuel recovery from AMOR-I waste solution by liquid-liquid extraction, and plant AMOR III was responsible for reprocessing the AMOR-II extract. The entire AMOR plant was shut down in late 1990. Radiologically, the residue from AMOR production can be classified as medium-activity liquid waste with the most important radioactive constituents being the two isotopes strontium-90 and caesium-137. Chemically, the waste consists of highly acidic (nitric acid) solution containing aluminium nitrate. (orig.)

  20. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  1. FY 2000 report on the basic survey to promote Joint Implementation, etc. Energy conservation by modernization of a cement plant (Double Horse Cement Co.) in China; 2000 nendo kyodo jisshi nado suishin kiso chosa hokokusho. Chugoku cement kojo (Double Horse Cement) kindaika ni yoru sho energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    An investigational study was conducted of possibilities of energy conservation and greenhouse effect gas emission reduction in the cement production process of Double Horse Cement Co., Mianyang City, Sichuan Province, China. Double Horse Cement adopts the wet type long kiln production system and has a production ability of approximately 1.5 million t/y. In the project, as to three production lines out of the six production lines, improvement was planned to be made of the technologies on the following: mixing of raw materials, grinding of raw materials, NSP, clinker cooler, clinker pre-grinder, high-efficiency separator, waste heat use power generation, etc. As a result of the study, it was found that the energy conservation amount obtained was 54,646 toe/y. And, the amount of greenhouse effect gas reduction was 169,086 t-CO2/y. The total fund required for this project was approximately 5.553 billion yen and the internal earning rate was 7.36% after tax. When the project is carried out, expenses vs. effects are 9.8 toe/million yen in energy conservation amount and 30.4 t-CO2/million yen in greenhouse effect gas reduction. (NEDO)

  2. Emission and distribution of PCDD/Fs and CBzs from two co-processing RDF cement plants in China.

    Science.gov (United States)

    Chen, Tong; Zhan, Ming-Xiu; Lin, Xiao-Qing; Li, Ye-Qing; Zhang, Jiang; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-06-01

    An analysis of the emission and distribution characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and chlorobenzenes (CBzs) from two cement kilns (CK1 and CK2) is done. Six measurements in CK1 showed an increase of PCDD/F emission from 76 to 97 pg I-TEQ/Nm(3) after feeding 10 ton/h RDF (refuse derived fuel). For CK2, the effect of increasing the RDF substitution rates from 0 to 21 t/h on the emission of PCDD/Fs was investigated. The correlation analysis indicated that replacing parts of the conventional fuel with RDF could not increase the emission of PCDD/Fs. Furthermore, the gas/particle partitions of PCDD/Fs and CBzs in stack gas were investigated, indicating that PCDD/Fs and CBzs were more associated in gas phase, especially for the lower chlorinated ones. Moreover, the bag filter fly ash was characterized by its particle distribution, XRD- and EDS-analysis. Additionally, the level of PCDD/Fs in outflowing fly ash escalates for smaller particle size. In order to evaluate the environmental effect on inhabitants, the levels of PCDD/Fs were also determined in samples of ambient air collected in the vicinity of CK2 (~200 m).

  3. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots

    Science.gov (United States)

    Picard, Christine; Bosco, Marco

    2008-01-01

    Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

  4. The measurement of 129I for the cement and the paraffin solidified low and intermediate level wastes (LILWs), spent resin or evaporated bottom from the pressurized water reactor (PWR) nuclear power plants.

    Science.gov (United States)

    Park, S D; Kim, J S; Han, S H; Ha, Y K; Song, K S; Jee, K Y

    2009-09-01

    In this paper a relatively simple and low cost analysis procedure to apply to a routine analysis of (129)I in low and intermediate level radioactive wastes (LILWs), cement and paraffin solidified evaporated bottom and spent resin, which are produced from nuclear power plants (NPPs), pressurized water reactors (PWR), is presented. The (129)I is separated from other nuclides in LILWs using an anion exchange adsorption and solvent extraction by controlling the oxidation and reduction state and is then precipitated as silver iodide for counting the beta activity with a low background gas proportional counter (GPC). The counting efficiency of GPC was varied from 4% to 8% and it was reversely proportional to the weight of AgI by a self absorption of the beta activity. Compared to a higher pH, the chemical recovery of iodide as AgI was lowered at pH 4. It was found that the chemical recovery of iodide for the cement powder showed a lower trend by increasing the cement powder weight, but it was not affected for the paraffin sample. In this experiment, the overall chemical recovery yield of the cement and paraffin solidified LILW samples and the average weight of them were 67+/-3% and 5.43+/-0.53 g, 70+/-7% and 10.40+/-1.60 g, respectively. And the minimum detectable activity (MDA) of (129)I for the cement and paraffin solidified LILW samples was calculated as 0.070 and 0.036 Bq/g, respectively. Among the analyzed cement solidified LILW samples, (129)I activity concentration of four samples was slightly higher than the MDA and their ranges were 0.076-0.114 Bq/g. Also of the analyzed paraffin solidified LILW samples, five samples contained a little higher (129)I activity concentration than the MDA and their ranges were 0.036-0.107 Bq/g.

  5. Evaluating top soil trace element pollution in the vicinity of a cement plant and a former open-cast uranium mine in central Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, Gonzalo M.A.; Pignata, Maria Luisa [Cordoba Univ. Nacional (AR). Inst. Multidisciplinario de Biologia Vegetal (IMBIV); Moreno, Monica; Invernizzi, Rodrigo; Pla, Rita [Comision Nacional de Energia Atomica (CAE), Buenos Aires (Argentina). Tecnicas Analiticas Nucleares

    2010-10-15

    Heavy metals are especially dangerous because of their persistence and toxicity. Soil behaves as a sink of heavy metals by aerial deposition of particles emitted by different human activities. The aims of this work were to identify the levels and sources of heavy metal and trace elements in agricultural and residential areas in Argentina and to evaluate the enrichment of total and HCl-extracted heavy metals. Materials and methods: Ninety-four topsoil samples were collected in Cordoba, Argentina (0-10 cm). The majority of the samples were subject to agricultural practices. The possible metal pollution sources were a cement plant and an industrial waste incinerator, a former open-cast uranium mine, petrochemical, and mechanical and metallurgical industries among others. The elements As, Ba, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Se, Sm, Ta, Tb, Th, U, Yb, and Zn were measured by neutron activation analysis, and Co, Cu, Fe, Mn, Ni, Pb, and Zn were partially extracted by 0.5-M HCl and measured using atomic absorption spectroscopy. Several nonparametric statistics were performed to the dataset in order to accomplish the objectives of the study. Results and discussion: The mean total Ba concentration exceeded soil quality guidelines for residential areas, with the maximum total As and Co concentrations surpassing the agricultural and residential limits stated in national and international legislations. The elements As and Ba were found to be controlled by parent factors, whereas Ca, Co, Cr, Cu, Mn, Ni, Pb, and Zn were controlled by both anthropogenic and pedogenic factors. A cement plant was the main source of Ca, Co, Cr, Cu, Mn, Ni, Pb, and Zn, whereas lanthanides, Fe, K, U, and also Zn were associated with a former open-cast operation uranium mine. A correlation analysis showed that soil organic matter and pH had strong associations with 0.5-M HCl-extracted Co, Cu, Mn, Ni, Pb, and Zn. Conclusions: Fe-normalized enrichment factors calculated for

  6. Peak pressures from hydrogen deflagrations in the PFP thermal stabilization glovebox

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.

    1998-08-11

    This document describes the calculations of the peak pressures due to hydrogen deflagrations in the glovebox used for thermal stabilization (glovebox HC-21A) in PFP. Two calculations were performed. The first considered the burning of hydrogen released from a 7 inch Pu can in the Inert Atmosphere Confinement (IAC) section of the glovebox. The peak pressure increase was 12400 Pa (1.8 psi). The second calculation considered burning of the hydrogen from 25 g of plutonium hydride in the airlock leading to the main portion of the glovebox. Since the glovebox door exposes most of the airlock when open, the deflagration was assumed to pressurize the entire glovebox. The peak pressure increase was 3860 Pa (0.56 psi).

  7. Interpretation of Power Saving in the "Standard of Energy Saving Design for Cement Plant"%《水泥工厂节能设计规范》电力节能篇解读

    Institute of Scientific and Technical Information of China (English)

    何卫红; 李蔚光

    2009-01-01

    为了使广大的设计人员、工程技术人员和管理人员能够及时了解并准确把握水泥工厂电力系统节能设计标准的内容,提高贯彻执行标准的主动性和自觉性,对中的电力系统节能标准的重要条款做粗浅解读.%In order to help the engineers and engineering/management persons to timely understanding the standard of energy saving design for cement plant, to heighten their consciousness and activeness in implement the standard, interpretation is made by the author on some key articles in the "Standard of Energy Saving Design for Cement Plant".

  8. Priority given to low energy and operating costs at la Cruz Azul Aguascalientes cement plant; Priorite aux faibles couts d`exploitation et d`energie pour la cimenterie la Cruz Azul d`Aguascalientes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Luna, C.A. [La Cruz Azul (Mexico)

    1998-06-01

    The Mexican cement producer LA CRUZ AZUL decided for their third works located in Aguascalientes to design in co-operation with Krupp Polysius a 3,300 tpd production plant with minimum operating costs. This plant will have an energy consumption of less than 90 kWh per ton of cement and a heat consumption of approx. 700 kCal per kg of clinker, because an increase of energy costs is expected in the long term in Mexico. Main basic technical decisions concern material transport by mechanical conveyors, reuse of all hot gases generated for drying and very high automation level. Full-scale production is scheduled for mid-year 1999. (author)

  9. Integrated Safety Management System Phase I Verification for the Plutonium Finishing Plant (PFP) [VOL 1 & 2

    Energy Technology Data Exchange (ETDEWEB)

    SETH, S.S.

    2000-01-10

    U.S. Department of Energy (DOE) Policy 450.4, Safety Management System Policy commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex as a means of accomplishing its missions safely. DOE Acquisition Regulation 970.5204-2 requires that contractors manage and perform work in accordance with a documented safety management system.

  10. The Tiger Team Process in the Rebaselining of the Plutonium Finishing Plant (PFP)

    Energy Technology Data Exchange (ETDEWEB)

    BAILEY, R.W.

    2000-02-01

    This paper will describe the integrated, teaming approach and planning process utilized by the Tiger Team in the development of the IPMP. This paper will also serve to document the benefits derived from this implementation process.

  11. Size-distribution of airborne polycyclic aromatic hydrocarbons and other organic source markers in the surroundings of a cement plant powered with alternative fuels.

    Science.gov (United States)

    Sánchez-Soberón, Francisco; van Drooge, Barend L; Rovira, Joaquim; Grimalt, Joan O; Nadal, Martí; Domingo, José L; Schuhmacher, Marta

    2016-04-15

    The distributions of polycyclic aromatic hydrocarbons (PAHs) and molecular tracer organic compounds for biomass combustion, traffic emissions, soil dust, and secondary aerosol processing have been studied in three fractions of ambient air particulate matter (PM10, 2.5, and 1) collected in the vicinity of a cement plant. PAH concentrations were used to estimate the carcinogenic risks in humans. Combustion related compounds, including PAHs, and those from secondary aerosol processing, predominated in the finest (PMcombustion were found in high concentrations, indicating the influence of biomass burning on PM. Most predominant PAHs were five and six rings species, related to a PAH profile characteristic of urban-industrial environments. The concentrations of benzo[a]pyrene varied between 0.2 and 1.0ng/m(3), which is close but lower than the annual limit value of 1ng/m(3) established by law. Exposure and inhalation carcinogenic risks from total PAHs were below the EPA threshold of acceptable risk (1·10(-6)).

  12. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  13. Assessment of operators’ mental workload using physiological and subjective measures in cement, city traffic and power plant controlcenters

    Directory of Open Access Journals (Sweden)

    Majid Fallahi

    2016-06-01

    Conclusion: The results suggested that when operators’ mental demands especially in traffic control and power plant tasks increased, their mental fatigue and stress level increased and their mental health deteriorated. Therefore, it may be necessary to implement an ergonomic program or administrative control to manage mental probably health in these control centers.Furthermore, by evaluating MW, the control center director can organize the human resources for each MW condition to sustain the appropriate performance as well as improve system functions.

  14. Determination of free and bound phenolic compounds in soy isoflavone concentrate using a PFP fused core column.

    Science.gov (United States)

    Verardo, Vito; Riciputi, Ylenia; Garrido-Frenich, Antonia; Caboni, Maria Fiorenza

    2015-10-15

    In the last years, the consumption of soy-based foods has increased due to the health benefits related to soy bioactives like phenolic compounds. Thus, in the present study, a new chromatographic method using reverse-phase high performance liquid chromatography coupled to diode array detection (RP-HPLC/DAD) was developed using a fused core pentafluorophenyl (PFP) column. The established method allowed the determination of twenty-one free phenolic compounds and eleven bound phenolics in a soy isoflavone concentrate. The method was validated in terms of precision and recovery. Intra and inter-day precision were less than 5% (% RSD) and the recovery was between 97.4% and 103.6%. Limits of quantification (LOQs) ranged between 0.093 and 0.443 μg/mL. Because of that, PFP stationary phase can be easily applied for routine determination of phenolic compounds in soy based foods.

  15. Features of Structural Design and Treatment of Common Problems in Large-scale Cement Plant%大型水泥厂结构设计要点及常见问题的处理方法

    Institute of Scientific and Technical Information of China (English)

    张立

    2014-01-01

    During the production process of the cement vibration of the equipment is large,the dead load of the building is high,the ambient temperature is high and there is some corrosion at the same time,which can easily cause damage to the building structures.As to the design of large-scale cement plant,we discuss the features of structural de-sign in the first part of the article.In the latter part we discuss the treatment of common problems of large-scale cement plant and analysis its causes.%水泥厂厂房在水泥生产过程中受振动冲击大,建筑物荷载高,生产过程温度高且要承受一定的腐蚀,极易对建筑结构造成损坏。该文从大型水泥厂建筑结构设计的角度出发,简述了大型水泥厂结构设计要点,并对大型水泥厂结构设计中的常见问题进行分析并提出相应的解决方案。

  16. Biofouling e biodeterioração química de argamassa de cimento portland em reservatório de usina hidroelétrica Biofouling and chemical biodeterioration in hydroeletric power plant portland cement mortar

    Directory of Open Access Journals (Sweden)

    Kleber Franke Portella

    2009-01-01

    Full Text Available Last decade Brazilian rivers experimented progressive biofouling of Limnoperna fortunei communities and Cordylophora caspia hydroids. The microhabitat is so favorable that in around 1.5 years L. fortunei increased from 0.39 to nearby 149,000 units/m². Ten Portland cement mortar samples were produced with 1: 3.5: 0.4 dosages and installed for 1 year at Salto Caxias Brazilian Power Plant reservoir in 0.5 m and 1.0 m deep to investigate the biofouling influence on hydraulic civil structures. SEM, EDS, visual investigation and XRF results indicate none direct chemical interrelationships between L. fortunei and the mortar samples. However C. caspia diminished the mortar surface resistance and caused cement paste leaching.

  17. Effects of limestone quarrying and cement-plant operations on runoff and sediment yields in the Upper Permanente Creek basin, Santa Clara County, California

    Science.gov (United States)

    Nolan, K.M.; Hill, B.R.

    1989-01-01

    High sediment loads below headwater areas of the Permanente Creek drainage basin, Santa Clara County, California, have caused flood-control problems in downstream lowland areas. Measured sediment yields in Permanente Creek, which drains areas affected by limestone quarrying and cement-plant operations, were 14 times greater than yields from the West Fork Permanente Creek, which primarily drains parkland. Part of this large disparity in yields is the result of higher runoff/unit of drainage area in the Permanente Creek Basin. Results of rainfall-runoff modeling indicate that the tendency for higher runoff from Permanente Creek results from natural differences in basin physiography. Runoff during periods of high streamflow (when most sediment is transported) is dominated by subsurface flow, which is not affected by human activities. Although artificial features created by human activities seem to have had only minor effects on runoff, they apparently have had major effects on sediment availability. Artificial features accounted for 273 acres (89%) of the 307 acres of active erosional landforms mapped in 1984. Increased availability of sediment in the Permanente Creek basin appears to be indicated by elevated intercepts of sediment-transport curves. A comparison of sediment-transport curves for the West Fork Permanente Creek with similar curves for the Permanente Creek basin under natural conditions suggests that the sediment yield from Permanente Creek is about 3.5 times higher than it would be under natural basin conditions. The increased yield apparently is due to an increase in sediment availability rather than an increase in runoff. (USGS)

  18. KHD combustion chamber. Flexible use of alternative fuels in the cement plant; KHD Brennkammer. Flexibler Einsatz von alternativen Brennstoffen im Zementwerk

    Energy Technology Data Exchange (ETDEWEB)

    Schuermann, Heiko [Humboldt Wedag GmbH, Koeln (Germany)

    2012-07-01

    In many parts of the world, the use of alternative fuels is a recognized measure for reducing the CO{sub 2} emissions that result from burning primary fuels such as coal, oil and natural gas. Alternative or secondary fuels are the terms used for combustible residues from industrial and commercial manufacturing processes, agricultural production, and sorted municipal refuse. Due to the wide range of possible sources of alternative fuels, there is very great variation in their energy content, ash, moisture content, particle size, form, density etc., so there is no patent solution for their use in a cement plant. For proper operation of the rotary kiln, it is particularly important to use alternative fuel qualities that have good heat value and reactivity in order to achieve a stable, hot sintering zone and to completely burnout the highest possible amount of the fuel while it is suspended in the air stream. Combustion in the calciner places fewer demands on the properties of the alternative fuels than combustion in the rotary kiln burner does. This means that the calciner is the ideal combustion point for the usage of alternative fuels. To enable maximum possible flexibility for the combustion of widely differing alternative fuels in the calciner, KHD Humboldt Wedag offers the option of installing a combustion chamber in the modular PYROCLON calciner system. Due to the operating characteristics of this combustion chamber, which are described in the following sections of this article, even alternative fuels with low heat values and a low degree of preparation can be safely and completely burnt. (orig.)

  19. Analysis on mechanical property of natural plant fiber cement matrix composites%天然植物纤维水泥基复合材料力学特性分析

    Institute of Scientific and Technical Information of China (English)

    张耀跃; 李昀阳; 张忠强; 崔兵

    2015-01-01

    指出植物纤维具有环保节能、保温防火、轻体防雷等优点,将其掺入混凝土中可以改善其脆性,延缓开裂,改变水泥基稻草纤维复合材料的水灰比和纤灰比并加入 CaCl2作为外加剂来制作试件,通过测量试件的静曲强度和观察试件断面的显微图像来确定最优配合比,并分析了 CaCl2对稻草纤维水泥基复合板材的微观影响,得出了一些结论。%Point out plant fibers have lots of advantage such as:fire prevention,environmental protection,energy conservation,heat preserva-tion,light and lightning protection. Incorporated in the concrete can improve its brittleness and delay cracking. Change water cement ratio of ce-ment matrix straw fiber composites and fiber cement ratio to make the specimen. In addition,joining CaCl2 as admixture,measured in the cross section of the specimen static music intensity,observed the microscopic image of specimen to determine the optimal mixture ratio and analysis the micro impact of CaCl2 for straw fiber cement matrix composite,obtains some conclusions.

  20. PFP1, a gene encoding an Epc-N domain-containing protein, is essential for pathogenicity of the barley pathogen Rhynchosporium commune.

    Science.gov (United States)

    Siersleben, Sylvia; Penselin, Daniel; Wenzel, Claudia; Albert, Sylvie; Knogge, Wolfgang

    2014-08-01

    Scald caused by Rhynchosporium commune is an important foliar disease of barley. Insertion mutagenesis of R. commune generated a nonpathogenic fungal mutant which carries the inserted plasmid in the upstream region of a gene named PFP1. The characteristic feature of the gene product is an Epc-N domain. This motif is also found in homologous proteins shown to be components of histone acetyltransferase (HAT) complexes of fungi and animals. Therefore, PFP1 is suggested to be the subunit of a HAT complex in R. commune with an essential role in the epigenetic control of fungal pathogenicity. Targeted PFP1 disruption also yielded nonpathogenic mutants which showed wild-type-like growth ex planta, except for the occurrence of hyphal swellings. Complementation of the deletion mutants with the wild-type gene reestablished pathogenicity and suppressed the hyphal swellings. However, despite wild-type-level PFP1 expression, the complementation mutants did not reach wild-type-level virulence. This indicates that the function of the protein complex and, thus, fungal virulence are influenced by a position-affected long-range control of PFP1 expression. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Environmental Assessment of Different Cement Manufacturing ...

    Science.gov (United States)

    Due to its high environmental impact and energy intensive production, the cement industry needs to adopt more energy efficient technologies to reduce its demand for fossil fuels and impact on the environment. Bearing in mind that cement is the most widely used material for housing and modern infrastructure, the aim of this paper is to analyse the Emergy and Ecological Footprint of different cement manufacturing processes for a particular cement plant. There are several mitigation measures that can be incorporated in the cement manufacturing process to reduce the demand for fossil fuels and consequently reduce the CO2 emissions. The mitigation measures considered in this paper were the use of alternative fuels and a more energy efficient kiln process. In order to estimate the sustainability effect of the aforementioned measures, Emergy and Ecological Footprint were calculated for four different scenarios. The results show that Emergy, due to the high input mass of raw material needed for clinker production, stays at about the same level. However, for the Ecological Footprint, the results show that by combining the use of alternative fuels together with a more energy efficient kiln process, the environmental impact of the cement manufacturing process can be lowered. The research paper presents an analysis of the sustainability of cement production , a major contributor to carbon emissions, with respect to using alternative fuels and a more efficient kiln. It show

  2. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-04-15

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter.

  3. PSD Determination, Portland Cement Plant

    Science.gov (United States)

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  4. Characterization of past and present solid waste streams from the plutonium finishing plant

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D R; Mayancsik, B A [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J A; Vejvoda, E J; Reddick, J A; Sheldon, K M; Weyns, M I [Los Alamos Technical Associates, Kennewick, WA (United States)

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  5. Characterization of past and present solid waste streams from the plutonium finishing plant

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, D.R.; Mayancsik, B.A. [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J.A.; Vejvoda, E.J.; Reddick, J.A.; Sheldon, K.M.; Weyns, M.I. [Los Alamos Technical Associates, Kennewick, WA (United States)

    1993-02-01

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  6. Personal exposure to inhalable cement dust among construction workers.

    Science.gov (United States)

    Peters, Susan; Thomassen, Yngvar; Fechter-Rink, Edeltraud; Kromhout, Hans

    2009-01-01

    Objective- A case study was carried out to assess cement dust exposure and its determinants among construction workers and for comparison among workers in cement and concrete production.Methods- Full-shift personal exposure measurements were performed and samples were analysed for inhalable dust and its cement content. Exposure variability was modelled with linear mixed models.Results- Inhalable dust concentrations at the construction site ranged from 0.05 to 34 mg/m(3), with a mean of 1.0 mg/m(3). Average concentration for inhalable cement dust was 0.3 mg/m(3) (GM; range 0.02-17 mg/m(3)). Levels in the ready-mix and pre-cast concrete plants were on average 0.5 mg/m(3) (GM) for inhalable dust and 0.2 mg/m(3) (GM) for inhalable cement dust. Highest concentrations were measured in cement production, particularly during cleaning tasks (inhalable dust GM = 55 mg/m(3); inhalable cement dust GM = 33 mg/m(3)) at which point the workers wore personal protective equipment. Elemental measurements showed highest but very variable cement percentages in the cement plant and very low percentages during reinforcement work and pouring. Most likely other sources were contributing to dust concentrations, particularly at the construction site. Within job groups, temporal variability in exposure concentrations generally outweighed differences in average concentrations between workers. 'Using a broom', 'outdoor wind speed' and 'presence of rain' were overall the most influential factors affecting inhalable (cement) dust exposure.Conclusion- Job type appeared to be the main predictor of exposure to inhalable (cement) dust at the construction site. Inhalable dust concentrations in cement production plants, especially during cleaning tasks, are usually considerably higher than at the construction site.

  7. 77 FR 42367 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Science.gov (United States)

    2012-07-18

    ... Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants; Proposed Rule #0;#0;Federal Register / Vol. 77 , No. 138 / Wednesday...-AQ93 National Emission Standards for Hazardous Air Pollutants for the Portland Cement...

  8. A Short Study to Test the Compliance of Various Pakistani Ordinary Portland Cements with ASTM Composition Standards

    Directory of Open Access Journals (Sweden)

    A. Shahnaz

    2013-12-01

    Full Text Available Cement is widely used everywhere for construction purposes and quality comparison of different ordinary Portland cements is very important. Five different brands of cement were tested for their chemical constituents such as silica, alumina, iron, calcium, magnesium, sulfates, insoluble residue, free lime and loss on ignition with American standards for testing and materials (ASTM. Results for five locally produced Portland cements revealed that the chemical compositions of most cement as determined by standard methods lie within standard limits. But the difference in constituents of various brands of cements is due to quality control setup differences of different cement plants.

  9. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic

    Directory of Open Access Journals (Sweden)

    Adriana Eštoková

    2013-12-01

    Full Text Available The radionuclide activities of 226Ra, 232Th and 40K and radiological parameters (radium equivalent activity, gamma and alpha indices, the absorbed gamma dose rate and external and internal hazard indices of cements and cement composites commonly used in the Slovak Republic have been studied in this paper. The cement samples of 8 types of cements from Slovak cement plants and five types of composites made from cement type CEM I were analyzed in the experiment. The radionuclide activities in the cements ranged from 8.58–19.1 Bq·kg−1, 9.78–26.3 Bq·kg−1 and 156.5–489.4 Bq·kg−1 for 226Ra, 232Th and 40K, respectively. The radiological parameters in cement samples were calculated as follows: mean radium equivalent activity Raeq = 67.87 Bq·kg−1, gamma index Iγ = 0.256, alpha index Iα = 0.067, the absorbed gamma dose rate D = 60.76 nGy·h−1, external hazard index Hex = 0.182 and internal hazard index Hin was 0.218. The radionuclide activity in composites ranged from 6.84–10.8 Bq·kg−1 for 226Ra, 13.1–20.5 Bq·kg−1 for 232Th and 250.4–494.4 Bq·kg−1 for 40K. The calculated radiological parameters of cements were lower than calculated radiological parameters of cement composites.

  10. Soil-water characteristics of sandy soil and soil cement with and without vegetation

    OpenAIRE

    2014-01-01

    The use of soil cement as a growth medium was examined in this study. During the monitoring, green soil cement revealed diverse ecological values. The survival rates of plants in each soil conditions were higher than 80%,which was very promising. Furthermore, the survival rates dropped when the soil density reached95%, which means soil density might influence the survival rate of plant. Plant growth rates in sandy soil were higher than that in soil cement. In particular, low soil density faci...

  11. Effect of cement industry pollution on chlorophyll content of some crops at Kodinar, Gujarat, India

    OpenAIRE

    2013-01-01

    Study was carried out to assess the impact of cement industry pollution on some selected plant species around cement industry. Effect of cement dust on chlorophyll was studied in Arachis hypogaea, Sesamum indicum and Triticum species. Sampling was done at different distance like 0.5 km, 1.0 km and 2.0 km from the cement industry. The Chlorophyll pigments were reduced in dust-exposed plant species compared with control site Pransli (15 km away from the cement industry). Changes in chlorophyll ...

  12. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  13. Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Hasanbeigi, Ali; Lu, Hongyou; Wang, Lan

    2009-10-01

    China's cement industry, which produced 1,388 million metric tons (Mt) of cement in 2008, accounts for almost half of the world's total cement production. Nearly 40% of China's cement production is from relatively obsolete vertical shaft kiln (VSK) cement plants, with the remainder from more modern rotary kiln cement plants, including plants equipped with new suspension pre-heater and pre-calciner (NSP) kilns. Shandong Province is the largest cement-producing Province in China, producing 10% of China's total cement output in 2008. This report documents an analysis of the potential to improve the energy efficiency of NSP kiln cement plants in Shandong Province. Sixteen NSP kiln cement plants were surveyed regarding their cement production, energy consumption, and current adoption of 34 energy-efficient technologies and measures. Plant energy use was compared to both domestic (Chinese) and international best practice using the Benchmarking and Energy Saving Tool for Cement (BEST-Cement). This benchmarking exercise indicated an average technical potential primary energy savings of 12% would be possible if the surveyed plants operated at domestic best practice levels in terms of energy use per ton of cement produced. Average technical potential primary energy savings of 23% would be realized if the plants operated at international best practice levels. Energy conservation supply curves for both fuel and electricity savings were then constructed for the 16 surveyed plants. Using the bottom-up electricity conservation supply curve model, the cost-effective electricity efficiency potential for the studied cement plants in 2008 is estimated to be 373 gigawatt hours (GWh), which accounts for 16% of total electricity use in the 16 surveyed cement plants in 2008. Total technical electricity-saving potential is 915 GWh, which accounts for 40% of total electricity use in the studied plants in 2008. The fuel conservation supply curve model shows the total

  14. Emissions of metals and polychlorinated dibenzo(p)dioxins and furans (PCDD/Fs) from Portland cement manufacturing plants: inter-kiln variability and dependence on fuel-types.

    Science.gov (United States)

    Zemba, Stephen; Ames, Michael; Green, Laura; Botelho, Maria João; Gossman, David; Linkov, Igor; Palma-Oliveira, José

    2011-09-15

    Emissions from Portland cement manufacturing facilities may increase health risks in nearby populations and are thus subject to stringent regulations. Direct testing of pollutant concentrations in exhaust gases provides the best basis for assessing the extent of these risks. However, these tests (i) are often conducted under stressed, rather than typical, operating conditions, (ii) may be limited in number and duration, and (iii) may be influenced by specific fuel-types and attributes of individual kilns. We report here on the results of more than 150 emissions-tests conducted of two kilns at a Portland cement manufacturing plant in Portugal. The tests measured various regulated metals and polychlorinated dibenzo(p)dioxins and furans (PCDD/Fs). Stack-gas concentrations of pollutants were found to be highly variable, with standard deviations on the order of mean values. Emission rates of many pollutants were higher when coal was used as the main kiln fuel (instead of petroleum coke). Use of various supplemental fuels, however, had little effect on stack emissions, and few statistically significant differences were observed when hazardous waste was included in the fuel mix. Significant differences in emissions for some pollutants were observed between the two kilns despite their similar designs and uses of similar fuels. All measured values were found to be within applicable regulatory limits.

  15. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  16. Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting.

    Science.gov (United States)

    Hills, Thomas; Leeson, Duncan; Florin, Nicholas; Fennell, Paul

    2016-01-05

    Several different carbon-capture technologies have been proposed for use in the cement industry. This paper reviews their attributes, the progress that has been made toward their commercialization, and the major challenges facing their retrofitting to existing cement plants. A technology readiness level (TRL) scale for carbon capture in the cement industry is developed. For application at cement plants, partial oxy-fuel combustion, amine scrubbing, and calcium looping are the most developed (TRL 6 being the pilot system demonstrated in relevant environment), followed by direct capture (TRL 4-5 being the component and system validation at lab-scale in a relevant environment) and full oxy-fuel combustion (TRL 4 being the component and system validation at lab-scale in a lab environment). Our review suggests that advancing to TRL 7 (demonstration in plant environment) seems to be a challenge for the industry, representing a major step up from TRL 6. The important attributes that a cement plant must have to be "carbon-capture ready" for each capture technology selection is evaluated. Common requirements are space around the preheater and precalciner section, access to CO2 transport infrastructure, and a retrofittable preheater tower. Evidence from the electricity generation sector suggests that carbon capture readiness is not always cost-effective. The similar durations of cement-plant renovation and capture-plant construction suggests that synchronizing these two actions may save considerable time and money.

  17. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  18. Performance of cemented coal gangue backfill

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qin-li; WANG Xin-min

    2007-01-01

    Possibility of cemented gangue backfill was studied with gangue of Suncun Coal Mine, Xinwen Coal Group, Shandong,and fly ash of nearby thermal power plant, in order to treat enormous coal gangue on a large scale and to recovery safety coal pillars.The results indicate that coal gangue is not an ideal aggregate for pipeline gravity flow backfill, but such disadvantages of gangue as bad fluidity and serious pipe wear can be overcome by addition of fly ash. It is approved that quality indexes such as strength and dewatering ratio and piping feature of slurry can satisfy requirement of cemented backfill if mass ratio of cement to fly ash to gangue higher middle and long term comprehensive strength.

  19. Cement and concrete

    Science.gov (United States)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  20. POZZOLAN AND CEMENTS WITH POZZOLAN

    OpenAIRE

    Hasan KAPLAN; Hanifi BİNİCİ

    1995-01-01

    Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, ce...

  1. ORNL review of TRUEX flowsheet proposed for deployment at the Rockwell Hanford Plutonium Finishing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bond, W.D.; Bell, J.T.; Campbell, D.O.; Collins, E.D.

    1987-03-01

    The Transuranium Extraction (TRUEX) process will be installed at the Rockwell Hanford Operations (RHO) Plutonium Finishing Plant (PFP). The purposes are to process the PFP waste to recover the plutonium, to isolate the americium, and to have the remaining waste converted to a non-TRU waste. Rockwell requested that ORNL provide an outside review of the process and its implementation. This review addresses the generation of the TRUEX feed, the chemical flowsheet, and the products and raffinates. It suggests that present PFP operations be modified to reduce the amount of transuranium elements that will be in the TRUEX process feed. This review also includes an assessment of the TRUEX solvent extraction flowsheet on the bases of material balance, adequate extraction and stripping stages, and solvent cleanup. The final part of the review includes results of three-party discussions (RHO, ORNL, and Argonne National Laboratory (ANL)) of some major issues.

  2. Modified-sulfur cements for use in concretes, flexible pavings, coatings, and grouts

    Science.gov (United States)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1981-05-01

    A family of modified-sulfur cements was developed for the preparation of construction materials with improved properties. Various types of sulfur cements were prepared by reacting sulfur with mixtures of dicyclopentadiene and oligomers of cyclopentadiene. Durable cements were prepared with structural characteristics ranging from rigid to flexible. These cements were used to prepare corrosion-resistant materials for use in a wide variety of industrial applications where resistance to acidic and salt conditions is needed. These materials were prepared as rigid concretes, flexible pavings, spray coatings, and grouts. Production of modified-sulfur cements in a commercial-size plant was demonstrated.

  3. Dust extraction from gas in cement kilns, using bag filters; Depoussierage des gaz de four cimentier par les filtres a manches

    Energy Technology Data Exchange (ETDEWEB)

    Harmegnies, M. [CALCIA, 78 - Guerville (France). Direction Technique

    1996-12-31

    After a review of regulations concerning cement plant emissions, the two main cement production techniques (dry and semi-dry processes) are described and the electrostatic and bag filter de-dusting techniques are compared. Examples of pilot applications of these techniques in two French cement plants are presented and operating results (performances, transient procedures, costs) are discussed

  4. Energy Efficiency Improvement Opportunities for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Galitsky, Christina; Price, Lynn

    2008-01-31

    This report provides information on the energy savings, costs, and carbon dioxide emissions reductions associated with implementation of a number of technologies and measures applicable to the cement industry. The technologies and measures include both state-of-the-art measures that are currently in use in cement enterprises worldwide as well as advanced measures that are either only in limited use or are near commercialization. This report focuses mainly on retrofit measures using commercially available technologies, but many of these technologies are applicable for new plants as well. Where possible, for each technology or measure, costs and energy savings per tonne of cement produced are estimated and then carbon dioxide emissions reductions are calculated based on the fuels used at the process step to which the technology or measure is applied. The analysis of cement kiln energy-efficiency opportunities is divided into technologies and measures that are applicable to the different stages of production and various kiln types used in China: raw materials (and fuel) preparation; clinker making (applicable to all kilns, rotary kilns only, vertical shaft kilns only); and finish grinding; as well as plant wide measures and product and feedstock changes that will reduce energy consumption for clinker making. Table 1 lists all measures in this report by process to which they apply, including plant wide measures and product or feedstock changes. Tables 2 through 8 provide the following information for each technology: fuel and electricity savings per tonne of cement; annual operating and capital costs per tonne of cement or estimated payback period; and, carbon dioxide emissions reductions for each measure applied to the production of cement. This information was originally collected for a report on the U.S. cement industry (Worrell and Galitsky, 2004) and a report on opportunities for China's cement kilns (Price and Galitsky, in press). The information provided in

  5. Conversion of Moroccan Cement Works to Coal Firing

    Energy Technology Data Exchange (ETDEWEB)

    Ahmouz, B.

    1988-02-01

    The cement sector is generally described as an ''energivorous'' sector because of the large quantities of energy consumed by it. In fact, the manufacture of one tonne of cement needs 80 to 120 kWh and from 680 to 1250 Mcal, depending on the process used. Since 1973, the fuel used by the sector was exclusively heavy fuel oil no.2, until 1982 when the Meknes cement works took into service its old coal-fired mill which had been at a standstill since 1973. Several months later, Lafarge Casablanca re-started its old mill after a renovation. The other cement works also began to envisage their conversion because of the constant price rise of the energy bill and its bearing on the operational costs. The Agidir Cement Works took its plant into service in November 1984. The New Cement Works of Casablanca (Cinouca) began in January 1985 to use coal pulverized at the works of Lafarge Casablanca which has spare capacity in its plant, while waiting to take its own shop in service in May 1988. The year 1985 also saw the beginning of the coalfired plants of Asment and Temara in August and of the Tetouan Cement Works in October. The last cement works to be converted to coal is that of Tanger. At the present time, coal furnishes about 85 % of the heat formerly produced from fuel oil. On the technical level, this substitution has continued up to the present under good conditions. The use of coal is in fact particularly well suited to the cement industry. The total investment employed for the conversion to coal will have exceeded the sum of 192 mill. Dirhams. The expected savings of energy from this conversion at present are estimated as over 150 mill. Dirhams per year.

  6. CEMENT. "A Concrete Experience." A Curriculum Developed for the Cement Industry.

    Science.gov (United States)

    Taylor, Mary Lou

    This instructor's guide contains 11 lesson plans for inplant classes on workplace skills for employees in a cement plant. The 11 units cover the following topics: goals; interpreting memoranda; applying a standard set of work procedures; qualities of a safe worker; accident prevention; insurance forms; vocabulary development; inventory control…

  7. Prevalence and Determinants of Mucous Membrane Irritations in a Community Near a Cement Factory in Zambia: A Cross Sectional Study

    OpenAIRE

    2015-01-01

    Exposure to cement dust has been associated with deleterious health effects in humans. This study investigated whether residing near a cement factory increases the risk of irritations to the mucous membranes of the eyes and respiratory system. A cross sectional study was conducted in Freedom Compound, a community bordering a cement factory in Chilanga, Zambia and a control community, Bauleni, located 18 km from the cement plant. A modified American Thoracic Society questionnaire was administe...

  8. Definition and Means of Maintaining the Emergency Notification and Evacuation System Portion of the Plutonium Finishing Plant (PFP) Safety Envelope

    Energy Technology Data Exchange (ETDEWEB)

    WHITE, W.F.

    2000-04-04

    The purpose of this document is to provide the definition and means of maintaining the safety envelope (SE) for the Emergency Notification and Evacuation System (ENES). Together with the appendices, it provides: (1) The system requirements for determining system operability (Section 3.0); (2) Evaluations of equipment to determine the safety boundary for the system (Section 4.0); (3) List of system drawings that are annotated to show the SE boundaries (Appendix A); (4) Identification of the SE equipment by reference to systems and drawings (Appendix B); (5) Requirements for the individual SE equipment (Section 4.0); and (6) A list of the operational and surveillance procedures necessary to operate and maintain the system equipment within the SE (Sections 5.0 and 6.0). The Private Automatic Exchange (PAX) phones and PAX switchers are outside the safety envelope defined in WHC-SD-CP-OSR-010, Section 5.4.10, ''Safety Communication and Alarm Systems,'' Section 5.4.1 0.1, ''Major Components and Operating Characteristics,'' and Section 5.4.10.1.12, ''PAX System.'' The PAX override microphone system maintains the safety envelope, and functions as a backup to the evacuation sirens during an emergency.

  9. Radioactive Air Emission Notice of Construction for (NOC) Plutonium Finishing Plant (PFP) Project W-460 Plutonium Stabilization and Handling

    Energy Technology Data Exchange (ETDEWEB)

    JANSKY, M.T.

    2000-03-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A,'' Appendix A (WAC 246-247-1 IO) lists the requirements that must be addressed. Additionally, the following description, attachments, and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI) and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also constitutes EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided later. This NOC covers the activities associated with the construction and operation activities involving stabilization and/or repackaging of plutonium in the 2736-ZB Building. An operations support trailer will be installed in the proximity of the 2736-ZB Building. A new exhaust stack will be built and operated at the 2736-ZB Building to handle the effluents associated with the operation of the stabilization and repackaging process. Figures provided are based on preliminary design.

  10. Radioactive Air Emission Notice of Construction (NOC) for Plutonium Finishing Plant (PFP) Project W-460 Plutonium Stabilization and Handling

    Energy Technology Data Exchange (ETDEWEB)

    JANSKY, M.T.

    2000-05-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with Washington Administrative Code (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Additionally, the following description, attachments, and references are provided to the US Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40 Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants''. The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI) and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also constitutes EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2), will be provided later. This NOC covers the activities associated with the construction and operation activities involving stabilization and/or repackaging of plutonium in the 2736-ZB Building. A new exhaust stack will be built and operated at the 2736-ZB Building to handle the effluents associated with the operation of the stabilization and repackaging process. Figures provided are based on preliminary design. For the activities covered under this NOC, the unabated and abated TEDE to the hypothetical MEI is 1.67 E-03 and 8.34 E-01 millirem per year, respectively.

  11. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  12. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  13. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    LENUS (Irish Health Repository)

    Keeling, Parnell

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

  14. Cement Mason's Curriculum. Instructional Units.

    Science.gov (United States)

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  15. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  16. Definition and means of maintaining the ventilation system confinement portion of the PFP safety envelope

    Energy Technology Data Exchange (ETDEWEB)

    Dick, J.D.; Grover, G.A.; O`Brien, P.M., Fluor Daniel Hanford

    1997-03-05

    The Plutonium Finishing Plant Heating Ventilation and Cooling system provides for the confinement of radioactive releases to the environment and provides for the confinement of radioactive contamination within designated zones inside the facility. This document identifies the components and procedures necessary to ensure the HVAC system provides these functions. Appendices E through J provide a snapshot of non-safety class HVAC equipment and need not be updated when the remainder of the document and Appendices A through D are updated.

  17. Technology Roadmaps: Cement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    To support its roadmap work focusing on key technologies for emissions reductions, the International Energy Agency (IEA) also investigated one particular industry: cement. Cement production includes technologies that are both specific to this industry and those that are shared with other industries (e.g., grinding, fuel preparation, combustion, crushing, transport). An industry specific roadmap provides an effective mechanism to bring together several technology options. It outlines the potential for technological advancement for emissions reductions in one industry, as well as potential cross-industry collaboration.

  18. Cement clinker structure during plasma-chemical synthesis and its influence on cement properties

    Science.gov (United States)

    Sazonova, N.; Skripnikova, N.; Lucenko, A.; Novikova, L.

    2015-01-01

    The aim of this study was to determine the degree of influence of cement clinker cooling modes, synthesized in a low-temperature plasma, its structure and physico-mechanical properties. The raw mixture consisting of marble, sand, ash from thermal power plants and py- rite cinders were used, which are characterized by saturation factor (1,045); silicate (2,35) and alumina (1,22) modules. It was found that the use of different cooling rates of fused cement clinker entails changes associated with the mineralogical composition (increase of alite of 8.719,2 %), morphology (variation of the mineral alite aspect ratio of 6,7-17,5), density of the structure (change in distance between the minerals from 1 to 7,5 microns), grindability, specific surface area (2600-3650 cm2/g) and, in consequence, the activity of cement (56,973,2 MPa). Disorientation of alite mineral blocks against each other, a significant amount of microcracks, affect the increase in cement specific surface area of 14,3-21,6 %, which leads to activity growth of the system. Along with this, with the rapid cooling of the samples, alite 54CaO- 16SiO2-Al2O3 MgO is formed, with single units of the structure, more deformed relatively to C3S, which has a positive effect on the hydraulic cement activity.

  19. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Floyd, III, William C.; Spadaccini, Christopher M.; Vericella, John J.; Cowan, Kenneth Michael

    2017-03-14

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  20. Cementing a wellbore using cementing material encapsulated in a shell

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  1. Cementing a wellbore using cementing material encapsulated in a shell

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  2. Biomonitoring Study of Heavy Metals in Blood from a Cement Factory Based Community

    OpenAIRE

    Bank M.S.; Spengler J.D.

    2014-01-01

    Little is known about the effects of cement factory pollution, emissions, and kiln dust on contaminant exposure in human populations, including school environments, in close proximity to these point sources. In Ravena, New York, USA and vicinity, environmental pollution from a local cement plant is considered significant and substantial according to the United States Environmental Protection Agency’s Toxic Release Inventory, published in 2006, 2007, and 2010. We hypothesized that cement facto...

  3. 利用水泥厂处理生活垃圾必须走自主创新之路%Disposal of municipal solid waste by cement plants must take the route of independent innovation

    Institute of Scientific and Technical Information of China (English)

    任沁新; 袁曙光; 许艳丽

    2011-01-01

    After briefly introducing problems existing in the common ways of municipal solid waste disposal, the paper analyzes the status of waste disposal by cement plants in some foreign countries, and points out that waste classification is the premises of successful waste disposal. In combination with the component features of domestic municipal solid waste as well as on the basis of a mass of investigations and researches, technologies and equipments in possession of self-owned intellectual property rights for municipal solid waste disposal are developed, so as to attain the requirements of "harmlessness, decrease and recycle".%介绍了目前常用的生活垃圾处理方式中存在的问题,分析了国外利用水泥厂处理生活垃圾的现状,指出垃圾分类是成功分解的前提.结合我国城市垃圾的成分特点,在大量调研和试验的基础上,开发出具有自主知识产权且能够处理原生态城市生活垃圾的工艺和关键设备,能够真正实现"无害化、减量化、资源化"的垃圾处理要求.

  4. Application of the multistage prediction adaptive control gambit method to the cement plant raw material mixing control; Semento puranto genryo chogo seigyo eno tadan yosoku tekio seigyo. Shuho no oyo

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Kenji [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1999-04-05

    Mixing control system of the cement plant makes composition fluctuation of the acceptance raw material to be the probability disturbance, and the mixture ratio of control word and 4 kinds of raw material is made to be manipulated variable in respect of hydraulic modulus (HM), silicon percentage of victory (SM), iron modulus (IM). It was shown that the non-intervention between manipulated variable and controlled variable was approximately possible using the static predistorter, while being the multivariable stochastic control system of two input and ternate force, is shown. Besides, it comes out, and the combination conjunction cotton control system is presented in respect of dynamic adaptive control by Extended Horizon Adaptive Control based on the multistage prediction and static predistorter. That it has the performance which in addition, it is robust for the characteristic fluctuation of the object including the dead time for conventional control system and adaptive control based on the prediction still more tracking and regulation performance of three indexes it compares compare excellence were confirmed by the simulation, and the prior verification of the application effectiveness to the real machine was carried out. (translated by NEDO)

  5. Definition and means of maintaining the emergency notification and evacuation system portion of the plutonium finishing plant safety envelope

    Energy Technology Data Exchange (ETDEWEB)

    WHITE, W.F.

    1999-05-20

    The Emergency Evacuation and Notification System provides information to the Plutonium Finishing Plant (PFP) Building Emergency Director to assist in determining appropriate emergency response, notifies personnel of the required response, and assists in their response. The report identifies the equipment in the Safety Envelope (SE) for this System and the Administrative, Maintenance, and Surveillance Procedures used to maintain the SE Equipment.

  6. Occupational investigation and evaluation of a cement plant in Anhui Province%安徽省某水泥厂职业卫生学调查和评价

    Institute of Scientific and Technical Information of China (English)

    戴丹; 王俊; 陈葆春; 翟炜; 徐艳龙

    2013-01-01

    [Objective]To perform investigation, detection evaluation on occupational hazards in a cement plant, and provide coun-termeasures for occupational disease control. [Methods]The occupational investigation and detection of occupational hazards were used to collect the data for analysis and evaluation. [ Results] The dust concentrations of the department of shipping and loading exceed occupational exposure limits, other detection points were in line with national standards on the temperature, noise and dust concentrations. [Conclusion] The plant needs to strengthen occupational health management, to improve employees' protection awareness via education and training.%目的 对某水泥厂存在的职业病危害因素进行调查和检测评价,为该厂职业病防治提供对策.方法 采用职业卫生学调查和职业病危害因素检测方法,收集相关资料并对结果进行分析评价.结果 水泥分厂发运工段水泥装车岗位粉尘浓度超过国家职业接触限值,其他检测点高温、噪声、粉尘浓度均符合国家标准.结论 该水泥厂需加强职业卫生管理,同时应加强职工自我防护意识的教育和培训.

  7. Osteotransductive bone cements.

    Science.gov (United States)

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P

    1998-01-01

    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  8. Ignition Dynamic Parameters for Coke in Cement Calciners

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mathematical ignition model was established and researches of ignition dynamic parameters for coke in some typical coal samples from cement plants was carried out according to circumstances of coal combusted in cement plants.In order to get the ignitioin temperature Tpi of carbon particles more accurately,the temperature rising experimental method was used and the actual heating circumstances for pulverized coal in calciners(in cement plants)were also considered.With this method,the accurate determination of the ignition temperature of coke in coal was achieved,so as to get some ignition dynamic parameters.These research results provide a theoretical basis for investigating coal ignition characteristics more scientifically and more accurately.

  9. Conversion of Moroccan cement works to coal firing

    Energy Technology Data Exchange (ETDEWEB)

    Ahmouz, B.

    1988-01-01

    The manufacture of one tonne of cement needs 80 to 120 kWh and from 680 to 1250 Mcal, depending on the process used. Since 1973, the fuel used by the sector was exclusively heavy fuel oil no. 2, until 1982 when the Meknes cement works took into service its old coal-fired mill which had been at a standstill since 1973. Several months later, Lafarge Casablanca re-started its old mill after a renovation. The Agidir Cement Works took its plant into service in November 1984. The New Cement Works of Casablanca (Cinouca) began in January 1985 to use coal pulverized at the works of Lafarge Casablanca which has spare capacity in its plant, while waiting to take its own shop in service in May 1988. 1985 also saw the beginning of the coalfired plants of Asment and Temara in August and of the Tetouan Cement Works in October. The last cement works to be converted to coal is that of Tanger which is expected to commission its plant in October 1987. At present, coal furnishes about 85% of the heat formerly produced from fuel oil. On the technical level the use of coal is particularly well suited to the cement industry; but the use of coal is generally accompanied by certain inconveniences such as: losses of material during transit; floor space taken up by the stocks; the risk of explosions and of fires. The total investment will have exceeded the sum of 192 million Dirhams. The expected savings of energy from this conversion at present are estimated as over 150 million Dirhams per year. 4 figs., 1 tab.

  10. CO2 Capture for Cement Technology

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar

    performed recently has focused on CO2capture from fossil fuel-based power plants. Inherently,this process is especially suitablefor cement plants, as CaO used for CO2capture is also a majoringredient for clinker production. Thus, a detailed investigation was carried outto study the applicationof......% of the inlet CO2 was captured by highly deactivated limestone, which had a maximum CO2 capture capacity of 11.5%, with an inlet Ca/C ratio of 13. So, the performance of the carbonator can be defined by the inlet Ca/C ratio, which can be estimated if the maximum capture capacity of limestone is known...

  11. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect

  12. Building materials for a sustainable future – cement

    CSIR Research Space (South Africa)

    Mapiravana, Joseph

    2014-03-01

    Full Text Available /or content were compared against a fixed 1kg OPC/CEM I (91% clinker), at plant, using Eco-invent data version 2.1 unit process. Results of the simulation are shown in Table 2. 8 Table 2. Comparison of carbon footprints of simulated geopolymers against... Geopolymer cement (0.85kg blast furnace slag, 0.15kg sodium silicate, furnace liquor, 37% in H2O, , Eco-invent data version 2.1 unit process 3. 1kg Geopolymer Cement (0.85kg blast furnace slag, 0.075kg sodium silicate, furnace liquor, 37% in H2O, at plant...

  13. Biomass use in the Dutch cement industry ENCI, Maastricht, The Netherlands

    NARCIS (Netherlands)

    Junginger, H.M.

    2009-01-01

    Based in the Netherlands, ENCI is a division of HeidelbergCement active in the Benelux countries. It possesses three main production facilities in the Netherlands, of which the biggest is the integrated production plant in Maastricht. ENCI has been generating cement from Maastricht since 1926, and d

  14. ASHES AS AN AGENT FOR CEMENT-LIME BASED SOLIDIFICATION/STABILIZATION OF THE HAZARDOUS WASTE

    Directory of Open Access Journals (Sweden)

    Barbora Lyčkova

    2008-12-01

    Full Text Available One of the common treatment methods for the hazardous waste is the cement and cement-lime based solidification/stabilization (S/S. This article deals with the possibility of currently used recipe modification using fluidized bed heating plant ashes as an agent.

  15. 78 FR 10005 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Science.gov (United States)

    2013-02-12

    ... Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants; Final Rule #0;#0;Federal Register / Vol. 78 , No. 29 / Tuesday... RIN 2060-AQ93 National Emission Standards for Hazardous Air Pollutants for the Portland...

  16. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  17. POZZOLAN AND CEMENTS WITH POZZOLAN

    Directory of Open Access Journals (Sweden)

    Hasan KAPLAN

    1995-02-01

    Full Text Available Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, cement with pozzolan is produced by adding the pozzolan, which has a large reservoir in the country, in cement in sertain amount. However this type of cement is consumed in the construction sector, sortage of scientific investigation and speculative news on the subject.are worried the users and producers. In this paper, prior to an experimental study on the cements having pozzolan additive, historical development of pozzolan, reservoir of Turkiye, and comparison with portland cement is carried out. Advantages and disadvantages of pozzolan are also discussed in some points.

  18. Cement from magnesium substituted hydroxyapatite.

    Science.gov (United States)

    Lilley, K J; Gbureck, U; Knowles, J C; Farrar, D F; Barralet, J E

    2005-05-01

    Brushite cement may be used as a bone graft material and is more soluble than apatite in physiological conditions. Consequently it is considerably more resorbable in vivo than apatite forming cements. Brushite cement formation has previously been reported by our group following the mixture of nanocrystalline hydroxyapatite and phosphoric acid. In this study, brushite cement was formed from the reaction of nanocrystalline magnesium-substituted hydroxyapatite with phosphoric acid in an attempt to produce a magnesium substituted brushite cement. The presence of magnesium was shown to have a strong effect on cement composition and strength. Additionally the presence of magnesium in brushite cement was found to reduce the extent of brushite hydrolysis resulting in the formation of HA. By incorporating magnesium ions in the apatite reactant structure the concentration of magnesium ions in the liquid phase of the cement was controlled by the dissolution rate of the apatite. This approach may be used to supply other ions to cement systems during setting as a means to manipulate the clinical performance and characteristics of brushite cements.

  19. US cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  20. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  1. Advances in Glass Ionomer Cements

    OpenAIRE

    KAYA, Dt. Tuğba; TİRALİ, Yard. Doç. Dr. Resmiye Ebru

    2013-01-01

    In recent years there have been a number of innovations and developments with respect to glass ionomer cements and their applications in clinical dentistry. This article considers some of the recent outstanding studies regarding the field of glass ionomer cement applications, adhesion and setting mechanisms, types, advantage and disadvantages among themselves and also to enhance the physical and antibacterial properties under the title of 'Advances in Glass Ionomer Cements'. As their biologic...

  2. Cement penetration after patella venting.

    Science.gov (United States)

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement.

  3. [Haemotoxicity of dental luting cements].

    Science.gov (United States)

    Anders, A; Welker, D

    1989-06-01

    A glass ionomer luting cement (AquaCem) shows a relatively low haemolytic activity in comparison with two zinc phosphate cements. Especially the initial irritation by this cement is smaller. Although it is possible that AquaCem particularly, in unfavourable cases, may damage the pulpa dentin system; this is due to the slowly decrease of the haemolytic activity with increasing of the probes. We found that Adhesor showed in dependence of the batches a varying quality.

  4. Impact of cement dust pollution on Cedrela fissilis Vell. (Meliaceae): A potential bioindicator species.

    Science.gov (United States)

    Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Modolo, Luzia Valentina; Lemos-Filho, José Pires; Paiva, Elder Antonio Sousa

    2016-09-01

    Considering the impacts caused to vegetation in the vicinity of cement factories, the aim of this study was to evaluate the impacts of cement dust on the structural organization and physiological/biochemical traits of Cedrela fissilis leaflets, a woody species native to tropical America. Plants were exposed to 2.5 or 5 mg cm-2 cement dust applied to the leaf surface, to the soil or simultaneously to the leaf surface and the soil.. Leaves of shoot-treated plants exhibited chlorosis, marginal and inter veins necrosis, diminished thickness, epidermal cells less turgid, cellular collapse, obstructed stomata, senescence, rolling and some abscission. In few cases, individual death was recorded. Cement dust-treated plants also presented decreased amount of photosynthetic pigments and iron (Fe) and increase in calcium (Ca) levels. The cement crust formed in leaves surface blocked from 30 to 50% of the incoming light and reduced the stomatal conductance and the potential quantum yield of photosystem II. Control or soil-treated plants did not exhibit morphophysiological changes throughout the experiment. The activity of superoxide dismutase, catalase and ascorbate peroxidase increased in leaves of plants upon treatment with 2.5 mg cm(-2) cement dust, independent of the site application. Overall, these results indicate that C. fissilis is highly sensitive to cement dust at the initial stage of development.

  5. Cement industry control system based on multi agent

    Institute of Scientific and Technical Information of China (English)

    王海东; 邱冠周; 黄圣生

    2004-01-01

    Cement production is characterized by its great capacity, long-time delay, multi variables, difficult measurement and muhi disturbances. According to the distributed intelligent control strategy based on the multi agent, the multi agent control system of cement production is built, which includes integrated optimal control and diagnosis control. The distributed and multiple level structure of multi agent system for the cement control is studied. The optimal agent is in the distributed state, which aims at the partial process of the cement production, and forms the optimal layer. The diagnosis agent located on the diagnosis layer is the diagnosis unit which aims at the whole process of the cement production, and the central management unit of the system. The system cooperation is realized by the communication among optimal agents and diagnosis agent. The architecture of the optimal agent and the diagnosis agent are designed. The detailed functions of the optimal agent and the diagnosis agent are analyzed.At last the realization methods of the agents are given, and the application of the multi agent control system is presented. The multi agent system has been successfully applied to the off-line control of one cement plant with capacity of 5 000 t/d. The results show that the average yield of the clinker increases 9.3% and the coal consumption decreases 7.5 kg/t.

  6. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

    2008-07-30

    The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per

  7. Review of technologies for mercury removal from flue gas from cement production processes

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Anker Degn; Windelin, Christian

    2012-01-01

    Mercury is a pollutant of concern and mercury emissions from cement plants are under environmental regulation. After coal-fired power plants, mercury emissions from cement and mineral production are the second largest anthropogenic sources. Compared to fuels, cement raw materials are the major....... The sorbent injection system should be installed downstream of the main kiln filter and upstream of a new added polishing fabric filter to avoid the cement kiln dust recycling and disposal issues. To reduce the sorbent cost and possible disposal expense, non-carbon based sorbents that could be added to cement...... or regenerated in-situ are desired and should be developed.Various mathematical models have been developed to simulate mercury removal in fixed-bed reactors and by sorbent injection upstream of a fabric filter. The fabric filter adsorption models use the adsorption isotherms coupled with diffusion in the sorbent...

  8. Phosphate based oil well cements

    Science.gov (United States)

    Natarajan, Ramkumar

    The main application of the cement in an oil well is to stabilize the steel casing in the borehole and protect it from corrosion. The cement is pumped through the borehole and is pushed upwards through the annulus between the casing and the formation. The cement will be exposed to temperature and pressure gradients of the borehole. Modified Portland cement that is being used presently has several shortcomings for borehole sealant. The setting of the Portland cement in permafrost regions is poor because the water in it will freeze even before the cement sets and because of high porosity and calcium oxide, a major ingredient it gets easily affected by the down hole gases such as carbon dioxide. The concept of phosphate bonded cements was born out of considerable work at Argonne National Laboratory (ANL) on their use in stabilization of radioactive and hazardous wastes. Novel cements were synthesized by an acid base reaction between a metal oxide and acid phosphate solution. The major objective of this research is to develop phosphate based oil well cements. We have used thermodynamics along with solution chemistry principles to select calcined magnesium oxide as candidate metal oxide for temperatures up to 200°F (93.3°C) and alumina for temperatures greater than 200°F (93.3°C). Solution chemistry helped us in selecting mono potassium phosphate as the acid component for temperatures less than 200°F (93.3°C) and phosphoric acid solution greater than 200°F (93.3°C). These phosphate cements have performance superior to common Portland well cements in providing suitable thickening time, better mechanical and physical properties.

  9. Thermal Shock-resistant Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  10. 水泥厂废旧除尘布袋热重分析及其形态特征%Thermogravimetric analysis and morphological characteristics of waste filter bag from cement plant

    Institute of Scientific and Technical Information of China (English)

    陈海斌; 宁寻安; 廖希凯; 刘敬勇; 吴坚荣

    2013-01-01

    采用综合热重分析法,对水泥厂3种不同工段的废旧除尘布袋及相对应的同型号新布袋进行了热重(TG)分析实验研究.结果表明,废旧除尘布袋热重分析的升温过程中主要有3个失重峰,前两个失重峰与涤纶纤维的燃烧析出相对应,第3个失重峰主要是碳酸钙分解的结果.采用积分法(Coats-Redfern方程)计算得到各阶段燃烧反应的机理方程及相应的活化能参数.分析表明,在低温段废旧布袋中的灰尘对燃烧反应影响不大,而在高温段废旧布袋中的灰尘导致燃烧反应活化能升高,阻碍燃烧反应进行.从电镜扫描和能谱分析可知,废旧除尘布袋中的涤纶纤维几乎被焚烧殆尽,剩下的少量焚烧灰渣由C、O、Si、Ca等主要元素,以及Ti、Al、Mg、Mn、Fe等次要元素组成.这种灰渣与水泥成分类似,具有较高的回收利用价值.%The combustion characteristics of waste filter bags from three working sections in a cement plant and new filter bags of the same model were studied by thermogravimetric analysis.The results showed that there were three obvious stages of weight loss in the waste filter bag combustion curves,and the first two stages were corresponded to the combustion of polyester while the third stage was caused by the decomposition of CaCO3.Both the reaction equations for different combustion periods and the corresponding activation energies were obtained by using the Coats-Redfern equation.The data indicated that dust in the filter bag had a little influence on the activation energy for combustion at low temperature,while it led to an increase of the activation energy at high temperature and thus hindered the combustion reaction.According to the results by scanning electron microscope and energy dispersive spectrum analysis,the polyester in waste filter bag had been burned off,and only a small amount of ash remained.The main elements of the ash were C,O,Si and Ca,and the minor elements were Ti

  11. Clean Development Mechanism: Laterite as Supplementary Cementing Material (SCM

    Directory of Open Access Journals (Sweden)

    Syed Zaighum Abbass

    2013-02-01

    Full Text Available Carbon dioxide (CO2 a major Green House Gas (GHG in the atmosphere, is believed to be largely responsible for global climate change through industrial emissions. The level of CO2 concentration has exponentially increased from about 280 ppm at the start of the industrial revolution to about 380 ppm to date. Although Kyoto protocol has bound industrialized nations to reduce green house gas emissions by 5.2% below 1990 levels around year 2008-2012, but violation continues. The cement industry is one of the major emitter of green house gases, particularly CO2 due to its energy intensive production process. It is estimated that approximately 1 tone of CO2 is released during the manufacturing of each tone of Portland cement. Most of CO2 emissions originate from burning fossil fuels and de-carbonization of limestone in a cement plant. During past several decades, the use of by-product materials in concrete, either as components of blended cements or as admixtures, has increased significantly. In this study, another alternate Supplementary Cementing Material (SCM, Laterite has been used with the objectives: to evaluate the performance of cement containing different percentages of laterite (5, 10, 15, 20, 25, and 30 %; to identify the optimum replacement percentage; and to investigate the effects of different concentrations of laterite on various properties of cement. For that purpose, laterite was tested: before blending (for elemental and mineralogical composition by using XRF, SEM and XRD: after blending (Elemental analysis using XRF, fineness test by using Blaine’s air permeability test and for particle size % on 45, 90 and 200 µ sieve, respectively; and after hydration (for mineralogical analysis using SEM. Furthermore, physical tests of manufactured cement, i.e., water consistency, setting time, Le-Chatlier-expansion and compressive strength were also evaluated and compared with limestone and fly-ash cement blends. The results show that with the

  12. Alternative fuels in cement industry; Alternativa braenslen i cementindustrin

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, K.E.; Ek, R. [Finnsementti Oy, Parainen (Finland); Maekelae, K. [Finreci Oy (Finland)

    1997-10-01

    In this project the cement industry`s possibilities to replace half of the fossil fuels with waste derived fuels are investigated. Bench-scale experiments, pilot plant tests and full scale tests have been done with used tires and plastics wastes

  13. Colorectal cancer and non-malignant respiratory disease in asbestos cement and cement workers. Studies on mortality, cancer morbidity, and radiographical changes in lung parenchyma and pleura

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsson, K.

    1993-09-01

    Radiologically visible parenchymal changes (small opacities >= 1/0;ILO 1980 classification) were present in 20% of a sample of workers (N=174), employed for 20 years (median) in an asbestos cement plant. Exposure-response relationships were found, after controlling for age and smoking habits. In a sample of asbestos cement workers with symptoms and signs suggestive of pulmonary disease (N=33), increased lung density measured by x-ray computed tomography, and reduced static lung volumes and lung compliance was found. In a cohort of asbestos cement workers (N=1.929) with an estimated median exposure of 1.2 fibres/ml, the mortality from non-malignant respiratory disease was increased in comparison to a regional reference cohort (N=1.233). A two-to three-fold increase of non-malignant respiratory mortality was noted among workers employed for more than a decade in the asbestos cement plant, compared to cement workers (N=1.526), who in their turn did not experience and increased risk compared to the general population. In the cohorts of asbestos cement and cement workers, there was a tow-to three-fold increased incidence of cancer in the right part of the colon, compared to the general population as well as to external reference cohorts of other industrial workers (N=3.965) and fishermen (N=8.092). A causal relation with the exposure to mineral dust and fibres was supported by the findings of higher risk estimated in subgroups with high cumulated asbestos doses or longer duration of cement work. The incidence of cancer in the left part of the colon was not increased. Morbidity data, but not mortality data, disclosed the subsite-specific risk pattern. Both asbestos cement workers and cement workers has an increased incidence of rectal cancer, compared with the general population, and with the fishermen. The risk was, however, of the same magnitude among the other industrial workers. 181 refs.

  14. Static Model of Cement Rotary Kiln

    Directory of Open Access Journals (Sweden)

    Omar D. Hernández-Arboleda

    2013-11-01

    Full Text Available In this paper, a static model of cement rotary kilns is proposed. The system model is obtained through polynomial series. The proposed model is contrasted with data of a real plant, where optimal results are obtained. Expected results are measured with respect to the clinker production and the combustible consumption is measured in relation with the consumption calorific. The expected result of the approach is the increase of the profitability of the factory through the decrease of the consumption of the combustible.

  15. Corrosion of steel bars in cracked concrete made with ordinary portland, slag and fly ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, T.U.; Yamaji, T.; Hamada, H. [Port and Harbor Research Inst., Ministry of Land, Infrastructure and Transport (Japan); Aoyama, T. [PS Corp. (Japan)

    2001-07-01

    A study was conducted in which the marine durability of ordinary portland cement, slag and fly ash cement was examined using 15 year old plain and reinforced concrete cylindrical specimens. The performance of these cements was then examined for pre-cracked reinforced concrete prism samples. The process of manufacturing cement emits huge amounts of carbon dioxide into the global atmosphere. Replacing a portion of the cement with by-products from the steel industry and thermal power plants (which are both huge emitters of carbon dioxide) can lower carbon dioxide emissions and also solve the disposal issue of slag and fly ash while increasing the long-term durability of concrete structures. In this study, concrete cylindrical specimens were made of ordinary portland cement, slag and fly ash cements. The specimens were 100 x 100 x 600 mm prisms of different types of cement. Water-to-cement ratios were 0.45 and 0.55. Both tap water and seawater were used as mixing water. The samples were exposed in tidal pools for 15 years to evaluate the compressive strength of the concrete, corrosion of the steel bars, and chloride-ion concentrations in the concrete. It was shown that, with the exception of fly ash cements, the compressive strength of most cements increased after 15 years of exposure compared to its 28 day strength. Type C slag cement demonstrated the best performance against chloride-ion at the surface of concrete made with slag and fly ash. Voids in the steel-concrete interface make it possible for corrosion pits to develop. The use of seawater as mixing water results in earlier strength development at 28 days and does not cause to the strength of the concrete to regress after 15-years of exposure, but it causes more corrosion of steel bars at a lower cover depth. Corrosion of steel bars is not an issue at deeper cover depths. 15 refs., 19 tabs., 13 figs.

  16. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    A K Misra; Renu Mathur

    2007-06-01

    The scope of magnesium oxychloride (MOC) cement in concrete works has been evaluated. MOC cement concrete compositions of varying strengths having good placing and finishing characteristics were prepared and investigated for their compressive and flexural strengths, -values, abrasion resistance etc. The durability of MOC concrete compositions against extreme environmental conditions viz. heating–cooling, freezing–thawing, wetting–drying and penetration and deposition of salts etc were investigated. The results reveal that MOC concrete has high compressive strength associated with high flexural strength and the ratio of compressive to flexural strength varies between 6 and 8. The elastic moduli of the compositions studied are found to be 23–85 GPa and the abrasion losses between 0.11 and 0.20%. While alternate heating–cooling cycles have no adverse effect on MOC concrete, it can be made durable against freezing–thawing and the excessive exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution of the same concentration.

  17. Cemented total hip arthroplasty with Boneloc bone cement.

    Science.gov (United States)

    Markel, D C; Hoard, D B; Porretta, C A

    2001-01-01

    Boneloc cement (WK-345, Biomet Inc, Warsaw, Ind) attempted to improve cement characteristics by reducing exotherm during polymerization, lowering residual monomer and solubility, raising molecular weight, and lowering airborne monomer and aromatic amines. To study the efficacy of this cement, a selected group of 20 patients were prospectively enrolled and followed up after hip arthroplasty. All components were cemented. During the enrollment period, approximately 70 other hip arthroplasties were performed. Clinical evaluation was based on the Harris hip score. Radiographic evaluation was based on assessment of position of the components, subsidence, and/or presence of radiolucencies. Patients had follow-up for an average of 42 months (11 to 58 months); 1 was lost to follow-up. Of these, 7 (35%) had failure at last follow-up. Despite its initial promise, Boneloc cement had an unacceptably high failure rate over a relatively short follow-up period and is not recommended for use. Despite the longevity and odor toxicity problems with conventional bone cement, new cement technologies must be approached with caution.

  18. Grout cement. ; Grout cement to fill ground/grout cement to fill cracks. Chunyuyo cement. ; Jiban chunyuyo cement /hibiware chunyuyo cement

    Energy Technology Data Exchange (ETDEWEB)

    Okaue, H. (Nittetsu Cement Co. Ltd., Hokkaido (Japan))

    1991-09-01

    Ground grout cement is grouted into the ground under high pressure in high water ratio (100 to 1000%) in the form of milk differing from concrete in terms of the water-cement ratio. The grouted milk is governed by characteristics of the cement the milk itself possesses, resulting in variable grouting modes, which are divided in fracture grouting, permeation grouting and boundary grouting. Their applications include cutting off of water in dams, ground reinforcement, prevention of water gushing in tunnel excavation, natural ground reinforcement, improvement of sandy soil and prevention of its collapse, and stabilization of ground for urban civil engineering works such as subway, water supply and sewerage constructions. Grout cement to fill cracks in concrete structures is so grouted into cracks that the slurry fills up contiguous cracks to a certain level and goes upward while pushing out air or water existing in the cracks. The slurry filled into the cracks solidifies and hardens while being absorbed into the concrete, and finally integrates with the concrete. The grout cement is used to rework such concrete structures as dams, tunnels, and bridge bases. 6 figs., 4 tabs.

  19. 21 CFR 888.4200 - Cement dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  20. Leaf structural traits of tropical woody species resistant to cement dust.

    Science.gov (United States)

    Siqueira-Silva, Advanio Inácio; Pereira, Eduardo Gusmão; Modolo, Luzia Valentina; Paiva, Elder Antonio Sousa

    2016-08-01

    Cement industries located nearby limestone outcrops in Brazil have contributed to the coating of cement dust over native plant species. However, little is known about the extent of the response of tropical woody plants to such environmental pollutant particularly during the first stages of plant development and establishment. This work focused on the investigation of possible alterations in leaf structural and ultrastructural traits of 5-month-old Guazuma ulmifolia Lam. (Malvaceae), 6-month-old Myracrodruon urundeuva Allemão (Anacardiaceae), and 9-month-old Trichilia hirta L. (Meliaceae) challenged superficially with cement dust during new leaf development. Leaf surface of plants, the soil or both (leaf plus soil), were treated (or not) for 60 days, under controlled conditions, with cement dust at 2.5 or 5.0 mg cm(-2). After exposure, no significant structural changes were observed in plant leaves. Also, no plant death was recorded by the end of the experiment. There was also some evidence of localized leaf necrosis in G. ulmifolia and T. hirta, leaf curling in M. urundeuva and T. hirta, and bulges formation on epidermal surface of T. hirta, after cement dust contact with plant shoots. All species studied exhibited stomata obliteration while T. hirta, in particular, presented early leaf abscission, changes in cellular relief, and organization and content of midrib cells. No significant ultrastructural alterations were detected under the experimental conditions studied. Indeed, mesophyll cells presented plastids with intact membrane systems. The high plant survival rates, together with mild morphoanatomic traits alterations in leaves, indicate that G. ulmifolia is more resistant to cement dust pollutant, followed by M. urundeuva and T. hirta. Thus, the three plant species are promising for being used to revegetate areas impacted by cement industries activities.

  1. INCORPORAÇÃO DE RESÍDUOS VEGETAIS E SEUS EFEITOS SOBRE AS CARACTERÍSTICAS FÍSICO-MECÂNICAS DE MISTURAS DE SOLO-CIMENTO PARA FINS DE CONSTRUÇÃO RURAL PLANT RESIDUES INCORPORATION EFFECTS ON PHYSICAL AND MECHANICAL CHARACTERISTICS OF SOIL-CEMENT MIXTURES FOR AGRICULTURAL BUILDINGS PURPOSES

    Directory of Open Access Journals (Sweden)

    Marcos Fernandes Oliveira

    2007-12-01

    Full Text Available

    O presente trabalho teve como objetivo avaliar o efeito da adição da casca de arroz e da casca da semente do capim braquiária, sobre as propriedades físico-mecânicas de misturas de solo-cimento e conseqüente análise de sua viabilidade técnica com vistas à fabricação de materiais de construção alternativos para fins rurais. Para tal, os resíduos foram triturados, peneirados e tratados em solução de cal e o solo submetido aos ensaios de caracterização segundo normas brasileiras. Os resíduos foram adicionados em substituição ao cimento, variando os teores de cimento e de resíduo vegetal desde 100% de cimento e 0% de resíduo, até 60% de cimento e 40% de resíduo. Posteriormente foram moldados corpos-de-prova cilíndricos que foram submetidos aos ensaios de compressão simples, aos sete, 28 e 56 dias, e de capacidade de absorção de água, aos sete dias da moldagem. Após análise dos resultados, pôde-se concluir que as misturas obtidas a partir da substituição parcial do cimento por 10% de resíduos mostram-se viáveis como matéria-prima na fabricação de elementos construtivos não estruturais, tais como, blocos e tijolos prensados, destinados às construções e instalações rurais.

    PALAVRAS-CHAVE: Solo-cimento, resíduos vegetais, construções rurais.

    The aim of this research was to evaluate the effect of rice and Brachiaria brizantha husks on physical and mechanical properties of soil-cement mixtures and, consequently, to analyse their technical feasibility to manufacture alternative building materials for agricultural purposes. Husks were ground, sieved, and treated in lime solution and soil submitted to characterisation tests according to Brazilian standards. The plant residues were added in substitution to the cement. The cement content and

  2. The computer and the cement plant

    Directory of Open Access Journals (Sweden)

    Peirce, S. W.

    1966-06-01

    Full Text Available Not available¿Cuál es la razón para que la dirección de la fábrica de cemento ponga sus miras en el computador digital? No cabe la menor duda que esta razón radica en la eficacia y en la obtención de un producto de calidad. En los últimos años el interés se está centrando en la producción de cemento de mejor calidad, haciéndolo tan eficiente y económicamente como ello sea posible. La competencia así lo ha determinado. Cada proceso de la fabricación fue consecuentemente examinado, aplicándose mejoras técnicas en una rápida sucesión. Uno de los principales resultados fue la tendencia hacia fábricas de mayor envergadura, con hornos más grandes y con procesos de funcionamiento que son cada vez más automatizados. El gabinete de control centralizado constituye hoy día una instalación, en lugar de una curiosidad. En compañía de él viene un nuevo paso de instrumentación digital y analógica y, más recientemente, el sistema de computador digital totalmente normalizado para mejorar la eficacia operacional.

  3. Cements containing by-product gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Bensted, J. [University of Greenwich, London (United Kingdom). School of Biological and Chemical Sciences

    1995-12-31

    Chemical by-product gypsum can readily replace natural gypsum in Portland cements and in blended cements like Portland pfa cement and Portland blast furnace cement without technical detriment in many instances. Indeed, sometimes the technical performance of the cement can be enhanced. The hydration chemistry is often changed, in that where there is at least some retardation of setting, more AFT phase (ettringite) is formed during early hydration at the expense of calcium silicate hydrates. By-product gypsum can also replace natural gypsum in speciality products like calcium aluminate cement-Portland cement mixes for producing quick setting cements and in calcium sulphoaluminate-type expansive cements. However, by-products gypsum have proved to be less successful for utilization in API Classes of oilwell cements, because of the greater difficulty in obtaining batch-to-batch consistency in properties like thickening time and slurry rheology. 11 refs., 3 figs., 5 tabs.

  4. Cement for Oil Well Cementing Operations in Ghana

    African Journals Online (AJOL)

    Michael

    This research evaluates the ... The paper details results of API specification tests and the physical ... Keywords: Compressive strength, Free fluid, Portland cement, Rheology, Thickening time ..... Geothermal Well Cementing” Proceedings of.

  5. Novorossiysk agglomeration landscapes and cement production: geochemical impact assessment

    Science.gov (United States)

    Alekseenko, A. V.; Pashkevich, M. A.

    2016-09-01

    The article deals with assessing the environmental impact of marl mining and cement production in Novorossiysk city (Krasnodar krai, Russia). The existing methods of studying the environmental effects caused by the cement industry have been reviewed. Soil and aquatic vegetation sampling has been carried out and the gross concentration of metals in the samples has been defined. The research has been conducted in the certified and accredited laboratory using emission spectral analysis. The external control has been carried out via X-ray fluorescence analysis. Based on the collected data, main chemical pollutants in soil cover and water area near the cement plant have been identified. The contaminants released by urban enterprises and motor vehicle emissions, as well as fugitive dust from dumps and the cement factory, lead to multi-element lithogeochemical anomaly at geochemical barriers in soils. Accumulation of pollutants in soil depends on the type of land use and the area relief. The most contaminated aquatic landscapes have been identified in the inner bay. According to this information, the technical proposals can be prepared for environmental safety management in strongly polluted city areas, as well as for the reclamation design in the areas currently experiencing the negative impact of cement production.

  6. Possibility of Using Wood Pulp in the Preparation of Cement Composites

    Science.gov (United States)

    Kidalova, Lucia; Stevulova, Nadezda; Geffert, Anton

    2014-06-01

    Sustainable building materials are based on the use of renewable materials instead of non-renewable. Large group of renewable materials composes of plant fibres having high tensile strength are used as fillers into building material with reinforcement function of composite. This study aimed to establish the mechanical and physical properties of cement composites with organic fillers, such as wood pulp. Wood pulp cellulose is very interesting material as reinforcement in cement which contributes to a reduction of pollutants. Varying the producing technology (wood pulp and cement ratio in mixture) it is possible to obtain composites with density from 940 to 1260 kgm-3 and with compressive strength from 1.02 to 5.44 MPa after 28 days of hardening. Based on the experimental results, cement composites with using unbleached wood pulp reach higher values than composites based on bleached wood pulp. Volume ratio of unbleached wood pulp in composites influences water absorbability of cement composites

  7. Possibility of Using Wood Pulp in the Preparation of Cement Composites

    Directory of Open Access Journals (Sweden)

    Kidalova Lucia

    2014-06-01

    Full Text Available Sustainable building materials are based on the use of renewable materials instead of non-renewable. Large group of renewable materials composes of plant fibres having high tensile strength are used as fillers into building material with reinforcement function of composite. This study aimed to establish the mechanical and physical properties of cement composites with organic fillers, such as wood pulp. Wood pulp cellulose is very interesting material as reinforcement in cement which contributes to a reduction of pollutants. Varying the producing technology (wood pulp and cement ratio in mixture it is possible to obtain composites with density from 940 to 1260 kgm-3 and with compressive strength from 1.02 to 5.44 MPa after 28 days of hardening. Based on the experimental results, cement composites with using unbleached wood pulp reach higher values than composites based on bleached wood pulp. Volume ratio of unbleached wood pulp in composites influences water absorbability of cement composites

  8. CSER 94-013: Classification and access to PFP 232-Z Incinerator Facility and limits on characterization and disassembly activities in 232-Z burning hood

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.M.

    1995-01-12

    This CSER justifies the Limited Control Facility designation for the closed Burning Hood in the PFP 232-Z Incinerator Facility. If the Burning Hood is opened to characterize the plutonium distribution and geometric integrity of the internals or for disassembly of the internals, then the more rigorous Fissionable Material Facility classification is required. Two sets of requirements apply for personnel access, criticality firefighting category for water use, and fissile material movement for the two states of the Burning Hood. The parameters used in the criticality analysis are listed to establish the limits under which this CSER is valid. Determination that the Burning Hood fissile material, moderation, or internal arrangements are outside these limits requires reevaluation of these parameter values and activities at the 232-Z Incinerator Facility. When the Burning Hood is open, water entry is to be prevented by two physical barriers for each water source.

  9. Magnesium substitution in brushite cements.

    Science.gov (United States)

    Alkhraisat, Mohammad Hamdan; Cabrejos-Azama, Jatsue; Rodríguez, Carmen Rueda; Jerez, Luis Blanco; Cabarcos, Enrique López

    2013-01-01

    The use of magnesium-doped ceramics has been described to modify brushite cements and improve their biological behavior. However, few studies have analyzed the efficiency of this approach to induce magnesium substitution in brushite crystals. Mg-doped ceramics composed of Mg-substituted β-TCP, stanfieldite and/or farringtonite were reacted with primary monocalcium phosphate (MCP) in the presence of water. The cement setting reaction has resulted in the formation of brushite and newberyite within the cement matrix. Interestingly, the combination of SAED and EDX analyses of single crystal has indicated the occurrence of magnesium substitution within brushite crystals. Moreover, the effect of magnesium ions on the structure, and mechanical and setting properties of the new cements was characterized as well as the release of Ca(2+) and Mg(2+) ions. Further research would enhance the efficiency of the system to incorporate larger amounts of magnesium ions within brushite crystals.

  10. Portland cement-blast furnace slag blends in oilwell cementing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, D.T.; DiLullo, G.; Hibbeler, J. [and others

    1995-12-31

    Recent investigations of blast furnace slag cementing technologies. have been expanded to include Portland cement/blast furnace slag blends. Mixtures of Portland cement and blast furnace slag, while having a long history of use in the construction industry, have not been used extensively in oilwell cementing applications. Test results indicate that blending blast furnace slag with Portland cement produces a high quality well cementing material. Presented are the design guidelines and laboratory test data relative to mixtures of blast furnace slag and Portland cements. Case histories delineating the use of blast furnace slag - Portland cement blends infield applications are also included.

  11. Fire hazard analysis for Plutonium Finishing Plant complex

    Energy Technology Data Exchange (ETDEWEB)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

  12. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-03-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  13. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  14. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  15. ABB 800 xA 在水泥生产线原料磨车间中的应用%ABB 800 xA System in Raw Mill Plant of Cement Production Line

    Institute of Scientific and Technical Information of China (English)

    黄华潘; 周廷美; 莫易敏; 郑双

    2015-01-01

    针对某公司一条水泥生产线的控制需求,介绍了ABB 800xA系统在水泥原料磨生产线中的应用。在ABB 800xA系统的Control Builder M软件中进行编程,采用FBD功能块语言,在集成环境下进行硬件、软件和网络的组态。以ABB AC800M为主控制器,并在Graphic Builder软件中进行生产线画面的绘制。整个水泥生产线原料磨控制系统已经通过业主公司的FAT验证,实现了水泥原料磨生产线的全自动控制。%Aiming at control requirements in a cement production line , the ABB 800xA system applied in cement raw mill production line was introduced .Programming was realized by software of Control Builder M in ABB 800xA systems using FBD function block language .The hardware , software and networks were configured in an integrated environment .And the flow line was drawn in the software of Graphic Builder .The whole raw mill control system of cement production line was verified by the in -vestor company's FAT.The fully automatic control was achieved in raw mill cement production line .

  16. Substitution of the clayey mineral component by lignite fly ash in portland cement clinker synthesis

    Directory of Open Access Journals (Sweden)

    Jovanović Nataša

    2006-01-01

    Full Text Available Fly ash from four power plants in Serbia (PP "Morava" - Svilajnac, PP "Kolubara" - Veliki Grijani, PP "Kostolac" - units B1 and B2 - Kostolac and PP "Nikola Tesla" - units A and B - Obrenovac was utilized as the starting raw component for Portland cement clinker synthesis. Limestone and quartz sand from the "Holcim - Serbia, a.d." cement factory were the other two starting raw components. Based on the chemical composition of the raw components and from the projected cement moduli, the amounts of raw components in the raw mixtures were calculated. Six different raw mixtures were prepared - each one consisted of limestone, sand and different fly ash. A raw mixture from the industrial production of the "Holcim - Serbia, a.d." cement factory was used as the reference material. The prepared raw mixtures were sintered in a laboratory furnace at 1400°C. The chemical and mineralogical compositions of the synthesized clinkers were determined. The characteristics of clinkers, based on fly ash, were compared to the characteristics of the industrial Portland cement clinker from the "Holcim - Serbia, a.d." cement factory. The results of the investigation showed that fly ash from power plants in Serbia can be suitable for Portland cement clinker synthesis.

  17. Research Progress of Cement Particleboard%水泥刨花板研究进展

    Institute of Scientific and Technical Information of China (English)

    韩益杰; 兰从荣; 饶久平

    2013-01-01

    阐述了不同植物材料与水泥的水化特性、改善相容性以及水泥刨花板生产工艺的国内外研究现状,并对水泥刨花板的发展在适应原料的多样化、技术设备的升级及在建筑材料领域的应用等进行展望。%This paper described the research status including the hydration characteristics of the different plant materials with ce -ment,improving the compatibility of plant materials with cement ,and production process of cement particleboard ,at the same time it looked ahead of the development of cement particleboard including adapting to diversified raw materials of the cement particleboard , the development of technology and equipment ,and the application for building materials .

  18. 7th NCB international seminar on cement and building materials. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Topics covered include: mining and mine environment (including CO{sub 2} mitigation in cement concrete industries), and project engineering and management (in volume 1); productivity enhancement and process optimisation (upgrading/cost reduction, grinding/refractories, process optimisation and control, and maintenance) (in volume 2); plant environment and pollution control (including global climate change) performance of concrete, and Portland and blended cements (in volume 3); special cements and binders, total quality management and energy management (in volume 4); and supplementary papers in volume 5.

  19. Sludge stabilization at the Plutonium Finishing Plant, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This Environmental Assessment evaluates the proposed action to operate two laboratory-size muffle furnaces in glovebox HC-21C, located in the Plutonium Finishing Plant (PFP), Hanford Site, Richland, Washington. The muffle furnaces would be used to stabilize chemically reactive sludges that contain approximately 25 kilograms (55 pounds) of plutonium by heating to approximately 500 to 1000{degrees}C (900 to 1800{degrees}F). The resulting stable powder, mostly plutonium oxide with impurities, would be stored in the PFP vaults. The presence of chemically reactive plutonium-bearing sludges in the process gloveboxes poses a risk to workers from radiation exposure and limits the availability of storage space for future plant cleanup. Therefore, there is a need to stabilize the material into a form suitable for long-term storage. This proposed action would be an interim action, which would take place prior to completion of an Environmental Impact Statement for the PFP which would evaluate stabilization of all plutonium-bearing materials and cleanout of the facility. However, only 10 percent of the total quantity of plutonium in reactive materials is in the sludges, so this action will not limit the choice of reasonable alternatives or prejudice the Record of Decision of the Plutonium Finishing Plant Environmental Impact Statement.

  20. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.”...

  1. Cementation of Loose Sand Particles based on Bio-cement

    Institute of Scientific and Technical Information of China (English)

    RONG Hui; QIAN Chunxiang

    2014-01-01

    Loose sand particles could be cemented to sandstone by bio-cement (microbial induced magnesium carbonate). The bio-sandstone was firstly prepared, and then the compressive strength and the porosity of the sandstone cemented by microbial induced magnesium carbonate were tested to characterize the cementation effectiveness. In addition, the formed mineral composition and the microstructure of bio-sandstone were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The experimental results show that the feasibility of binding loose sand particles using microbial induced magnesium carbonate precipitation is available and the acquired compressive strength of bio-sandstone can be excellent at certain ages. Moreover, the compressive strength and the porosity could be improved with the increase of microbial induced magnesium carbonate content. XRD results indicate that the morphology of magnesium carbonate induced by microbe appears as needles and SEM results show that the cementation of loose sand particles to sandstone mainly relies on the microbial induced formation of magnesium carbonate precipitation around individual particles and at particle-particle contacts.

  2. Optimum feeding rate of solid hazardous waste in a cement kiln burner

    OpenAIRE

    2013-01-01

    Solid hazardous waste mixed with wood chips (SHW) is a partly CO2 neutral fuel, and hence is a good candidate for substituting fossil fuels like pulverized coal in rotary kiln burners used in cement kiln systems. SHW is used in several cement plants, but the optimum substitution rate has apparently not yet been fully investigated. The present study aims to find the maximum possible replacement of coal by SHW, without negatively affecting the product quality, emissions and overall operation of...

  3. Hydration of fly ash cement

    Energy Technology Data Exchange (ETDEWEB)

    Etsuo Sakai; Shigeyoshi Miyahara; Shigenari Ohsawa; Seung-Heun Lee; Masaki Daimon [Tokyo Institute of Technology, Tokyo (Japan). Department of Metallurgy and Ceramics Science, Graduate School of Science and Engineering

    2005-06-01

    It is necessary to establish the material design system for the utilization of large amounts of fly ash as blended cement instead of disposing of it as a waste. Cement blended with fly ash is also required as a countermeasure to reduce the amount of CO{sub 2} generation. In this study, the influences of the glass content and the basicity of glass phase on the hydration of fly ash cement were clarified and hydration over a long curing time was characterized. Two kinds of fly ash with different glass content, one with 38.2% and another with 76.6%, were used. The hydration ratio of fly ash was increased by increasing the glass content in fly ash in the specimens cured for 270 days. When the glass content of fly ash is low, the basicity of glass phase tends to decrease. Reactivity of fly ash is controlled by the basicity of the glass phase in fly ash during a period from 28 to 270 days. However, at an age of 360 days, the reaction ratios of fly ash show almost identical values with different glass contents. Fly ash also affected the hydration of cement clinker minerals in fly ash cement. While the hydration of alite was accelerated, that of belite was retarded at a late stage.

  4. Biodeterioration of the Cement Composites

    Science.gov (United States)

    Luptáková, Alena; Eštoková, Adriana; Mačingová, Eva; Kovalčíková, Martina; Jenčárová, Jana

    2016-10-01

    The destruction of natural and synthetic materials is the spontaneous and irreversible process of the elements cycling in nature. It can by accelerated or decelerated by physical, chemical and biological influences. Biological influences are represented by the influence of the vegetation and microorganisms (MO). The destruction of cement composites by different MO through the diverse mechanisms is entitled as the concrete biodeterioration. Several sulphur compounds and species of MO are involved in this complex process. Heterotrophic and chemolithotrophic bacteria together with fungi have all been found in samples of corroding cement composites. The MO involved in the process metabolise the presented sulphur compounds (hydrogen sulphide, elemental sulphur etc.) to sulphuric acid reacting with concrete. When sulphuric acid reacts with a concrete matrix, the first step involves a reaction between the acid and the calcium hydroxide forming calcium sulphate. This is subsequently hydrated to form gypsum, the appearance of which on the surface of concrete pipes takes the form of a white, mushy substance which has no cohesive properties. In the continuing attack, the gypsum would react with the calcium aluminate hydrate to form ettringite, an expansive product. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to biodeterioration. The aim of this work was the study of the cement composites biodeterioration by the bacteria Acidithiobacillus thiooxidans. Experimental works were focused on the comparison of special cement composites and its resistance affected by the activities of used sulphur-oxidising

  5. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  6. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Science.gov (United States)

    2011-12-08

    ... Portland Cement and Cement Clinker From Japan Determination On the basis of the record \\1\\ developed in the... antidumping duty order on gray Portland cement and cement clinker from Japan would be likely to lead to... the Commission are contained in USITC Publication 4281 (December 2011), entitled Gray Portland...

  7. Freezing resistance of high iron phoasphoaluminate cement

    Science.gov (United States)

    Zhang, S. X.; Lu, L. C.; Wang, S. D.; Zhao, P. Q.; Gong, C. C.

    2017-03-01

    The influence of freeze-thaw cycle on the mechanical properties of high iron phoasphoaluminate cement was investigated in the present study. The visual examination was conducted to evaluate the surface damage. The deterioration considering the weight loss, modulus loss of relative dynamic elastic and strength loss of mortar were also investigated. The morphology of hydration products were analysed by SEM. Compared with ordinary Portland cement and sulphoaluminate cement, the frost resistance of high iron phosphoraluminate cement is better. Hydration products of high iron phoasphoaluminate cement contain sheet crystals, and a lot of gel form a dense three-dimensional network structure, which results in a lower porosity. Different from ordinary Portland cement, the hydration product of high iron phoasphoaluminate cement does not contain Ca(OH)2, and low alkalinity reduces its osmotic pressure. The lower porosity and osmotic pressure are the two main reasons which causes in the higher frost resistance of high iron phoasphoaluminate cement.

  8. Antibacterial potential of contemporary dental luting cements.

    Science.gov (United States)

    Daugela, Povilas; Oziunas, Rimantas; Zekonis, Gediminas

    2008-01-01

    The aims of this investigation were to evaluate the antibacterial activities of different types of dental luting cements and to compare antibacterial action during and after setting. Agar diffusion testing was used to evaluate the antibacterial properties of seven types of dental luting cements (glass ionomer cements (GICs), resin modified GICs, resin composite, zinc oxide eugenol, zinc oxide non-eugenol, zinc phosphate, zinc polycarboxylate cements) on Streptococcus mutans bacteria. Instantly mixed zinc phosphate cements showed the strongest antibacterial activity in contrast to the non-eugenol, eugenol and resin cements that did not show any antibacterial effects. Non-hardened glass ionomer, resin modified and zinc polycarboxylate cements exhibited moderate antibacterial action. Hardened cements showed weaker antibacterial activities, than those ones applied right after mixing.

  9. Characterization of vapor phase mercury released from concrete processing with baghouse filter dust added cement.

    Science.gov (United States)

    Wang, Jun; Hayes, Josh; Wu, Chang-Yu; Townsend, Timothy; Schert, John; Vinson, Tim; Deliz, Katherine; Bonzongo, Jean-Claude

    2014-02-18

    The fate of mercury (Hg) in cement processing and products has drawn intense attention due to its contribution to the ambient emission inventory. Feeding Hg-loaded coal fly ash to the cement kiln introduces additional Hg into the kiln's baghouse filter dust (BFD), and the practice of replacing 5% of cement with the Hg-loaded BFD by cement plants has recently raised environmental and occupational health concerns. The objective of this study was to determine Hg concentration and speciation in BFD as well as to investigate the release of vapor phase Hg from storing and processing BFD-added cement. The results showed that Hg content in the BFD from different seasons ranged from 0.91-1.44 mg/kg (ppm), with 62-73% as soluble inorganic Hg, while Hg in the other concrete constituents were 1-3 orders of magnitude lower than the BFD. Up to 21% of Hg loss was observed in the time-series study while storing the BFD in the open environment by the end of the seventh day. Real-time monitoring in the bench system indicated that high temperature and moisture can facilitate Hg release at the early stage. Ontario Hydro (OH) traps showed that total Hg emission from BFD is dictated by the air exchange surface area. In the bench simulation of concrete processing, only 0.4-0.5% of Hg escaped from mixing and curing BFD-added cement. A follow-up headspace study did not detect Hg release in the following 7 days. In summary, replacing 5% of cement with the BFD investigated in this study has minimal occupational health concerns for concrete workers, and proper storing and mixing of BFD with cement can minimize Hg emission burden for the cement plant.

  10. Thermal monitoring at E-Sheng cement in China; Waermeueberwachung bei E-Sheng Cement in China

    Energy Technology Data Exchange (ETDEWEB)

    Idoux, Maurice [HGH Infrared Systems, Igny (France)

    2011-07-01

    The E-Sheng cement plant is situated 130 km South East of Chengdu, capital city of Sichuan Province. It is in an environmentally protected area and as such, it is subject to stringent regulations as far as pollution is concerned. The quarry is situated 5 km away on a hillside, 500 m above plant level. Transport of limestone is by one single conveyor. The plant has 5 identical kilns, each 5500 tpd, i.e. 27 500 tpd total output, making it the largest single plant in the southwest of China. The plant was designed by the Nanjing Cement Institute (NCDRI). Its specific heat consumption is 730 kcal/kg of clinker, 65% at the precalciner and 35% at the kiln. Each kiln is 4.8 m dia x 74 m long. Start-up fuel is oil, main fuel is coal, 5500 kcal/kg LHV. The coal mine is 25 km away; coal delivery to the plant is by road. The plant is checked regularly for emissions, management of the plant is particularly advanced and the staff is well trained, thus achieving at high quality product. The total number of employees is 3000. 15% of the production is sold in bags, the rest in bulk. Delivery to clients is by road or rail. The first line was commissioned in 2008, the last in 2010. Due to the 2008 earthquake 300 km away, local demand for cement remains high. Each kiln is equipped with a hig resolution scanner which warns the operator of any refractory lining/coating problems and possible malfunction of the kiln. (orig.)

  11. 76 FR 24519 - Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review Concerning...

    Science.gov (United States)

    2011-05-02

    ... COMMISSION Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United States... determine whether revocation of the antidumping duty order on gray portland cement and cement clinker...

  12. 76 FR 50252 - Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review...

    Science.gov (United States)

    2011-08-12

    ... COMMISSION Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United... cement and cement clinker from Japan would be likely to lead to continuation or recurrence of...

  13. Industrial trial to produce a low clinker, low carbon cement

    Directory of Open Access Journals (Sweden)

    Vizcaíno-Andrés, L. M.

    2015-03-01

    Full Text Available A preliminary assessment of conditions for the industrial manufacture of a new cementitious system based on clinker-calcined clay and limestone, developed by the authors, referred as “low carbon cement” is presented. The new cement enables the substitution of more than 50% of the mass of clinker without compromising performance. The paper presents the follow-up of an industrial trial carried out in Cuba to produce 130 tonnes of the new cement at a cement plant. The new material proved to fulfill national standards in applications such as the manufacture of hollow concrete blocks and precast concrete. No major differences either in the rheological or mechanical properties were found when compared with Portland cement. Environmental assessment of the ternary cement was made, which included comparison with other blended cements produced industrially in Cuba. The new cement has proven to contribute to the reduction of above 30% of carbon emissions on cement manufacture.Se presenta la evaluación preliminar de las condiciones de fabricación industrial de un nuevo sistema cementicio a partir del empleo de clínquer; arcillas calcinadas y piedra caliza; desarrollado por los autores; denominado “cemento de bajo carbono”. El nuevo cemento posibilita la reducción de más de un 50% de la masa de clínquer; sin comprometer el comportamiento del material. El presente trabajo presenta el monitoreo de la producción industrial en una planta en Cuba; de 130 t del nuevo cemento. El cemento obtenido cumple con las regulaciones nacionales de calidad y su empleo tiene similar rendimiento que el cemento Pórtland para la producción de bloques y hormigón de 25 MPa. Se realiza el análisis de impacto ambiental del cemento ternario mediante la comparación con otros cementos producidos industrialmente. El nuevo cemento puede contribuir a la reducción de más del 30% de las emisiones de CO2 asociadas a la manufactura de cemento.

  14. PERFORMANCE OF PULVERIZED SLAG-SUBSTITUTED CEMENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The Portland cement is equivalently substituted by slag micropowders with various specific areas. The workability,activity and acid-corrosion resistance of the slag-substituted cements are investigated,the activation of gypsum is discussed,also the porosity and pore distribution of mortars of the slag micropowders cement are determined by mercury intrusion porosimetry.

  15. Cementation in adhesive dentistry: the weakest link

    NARCIS (Netherlands)

    Jongsma, L.A.

    2012-01-01

    Het succesvol bevestigen van tandrestauraties is een belangrijke en veeleisende procedure. Met behulp van cement wordt het restauratiemateriaal aan de tandstructuur verbonden. Op die manier worden twee hechtvlakken gecreëerd: het raakvlak tussen tand en cement, en het raakvlak tussen cement en resta

  16. 21 CFR 872.3275 - Dental cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns or...

  17. Characteristics of mercury cycling in the cement production process.

    Science.gov (United States)

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming

    2016-01-25

    The mercury cycling caused by dust shuttling significantly increases the atmospheric emissions from cement production. A comprehensive understanding of this mercury cycling can promote the development of mercury emission control technologies. In this study, the characteristics of mercury cycling in the cement production process were first investigated. Furthermore, the mercury enrichment and effects of dust treatment were evaluated based on the field tests conducted in two Chinese cement plants. The mercury cycling between the kiln system and the raw mill system was the most important aspect and contributed 57-73% to the total amount of mercury emitted from the kiln system. Mercury emitted from the kiln system with flue gas was enriched as high as 3.4-8.8 times in the two tested plants compared to the amount of mercury in the raw materials and coal due to mercury cycling. The mercury enrichment can be significantly affected by the proportion of mercury cycled back to the kiln system. The effects of dust treatment were evaluated, and dust treatment can efficiently reduce approximately 31-70% of atmospheric mercury emissions in the two plants. The reduction proportion approximately linearly decreased with the proportion of mercury removed from the collected dust.

  18. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well

  19. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    Directory of Open Access Journals (Sweden)

    Michał A. Glinicki

    2016-01-01

    Full Text Available The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  20. Glass recycling in cement production--an innovative approach.

    Science.gov (United States)

    Chen, Guohua; Lee, Harry; Young, King Lun; Yue, Po Lock; Wong, Adolf; Tao, Thomas; Choi, Ka Keung

    2002-01-01

    An innovative approach of using waste glass in cement production was proposed and tested in a laboratory and cement production plant. The laboratory characterization of 32 types of glass show that the chemical composition of glass does not vary significantly with its color or origin but depends on its application. The alkali content of glass, a major concern for cement production varies from 0 to 22%. For the glass bottles mainly found in Hong Kong waste glasses, the alkali content (Na2O) ranges from 10 to 19% with an average around 15%. There is no significant change of the SO2 content in the gas exhaust of the rotary kiln when about 1.8 t/h of glass bottles were loaded along with the 280-290 t/h raw materials. The content of NOx, mainly depends on the temperature of the kiln, does not show significant change either. The SO3 content of the clinker is comparable with that obtained without the loading of glass. The alkaline content shows a slight increase but still within three times the standard deviation obtained from the statistical data of the past year. The detailed analysis of the quality of the cement product shows that there is not any significant impact of glass for the feeding rate tested.

  1. Peach leaf responses to soil and cement dust pollution.

    Science.gov (United States)

    Maletsika, Persefoni A; Nanos, George D; Stavroulakis, George G

    2015-10-01

    Dust pollution can negatively affect plant productivity in hot, dry and with high irradiance areas during summer. Soil or cement dust were applied on peach trees growing in a Mediterranean area with the above climatic characteristics. Soil and cement dust accumulation onto the leaves decreased the photosynthetically active radiation (PAR) available to the leaves without causing any shade effect. Soil and mainly cement dust deposition onto the leaves decreased stomatal conductance, photosynthetic and transpiration rates, and water use efficiency due possibly to stomatal blockage and other leaf cellular effects. In early autumn, rain events removed soil dust and leaf functions partly recovered, while cement dust created a crust partially remaining onto the leaves and causing more permanent stress. Leaf characteristics were differentially affected by the two dusts studied due to their different hydraulic properties. Leaf total chlorophyll decreased and total phenol content increased with dust accumulation late in the summer compared to control leaves due to intense oxidative stress. The two dusts did not cause serious metal imbalances to the leaves, except of lower leaf K content.

  2. Thoughts on the Current Cement Industry Development

    Institute of Scientific and Technical Information of China (English)

    Gan Zhihe

    2003-01-01

    According to the analysis of cement capacity andits relations with macro economy running index, the mainreasons for the present rapid development of cement capacityare the rapid development of economy and the shot up ofwhole society fixed asset investment. According to the presentspeed of economy development, cement still enjoys a po-tential increase, So here has not been an overall excessivepopularity of cement industry. The best way to prevent lowlevel repeated construction is to promote the development ofnew dry- process cement as well as try to get rid of blindness.

  3. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone...... that raw meal could be used as a sorbent for the easy integration of the carbonate looping process into the cement pyro process for reducing CO2 emissions from the cement production process....

  4. Understanding cement mechanical behavior in SAGD wells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Zahacy, T. A. [C-FER Technologies (Canada)

    2011-07-01

    In the heavy oil industry, the steam assisted gravity drainage process is often used to enhance oil recovery but it can cause cracks in the cement sheath. These cracks are the result of high steam temperatures and thermal expansion. In order to mitigate this risk, improved well designs are required. The aim of this paper is to present the mechanical behavior of the cement sheath during the heating phase. An analysis of the impact of design and operating parameters was conducted through thermal hydraulic and thermal mechanical analyses to assess cement integrity. These analyses were then performed on an example of an SAGD project in the southern part of the Athabasca oilsands region to assess the performance of the cement sheath. Results showed that potential damage to the cement can be reduced by slow heating and a lower Young's modulus cement blend. This paper makes recommendations for optimizing cement design in thermal recovery wells.

  5. Sustainability of cement kiln co-processing of wastes in India: a pilot study.

    Science.gov (United States)

    Baidya, Rahul; Ghosh, Sadhan Kumar; Parlikar, Ulhas V

    2017-02-28

    Co-processing in cement kiln achieves effective utilization of the material and energy value present in the wastes, thereby conserving the natural resources by reducing the use of virgin material. In India, a number of multifolded initiatives have been taken that take into account the potential and volume of waste generation. This paper studies the factors which might influence the sustainability of co-processing of waste in cement kilns as a business model, considering the issues and challenges in the supply chain framework in India in view of the four canonical pillars of sustainability. A pilot study on co-processing was carried out in one of the cement plant in India to evaluate the environmental performance, economical performance, operational performance and social performance. The findings will help India and other developing countries to introduce effective supply chain management for co-processing while addressing the issues and challenges during co-processing of different waste streams in the cement kilns.

  6. Some durability aspects of hybrid alkaline cements

    Directory of Open Access Journals (Sweden)

    Donatello S.

    2014-04-01

    Full Text Available Blended cements that contain a high content of fly ash and a low content of Portland cement typically suffer from low early strength development and long setting times. Recently, one method of overcoming these problems has been to use an alkali activator to enhance the reactivity of fly ash particles at early ages. Such cements can be grouped under the generic term “hybrid alkaline cements”, where both cement clinker and fly ash, encouraged by the presence of alkalis, are expected to contribute to cementitious gel formation. The work presented here examines some of the durability aspects of high fly ash content hybrid alkaline cement. Specifically, the aspects investigated were: exposure at high temperatures (up to 1000°C, resistance to immersion in aggressive solutions and susceptibility to the alkali aggregate reaction. All tests were repeated with a commercially available sulfate resistant Portland cement for comparison. When exposed to high temperatures, the hybrid alkaline cement showed strikingly different behaviour compared to the control Portland cement, showing fewer micro-cracks and maintaining residual compressive strengths at least equal to original strengths. Beyond 700°C, the hybrid alkaline cement began to sinter, which resulted in shrinkage of around 5% and a 100% increase in residual compressive strengths. No such sintering event was noted in the control Portland cement, which showed a drastic loss in residual compressive strengths upon heating. In immersion tests, the hybrid alkaline cement possessed excellent resistance to sulfate and seawater attack, similar to the control sulfate resistant cement. Both cements were however severely degraded by immersion in 0.1M HCl for 90 days. Both binders complied with the accelerated alkali-aggregate test but when this test was extended, the hybrid alkaline binder showed much greater dimensional stability. Possible reasons for the differences in durability behaviour in both cements

  7. Definition and means of maintaining the supply ventilation system seismic shutdown portion of the PFP safety envelope. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Keck, R.D.

    1995-06-27

    This report describes the modifications to the ventilation system for the Plutonium Finishing Plant. Topics discussed in this report include; system functional requirements, evaluations of equipment, a list of drawings showing the safety envelope boundaries; list of safety envelope equipment, functional requirements for individual safety envelope equipment, and a list of the operational, maintenance and surveillance procedures necessary to operate and maintain the system equipment.

  8. THE INFLUENCE OF THE COMPLEX CHEMICAL ADDITIVE CONTAINING THE STRUCTURED CARBON NANOMATERIAL ON PROPERTIES OF CEMENT

    Directory of Open Access Journals (Sweden)

    O. Yu. Sheyda

    2015-01-01

    Full Text Available The paper presents results of investigations on influence of domestic complex chemical additive containing structured carbon nanomaterial and characterized by a combination effect (curing acceleration and plasticizing on cement and cement stone properties. The purpose of the investigations, on the one hand, has been to confirm efficacy of УКД-1additive from the perspective for increasing the rate of gain, strength growth of cement concrete and additive influence on setting time with the purpose to preserve molding properties of concrete mixes in time, and on the other hand, that is to assess “mechanism” of the УКД-1 additive action in the cement concrete. The research results have revealed regularities in changes due to the additive of water requirements and time period of the cement setting. The reqularities are considered as a pre-requisite for relevant changes in molding properties of the concrete mixes. The paper also experimentally substantiates the possibility to decrease temperature of cement concrete heating with the УДК-1 additive. It has been done with the purpose to save energy resources under production conditions. In addition to this the paper proves the efficiency of the additive which is expressed in strength increase of cement stone up to 20–40 % in the rated age (28 days that is considered as a basis for strength growth of cement concrete. The paper confirms a hypothesis on physical nature of this phenomenon because the X-ray phase analysis method has shown that there are no changes in morphology of portland cement hydration products under the action of the additive agent containing a structured carbon nanomaterial. Results of theoretical and experimental investigations on УКД-1 additive efficiency have been proved by industrial approbation while fabricating precast concrete products and construction of monolithic structures under plant industrial conditions (Minsk, SS “Stroyprogress” JSC MAPID and on

  9. Accelerated weathering of limestone for CO2 mitigation: Opportunities for the stone and cement industries

    Science.gov (United States)

    Langer, William H.; San, Juan A.; Rau, Greg H.; Caldeira, Ken

    2009-01-01

    Accelerated weathering of limestone appears to provide a low-tech, inexpensive, high-capacity, environmentally friendly CO2 mitigation method that could be applied to about 200 fossil fuel fired power plants and about eight cement plants located in coastal areas in the conterminous U.S. This approach could also help solve the problem of disposal of limestone waste fines in the crushed stone industry. Research and implementation of this technology will require new collaborative efforts among the crushed stone and cement industries, electric utilities, and the science and engineering communities.

  10. Research of magnesium phosphosilicate cement

    Science.gov (United States)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product

  11. Marine durability of 15 year old concrete specimens made with ordinary portland, slag, and fly ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, T.U.; Yamaji, T.; Hamada, H. [Port and Harbor Research Inst., Ministry of Land, Infrastructure and Transport (Japan); Aoyama, T. [PS Corp. (Japan)

    2001-07-01

    A study was conducted in which the marine durability of ordinary portland cement, slag and fly ash cement was examined using 15 year old plain and reinforced concrete cylindrical specimens. In addition, the performance of these cements was also examined in another study for pre-cracked reinforced concrete prism samples. The process of manufacturing cement emits huge amounts of carbon dioxide into the global atmosphere. Replacing a portion of the cement with by-products from the steel industry and thermal power plants (which are both huge emitters of carbon dioxide) can lower carbon dioxide emissions and also solve the disposal issue of slag and fly ash while increasing the long-term durability of concrete structures. In this study, concrete cylindrical specimens were made of ordinary portland cement, slag and fly ash cements. Water-to-cement ratios were 0.45 and 0.55 and the compressive strength of the concrete, corrosion of the steel bars, and chloride-ion concentrations in the concrete were evaluated. It was shown that, with the exception of fly ash cements, the compressive strength of most cements increased after 15 years of exposure compared to its 28 day strength. Type C slag cement demonstrated the best performance against chloride-ion at the surface of concrete made with slag and fly ash. Voids in the steel-concrete interface make it possible for corrosion pits to develop. The use of seawater as mixing water results in earlier strength development at 28 days and does not cause to the strength of the concrete to regress after 15-years of exposure, but it causes more corrosion of steel bars at a lower cover depth. Corrosion of steel bars is not an issue at deeper cover depths. 15 refs., 18 tabs., 8 figs.

  12. Occupational hand dermatitis among cement workers in Taiwan

    Directory of Open Access Journals (Sweden)

    Bour-Jr Wang

    2011-12-01

    Conclusion: We conclude that occupational cement hand dermatitis among cement workers is an important and severe issue in Taiwan, and the most common allergens among cement workers are potassium dichromate, thiuram mix, fragrance mix and cobalt chloride. The high positive rate of chromium hypersensitivity among cement workers reflects the urgency to regulate the addition of ferrous sulfate to cement in Taiwan.

  13. Use of alternative fuels in cement manufacture. Effect on clinker and cement characteristics and properties

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2004-06-01

    Full Text Available This paper compares industrial clinker and cement produced using conventional and alternative fuels (animal meal, tyres or a mixture of the two. The results show no relevant differences in terms of mineralogical composition between the clinker manufactured with alternative fuels and the product obtained using conventional fuel. Clinker produced with alternative fuels at any one factory have a very similar or even lower content in heavy metals than the product manufactured with conventional fuel in the same plant (with the sole exception of Zn when the alternative fuel used is shredded tyres. Mineralogical and morphological analyses reveal no significant differences between the two types of products that can be attributed to the type of fuel used in their manufacture. All six types of cement studied are compliant with the existing legislation as regards both physical and chemical properties. Cement compressive strength is found to be to legal standards regardless of the type of fuel used. Finally, the rheological properties of the cement paste are observed to be unaffected by the type of fuel.

    Se han estudiado clínkeres y cementos obtenidos en procesos industriales que han utilizado combustibles convencionales y combustibles alternativos (harinas cárnicas, neumáticos usados y mezclas de ambos. Los resultados obtenidos han demostrado que los clínkeres fabricados con los combustibles alternativos no presentan diferencias significativas en la composición mineralógica respecto a los obtenidos con combustibles convencionales. Los contenidos de metales pesados en los clínkeres procedentes de la misma fábrica (a excepción de los contenidos en Zn en aquéllos que utilizan neumáticos son muy similares o incluso inferiores a los fabricados con combustibles convencionales. Los análisis mineralógico y morfológico de los clínkeres no evidencian diferencias asignables al tipo de combustible utilizado. Todos los cementos estudiados cumplen

  14. The effect of lime-dried sewage sludge on the heat-resistance of eco-cement.

    Science.gov (United States)

    Li, Wen-Quan; Liu, Wei; Cao, Hai-Hua; Xu, Jing-Cheng; Liu, Jia; Li, Guang-Ming; Huang, Juwen

    2016-01-01

    The treatment and disposal of sewage sludge is a growing problem for sewage treatment plants. One method of disposal is to use sewage sludge as partial replacement for raw material in cement manufacture. Although this process has been well researched, little attention has been given to the thermal properties of cement that has had sewage sludge incorporated in the manufacturing process. This study investigated the fire endurance of eco-cement to which lime-dried sludge (LDS) had been added. LDS was added in proportions of 0%, 3%, 6%, 9%, and 12% (by weight) to the raw material. The eco-cement was exposed to 200, 400, or 600 °C for 3 h. The residual strength and the microstructural properties of eco-cement were then studied. Results showed that the eco-cement samples suffered less damage than conventional cement at 600 °C. The microstructural studies showed that LDS incorporation could reduce Ca(OH)(2) content. It was concluded that LDS has the potential to improve the heat resistance of eco-cement products.

  15. Physico-mechanical and physico-chemical properties of synthesized cement based on plasma- and wet technologies

    Science.gov (United States)

    Sazonova, Natalya; Skripnikova, Nelli

    2016-01-01

    In this work we studied the influence of plasma-chemical technology of cement clinker synthesis under conditions of high-concentrated heat streams on the properties of cement on fixing such factors as raw-material type (chemical and mineralogical composition), fraction composition, homogenization and module characters of the raw-material mixture. In this connection the sludge of the cement plant in town Angarsk, based on which the cement clinker synthesis using the wet- and plasma-chemical technologies was performed, was used in the studies. The results of chemical X-ray-phase analysis, petrography of cement clinkers, differential scanning colorimetry of hardened cement paste are represented in this work. The analysis of building-technical properties of inorganic viscous substances was performed. It was found that in using the identical raw-material mixture the cement produced with temperature higher by 1650 °C than the traditional one may indicate the higher activity. The hardened cement paste compressive strength at the age of 28 days was higher than the strength of the reference samples by 40.8-41.4 %.

  16. Alternative Fuels in Cement Production

    OpenAIRE

    2007-01-01

    Substitutionen af fossilt med alternativt brændsel i cement produktionen er steget betydeligt i den sidste dekade. Af disse nye alternative brændsler, udgør de faste brændsler p.t. den største andel, hvor kød- og benmel, plastic og dæk i særdeleshed har været de alternative brændsler der har bidraget med mest alternativ brændsels energi til den tyske cement industri. De nye alternative brændsler er typisk karakteriseret ved et højt indhold af flygtige bestanddele og adskiller sig typisk fra t...

  17. A Twofold Comparison between Dual Cure Resin Modified Cement and Glass Ionomer Cement for Orthodontic Band Cementation

    Science.gov (United States)

    Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen

    2016-01-01

    AIM: To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. MATERIALS AND METHOD: The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. RESULTS: GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. CONCLUSION: It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation. PMID:28028417

  18. Characterization and utilization of cement kiln dusts (CKDs) as partial replacements of Portland cement

    Science.gov (United States)

    Khanna, Om Shervan

    mineralogical phases within CKDs. It was found that CKDs can contain significant amounts of amorphous material (>30%) and clinker compounds (>20%) and small amounts of slag and/or flyash (reactive and high free lime contents (>20%). The blends with the two CKDs from preheater/precalciner plants had higher paste water demand, lower mortar flows, and higher heat generation during initial hydrolysis in comparison to all other CKD-PC blends and control cements. The hardened properties of CKD as a partial substitute of PC appear to be governed by the sulfate content of the CKD-PC blend (the form of the CKD sulfate is not significant). According to analysis of the ASTM expansion in limewater test results, the CKD-PC blend sulfate content should be less than ˜0.40% above the optimum sulfate content of the PC. It was also found that the sulfate contribution of CKD behaves similar to gypsum. Therefore, CKD-PC blends could be optimized for sulfate content by using CKD as a partial substitute of gypsum during the grinding process to control the early hydration of C3A. The wet and long-dry kiln CKDs contain significant amounts of calcium carbonate (>20%) which could also be used as partial replacement of limestone filler in PC.

  19. Influence of the temperature on the cement disintegration in cement-retained implant restorations.

    Science.gov (United States)

    Linkevicius, Tomas; Vindasiute, Egle; Puisys, Algirdas; Linkeviciene, Laura; Svediene, Olga

    2012-01-01

    The aim of this study was to estimate the average disintegration temperature of three dental cements used for the cementation of the implant-supported prostheses. One hundred and twenty metal frameworks were fabricated and cemented on the prosthetic abutments with different dental cements. After heat treatment in the dental furnace, the samples were set for the separation to test the integration of the cement. Results have shown that resin-modified glass-ionomer cement (RGIC) exhibited the lowest disintegration temperature (pcement (ZPC) and dual cure resin cement (RC) (p>0.05). Average separation temperatures: RGIC - 306 ± 23 °C, RC - 363 ± 71 °C, it could not be calculated for the ZPC due to the eight unseparated specimens. Within the limitations of the study, it could be concluded that RGIC cement disintegrates at the lowest temperature and ZPC is not prone to break down after exposure to temperature.

  20. ROTARY SCREW SYSTEMS IN CEMENT

    OpenAIRE

    2016-01-01

    The article presents results of research of rotary-screw systems in relation to the creation of rotary kilns for the annealing of-cuttings in the preparation of cement clinker. Using the proposed design, in comparison with known designs of similar purpose, it significantly improves performance, reduces size and power consumption through the use of rotary screw systems in the form of screw rotors and drums made hollow with sidewalls assembled from separate strips or plates of different geometr...

  1. Center for Cement Composite Materials

    Science.gov (United States)

    1990-01-31

    pastes have shown that the matrix is microporous; mesopores are absent unless the material is allowed to dry out. This results in water adsorption at low...only to water. When subsequently dried a portion of3 the porosity is converted to larger mesopores . • Only about one third of the cement reacts in a...Frictional sliding, in this case was characterized by a decreasing slope in the loading curve followed by hysteresis in the unload/reloading curves

  2. The cement solidification systems at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Veazey, G.W.

    1990-01-01

    There are two major cement solidification systems at Los Alamos National Laboratory. Both are focused primarily around treating waste from the evaporator at TA-55, the Plutonium Processing Facility. The evaporator receives the liquid waste stream from TA-55's nitric acid-based, aqueous-processing operations and concentrates the majority of the radionuclides in the evaporator bottoms solution. This is sent to the TA-55 cementation system. The evaporator distillate is sent to the TA-50 facility, where the radionuclides are precipitated and then cemented. Both systems treat TRU-level waste, and so are operated according to the criteria for WIPP-destined waste, but they differ in both cement type and mixing method. The TA-55 systems uses Envirostone, a gypsum-based cement and in-drum prop mixing; the TA-50 systems uses Portland cement and drum tumbling for mixing.

  3. WHITE CEMENT IN SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Y.C.P RAMANA BABU

    2013-04-01

    Full Text Available India is one among the fast developing countries in the world in the areas of Infrastructure. Now a day, Carbon monoxide (CO and carbon dioxide (CO2 are the temporary atmospheric pollutants in the environment chiefly emitted from the fuel burning vehicles and street lights which lead to global warming and pose a major threat tothe survival and sustainable development. This paper deals with the principal purpose of use of white cement in pavement design which will take care of the Green house gases (i.e., CO and CO2 and also saves lot of money in the long run process. A small amount of these gases in environment can cause major problems over time. Use of white cement in composite pavement design where there is heavy traffic loads are acting as well as number of vehicles are more such as junctions, bus stops, check posts etc., can perform better and acts asenvironment friendly. Its light colour reflects more than bituminous pavement so that it can be easily identified and avoid accidents to some extent. White cement helps to lower the average bus stop, junction temperature providing comfort to the people because it has high solar reflectance there by reducing “urban heat island” effect. In addition to this it has some more advantages which increase the sustainability, durability and workability of the pavements.

  4. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    OpenAIRE

    Konstantin Sobolev

    2003-01-01

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecologi...

  5. Water dynamics in glass ionomer cements

    Science.gov (United States)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  6. Pulmonary Cement Embolism following Percutaneous Vertebroplasty

    Directory of Open Access Journals (Sweden)

    Ümran Toru

    2014-01-01

    Full Text Available Percutaneous vertebroplasty is a minimal invasive procedure that is applied for the treatment of osteoporotic vertebral fractures. During vertebroplasty, the leakage of bone cement outside the vertebral body leads to pulmonary cement embolism, which is a serious complication of this procedure. Here we report a 48-year-old man who was admitted to our hospital with dyspnea after percutaneous vertebroplasty and diagnosed as pulmonary cement embolism.

  7. Lime kiln dust as a potential raw material in portland cement manufacturing

    Science.gov (United States)

    Miller, M. Michael; Callaghan, Robert M.

    2004-01-01

    In the United States, the manufacture of portland cement involves burning in a rotary kiln a finely ground proportional mix of raw materials. The raw material mix provides the required chemical combination of calcium, silicon, aluminum, iron, and small amounts of other ingredients. The majority of calcium is supplied in the form of calcium carbonate usually from limestone. Other sources including waste materials or byproducts from other industries can be used to supply calcium (or lime, CaO), provided they have sufficiently high CaO content, have low magnesia content (less than 5 percent), and are competitive with limestone in terms of cost and adequacy of supply. In the United States, the lime industry produces large amounts of lime kiln dust (LKD), which is collected by dust control systems. This LKD may be a supplemental source of calcium for cement plants, if the lime and cement plants are located near enough to each other to make the arrangement economical.

  8. The mechanical effects of different levels of cement penetration at the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The mechanical effects of varying the depth of cement penetration in the cement-bone interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Two FEA models of the cement-bone interface were created from micro-computed tomography data and the p

  9. The influence of ultrasound on removal of prefabricated metal post cemented with different resin cements

    Directory of Open Access Journals (Sweden)

    Atiyeh Feiz

    2013-01-01

    Conclusion: Ultrasonic energy did not decrease the retention of posts cemented with Panavia or Maxcem Elite cements. Furthermore, it seems that there is no significant difference between removal force of self-etch (Panavia and the self-etch self-adhesive (Maxcem Elite resin cements.

  10. Integrated Environmental Quality Assessments of Surface Water around Obajana Cement Production Area

    Directory of Open Access Journals (Sweden)

    E.G. Ameh

    2014-04-01

    Full Text Available Due to industrialization, there is enormous amount of heavy metals been released from anthropogenic sources into the environment. Heavy metals are considered as one of the main sources of environmental pollution since they have significant effect on the ecological quality and water in particular. These pollutants are hazardous to consumers of water that have significant quantity of these heavy metals. The population most exposed to cement polluted water includes workers in cement factories, families of workers living in Staff houses of factories like in Obajana and other neighborhood habitations. The Obajana cement factory consists of cement kilns/coolers with clinkers. The kilns are equipped with pre-heaters and Electro-Static Precipitators (ESP. The facility has raw mills, crushing operations, cement mills that are potential source of pollutants into the water bodies. Storage silos, conveyors, vehicular travel, and other unquantified fugitive source of water contamination exist in the factory. Monitoring the contamination of water with respect to heavy metals is of interest due to their influence on humans, animals and to some extent plants. A good approach to estimate how much of the water is impacted is by using the heavy metal pollution index and metal index for metal concentrations above the control points in water bodies around Obajana cement.

  11. AIR POLLUTION CONTROL THROUGH KILN RECYCLING BY-PASS DUST IN A CEMENT FACTORY

    Directory of Open Access Journals (Sweden)

    F. Mohsenzadeh, J. Nouri, A. Ranjbar, M. Mohammadian Fazli, A. A. Babaie

    2006-01-01

    Full Text Available Air pollution is a major problem in the industrial areas. Cement dust is one of the important environmental pollutants. In this study the possibility of dust recycling especially kiln dust which has significant importance regarding air pollution in the cement plant, was examined. Tehran cement factory is one of the most important Iranian factories which is located in Tehran. This factory produces high volume of pollutants that are released to in environment. The possibility of reusing of kiln by pass returned dust has been examined in this factory. Different percentages of kiln by-pass dust of this factory were added to products and outcomes of its presence in parameters such as chemical compound, granulation, primary and final catch time, volume expansion, consumed water and resistance of mortar were surveyed. The result indicated that by adding the amounts of 3-8 dust the mortar resistance increase, but adding more than 15%, the mortar resistance has been decreased. Survey in consumed water proved that adding dust to cement, the trend for consuming water is decreased. After dust addition dust, primary and final catch time were compared in different samples and data which showed decrease in dust added samples. Cements with dust added showed increase in auto clave expansion. Overally, results proved that, the best percentage rate of dust addition to the cement was 15%.

  12. Applied technique of the cemented fill with fly ash and fine-sands

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Traditional stabilization of backfilling material is done by using Portland cement. However, the high price of cement forced mining engineers to seek cheaper binding materials. Fly ash, which is the industrial waste from thermal power plant, possess the potential activity of jellification, and can be used in cemented fill as a partial substitute for cement to reduce the fill cost. Tests were done during the past few years in Xinqiao Pyrite Mine and Phoenix Copper Mine to determine the technology parameters and the suitable content of fly ash. Specimens with different cement/fly/ash tailings (sands) ratios were tested to obtain the strength values of the fill mass based on the analyses of both the chemical composition and physical and mechanical properties of fly ash. The compressive strength of specimens with a ratio of 1: 2: 8 (cement to fly ash to tailings)can reach 2 MPa after 90 d curing, totally meeting the requirement of artificial pillar and reducing the fill cost by 20%-30%.

  13. Frozen delivery of brushite calcium phosphate cements.

    Science.gov (United States)

    Grover, Liam M; Hofmann, Michael P; Gbureck, Uwe; Kumarasami, Balamurgan; Barralet, Jake E

    2008-11-01

    Calcium phosphate cements typically harden following the combination of a calcium phosphate powder component with an aqueous solution to form a matrix consisting of hydroxyapatite or brushite. The mixing process can be very important to the mechanical properties exhibited by cement materials and consequently when used clinically, since they are usually hand-mixed their mechanical properties are prone to operator-induced variability. It is possible to reduce this variability by pre-mixing the cement, e.g. by replacing the aqueous liquid component with non-reactive glycerol. Here, for the first time, we report the formation of three different pre-mixed brushite cement formulations formed by freezing the cement pastes following combination of the powder and liquid components. When frozen and stored at -80 degrees C or less, significant degradation in compression strength did not occur for the duration of the study (28 days). Interestingly, in the case of the brushite cement formed from the combination of beta-tricalcium phosphate with 2 M orthophosphoric acid solution, freezing the cement paste had the effect of increasing mean compressive strength fivefold (from 4 to 20 MPa). The increase in compression strength was accompanied by a reduction in the setting rate of the cement. As no differences in porosity or degree of reaction were observed, strength improvement was attributed to a modification of crystal morphology and a reduction in damage caused to the cement matrix during manipulation.

  14. Substantial global carbon uptake by cement carbonation

    Science.gov (United States)

    Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn; Galan, Isabel; Andrade, Carmen; Zhang, Ying; Liu, Zhu

    2016-12-01

    Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 2013. Considerable attention has been paid to quantifying these industrial process emissions from cement production, but the natural reversal of the process--carbonation--has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondary use of concrete waste to estimate regional and global CO2 uptake between 1930 and 2013 using an analytical model describing carbonation chemistry. We find that carbonation of cement materials over their life cycle represents a large and growing net sink of CO2, increasing from 0.10 GtC yr-1 in 1998 to 0.25 GtC yr-1 in 2013. In total, we estimate that a cumulative amount of 4.5 GtC has been sequestered in carbonating cement materials from 1930 to 2013, offsetting 43% of the CO2 emissions from production of cement over the same period, not including emissions associated with fossil use during cement production. We conclude that carbonation of cement products represents a substantial carbon sink that is not currently considered in emissions inventories.

  15. Hidration kinetics study of tlie mixed cements

    OpenAIRE

    Duque Fernández, Gabriel . L; Díaz Quintanilla, David; Zapata Sierra, Manuel; Rubio Frías, Ester

    1993-01-01

    A study of the hydration process of cements with 10% and 20% addition of a tuff from "Las Carolinas" quarry (Cienfuegos, Cuba) by different methods was done. The results obtained by different methods showed a good agreement. It was proved an increment of the hydration products, an acceleration of alite hydration and a swelling of the fixed water in mixed cements. The resistance of the cement with 10% addition is similar to that of the pure cement for ages of 28 days, whereas with 20% addition...

  16. Raw mix designing, clinkerization and manufacturing of high-strength Portland cement from the limestone and clay of Darukhula Nizampur, Nowshera District, North-West Frontier Province (N.W.F.P.), Pakistan

    Institute of Scientific and Technical Information of China (English)

    Noor-ul-Amin; Tahir Shah; Khurshid Ali

    2009-01-01

    This paper covers the detailed version of the potential raw material deposits at Darukhula and the adjacent areas of Nizampur, the manufacturing of high-strength Portland cement samples from the same material and comparison of the physical and chemical parameters for resulting cement with British and Pakistan standard specifications, which include compressive strength, setting time, consistency, lechatelier expansion, Blaine and insoluble residue. It was found that the raw material available in the study area meets the standard specifications and the area is feasible for the cement plant installation. The area can provide raw material which is quite sufficient for the running of a cement plant.

  17. A study on provisional cements, cementation techniques, and their effects on bonding of porcelain laminate veneers.

    Science.gov (United States)

    Vinod Kumar, G; Soorya Poduval, T; Bipin Reddy; Shesha Reddy, P

    2014-03-01

    Minimal tooth preparation is required for porcelain laminate veneers, but interim restorations are a must to protect their teeth against thermal insult, chemical irritation, and to provide aesthetics. Cement remaining after the removal of the provisional restoration can impair the etching quality of the tooth surface and fit and final bonding of the porcelain laminate veneer. This in vitro study examined the tooth surface for remaining debris of cement after removal of a provisional restoration. Determine the presence of cement debris on prepared tooth surface subsequent to the removal of provisional restoration. Determine the cement with the least residue following the cleansing procedures. Determine the effect of smear layer on the amount of residual luting cement. Eighty-four extracted natural anterior teeth were prepared for porcelain laminate veneers. For half of the teeth, the smear layer was removed before luting provisional restorations. Veneer provisional restorations were fabricated and luted to teeth with six bonding methods: varnish combined with glass ionomer cement (GIC), varnish combined with resin modified GIC, varnish, spot etching combined with dual-cure luting cement, adhesive combined with GIC, adhesive combined with resin modified GIC, and adhesive, spot etching combined with dual-cure luting cement. After removal of provisional restorations 1 week later, the tooth surface was examined for residual luting material with SEM. Traces of cement debris were found on all the prepared teeth surfaces for all six groups which were cemented with different methods. Cement debris was seen on teeth subsequent to the removal of provisional's. Dual-cure cement had the least residue following the cleansing procedures. Presence of smear layer had no statistical significance in comparison with cement residue. With the use of adhesive the cement debris was always found to be more than with the use of varnish. GIC showed maximum residual cement followed by dual-cure.

  18. Effect of kiln dust from a cement factory on growth of Vicia faba L.

    Science.gov (United States)

    Uysal, Ismet; Ozdilek, Hasan Göksel; Oztürk, Münir

    2012-04-01

    This study was undertaken to study the effects of different amounts of kiln dust mixed with soil on the seed germination, plant growth, leaf area and water content of Vicia faba cv. Eresen. The reason for this was that cement kiln dust generated as a by-product from the cement factories is rich in potassium, sulfate and other compounds. This product becomes a serious problem when it comes in contact with water. The dust was collected from a cement factory located in Canakkale. Various elements such as Al, Co, Mo, Ca, B, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Se and Zn were determined both in soil as well as kiln dust. Kiln dust was mixed with soil in pots (20 cm diameter) to make seven different treatments varying from 15 to 105 g kiln dust kg(-1) of soil. The experiment lasted for 4 months. Seeds of V faba were sown in the pots filled with mixtures of preanalysed kiln dust and soil. Germination was high in the pots with a lower treatment of cement kiln dust. However, lower germination rates were observed in the pots mixed with the highest and the medium amounts of cement kiln dust. Plants growing in the soil including 15 g kiln dust showed better performance in length as compared to control. Leaf area increased with increase in cement kiln dust content up to 60 g kiln dust kg(-1) of soil, but declined after 75 g kg(-1). Water content of leaves (mg cm(-2) leaf area) was found to be constantly decreasing with respect to increasing cement kiln content in the pots. Differences between the averages were evaluated by Tukey test and results were found to be significant.

  19. Effect of Selected Alternative Fuels and Raw Materials on the Cement Clinker Quality

    Science.gov (United States)

    Strigáč, Július

    2015-11-01

    The article deals with the study of the effects of alternative fuels and raw materials on the cement clinker quality. The clinker quality was expressed by the content of two principal minerals alite C3S and belite C2S. The additions of alternative fuels ashes and raw materials, in principle, always increased the belite content and conversely reduced the amount of alite. The alternative fuels with high ash content were used such as the meat-bone meal, sewage sludge from sewage treatment plants and paper sludge and the used alternative raw materials were metallurgical slags - granulated blastfurnace slag, air cooled blastfurnace slag and demetallized steel slag, fluidized bed combustion fly ash and waste glass. Meat-bone meal, sewage sludge from sewage treatment plants and paper sludge were evaluated as moderately suitable alternative fuels which can be added in the amounts of 2.8 wt. % addition of meat-bone meals ash, 3.64 wt. % addition of sewage sludge ash and 3.8 wt. % addition of paper sludge ash to the cement raw mixture. Demetallised steel slag is suitable for production of special sulphate resistant cement clinker for CEM I -SR cement with addition up to 5 wt. %. Granulated blastfurnace slag is a suitable alternative raw material with addition 4 wt. %. Air cooled blastfurnace slag is a suitable alternative raw material with addition 4.2 wt. %. Waste glass is not very appropriate alternative raw material with addition only 1.16 wt. %. Fluidized bed combustion fly ash appears not to be equally appropriate alternative raw material for cement clinker burning with less potential utilization in the cement industry and with addition 3.41 wt. %, which forms undesired anhydrite CaSO4 in the cement clinker.

  20. Effect of Selected Alternative Fuels and Raw Materials on the Cement Clinker Quality

    Directory of Open Access Journals (Sweden)

    Strigáč Július

    2015-11-01

    Full Text Available The article deals with the study of the effects of alternative fuels and raw materials on the cement clinker quality. The clinker quality was expressed by the content of two principal minerals alite C3S and belite C2S. The additions of alternative fuels ashes and raw materials, in principle, always increased the belite content and conversely reduced the amount of alite. The alternative fuels with high ash content were used such as the meat-bone meal, sewage sludge from sewage treatment plants and paper sludge and the used alternative raw materials were metallurgical slags - granulated blastfurnace slag, air cooled blastfurnace slag and demetallized steel slag, fluidized bed combustion fly ash and waste glass. Meat-bone meal, sewage sludge from sewage treatment plants and paper sludge were evaluated as moderately suitable alternative fuels which can be added in the amounts of 2.8 wt. % addition of meat-bone meals ash, 3.64 wt. % addition of sewage sludge ash and 3.8 wt. % addition of paper sludge ash to the cement raw mixture. Demetallised steel slag is suitable for production of special sulphate resistant cement clinker for CEM I –SR cement with addition up to 5 wt. %. Granulated blastfurnace slag is a suitable alternative raw material with addition 4 wt. %. Air cooled blastfurnace slag is a suitable alternative raw material with addition 4.2 wt. %. Waste glass is not very appropriate alternative raw material with addition only 1.16 wt. %. Fluidized bed combustion fly ash appears not to be equally appropriate alternative raw material for cement clinker burning with less potential utilization in the cement industry and with addition 3.41 wt. %, which forms undesired anhydrite CaSO4 in the cement clinker.

  1. Development of antibiotic resistance and up-regulation of the antimutator gene pfpI in mutator Pseudomonas aeruginosa due to inactivation of two DNA oxidative repair genes (mutY, mutM)

    DEFF Research Database (Denmark)

    Mandsberg, Lotte Frigaard; Macia, Maria D.; Bergmann, Kirsten R.

    2011-01-01

    showed only a fivefold increase, whereas the single mutant PAOMMgm (mutM) showed a nonsignificant increase in MR compared with PAO1 and the single mutants. Mutations in the regulator nfxB leading to hyperexpression of MexCD-OprJ efflux pump were found as the mechanism of resistance to ciprofloxacin...... in the double mutant. A better fitness of the mutator compared with PAO1 was found in growth competition experiments in the presence of ciprofloxacin at concentrations just below minimal inhibitory concentration. Up-regulation of the antimutator gene pfpI, that has been shown to provide protection to oxidative...

  2. Antibacterial activity of selected glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Elżbieta Łuczaj-Cepowicz

    2014-01-01

    Full Text Available Introduction: The aim of the paper was to determine the antibacterial activity of four glass ionomer cements against bacteria of the genera Streptococcus and Lactobacillus.Material and methods: Four capsulated glass ionomer cements were applied in the study: Fuji Triage (GC, Fuji IX (GC, Ketac Molar (3M Espe and Ketac Silver (3M Espe. Four standard bacterial strains were used to assess the antibacterial activity of the studied cements: Streptococcus mutans, S. sanguis, S. salivarius and Lactobacillus casei. The antibacterial activity was determined by the agar diffusion method. The bacterial suspension was spread with a cotton swab on TSA plates. For each material six wells (7 mm diameter, 5 mm deep were made with a cork borer. Each well was then filled with freshly prepared cements. The results were obtained by measuring the bacterial growth inhibition zone after 1, 2, 3 and 7 days. Results: Fuji Triage cement inhibited the growth of all bacterial strains. Fuji IX cement demonstrated the most potent antibacterial activity against S. sanguis. Ketac Molar showed antibacterial activity against S. sanguis and S. salivarius, whereas Ketac Silver was efficient against S. mutans as well. Neither of the Ketac cements inhibited growth of the standard L. casei strain. Discussion: Antibacterial activity of glass ionomer cements has attracted the interest of scientists in recent years. Most authors, including us, carried out experiments using the agar diffusion method and demonstrated antibacterial activity of glass ionomer cements. Different antibacterial activity of glass ionomer cements, observed in our study and studies of other authors, depended on the evaluated cement, bacterial strain and period of evaluation.

  3. Antibacterial activity of selected glass ionomer cements.

    Science.gov (United States)

    Luczaj-Cepowicz, Elżbieta; Marczuk-Kolada, Grażyna; Zalewska, Anna; Pawińska, Małgorzata; Leszczyńska, Katarzyna

    2014-01-22

    The aim of the paper was to determine the antibacterial activity of four glass ionomer cements against bacteria of the genera Streptococcus and Lactobacillus. Four capsulated glass ionomer cements were applied in the study: Fuji Triage (GC), Fuji IX (GC), Ketac Molar (3M Espe) and Ketac Silver (3M Espe). Four standard bacterial strains were used to assess the antibacterial activity of the studied cements: Streptococcus mutans, S. sanguis, S. salivarius and Lactobacillus casei. The antibacterial activity was determined by the agar diffusion method. The bacterial suspension was spread with a cotton swab on TSA plates. For each material six wells (7 mm diameter, 5 mm deep) were made with a cork borer. Each well was then filled with freshly prepared cements. The results were obtained by measuring the bacterial growth inhibition zone after 1, 2, 3 and 7 days. Fuji Triage cement inhibited the growth of all bacterial strains. Fuji IX cement demonstrated the most potent antibacterial activity against S. sanguis. Ketac Molar showed antibacterial activity against S. sanguis and S. salivarius, whereas Ketac Silver was efficient against S. mutans as well. Neither of the Ketac cements inhibited growth of the standard L. casei strain. Antibacterial activity of glass ionomer cements has attracted the interest of scientists in recent years. Most authors, including us, carried out experiments using the agar diffusion method and demonstrated antibacterial activity of glass ionomer cements. Different antibacterial activity of glass ionomer cements, observed in our study and studies of other authors, depended on the evaluated cement, bacterial strain and period of evaluation.

  4. U.S. EPA requires Cupertino cement company to report toxic chemicals, commit to environmental projects

    Science.gov (United States)

    SAN FRANCISCO - The U.S. Environmental Protection Agency announced a settlement with Lehigh Southwest Cement Company for failing to properly report releases of toxic chemicals at its Cupertino, Calif. plant. The company is required to pay a $47,600

  5. Microbial analysis of biofilms on cement surfaces: An investigation in cement-associated peri-implantitis.

    Science.gov (United States)

    Korsch, Michael; Walther, Winfried; Marten, Silke-Mareike; Obst, Ursula

    2014-09-05

    The cementation of implant-supported restorations always poses the risk of excess cement retained in the peri-implant sulcus despite careful clinical control. Excess cement can become the basis of colonization by oral microorganisms. As a result of the biofilm formation peri-mucositis or peri-implantitis may develop. Complications were observed in the routine prosthetic restoration of implants when a methacrylate-based cement was used. These developed a few weeks after cementation of the suprastructure and caused bleeding on probing as well as suppuration from the peri-implant tissue. In the revision therapy, excess cement in the peri-implant sulcus was found in many cases. This excess cement was sampled from ten patients and investigated for biofilm formation. For this purpose, the cement samples were collected and analyzed for bacterial in situ colonization by 16S rDNA-based methods. In laboratory experiments, the methacrylate-based cement and two other dental cements were then investigated for their proneness to form biofilm. The results of the in situ and in vitro investigations revealed a strong tendency towards bacterial invasion of the methacrylate-based cement by opportunistic species and pathogens.

  6. Copper Slag Blended Cement: An Environmental Sustainable Approach for Cement Industry in India

    Directory of Open Access Journals (Sweden)

    Jagmeet Singh

    2016-04-01

    Full Text Available Indian cement industry is facing environmental issue of emission of carbon dioxide (CO2, a greenhouse gas. Blended cements including supplementary cementitious materials are substitute of Portland cement to reduce CO2 emission. The present paper investigates theappropriateness of copper slag (CS as supplementary cementitious material. Strength properties and hydration of mixes were determined at different replacement levels of CS with cement. Compressive, flexural and tensile strength of each mix was found out at different curing periods. The hydration of cement was investigated through X-ray diffraction (XRD. The strength test results showed that substitution of up to 20% of CS can significantly replace Portland cement.XRD test results were corresponding to strength test results. The present study encourages the utilization of CS as supplementary cementitious material to make economical and environmentally sustainable blended cement

  7. The influence of cement type and temperature on chloride binding in cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Korzen, Migge Sofie Hoffmann; Skibsted, Jørgen

    1998-01-01

    This paper describes effects of cement type and temperature on chloride binding in cement paste, which is an important subject in relation to life-time modelling of reinforced concrete structures. The influence of cement type on chloride binding is investigated by substituting cement with pure...... cement clinker. Both theoretical considerations and experimental data for chloride binding in cement pastes are presented. A physico-chemically based model to describe the influence of temperature on physical binding of chloride is presented. Solid-state 27Al and 29Si magic-angle spinning (MAS) nuclear...... magnetic resonance (NMR) spectroscopy has been used for quantification of the anhydrous and hydrated aluminate and silicate phases in the chloride exposed cement pastes. The 27Al isotropic chemical shift and nuclear quadrupole coupling is reported for a synthetic sample of Friedel's salt, Ca2Al(OH)6Cl×2H2O....

  8. A Pause for China's Cement Industry

    Institute of Scientific and Technical Information of China (English)

    Li Zhen

    2009-01-01

    @@ Cement industry suffers excess productionWith the advent of global financial crisis,the Chinese government has laid out a stimulus package on infrastructure construction.Driven by the investment spree,China's cement makers are flocking to expand output capacity,which is now leading the industry into a much-higher-thanneeded state.

  9. Contact dermatitis in cement workers in Isfahan

    Directory of Open Access Journals (Sweden)

    Iraji Fariba

    2006-01-01

    Full Text Available BACKGROUND: Due to recent industrialization and inadequately protected workers or in other words poor supervision on constructive workers habits in our large city of Isfahan cement contact dermatitis is relatively high especially among cement factory workers and constructive personnel. PURPOSES: To investigate the prevalence rate of cement contact dermatitis in cement factory workers in Isfahan. METHODS: A case-control clinical study was carried out by randomly selecing 150 factory workders and 150 official clerks in a cement factory in Isfahan in 2001. After a complete physical examination, data was recorded in observational checklists. FINDINGS: The percentages of contact dermatitis prevalences in the first and the second groups were 22% and 5.3% respectively. About 60% of cement workers with contact dermatitis were between 30-40 years of age. There was a direct relationship with age in both groups of the workers. In the high-exposure group, the hand eczema along was 70% but in the other group the percentage of involvement was the same in exposed and unexposed anatomical areas. CONCLUSIONS: There was a direct relationship between occurrence and the severity of involvement and duration of contact in the first group. Cent percent of cement workers had contact dermatitis after 10 or less years, but the percentage among the other group was 35%. LIMITATION: Irritant contact dermatitis to cement has not been detected.

  10. Basic Chemistry for the Cement Industry.

    Science.gov (United States)

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  11. Investigation of a Hardened Cement Paste Grout

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Sørensen, Eigil Verner

    This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S.......This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S....

  12. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  13. A note on cement in asteroids

    CERN Document Server

    Bilalbegovic, G

    2016-01-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 microns were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 microns.

  14. A note on cement in asteroids

    Science.gov (United States)

    Bilalbegović, G.

    2016-09-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 μm were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 μm.

  15. Effect of hydrogen sulfide emissions on cement mortar specimens

    Energy Technology Data Exchange (ETDEWEB)

    Idriss, A. F. [Alberta Environment, Science and Technology Branch, Edmonton, AB (Canada); Negi, S. C.; Jofriet, J. C.; Haywoard, G. L. [Guelph Univ., Guelph, ON (Canada)

    2001-07-01

    Six different cement mortar specimens used in animal buildings, where they were exposed to hydrogen sulfide generated from anaerobic fermentation of manure during a period of one year, were investigated. Primary interest was on comparing the corrosion resistance of different cement mortar specimens under long term exposure to hydrogen sulfide. The impressed voltage technique was used to test the specimens in the laboratory. Results revealed that test specimens made with eight per cent silica fume cement replacement performed best and similar Portland cement mortar specimens with a water-cement ratio of 0.55 (PC55) the poorest. All other treatments, (Portland cement with a water to cement ratio of 045, Portland cement Type 50, Portland cement with fibre mesh and Portland cement Type 10 coated with linseed oil) all with water-cement ratios of 0.45, were less effective in preventing corrosion than silica fume replacement.

  16. Low SO2 Emission Preheaters for Cement Production

    DEFF Research Database (Denmark)

    Rasmussen, Martin Hagsted

    showed that this figure could be between 90 kJ/mole and 140 kJ/mole, with a corresponding change of preexponential factors. The ability to predict emissions is very important in the design of cement plants. In this thesis the zone model concept has been applied to the modelling of the cyclone stages...... in a preheater tower. The idea is to account for the complex flow pattern in a cyclone stage by dividing it into zones, each zone having special features. In this manner the model can account for gas/solid heat exchange, gas/solid separation, different gas and solid residence times, etc. The model was evaluated...

  17. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  18. Shrinkage Properties of Cement Stabilized Gravel

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard

    2014-01-01

    Cement stabilized gravel is an attractive material in road construction because its strength prop-erties are accommodating the increasingly higher requirements to the bearing capacity of a base course. However, reflection cracking of cement stabilized gravel is a major concern. In this pa......-per the shrinkage properties of cement stabilized gravel have been documented under various temperature and relative humidity conditions. Two cement contents corresponding to a 28-days compressive strength of 6.2 MPa and 12.3 MPa have been tested and compared. It is found that the coefficient of linear expansion...... for the two cement contents is 9.9 × 10-6 ⁰C-1 and 11.3 × 10-6 ⁰C-1, respectively. Furthermore, it is found that reflecting cracking can mainly be explained by temperature dependent shrinkage rather than moisture dependent shrinkage....

  19. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  20. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone....... The CO2 capture capacity of limestone in the raw meal is lower than for pure limestone. The difference in the CO2 capture capacity decreases with an increase in cycle number. The calcination conditions and composition are major factors that influence the CO2 capture capacity of limestone. At 850 °C in N2...

  1. Development of a Laboratory Cement Quality Analysis Apparatus Based on Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Fan, Juanjuan; Zhang, Lei; Wang, Xin; Li, Yufang; Gong, Yao; Dong, Lei; Ma, Weiguang; Yin, Wangbao; Wang, Zhe; Li, Zheng; Zhang, Xiangjie; Li, Yi; Jia, Suotang

    2015-11-01

    Determination of the chemical composition of cement and ratio values of clinker plays an important role in cement plants as part of the optimal process control and product quality evaluation. In the present paper, a laboratory laser-induced breakdown spectroscopy (LIBS) apparatus mainly comprising a sealed optical module and an analysis chamber has been designed for possible application in cement plants for on-site quality analysis of cement. Emphasis is placed on the structure and operation of the LIBS apparatus, the sealed optical path, the temperature controlled spectrometer, the sample holder, the proper calibration model established for minimizing the matrix effects, and a correction method proposed for overcoming the ‘drift’ obstacle. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The absolute measurement errors presented here for oxides analysis are within 0.5%, while those of ratio values are in the range of 0.02 to 0.05. According to the obtained results, this laboratory LIBS apparatus is capable of performing reliable and accurate, composition and proximate analysis of cement and is suitable for application in cement plants. supported by National Natural Science Foundation of China (Nos. 61127017, 61378047, 61205216, 61178009, 61108030, 61475093, and 61275213), the National Key Technology R&D Program of China (No. 2013BAC14B01), the 973 Program of China (No. 2012CB921603), the Shanxi Natural Science Foundation, China (Nos. 2013021004-1, 2012021022-1), and the Shanxi Scholarship Council of China (Nos. 2013-011 and 2013-01)

  2. CONCRETE BASED ON MODIFIED DISPERSE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2016-08-01

    Full Text Available Purpose. The article considers definition of the bond types occurring in a modified cement concrete matrix, and the evaluation of the quality of these links in a non-uniform material to determine the geometrical and physical relationships between the structure and the cement matrix modifiers. Methodology. To achieve this purpose the studies covered the microstructure of dispersed modified concrete cement matrix, the structure formation mechanism of the modified cement concrete system of natural hardening; as well as identification of the methods of sound concrete strength assessment. Findings. The author proposed a model of the spatial structure of the concrete cement matrix, modified by particulate reinforcement crystal hydrates. The initial object of study is a set of volume elements (cells of the cement matrix and the system of the spatial distribution of reinforcing crystallohydrates in these volume elements. It is found that the most dangerous defects such as cracks in the concrete volume during hardening are formed as a result of internal stresses, mainly in the zone of cement matrix-filler contact or in the area bordering with the largest pores of the concrete. Originality. The result of the study is the defined mechanism of the process of formation of the initial strength and stiffness of the modified cement matrix due to the rapid growth of crystallohydrates in the space among the dispersed reinforcing modifier particles. Since the lack of space prevents from the free growth of crystals, the latter cross-penetrate, forming a dense structure, which contributes to the growth of strength. Practical value. Dispersed modifying cement matrix provides a durable concrete for special purposes with the design performance characteristics. The developed technology of dispersed cement system modification, the defined features of its structure formation mechanism and the use of congruence principle for the complex of technological impacts of physical

  3. Mud and cement for horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Zurdo, C.; Georges, C.; Martin, M.

    1986-01-01

    High-angle and horizontal well bores raise many questions concerning the characteristics of mud and cement. This paper is a summary of the authors' knowledge and work on these two subjects. For all research carried out, large or full-scale laboratory test plants were used. Cutting transport is not only a problem in horizontal conditions but hole angles of 25 to 65/sup 0/ can be even more critical when parameters such as mud rheological properties and velocities are not optimized. Drilling a long horizontal drain creates a dynamic annulus pressure unbalance. This can lead to a loss and kick situation. Two test benches were thus used to obtain a good understanding of the inefficiency of conventional plugging methods and of the difficulties of gas migration control in subhorizontal well bores. High concentrations of LCM, high rheological properties of fluids and low flow rates increase the changes of solving the first problem. The results of the second bench demonstrate the difficulties of annulus gas evacution for angles varying from 90 to 100 degrees, or from over-gauged sections in horizontal holes.

  4. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  5. Cements with low Clinker Content

    Science.gov (United States)

    García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.

    2015-11-01

    Hybrid alkaline cements are multi-component systems containing a high percentage of mineral additions (fly ash, blast furnace slag), low proportions (clinker and scarce amounts of alkaline activators. The substantially lower amount of clinker needed to manufacture these binders in comparison to ordinary Portland cement is both economically and ecologically beneficial. Their enormous versatility in terms of the raw materials used has made them the object of considerable interest. The present study explored the mechanical strength of binary blends mixes; B1= 20% clinker (CK) + 80% fly ash (FA) and B2=20% clinker + 80% blast furnace slag (BFS), both hydrated in the presence and absence of an alkaline activator specifically designed for this purpose. The use of the activator enhanced the development of early age strength considerably. All the hydrated matrices were characterised with XRD, SEM/EDX and (29Si and 27Al) NMR. The use of the alkaline activator generated reaction products consisting primarily of a mix of gels ((N,C)-A-S-H and C-A-S-H) whose respective proportions were found to depend upon system composition and initial reactivity.

  6. Dentin-cement Interfacial Interaction

    Science.gov (United States)

    Atmeh, A.R.; Chong, E.Z.; Richard, G.; Festy, F.; Watson, T.F.

    2012-01-01

    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline caustic effect of the calcium silicate cement’s hydration products degrades the collagenous component of the interfacial dentin. This degradation leads to the formation of a porous structure which facilitates the permeation of high concentrations of Ca2+, OH-, and CO32- ions, leading to increased mineralization in this region. Comparison of the dentin-restorative interfaces shows that there is a dentin-mineral infiltration with the Biodentine, whereas polyacrylic and tartaric acids and their salts characterize the penetration of the GIC. A new type of interfacial interaction, “the mineral infiltration zone”, is suggested for these calcium-silicate-based cements. PMID:22436906

  7. Cement compositions for cementing wells, allowing pressure gas-channeling in the cemented annulus to be controlled

    Energy Technology Data Exchange (ETDEWEB)

    Parcevaux, P.A.; Piot, B.M.; Vercaemer, C.J.

    1987-01-27

    The invention relates to cement compositions for cementing oil and geothermal wells. These compositions allow pressure gas-channeling to be effectively controlled up to more than about 485/sup 0/F. The compositions according to the invention comprise four essential constituents: a cement, a styrene-butadiene latex, a latex stabilizer, and water. The cement is a hydraulic cement belonging to any class among those currently used for cementing oil wells. The useful stabilizers according to the invention are anionic polyelectrolytes such as lignosulfanates and their desulfonated and/or resulfonated derivatives; sulfonated lignin-Kraft products; melamine-formaldehyde resins modified by a sulfonic acid or sulfite; formaldehyde/sulfonated naphthalene resins; or the condensation products of bi-nuclear sulfonated phenols and of formaldehyde. Preferred are the sodium salts of the condensation product of mononaphthalenesulfonic acid and of formaldehyde. The patent also includes a description of tests of various cement compositions of the invention, plus scanning electron microscope observations. 10 figs., 7 tabs.

  8. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    Directory of Open Access Journals (Sweden)

    Konstantin Sobolev

    2003-01-01

    Full Text Available The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and - at the same time - uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  9. Sustainable development of the cement industry and blended cements to meet ecological challenges.

    Science.gov (United States)

    Sobolev, Konstantin

    2003-05-05

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecological compatibility. HVMA cement technology is based on the intergrinding of portland cement clinker, gypsum, mineral additives, and a special complex admixture. This new method increases the compressive strength of ordinary cement, improves durability of the cement-based materials, and--at the same time--uses inexpensive natural mineral additives or industrial by-products. This improvement leads to a reduction of energy consumption per unit of the cement produced. Higher strength, better durability, reduction of pollution at the clinker production stage, and decrease of landfill area occupied by industrial by-products, all provide ecological advantages for HVMA cement.

  10. Clinical Evaluation of Indirect Composite Resin Restorations Cemented with Different Resin Cements.

    Science.gov (United States)

    Marcondes, Maurem; Souza, Niélli; Manfroi, Fernanda Borguetti; Burnett, Luiz Henrique; Spohr, Ana Maria

    2016-01-01

    To clinically evaluate the performance of indirect composite resin restorations cemented with conventional and self-adhesive resin cements over a 12-month period. Ten patients fulfilled all the inclusion criteria. Twenty-four composite resin restorations were performed using an indirect technique and cemented with a resin cement (RelyX ARC) or a self-adhesive resin cement (RelyX U100). Two independent evaluators analyzed the restorations using modified USPHS criteria after periods of two weeks and 6 and 12 months. Statistical significance between the cements at each timepoint was evaluated with the Wilcoxon test and between timepoints with the Mann-Whitney test, both at a significance level of 5%. Fisher's exact test was used to assess the occurrence of absolute failures. No statistically significant differences were found between the groups at the same timepoint nor between groups at different timepoints. The only significant difference was found for color match for both groups after 12 months. After 12 months, indirect composite resin restorations cemented with self-adhesive resin cement performed similarly to those cemented with conventional resin cement.

  11. Dehydration kinetics of Portland cement paste at high temperature

    NARCIS (Netherlands)

    Zhang, Q.; Ye, G.

    2012-01-01

    Portland cement paste is a multiphase compound mainly consisting of calcium-silicate-hydrate (CSH) gel, calcium hydroxide (CH) crystal, and unhydrated cement core. When cement paste is exposed to high temperature, the dehydration of cement paste leads to not only the decline in strength, but also

  12. Dehydration kinetics of Portland cement paste at high temperature

    NARCIS (Netherlands)

    Zhang, Q.; Ye, G.

    2012-01-01

    Portland cement paste is a multiphase compound mainly consisting of calcium-silicate-hydrate (CSH) gel, calcium hydroxide (CH) crystal, and unhydrated cement core. When cement paste is exposed to high temperature, the dehydration of cement paste leads to not only the decline in strength, but also th

  13. Dermatoses in cement workers in southern Taiwan.

    Science.gov (United States)

    Guo, Y L; Wang, B J; Yeh, K C; Wang, J C; Kao, H H; Wang, M T; Shih, H C; Chen, C J

    1999-01-01

    Construction workers are known to have occupational dermatoses. The prevalence of such dermatoses was unknown in Taiwanese construction workers. The objective of this study was to determine the work exposure, prevalence of skin manifestations, and sensitivity to common contact allergens in cement workers of southern Taiwan. A total of 1147 current regular cement workers were telephone-interviewed about skin problems during the past 12 months, work exposure, and personal protection. Among those interviewed, 166 were examined and patch tested with common contact allergens. A high % of cement workers reported skin problems in the past 12 months. More men (13.9%) reported skin problems possibly related to work than women (5.4%). Prevalence was associated with lower use of gloves, duration of work as cement worker, and more time in jobs involving direct manual handling of cement, especially tiling. A high % of dermatitis was noted in the 166 workers examined, which correlated with reported skin problems. On patch testing, construction workers had a high frequency of sensitivity to chromate. Sensitivity to chromate or cobalt was associated with reported skin problems, or dorsal hand dermatitis on examination. These workers' dermatitis was under-diagnosed and inadequately managed. It is concluded that cement workers in southern Taiwan had a high prevalence of skin problems related to cement use. Protective measures, work practice, and physician education should be improved to prevent or manage such problems.

  14. International development trends in low-energy cements

    Energy Technology Data Exchange (ETDEWEB)

    Stark, J.; Mueller, A.

    1988-04-01

    Besides the currently dominant tendency to increase the proportion of interground additive in cement, the following development trends are internationally emerging in the material composition of so-called low-energy cements with a view to minimizing energy input for cement manufacture: (1) active belite cement with the principal clinker minerals a'C/sub 2/S and C/sub 3/S; (2) belite sulphoaluminate cement (..beta.. C/sub 2/S, C/sub 4/A/sub 3/S); (3) belite sulphoferrite cement (..beta.. C/sub 2/S, C/sub 4/AF, C/sub 4/A/sub 3/S); (4) NTS cement (alinite).

  15. Hydration of ordinary portland cements made from raw mix containing transition element oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kakali, G.; Tsivilis, S.; Tsialtas, A. [National Technical Univ. of Athens (Greece)

    1998-03-01

    The use of industrial wastes, such as waste tires, waste oil, non-ferrous metal slag, or waste molding sand, as alternative raw materials and fuel in cement plants has been established from an environmental and recycling point of view and is expected to increase in the future. Cement is broadly used, among other hydraulic binders, in the solidification and stabilization of industrial and municipal wastes. This tendency to the use of wastes in the cement industry or the utilization of cement for the handling of wastes has led to the presence of several transition element compounds in the clinker and/or in the hydrated cement. The subject of this paper is the study of the hydration process in cements made from raw mixes containing transition element oxides. The oxides used are ZrO{sub 2}, V{sub 2}O{sub 5}, Ni{sub 2}O{sub 3}, CuO, Co{sub 2}O{sub 3}, MnO, Cr{sub 2}O{sub 3}, TiO{sub 2}, MoO{sub 3}, and ZnO, and their percentage in the raw mixes is 2% w/w. The cement pastes are cured in water for 24 h, 48 h, 7 days and 28 days. Hydration rate and products are studied by means of X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. As it is concluded, the added oxides provoke, in general, a retardation of the hydration reactions. The effect is stronger during the first 2 days and becomes negligible at 28 days. The addition of CuO strongly delays the hydration even after 28 days. Its action is related to the formation of Cu(OH){sub 2} during the first days of hydration.

  16. Application of a system dynamics approach for assessment and mitigation of CO{sub 2} emissions from the cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Shalini Anand; Prem Vrat; R.P. Dahiya [Indian Institute of Technology Delhi, New Delhi (India). Centre for Energy Studies

    2006-06-15

    A system dynamics model based on the dynamic interactions among a number of system components is developed to estimate CO{sub 2} emissions from the cement industry in India. The CO{sub 2} emissions are projected to reach 396.89 million tonnes by the year 2020 if the existing cement making technological options are followed. Policy options of population growth stabilisation, energy conservation and structural management in cement manufacturing processes are incorporated for developing the CO{sub 2} mitigation scenarios. A 42% reduction in the CO{sub 2} emissions can be achieved in the year 2020 based on an integrated mitigation scenario. Indirect CO{sub 2} emissions from the transport of raw materials to the cement plants and finished product to market are also estimated.

  17. Holocene cemented beach deposits in Belize

    Science.gov (United States)

    Gischler, Eberhard; Lomando, Anthony J.

    1997-06-01

    Two types of cemented beach deposits occur on reef islands off the coast of Belize. These are (1) intertidal beachrock that is dominantly cemented by marine aragonite and high-magnesium-calcite cements, and (2) supratidal cayrock that is cemented mainly by vadose low-magnesium-calcite cements. Besides differences in position relative to present sea level and resulting early diagenesic features, beachrock and cayrock can be distinguished on the basis of differences in composition, texture, geographical position, and age. Whereas the composition of beachrock is similar to that of the adjacent marginal reef sediments, cayrock is enriched in benthic foraminifera. Intertidal beachrock is moderately to well sorted and well cemented, while supratidal cayrock is very well sorted, poorly cemented and friable. Beachrock occurs preferentially on windward beaches of sand-shingle Gays on the middle and southern barrier reefs and on the isolated platforms Glovers and Lighthouse Reefs. Cayrock only occurs on larger mangrove-sand Gays of the isolated platforms Turneffe Islands, Lighthouse Reef, and the northern barrier reef. 14C-dating of ten whole-rock and mollusk shell samples produced calibrated dates between AD 345 and AD 1435 for beachrock and between BC 1085 and AD 1190 for cayrock. The large-scale distribution of beachrock in Belize supports the contention that physical processes such as water agitation rather than biological processes control beachrock formation and distribution. Only on windward sides of cays that are close to the reef crest, where large amounts of seawater flush the beaches, considerable amounts of cements can be precipitated to produce beachrock. Cayrock forms due to cementation in the vadose zone and is only preserved on larger, stable mangrove-sand cays.

  18. Cementation of wastes with boric acid; Cimentacao de rejeitos contendo acido borico

    Energy Technology Data Exchange (ETDEWEB)

    Tello, Cledola C.O.; Haucz, Maria Judite A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Alves, Lilian J.L.; Oliveira, Arno H. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2000-07-01

    In nuclear power plants (PWR) are generated wastes, such as concentrate, which comes from the evaporation of liquid radioactive wastes, and spent resins. Both have boron in their composition. The cementation process is one of the options to solidify these wastes, but the boron has a negative effect on the setting of the cement mixture. In this paper are presented the experiments that are being carried out in order to overcome this problem and also to improve the efficiency of the process. Simulated wastes were cemented using additives (clays, admixtures etc.). In the process and product is being evaluated the effect of the amount, type and addition order of the materials. The mixtures were selected in accordance with their workability and incorporated waste. The solidified products are monolithic without free water with a good mechanical resistance. (author)

  19. Comparison of Temperature Field Distribution between Cement Preclinkering Technology and Cement Precalcining Technology

    Institute of Scientific and Technical Information of China (English)

    XU Xun; WANG Lan

    2016-01-01

    Through the comparison of calcination conditions between cement preclinkering technology and cement precalcining technology, we studied the characteristics of temperature ifeld distribution of cement preclinkering technology systems including cyclone preheater, preclinkering furnace, and rotary kiln. We used numerical simulation method to obtain data of temperature ifeld distribution.Some results are found by system study. The ratio of tail coal of cement preclinkering technology is about 70%, and raw meal temperature can reach 1070℃. ShorterL/D kiln type of preclinkering technology can obtain more stable calcining zone temperature. The highest solid temperature of cement preclinkering technology is higher than 80℃, and high temperature region (>1450℃) length is 2 times, which is beneifcial for calcining clinker and higher clinker quality. So cement preclinkering technology can obtain more performance temperature ifled, which improves both the solid-phase reaction and liquid-phase reaction.

  20. The behavior of the micro-mechanical cement-bone interface affects the cement failure in total hip replacement

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2011-01-01

    In the current study, the effects of different ways to implement the complex micro-mechanical behavior of the cement-bone interface on the fatigue failure of the cement mantle were investigated. In an FEA-model of a cemented hip reconstruction the cement-bone interface was modeled and numerically im

  1. Effect of cementing technique and cement type on thermal necrosis in hip resurfacing arthroplasty - a numerical study

    NARCIS (Netherlands)

    Janssen, D.; Srinivasan, P.; Scheerlinck, T.; Verdonschot, N.J.J.

    2012-01-01

    Femoral fractures within resurfacing implants have been associated with bone necrosis, possibly resulting from heat generated by cement polymerization. The amount of heat generated depends on cement mantle volume and type of cement. Using finite element analysis, the effect of cement type and volume

  2. Synthesis of pure Portland cement phases

    DEFF Research Database (Denmark)

    Wesselsky, Andreas; Jensen, Ole Mejlhede

    2009-01-01

    Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...

  3. INFLUENCE OF GLASS CULLET IN CEMENT PASTES

    Institute of Scientific and Technical Information of China (English)

    A.Karamberi; E.Chaniotakis; D.Papageorgiou; A.Moutsatsou

    2006-01-01

    The present study investigates glass and cement compatibility with a view to use glass as a cement replacement. Amber, flint and green glasses were chosen due to their prevalence in the Greek market as packaging materials. The factors under investigation were the pozzolanicity of the glass cullet, the hydration rate and the mechanical strength development of the cement pastes, as well as the expansion of the specimens due to alkali-silica reaction.Moreover, the potential enhancement of glass pozzolanic activity was examined. The results of the study were encouraging to show the potentiality of utilising glass cullet in cementitious products.

  4. Characterisation and use of biomass fly ash in cement-based materials.

    Science.gov (United States)

    Rajamma, Rejini; Ball, Richard J; Tarelho, Luís A C; Allen, Geoff C; Labrincha, João A; Ferreira, Victor M

    2009-12-30

    This paper presents results about the characterisation of the biomass fly ashes sourced from a thermal power plant and from a co-generation power plant located in Portugal, and the study of new cement formulations incorporated with the biomass fly ashes. The study includes a comparative analysis of the phase formation, setting and mechanical behaviour of the new cement-fly ash formulations based on these biomass fly ashes. Techniques such as X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), thermal gravimetric and differential thermal analysis (TG/DTA), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and environmental scanning electron spectroscopy (ESEM) were used to determine the structure and composition of the formulations. Fly ash F1 from the thermal power plant contained levels of SiO(2), Al(2)O(3) and Fe(2)O(3) indicating the possibility of exhibiting pozzolanic properties. Fly ash F2 from the co-generation plant contained a higher quantity of CaO ( approximately 25%). The fly ashes are similar to class C fly ashes according to EN 450 on the basis of chemical composition. The hydration rate and phase formation are greatly dependant on the samples' alkali content and water to binder (w/b) ratio. In cement based mortar with 10% fly ash the basic strength was maintained, however, when 20% fly ash was added the mechanical strength was around 75% of the reference cement mortar. The fly ashes contained significant levels of chloride and sulphate and it is suggested that the performance of fly ash-cement binders could be improved by the removal or control of these chemical species.

  5. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... of the fuel heating value. In addition, the devolatilization time of alternative fuels cannot be neglected in kiln system process analyses, as these fuels are typically in the cm-size with devolatilization times in the order of minutes. The devolatilization characteristics of large particles of tyre rubber...... time, where increased particle size increased the devolatilization time. Model analyses demonstrated that the overall devolatilization kinetics of large particles of tyre rubber is mainly controlled by heat transfer and intrinsic pyrolysis kinetics, whereas mass transfer has negligible influence...

  6. X-ray powder diffractometry of emissions from the cement industry

    Science.gov (United States)

    Parekh, P. P.; Khan, A. R.; Davin, M. T.

    X-ray powder diffractometry has been found capable of identifying and distinguishing limestone and cement particles, the two important emissions of the cement industry. The limestone shows strong reflections principally at 1.87,1.91,2.09,2.28,2.49,3.03 and 3.83 Å from its main constituent, calcite, whereas cement shows reflections at 1.76, 2.18, 2.60, 2.64, a doublet at 2.73-2.77 and 3.02 Å from its main phases, the di-, and tri-calcium silicates. X-ray diffraction analysis of airborne particles collected on glass fibre filters in the vicinity of cement factories in Karachi, Pakistan and Ravena, New York State, revealed limestone but no cement particles. This observation was consistent with our earlier inference drawn from chemical and statistical methods for Karachi's ambient aerosols. The method can complement the selective leaching technique suggested earlier by us for source identification. On the basis of model calculations, a methodology has been worked out that would make the present technique adaptable to plant conditions.

  7. Removal of cobalt and nickel from zinc sulphate solutions using activated cementation

    Directory of Open Access Journals (Sweden)

    Boyanov B.

    2004-01-01

    Full Text Available The influence of different parameters (duration, temperature, zinc dust quantity, concentration of activators - copper and antimony on the process of activated cementation of Co and Ni has been studied. We have worked with industrial zinc sulphate solutions. During the process of activated cementation of Co and Ni, copper (involved as CuSO4.5H2O and antimony (involved as Sb2O3 were used as activators. The lowest values of Co content have been obtained at a temperature of 80-85 oC, CCu = 200-300 mg/dm3 and 18 multiple surplus of zinc dust. After adding Cu to the solution, mainly the cementation of Ni is activated, and that of Co is activated to a lower degree. It was found that when GSb : GCo ratio is between 0.5 : 1 and 2 : 1, the solution is purified from Co and Ni to a great degree. After intensive stirring and increasing the duration of the process the cement sediments dissolve reversely. This holds true of Co to a greater extent, as compared to Ni. The results obtained will be used to establish optimal conditions for the carrying out of activated cementation in Zinc Production Plant in KCM SA, Plovdiv.

  8. Cement paste column for simultaneous removal of fluoride, phosphate, and nitrate in acidic wastewater.

    Science.gov (United States)

    Park, Joo-Yang; Byun, Hye-Jung; Choi, Won-Ho; Kang, Wan-Hyup

    2008-02-01

    Cement paste, a cured mixture of cement and water, was reported to have considerable capacity for fluoride removal. In this study, heavily mixed fluoric acid wastewater from a semiconductor fabrication plant was applied to a column packed with cement paste granules to evaluate its capacity for the removal of fluoride and three other contaminants, phosphate, nitrate, and sulfate, as well as to investigate the interactions between these contaminants and cement components. The column reduced fluoride to remarkably low levels since fluorite was formed at highly elevated concentrations of calcium and the residual fluoride was further sorbed into the amorphous calcium phosphate that precipitated the entire amount of phosphate until breakthrough. The simultaneous removal of sulfate in the earlier stage was followed by significant removal of nitrate in exchange with the gradual release of sulfate. This behavior was explained by the co-precipitation of sulfate with calcium phosphate or calcium aluminate solids and the subsequent substitution of nitrate for the interlayer sulfate of monosulfate. However, the overall removal capacity of cement paste was reduced due to the high effluent loss of calcium and competition for calcium between fluoride and phosphate.

  9. The mineralogy and chemistry of cement and cement raw materials In the united arab emirates

    OpenAIRE

    Nasir, Sobhi J. [صبحي جابر نصر; El Etr, H.

    1996-01-01

    The raw materials, clinkers and cements from different cement factories in the United Arab Emirates have been investigated using polarizing microscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and chemical analyses. The chemical and mineralogical analyses indicate that the local raw materials are suitable for cement industry. Geological review shows that there is a good potential for industrial-grade local occurrences of limestone, marl, gypsum and iron oxide, that may be ...

  10. Chromium content in human skin after in vitro application of ordinary cement and ferrous-sulphate-reduced cement

    DEFF Research Database (Denmark)

    Fullerton, A; Gammelgaard, Bente; Avnstorp, C

    1993-01-01

    The amount of chromium found in human skin after in vitro application of cement suspensions on full-thickness human skin in diffusion cells was investigated. Cement suspensions made from ordinary Portland cement or Portland cement with the chromate reduced with added ferrous sulphate were used....... The cement suspensions were either applied on the skin surface under occlusion for 48 h or applied repeatedly every 24 h for 96 h. No statistically significant difference in chromium content of skin layers between skin exposed to ordinary Portland cement, skin exposed to cement with added ferrous sulphate...

  11. A cost effective cultivation medium for biocalcification of Bacillus pasteurii KCTC 3558 and its effect on cement cubes properties.

    Science.gov (United States)

    Yoosathaporn, S; Tiangburanatham, P; Bovonsombut, S; Chaipanich, A; Pathom-Aree, W

    2016-01-01

    Application of carbonate precipitation induced by Bacillus pasteurii for improving some properties of cement has been reported. However, it is not yet successful in commercial scale due to the high cost of cultivation medium. This is the first report on the application of effluent from chicken manure bio-gas plant, a high protein content agricultural waste, as an alternative growth medium for carbonate precipitation by B. pasteurii KCTC3558. Urease activity of B. pasteurii KCTC3558 cultured in chicken manure effluent medium and other three standard media were examined using phenate method. The highest urease production was achieved in chicken manure effluent medium (16.756Umg(-1) protein). Cost per liter of chicken manure effluent medium is up to 88.2% lower than other standard media. The most effective cultivation media was selected for carbonate precipitation study in cement cubes. Water absorption, voids, apparent density and compressive strength of cement cubes were measured according to the ASTM standard. The correlation between the increasing density and compressive strength of bacterial added cement cube was evident. The density of bacterial cement cube is 5.1% higher than control while the compressive strength of cement mixed with bacterial cells in chicken manure effluent medium increases up to 30.2% compared with control. SEM and XRD analysis also found the crystalline phase of calcium carbonate within bacterial cement which confirmed that the increasing density and compressive strength were resulted from bacterial carbonate precipitation. This study indicated that the effluent from chicken manure bio-gas plant could be used as an alternative cost effective culture medium for cultivation and biocalcification of B. pasteurii KCTC3558 in cement.

  12. Radiographic appearance of commonly used cements in implant dentistry.

    Science.gov (United States)

    Pette, Gregory A; Ganeles, Jeffrey; Norkin, Frederic J

    2013-01-01

    Cement-retained restorations allow for a conventional fixed partial denture approach to restoring dental implants. However, inadequate removal of excess cement at the time of cementation may introduce a severe complication: cement-induced peri-implantitis. Radiopaque cements are more easily detected on radiographs and should improve the recognition of extravasated cement at the time of insertion. The purpose of this study was to evaluate the radiopacity of commercially available cements in vitro. Eighteen different cements commonly used for luting restorations to implants were tested at both 0.5- and 1.0-mm thicknesses. The cements examined were zinc oxide eugenol, zinc oxide, zinc polycarboxylate, zinc phosphate, resin-reinforced glass ionomer, urethane resin, resin, and composite resin. Two samples of each cement thickness underwent standardized radiography next to an aluminum step wedge as a reference. The mean grayscale value of each of the nine 1-mm steps in the step wedge were used as reference values and compared to each of the cement samples. Temp Bond Clear (resin), IMProv (urethane resin), Premier Implant Cement (resin), and Temrex NE (resin) were not radiographically detectable at either sample thickness. Cements containing zinc were the most detectable upon radiographic analysis. There are significant differences in the radiopacity of many commonly used cements. Since cementinduced peri-implantitis can lead to late implant failure, cements that can be visualized radiographically may reduce the incidence of this problem.

  13. Slagment Cement Improve the Cement Resistance Toward Acids Attack During Acidizing Treatment

    Directory of Open Access Journals (Sweden)

    Nik Khairul Irfan Bin Nik Ab. Lah.

    2013-05-01

    Full Text Available Acidizing treatment in past experience shows several zonal isolation problems after the treatment. This study presents the effect of the acid treatment toward class G cement and slagment cement as the improvement method to improve the cement resistance toward the acid. Lab experiments were conducted by immerge the respective cement cubes into 12% HCl/3% HF solution for 40 min before several analysis were conducted. Based on the result, the mass loss and compressive strength loss of the cement cubes decrease as the curing temperature and pressure increase due to more evenly distributed cement chemical composition crystal in high curing condition as shown in Scanning Electron Microscopy (SEM analysis. From X-Ray Diffraction (XRD and X-Ray Fluorescence (XRF analysis, only the first layer of the cement cubes shows chemical component change due to the reaction between the acid. This study found that, replacing class G cement to slagment cement can reduce the mass loss and compressive strength loss up to 72% and 82%, respectively.

  14. Effect of Cement Type on Autogenous Deformation of Cement-Based Materials

    DEFF Research Database (Denmark)

    Pietro, Lura; Ye, Guang; van Breugel, Klaas

    2004-01-01

    (BFS) cement pastes. Self-desiccation shrinkage of the BFS cement paste was modeled based on the RH measurements, following the capillary-tension approach. The main findings of this study are: 1) self-desiccation shrinkage can be related to self-desiccation both for Portland and for BFS cement pastes......, taking into account the influence of the dissolved salts in the pore solution, 2) the BFS cement paste studied shows pronounced self-desiccation and self-desiccation shrinkage, mainly caused by its very fine pore structure....

  15. Laboratory development and field application of novel cement system for cementing high-temperature oil wells

    Energy Technology Data Exchange (ETDEWEB)

    Wan, X.; Zhang, H.; Li, Y.; Yang, Y. [SINOPEC, Beijing (China); Shan, H.; Xiao, Z. [OPT, Beijing (China)

    2010-07-01

    The challenges that oil and gas well engineers face when cementing mid-to-high temperature exploration oil and gas wells were discussed. A newly developed cement system with an effective laminar-flow spacer was presented along with case histories that document the system's effectiveness for cementing high temperature exploration wells. The problems associated with cementing high temperature exploration wells include high bottom hole static temperature; very low pump rates; and very long job times. These challenges contribute to the operational risks during cement slurry placement in the wellbore as well as during cement sheath setting during the life of the well. The new cement formulation presented in this paper addresses these challenges. Eight jobs have been completed in the field with much success. The combination of a new retarder and fluid loss control additive improves the system performance considerably in terms of low fluid loss rate, minimal free water, proper rheology, predictable thickening time, high resistance to salt contaminations and no adverse effect on set cement strength. The drilling muds are effectively displaced by the laminar flow spacer, thus improving the cementing bond. 9 refs., 5 tabs., 6 figs.

  16. INFLUENCE OF WINE ACID ON RHEOLOGICAL PROPERTIES OF WELL BORE CEMENT SLURRIES AND HARDENED CEMENT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1989-12-01

    Full Text Available Adaptation of commercial types of domestic cements for use in cementing the deep wells is a process by which Yugoslav oil industry tends to solve problems of completion of those wells independently. In order to design a domestic, cheep and effective retarder, tests of applicability of wine acid on cement slurries have been carried out. Besides examining the necessary wine acid content to achieve desirable Theological properties, the influence of this additive on properties of hardened cement samples has been tested too (the paper is published in Croatian.

  17. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes

    2016-08-01

    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  18. The Setting Chemistry of Glass Ionomer Cement

    Institute of Scientific and Technical Information of China (English)

    CHENG Hanting; LIU Hanxing; ZHANG Guoqing

    2005-01-01

    The setting chemistry of glass ionomer cement was investigated by using mechanical determination of compressive strength at predetermined intervals, and measurement of structure changes of corresponding fracture sample by means of IR spectra and differential scanning calorimetry ( DSC). Zinc polycarboxylate cement was used as a comparison sample. The compressive strength of glass ionomer cement (GIC) increases with aging. IR spectra and DSC of corresponding fracture sample show the structure changes of the matrix and interface layer comprising of silica gel during the predetermined intervals studied, however, no significant changes occur in the zinc polycarxyolate cement. Hence the structure changes of the matrix and/or interface layer are responsible for compressive strength increasing with aging. The structure changes include the crosslink density, the ratio of complex form to ionic form, the content ratio of Al-PAA to Ca-PAA, the forming and mauring process of the interface layer comprising of silica gel.

  19. Dicalcium phosphate cements: brushite and monetite.

    Science.gov (United States)

    Tamimi, Faleh; Sheikh, Zeeshan; Barralet, Jake

    2012-02-01

    Dicalcium phosphate cements were developed two decades ago and ever since there has been a substantial growth in research into improving their properties in order to satisfy the requirements needed for several clinical applications. The present paper presents an overview of the rapidly expanding research field of the two main dicalcium phosphate bioceramics: brushite and monetite. This review begins with a summary of all the different formulae developed to prepare dicalcium phosphate cements, and their setting reaction, in order to set the scene for the key cement physical and chemical properties, such as compressive and tensile strength, cohesion, injectability and shelf-life. We address the issue of brushite conversion into either monetite or apatite. Moreover, we discuss the in vivo behavior of the cements, including their ability to promote bone formation, biodegradation and potential clinical applications in drug delivery, orthopedics, craniofacial surgery, cancer therapy and biosensors.

  20. The case of Mugher cement facto

    African Journals Online (AJOL)

    Thomas

    based on emission test and mass balance performed. Yet it accounts for ... Hydraulic (chiefly portland) cement, the binding agent in concrete and most .... phenolphthalein were used for end-point detection of the acid-base titration. Materials.

  1. Low-cycle fatigue of surgical cements

    Directory of Open Access Journals (Sweden)

    A. Balin

    2007-01-01

    Full Text Available Purpose: In case when surgical cement is used to fix endoprostheses of joints the fatigue character of mechanicalinterraction in the cement seems to be a significant importance. The paper suggests to adapt the research methodof low cycle fatigue for modelling the loads on surgical cements in an artificial hip joint. Surgical cements havealso been modified in order to improve their functional properties.Design/methodology/approach: Low cycle fatigue tests were conducted on samples made from Palamedcement without an addition and on samples modified with glassy carbon and titanium. The tests were conductedon a servohydraulic fatigue testing machine, MTS-810, with displacement control.Findings: Fatigue tests proved viscoelastic character of all the tested materials. During the fatigue tests, thephenomenon of stress cyclic relaxation was observed.Research limitations/implications: Modelling the loadings of cement in endoprostheses of joints with the lowcycle fatigue method takes into account all high value stresses, while cement is being used for endoprosthesesfor many years in the conditions of random stress and deformation courses. Therefore the obtained stress anddeformation values are bigger than those which would have been obtained in real conditions in the same time.Practical implications: The low cycle fatigue tests carried out showed how important is the factor of timefor the behavior of surgical cement in the conditions of changeable loadings. This fact is essential to assessits usability for endoprosthesoplasty of joints, specially of a hip joint. Post deformation return which is acharacteristic feature for material viscoelasticity enables its regeneration conditioning expected durability ofendoprosthesis of joints.Originality/value: Low cycle fatigue testing method for modelling of loads on surgical cement in artificial hipjoint enables to carry out the tests in a shorter period of time.

  2. Continued stabilization of Triathlon cemented TKA

    OpenAIRE

    Molt, Mats; Ryd, Leif; Toksvig-Larsen, Sören

    2016-01-01

    Background and purpose There is a general call for phased introduction of new implants, and one step in the introduction is an early evaluation of micromotion. We compared the micromotion in the Triathlon and its predecessor, the Duracon total knee prosthesis, concentrating especially on continuous migration over 5 years of follow-up. Patients and methods 60 patients were randomized to receive either a cemented Triathlon total knee prosthesis or a cemented Duracon total knee prosthesis. 3-D t...

  3. Cement stratigraphy: Image probes of cathodoluminescent facies.

    OpenAIRE

    Vuillemin, Aurèle; Ndiaye, Mapathe; Martini, Rossana; Davaud, Eric Jean

    2011-01-01

    Cement stratigraphy of carbonates aims to establish the chronology of processes involved in the rock diagenesis. Regional cement stratigraphy allows correlations and understanding of the petrological heterogeneities in reservoirs and aquifers, but is a long and rigorous approach. This article exposes a methodology of image analysis that facilitates the spatial correlation of diagenetic events in carbonate rocks. Based on the statistical comparison of signals extracted from the red spectrum em...

  4. Physical Properties of Acidic Calcium Phosphate Cements

    OpenAIRE

    2014-01-01

    The gold standard for bone replacement today, autologous bone, suffers from several disadvantages, such as the increased risk of infection due to the need for two surgeries. Degradable synthetic materials with properties similar to bone, such as calcium phosphate cements, are a promising alternative. Calcium phosphate cements are suited for a limited amount of applications and improving their physical properties could extend their use into areas previously not considered possible. For example...

  5. Dynamic properties of composite cemented clay

    Institute of Scientific and Technical Information of China (English)

    蔡袁强; 梁旭

    2004-01-01

    In this work,the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. A simple and practical method to estimate the dynamic elastic modulus and damping ratio is proposed in this paper and a related empirical normalized formula is also presented. The results provide useful guidelines for preliminary estimation of cement requirements to improve the dynamic properties of clays.

  6. Case Study of the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

    2005-05-01

    California is the largest cement producing state in theU.S., accounting for between 10 percent and 15 percent of U.S. cementproduction and cement industry employment. The cement industry inCalifornia consists of 31 sites that consume large amounts of energy,annually: 1,600 GWh of electricity, 22 million therms of natural gas, 2.3million tons of coal, 0.25 tons of coke, and smaller amounts of wastematerials, including tires. The case study summarized in this paperfocused on providing background information, an assessment ofenergy-efficiency opportunities and barriers, and program recommendationsthat can be used by program planners to better target products to thecement industry. The primary approach to this case study involvedwalk-through surveys of customer facilities and in depth interviews withcustomer decision makers and subsequent analysis of collected data. Inaddition, a basic review of the cement production process was developed,and summary cement industry energy and economic data were collected, andanalyzed. The analysis of secondary data provides background informationon the cement industry and identification of potential energy-efficiencyopportunities. The interviews provide some understanding of the customerperspective about implementation of energy-efficiencyprojects.

  7. Development of the Portland cement slurries with diatomaceous earth to the oil industry; Desenvolvimento de pastas de cimento Portland com adicao de diatomita para a industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Roseane A; Melo, Dulce M.A.; Martinelli, Antonio E.; Simao, Cristina A.; Paiva, Maria D.M. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Melo, Marcus A.F. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The class-G Portland cement has been used with success in oil well cementing. The material is usually shipped to the Northeast Brazil, because the only plant that manufactures class-G is located in Cantagalo/RJ. The present work investigates the influence of the partial substitution of Portland cement by diatomaceous earth, aiming at reducing the costs in oil well cementing, improving the slurry properties and using local raw material. The diatomaceous earth has pozzolanic properties and can be used as extenders of cement slurries. This properties added to the lower cost and availability of this material in Northeast Brazil, make the diatomaceous earth a candidate material to produce light cements, to well conditions in advanced phases of production. It were evaluated the rheological properties of the slurries (at 25 and 52 deg C), volume of free water, compressive strength after curing for 8, 24 and 48 h at 38 deg C, and consistometry tests. The results show that the diatomaceous earth maintain the viscosity values and gel force suitable for use in oil well cementing. No free water was observed in the formulations. It was also verified that the compressive strength of slurries hardened with diatomaceous earth is similar to those with only Portland cement and that the minimum compressive strength of 300 psi, after curing for 8 h was reached. The thickening time was longer than the average value and the application value. (author)

  8. Distribution of Hg, As and Se in material and flue gas streams from preheater-precalciner cement kilns and vertical shaft cement kilns in China.

    Science.gov (United States)

    Yan, Dahai; Peng, Zheng; Ding, Qiong; Karstensen, Kåre Helge; Engelsen, Christian J; Li, Li; Ren, Yong; Jiang, Chen

    2015-08-01

    The aim of this study was to evaluate the behavior of Hg, As, and Se in cement production. Two types of cement plants were studied, including the vertical shaft kiln (VSK) and preheater-precalciner kiln (PPK) processes. Determination of Hg, As, and Se in the main material and gas streams were performed. It was found that recycling of particulate matter captured by an air pollution control device caused a significant enrichment of Hg and As inside both processes. The total quantity of Hg entering the process and the quantity emitted to the atmosphere were found to be 10-109 and 6.3-38 mg, respectively, per ton of clinker produced. The average Hg emission was calculated to be around 41% of the total mercury input. The emissions found complied with the European Union (EU) limit and exceeded partly the U.S. limit. Furthermore, it was found that oxidized mercury was the dominant species in the PPK process, whereas the reduced form was dominant in the VSK process, due to the oxidizing and reducing gas conditions, respectively. Regarding the distribution of As and Se, the major amounts were bound to the solid materials, that is, cement clinker and particulate matter. Based on cement production data in China in 2013, the annual emissions of Hg and As were estimated to be in the range of 8.6-52 and 4.1-9.5 tons, respectively.

  9. Influence of Cellulose Ethers on Hydration Products of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; OU Zhihua; JIAN Shouwei; XU Rulin

    2011-01-01

    Cellulose ethers are widely used to mortar formulations, and it is significant to understand the interaction between cellulose ethers and cement pastes. FT-IR spectra, thermal analysis and SEM are used to investigate hydration products in the cement pastes modified by HEMC and HPMC in this article. The results show that the hydration products in modified cement pastes were finally identical with those in the unmodified cement paste, but the major hydration products, such as CH (calcium hydroxide), ettringite and C-S-H, appeared later in the modified cement pastes than in the unmodified cement paste. The cellulose ethers decrease the outer products and increase inner products of C-S-H gels. Compared to unmodified cement pastes, no new products are found in the modified cement pastes in the present experiment. The HEMC and HPMC investigation shows almost the same influence on the hydration products of Portland cement.

  10. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, low cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.

  11. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly...

  12. Color difference of composite resins after cementation with different shades of resin luting cement.

    Science.gov (United States)

    Cengiz, Esra; Kurtulmus-Yilmaz, Sevcan; Karakaya, Izgen; Aktore, Huseyin

    2017-07-26

    The purpose of this study was to evaluate the color difference of nanohybrid and ormocer-based composite resins with different thicknesses when 4 different shades of resin luting cement were used. 56 disc specimens of each composite resin (Aelite aesthetic enamel, Ceram-X mono) with 0.5 and 1 mm thicknesses were fabricated. Baseline color measurements were performed using a clinical spectrophotometer. The specimens of each thicknesses of each resin were randomly divided into 4 groups according to the shades of resin luting cement (white/A1, yellow/universal/A3, transparent and white opaque) (n = 7). Mixed resin cement was applied onto the resin specimens using a Teflon mold in 0.1 mm thickness. Color measurements of cemented composite resin specimens were repeated and color difference (∆E) between baseline and after cementation measurements was calculated. ANOVA and Tukey's test were used for statistical analysis. The opaque shade had significantly increased ∆E values as compared to the other shades (p resins in terms of ∆E values. The shade of resin cement and the type of the resin affected the final color; however, the thickness of composite resin had no influence on the final color of restoration. Selecting the shade of resin luting cement before cementation of indirect composite laminate restoration is important to achieve final color match.

  13. Revision Total Hip Arthroplasty Using the Cement-in-Cement Technique.

    Science.gov (United States)

    Amanatullah, Derek F; Pallante, Graham D; Floccari, Lorena V; Vasileiadis, George I; Trousdale, Robert T

    2017-03-01

    The cement-in-cement technique is useful in the setting of revision total hip arthroplasty (THA), especially to gain acetabular exposure, change a damaged or loose femoral component, or change the version, offset, or length of a fixed femoral component. The goal of this retrospective study was to assess the clinical and radiographic characteristics of revision THA using the cement-in- cement technique. Between 1971 and 2013, a total of 63 revision THAs used an Omnifit (Osteonics, Mahwah, New Jersey) or Exeter (Howmedica, Mahwah, New Jersey) stem and the cement-in-cement technique at the senior author's institution. Aseptic loosening (74%) was the predominant preoperative diagnosis followed by periprosthetic fracture (14%), instability (8%), and implant fracture (6%). Mean clinical follow-up was 5.5±3.8 years. The Harris Hip Score had a statistically significant increase of 18.5 points (Pfracture, or circumferential lucent lines at final follow-up. The patients who underwent cement-in-cement revision THA at the senior author's institution had good restoration of function but a high complication rate. [Orthopedics. 2017; 40(2):e348-e351.]. Copyright 2016, SLACK Incorporated.

  14. 菠萝焦磷酸:果糖-6-磷酸1-磷酸转移酶的分离纯化及性质研究%Studies on purification and enzymatic property of PFP from pineapple leaves

    Institute of Scientific and Technical Information of China (English)

    李平生

    2006-01-01

    应用硫酸铵分级分离、DEAE-纤维素、Sephadex G-200、磷酸纤维素柱层析分离纯化了菠萝叶片焦磷酸:果糖-6-磷酸1-磷酸转移酶(PFP).凝胶过滤和非变性聚丙烯酰胺梯度电泳测定酶的分子量为132kD和140kD,SDS-聚丙烯酰胺电泳分析得到一条分子量为66kD的蛋白主带,表明该酶可能是由同种亚基组成的二聚体.此外,还对该酶的部分酶学性质进行了初步研究.

  15. Application of Domestic Cement Grouting Materials in Some Nuclear Power Plant%国产水泥基灌浆料在某核电站工程中的应用

    Institute of Scientific and Technical Information of China (English)

    高斌

    2012-01-01

    For the cracks at the large equipment foundation of number one and two units in some nuclear power plant,the control measures are applied in the construction after the construction quality control is obtained such as mix proportion optimization, temperature and humidity control, accurately monitoring control, pouring by layer and section, reinforced mesh setting and maintenance by water. The result shows that the cracks at the large equipment foundation have been controlled effectively.%结合某核电站一期工程1,2号机组个别大型设备基础出现的裂缝缺陷,在满足施工质量控制的前提下,采取了配合比优化、温湿度控制、精准计量控制、分层分段浇筑、加设钢筋网片、洒水覆膜养护等控制措施,一期工程大型设备基础后续施工中的裂缝缺陷得到有效控制.

  16. 6m 焦炉结石墨情况分析及控制措施%Graphite Cementation in 6 m Coke Oven and Control Measures

    Institute of Scientific and Technical Information of China (English)

    张超

    2015-01-01

    Graphite cementation in 3-4#coke oven of JISCO coking plant was a serious problem, analyses the reasons for formation of the graphite cementation was analyzed and some specific measures to prevent the large formation of graphite ce-mentation were puts forward.%针对酒钢焦化厂3#-4#焦炉结石墨比较严重的问题,分析了石墨生成的原因,并提出了防止石墨大量生成的具体措施。

  17. [Burns caused by cement mortar (based on expert opinion)].

    Science.gov (United States)

    Kleinhans, D

    1984-01-01

    A 35-year-old farmer with scars on his right arm, following erosion obviously due to wet cement (case of an expert opinion), was examined. Cement water had continuously soaked his shirt while he was planing a freshly applied wet cement ceiling with his right arm upwards. The cement did not contain special additives, so the normal alkalinity of wet cement and occlusion effects caused the erosion. The farmer sued the manufacturer of the cement for damages because of missing warning notices. The court decided in his favor.

  18. A Blended Cement Containing Blast Furnace Slag and Phosphorous Slag

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Blended cement containing blast furnace slag(BFS) and phosphorous slag(PS) is a new kind of cement.The total content of blended materials could increase if two additives were used. Using the same admixtures, the properties of the blended cement with 70% additives could reach the standard of 525-grade slag cement according to GB.The strength of cement with 80% additives could reach the standard of 425-grade slag cement.The tests of strength, pore structure,hydration products,inhibiting alkali-aggregate reaction, resistance to sulfate corrosion of BFS-PSC were performed.

  19. Carbonation Resistance of Sulphoaluminate Cement-based High Performance Concrete

    Institute of Scientific and Technical Information of China (English)

    ZHANG Decheng; XU Dongyu; CHENG Xin; CHEN Wen

    2009-01-01

    The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete(HPC)were investigated.The experimental results show that with the decreasing water/cement ratio,the carbonation depth of sulphoaluminate cement-based HPC is decreased remarkably,and the carbonation resistance capability is also improved with the adding admixtures.The morphologies and structure characteristics of sulphoaluminate cement hydration products before and after carbonation were analyzed using SEM and XRD.The analysis results reveal that the main hydration product of sulphoaluminate cement,that is ettringite(AFt),de-composes after carbonation.

  20. Prevalence and determinants of mucous membrane irritations in a community near a cement factory in Zambia: a cross sectional study.

    Science.gov (United States)

    Nkhama, Emmy; Ndhlovu, Micky; Dvonch, J Timothy; Siziya, Seter; Voyi, Kuku

    2015-01-16

    Exposure to cement dust has been associated with deleterious health effects in humans. This study investigated whether residing near a cement factory increases the risk of irritations to the mucous membranes of the eyes and respiratory system. A cross sectional study was conducted in Freedom Compound, a community bordering a cement factory in Chilanga, Zambia and a control community, Bauleni, located 18 km from the cement plant. A modified American Thoracic Society questionnaire was administered to 225 and 198 respondents aged 15-59 years from Freedom and Bauleni, respectively, to capture symptoms of the irritations. Respondents from Freedom Compound, were more likely to experience the irritations; adjusted ORs 2.50 (95% CI: 1.65, 3.79), 4.36 (95% CI (2.96, 6.55)) and 1.94 (95% CI (1.19, 3.18)) for eye, nose and sinus membrane irritations respectively. Cohort panel studies to determine associations of cement emissions to mucous membrane irritations and respiratory symptoms, coupled with field characterization of the exposure are needed to assess whether the excess prevalence of symptoms of mucous membrane irritations observed in Freedom compound are due to emissions from the cement factory.

  1. Critical elements in implementations of just-in-time management: empirical study of cement industry in Pakistan.

    Science.gov (United States)

    Qureshi, Muhammad Imran; Iftikhar, Mehwish; Bhatti, Mansoor Nazir; Shams, Tauqeer; Zaman, Khalid

    2013-01-01

    In recent years, inventory management is continuous challenge for all organizations not only due to heavy cost associated with inventory holding, but also it has a great deal to do with the organizations production process. Cement industry is a growing sector of Pakistan's economy which is now facing problems in capacity utilization of their plants. This study attempts to identify the key strategies for successful implementation of just-in-time (JIT) management philosophy on the cement industry of Pakistan. The study uses survey responses from four hundred operations' managers of cement industry in order to know about the advantages and benefits that cement industry have experienced by Just in time (JIT) adoption. The results show that implementing the quality, product design, inventory management, supply chain and production plans embodied through the JIT philosophy which infect enhances cement industry competitiveness in Pakistan. JIT implementation increases performance by lower level of inventory, reduced operations & inventory costs was reduced eliminates wastage from the processes and reduced unnecessary production which is a big challenge for the manufacturer who are trying to maintain the continuous flow processes. JIT implementation is a vital manufacturing strategy that reaches capacity utilization and minimizes the rate of defect in continuous flow processes. The study emphasize the need for top management commitment in order to incorporate the necessary changes that need to take place in cement industry so that JIT implementation can take place in an effective manner.

  2. Thermal reactions of brushite cements.

    Science.gov (United States)

    Bohner, M; Gbureck, U

    2008-02-01

    The thermal reactions of a brushite cement made of beta-tricalcium phosphate (beta-TCP), monocalcium phosphate monohydrate (MCPM), and an aqueous solution were followed in situ with an isothermal calorimeter at 37 degrees C. The investigated parameters were the beta-TCP/MCPM weight ratio, the liquid-to-powder ratio, the synthesis route and milling duration of the beta-TCP powder, as well as the presence of sulfate, citrate, and pyrophosphate ions in the mixing liquid. The thermograms were complex, particularly for mixtures containing an excess of MCPM or additives in the mixing solution. Results suggested that the endothermic MCPM dissolution and the highly exothermic beta-TCP dissolution occurred simultaneously, thereby leading to the formation of a large exothermic peak at early reaction time. Both reactions were followed by the exothermic crystallization of brushite and in the presence of an excess of MCPM by the endothermic crystallization of monetite. Additives generally widened the main exothermic reaction peak, or in some cases with pyrophosphate ions postponed the main exothermic peak at late reaction time. Generally, the results could be well explained and understood based on thermodynamic and solubility data.

  3. Quality control of cemented waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Slate, L.J.

    1994-12-31

    To insure that cemented radwaste remains immobilized after disposal, certain standards have been set in Europe by the Commission of the European Communities. One such standard is compressive strength. If the compressive strength can be predicted during the early curing stages, time and money can be saved and the quality of the final waste form guaranteed. It was determined that the 7- and 28-day compressive strength from radwaste cementation can be predicted during the mixing and early curing stages by at least three methods. The three that were studied were maturity, rheology, and impedance. Maturity is a temperature-to-time measurement, rheology is a shear stress-to-shear rate measurement, and impedance is the opposition offered to the flow of alternating current. These three methods were employed on five different cemented radwaste concentrations with three different water-to-cement ratios; thus, a total of 15 different mix designs were considered. The results showed that the impedance was the easiest to employ for an on-line process. The results of the impedance method showed a very good relationship between impedance and water-to-cement ratio; therefore, an accurate prediction of compressive strength of cemented radwaste can be drawn from this method. The results of the theology method were very good. The method showed that concrete conforms to the Bingham plastic rheologic model, and the theology method can be used to predict the compressive strength of cemented radwaste, but may be too cumbersome. The results of the maturity method were shown to be limited in accuracy for determining compressive strength.

  4. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.

    Science.gov (United States)

    Fairbairn, Eduardo M R; Americano, Branca B; Cordeiro, Guilherme C; Paula, Thiago P; Toledo Filho, Romildo D; Silvoso, Marcos M

    2010-09-01

    This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO(2) emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world's largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO(2) emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO(2) emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO(2) emissions, which qualifies this product for CDM projects. 2010 Elsevier Ltd. All rights reserved.

  5. District heating by radiant heat recovery from cement kilns

    Energy Technology Data Exchange (ETDEWEB)

    Caputo, Antonio C.; Palumbo, Mario; Pelagagge, Pacifico M.; Salini, Paolo [University of L' Aquila, Monteluco (Italy). Dept. of Mechanical, Energy and Management Engineering]. E-mail: caputo@ing.univaq.it; palumbo@ing.univaq.it; pelmar@ing.univaq.it; salini@ing.univaq.it

    2008-07-01

    Heat loss from rotary kilns may represent a significant percentage of the total energy input especially in high energy-intensive industrial sectors such as cement production. In this paper the technical and economic feasibility of recovering radiant heat lost through the kiln surface, by means of a secondary external shell acting as a heat exchanger for a transfer fluid, is evaluated for district heating purposes. At first the system architecture is outlined and a technical and economical model addressing both the performances and cost estimation for the heat exchanger and the district heating network is developed. Subsequently, a parametric profitability analysis is carried out with reference to some relevant parameters characterizing the available recoverable waste heat and the size of the heat distribution network, namely the distance between kiln and user area and extension of the district heating network. This is made to obtain a mapping of the conditions were the proposed heat recovery system is economically feasible. In the paper it is demonstrated that the relevant heat consumption of cement production may make the district heating option for heat recovery a viable one even in case of low density of inhabitants in the surroundings of the plant. Furthermore significant fuel savings and emission reductions are achieved respect the adoption of traditional residential boilers. author)

  6. Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, III, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hasanbeigi, Ali [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-03

    India’s cement industry is the second largest in the world behind China with annual cement production of 168 Mt in 2010 which accounted for slightly greater than six percent of the world’s annual cement production in the same year. To produce that amount of cement, the industry consumed roughly 700 PJ of fuel and 14.7 TWh of electricity. We identified and analyzed 22 energy efficiency technologies and measures applicable to the processes in the Indian cement industry. The Conservation Supply Curve (CSC) used in this study is an analytical tool that captures both the engineering and the economic perspectives of energy conservation. Using a bottom-up electricity CSC model and compared to an electricity price forecast the cumulative cost-effective plant-level electricity savings potential for the Indian cement industry for 2010- 2030 is estimated to be 83 TWh, and the cumulative plant-level technical electricity saving potential is 89 TWh during the same period. The grid-level CO2 emissions reduction associated with cost-effective electricity savings is 82 Mt CO2 and the electric grid-level CO2 emission reduction associated with technical electricity saving potential is 88 Mt CO2. Compared to a fuel price forecast, an estimated cumulative cost-effective fuel savings potential of 1,029 PJ with associated CO2 emission reduction of 97 Mt CO2 during 2010-2030 is possible. In addition, a sensitivity analysis with respect to the discount rate used is conducted to assess the effect of changes in this parameter on the results. The result of this study gives a comprehensive and easy to understand perspective to the Indian cement industry and policy makers about the energy efficiency potential and its associated cost over the next twenty years.

  7. Chemical and Physical Reactions of Wellbore Cement under CO2 Storage Conditions: Effects of Cement Additives

    Science.gov (United States)

    Kutchko, B. G.; Strazisar, B. R.; Huerta, N.; Lowry, G. V.; Dzombak, D. A.; Thaulow, N.

    2008-12-01

    Sequestration of CO2 into geologic formations requires long-term storage and low leakage rates to be effective. Active and abandoned wells in candidate storage formations must be evaluated as potential leakage points. Wellbore integrity is an important part of an overall integrated assessment program being developed at NETL to assess potential risks at CO2 storage sites. Such a program is needed for ongoing policy and regulatory decisions for geologic carbon sequestration. The permeability and integrity of the cement in the well is a primary factor affecting its ability to prevent leakage. Cement must be able to maintain low permeability over lengthy exposure to reservoir conditions in a CO2 injection and storage scenario. Although it is known that cement may be altered by exposure to CO2, the results of ongoing research indicate that cement curing conditions, fluid properties, and cement additives play a significant role in the rate of alteration and reaction. The objective of this study is to improve understanding of the factors affecting wellbore cement integrity for large-scale geologic carbon sequestration projects. Due to the high frequency use of additives (pozzolan) in wellbore cement, it is also essential to understand the reaction of these cement-pozzolan systems upon exposure to CO2 under sequestration conditions (15.5 MPa and 50°C). Laboratory experiments were performed to determine the physical and chemical changes, as well as the rate of alteration of commonly used pozzolan-cement systems under simulated sequestration reservoir conditions, including both supercritical CO2 and CO2-saturated brine. The rate of alteration of the cement-pozzolan systems is considerably faster than with neat cement. However, the alteration of physical properties is much less significant with the pozzolanic blends. Permeability of a carbonated pozzolanic cement paste remains sufficiently small to block significant vertical migration of CO2 in a wellbore. All of the

  8. The fluid-compensated cement bond log

    Energy Technology Data Exchange (ETDEWEB)

    Nayfeh, T.H.; Leslie, H.D.; Wheelis, W.B.

    1984-09-01

    An experimental and numerical wave mechanics study of cement bond logs demonstrated that wellsite computer processing can now segregate wellbore fluid effects from the sonic signal response to changing cement strength. Traditionally, cement logs have been interpreted as if water were in the wellbore, without consideration of wellbore fluid effects. These effects were assumed to be negligible. However, with the increasing number of logs being run in completion fluids such as CaCl/sub 2/, ZnBr/sub 2/, and CaBr/sub 2/, large variations in cement bond logs became apparent. A Schlumberger internal paper showing that bond log amplitude is related to the acoustic impedance of the fluid in which the tool is run led to a comprehensive study of wellbore fluid effects. Numerical and experimental models were developed simulating wellbore geometry. Measurements were conducted in 5-, 7-, and 95/8-in. casings by varying the wellbore fluid densities, viscosities, and fluid types (acoustic impedance). Parallel numerical modeling was undertaken using similar parameters. The results showed that the bond log amplitude varied dramatically with the wellbore fluid's acoustic impedance; for example, there was a 70 percent increase in the signal amplitude for 11.5-lb/ gal CaCl/sub 2/ over the signal amplitude in water. This led to the development of a Fluid-Compensated Bond log that corrects the amplitude for acoustic impedance of varying wellbore fluids, thereby making the measurements more directly related to the cement quality.

  9. EFFECT OF NANOMATERIALS IN CEMENT MORTAR CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    WAIL N. AL-RIFAIE

    2016-09-01

    Full Text Available Concrete is considered as brittle materials and widely used due to high compressive strength but unfortunately having and has low tensile strength that has a numerous negative impacts on the lifespan of concrete made structures. Therefore, mechanical properties of cement mortar have been investigated experimentally using different types and ratios of nano material to improve the properties. Since the strength of the concrete is of high importance, different materials have been used to enhance the compressive and the tensile characteristics of the cement mortar compressive and tensile strength. Mainly, this objective has been implemented through using micro cement, micro sand, nano silica, and nano clay in developing a nano-cement mortar which can to improve the concrete for the constructional applications. The samples were prepared and tested under tensile and compressive mode according to ASTM-2011 regulations for concrete. The parameters that are taken consideration during the investigation were micro sand, micro cement, nano silica, developed nano clay, and naphthalene sulphonate as super- plasticizers. In general, it has been observed that the results showed a significant increase in both compressive and tensile strength of the mortar at early stages of hardening, where a maximum increase of 22% in the compressive strength was achieved , whereas 3.7 time increase in the compressive strength was recorded over the tradition levels of the concrete strength.

  10. Clinical applications of glass-ionomer cements.

    Science.gov (United States)

    McLean, J W

    1992-01-01

    The use of glass-ionomer cements in clinical dentistry is now well established. They have a number of unique properties, including adhesion to moist tooth structure, biological compatibility, and anticariogenic properties due to their fluoride release. Their use in treating early carious or erosion lesions has been widely investigated. Established techniques include fissure filling and sealing, restoration of class 5 erosion lesions without cavity preparation, and the internal occlusal fossa or tunnel restoration. The "sandwich" technique using glass-ionomer cements as "dentin substitutes" has enabled composite restorations to be used with greater safety where pulpal damage may occur. The future probably lies in using a laminate technique where materials that attach to dentin and form a biological seal can be covered by tougher and harder enamel veneers, thus mimicking the structure of the tooth. The deficiencies of glass-ionomer cements are well known, including lack of toughness, early water sensitivity, low abrasion resistance, and porosity leading to poor surface polish. Solving these problems is formidable, since inherently the strength of these cements is related to their water content. The clinician should be aware of these deficiencies and stay within the parameters of the techniques outlined in this paper. In particular, clinical success depends upon early protection of the cement from hydration or dehydration, and the current use of light-cured bonding agents has largely solved this problem.

  11. Stimuli-responsive cement-reinforced rubber.

    Science.gov (United States)

    Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef

    2014-05-14

    In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications.

  12. Investigation of a Gas-Solid Separation Process for Cement Raw Meal

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Clement, Karsten

    2015-01-01

    The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation efficienc......The gas/solid heat exchanger (2D-HX), developed to replace the cyclone preheaters in cement plants is presented. This design aims at reducing construction height and operation costs. The separation process in the 2D-HX is experimentally investigated, and the results show that separation...... efficiencies up to 90% can be achieved in the gravitationally driven process. Based on the data, a model of the separation process is developed, utilizing relations from pneumatic transport and cyclone theory. The model fit is acceptable, especially in the area of interest. Based on experimental data, further...

  13. Durability of Alite-calcium Barium Sulphoaluminate Cement

    Institute of Scientific and Technical Information of China (English)

    LU Lingchao; LU Zeye; LIU Shiquan; WANG Shoude; CHENG Xin

    2009-01-01

    The durability of the cement was mainly studied.Under 1.0 MPa of hydraulic pressure for 8 hours,water could penetrate completely through the sample made by portland cement,but could not penetrate through that by alite-barium sulphoaluminate cement.Under the condition of freezing and thawing cycle,the loss ratio of compressive strength of the cement was only about 17.3%at curing 28 d ages,but the loss of portland cement was as high as 29.5%.Alite-calcium bar-ium sulphoaluminate cement also has an excellent resistance to sulfate attack.The coefficients of resistance to sulfate attack of the cement exceeded 1.0.Meanwhile,the composition and microstructure of the hardened paste of alite-calcium barium sulphoaluminate cement were analyzed by XRD and SEM.

  14. Migration of ions in cement paste as studied by SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Prince, K.E.; Aldridge, L.P. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia); Rougeron, P. [Electricite de France Direction des Etudes et Recherches, Les Renardiers (France)

    1998-06-01

    Cement is often used to condition and encapsulate low level radioactive waste before it is disposed of in a repository. Ground water can attack these waste-forms by transporting aggressive ions into the cement paste and by removing radioactive ions from the paste. The extent of the attack will be governed by the diffusion of the ions in the cement paste. In this study we examine the migration of aggressive carbonate ions and inactive Cs and Sr through cement pastes. The use of SIMS for establishing the penetration depths and diffusion profiles for Cs and Sr in cement will be explored. The penetration profiles of Cs and Sr in a non-zeolite cement paste were examined and compared to those of a paste made with zeolite. The effects of the non-homogeneous nature of the cement was most pronounced in the study of the zeolite rich cement; Cs being preferentially accumulated in the zeolite material. (authors). 4 refs., 2 figs.

  15. Effect of aluminium phosphate as admixture on oxychloride cement

    Indian Academy of Sciences (India)

    M P S Chandrawat; R N Yadav

    2000-02-01

    The effect of admixing of aluminium phosphate on oxychloride cement in the matrix has been investigated. It is shown that aluminium phosphate retards the setting process of the cement and improves water-tightness.

  16. The use of limestone powder as an alternative cement replacement ...

    African Journals Online (AJOL)

    The use of limestone powder as an alternative cement replacement material: An ... The laboratory test results revealed that up to 15% replacement of clinker by fine ... Early strength, Limestone filler, Loss on ignition, Portland limestone cement ...

  17. Assessment of Pollution Potentialities of some Portland Cement 1H ...

    African Journals Online (AJOL)

    ABSTRACT: Chemical analysis of some Portland cement commonly used in Nigeria was carried out. All the cement studies ... Determination of Loss on Ignition. 1g of each ... the specifications of American Standard for testing materials (ASTM ...

  18. Present Situation and Perspective of Chinese Cement Industry

    Institute of Scientific and Technical Information of China (English)

    Gao Changming

    2003-01-01

    @@ Totally, there are 12 types of cement kiln pro-duction lines in China and running with a quite differenttechnical- economical levels. The cement productionof different types product lines in 1997 ~ 2002 is shownin Table 1.

  19. the use of limestone powder as an alternative cement replacement ...

    African Journals Online (AJOL)

    user

    properties of cement paste and hardened mortar in two ranges of blain fineness .... shrinkage as compared to siliceous additives. It is ... 100LSF (Lime. Saturation Factor) ..... production of Portland limestone cement were free from impurities or ...

  20. Microstructure Development and Transport Properties of Portland Cement-fly Ash Binary Systems: in view of service life predictions

    NARCIS (Netherlands)

    Yu, Z.

    2015-01-01

    Fly ash is a by-product of burning coal in electric power generating plants. It is commonly known that owing to its pozzolanic properties fly ash is widely used as a partial replacement for Portland cement in concrete. The use of fly ash in concrete not only reduces the landfill costs of fly ash, bu

  1. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    Energy Technology Data Exchange (ETDEWEB)

    2005-11-01

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  2. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  3. Characteristics of Portland blast-furnace slag cement containing cement kiln dust and active silica

    Directory of Open Access Journals (Sweden)

    A. Abdel Rahman

    2016-09-01

    Full Text Available This investigation dealt with the effect of active silica, silica fume (SF or rice husk ash (RHA, on the mechanical and physico-chemical characteristics of the hardened blended cement pastes made of Portland blast-furnace slag cement (PSC containing cement kiln dust (CKD cured under normal conditions. Two blends made of PSC and CKD, improved by SF and two blends made of PSC and CKD improved by RHA were investigated. Hardened blended cement pastes were prepared from each cement blend by using water/cement ratio (W/C of 0.30 by weight and hydrated for various curing ages of 1, 3, 7, 28 and 90 days at the normal curing conditions under tap water at room temperature. Each cement paste was tested for its physico-chemical and mechanical characteristics; these characteristics include: compressive strength and kinetics of hydration. The phase composition of the formed hydration products was identified using X-ray diffraction (XRD and differential thermal analysis (DTA. It was found that the partial substitution of PSC by 10% and 15% of CKD is associated with an increase in the rate of hydration and a subsequent improvement of compressive strength of hardened PSC–CKD pastes. In addition, the replacement of PSC, in PSC–CKD blends, by 5% active silica was accompanied by further improvement of the physico-mechanical characteristics of the hardened PSC–CKD pastes.

  4. Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill

    Institute of Scientific and Technical Information of China (English)

    WU Di; CAI Si-jing

    2015-01-01

    Cemented tailings backfill (CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process can release significant amount of heat to raise the temperature of CTB and in turn increase the rate of cement hydration. Meanwhile, the progress of cement hydration consumes water and produces hydration products to change the pore structures within CTB, which further influences the hydraulic behavior of CTB. In order to understand the hydraulic behavior of CTB, a numerical model was developed by coupling the hydraulic, thermal and hydration equations. This model was then implemented into COMSOL Multiphysics to simulate the evolutions of temperature and water seepage flow within CTB versus curing time. The predicted outcomes were compared with correspondent experimental results, proving the validity and availability of this model. By taking advantage of the validated model, effects of various initial CTB and curing temperatures, cement content, and CTB's geometric shapes on the hydraulic behavior of CTB were demonstrated numerically. The presented conclusions can contribute to preparing more environmentally friendly CTB structures.

  5. Exposure to cement dust at a Portland cement factory and the risk of cancer.

    Science.gov (United States)

    Vestbo, J; Knudsen, K M; Raffn, E; Korsgaard, B; Rasmussen, F V

    1991-01-01

    The relation between exposure to cement dust and cancer was examined in a population of 546 cement workers and a reference population of 858 randomly sampled men of similar age and area of residence. In 1974 all men gave lifelong occupational and smoking histories; information on incidence of cancer in the period 1974-85 was obtained from the Danish Cancer Registry. No increased risk of overall cancer was found among cement workers. Among men with more than 20 years exposure to cement dust, 14 cases of respiratory cancer were observed (observed/expected (O/E) 1.52, 95% confidence interval (95% CI) 0.90-2.57) when compared with all Danish men. Men with 1-20 years exposure had O/E 1.14 (95% CI 0.59-2.19) based on nine cases of cancer. After excluding all men with documented exposure to asbestos during employment in an asbestos cement factory no increased risk of overall cancer or respiratory cancer was found among cement workers compared with white collar workers from the local reference population, using a Cox regression model controlling for age and smoking habits. Relative risks were 0.5 (95% CI 0.1-1.5) and 1.0 (95% CI 0.4-2.6) for men with 1-20 and more than 20 years of exposure to cement dust respectively compared with white collar workers. PMID:1772795

  6. Mass Customization of process plants

    DEFF Research Database (Denmark)

    Hvam, Lars

    2006-01-01

    This case study describes how F.L.Smidth A/S, a manufacturer of large processing plants for cement production, has applied the principles of mass customisation in the area of highly complex, custom engineered products. The company has based its sales process on a configuration system to achieve...

  7. Physicochemical and microbiological characterization of cement kiln dust for potential reuse in wastewater treatment.

    Science.gov (United States)

    Salem, W M; Sayed, W F; Halawy, S A; Elamary, R B

    2015-09-01

    Cement kiln dust (CKD), a byproduct of cement manufacturing process, was collected from Misr Cement Co. at Qena, Egypt. CKD was characterized by X-ray diffraction and FTIR analysis. This byproduct was investigated for its physical-chemical characters, antibacterial activities on sewage water and the presence of nematode, parasites and algae in the treated water. The efficiency of CKD-treated water was also examined on Hibiscus sabdarriffa seed germination. Total bacteria, total and fecal coliform, as well as fecal streptococci were completely inhibited by CKD. Interestingly, zinc, manganese, iron, nickel and lead were completely absent from sewage water as these metals precipitated after treatment with 10gl(-1) CKD. On the other hand, among all the tested plant criteria, only root length was significantly reduced by 55% and 15% after zero and 3 days of CKD addition respectively compared to control. Furthermore, plant lipid peroxidation showed no significant differences between treated sewage water and control after zero and 3 days time addition of CKD. Catalase enzyme activity showed significant decrease by 56% and 64%, while peroxidase activity significantly increased up to 49% and 63% compared to untreated sewage after zero and 3 days of treatment, respectively. The absorption of lead, iron and copper by treated and untreated plants showed no significant differences. Chromium ions were highly absorbed (0.075mgl(-1)) by plants irrigated only with treated sewage water at zero time, and decreased gradually to 0.018mgl(-1) after 3 days of CKD addition. This study highlighted the efficiency of cement kiln dust as an antibacterial agent and its ability of scavenging heavy metals leading to the use of treated sewage water in activities such as crop irrigation.

  8. STUDY ON HIGH CONTENT OF BLENDS IN CEMENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The technology of activation by a]dding few activators(<1%) to increase the amount of blends in cement was investigated.The results show that outer activation has a remarkable effect on improving the physical properties of slag cement,flyash cement and volcanic cement.For example,the compressive strength was increased by 5-10 MPa.Morever,the application of activation is beneficial to grind-aiding,early strength and water-reducing etc.

  9. Comparison of creep of the cement pastes included fly ash

    Directory of Open Access Journals (Sweden)

    Padevět Pavel

    2017-01-01

    Full Text Available The paper is devoted to comparison of creep of cement pastes containing fly ash admixture. The size of creep in time depends on the amount of components of the cement paste. Attention is paid to the content of classical fly ash in cement paste and its impact on the size of creep. The moisture of cement pastes is distinguished because it significantly affects the rheological properties of the material.

  10. Characteristics solidified cement waste using heavy concrete and light concrete paste generated from KRR-2 and UCP

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. Y.; Choi, W. K.; Kim, G. N.; Lee, K. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    As the number of obsolete research reactors and nuclear facilities increases, dismantling nuclear facilities has become an influential issue. During the decommissioning of nuclear plants and facilities, large quantities of slightly contaminated concrete wastes are generated. In Korea, the decontamination and decommissioning of the retired TRIGA MARK II and III research reactors and a uranium conversion plant at KAERI has been under way. By dismantling KRR-2, more than 260 tons of radioactive concrete wastes were generated among the total 2,000 tons of concrete wastes and more than 60 tons of concrete wastes contaminated with uranium compounds have been generated. Typically, the contaminated layer is only 1{approx}10mm thick because cement materials are porous media, the penetration of radionuclides may occur up to several centimeters from the surface of a material. Concrete is a structural material which generally consists of a binder (cement), water, and aggregate. The binder is typically a portland cement which comprises the four principal clinker phases tricalcium silicate (Ca{sub 3}SiO{sub 5}) and constitutes 50-70%, decalcium silicate (Ca{sub 2}SiO{sub 4}), tricalcium aluminate (Ca{sub 3}Al{sub 2}O{sub 6}), and calcium aluminoferrite (Ca{sub 4}Al{sub 2}Fe{sub 2}O{sub 10}). Cement powder (anhydrous cement) created from the co-grinding of clinkers and gypsum is mixed with waster and hydrate phase are formed. The interaction between highly charged C-S-H particles in the presence of divalent calcium counter ions is strongly attractive because of ion-ion correlations and a negligible entropic repulsion. In the temperature range 100-300 .deg. C, these evolutions are mainly attributed to the loss of the bound water from the C-S-H gel. Similar consequences have been reported for mortars and concretes enhanced sometimes by the appearance of micro-cracks related to the strain incompatibilities between the aggregates and the cement paste. Concrete aggregates are combined

  11. Heavy cement slurries; Pastas pesadas de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Francisco Avelar da; Conceicao, Antonio C. Farias [PETROBRAS, XX (Brazil). Distrito de Perfuracao do Nordeste. Div. de Tecnicas de Perfuracao; Marins, Carlos Cesar Silva [PETROBRAS, XX (Brazil). Dept. de Perfuracao. Div. de Revestimento e Cimentacao

    1989-12-31

    When going deeper in a high pressure well, the only way to successfully cement your casing or linear is through the use of heavy cement slurry. In 1987 PETROBRAS geologists presented to the Drilling Department a series of deep, hot and high pressure wells to be drilled. The Casing and Cement Division of this department then started a program to face this new challenge. This paper introduces the first part of this program and shows how PETROBRAS is dealing with heavy weight slurries. We present the slurry formulations tested in laboratory, the difficulties found in mixing them in the field, rheology measurements, API free water and API fluid loss from both laboratory and field samples. (author) 3 tabs.

  12. Cementing Properties of Oil Shale Ash

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The oil crisis has prompted renewed interest in direct burning of oil shale as an alternative energy source.A major problem in this process is the large portion of ash produced.The cementing properties of this ash were investigated to determine its applicability as a building material.By means of XRD, IR, NMR and ICP, we have studied the effects of burning temperature on the reactivity of ash.Maximum reactivity was obtained with ash samples produced at 700 °C to 900 °C.In this range, the strength of oil-shale-based material, with properties similar to cement, which is composed of oil shale and several other kinds of solid wastes, can achieve the standard of 42.5# cement.Our study has provided an experimental foundation and theoretical base for a massive utilization of oil shale.

  13. Microstructure and Properties of Activated Slag Cement

    Institute of Scientific and Technical Information of China (English)

    GUO Jun-cai; XIANG Xin; XU Yan-wu

    2004-01-01

    Activation of theslag cement was performed using a composite activator. Experimental resultsshow that the performance of the cement is remarkably improved. The fineness and specific surface area of the ce-ment are increased by 23.7% and 1.4% , and 3d flexural strength and compressive strength are enhanced by20.9% and 22.9% , respectively. Microstructure and phase composition of the hydrates were analysed by X- raydiffraction(XRD) and scanning electron microscopy(SEM). The results indicate that Ca( OH)2 in the hydratesdecrease obviously. The morphology of the other hydrates appears to be flocculent, with a dense structure. The im-provements of the properties is related to the microstructural changes.

  14. Experimental techniques for cement hydration studies

    Directory of Open Access Journals (Sweden)

    Andreas Luttge

    2011-10-01

    Full Text Available Cement hydration kinetics is a complex problem of dissolution, nucleation and growth that is still not well understood, particularly in a quantitative way. While cement systems are unique in certain aspects they are also comparable to natural mineral systems. Therefore, geochemistry and particularly the study of mineral dissolution and growth may be able to provide insight and methods that can be utilized in cement hydration research. Here, we review mainly what is not known or what is currently used and applied in a problematic way. Examples are the typical Avrami approach, the application of Transition State Theory (TST to overall reaction kinetics and the problem of reactive surface area. Finally, we suggest an integrated approach that combines vertical scanning interferometry (VSI with other sophisticated analytical techniques such as atomic force microscopy (AFM and theoretical model calculations based on a stochastic treatment.

  15. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...... volume and threshold pore size were found when comparing with plain cement paste at the same curing conditions. The porosity methods MIP, LTC and SEM have been shown to be suitable to characterise pore parameters of the pastes. MIP is a simple and fast method which covers a large range of pore sizes...

  16. Application of Carbonate Looping to Cement Industry

    DEFF Research Database (Denmark)

    Lin, Weigang; Illerup, Jytte Boll; Dam-Johansen, Kim

    2012-01-01

    In the present work, cycle experiments of different types of limestone, cement raw meal and a mixture of limestone and clay were carried out in laboratory scale setups at more realistic conditions (i.e. calcination temperature is 950°C and CO2 concentration is 80%) to simulate the performance...... with an increase in the CO2 partial pressure during calcination, indicating enhancement of sintering by the presence of CO2. As sorbents, cement raw meal and the mixture of limestone and clay show a similar trend as limestone with respect to the decay of the CO2 carrying capacity and this capacity is lower than...... that of limestone at the same conditions in most cases. SEM and XRD analyses indicate that a combination of severe sintering and formation of calcium silicates attributes to the poor performance of the cement raw meal....

  17. Organic Additive Implantation onto Cement Hydration Products

    Institute of Scientific and Technical Information of China (English)

    ZHU Jipeng; LI Zongjin; YANG Ruochong; ZHANG Yamei

    2014-01-01

    In polymer modified cementitious materials, it is hard to set up a chemical connection between the added polymer and the cement moiety. In this study FS (functional silane) was adopted to form this connection as a bridge component which has the functional group forming bonds with polymer. To testify the connection between FS and cement moiety, Q2/Q1 ratio (Qx:intensity ratio) investigation was carried out by the means of quantitative solid state 29Si MAS NMR. The results show that the Q2/Q1 ratio has increased with the addition of FS which indicates that the silicon chain length has increased, and the quantity of silicon atoms at site of Q2, chain site, has enhanced, showing that the silicon atom of FS has connected to the silicon chain of cement moiety by the bond“-Si-O-Si-”formation.

  18. Influence of Calcium Sulfate State and Fineness of Cement on Hydration of Portland Cements Using Electrical Measurement

    Institute of Scientific and Technical Information of China (English)

    WEI Xiaosheng; LI Zongjin; XIAO Lianzhen; THONG Wangfai

    2006-01-01

    The influence of calcium sulfate state and fineness of cement on hydration of Portland cement was studied using electrical resistivity measurement. The bulk resistivity curve of the paste from the abnormal cement mainly with hemihydrate had a characteristic abnormal peak and rapid increase in early period. The resistivity measurement technique can be used to discriminate abnormal setting. For normal cement with gypsum, the increase in fineness of the Portland cement decreases the minimum resistivity due to a higher ionic concentration and increases the 24 hour resistivity due to a reduction in macroscopic pore size. Thesetting time, compressive strength, pore structure of pastes made from different cements were carried out to compare the influence of water to cement ratio, calcium sulfate state and fineness. It is found that the electrical and mechanical properties are strongly affected by the initial porosity, the presence of hemihydrate or gypsum, and the fineness of cement.

  19. ASSESSMENT OF DEFORMATION AND STRENGTH OF SOILS STRENGTHENED BY CEMENTING

    Directory of Open Access Journals (Sweden)

    Sainov Mihail Petrovich

    2014-09-01

    Full Text Available Currently there are few studies of deformation and strength properties of loose soils strengthened by cementing. Based on the data of already arranged grout curtains it was determined that in cemented gravel-pebble soil there are 7...9 % of cement, which is less than in concrete. To assess deformation and strength of such soils it is possible to use the data of tests conducted by other authors, where the effect of cement contents on sand-cement mix properties was studied. Analysis of experimental data showed that cemented soil may be identified with concrete only with high content of cement (more than 10 %. At cement content 7...9 % in soil the strength deformation of cemented soil varies to a small extent. Its deformation becomes 2-3 times less. It greatly depends on compression stresses. The formulae are proposed which permit assessing the effect of compression and cement content on deformation of cemented soil. It is shown that strength of cemented soil is less than that even of the weakest concrete. It has a sufficiently high cohesion, but the friction angle is approximately the same as that of the initial soil.

  20. Glass Ionomer Cements with Improved Bioactive and Antibacterial Properties

    OpenAIRE

    2016-01-01

    Dental restorative cements are placed in a harsh oral environment where they are subjected to thermal shock, chemical degradation, and repeating masticatory force. The ideal restorative dental cements should have superior mechanical properties, chemical stability, aesthetic, good handling properties, biocompatibility, antibacterial properties, and preferably bioactivity. This thesis presents research on dental restorative cements with enhanced properties. The overall aim was to increase the b...

  1. The suitability of a supersulfated cement for nuclear waste immobilisation

    Science.gov (United States)

    Collier, N. C.; Milestone, N. B.; Gordon, L. E.; Ko, S.-C.

    2014-09-01

    Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  2. Control of in vivo mineral bone cement degradation.

    Science.gov (United States)

    Kanter, Britta; Geffers, Martha; Ignatius, Anita; Gbureck, Uwe

    2014-07-01

    The current study aimed to prevent the formation of hydroxyapatite reprecipitates in brushite-forming biocements by minimizing the availability of free Ca(2+) ions in the cement matrix. This was achieved by both maximizing the degree of cement setting to avoid unreacted, calcium-rich cement raw materials which can deliver Ca(2+) directly to the cement matrix after dissolution, and by a reduction in porosity to reduce Ca(2+) diffusion into the set cement matrix. In addition, a biocement based on the formation of the magnesium phosphate mineral struvite (MgNH4PO4·6H2O) was tested, which should prevent the formation of low-solubility hydroxyapatite reprecipitates due to the high magnesium content. Different porosity levels were fabricated by altering the powder-to-liquid ratio at which the cements were mixed and the materials were implanted into mechanically unloaded femoral defects in sheep for up to 10 months. While the higher-porosity brushite cement quantitatively transformed into crystalline octacalcium phosphate after 10 months, slowing down cement resorption, a lower-porosity brushite cement modification was found to be chemically stable with the absence of reprecipitate formation and minor cement resorption from the implant surface. In contrast, struvite-forming cements were much more degradable due to the absence of mineral reprecipitates and a nearly quantitative cement degradation was found after 10 months of implantation.

  3. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or...

  4. Experimental Investigation of Second Interface Cement Bond Evaluation

    Institute of Scientific and Technical Information of China (English)

    Che Xiaohua; Qiao Wenxiao

    2007-01-01

    Cement bond model wells (1:10 scaled-down) were made with a gradually degrading cement annulus for cement bond evaluation of the first interface (between the casing and the cement annulus) and the second interface (between the cement annulus and the formation).Experimental simulation on cement bond logging was carried out with these model wells.The correlation of acoustic waveforms,casing wave energy and free casing area before and after cement bonding of the second interface was established.The experimental results showed that the arrival of the casing waves had no relationship with the cement bonding of the second interface,but the amplitude of the casing head wave decreased obviously after the second interface was bonded.So,cement bonding of the second interface had little effect on the evaluation of the cement bond quality of the first interface by using casing head wave arrivals.Strong cement annulus waves with early arrivals were observed before the second interface was bonded,while obvious "formation waves" instead of cement annulus waves were observed after the second interface was bonded.

  5. 21 CFR 888.4230 - Cement ventilation tube.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted...

  6. Research of dynamic mechanical performance of cement rock

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; WANG Tong; WANG Xiang-lin

    2007-01-01

    As Daqing Oilfield is developing oil layer with a big potential, the requirement for the quality of well cementation is higher than ever before. Cement rock is a brittle material containing a great number of microcracks and defects. In order to reduce the damage to cement ring and improve sealed cementing property at the interface, it is necessary to conduct research on the modification of the cement rock available. According to the principle of super mixed composite materials, various fillers are added to the ingredients of cement rock. Dynamic fracture toughness of cement rock will be changed under the influence of filler. In order to study the damage mechanism of the cement circle during perforation and carry out comprehensive experiments on preventing and resisting connection, a kind of comprehensive experiment equipment used to simulate perforation and multifunctional equipment for testing the dynamic properties of the material are designed. Experimental study of the dynamical mechanical performance of original and some improved cement rock and experiment used to simulate the well cementation and perforation are carried out. Standard for dynamical mechanical performance of the cement rock with fine impact resistance and mechanical properties of some improved cement rock are also given.

  7. 21 CFR 888.4210 - Cement mixer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in...

  8. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...

  9. Influence of surface pretreatment of fiber posts on cement delamination

    NARCIS (Netherlands)

    Jongsma, L.A.; Kleverlaan, C.J.; Feilzer, A.J.

    2010-01-01

    Objectives To evaluate the influence of post surface pretreatment on the delamination strength of different cements from a prefabricated FRC post tested in a three-point bending test. Methods Three cements were tested; RelyX Unicem, DC Core Automix, and Panavia F2.0. Per cement, 40 posts (D.T. Light

  10. Emission of submicron aerosol particles in cement kilns: Total concentration and size distribution.

    Science.gov (United States)

    Rotatori, Mauro; Mosca, Silvia; Guerriero, Ettore; Febo, Antonio; Giusto, Marco; Montagnoli, Mauro; Bianchini, Massimo; Ferrero, Renato

    2015-01-01

    Cement plants are responsible for particle and gaseous emissions into the atmosphere. With respect to particle emission, the greater part of is in the range from 0.05 to 5.0 µm in diameter. In the last years attention was paid to submicron particles, but there is a lack of available data on the emission from stationary sources. In this paper, concentration and size distribution of particles emitted from four cement kilns, in relationship to operational conditions (especially the use of alternative fuel to coal) of the clinker process are reported. Experimental campaigns were carried out by measuring particles concentration and size distribution at the stack of four cement plants through condensation particle counter (CPC) and scanning mobility particle sizer spectrometer (SMPS). Average total particle number concentrations were between 2000 and 4000 particles/cm³, about 8-10 times lower that those found in the corresponding surrounding areas. As for size distribution, for all the investigated plants it is stable with a unimodal distribution (120-150 nm), independent from the fuel used.

  11. Properties of Portland cement concretes containing pozzolanic admixtures

    Science.gov (United States)

    Simmons, D. D.; Pasko, T. J., Jr.; Jones, W. R.

    1981-04-01

    A laboratory comparison was made of the properties of a concrete containing no pozzolan with several mixtures containing pozzolans. Used were a natural pozzolan (Lassenite), two fly ashes of different fineness and low carbon and an amorphous silica fume dust from a metal-producing plant. One cement, one coarse crushed limestone aggregate, and one fine river aggregate were used. Replacing a faster reacting binder with a slower one, produced lower early strengths and adversely affected the properties which are highly dependent on strength. The measures of durability were greatly affected by the air contents and aging or treatment prior to exposure. The amorphous silica fume dust increased the early strengths of a fly ash mixture.

  12. CO2 Capture for Cement Technology

    OpenAIRE

    2013-01-01

    Production of cement is an energy intensive process and is the source of considerable CO2emissions. Itis estimated that the cement industry contributes around 8% of total global CO2emissions. CO2is oneof the major greenhouse gases. In the atmosphere, the CO2concentration has increased from 310 ppmvin 1960 to 390 ppmv in 2012, probably due to human activity. A lot of research is being carried out forreducing CO2emissions from large stationary sources. Ofwhich, the carbonate looping process is ...

  13. Porosity and liquid absorption of cement paste

    DEFF Research Database (Denmark)

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.

    1997-01-01

    be a slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which...... are not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square root...

  14. Durability of pulp fiber-cement composites

    Science.gov (United States)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  15. Chloride ingress in cement paste and mortar

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, O.M.; Hansen, P.F.; Coats, A.M.; Glasser, F.P.

    1999-09-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature). The measurements are modelled on Fick's law modified by a term for chloride binding. Inclusion of chloride binding significantly improves the profile shape of the modelled ingress profiles. The presence of fine aggregate and formation of interfacial transition zones at paste-aggregate boundaries does not significantly affect diffusion rates.

  16. Cement Formation:A Success Story in a Black Box: High Temperature Phase Formation of Portland Cement Clinker

    OpenAIRE

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledgeabout the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in ...

  17. Biomonitoring Study of Heavy Metals in Blood from a Cement Factory Based Community

    Directory of Open Access Journals (Sweden)

    Bank M.S.

    2014-07-01

    Full Text Available Little is known about the effects of cement factory pollution, emissions, and kiln dust on contaminant exposure in human populations, including school environments, in close proximity to these point sources. In Ravena, New York, USA and vicinity, environmental pollution from a local cement plant is considered significant and substantial according to the United States Environmental Protection Agency’s Toxic Release Inventory, published in 2006, 2007, and 2010. We hypothesized that cement factory based communities, such as the one in Ravena, NY, may be differentially exposed to heavy metals, including mercury, via dust, soil, and air in addition to any contributions from fish consumption, dental amalgams, smoking habits, and occupational exposures, etc. Here we report measurements of several heavy metals in blood (Pb, Cd, As, Hg, Se and Al and, for comparative purposes, total mercury in hair from a local (six-mile radius population of Caucasian adults and children. We also report and synthesize local atmospheric emissions inventory information and new indoor air data (NYSERDA, 2011 from the local school which is situated directly across the street (within 750 feet from the cement factory and quarry. In addition, to our human and environmental heavy metal results we also discuss scientific outreach coordination, and public health action opportunities that will likely have wide applicability for other community and environmental health studies confronting similar pollution issues.

  18. Application of thermal energy storage in the cement industry. Final report, September 1977--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Jaegr, F.A.; Beshore, D.G.; Miller, F.M.; Gartner, E.M.

    1978-10-01

    In the manufacture of cement, literally trillions of Btu's are rejected to the environment each year. The purpose of this feasibility study program was to determine whether thermal energy storage could be used to conserve or allow alternative uses of this rejected energy. This study identifies and quantifies the sources of rejected energy in the cement manufacturing process, establishes use of this energy, investigates various storage system concepts, and selects energy conservation systems for further study. Thermal performance and economic analyses are performed on candidate storage systems for four typical cement plants representing various methods of manufacturing cement. Through the use of thermal energy storage in conjunction with waste heat electric power generation units, an estimated 2.4 x 10/sup 13/ Btu/year, or an equivalent of 4.0 x 10/sup 6/ barrels of oil per year, can be conserved. Attractive rates of return on investment of the proposed systems are an incentive for further development.

  19. Development and comparison of neural network based soft sensors for online estimation of cement clinker quality.

    Science.gov (United States)

    Pani, Ajaya Kumar; Vadlamudi, Vamsi Krishna; Mohanta, Hare Krishna

    2013-01-01

    The online estimation of process outputs mostly related to quality, as opposed to their belated measurement by means of hardware measuring devices and laboratory analysis, represents the most valuable feature of soft sensors. As of now there have been very few attempts for soft sensing of cement clinker quality which is mostly done by offline laboratory analysis resulting at times in low quality clinker. In the present work three different neural network based soft sensors have been developed for online estimation of cement clinker properties. Different input and output data for a rotary cement kiln were collected from a cement plant producing 10,000 tons of clinker per day. The raw data were pre-processed to remove the outliers and the resulting missing data were imputed. The processed data were then used to develop a back propagation neural network model, a radial basis network model and a regression network model to estimate the clinker quality online. A comparison of the estimation capabilities of the three models has been done by simulation of the developed models. It was observed that radial basis network model produced better estimation capabilities than the back propagation and regression network models.

  20. Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, A.; Boilard, S. [Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington St., Building D, Room D215, Halifax, Nova Scotia, B3J 1Z1 (Canada); Walsh, M.E., E-mail: mwalsh2@dal.ca [Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington St., Building D, Room D215, Halifax, Nova Scotia, B3J 1Z1 (Canada); Lake, C.B. [Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington St., Building D, Room D215, Halifax, Nova Scotia, B3J 1Z1 (Canada)

    2010-01-15

    Cement kiln dust (CKD) is a fine-grained material produced during the manufacture of cement. Current reuse options are limited and the bulk of CKD not reused in the cement manufacturing process is sent to landfills or stored on-site. Due to the calcium oxide (CaO) content of CKD, it has the potential to be used as a replacement for lime in treating acidic wastewaters such as acid rock drainage (ARD). This paper outlines the results of an examination of the physical and chemical properties of CKD samples collected from six cement plants. The CKD samples were analyzed for major oxides using X-ray diffraction (XRD), available lime, specific surface area, particle size, and morphology using scanning electron microscope (SEM) and compared with a commercial quicklime product. Conductivity, pH, and calcium concentrations of slaked CKD and quicklime solutions were used as indicators of reactivity of the CKD. Slaking of two of the CKD samples with the highest free lime contents (e.g., 34 and 37% free CaO) gave elevated pH values statistically comparable to those of the commercial quicklime sample that was characterized as having 87% available CaO. Acid neutralization trials indicate that even CKD samples with low free lime contents could be effective at neutralizing acidic wastewaters.

  1. Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment.

    Science.gov (United States)

    Mackie, A; Boilard, S; Walsh, M E; Lake, C B

    2010-01-15

    Cement kiln dust (CKD) is a fine-grained material produced during the manufacture of cement. Current reuse options are limited and the bulk of CKD not reused in the cement manufacturing process is sent to landfills or stored on-site. Due to the calcium oxide (CaO) content of CKD, it has the potential to be used as a replacement for lime in treating acidic wastewaters such as acid rock drainage (ARD). This paper outlines the results of an examination of the physical and chemical properties of CKD samples collected from six cement plants. The CKD samples were analyzed for major oxides using X-ray diffraction (XRD), available lime, specific surface area, particle size, and morphology using scanning electron microscope (SEM) and compared with a commercial quicklime product. Conductivity, pH, and calcium concentrations of slaked CKD and quicklime solutions were used as indicators of reactivity of the CKD. Slaking of two of the CKD samples with the highest free lime contents (e.g., 34 and 37% free CaO) gave elevated pH values statistically comparable to those of the commercial quicklime sample that was characterized as having 87% available CaO. Acid neutralization trials indicate that even CKD samples with low free lime contents could be effective at neutralizing acidic wastewaters.

  2. Analysis of Potentially Toxic Metals in Airborne Cement Dust Around Sagamu, Southwestern Nigeria

    Science.gov (United States)

    Gbadebo, A. M.; Bankole, O. D.

    This study analyzed the concentration levels of potentially toxic and harmful elements contained in the airborne cement dust generated in the vicinity and farther away 500 m in the conventional four cardinal directions from the West African Portland Cement Company (WAPCO) factory mill, Sagamu. The results indicated that the concentration range of these toxic elements fall between 40.0 and 280,000 μg g-1 in the cement dust samples. Also, the concentration range of these toxic elements in 1 L of air samples varies between 0.01 μg g-1 and 29.92 μg L-1. The results generally show elevated concentrations of all the elements when compared with USA threshold limit of particulate mental concentration (e.g., Pb (1.5 g m-3); Cd (0.004-0.026 g m-3) in the air. These elements in the airborne cement dusts may pose a great threat to the health of plants, animals and residents in and around the factory and also to workers and visitors to the factory.

  3. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  4. Analysis of Chemical Composition of Portland Cement in Ghana: A Key to Understand the Behavior of Cement

    Directory of Open Access Journals (Sweden)

    Mark Bediako

    2015-01-01

    Full Text Available The performance of Portland cement in concrete or mortar formation is very well influenced by chemical compositions among other factors. Many engineers usually have little information on the chemical compositions of cement in making decisions for the choice of commercially available Portland cement in Ghana. This work analyzed five different brands of Portland cement in Ghana, namely, Ghacem ordinary Portland cement (OPC and Portland limestone cement (PLC, CSIR-BRRI Pozzomix, Dangote OPC, and Diamond PLC. The chemical compositions were analyzed with X-Ray Fluorescence (XRF spectrometer. Student’s t-test was used to test the significance of the variation in chemical composition between standard literature values and each of the commercial cement brands. Analysis of variance (ANOVA was also used to establish the extent of variations between chemical compositions and brand name of the all commercial Portland cement brands. Student’s t-test results showed that there were no significant differences between standard chemical composition values and that of commercial Portland cement. The ANOVA results also indicated that each brand of commercial Portland cement varies in terms of chemical composition; however, the specific brands of cement had no significant differences. The study recommended that using any brand of cement in Ghana was good for any construction works be it concrete or mortar formation.

  5. Microstructure Development and Transport Properties of Portland Cement-fly Ash Binary Systems: in view of service life predictions

    OpenAIRE

    Z. Yu

    2015-01-01

    Fly ash is a by-product of burning coal in electric power generating plants. It is commonly known that owing to its pozzolanic properties fly ash is widely used as a partial replacement for Portland cement in concrete. The use of fly ash in concrete not only reduces the landfill costs of fly ash, but also reduces the use of Portland cement in concrete, consequently reduces CO2 emission per ton concrete. More important, the presence of fly ash improves the durability of concrete and extends th...

  6. The suitability of a supersulfated cement for nuclear waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Milestone, N.B. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Callaghan Innovation, 69 Gracefield Road, PO Box 31310, Lower Hutt 5040 (New Zealand); Gordon, L.E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Geopolymer and Minerals Processing Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010 (Australia); Ko, S.-C. [Holcim Technology Ltd, Hagenholzstrasse 85, CH-8050 Zurich (Switzerland)

    2014-09-15

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  7. Development of an Improved Cement for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  8. 自然沟渠与水泥沟渠水生植物群落结构及净水效果研究%Study on the community structure of aquatic plant and the effect of water purification in natural ditch and cement ditch

    Institute of Scientific and Technical Information of China (English)

    刘丰雷; 谢从新; 张念; 吕元蛟; 张志敏; 吴强亮

    2013-01-01

    Through field investigating,the community structure and biomass of aquatic plant and the effect of Natural Ditch (ND) and Cement Ditch (CD) on water quality were studied to improve basis for building ecological ditch in the aquaculture farm.Studies showed:it comprised 17 families,23 genus,24 species,and consisted of Alternanthera philoxeroides-Zizania latifolia community,Alternanthera philoxeroide-Nelumbo nucifera community in ND,where the basal coverage of aquatic plant is more than 50% and the average of biomass is 2 633.85 g/m2 ; it comprised 7 families,7 genus,7 species,and composed of Valisneria batans community,Ceratophyllum demersum community in CD,where the basal coverage is less than 20% and the biodiversity is greater than CD.The concentration of TN in ND and CD are 0.97 ±0.32 mg/L,1.48 ±0.61 mg/L respectively; the concentration of TP is(0.13 ± 0.06)mg/L,(0.16 ± 0.07)mg/L respectively; the concentration of Chl-a is(35.12 ± 17.73) μg/L,(69.24 ± 17.31) μg/L respectively; the concentration of DO is (3.67 ± 2.17)mg/L,(6.12 ± 1.95)mg/L respectively.The aquatic plant is rich and the effect of water quality purification is obvious in ND,but DO is substantially lower than CD.Considering system stability,cost of building and effect of water quality purification,suggest to employ ND.%采用野外调查法,对养殖场自然沟渠与水泥沟渠的水生植物群落结构、生物量及其对水质的影响进行比较研究.结果表明:自然沟渠全年水生植物种类7科23属24种,以空心莲子草-菰群和空心莲子草-莲群为主,平均生物量为2 633.85 g/m2,真盖度>50%;水泥沟渠7科7属7种,以苦草群、金鱼藻群为主,真盖度<20%;自然沟渠生物多样性显著高于水泥沟渠.自然沟渠和水泥沟渠的TN分别为(0.97±0.32) mg/L和(1.48±0.61) mg/L,TP分别为(0.13±0.06) mg/L和(0.16±0.07)mg/L,Chl-a分别为(35.12±17.73)μg/L和(69.24±17.31) μg/L,DO分别为(3.67±2.17) mg/L和(6.12±1.95) mg/L

  9. Cytotoxicity evaluation of five different dual-cured resin cements used for fiber posts cementation

    Science.gov (United States)

    Dioguardi, M; Perrone, D; Troiano, G; Laino, L; Ardito, F; Lauritano, F; Cicciù, M; Muzio, L Lo

    2015-01-01

    Custom-cast posts and cores are usually used to treat endodontically treated teeth. However, several researches have underlined how these devices may be a much higher elastic modulus than the supporting dentine and the difference in the modulus could lead to stress concentrating in the cement lute, leading to failure. The role of the cement seems to play a fundamental role in order to transfer the strength during the chewing phases. Aim of this research is to record the rate of cytotoxicity of five different dual-cured resin cements used for fiber posts cementation. We tested the cytotoxicity of this five materials on MG63 osteoblast-like cells through two different methods: MTT ([3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide succinate) assay which tests for mitochondrial enzyme activity6 and xCELLigence® system. PMID:26309592

  10. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.

    Science.gov (United States)

    Manso, Adriana P; Carvalho, Ricardo M

    2017-10-01

    Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    Science.gov (United States)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi

  12. Development of Clinical Cement of Nanoapatite and Polyamide Composite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new type of inorganicorganic biomimetic bone cement consisting of nanohydroxyapatite and polyamide 66 composite was investigated. This cement can be handled as paste and easily shaped into any contour. Nanoapatite and polyamide composite cement has a reasonable setting time, excellent washout resistance, high mechanical strength and bioactivity, and it is easily handled and shaped, which can be developed as a clinical cement. It can be predicted that nanoapatite/polymer composite cement would be a new trend of biomedical material, showing a promising prospect.

  13. Serviceability and Reinforcement of Low Content Whisker in Portland Cement

    Institute of Scientific and Technical Information of China (English)

    CAO Mingli; WEI Jianqiang; WANG Lijiu

    2011-01-01

    In order to explore the serviceability and reinforcement of CaCO3 whisker in portland cement matrix,the durability of CaCO3 whisker and effect of low whisker content(0%-4.0%)on the working performance and mechanical properties of portland cement were investigated.The experimental results show that CaCO3 whiskers have a good stability and serviceability in cement,and should not significantly alter the rheological properties of the cement paste.The flexural and compressive strength of portland cement reinforced by CaCO3 whiskers was increased by 33.3% and 12.83%,respectively.

  14. A Study on Provisional Cements, Cementation Techniques, and Their Effects on Bonding of Porcelain Laminate Veneers

    OpenAIRE

    Vinod Kumar, G.; Soorya Poduval, T.; Bipin Reddy; Shesha Reddy, P.

    2013-01-01

    Minimal tooth preparation is required for porcelain laminate veneers, but interim restorations are a must to protect their teeth against thermal insult, chemical irritation, and to provide aesthetics. Cement remaining after the removal of the provisional restoration can impair the etching quality of the tooth surface and fit and final bonding of the porcelain laminate veneer. This in vitro study examined the tooth surface for remaining debris of cement after removal of a provisional restorati...

  15. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, W.; Brouwers, H.J.H.

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  16. Advances in glass-ionomer cements

    OpenAIRE

    Davidson, Carel Leon

    2006-01-01

    This article describes the properties, advances and shortcomings of glass-ionomer cement as a restorative material. The adhesion of glass-ionomer to tooth structure is less technique sensitive than composite resins and its quality increases with time. Therefore glass-ionomer might turn out to the more reliable restorative material in minimal invasive dentistry based on adhesive techniques.

  17. Formulation of an injectable phosphocalcium cement

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, S. [CIRIMAT Equipe de Physico-Chimie des Phosphates ENSCT INP, Toulouse (France); TEKNIMED, Vic en Bigorre (France); Brouchet, A.; Delisle, B. [CHU Rangueil, Toulouse (France). Service d' Anatomie Pathologie; Freche, M.; Lacout, J.L. [CIRIMAT Equipe de Physico-Chimie des Phosphates ENSCT INP, Toulouse (France); Rodriguez, F. [Lab. de Galenique, Chmin des Maraichers, Toulouse (France)

    2001-07-01

    In orthopedic surgery, the loss or the reinforcement of osseous substance often requires filling of the defective part. In order to make the surgical operations easier we sought to make an injectable form. This study examined the effect of silicone and polyglycol on the injectability, setting time and mechanical properties of the cement. The basic solid phase was composed of a mixture of tetracalcium phosphate (Ca{sub 4}(PO{sub 4}){sub 2}O), {alpha}-tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) and sodium glycerophosphate. The basic liquid phase was made up of lime, orthophosphoric acid and water. Silicone was previously dissolved in cyclohexane and introduced in the solid phase. Polyglycol is a water-soluble compound so it is introduced in the liquid phase. For the mechanical properties, the strong increase in the percentage of additives decreased the compressive strength. Silicone and polyglycol made it possible to improve viscosity without modifying the basic setting time. The rate of evolution was different with the two different additives. From the data it was possible to optimize the formulation of cements to give predicted properties. Testing the in vivo implantation of the cement has already started. Preliminary results show the perfect osteointegration of the new cements without reactions to the foreign body in spite of the presence of silicone. (orig.)

  18. [A new hydroxyapatite cement for craniofacial surgery].

    Science.gov (United States)

    Pistner, H; Reuther, J; Reinhart, E; Kübler, N; Priessnitz, B

    1998-05-01

    A new stoechiometric mixture of 27% dicalcium-phosphate (DCPA) and 73% tetra-calcium-phosphate (TTCP) can be prepared with water intraoperatively to a paste that subsequently sets to a structurally stabile implant composed of hydroxyapatite (HA). Primary setting time is about 20 min; pH during setting ranges from 6.5 to 8.5. There is no relevant curing heat or expansion or contraction. Compressive strength is about 50 MPa, tensile strength about 8 MPa. Over a period of about 4 h in physiological milieu, the cement converts to hydroxyapatite. This product is no longer redissolvable in normal body fluid. This cement can be used for non-load-bearing applications especially in craniofacial bone surgery. Cranial defects due to tumour or trauma as well as deficits in the facial skeleton may be reconstructed using this new biomaterial. In nine of ten patients we used the hydroxyapatite cement successfully for reconstructions in the craniofacial area. Fluid control of the operation field and implant site is extremely important and sometimes difficult to achieve. Further applications could be all non-load-bearing augmentations such as filling of blocked paranasal sinuses, of dentoalveolar cysts and defects following dental apectomy or fixation of implanted hearing-aid electrodes. The perspectives for the hydroxyapatite cement include its application as a carrier for osteogenic protein preparations, especially because of its isothermic reaction and intrinsic osteoconductive characteristics.

  19. [New hydroxylapatite cement for craniofacial surgery].

    Science.gov (United States)

    Pistner, H; Reuther, J; Reinhart, E; Kübler, N; Priessnitz, B

    1998-05-01

    A new stoechiometric mixture of 27% dicalcium-phosphate (DCPA) and 73% tetra-calcium-phosphate (TTCP) can be prepared with water intraoperatively to a paste that subsequently sets to a structurally stabile implant composed of hydroxyapatite (HA). Primary setting time is about 20 min; pH during setting ranges from 6.5 to 8.5. There is no relevant curing heat or expansion or contraction. Compressive strength is about 50 MPa, tensile strength about 8 MPa. Over a period of about 4 h in physiological milieu, the cement converts to hydroxyapatite. This product is no longer redissolvable in normal body fluid. This cement can be used for non-load-bearing applications especially in craniofacial bone surgery. Cranial defects due to tumour or trauma as well as deficits in the facial skeleton may be reconstructed using this new biomaterial. In nine of ten patients we used the hydroxyapatite cement successfully for reconstructions in the craniofacial area. Fluid control of the operation field and implant site is extremely important and sometimes difficult to achieve. Further applications could be all non-load-bearing augmentations such as filling of blocked paranasal sinuses, of dentoalveolar cysts and defects following dental apectomy or fixation of implanted hearing-aid electrodes. The perspectives for the hydroxyapatite cement include its application as a carrier for osteogenic protein preparations, especially because of its isothermic reaction and intrinsic osteoconductive characteristics.

  20. Advances in glass-ionomer cements.

    Science.gov (United States)

    Davidson, Carel Leon

    2006-01-01

    This article describes the properties, advances and shortcomings of glass-ionomer cement as a restorative material. The adhesion of glass-ionomer to tooth structure is less technique sensitive than composite resins and its quality increases with time. Therefore glass-ionomer might turn out to the more reliable restorative material in minimal invasive dentistry based on adhesive techniques.