WorldWideScience

Sample records for plant performance final

  1. Test of job performance aids for power plants. Final report

    International Nuclear Information System (INIS)

    Shriver, E.L.; Zach, S.E.; Foley, J.P. Jr.

    1982-10-01

    The objective of EPRI Research Project 1396-1 was to evaluate the applicability and effectiveness of Job Performance Aids (JPAs) in nuclear power plant situations. For over twenty years, JPAs have been developed in military situations to meet the problems of confusing, incomplete, and inaccurate procedures on maintenance jobs. Kinton, Incorporated of Alexandria, Virginia applied the military experience with JPAs to nuclear power plant situations and identified potential benefits in terms of cost reductions and improved performance. Sample JPAs were developed for Control Room Operations, Maintenance, Plant Operations, Instrumentation and Control, Health Physics, and Quality Assurance tasks (procedures) in selected nuclear plants. JPAs were also developed for a prototype condenser tube leak detection system in the design stage, as well as for generic classes of circuit breaker equipment. Based on the results of the study, the use of JPAs is recommended for plant procedures of medium to high difficulty and for those tasks performed infrequently, even if fairly simple

  2. Planning for risk-informed/performance-based fire protection at nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Najafi, B.; Parkinson, W.J.; Lee, J.A.

    1997-12-01

    This document presents a framework for discussing issues and building consensus towards use of fire modeling and risk technology in nuclear power plant fire protection program implementation. The plan describes a three-phase approach: development of core technologies, implementation of methods, and finally, case studies and pilot applications to verify viability of such methods. The core technologies are defined as fire modeling, fire and system tests, use of operational data, and system and risk techniques. The implementation phase addresses the programmatic issues involved in implementing a risk-informed/performance-based approach in an integrated approach with risk/performance measures. The programmatic elements include: (1) a relationship with fire codes and standards development as defined by the ongoing effort of NFPA for development of performance-based standards; (2) the ability for NRC to undertake inspection and enforcement; and (3) the benefit to utilities in terms of cost versus safety. The case studies are intended to demonstrate applicability of single issue resolution while pilot applications are intended to check the applicability of the integrated program as a whole

  3. Sewage Treatment Plants: Standards of Performance for New Stationary Sources 1977 Final Rule (42 FR 58520)

    Science.gov (United States)

    This document includes a copy of the Federal Register publication of the November 10, 1977 Final Rule for the Standards of Performance of New Stationary Sources for 40 CFR 60 Subparts O. This document is provided curtesy of HeinOnline.

  4. Individual plant examination program: Perspectives on reactor safety and plant performance. Parts 2--5: Final report; Volume 2

    International Nuclear Information System (INIS)

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC's overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively

  5. Individual plant examination program: Perspectives on reactor safety and plant performance. Part 1: Final summary report; Volume 1

    International Nuclear Information System (INIS)

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC's overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively

  6. Individual plant examination program: Perspectives on reactor safety and plant performance. Parts 2--5: Final report; Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events. The US Nuclear Regulatory Commission (NRC) reviewed the IPE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants. This report is divided into three volumes containing six parts. Part 1 is a summary report of the key perspectives gained in each of the areas identified above, with a discussion of the NRC`s overall conclusions and observations. Part 2 discusses key perspectives regarding the impact of the IPE Program on reactor safety. Part 3 discusses perspectives gained from the IPE results regarding CDF, containment performance, and human actions. Part 4 discusses perspectives regarding the IPE models and methods. Part 5 discusses additional IPE perspectives. Part 6 contains Appendices A, B and C which provide the references of the information from the IPEs, updated PRA results, and public comments on draft NUREG-1560 respectively.

  7. Human factors affecting the performance of inspection personnel in nuclear power plants: Final report

    International Nuclear Information System (INIS)

    Karimi, S.S.

    1988-12-01

    This study investigates the problem of poor performance among nuclear power plant inspection personnel both in training and in the field. First, a systems perspective is employed to explore the psychological processes and relevant human factors that may be associated with workers' inadequate performance. Second, two separate yet related approaches are used to clarify the definition of competence: (1) a theory-based (or ''top-down'') approach, in which effective performance is construed as a product of a skillful, motivated person interacting with a responsive environment; and (2) an empirical (or ''bottom-up'') approach, in which key persons and context characteristics are generated based on the opinions of experts in the industry. Using a series of semi-structured interviews, two empirical studies were conducted in the latter approach. Overall, the results of both studies converged with the theoretical analysis emphasizing (1) the reciprocal and dynamic interplay of contextual and motivational factors influencing performance, and (2) the salient role of supervisory practices in terms of support, cooperation, and efficiency in contributing to the outcome of performance. 53 refs., 14 figs., 7 tabs

  8. Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G. [Douglas Energy Company, Placentia, CA (United States)

    2000-09-01

    A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor and replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was 100

  9. Final Performance Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Houldin, Joseph [Delaware Valley Industrial Resource Center, Philadelphia, PA (United States); Saboor, Veronica [Delaware Valley Industrial Resource Center, Philadelphia, PA (United States)

    2016-03-30

    about assessing a company’s technical assets, broadening our view of the business to go beyond what they make or what NAICS code they have…to better understand their capacity, capability, and expertise, and to learn more about THEIR customers. Knowing more about the markets they serve can often provide insight into their level of technical knowledge and sophistication. Finally, in the spirit of realizing the intent of the Accelerator we strove to align and integrate the work and activities supported by the five funding agencies to leverage each effort. To that end, we include in the Integrated Work Plan a graphic that illustrates that integration. What follows is our summary report of the project, aggregated from prior reports.

  10. Final Performance Report

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, S. T. [Tulane Univ., New Orleans, LA (United States)

    2013-08-31

    U.S./China Energy and Environmental Technology Center (EETC), Payson Center for International Development, Law School of Tulane University was officially established in 1997 with initial funds from private sector, US Environmental Protection Agency and the US Department of Energy (DOE.) Lately, DOE has provided EETC funds for operations with cost share from the Ministry of Science and Technology, China. EETC was created to facilitate the development of friendly, broad-based U.S./China relations. Tulane University signed the Memorandum of Understanding (MOU) with the Chinese People’s Institute of Foreign Affairs (1995) to promote the formation of Chinese partners for EETC. EETC’s original goal is to enhance the competitiveness of US clean fossil energy technology in China so that, as her economy expands, local and global environment are well protected. Specifically, through the demonstration and broadly deployment of US developed clean coal technology for power generation, transmission, and emission reductions in China. EETC is also focused on US industry partnerships for local economic development. One of the main the objectives of the EETC is to promote the efficient, responsible production and utilization of energy with a focus on clean fossil energy, promote US clean energy and environmental technologies, and encourage environmental performance while improving the quality of life in China. Another objective is to assist China with environmental and energy policy development and provide supports for China’s development with expertise (best practices) from US industry.

  11. Development of innovative techniques and principles that may be used as models to improve plant performance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Wayne W.; Burton, Glenn W.

    2000-06-25

    We developed fundamental methods and techniques for transferring germplasm from wild to cultivated species. Germplasm transferred included diverse cytoplasms, new genes for pest resistance, genes controlling dry matter yield and apomixis. Some of the germplasm has been shown to be valuable in plant breeding and has been incorporated into commercial cultivators.

  12. SLC Final Performance and Lessons

    International Nuclear Information System (INIS)

    Phinney, Nan

    2000-01-01

    The Stanford Linear Collider (SLC) was the first prototype of a new type of accelerator, the electron-positron linear collider. Many years of dedicated effort were required to understand the physics of this new technology and to develop the techniques for maximizing performance. Key issues were emittance dilution, stability, final beam optimization and background control. Precision, non-invasive diagnostics were required to measure and monitor the beams throughout the machine. Beam-based feedback systems were needed to stabilize energy, trajectory, intensity and the final beam size at the interaction point. variety of new tuning techniques were developed to correct for residual optical or alignment errors. The final focus system underwent a series of refinements in order to deliver sub-micron size beams. It also took many iterations to understand the sources of backgrounds and develop the methods to control them. The benefit from this accumulated experience was seen in the performance of the SLC during its final run in 1997-98. The luminosity increased by a factor of three to 3*10 30 and the 350,000 Z data sample delivered was nearly double that from all previous runs combined

  13. Power performance assessment. Final report

    International Nuclear Information System (INIS)

    Frandsen, S.

    1998-12-01

    In the increasingly commercialised wind power marketplace, the lack of precise assessment methods for the output of an investment is becoming a barrier for wider penetration of wind power. Thus, addressing this problem, the overall objectives of the project are to reduce the financial risk in investment in wind power projects by significantly improving the power performance assessment methods. Ultimately, if this objective is successfully met, the project may also result in improved tuning of the individual wind turbines and in optimisation methods for wind farm operation. The immediate, measurable objectives of the project are: To prepare a review of existing contractual aspects of power performance verification procedures of wind farms; to provide information on production sensitivity to specific terrain characteristics and wind turbine parameters by analyses of a larger number of wind farm power performance data available to the proposers; to improve the understanding of the physical parameters connected to power performance in complex environment by comparing real-life wind farm power performance data with 3D computational flow models and 3D-turbulence wind turbine models; to develop the statistical framework including uncertainty analysis for power performance assessment in complex environments; and to propose one or more procedures for power performance evaluation of wind power plants in complex environments to be applied in contractual agreements between purchasers and manufacturers on production warranties. Although the focus in this project is on power performance assessment the possible results will also be of benefit to energy yield forecasting, since the two tasks are strongly related. (au) JOULE III. 66 refs.; In Co-operation Renewable Energy System Ltd. (GB); Centre for Renewable Energy (GR); Aeronautic Research Centre (SE); National Engineering Lab. (GB); Public Power Cooperation (GR)

  14. Research project implementation of a risk-based performance monitoring system for nuclear power plants: Phase II - Type-D indicators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, R.T. [EQE International. Inc., Evergreen, CO (United States); Khatib-Rahbar, M. [Energy Research, Inc., Rockville, MD (United States); Erikson, H. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    1999-02-01

    This study has established the basis for incorporating a meaningful set of Type-D performance indicators into an overall performance monitoring system based on a PSA framework. The relationships developed as part of this study enable various organizational, maintenance, and operational influences, that are manifested through key events that can be identified and reported at a plant, to be accounted for in terms of their impacts on safety. The relationships and the capability they pose are significant new and unique developments. The relationships require that plant-specific data on the key performance indicators be acquired and analyzed. This, in turn, necessitates that a regular and systematic supplementary data collection program be implemented. Hence, it is recommended here that such a data program be developed and undertaken, specifically within the context of an overall PSA-based safety monitoring system. Plant licensees should be responsible for the supplemental data collection effort; however, the data collection requirements should not pose an undue burden on the licensees. To the extent possible, the data collection program should be coordinated, and possibly integrated, with existing licensee data collection and event reporting efforts. This study was undertaken to help verify whether or not it would be feasible to proceed with a PSA-based performance monitoring program. Research performed for Part-1 investigation has resulted in the development of a systematic and structured approach for monitoring safety performance based on all types of plant events. The Type-D relationships were earlier identified as a key element of the proposed performance monitoring system, and if it would be discovered that the Type-D relationships could not be practically developed and implemented, then it would have lead to the recognition that the performance monitoring system might have little practical value. On the other hand, if the Type-D relationships could be efficiently

  15. Research project implementation of a risk-based performance monitoring system for nuclear power plants: Phase II - Type-D indicators. Final report

    International Nuclear Information System (INIS)

    Sewell, R.T.; Khatib-Rahbar, M.; Erikson, H.

    1999-02-01

    This study has established the basis for incorporating a meaningful set of Type-D performance indicators into an overall performance monitoring system based on a PSA framework. The relationships developed as part of this study enable various organizational, maintenance, and operational influences, that are manifested through key events that can be identified and reported at a plant, to be accounted for in terms of their impacts on safety. The relationships and the capability they pose are significant new and unique developments. The relationships require that plant-specific data on the key performance indicators be acquired and analyzed. This, in turn, necessitates that a regular and systematic supplementary data collection program be implemented. Hence, it is recommended here that such a data program be developed and undertaken, specifically within the context of an overall PSA-based safety monitoring system. Plant licensees should be responsible for the supplemental data collection effort; however, the data collection requirements should not pose an undue burden on the licensees. To the extent possible, the data collection program should be coordinated, and possibly integrated, with existing licensee data collection and event reporting efforts. This study was undertaken to help verify whether or not it would be feasible to proceed with a PSA-based performance monitoring program. Research performed for Part-1 investigation has resulted in the development of a systematic and structured approach for monitoring safety performance based on all types of plant events. The Type-D relationships were earlier identified as a key element of the proposed performance monitoring system, and if it would be discovered that the Type-D relationships could not be practically developed and implemented, then it would have lead to the recognition that the performance monitoring system might have little practical value. On the other hand, if the Type-D relationships could be efficiently

  16. High performance MEAs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    The aim of the present project is through modeling, material and process development to obtain significantly better MEA performance and to attain the technology necessary to fabricate stable catalyst materials thereby providing a viable alternative to current industry standard. This project primarily focused on the development and characterization of novel catalyst materials for the use in high temperature (HT) and low temperature (LT) proton-exchange membrane fuel cells (PEMFC). New catalysts are needed in order to improve fuel cell performance and reduce the cost of fuel cell systems. Additional tasks were the development of new, durable sealing materials to be used in PEMFC as well as the computational modeling of heat and mass transfer processes, predominantly in LT PEMFC, in order to improve fundamental understanding of the multi-phase flow issues and liquid water management in fuel cells. An improved fundamental understanding of these processes will lead to improved fuel cell performance and hence will also result in a reduced catalyst loading to achieve the same performance. The consortium have obtained significant research results and progress for new catalyst materials and substrates with promising enhanced performance and fabrication of the materials using novel methods. However, the new materials and synthesis methods explored are still in the early research and development phase. The project has contributed to improved MEA performance using less precious metal and has been demonstrated for both LT-PEM, DMFC and HT-PEM applications. New novel approach and progress of the modelling activities has been extremely satisfactory with numerous conference and journal publications along with two potential inventions concerning the catalyst layer. (LN)

  17. CHP plant Legionowo Poland - Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-01

    In 1997, a new Energy Law was passed in Poland. An important element of the law is that local energy planning is made obligatory. The law describes obligatory tasks and procedures for Polish municipalities related to planning and organisation of the energy sector. With the objective of supporting the Polish municipalities in their obligations according to the energy law of 1997, the project 'Energy Planning in Poland at Municipal Level - Support to Decision Makers' was launched. As part of the project, Municipal Guideline Reports have been elaborated for three model municipalities. These guidelines present the basis for the Energy Supply Plans in these municipalities. For the city of Legionowo, the following was recommended: 1. The planning processes initiated during the project should be continues/followed up, 2. Master Plan for the district heating system should be prepared, 3. The possibilities of establishment of a major natural gas-fired CHP plant of the Combined Cycle type should be investigated. The present report is the final Master Plan based on the following reports: Master Plan for Legionowo - Status Report; Master Plan for Legionowo - Hydraulic Analysis; CHP Plant Legionowo Poland - CHP Feasibility Analysis. The final Master Plan describes the status in the DH Company in Legionowo, possible improvements and an investment plan for the selected scenario. (BA)

  18. Southpoint power plant final environmental impact statement

    International Nuclear Information System (INIS)

    1999-01-01

    This document is the Final Environmental Impact Statement (FEIS) for a proposed lease of acreage on the Fort Mojave Indian Reservation in Mohave County, Arizona for development of a natural gas fired 500 megawatt combined cycle power plant. The Bureau of Indian Affairs (BIA) serves as the federal lead agency and the Fort Mojave Indian Tribe (FMIT) and the Western Area Power Administration (WAPA) are cooperating agencies for the EIS process. The purpose of this document is to provide information to the public and to interested public agencies regarding the environmental consequences of the approval of a long-term lease for the construction and operation of the proposed Southpoint power plant. The FEIS, prepared by Hallock/Gross, Inc. under the direction of the BIA and in cooperation with the FMIT and WAPA, addresses the comparative analysis of alternatives and evaluates the environmental consequences of such alternatives on various resources and addresses public comments. A number of technical reports were used in the preparation of the Draft EIS and FEIS and are available for review as Appendices to this document under separate cover that can be reviewed at the BIA offices which are listed

  19. Thermoeconomic analysis of power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tsatsaronis, G.; Winhold, M.

    1984-08-01

    In this report, the concept of exergy and the general methodology of the exergetic analysis and the thermoeconomic (combined exergetic and economic) analysis of energy conversion systems are presented. The THESIS (THermodynamic and Economc SImulation System) computer program used for these analyses is briefly described. Detailed mass, energy, exergy and money balances for a reference steam power plant (Harry Allen Station) are shown. The effect of the most important process parameters on the overall efficiency is investigated. A year-by-year and a levelized revenue requirement analysis are presented. The costs of exergy losses are compared with the capital costs and other expenses due to owning and operating each particular plant component. The question whether it is profitable to reduce the exergy losses by increasing these costs and vice versa is investigated. A cost sensitivity analysis including the effect of coal price and average annual capacity factor is performed. The methodology applied in this report appears to be useful in analyzing and evaluating energy conversion systems. The analyses presented here allow identification and evaluation of the inefficiencies and the opportunities for improvement of an energy conversion process. Results indicate that modifications in certain process parameters can lead to a decrease in the cost of electricity produced by the reference plant.

  20. Worldwide nuclear-plant performance

    International Nuclear Information System (INIS)

    Surrey, J.; Thomas, S.

    1980-01-01

    The authors compare the performance of different reactor systems to identify the determinants of plant performance, to examine the evidence of technological maturation, and to discover the principal causes of outage or unavailability. In the light of the findings, they discuss the implications for the UK regarding reactor choice and technology development. They make no judgements about the relative merits of nuclear and fossil-fuel plants, or about safety. (author)

  1. Programs to improve plant performance

    International Nuclear Information System (INIS)

    Felmus, N.L.

    1987-01-01

    Looking toward the 1990's, we see a period in which our industry will face the challenge of improving the performance of the nuclear plants which are built and operating. The skills and technology are at hand to make good plant performance a reality and we believe the time has come to use them to achieve that end. As reserve margins decline, utilities and their regulators will increasingly seek to tap the unexploited capacity tied up in plants operating below their optimum availability. This paper describes a number of the programs, plant improvements and operations improvements which can yield a significant increase in nuclear plant availability and capacity factor now and into the 1990's. (author)

  2. Thermal Power Plant Performance Analysis

    CERN Document Server

    2012-01-01

    The analysis of the reliability and availability of power plants is frequently based on simple indexes that do not take into account the criticality of some failures used for availability analysis. This criticality should be evaluated based on concepts of reliability which consider the effect of a component failure on the performance of the entire plant. System reliability analysis tools provide a root-cause analysis leading to the improvement of the plant maintenance plan.   Taking in view that the power plant performance can be evaluated not only based on  thermodynamic related indexes, such as heat-rate, Thermal Power Plant Performance Analysis focuses on the presentation of reliability-based tools used to define performance of complex systems and introduces the basic concepts of reliability, maintainability and risk analysis aiming at their application as tools for power plant performance improvement, including: ·         selection of critical equipment and components, ·         defini...

  3. PRA Procedures Guide: a guide to the performance of probabilistic risk assessments for nuclear power plants. Final report, Volume 1 - Chapters 1-8

    International Nuclear Information System (INIS)

    1983-01-01

    This document, the Probabilistic Risk Assessment (PRA) Procedures Guide, is intended to provide an overview of the risk-assessment field as it exists today and to identify acceptable techniques for the systematic assessment of the risk from nuclear power plants. Topics discussed include: organization of PRA; accident-sequence definition and system modeling; human-reliability analysis; data-base development; accident-sequence quantification; physical processes of core-melt accidents; and radionuclide release and transport

  4. Pinellas Plant feasibility study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Pinellas Plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. In September 1990, the Department of Health and Rehabilitative Services (HRS) entered into an agreement with DOE to independently examine environmental monitoring data from the plant and health data from Pinellas County to determine if an epidemiological study is technically feasible to measure possible off-site health effects from ionizing radiation. Through normal plant operations, some radioactive materials have been released to the environment. Eighty percent of the total plant releases of 107,707 curies occurred in the early years of plant operation (1957--1960). The primary materials released were tritium gas, tritium oxide and krypton-85. Environmental monitoring for radioactive releases from the plant has been done regularly since 1975. The US Public Health Service Centers for Disease Control and Prevention (CDC), in assisting HRS, has determined that sufficient radiological data exist by which a dose reconstruction can be done. A dose reconstruction can provide an estimate of how much radiological exposure someone living in the vicinity of the Pinellas Plant may have suffered from environmental releases.

  5. Pinellas Plant feasibility study. Final report

    International Nuclear Information System (INIS)

    1994-09-01

    The Pinellas Plant was built in 1956 to manufacture neutron generators, a principal component in nuclear weapons. In September 1990, the Department of Health and Rehabilitative Services (HRS) entered into an agreement with DOE to independently examine environmental monitoring data from the plant and health data from Pinellas County to determine if an epidemiological study is technically feasible to measure possible off-site health effects from ionizing radiation. Through normal plant operations, some radioactive materials have been released to the environment. Eighty percent of the total plant releases of 107,707 curies occurred in the early years of plant operation (1957--1960). The primary materials released were tritium gas, tritium oxide and krypton-85. Environmental monitoring for radioactive releases from the plant has been done regularly since 1975. The US Public Health Service Centers for Disease Control and Prevention (CDC), in assisting HRS, has determined that sufficient radiological data exist by which a dose reconstruction can be done. A dose reconstruction can provide an estimate of how much radiological exposure someone living in the vicinity of the Pinellas Plant may have suffered from environmental releases

  6. Final Report: Performance Engineering Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [Rice Univ., Houston, TX (United States)

    2014-10-27

    This document is a final report about the work performed for cooperative agreement DE-FC02-06ER25764, the Rice University effort of Performance Engineering Research Institute (PERI). PERI was an Enabling Technologies Institute of the Scientific Discovery through Advanced Computing (SciDAC-2) program supported by the Department of Energy's Office of Science Advanced Scientific Computing Research (ASCR) program. The PERI effort at Rice University focused on (1) research and development of tools for measurement and analysis of application program performance, and (2) engagement with SciDAC-2 application teams.

  7. Plant operator performance evaluation system

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Fukuda, Mitsuko; Kubota, Ryuji.

    1989-01-01

    A plant operator performance evaluation system to analyze plant operation records during accident training and to identify and classify operator errors has been developed for the purpose of supporting realization of a training and education system for plant operators. A knowledge engineering technique was applied to evaluation of operator behavior by both even-based and symptom-based procedures, in various situations including event transition due to multiple failures or operational errors. The system classifies the identified errors as to their single and double types based on Swain's error classification and the error levels reflecting Rasmussen's cognitive level, and it also evaluates the effect of errors on plant state and then classifies error influence, using 'knowledge for phenomena and operations', as represented by frames. It has additional functions for analysis of error statistics and knowledge acquisition support of 'knowledge for operations'. The system was applied to a training analysis for a scram event in a BWR plant, and its error analysis function was confirmed to be effective by operational experts. (author)

  8. International safeguards for reprocessing plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, M.; Scheinman, L.; Sievering, N.; Wonder, E.; Lipman, D.; Immerman, W.; Elliott, J.M.; Crane, F.

    1981-04-01

    Proliferation risks inherent in reprocessing show the need to employ technically effective safeguards which can detect, with a high degree of assurance and on a timely basis, the diversion of significant quantities of fissionable material. A balance must be struck between what is technically feasible and effective and what is institutionally acceptable. Purpose of this report is to examine the several technical approaches to safeguards in light of their prospective acceptability. This study defines the economic, political and institutional nature of the safeguards problem; surveys generically alternative technical approaches to international safeguards including their effectiveness and relative development; characterizes the institutional implications and uncertainties associated with the acceptance and implementation of each technical alternative; and integrates these assessments into a set of overall judgments on feasible directions for reprocessing plant safeguards systems.

  9. Precision control of biogas plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.B.; Nielsen, Anders M.; Ward, A.J.

    2009-10-15

    The objective of the project has been to improve design and process stability in biogas plants. The results can be divided within the following main categories: 1) Pre-treatment, serial coupling of digesters and post digestion 2) Process inhibition 3) Process control Ad 1) This work has shown that extreme thermophilic pre-treatment of cattle manure and pig manure mixed with silage has a considerable effect on methane yield in a subsequent methanogenic reactor. Ad 2) The effect of ammonia inhibition was studied in a series of continuously stirred tank reactors co-digesting pig manure (40%) with the addition of solid fractions (60%) and increasing concentrations of ammonia caused by addition of NH{sub 4}Cl pulses. Ad 3) Near infrared spectroscopy (NIRS) was used to predict liquid phase volatile fatty acid (VFA) concentrations in three experiments treating three different materials: pig slurry with maize silage, chicken manure and cattle slurry.

  10. International safeguards for reprocessing plants. Final report

    International Nuclear Information System (INIS)

    Kratzer, M.; Scheinman, L.; Sievering, N.; Wonder, E.; Lipman, D.; Immerman, W.; Elliott, J.M.; Crane, F.

    1981-04-01

    Proliferation risks inherent in reprocessing show the need to employ technically effective safeguards which can detect, with a high degree of assurance and on a timely basis, the diversion of significant quantities of fissionable material. A balance must be struck between what is technically feasible and effective and what is institutionally acceptable. Purpose of this report is to examine the several technical approaches to safeguards in light of their prospective acceptability. This study defines the economic, political and institutional nature of the safeguards problem; surveys generically alternative technical approaches to international safeguards including their effectiveness and relative development; characterizes the institutional implications and uncertainties associated with the acceptance and implementation of each technical alternative; and integrates these assessments into a set of overall judgments on feasible directions for reprocessing plant safeguards systems

  11. Plant systems/components modularization study. Final report. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    1977-07-01

    The final results are summarized of a Plant Systems/Components Modularization Study based on Stone and Webster's Pressurized Water Reactor Reference Design. The program has been modified to include evaluation of the most promising areas for modular consideration based on the level of the Sundesert Project engineering design completion and the feasibility of their incorporation into the plant construction effort.

  12. Plant systems/components modularization study. Final report

    International Nuclear Information System (INIS)

    1977-07-01

    The final results are summarized of a Plant Systems/Components Modularization Study based on Stone and Webster's Pressurized Water Reactor Reference Design. The program has been modified to include evaluation of the most promising areas for modular consideration based on the level of the Sundesert Project engineering design completion and the feasibility of their incorporation into the plant construction effort

  13. Nuclear Power Plant Performance: Ascending The Summit

    International Nuclear Information System (INIS)

    Anderson, T. M.

    1986-01-01

    When we look back over the years and consider the progress we have made in improving nuclear plant performance, I'm sure that many of you must feel the same mixture of elation and apprehension the mountain climber feels when he finally confronts his summit. In the curse of the last 10 years, many of US have watched availability averages rise from 50% to 60%, to 65% -- and recently, to 70%, 80% and beyond. Yet, as impressive an accomplishment as that is, there comes, I think, a growing realization that the steady increases we have achieved up to now may, in fact, have been the easy part of the journey, the trek from base camp -- and that within a very small handful of years, we may find ourselves pushing plant performance right to the limit, only to discover that it is pushing back

  14. Direct fuel cell power plants: the final steps to commercialization

    Science.gov (United States)

    Glenn, Donald R.

    Since the last paper presented at the Second Grove Fuel Cell Symposium, the Energy Research Corporation (ERC) has established two commercial subsidiaries, become a publically-held firm, expanded its facilities and has moved the direct fuel cell (DFC) technology and systems significantly closer to commercial readiness. The subsidiaries, the Fuel Cell Engineering Corporation (FCE) and Fuel Cell Manufacturing Corporation (FCMC) are perfecting their respective roles in the company's strategy to commercialize its DFC technology. FCE is the prime contractor for the Santa Clara Demonstration and is establishing the needed marketing, sales, engineering, and servicing functions. FCMC in addition to producing the stacks and stack modules for the Santa Clara demonstration plant is now upgrading its production capability and product yields, and retooling for the final stack scale-up for the commercial unit. ERC has built and operated the tallest and largest capacities-to-date carbonate fuel cell stacks as well as numerous short stacks. While most of these units were tested at ERC's Danbury, Connecticut (USA) R&D Center, others have been evaluated at other domestic and overseas facilities using a variety of fuels. ERC has supplied stacks to Elkraft and MTU for tests with natural gas, and RWE in Germany where coal-derived gas were used. Additional stack test activities have been performed by MELCO and Sanyo in Japan. Information from some of these activities is protected by ERC's license arrangements with these firms. However, permission for limited data releases will be requested to provide the Grove Conference with up-to-date results. Arguably the most dramatic demonstration of carbonate fuel cells in the utility-scale, 2 MW power plant demonstration unit, located in the City of Santa Clara, California. Construction of the unit's balance-of-plant (BOP) has been completed and the installed equipment has been operationally checked. Two of the four DFC stack sub-modules, each

  15. 10 CFR 603.890 - Final performance report.

    Science.gov (United States)

    2010-01-01

    ... to Other Administrative Matters Financial and Programmatic Reporting § 603.890 Final performance report. A TIA must require a final performance report that addresses all major accomplishments under the... 10 Energy 4 2010-01-01 2010-01-01 false Final performance report. 603.890 Section 603.890 Energy...

  16. Plant performance monitoring program at Krsko NPP

    International Nuclear Information System (INIS)

    Bach, B.; Kavsek, D.

    2004-01-01

    A high level of nuclear safety and plant reliability results from the complex interaction of a good design, operational safety and human performance. This is the reason for establishing a set of operational plant safety performance indicators, to enable monitoring of both plant performance and progress. Performance indicators are also used for setting challenging targets and goals for improvement, to gain additional perspective on performance relative to other plants and to provide an indication of a potential need to adjust priorities and resources to achieve improved overall plant performance. A specific indicator trend over a certain period can provide an early warning to plant management to evaluate the causes behind the observed changes. In addition to monitoring the changes and trends, it is also necessary to compare the indicators with identified targets and goals to evaluate performance strengths and weaknesses. Plant Performance Monitoring Program at Krsko NPP defines and ensures consistent collection, processing, analysis and use of predefined relevant plant operational data, providing a quantitative indication of nuclear power plant performance. When the program was developed, the conceptual framework described in IAEA TECDOC-1141 Operational Safety Performance Indicators for Nuclear Power Plants was used as its basis in order to secure that a reasonable set of quantitative indications of operational safety performance would be established. Safe, conservative, cautious and reliable operation of the Krsko NPP is a common goal for all plant personnel. It is provided by continuous assurance of both health and safety of the public and employees according to the plant policy stated in program MD-1 Notranje usmeritve in cilji NEK, which is the top plant program. Establishing a program of monitoring and assessing operational plant safety performance indicators represents effective safety culture of plant personnel.(author)

  17. Performance evaluation of cogeneration power plants

    International Nuclear Information System (INIS)

    Bacone, M.

    2001-01-01

    The free market has changed the criteria for measuring the cogeneration plant performances. Further at the technical-economic parameters, are considered other connected at the profits of the power plant [it

  18. Traffic Management Systems Performance Measurement: Final Report

    OpenAIRE

    Banks, James H.; Kelly, Gregory

    1997-01-01

    This report documents a study of performance measurement for Transportation Management Centers (TMCs). Performance measurement requirements were analyzed, data collection and management techniques were investigated, and case study traffic data system improvement plans were prepared for two Caltrans districts.

  19. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  20. Water use, productivity and interactions among desert plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ehleringer, J.R.

    1992-11-17

    Productivity, stability, and competitive interactions among ecosystem components within aridlands are key processes related directly to water in deserts. This project assumes that integrated aspects of plant metabolism provide insight into the structure and function of plant communities and ecosystems. While it is difficult to extrapolate from instantaneous physiological observations to higher scales, such as whole plant performance or to the interactions between plants as components of ecosystems, several key aspects of plant metabolism are scalable. Analyses of stable isotopic composition in plant tissues at natural abundance levels provide a useful tool that can provide insight into the consequences of physiological processes over temporal and spatial scales. Some plant processes continuously fractionate among light and heavy stable isotopic forms of an element; over time this results in integrated measures of plant metabolism. For example, carbon isotope fractionation during photosynthesis results in leaf carbon isotopic composition that is a measure of the set-point for photosynthetic metabolism and of water-use efficiency. Thus it provides information on the temporal scaling of a key physiological process.

  1. Tunnel Boring Machine Performance Study. Final Report

    Science.gov (United States)

    1984-06-01

    Full face tunnel boring machine "TBM" performance during the excavation of 6 tunnels in sedimentary rock is considered in terms of utilization, penetration rates and cutter wear. The construction records are analyzed and the results are used to inves...

  2. Performance life of HMA mixes : final report.

    Science.gov (United States)

    2016-01-01

    A number of hot mix asphalt (HMA) types, such as permeable friction course (PFC), stone mastic asphalts : (SMA), performance design mixes and conventional dense graded mixes are currently used to construct or overlay : roads. One of the important inp...

  3. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  4. Fast Flux Test Facility performance monitoring management information: [Final report

    International Nuclear Information System (INIS)

    Newland, D.J.

    1987-09-01

    The purpose of this report is to provide management with performance data on key performance indicators for the month of July, 1987. This report contains the results for key performance indicators divided into two categories of ''overall'' and ''other''. The ''overall'' performance indicators, when considered in the aggregate, provide one means of monitoring overall plant performance

  5. Improving the safety of LWR power plants. Final report

    International Nuclear Information System (INIS)

    1980-04-01

    This report documents the results of the Study to identify current, potential research issues and efforts for improving the safety of Light Water Reactor (LWR) power plants. This final report describes the work accomplished, the results obtained, the problem areas, and the recommended solutions. Specifically, for each of the issues identified in this report for improving the safety of LWR power plants, a description is provided in detail of the safety significance, the current status (including information sources, status of technical knowledge, problem solution and current activities), and the suggestions for further research and development. Further, the issues are ranked for action into high, medium, and low priority with respect to primarily (a) improved safety (e.g. potential reduction in public risk and occupational exposure), and secondly (b) reduction in safety-related costs

  6. Simulated coal gas MCFC power plant system verification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-30

    The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

  7. Performance of Personal Workspace Controls Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, Francis; Kiliccote, Sila; Loffeld, John; Pettler,Pete; Snook, Joel

    2004-12-01

    One of the key deliverables for the DOE-funded controls research at LBNL for FY04 was the development of a prototype Personal Workspace Control system. The successful development of this system is a critical milestone for the LBNL Lighting Controls Research effort because this system demonstrates how IBECS can add value to today's Task Ambient lighting systems. LBNL has argued that by providing both the occupant and the facilities manager with the ability to precisely control the operation of overhead lighting and all task lighting in a coordinated manner, that task ambient lighting can optimize energy performance and occupant comfort simultaneously [Reference Task Ambient Foundation Document]. The Personal Workspace Control system is the application of IBECS to this important lighting problem. This report discusses the development of the Personal Workspace Control to date including descriptions of the different fixture types that have been converted to IBECS operation and a detailed description of the operation of PWC Scene Controller, which provides the end user with precise control of his task ambient lighting system. The objective, from the Annual Plan, is to demonstrate improvements in efficiency, lighting quality and occupant comfort realized using Personal Workspace Controls (PWC) designed to optimize the delivery of lighting to the individual's workstation regardless of which task-ambient lighting solution is chosen. The PWC will be capable of controlling floor-mounted, desk lamps, furniture-mounted and overhead lighting fixtures from a personal computer and handheld remote. The PWC will use an environmental sensor to automatically monitor illuminance, temperature and occupancy and to appropriately modulate ambient lighting according to daylight availability and to switch off task lighting according to local occupancy. [Adding occupancy control to the system would blunt the historical criticism of occupant-controlled lighting - the tendency of the

  8. Human factors review of power plant maintainability. Final report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Parsons, S.O.

    1981-02-01

    Human factors engineering is an interdisciplinary science and technology concerned with shaping the design of machines, facilities, and operational environments to promote safe, efficient, and reliable performance on the part of operators and maintainers of equipment systems. The human factors aspects of five nuclear power plants and four fossil fuel plants were evaluated using such methods as a check list guided observation system, structured interviews with maintenance personnel, direct observation of maintenance tasks, reviews of procedures, and analyses of maintenance errors or accidents by means of the critical incident technique. The study revealed a wide variety of human factors problem areas, most of which are extensively photodocumented. The study recommends that a more systematic and formal approach to ensure that future power plants are human engineered to the needs of maintenance personnel

  9. Performance parameters of a standalone PV plant

    International Nuclear Information System (INIS)

    El Fathi, Amine; Nkhaili, Lahcen; Bennouna, Amin; Outzourhit, Abdelkader

    2014-01-01

    Highlights: • We described in details a photovoltaic power plant installed in the remote rural village Elkaria (Essaouira Morocco – 7.2 kWp). • We presented the results of monitoring and some performance parameters of the plant such as load curve. • We discussed the energy management of the plant which is based on the droop mode control. • We presented and discussed the yields and the performance ratio of the plant. - Abstract: In this work we present a detailed description of a 7.2 kWp photovoltaic power plant installed in the remote rural village Elkaria (province of Essaouira in Morocco). This plant supplies 16 households with electricity through a local grid that was installed for this purpose. The results of monitoring some performance parameters of the plant such as load curve, the yields and the performance ratio are presented and discussed. The performance ratio of the PV plant varied between 33% and 70.2%. The low values of this parameter are mainly attributed to the way the battery inverter manages the energy flow

  10. Gasification Plant Cost and Performance Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Samuel Tam; Alan Nizamoff; Sheldon Kramer; Scott Olson; Francis Lau; Mike Roberts; David Stopek; Robert Zabransky; Jeffrey Hoffmann; Erik Shuster; Nelson Zhan

    2005-05-01

    As part of an ongoing effort of the U.S. Department of Energy (DOE) to investigate the feasibility of gasification on a broader level, Nexant, Inc. was contracted to perform a comprehensive study to provide a set of gasification alternatives for consideration by the DOE. Nexant completed the first two tasks (Tasks 1 and 2) of the ''Gasification Plant Cost and Performance Optimization Study'' for the DOE's National Energy Technology Laboratory (NETL) in 2003. These tasks evaluated the use of the E-GAS{trademark} gasification technology (now owned by ConocoPhillips) for the production of power either alone or with polygeneration of industrial grade steam, fuel gas, hydrocarbon liquids, or hydrogen. NETL expanded this effort in Task 3 to evaluate Gas Technology Institute's (GTI) fluidized bed U-GAS{reg_sign} gasifier. The Task 3 study had three main objectives. The first was to examine the application of the gasifier at an industrial application in upstate New York using a Southeastern Ohio coal. The second was to investigate the GTI gasifier in a stand-alone lignite-fueled IGCC power plant application, sited in North Dakota. The final goal was to train NETL personnel in the methods of process design and systems analysis. These objectives were divided into five subtasks. Subtasks 3.2 through 3.4 covered the technical analyses for the different design cases. Subtask 3.1 covered management activities, and Subtask 3.5 covered reporting. Conceptual designs were developed for several coal gasification facilities based on the fluidized bed U-GAS{reg_sign} gasifier. Subtask 3.2 developed two base case designs for industrial combined heat and power facilities using Southeastern Ohio coal that will be located at an upstate New York location. One base case design used an air-blown gasifier, and the other used an oxygen-blown gasifier in order to evaluate their relative economics. Subtask 3.3 developed an advanced design for an air

  11. Wind Plant Performance Prediction (WP3) Project

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Anna [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-26

    The methods for analysis of operational wind plant data are highly variable across the wind industry, leading to high uncertainties in the validation and bias-correction of preconstruction energy estimation methods. Lack of credibility in the preconstruction energy estimates leads to significant impacts on project financing and therefore the final levelized cost of energy for the plant. In this work, the variation in the evaluation of a wind plant's operational energy production as a result of variations in the processing methods applied to the operational data is examined. Preliminary results indicate that selection of the filters applied to the data and the filter parameters can have significant impacts in the final computed assessment metrics.

  12. Nuclear plant life cycle management implementation guide. Final report

    International Nuclear Information System (INIS)

    Sliter, G.E.; Negin, C.A.

    1998-11-01

    Nuclear power plants, as baseload suppliers of electricity, are major corporate assets. As the nuclear industry enters its fourth decade as a major producer of clean electricity, the structure of the utility industry is undergoing a historical landmark transition from economic deregulation to a competitive, market-driven industry. An integral part of competition is to manage the operation of the key asset, the plant, in the long term, thereby enhancing its long-term profitability. Life cycle management (LCM) is a well-known technical-economic decision-making process for any large industrial facility. LCM optimizes the service life of a facility and maximizes its life-cycle asset value. LCM integrates aging management (maintaining the availability of costly-to-replace components and structures) with asset management (plant valuation and investment strategies that account for economic, performance, regulatory, and environmental uncertainties). LCM involves predicting maintenance, repair, and other capital costs for a nuclear unit far into the future, as well as planning and managing strategic issues such as waste disposal, fuel storage, decommissioning, and public acceptance. This Life Cycle Management Implementation Guide introduces the reader to the LCM concept and its benefits, describes the elements and activities associated with an LCM program (most of which already exist in all plants), gives an overview of asset and aging management, and provides key references related to life cycle management for nuclear power plants. It also summarizes the major elements of life cycle management required for license renewal or, for newer plants, keeping open the option of license renewal

  13. Final environmental impact statement. Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described

  14. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  15. Hurricane Resilient Wind Plant Concept Study Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dibra, Besart [Keystone Engineering Inc., Vonore, TN (United States); Finucane, Zachary [Keystone Engineering Inc., Vonore, TN (United States); Foley, Benjamin [Keystone Engineering Inc., Vonore, TN (United States); Hall, Rudy [Keystone Engineering Inc., Vonore, TN (United States); Damiani, Rick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maples, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parker, Zachary [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robertson, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, Tyler [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wendt, Fabian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Andersen, Mads Boel Overgaard [Siemens Wind Power A/S, Brande (Denmark); Standish, Kevin [Siemens Wind Power A/S, Brande (Denmark); Lee, Ken [Wetzel Engineering Inc., Round Rock, TX (United States); Raina, Amool [Wetzel Engineering Inc., Round Rock, TX (United States); Wetzel, Kyle [Wetzel Engineering Inc., Round Rock, TX (United States); Musial, Walter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schreck, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-10-01

    Hurricanes occur over much of the U.S. Atlantic and Gulf coasts, from Long Island to the U.S.-Mexico border, encompassing much of the nation's primary offshore wind resource. Category 5 hurricanes have made landfall as far north as North Carolina, with Category 3 hurricanes reaching New York with some frequency. Along the US West coast, typhoons strike with similar frequency and severity. At present, offshore wind turbine design practices do not fully consider the severe operating conditions imposed by hurricanes. Although universally applied to most turbine designs, International Electrotechnical Commission (IEC) standards do not sufficiently address the duration, directionality, magnitude, or character of hurricanes. To assess advanced design features that could mitigate hurricane loading in various ways, this Hurricane-Resilient Wind Plant Concept Study considered a concept design study of a 500-megawatt (MW) wind power plant consisting of 10-MW wind turbines deployed in 25-meter (m) water depths in the Western Gulf of Mexico. This location was selected because hurricane frequency and severity provided a unique set of design challenges that would enable assessment of hurricane risk and projection of cost of energy (COE) changes, all in response to specific U.S. Department of Energy (DOE) objectives. Notably, the concept study pursued a holistic approach that incorporated multiple advanced system elements at the wind turbine and wind power plant levels to meet objectives for system performance and reduced COE. Principal turbine system elements included a 10-MW rotor with structurally efficient, low-solidity blades; a lightweight, permanent-magnet, direct-drive generator, and an innovative fixed substructure. At the wind power plant level, turbines were arrayed in a large-scale wind power plant in a manner aimed at balancing energy production against capital, installation, and operation and maintenance (O&M) costs to achieve significant overall reductions in

  16. Factors Influencing Student Nurses' Performance in the Final ...

    African Journals Online (AJOL)

    Factors Influencing Student Nurses' Performance in the Final Practical Examination ... Staff development courses can be held to coordinate the work of the school ... to authentic individual nursing care of patients so that they use the individual ...

  17. GASIFICATION PLANT COST AND PERFORMANCE OPTIMIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Samuel S. Tam

    2002-05-01

    The goal of this series of design and estimating efforts was to start from the as-built design and actual operating data from the DOE sponsored Wabash River Coal Gasification Repowering Project and to develop optimized designs for several coal and petroleum coke IGCC power and coproduction projects. First, the team developed a design for a grass-roots plant equivalent to the Wabash River Coal Gasification Repowering Project to provide a starting point and a detailed mid-year 2000 cost estimate based on the actual as-built plant design and subsequent modifications (Subtask 1.1). This unoptimized plant has a thermal efficiency of 38.3% (HHV) and a mid-year 2000 EPC cost of 1,681 $/kW. This design was enlarged and modified to become a Petroleum Coke IGCC Coproduction Plant (Subtask 1.2) that produces hydrogen, industrial grade steam, and fuel gas for an adjacent Gulf Coast petroleum refinery in addition to export power. A structured Value Improving Practices (VIP) approach was applied to reduce costs and improve performance. The base case (Subtask 1.3) Optimized Petroleum Coke IGCC Coproduction Plant increased the power output by 16% and reduced the plant cost by 23%. The study looked at several options for gasifier sparing to enhance availability. Subtask 1.9 produced a detailed report on this availability analyses study. The Subtask 1.3 Next Plant, which retains the preferred spare gasification train approach, only reduced the cost by about 21%, but it has the highest availability (94.6%) and produces power at 30 $/MW-hr (at a 12% ROI). Thus, such a coke-fueled IGCC coproduction plant could fill a near term niche market. In all cases, the emissions performance of these plants is superior to the Wabash River project. Subtasks 1.5A and B developed designs for single-train coal and coke-fueled power plants. This side-by-side comparison of these plants, which contain the Subtask 1.3 VIP enhancements, showed their similarity both in design and cost (1,318 $/kW for the

  18. Assessment of plant-derived hydrocarbons. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McFadden, K.; Nelson, S.H.

    1981-09-30

    A number of hydrocarbon producing plants are evaluated as possible sources of rubber, liquid fuels, and industrial lubricants. The plants considered are Euphorbia lathyris or gopher plant, milkweeds, guayule, rabbit brush, jojoba, and meadow foam. (ACR)

  19. Better plant performance through better management

    International Nuclear Information System (INIS)

    Csik, B.J.

    1985-01-01

    A forum convened by the IAEA discussed key aspects and current issues of nuclear power plant operations management in depth. Among the topics addressed were the following: the roles and responsibilities of the operating organization, operations management, and the regulatory body; performance objectives and operational procedures and practices, and potential conflict among plant safety, reliability, and economic operation; advances in day-to-day operation; maintenance and quality control; and shaping of the proper attitudes toward safety

  20. Human performance in nondestructive inspections and functional tests: Final report

    International Nuclear Information System (INIS)

    Harris, D.H.

    1988-10-01

    Human performance plays a vital role in the inspections and tests conducted to assure the physical integrity of nuclear power plants. Even when technically-sophisticated equipment is employed, the outcome is highly dependent on human control actions, calibrations, observations, analyses, and interpretations. The principal consequences of inadequate performance are missed or falsely-reported defects. However, the cost-avoidance that stems from addressing potential risks promptly, and the increasing costs likely with aging plants, emphasize that timeliness and efficiency are important inspection-performance considerations also. Human performance issues were studied in a sample of inspections and tests regularly conducted in nuclear power plants. These tasks, selected by an industry advisory panel, were: eddy-current inspection of steam-generator tubes; ultrasonic inspection of pipe welds; inservice testing of pumps and valves; and functional testing of shock suppressors. Information was obtained for the study from industry and plant procedural documents; training materials; research reports and related documents; interviews with training specialists, inspectors, supervisory personnel, and equipment designers; and first-hand observations of task performance. Eleven recommendations are developed for improving human performance on nondestructive inspections and functional tests. Two recommendations were for the more-effective application of existing knowledge; nine recommendations were for research projects that should be undertaken to assure continuing improvements in human performance on these tasks. 25 refs., 9 figs., 1 tab

  1. On the plant operators performance during earthquake

    International Nuclear Information System (INIS)

    Kitada, Y.; Yoshimura, S.; Abe, M.; Niwa, H.; Yoneda, T.; Matsunaga, M.; Suzuki, T.

    1994-01-01

    There is little data on which to judge the performance of plant operators during and after strong earthquakes. In order to obtain such data to enhance the reliability on the plant operation, a Japanese utility and a power plant manufacturer carried out a vibration test using a shaking table. The purpose of the test was to investigate operator performance, i.e., the quickness and correctness in switch handling and panel meter read-out. The movement of chairs during earthquake as also of interest, because if the chairs moved significantly or turned over during a strong earthquake, some arresting mechanism would be required for the chair. Although there were differences between the simulated earthquake motions used and actual earthquakes mainly due to the specifications of the shaking table, the earthquake motions had almost no influence on the operators of their capability (performance) for operating the simulated console and the personal computers

  2. Risk-based plant performance indicators

    International Nuclear Information System (INIS)

    Boccio, J.L.; Azarm, M.A.; Hall, R.E.

    1991-01-01

    Tasked by the 1979 President's Commission on the Accident at Three Mile Island, the U.S. nuclear power industry has put into place a performance indicator program as one means for showing a demonstrable record of achievement. Largely through the efforts of the Institute of Nuclear Power Operations (INPO), plant performance data has, since 1983, been collected and analyzed to aid utility management in measuring their plants' performance progress. The U.S. Nuclear Regulatory Commission (NRC) has also developed a set of performance indicators. This program, conducted by NRC's Office for the Analysis and Evaluation of Operational Data (AEOD), is structured to present information on plant operational performance in a manner that could enhance the staff's ability to recognize changes in the safety performance. Both organizations recognized that performance indicators have limitations and could be subject to misinterpretation and misuse with the potential for an adverse impact on safety. This paper reports on performance indicators presently in use, e.g., unplanned automatic scrams, unplanned safety system actuation, safety system failures, etc., which are logically related to safety. But, a reliability/risk-based method for evaluating either individual indicators or an aggregated set of indicators is not yet available

  3. Energy performance indicator report: fluid milk plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In Canada, the dairy sector consumes significant amounts of energy and is looking for new ways of saving energy. The aim of this study, performed by the Competitive Analysis Centre Inc., was to find novel energy savings ideas for fluid milk plants. For this purpose, the energy consumption of 17 fluid milk plants, which accounts for over 50% of total Canadian output, was analyzed; first, at the plant level, and then by 8 categories at the sub-plant level in order to develop benchmarks that could be applied at both these levels. The paper provides background information on Canada's fluid milk sector and outlines the methodology used to develop and apply energy efficiency measures in the sector; the study findings are also presented. This report found that the energy consumption of the Canadian fluid milk sector could be lowered by applying the energy saving proposals developed herein.

  4. Power plant system assessment. Final report. SP-100 Program

    International Nuclear Information System (INIS)

    Anderson, R.V.; Atkins, D.F.; Bost, D.S.

    1983-01-01

    The purpose of this assessment was to provide system-level insights into 100-kWe-class space reactor electric systems. Using these insights, Rockwell was to select and perform conceptual design studies on a ''most attractive'' system that met the preliminary design goals and requirements of the SP-100 Program. About 4 of the 6 months were used in the selection process. The remaining 2 months were used for the system conceptual design studies. Rockwell completed these studies at the end of FY 1983. This report summarizes the results of the power plant system assessment and describes our choice for the most attractive system - the Rockwell SR-100G System (Space Reactor, 100 kWe, Growth) - a lithium-cooled UN-fueled fast reactor/Brayton turboelectric converter system

  5. Performance of a Grid Connected Photovoltaic Plant

    Directory of Open Access Journals (Sweden)

    Cristian Paul Chioncel

    2009-01-01

    Full Text Available The paper presents an overwiev of the performances of the grid connectedphotovoltaik plant at the University ”Eftimie Murgu��� Resita, Romaniarealised on the monitoriesed wheather and installations datastored in a on-line data base during one year.

  6. Performance evaluations of a geothermal power plant

    International Nuclear Information System (INIS)

    Coskun, C.; Oktay, Z.; Dincer, I.

    2011-01-01

    Thermodynamic analysis of an operational 7.5 MWe binary geothermal power plant in Tuzla-Turkey is performed, through energy and exergy, using actual plant data to assess its energetic and exergetic performances. Eight performance-related parameters, namely total exergy destruction ratio, component exergy destruction ratio, dimensionless exergy destruction, energetic renewability ratio, exergetic renewability ratio, energetic reinjection ratio, exergetic reinjection ratio and improvement potential are investigated. Energy and exergy losses/destructions for the plant and its units are determined and illustrated using energy and exergy flow diagrams. The largest energy and exergy losses occur in brine reinjection unit. The variation of the plant energy efficiency is found between 6% and 12%. Exergy efficiency values change between 35 and 49%. The annual average energy and exergy efficiencies are found as 9.47% and 45.2%, respectively. - Highlights: → Investigation of a geothermal system energetically and exergetically. → Performance assessment of the system through energy and exergy efficiencies. → Utilization of temperature distribution in exergy calculations. → Evaluation of eight energetic and exergetic parameters for the system.

  7. Human performance improvement for nuclear power plants

    International Nuclear Information System (INIS)

    2005-01-01

    The IAEA assists NPP operating organizations to improve plant performance through a focus on human performance improvement in areas like organizational and leadership development, senior management decision making, organization and management of HPI programmes including tools needed for effective HPI implementation, safety culture enhancement, knowledge management, personnel selection and staffing, career development, training and development, work design, scheduling and conditions, procedure and other job-aid development and use, effective communications, human performance monitoring, motivation. Many NPP operating organizations in Member States, are not yet achieving the full potential of their NPP technology/equipment regarding safety, operational or economic performance due to human performance weaknesses. The IAEA's HPI (Human Performance Improvement) services provide a means for these organizations to efficiently and effectively learn from international experts and the experiences of others in improving plant performance through human performance improvements. NPP operating organizations can benefit from these services in a number of ways, including requesting a national project, participating in a regional project, or requesting an assist visit. The types of activities provided through these services include assistance in benchmarking practices of successful organizations, providing information exchange and reviews of current practices through assist missions, conducting workshops on focused human performance topics, evaluating current human performance methods, including assistance in implementing self assessment programmes and providing support to safety culture enhancement programmes based on self-assessment

  8. Waste Treatment Plant LAW Evaporation: Antifoam Performance

    International Nuclear Information System (INIS)

    BAICH, MARKA

    2004-01-01

    This report describes the work performed to determine the performance and fate of several commercial antifoams during evaporation of various simulants of Envelope A, B, and C mixed with simulated River Protection Project Waste Treatment Plant (RPP-WTP) recycle streams. Chemical and radiation stability of selected antifoams was also investigated.Contributors to this effort include: Illinois Institute of Technology (IIT), DOW Corning Analytical, and Savannah River Technology Center (SRTC)

  9. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-06-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  10. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    International Nuclear Information System (INIS)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-01-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  11. Performance management for nuclear power plant operators

    International Nuclear Information System (INIS)

    Fan Pengfei

    2014-01-01

    Fuel was loaded to Unit 3 of the second power plant in May 2010. The Second Operation Division stepped in the operation stage from production preparation and commissioning and exploration of performance management was started. By means of performance evaluation, a closed loop of performance management was formed, staff enthusiasm improved, and potential capability inspired through evaluation, analysis and improvement. The performance evaluation covers attitude, skill, efficiency, performance, teamwork sense, cooperation, etc. Quantitative appraisal was carried out through 31 objective indicators of the working process and results. According to the evaluation results and personal interviews, indicators were modified. Through the performance evaluation, positive guidance is provided to the employees to promote the development of employees, departments and the enterprise. (authors)

  12. Availability Performance Analysis of Thermal Power Plants

    Science.gov (United States)

    Bhangu, Navneet Singh; Singh, Rupinder; Pahuja, G. L.

    2018-03-01

    This case study presents the availability evaluation method of thermal power plants for conducting performance analysis in Indian environment. A generic availability model has been proposed for a maintained system (thermal plants) using reliability block diagrams and fault tree analysis. The availability indices have been evaluated under realistic working environment using inclusion exclusion principle. Four year failure database has been used to compute availability for different combinatory of plant capacity, that is, full working state, reduced capacity or failure state. Availability is found to be very less even at full rated capacity (440 MW) which is not acceptable especially in prevailing energy scenario. One of the probable reason for this may be the difference in the age/health of existing thermal power plants which requires special attention of each unit from case to case basis. The maintenance techniques being used are conventional (50 years old) and improper in context of the modern equipment, which further aggravate the problem of low availability. This study highlights procedure for finding critical plants/units/subsystems and helps in deciding preventive maintenance program.

  13. Sleep and Final Exam Performance in Introductory Physics

    Science.gov (United States)

    Coletta, Vincent; Wikholm, Colin; Pascoe, Daniel

    2018-03-01

    Most physics instructors believe that adequate sleep is important in order for students to perform well on problem solving, and many instructors advise students to get plenty of sleep the night before an exam. After years of giving such advice to students at Loyola Marymount University (LMU), one of us decided to find out how many hours students actually do sleep the night before an exam, and how that would relate to their performance. The effect of inadequate sleep on exam performance was explored in a second-semester introductory physics course. At the end of the final exam, students reported the number of hours they slept the night before. Sleep deprivation corresponded to lower final exam scores. The main purpose of this study is to provide evidence that instructors can provide to their students to convince them that their time is better spent sleeping rather than studying all night before an exam.

  14. Improving chemistry performance in CANDU plants

    International Nuclear Information System (INIS)

    Turner, C.; Guzonas, D.

    2010-01-01

    system to facilitate improved chemistry control and to help staff to proactively identify and address emerging issues before they result in a loss of performance. This paper will outline AECL's chemistry control philosophy, and provide specific examples to illustrate how changes to plant design, materials, operational procedures, and chemistry specifications are being implemented to support improved chemistry performance in existing and new-build CANDU® plants. (author)

  15. Nuclear power plant performance. Status and trends

    International Nuclear Information System (INIS)

    Glorian, D.

    1995-01-01

    The performance of nuclear power plants can be assessed in several different fields: operating costs, safety, reliability of electricity generation, impact on the environment and personnel protection (industrial safety, radiation protection, etc.). Comparing national and international performance levels involves the use of performance indicators, together with a terminology, precise definitions and computerized data collection and processing facilities. The paper gives a brief review of the different actions undertaken during the last ten years to achieve international harmonization in the use of indicators. The main international indicators in use today by virtually all nuclear operators around the world are examined. Figures are given for each of these main indicators. In particularly, the levels of 'excellence' achieved throughout the world are discussed, together with the difficulties encountered in trying to match them or indeed maintain them. Future prospects regarding both the efforts made towards achieving international harmonization and the optimum use of this system of international performance indicators are examined, in order to achieve mutual enhancement through this approach to feedback of experience. Considering the overall performance indicators in use, it must be clearly recognized that, over the last ten years, the nuclear industry has made a tremendous effort to improve performance; the challenge for the future is to maintain a very high level of quality in the area of safety by keeping the operating costs (and investment costs for future plants) within a reasonable range

  16. Corrosion-related failures in power plant condensers. Final report

    International Nuclear Information System (INIS)

    Beavers, J.A.; Agrawal, A.K.; Berry, W.E.

    1980-08-01

    A survey of the literature has been conducted for the Electric Power Research Institute on corrosion failures in surface condensers. The survey was directed toward condenser failures in pressurized water reactor (PWR) power plants but includes pertinent literature related to fossil and to other nuclear power plants. It includes literature on reported service failures and on experimental studies that impact on these failures

  17. Final Report: 17th international Symposium on Plant Lipids

    Energy Technology Data Exchange (ETDEWEB)

    Christoph Benning

    2007-03-07

    This meeting covered several emerging areas in the plant lipid field such as the biosynthesis of cuticle components, interorganelle lipid trafficking, the regulation of lipid homeostasis, and the utilization of algal models. Stimulating new insights were provided not only based on research reports based on plant models, but also due to several excellent talks by experts from the yeast field.

  18. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  19. Performance objectives and criteria for plant evaluations

    International Nuclear Information System (INIS)

    1983-04-01

    Maintenance organization and administration should ensure effective implementation and control of maintenance activities. The criteria are: A. The organizational structure is clearly defined. B. Staffing and resources are sufficient to accomplish assigned tasks. C. Responsibilities and authority of each management, supervisory, and professional position are clearly defined. D. Personnel clearly understand their authority, responsibilities, accountabilities, and interfaces with supporting groups. E. Administrative controls are employed for maintenance activities important to plant safety and reliability. F. Performance appraisals are effectively utilized to enhance individual performance

  20. Preconstruction of the Honey Lake Hybrid Power Plant: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-30

    The work undertaken under this Contract is the prosecution of the preconstruction activities, including preliminary engineering design, well field development, completion of environmental review and prosecution of permits, and the economic and financial analysis of the facility. The proposed power plant is located in northeastern California in Lassen County, approximately 25 miles east of the town of Susanville. The power plant will use a combination of wood residue and geothermal fluids for power generation. The plant, when fully constructed, will generate a combined net output of approximately 33 megawatts which will be sold to Pacific Gas and Electric Company (PGandE) under existing long-term power sales contracts. Transfer of electricity to the PGandE grid will require construction of a 22-mile transmission line from the power plant to Susanville. 11 refs., 12 figs., 4 tabs.

  1. HVAC systems and nuclear plant safety. Final report, May 1992

    International Nuclear Information System (INIS)

    1992-05-01

    The primary objective of this study was to provide perspective on the overall risk impact of heating, ventilating, and air conditioning (HVAC) system problems. Industry experience with HVAC system problems is documented and analyzed. In addition, the results of 10 plant-specific probabilistic risk assessments (PRA) were reviewed to determine the contribution of HVAC systems to the risk of core damage. The PRAs included in this review cover a broad range of plant types and operating conditions. The review found that the impact of HVAC systems on risk is plant specific. These results exhibit a broad range of frequencies for HVAC contribution to risk, and the percentage of total core damage due to HVAC problems also had a wide variability. Plant-specific differences in design, environment, operation, and maintenance are the primary factors in determining the risk contribution of HVAC systems. (author)

  2. Waste Isolation Pilot Plant: Final supplement environmental impact statement

    International Nuclear Information System (INIS)

    1990-01-01

    The purpose of this Supplement Environmental Impact Statement (SEIS) is to update the environmental record established in 1980 by evaluating the environmental impacts associated with new information, new circumstances, and proposal modifications. This SEIS evaluates and compares the Proposed Action and two alternatives. This final SEIS for the WIPP project is a revision of the draft SEIS published in April 1989. It includes responses to the public comments received in writing and at the public hearings and revisions of the draft SEIS in response to the public comments. Revisions of importance have been identified in this final SEIS by vertical lines in the margins to highlight changes made in response to comments. Volumes 1 through 3 of the final SEIS contain the text, appendices, and the summary comments and responses, respectively. Volumes 6 through 13 of the final SEIS contain reproductions of all of the comments received on the draft SEIS, and Volumes 4 and 5 contain the indices to Volumes 6 through 13. An Executive Summary and/or Volumes 1 through 5 of the final SEIS have been distributed to those who received the draft SEIS or requested a copy of the final SEIS. Volume 5 contains indices to public comments

  3. Feasibility design study. Land-based OTEC plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, J. H.; Minor, J.; Jacobs, R.

    1979-01-01

    The purpose of this study has been to determine the feasibility of installing 10 MWe (MegaWatt-electric) and 40 MWe land-based OTEC demonstration power plants at two specific sites: Keahole Point on the western shore of the island of Hawaii; and Punta Tuna, on the southeast coast of the main island of Puerto Rico. In addition, the study has included development of design parameters, schedules and budgets for the design, construction and operation of these plants. Seawater systems (intake and discharge pipes) were to be sized so that flow losses were equivalent to those expected with a platform-based OTEC power plant. The power module (components and general arrangement was established based on the TRW design. Results are presented in detail. (WHK)

  4. Movement of mercury-203 in plants. Final report

    International Nuclear Information System (INIS)

    Gay, D.D.; Butler, G.P.

    1977-10-01

    Seeds of Pisum sativum, varieties Little Marvel and Alaska, were planted in soils contaminated with radioactive ionic mercury, methylmercury or phenylmercury compounds. After saturation, stems, leaves, and pods were harvested and analyzed by gamma spectroscopy. Utilizing a least squares three-way analysis of covariance coupled with a Studentized Range Test, significant differences were noted among the levels of the three mercury compounds in the plants, between mercury levels in the two pea varieties and among mercury levels in the different pea tissues examined. Phenylmercury levels differed consistently from levels of ionic mercury and methylmercury suggesting a separate pathway for it in peas

  5. FINAL IMPLEMENTATION AND PERFORMANCE OF THE LHC COLLIMATOR CONTROL SYSTEM

    CERN Document Server

    Redaelli, S; Masi, A; Losito, R

    2009-01-01

    The 2008 collimation system of the CERN Large Hadron Collider (LHC) included 80 movable collimators for a total of 316 degrees of freedom. Before beam operation, the final controls implementation was deployed and commissioned. The control system enabled remote control and appropriate diagnostics of the relevant parameters. The collimator motion is driven with time-functions, synchronized with other accelerator systems, which allows controlling the collimator jaw positions with a micrometer accuracy during all machine phases. The machine protection functionality of the system, which also relies on function-based tolerance windows, was also fully validated. The collimator control challenges are reviewed and the final system architecture is presented. The results of the remote system commissioning and the overall performance are discussed.

  6. Plant corrosion: prediction of materials performance

    International Nuclear Information System (INIS)

    Strutt, J.E.; Nicholls, J.R.

    1987-01-01

    Seventeen papers have been compiled forming a book on computer-based approaches to corrosion prediction in a wide range of industrial sectors, including the chemical, petrochemical and power generation industries. Two papers have been selected and indexed separately. The first describes a system operating within BNFL's Reprocessing Division to predict materials performance in corrosive conditions to aid future plant design. The second describes the truncation of the distribution function of pit depths during high temperature oxidation of a 20Cr austenitic steel in the fuel cladding in AGR systems. (U.K.)

  7. Delays in nuclear power plant construction. Volume II. Final report

    International Nuclear Information System (INIS)

    Mason, G.E.; Larew, R.E.; Borcherding, J.D.; Okes, S.R. Jr.; Rad, P.F.

    1977-01-01

    The report identifies barriers to shortening nuclear power plant construction schedules and recommends research efforts which should minimize or eliminate the identified barriers. The identified barriers include (1) Design and Construction Interfacing Problems; (2) Problems Relating to the Selection and Use of Permanent Materials and Construction Methods; (3) Construction Coordination and Communication Problems; and (4) Problems Associated with Manpower Availability and Productivity

  8. Hydrocarbons and energy from plants: Final report, 1984-1987

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, M.; Otvos, J.; Taylor, S.E.; Nemethy, E.K.; Skrukrud, C.L.; Hawkins, D.R.; Lago, R.

    1988-08-01

    Plant hydrocarbon (isoprenoid) production was investigated as an alternative source to fossil fuels. Because of their high triterpenoid (hydrocarbon) content of 4--8%, Euphorbia lathyris plants were used as a model system for this study. The structure of the E. lathyris triterpenoids was determined, and triterpenoid biosynthesis studied to better understand the metabolic regulation of isoprenoid production. Triterpenoid biosynthesis occurs in two distinct tissue types in E. lathyris plants: in the latex of the laticifer cells; and in the mesophyll cells of the leaf and stem. The latex has been fractionated by centrifugation, and it has been determined that the later steps of isoprenoid biosynthesis, the conversion of mevalonic acid to the triterpenes, are compartmentized within a vacuole. Also identified was the conversion of hydroxymethyl glutaryl-CoA to mevalonic acid, catalyzed by the enzyme Hydroxymethyl glutaryl-CoA Reductase, as a key rate limiting step in isoprenoid biosynthesis. At least two isozymes of this enzyme, one in the latex and another in the leaf plastids, have been identified. Environmental stress has been applied to plants to study changes in carbon allocation. Salinity stress caused a large decrease in growth, smaller decreases in photosynthesis, resulting in a larger allocation of carbon to both hydrocarbon and sugar production. An increase in Hydroxymethyl glutaryl-CoA Reductase activity was also observed when isoprenoid production increased. Other species where also screened for the production of hydrogen rich products such as isoprenoids and glycerides, and their hydrocarbon composition was determined.

  9. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    Volume 1 is comprised of chapters on: background and description; environmental impacts of add-on gaseous diffusion plant; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long-term productivity; relationship of program to land-use plans, policies, and controls; irreversible and irretrievable commitments of resources; cost-benefit analysis; and response to comment letters. (LK)

  10. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 1

    International Nuclear Information System (INIS)

    1977-09-01

    Volume 1 is comprised of chapters on: background and description; environmental impacts of add-on gaseous diffusion plant; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long-term productivity; relationship of program to land-use plans, policies, and controls; irreversible and irretrievable commitments of resources; cost-benefit analysis; and response to comment letters

  11. Delays in nuclear power plant construction. Volume I. Final report

    International Nuclear Information System (INIS)

    1977-01-01

    The report identifies barriers to shortening nuclear power plant construction schedules and recommends research efforts which should minimize or eliminate the identified barriers. The identified barriers include: (1) Design and Construction Interfacing Problems; (2) Problems Relating to the Selection and Use of Permanent Materials and Construction Methods; (3) Construction Coordination and Communication Problems; and (4) Problems Associated with Manpower Availability and Productivity

  12. Improved electrical efficiency and bottom ash quality on waste combustion plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Peter A.; Nesterov, I.; Boejer, M.; Hyks, J.; Astrup, T.; Kloeft, H.; Dam-Johansen, K.; Lundtorp, K.; Hedegaard Madsen, O.; Frandsen, F. (Technical Univ. of Denmark, Kgs. Lyngby (Denmark)); Mogensen, Erhardt (Babcock and Wilcox Voelund A/S, Glostrup (Denmark))

    2010-07-01

    Investigations making it possible to evaluate and further develop concepts to improve electrical efficiency in a waste combustion plant were performed. Furthermore, one objective of the study was to investigate the possibilities of improving waste bottom ash leaching properties by use of a rotary kiln treatment. The project work included construction of a bench-scale rotary kiln, performing ash rotary kiln treatment experiments, conducting gas suction probe measurements on a waste incineration plant and making some concept evaluations. The influence of the rotary kiln thermal treatment on the leaching of Ca, Al, Si, Mg, Ba, Sr, Cl, Cu, Pb, Zn, Cr, Mo, sulfate, DOC and carbonate was determined. As a result of these tests, the rotary kiln thermal treatment of bottom ashes can be recommended for reducing the leaching of Cu, Pb, Cl, Zn and DOC; however, an increased leaching of Cr and Mo should be expected. The combustion conditions above the grate of a waste incineration plant were investigated and the release and concentration of volatile ash species in the flue gas such as Cl, Na, K, Ca, Pb, Zn and S were measured. The conducted measurements show that flue gas from grate sections 3 and 4 can produce a sufficiently hot flue gas that contains only low concentrations of corrosive species, and therefore can be used to increase superheater temperatures. Implementation of the so-called flue gas split concept together with other steam circle modifications on a waste combustion plant, and using a reasonable increase in final steam temperature from 400 to 500 deg. C, have the potential to increase electrical efficiency from 24 to 30% (with respect to lower fuel heating value) in a waste combustion plant. (Author)

  13. 4D Dynamic Required Navigation Performance Final Report

    Science.gov (United States)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  14. French Modular Impoundment: Final Cost and Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Drown, Peter [French Development Enterprises, LLC, North Billerica, MA (United States); French, Bill [French Development Enterprises, LLC, North Billerica, MA (United States)

    2017-05-17

    This report comprises the Final Cost and Performance Report for the Department of Energy Award # EE0007244, the French Modular Impoundment (aka the “French Dam”.) The French Dam is a system of applying precast modular construction to water control structures. The “French Dam” is a term used to cover the construction means/methods used to construct or rehabilitate dams, diversion structures, powerhouses, and other hydraulic structures which impound water and are covered under FDE’s existing IP (Patents # US8414223B2; US9103084B2.)

  15. B-Plant Canyon Ventilation Control System Description; FINAL

    International Nuclear Information System (INIS)

    MCDANIEL, K.S.

    1999-01-01

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms

  16. Methodology and application of surrogate plant PRA analysis to the Rancho Seco Power Plant: Final report

    International Nuclear Information System (INIS)

    Gore, B.F.; Huenefeld, J.C.

    1987-07-01

    This report presents the development and the first application of generic probabilistic risk assessment (PRA) information for identifying systems and components important to public risk at nuclear power plants lacking plant-specific PRAs. A methodology is presented for using the results of PRAs for similar (surrogate) plants, along with plant-specific information about the plant of interest and the surrogate plants, to infer important failure modes for systems of the plant of interest. This methodology, and the rationale on which it is based, is presented in the context of its application to the Rancho Seco plant. The Rancho Seco plant has been analyzed using PRA information from two surrogate plants. This analysis has been used to guide development of considerable plant-specific information about Rancho Seco systems and components important to minimizing public risk, which is also presented herein

  17. Variation in plant defense suppresses herbivore performance

    Science.gov (United States)

    Pearse, Ian; Paul, Ryan; Ode, Paul J.

    2018-01-01

    Defensive variability of crops and natural systems can alter herbivore communities and reduce herbivory. However, it is still unknown how defense variability translates into herbivore suppression. Nonlinear averaging and constraints in physiological tracking (also more generally called time-dependent effects) are the two mechanisms by which defense variability might impact herbivores. We conducted a set of experiments manipulating the mean and variability of a plant defense, showing that defense variability does suppress herbivore performance and that it does so through physiological tracking effects that cannot be explained by nonlinear averaging. While nonlinear averaging predicted higher or the same herbivore performance on a variable defense than on an invariable defense, we show that variability actually decreased herbivore performance and population growth rate. Defense variability reduces herbivore performance in a way that is more than the average of its parts. This is consistent with constraints in physiological matching of detoxification systems for herbivores experiencing variable toxin levels in their diet and represents a more generalizable way of understanding the impacts of variability on herbivory. Increasing defense variability in croplands at a scale encountered by individual herbivores can suppress herbivory, even if that is not anticipated by nonlinear averaging.

  18. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Drake [Abengoa Solar LLC, Lakewood, CO (United States); Kelly, Bruce [Abengoa Solar LLC, Lakewood, CO (United States); Burkholder, Frank [Abengoa Solar LLC, Lakewood, CO (United States)

    2014-12-12

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler

  19. Team performance measures for abnormal plant operations

    International Nuclear Information System (INIS)

    Montgomery, J.C.; Seaver, D.A.; Holmes, C.W.; Gaddy, C.D.; Toquam, J.L.

    1990-01-01

    In order to work effectively, control room crews need to possess well-developed team skills. Extensive research supports the notion that improved quality and effectiveness are possible when a group works together, rather than as individuals. The Nuclear Regulatory Commission (NRC) has recognized the role of team performance in plant safety and has attempted to evaluate licensee performance as part of audits, inspections, and reviews. However, reliable and valid criteria for team performance have not yet been adequately developed. The purpose of the present research was to develop such reliable and valid measures of team skills. Seven dimensions of team skill performance were developed on the basis of input from NRC operator licensing examiners and from the results of previous research and experience in the area. These dimensions included two-way communications, resource management, inquiry, advocacy, conflict resolution/decision-making, stress management, and team spirit. Several different types of rating formats were developed for use with these dimensions, including a modified Behaviorally Anchored Rating Scale (BARS) format and a Behavioral Frequency format. Following pilot-testing and revision, observer and control room crew ratings of team performance were obtained using 14 control room crews responding to simulator scenarios at a BWR and a PWR reactor. It is concluded, overall, that the Behavioral Frequency ratings appeared quite promising as a measure of team skills but that additional statistical analyses and other follow-up research are needed to refine several of the team skills dimensions and to make the scales fully functional in an applied setting

  20. Radiation effects on organic materials in nuclear plants. Final report

    International Nuclear Information System (INIS)

    Bruce, M.B.; Davis, M.V.

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10 4 rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10 5 rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects

  1. Trimode optimizes hybrid power plants. Final report: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    O`Sullivan, G.A.; O`Sullivan, J.A. [Abacus Controls, Inc., Somerville, NJ (United States)

    1998-07-01

    In the Phase 2 project, Abacus Controls Inc. did research and development of hybrid systems that combine the energy sources from photovoltaics, batteries, and diesel-generators and demonstrated that they are economically feasible for small power plants in many parts of the world. The Trimode Power Processor reduces the fuel consumption of the diesel-generator to its minimum by presenting itself as the perfect electrical load to the generator. A 30-kW three-phase unit was tested at Sandia National Laboratories to prove its worthiness in actual field conditions. The use of photovoltaics at remote locations where reliability of supply requires a diesel-generator will lower costs to operate by reducing the run time of the diesel generator. The numerous benefits include longer times between maintenance for the diesel engine and better power quality from the generator. 32 figs.

  2. Manufacturing plant performance evaluation by discrete event simulation

    International Nuclear Information System (INIS)

    Rosli Darmawan; Mohd Rasid Osman; Rosnah Mohd Yusuff; Napsiah Ismail; Zulkiflie Leman

    2002-01-01

    A case study was conducted to evaluate the performance of a manufacturing plant using discrete event simulation technique. The study was carried out on animal feed production plant. Sterifeed plant at Malaysian Institute for Nuclear Technology Research (MINT), Selangor, Malaysia. The plant was modelled base on the actual manufacturing activities recorded by the operators. The simulation was carried out using a discrete event simulation software. The model was validated by comparing the simulation results with the actual operational data of the plant. The simulation results show some weaknesses with the current plant design and proposals were made to improve the plant performance. (Author)

  3. 30 CFR 827.12 - Coal preparation plants: Performance standards.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal preparation plants: Performance standards...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.12 Coal preparation plants..., modification, reclamation, and removal activities at coal preparation plants shall comply with the following...

  4. Funding nuclear-power-plant decommissioning. Final report

    International Nuclear Information System (INIS)

    Burns, R.E.; Henderson, J.S.; Pollard, W.; Pryor, T.; Chen, Y.M.

    1982-10-01

    The report is organized according to the steps that one might go through when analyzing funding of decommissioning costs. The first step in analyzing decommissioning costs might be to review the present regulatory framework within which decommissioning cost decisions must be made. A description is presented of the present NRC regulations that address the decommissioning of a nuclear power plant. A description is also presented of recent public utility commission activities concerning funding the costs of decommissioning. Possible future trends in NRC regulation are also discussed. The estimation of decommmissioning costs is analyzed. A description of each of the possible decommissoining options is presented. The options of decommissioning include immediate dismantlement, various types of safe storage, and entombment. A discussion is presented of cost estimations for each decommissioning option for nuclear units containing pressurized water reactors and boiling water reactors. A description is included of the various methods of collecting funds for decommissioning as well as a discussion of their possible regulatory treatment. Material is presented which will provide the reader with background information that might assist state utility commissioners or their staffs in choosing or evaluating one of the financial mechanisms for covering decommissioning costs

  5. Development of High-Performance Cast Crankshafts. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Mark E [General Motors, Detroit, MI (United States)

    2017-03-31

    The objective of this project was to develop technologies that would enable the production of cast crankshafts that can replace high performance forged steel crankshafts. To achieve this, the Ultimate Tensile Strength (UTS) of the new material needs to be 850 MPa with a desired minimum Yield Strength (YS; 0.2% offset) of 615 MPa and at least 10% elongation. Perhaps more challenging, the cast material needs to be able to achieve sufficient local fatigue properties to satisfy the durability requirements in today’s high performance gasoline and diesel engine applications. The project team focused on the development of cast steel alloys for application in crankshafts to take advantage of the higher stiffness over other potential material choices. The material and process developed should be able to produce high-performance crankshafts at no more than 110% of the cost of current production cast units, perhaps the most difficult objective to achieve. To minimize costs, the primary alloy design strategy was to design compositions that can achieve the required properties with minimal alloying and post-casting heat treatments. An Integrated Computational Materials Engineering (ICME) based approach was utilized, rather than relying only on traditional trial-and-error methods, which has been proven to accelerate alloy development time. Prototype melt chemistries designed using ICME were cast as test specimens and characterized iteratively to develop an alloy design within a stage-gate process. Standard characterization and material testing was done to validate the alloy performance against design targets and provide feedback to material design and manufacturing process models. Finally, the project called for Caterpillar and General Motors (GM) to develop optimized crankshaft designs using the final material and manufacturing processing path developed. A multi-disciplinary effort was to integrate finite element analyses by engine designers and geometry-specific casting

  6. Final environmental impact statement. Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text

  7. Final environmental impact statement. Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

  8. BACA Project: geothermal demonstration power plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-12-01

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

  9. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  10. Plutonium Finishing Plant (PFP) HVAC System Component Index; FINAL

    International Nuclear Information System (INIS)

    DICK, J.D.

    1999-01-01

    This document identities the components, design media, procedures and defines the critical characteristics of Commercial Grade Items necessary to ensure the HVAC system provides these functions. This document lists safety class (SC) and safety significant (SS) components for the Heating Ventilation Air Conditioning (HVAC) and specifies the critical characteristics for Commercial Grade Items (CGI), as required by HNF-PRO-268 and HNF-PRO-1819. These are the minimum specifications that the equipment must meet in order to properly perform its safety function. There may be several manufacturers or models that meet the critical characteristics for any one item

  11. Intergrated plant safety assessment. Systematic evaluation program. Palisades plant, Consumers Power Company, Docket No. 50-255. Final report

    International Nuclear Information System (INIS)

    1982-10-01

    The Nuclear Regulatory Commission (NRC) has published its Final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0820), under the scope of the Systematic Evaluation Program (SEP), for Consumers Power Company's Palisades Plant located in Covert, Van Buren County, Michigan. The SEP was initiated by the NRC to review the design of older operating nuclear reactor plants to reconfirm and document their safety. This report documents the review completed under the SEP for the Palisades Plant. The review has provided for (1) as assessment of the significance of differences between current technical positions on selected safety issues and those that existed when the Palisades Plant was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety when all supplements to the Final IPSAR and the Safety Evaluation Report for converting the license from a provisional to a full-term license have been issued. The report also addresses the comments and recommendations made by the Advisory Committee on Reactor Safeguards in connection with its review of the Draft Report, issued in April 1982

  12. Handbook for nuclear power plant self-assessment programs. Final report, July 1991

    International Nuclear Information System (INIS)

    1991-07-01

    EPRI has prepared this handbook to help utilities with their Self-Assessment Programs at nuclear power plants. Self-assessments are independent reviews performed by nuclear plant utilities to identify trends in operational activities that are important to safety, and to assess the impact of these trends on plant safety. Activities performed as self-assessments include reviews and evaluations of plant performance and abnormal events, technical evaluations of plant activities to identify potential problem areas, and reviews of other sources of plant design and operating experience for applicability to safety. This handbook is based on information obtained from utilities and includes examples of activities and methods that have proven effective. The handbook includes a summary of NRC requirements, guidelines for self-assessment program planning, descriptions and examples of investigative techniques, and key references that can be consulted for additional information. It can serve as a training guide for plant staff members who are assigned to self-assessment activities. (author)

  13. Engineering evaluation of selective ion-exchange radioactive waste processing at Susquehanna Nuclear Power Plant: Final report

    International Nuclear Information System (INIS)

    Vance, J.N.

    1989-01-01

    This final report describes the work performed of an engineering feasibility evaluation of the use and benefits of a selective ion exchange treatment process in the Susquehanna radwaste system. The evaluation addressed operability and processing capability concerns, radiological impacts of operating in the radwaste discharge mode, required hardware modifications to the radwaste and plant make-up systems, impacts on plant water quality limits and impacts on higher waste classifications. An economic analysis is also reported showing the economic benefit of the use of selective ion exchange. 1 ref., 4 figs., 13 tabs

  14. Performance of Generating Plant: Managing the Changes. Executive Summary and Table of Contents

    Energy Technology Data Exchange (ETDEWEB)

    Curley, G. Michael [North American Electric Reliability Corporation (United States); Mandula, Jiri [International Atomic Energy Agency (IAEA)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This document serves as a supporting paper. Sections include: features of Italian energy and electricity; the evolution of liberalisation; support mechanism for renewables; connection to wind farm transmission network; wind source integration into power system; and, final comments. The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 1 (WG1). WG1's primary focus is to analyse the best ways to measure, evaluate, and apply power plant performance and availability data to promote plant performance improvements worldwide. The paper explores the specific work activities of 2004-2007 to extend traditional analysis and benchmarking frameworks. It is divided into two major topics: Overview of current electric supply industry issues/trends; and, Technical Methods/Tools to evaluate performance in today's ESI.

  15. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values

  16. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, B.M.

    1997-08-01

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.

  17. Raft River binary-cycle geothermal pilot power plant final report

    Energy Technology Data Exchange (ETDEWEB)

    Bliem, C.J.; Walrath, L.F.

    1983-04-01

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  18. The Waste Isolation Pilot Plant Performance Assessment Program

    International Nuclear Information System (INIS)

    Myers, J.; Coons, W.E.; Eastmond, R.; Morse, J.; Chakrabarti, S.; Zurkoff, J.; Colton, I.D.; Banz, I.

    1986-01-01

    The Waste Isolation Pilot Plant (WIPP) Performance Assessment Program involves a comprehensive analysis of the WIPP project with respect to the recently finalized Environmental Protection Agency regulations regarding the long-term geologic isolation of radioactive wastes. The performance assessment brings together the results of site characterization, underground experimental, and environmental studies into a rigorous determination of the performance of WIPP as a disposal system for transuranic radioactive waste. The Program consists of scenario development, geochemical, hydrologic, and thermomechanical support analyses and will address the specific containment and individual protection requirements specified in 40 CFR 191 sub-part B. Calculated releases from these interrelated analyses will be reported as an overall probability distribution of cumulative release resulting from all processes and events occurring over the 10,000 year post-closure period. In addition, results will include any doses to the public resulting from natural processes occurring over the 1,000 year post-closure period. The overall plan for the WIPP Performance Assessment Program is presented along with approaches to issues specific to the WIPP project

  19. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  20. Thermal performance analysis of a solar heating plant

    DEFF Research Database (Denmark)

    Fan, Jianhua; Huang, Junpeng; Andersen, Ola Lie

    was developed to calculate thermal performances of the plant. In the Trnsys model, three solar collector fields with a total solar collector area of 33,300 m2, a seasonal water pit heat storage of 75,000 m3, a simplified CO2 HP, a simplified ORC unit and a simplified wood chip boiler were included. The energy......Detailed measurements were carried out on a large scale solar heating plant located in southern Denmark in order to evaluate thermal performances of the plant. Based on the measurements, energy flows of the plant were evaluated. A modified Trnsys model of the Marstal solar heating plant...... consumption of the district heating net was modeled by volume flow rate and given forward and return temperatures of the district heating net. Weather data from a weather station at the site of the plant were used in the calculations. The Trnsys calculated yearly thermal performance of the solar heating plant...

  1. Integrated plant safety assessment. Systematic evaluation program, Big Rock Point Plant (Docket No. 50-155). Final report

    International Nuclear Information System (INIS)

    1984-05-01

    The Systematic Evaluation Program was initiated in February 1977 by the U.S. Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety when the supplement to the Final Integrated Plant Safety Assessment Report has been issued. This report documents the review of the Big Rock Point Plant, which is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. It also addresses a majority of the pending licensing actions for Big Rock Point, which include TMI Action Plan requirements and implementation criteria for resolved generic issues. Equipment and procedural changes have been identified as a result of the review

  2. The performance of nuclear power plants

    International Nuclear Information System (INIS)

    1989-07-01

    A survey is presented of failures in the Dutch nuclear power plants Borssele (10) and Dodewaard (5) reported during the year 1988. This reporting takes place, since 1987, on the basis of the international failure-reporting system. This system is based on the 'Incident Reporting System' of the IAEA. During 1988 no failures did occur which made particular safety measurements necessary. Also these failures did not have any consequence for the environment. During all failures the reactor safety system of both power plants did operate well. (H.W.)

  3. Pecan Street Grid Demonstration Program. Final technology performance report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-10

    This document represents the final Regional Demonstration Project Technical Performance Report (TPR) for Pecan Street Inc.’s (Pecan Street) Smart Grid Demonstration Program, DE-OE-0000219. Pecan Street is a 501(c)(3) smart grid/clean energy research and development organization headquartered at The University of Texas at Austin (UT). Pecan Street worked in collaboration with Austin Energy, UT, Environmental Defense Fund (EDF), the City of Austin, the Austin Chamber of Commerce and selected consultants, contractors, and vendors to take a more detailed look at the energy load of residential and small commercial properties while the power industry is undergoing modernization. The Pecan Street Smart Grid Demonstration Program signed-up over 1,000 participants who are sharing their home or businesses’s electricity consumption data with the project via green button protocols, smart meters, and/or a home energy monitoring system (HEMS). Pecan Street completed the installation of HEMS in 750 homes and 25 commercial properties. The program provided incentives to increase the installed base of roof-top solar photovoltaic (PV) systems, plug-in electric vehicles with Level 2 charging, and smart appliances. Over 200 participants within a one square mile area took advantage of Austin Energy and Pecan Street’s joint PV incentive program and installed roof-top PV as part of this project. Of these homes, 69 purchased or leased an electric vehicle through Pecan Street’s PV rebate program and received a Level 2 charger from Pecan Street. Pecan Street studied the impacts of these technologies along with a variety of consumer behavior interventions, including pricing models, real-time feedback on energy use, incentive programs, and messaging, as well as the corresponding impacts on Austin Energy’s distribution assets.The primary demonstration site was the Mueller community in Austin, Texas. The Mueller development, located less than three miles from the Texas State Capitol

  4. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    Energy Technology Data Exchange (ETDEWEB)

    ULLAH, M K

    2001-02-26

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  5. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Science.gov (United States)

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  6. Human Performance at the Perry Nuclear Power Plant

    International Nuclear Information System (INIS)

    Rabe, Alan W.

    1998-01-01

    Provides a description of human performance training for plant workers as implemented at the Perry Nuclear Power Plant. Practical concepts regarding the training are presented as well as a demonstration of some of the training material. Concepts are drawn from INPO, Reason and Deming. The paper encourages the use of site-wide and individual organizational unit training in human performance management techniques. (author)

  7. The Workplace Literacy System Project (WLS). Final Performance Report.

    Science.gov (United States)

    Poulton, Bruce R.

    The Workplace Literacy System Project (WLS) prepared interactive CD-ROM discs containing about 50 hours of instruction and drill in basic skills presented within the context of the textile/apparel manufacturing industry. The project was conducted at a Sara Lee knit products plant in North Carolina. During the project, literacy task analyses were…

  8. Reliability of magnetic particle inspection performed through coatings: Final report

    International Nuclear Information System (INIS)

    1988-07-01

    The magnetic particle examination (MT) technique can reliably examine containment welds without removing their protective coatings. This study has investigated a variety of MT methods used in the oil and gas industry for their suitability for nuclear plant applications. 102 figs

  9. Using a plant health system framework to assess plant clinic performance in Uganda

    DEFF Research Database (Denmark)

    Danielsen, Solveig; Matsiko, Frank B.

    2016-01-01

    and expand, new analytical frameworks and tools are needed to identify factors influencing performance of services and systems in specific contexts, and to guide interventions. In this paper we apply a plant health system framework to assess plant clinic performance, using Uganda as a case study...... factors, influenced by basic operational and financial concerns, inter-institutional relations and public sector policies. Overall, there was a fairly close match between the plant health system attributes and plant clinic performance, suggesting that the framework can help explain system functioning....... A comparative study of plant clinics was carried out between July 2010 and September 2011 in the 12 districts where plant clinics were operating at that time. The framework enabled us to organise multiple issues and identify key features that affected the plant clinics. Clinic performance was, among other...

  10. Thermal performance of solar district heating plants in Denmark

    DEFF Research Database (Denmark)

    Furbo, Simon; Perers, Bengt; Bava, Federico

    2014-01-01

    The market for solar heating plants connected to district heating systems is expanding rapidly in Denmark. It is expected that by the end of 2014 the 10 largest solar heating plants in Europe will be located in Denmark. Measurements from 23 Danish solar heating plants, all based on flat plate solar...... collectors mounted on the ground, shows measured yearly thermal performances of the solar heating plants placed in the interval from 313 kWh/m² collector to 493 kWh/m² collector with averages for all plants of 411 kWh/m² collector for 2012 and 450 kWh/m² collector for 2013. Theoretical calculations show...... of the cost/performance ratio for solar collector fields, both with flat plate collectors and with concentrating tracking solar collectors. It is recommended to continue monitoring and analysis of all large solar heating plants to document the reliability of the solar heating plants. It is also recommended...

  11. Course Syllabi and Their Effects on Students' Final Grade Performance.

    Science.gov (United States)

    Serafin, Ana Gil

    This study examined the relationship between the changes introduced in a course syllabus for a course titled "Instructional Strategies" and the final grades obtained by freshman and sophomore students in three successive academic periods. A sample of 150 subjects was randomly selected from students enrolled in the course at the…

  12. Utility experience using THERMAC for plant thermal performance analysis

    International Nuclear Information System (INIS)

    Jain, P.K.; Doran, K.J.

    1993-01-01

    THERMAC is a state-of-the-art software package designed to assist those responsible for monitoring and evaluating the thermal performance of fossil and nuclear power plants. It is an integrated program, available on PCs and selected workstations, that combines strong analytical capabilities with a graphical user interface and object-oriented database. The software accurately analyses all of the components of a power plant from first principles. The graphical user interface is employed to build plant specific models; it can also be used to create custom screen displays. THERMAC is able to read plant measurements and statistically account for any missing or erroneous plant data; it does not require any additional plant instrumentation. THERMAC can be used to archive historical data, generate customized trending plots and periodic performance reports. open-quotes What-if close-quote studies can be conducted to predict the impact of corrective actions on thermal performance

  13. Rocky Flats Plant site, Golden, Jefferson County, Colorado. Final environmental impact statement (final statement to ERDA 1545-D)

    International Nuclear Information System (INIS)

    1980-04-01

    This final Environmental Impact Statement (FEIS) incorporates a number of changes as a result of the comments and suggestions received on the Draft Environmental Impact Statement. The major additions and revisions of this first of the three-volume statement are discussed. Chapter titles are: summary; background; environmental impacts; unavoidable adverse environmental effects; alternatives; relationship between short-term uses and long-term productivity; relationship to land-use plans; irreversible and irretrievable commitments of resources; and, environmental trade-off analysis. Chapter 2 includes updated information on seismic stability of the area and seismic design criteria are presented. A mechanism for dissemination of the data from seismic studies in progress is specified. The Plant's personnel protection program with respect to nonradioactive materials, Plant security systems, and the emergency plans of the Plant and the State of Colorado are discussed in greater detail. Material on the environmental monitoring program was updated to reflect current monitoring and measuring conditions. Discussions of various soil sampling methods, plutonium background levels in soil, and plutonium soil standards, are presented. The dose calculations in Chapter 3 were extended to include comparisons of organ doses to natural background organ doses as well as the dose to the whole body. Doses to women and children are considered by exposure pathway as well as those for Standard Man. All credible accident scenarios were reviewed and details updated. A comprehensive discussion of genetic and health effects is presented in Appendices G-2 through G-4. Chapter 5 was revised to reflect the effort and cost involved in decontaminating soil, both on-site and offsite, relative to various decontamination criteria which might be employed

  14. Evaluating and improving nuclear power plant operating performance

    International Nuclear Information System (INIS)

    1999-07-01

    This report aims to provide the basis for improvements in the understanding of nuclear power plants operation and ideas for improving future productivity. The purpose of the project was to identify good practices of operating performance at a few of the world's most productive plants. This report was prepared through a series of consultants meetings, a specialists meeting and an Advisory Group meeting with participation of experts from 23 Member States. The report is based on self-assessment of half a dozen plants that have been chosen as representatives of different reactor types in as many different countries, and the views and assessment of the participants on good practices influencing plant performance. Three main areas that influence nuclear power plant availability and reliability were identified in the discussions: (1) management practices, (2) personnel characteristics, and (3) working practices. These areas cover causes influencing plant performance under plant management control. In each area the report describes factors or good practices that positively influence plant availability. The case studies, presented in annexes, contain the plant self-assessment of areas that influence their availability and reliability. Six plants are represented in the case studies: (1) Dukovany (WWER, 1760 MW) in the Czech Republic; (2) Blayais (PWR, 3640 MW) in France; (3) Paks (WWER, 1840 MW) in Hungary; (4) Wolsong 1 (PHWR, 600 MW) in the Republic of Korea; (5) Trillo 1 (PWR, 1066 MW) in Spain; and (6) Limerick (BWR, 2220 MW) in the United States of America

  15. Evaluating and improving nuclear power plant operating performance

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This report aims to provide the basis for improvements in the understanding of nuclear power plants operation and ideas for improving future productivity. The purpose of the project was to identify good practices of operating performance at a few of the world`s most productive plants. This report was prepared through a series of consultants meetings, a specialists meeting and an Advisory Group meeting with participation of experts from 23 Member States. The report is based on self-assessment of half a dozen plants that have been chosen as representatives of different reactor types in as many different countries, and the views and assessment of the participants on good practices influencing plant performance. Three main areas that influence nuclear power plant availability and reliability were identified in the discussions: (1) management practices, (2) personnel characteristics, and (3) working practices. These areas cover causes influencing plant performance under plant management control. In each area the report describes factors or good practices that positively influence plant availability. The case studies, presented in annexes, contain the plant self-assessment of areas that influence their availability and reliability. Six plants are represented in the case studies: (1) Dukovany (WWER, 1760 MW) in the Czech Republic; (2) Blayais (PWR, 3640 MW) in France; (3) Paks (WWER, 1840 MW) in Hungary; (4) Wolsong 1 (PHWR, 600 MW) in the Republic of Korea; (5) Trillo 1 (PWR, 1066 MW) in Spain; and (6) Limerick (BWR, 2220 MW) in the United States of America Figs, tabs

  16. An empirical analysis of nuclear power plant organization and its effect on safety performance

    International Nuclear Information System (INIS)

    Thurber, J.A.

    1985-01-01

    The paper documents work performed on three tasks. The first task concerned the creation of measures of organizational structure. An earlier review of the literature supported the position that organizational structure (e.g., the way the work of the organization is divided, administered, and coordinated) is a likely determinant of plant safety performance. While data were not available on some salient dimensions of organizational structure, Final Safety Analysis Reports (FSARs), Technical Specifications, and a survey of plant technical resources allowed for measurement on three primary dimensions. These are the vertical structure of the plant (e.g., the number of ranks and the ratio of supervisors to subordinates), the horizontal structure of the plant (e.g., the way the organization is divided into administrative and work units), and the coordinative structure of the plant (e.g., the ways that work units are linked)

  17. Comparative assessment of PV plant performance models considering climate effects

    DEFF Research Database (Denmark)

    Tina, Giuseppe; Ventura, Cristina; Sera, Dezso

    2017-01-01

    . The methodological approach is based on comparative tests of the analyzed models applied to two PV plants installed respectively in north of Denmark (Aalborg) and in the south of Italy (Agrigento). The different ambient, operating and installation conditions allow to understand how these factors impact the precision...... the performance of the studied PV plants with others, the efficiency of the systems has been estimated by both conventional Performance Ratio and Corrected Performance Ratio...

  18. Performance analysis and optimization of power plants with gas turbines

    Science.gov (United States)

    Besharati-Givi, Maryam

    The gas turbine is one of the most important applications for power generation. The purpose of this research is performance analysis and optimization of power plants by using different design systems at different operation conditions. In this research, accurate efficiency calculation and finding optimum values of efficiency for design of chiller inlet cooling and blade cooled gas turbine are investigated. This research shows how it is possible to find the optimum design for different operation conditions, like ambient temperature, relative humidity, turbine inlet temperature, and compressor pressure ratio. The simulated designs include the chiller, with varied COP and fogging cooling for a compressor. In addition, the overall thermal efficiency is improved by adding some design systems like reheat and regenerative heating. The other goal of this research focuses on the blade-cooled gas turbine for higher turbine inlet temperature, and consequently, higher efficiency. New film cooling equations, along with changing film cooling effectiveness for optimum cooling air requirement at the first-stage blades, and an internal and trailing edge cooling for the second stage, are innovated for optimal efficiency calculation. This research sets the groundwork for using the optimum value of efficiency calculation, while using inlet cooling and blade cooling designs. In the final step, the designed systems in the gas cycles are combined with a steam cycle for performance improvement.

  19. Using international experience to improve performance of nuclear power plants

    International Nuclear Information System (INIS)

    Calori, F.; Csik, B.J.; Strickert, R.J.

    1989-01-01

    Information on performance achievements will assist nuclear power plant operating organizations to develop initiatives for improved or continued high performance of their plants. The paper describes the activities of the IAEA in reviewing and analysing the reasons for good performance by contacting operating organizations identified by its Power Reactor Information System as showing continued good performance. Discussions with operations personnel of utilities have indicated practices which have a major positive impact on good performance and which are generally common to all well performing organizations contacted. The IAEA also promotes further activities directed primarily to the achievement of standards of excellence in nuclear power operation. These are briefly commented

  20. Heat pumps for geothermal applications: availability and performance. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.; Means, P.

    1980-05-01

    A study of the performance and availability of water-source heat pumps was carried out. The primary purposes were to obtain the necessary basic information required for proper evaluation of the role of water-source heat pumps in geothermal energy utilization and/or to identify the research needed to provide this information. The Search of Relevant Literature considers the historical background, applications, achieved and projected performance evaluations and performance improvement techniques. The commercial water-source heat pump industry is considered in regard to both the present and projected availability and performance of units. Performance evaluations are made for units that use standard components but are redesigned for use in geothermal heating.

  1. Final design and performance of in situ testing in Grimsel

    International Nuclear Information System (INIS)

    Fuentes-Cantillana, J.L.; Garcia-SiNeriz, J.L.

    1998-01-01

    This report is focused on the design, engineering, and construction aspects of the in situ test carried out at the Grimsel underground laboratory in Switzerland. This reproduces the AGP-granite concept of ENRESA for HLW repositories in crystalline rock. Two heaters, similar in dimensions and weight to the canisters in the reference concept, have been placed in a horizontal drift with a 2.28-m diameter, a total test length of 17.4 m, and backfilled with a total of 115.7 † of highly-compacted bentonite blocks. The backfilled area has been closed with a concrete plug which is 2.7 m thick. More than 600 sensors have been installed in the test to monitor different parameters such as temperature, pressures, humidity, etc., within both the buffer material and the host rock. The installation was completed and commissioned in February 1997, and then the heating phase, which will last for at least 3 years, was started. During this period, the test will basically be operated in an automatic mode, controlled and monitored from Spain via modem. The report is the Final Report from AITEMIN for Phase 4 of the project and includes a description of the test configuration and layout; the design, engineering, and manufacturing aspects of the different test components and equipment; the emplacement operation; and the as built information regarding the final position of the main components and the sensors. (Author)

  2. Combined effects of arthropod herbivores and phytopathogens on plant performance

    DEFF Research Database (Denmark)

    Hauser, Thure Pavlo; Christensen, Stina; Heimes, Christine

    2013-01-01

    1. Many plants are simultaneously attacked by arthropod herbivores and phytopathogens. These may affect each other directly and indirectly, enhancing or reducing the amount of plant resources they each consume. Ultimately, this may reduce or enhance plant performance relative to what should...... be expected from the added impacts of herbivore and pathogen when they attack alone. 2. Previous studies have suggested synergistic and antagonistic impacts on plant performance from certain combinations of arthropods and pathogens, for example, synergistic impacts from necrotrophic pathogens together...... with wounding arthropods because of facilitated infection and antagonistic impacts from induction of pathogen resistance by sucking herbivores. 3. We compiled published studies on the impact of plant–herbivore–pathogen interactions on plant performance and used meta-analysis to search for consistent patterns...

  3. Final Report - Certifying the Performance of Small Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Larry [Small Wind Certification Council, Clifton Park, NY (United States)

    2015-08-28

    The Small Wind Certification Council (SWCC) created a successful accredited certification program for small and medium wind turbines using the funding from this grant. SWCC certifies small turbines (200 square meters of swept area or less) to the American Wind Energy Association (AWEA) Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 – 2009). SWCC also certifies medium wind turbines to the International Electrical Commission (IEC) Power Performance Standard (IEC 61400-12-1) and Acoustic Performance Standard (IEC 61400-11).

  4. Performance Measures for Public Participation Methods : Final Report

    Science.gov (United States)

    2018-01-01

    Public engagement is an important part of transportation project development, but measuring its effectiveness is typically piecemealed. Performance measurementdescribed by the Urban Institute as the measurement on a regular basis of the results (o...

  5. Safety performance evaluation of converging chevron pavement markings : final report.

    Science.gov (United States)

    2014-12-01

    The objectives of this study were (1) to perform a detailed safety analysis of converging chevron : pavement markings, quantifying the potential safety benefits and developing an understanding of the : incident types addressed by the treatment, and (...

  6. Geosynthetic wall performance : facing pressure and deformation : final report.

    Science.gov (United States)

    2017-02-01

    The objective of the study was to validate the performance of blocked-faced Geosynthetic Reinforced Soil (GRS) wall and to validate the Colorado Department of Transportations (CDOT) decision to waive the positive block connection for closely-space...

  7. Performance assessment of MSE abutment walls in Indiana : final report.

    Science.gov (United States)

    2017-05-01

    This report presents a numerical investigation of the behavior of steel strip-reinforced mechanically stabilized earth (MSE) direct bridge abutments under static loading. Finite element simulations were performed using an advanced two-surface boundin...

  8. Transportation asset management : organizational performance and risk review : final report.

    Science.gov (United States)

    2012-11-15

    The 2012 Federal reauthorization of surface transportation programs, Moving Ahead for Progress in the 21st : Century (MAP-21) formally introduced performance-based decision making for investments in surface : transportation programs. This report revi...

  9. EFFECT OF DATE OF PLANTING ON THE PERFORMANCE OF ...

    African Journals Online (AJOL)

    BSN

    KEY WORDS: Date of Planting, Performance, Groundnut, haulm, yield, grain yield. ... Adamawa State, groundnuts have the highest tonnage among the legumes cultivated and ranks ... germination because of moisture stress) and such planting continues till the ..... variations in temperature and solar radiation intercepted.

  10. Performance of PWR Nuclear power plants, up to 1985

    International Nuclear Information System (INIS)

    Muniz, A.A.

    1987-01-01

    The performance of PWR nuclear power plants is studied, based on operational data up to 1985. The availability analysis was made with 793 unit-year and the reliability analysis was made with 5851 unit x month. The results were discussed and the availability of those nuclear power plants were estimated. (E.G.) [pt

  11. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India

    Directory of Open Access Journals (Sweden)

    B. Shiva Kumar

    2015-11-01

    Full Text Available The growing energy demand in developing nations has triggered the issue of energy security. This has made essential to utilize the untapped potential of renewable resources. Grid connected PV systems have become the best alternatives in renewable energy at large scale. Performance analysis of these grid connected plants could help in designing, operating and maintenance of new grid connected systems. A 10 MW photovoltaic grid connected power plant commissioned at Ramagundam is one of the largest solar power plants with the site receiving a good average solar radiation of 4.97 kW h/m2/day and annual average temperature of about 27.3 degrees centigrade. The plant is designed to operate with a seasonal tilt. In this study the solar PV plant design aspects along with its annual performance is elaborated. The various types of power losses (temperature, internal network, power electronics, grid connected etc. and performance ratio are also calculated. The performance results of the plant are also compared with the simulation values obtained from PV syst and PV-GIS software. The final yield (Y F of plant ranged from 1.96 to 5.07 h/d, and annual performance ratio (PR of 86.12%. It has 17.68% CUF with annual energy generation of 15798.192 MW h/Annum.

  12. Environmental-performance research priorities: Wood products. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-15

    This report describes a research plan to establish environmental, energy, and economic performance measures for renewable building materials, and to identify management and technology alternatives to improve environmental performance in a cost-effective manner. The research plan is designed to: (1) collect environmental and economic data on all life-cycle stages of the materials, (2) ensure that the data follows consistent definitions and collection procedures, and (3) develop analytical procedures for life-cycle analysis to address environmental performance questions. The research will be subdivided into a number of individual project modules. The five processing stages of wood used to organize the research plan are: (1) resource management and harvesting; (2) processing; (3) design and construction of structures; (4) use, maintenance, and disposal; and (5) waste recycling. Individual research module descriptions are provided in the report, as well as assessment techniques, research standards and protocol, and research management. 13 refs., 5 figs., 3 tabs.

  13. Development of radiological performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    Lee, B.S.; Jung, K.H.; Lee, S.H.; Jang, S.Y.

    2000-01-01

    The purpose of this work was to improve the regulatory approach to check the licensee's compliance with regulation regarding radiation protection in operating nuclear power plants (NPPs). The current domestic inspection program for NPPs requires inspectors to conduct compliance-inspection for the systems/equipment and the procedures of NPPs. In this work, we have developed a set of draft radiological performance indicators (PIs) to assess radiation safety in NPPs. The development of PIs was based on the concept that the licensees' implementation of the radiation protection program in NPPs should be able to achieve the goal of radiation protection which the International Commission on Radiological Protection (ICRP) has recommended as ICRP 60 (1991). We selected and/or developed the radiological performance indicators considering the radiation exposure network (source-environment-receptor) for NPPs. The PIs intend to be applied only to normal exposure due to normal operations including transient operational conditions, but not to potential exposure due to accidents. Also, we have chosen the receptor as workers who are occupationally exposed to radiation as well as the members of public who are exposed to radiation from radioactive effluents. The PIs intend to track the past performance rather than to expect the future performance. Finally, the individual PIs do not verify the root cause of the trend of performance; however, they provide the basis for deciding whether the procedures and work management have been properly implemented. Currently a set of 21 draft PIs has been developed for the exposure network in NPPs. For the receptor, the PIs are divided into worker individual dose, worker collective dose and public individual dose. For the environment, the PIs are related to the dose rates of controlled areas, radioactive material concentrations in controlled areas, radioactive contamination in controlled areas and at exit points, and radioactive effluent

  14. Thermal diagnostics in power plant to improve performance

    International Nuclear Information System (INIS)

    Meister, H.

    1995-01-01

    The improvement of older power plants by changing poor performing components is a cost effective method to increase the capacity of the units. The necessary information for the detection of components that are to be replaced can be obtained from heat rate and component tests with accuracy instrumentation. The discussed methods and tools provided by ABB Were used with success in several power plants in Europe. These tools are in the process of permanent improvement and can be used in almost any type of power plant. Due to the reasons discussed above, there is a high potential for improvement of a lot of power plants in the next decade. (author)

  15. The performance of plant species in removing nutrients from ...

    African Journals Online (AJOL)

    2011-10-26

    Oct 26, 2011 ... but offered no explicit guidance about how these water quality targets might be achieved. ... the limited knowledge that exists about the performance of local plant ...... reuse: designing biofiltration systems for reliable treatment.

  16. Lead plant application of leak-before-break to high energy piping. Final report, January 1989

    International Nuclear Information System (INIS)

    1989-01-01

    This report presents the experience gained during a successful application of a leak-before-break program by Duquesne Light Company. This program was directed at the high energy nuclear piping at Beaver Valley Power Station - Unit 2. This experience can be applied to other nuclear plant leak-before-break efforts in order to minimize the number of pipe whip restraints, jet impingement shields, snubbers, and to discount the consideration of remaining pipe rupture dynamic effects. The chronology of events leading to Nuclear Regulatory Commission approval of the Beaver Valley Power Station - Unit 2 lead plant effort is described. The final report and pertinent sections of the final Safety Evaluation Report are also included. (author)

  17. Knowledge Base for Strainer Clogging - Modifications performed in different countries since 1992 - Final report

    International Nuclear Information System (INIS)

    2002-01-01

    performed mock-up studies. Full-scale tests were also performed in the condensation pool of some units. The experiment results were utilised for the optimisation in most BWRs of new strainer designs, and for the choice of new thermal insulation materials. The results obtained confirmed, mostly, the appropriate design of existing PWR strainers. PWR and Candu reactors related s studies and experiments are, however, still on-going in a few countries. The modifications of the ECCS and/or CSS suction strainers have been performed after the aforementioned exhaustive studies and experiments. The modifications have resulted in new strainer designs with significantly enlarged filtering area. Most of the new strainers have good self-cleaning properties. Relatively many of them have been provided with instrumentation for differential pressure measurement, with indications and alarms in the unit main control room, and at some units in the emergency control room. In some BWRs, the design encompasses the possibility to back-flush the strainers. Replacements of large fractions of the thermal insulation materials utilised on piping and other components inside the containment have taken place. The newly installed insulation materials vary both within and between countries. They are primarily RMI (Reflecting Metallic Insulation), nuclear grade fiberglass, mineral wool and calcium silicate. The same insulation material - for example mineral wool - can be installed differently in different countries, i.e. jacketed or encapsulated in cassettes. The results of the experiments have significantly contributed to the materials selected or installation methods. The administrative measures taken by plant owners include, e.g. a periodic cleanup of the suppression pool and the containment sumps, with the aim to minimise the presence of foreign materials, and the control and eventual betterment of the containment coating. Finally, several plants have revised their Emergency Operating Procedures (EOPs

  18. Objective indicators of organizational performance at nuclear power plants

    International Nuclear Information System (INIS)

    Olson, J.; Osborn, R.N.; Jackson, D.H.; Shikiar, R.

    1986-01-01

    This report summarizes research conducted on the development and validation of organizational performance measures at operating nuclear power plants. Publicly available data, including measures from Licensee Event Reports, operating and outage data, and violations data, are used to predict penultimate measures of plant safety. Penultimate measures of safety include potentially significant events, overexposures and near overexposures, and several radiological release measures. The 1981 and 1982 performance measures are used in correlation and regression analyses to predict performance on the penultimate safety measures in 1982 and 1983. Many of the plant performance measures are consistently predictive of the frequency of potentially significant events. No strong, consistent predictors emerge for exposures or liquid radiological releases. Several performance measures are consistent predictors of gaseous releases. The regression analyses indicate that the predictors do not tend to combine in consistent, multivariate patterns, and controls for plant age, size, type, region, and fuel cycle stage do not substantially affect the results. The analysis concludes that existing performance data do appear to be predictive of some aspects of plant safety performance. The report recommends that more reliable, summary performance measures be created by combining several of the performance measures tested in the current analysis

  19. Sleep and Final Exam Performance in Introductory Physics

    Science.gov (United States)

    Coletta, Vincent; Wikholm, Colin; Pascoe, Daniel

    2018-01-01

    Most physics instructors believe that adequate sleep is important in order for students to perform well on problem solving, and many instructors advise students to get plenty of sleep the night before an exam. After years of giving such advice to students at Loyola Marymount University (LMU), one of us decided to find out how many hours students…

  20. Camp Verde Adult Reading Program. Final Performance Report.

    Science.gov (United States)

    Maynard, David A.

    This document begins with a four-page performance report describing how the Camp Verde Adult Reading Program site was relocated to the Community Center Complex, and the Town Council contracted directly with the Friends of the Camp Verde Library to provide for the requirements of the program. The U.S. Department of Education grant allowed the…

  1. Mathematical Models of Elementary Mathematics Learning and Performance. Final Report.

    Science.gov (United States)

    Suppes, Patrick

    This project was concerned with the development of mathematical models of elementary mathematics learning and performance. Probabilistic finite automata and register machines with a finite number of registers were developed as models and extensively tested with data arising from the elementary-mathematics strand curriculum developed by the…

  2. Advanced Certification Program for Computer Graphic Specialists. Final Performance Report.

    Science.gov (United States)

    Parkland Coll., Champaign, IL.

    A pioneer program in computer graphics was implemented at Parkland College (Illinois) to meet the demand for specialized technicians to visualize data generated on high performance computers. In summer 1989, 23 students were accepted into the pilot program. Courses included C programming, calculus and analytic geometry, computer graphics, and…

  3. Performance indicators for nuclear medicine and industrial radiographers. Final report

    International Nuclear Information System (INIS)

    Hill, T.D.

    1997-01-01

    HCA--Assessment Experts (HCA) was retained under contract to provide evidence that a behaviourally based approach to the development of performance indicators for radioisotope users could be successfully designed, implemented and rapidly delivered to a pilot sample. Moreover, HCA believed that it was uniquely qualified to not only achieve this success, but to show further that we could instill the motivation for self-improvement in the AECB inspection ratings of Licensees and Permit Holders. In the space of about ten weeks. HCA was able to deliver a comprehensive set of web-based tools for performance indicators. Not only did we deliver these tools, but we also included such supplemental information as relevant legislation, regulations. Inspectors' preferences and recommendations, among others, so as to foster a learning component of the performance indicators tools. The call for the continuation of this work is based on two sources. The response from participants to this project was very favourable - participants want these tools. Secondly, our research and experience have shown (and the larger body of empirical research also shows) that this is the type of performance feedback and communication that participants appreciate the most, and is the most predictive of successful compliance and improvement in the future. (author)

  4. Influence choreographic readiness to gymnasts final assessment of performance skills

    Directory of Open Access Journals (Sweden)

    O.A. Omelichyk-Ziurkalova

    2014-10-01

    Full Text Available Purpose : to provide a quantitative assessment and expert choreographic preparedness gymnasts. Material : the study involved eight gymnasts competition finalists in the floor exercise - female members of the Ukrainian national team in gymnastics. Results : the quantitative indicators of acrobatic and dance elements to determine the baseline assessment. Defined methods complications composition on the floor exercise by reducing the number of acrobatic lines and diagonals and increase the number of gymnastic elements. The theoretical performance of the composite sequence is improved structure and increases the difficulty of the exercise. Conclusions : in the process of composition complications need to pay more attention to the technique of performing gymnastic elements. In improving exercise choreography element replace (in some cases acrobatic element. Based on the results is planned future direction of research in order to improve the training process in gymnastics.

  5. High Performance Building Facade Solutions - PIER Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eleanor; Selkowitz, Stephen

    2009-12-31

    Building facades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. Facades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and deploying more efficient glazings, shading systems, daylighting systems, facade systems and integrated controls. This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the facades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated facade solutions. The LBNL Windows Testbed Facility acted as the primary catalyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and

  6. Methods and benefits of experimental seismic evaluation of nuclear power plants. Final report

    International Nuclear Information System (INIS)

    1979-07-01

    This study reviews experimental techniques, instrumentation requirements, safety considerations, and benefits of performing vibration tests on nuclear power plant containments and internal components. The emphasis is on testing to improve seismic structural models. Techniques for identification of resonant frequencies, damping, and mode shapes, are discussed. The benefits of testing with regard to increased damping and more accurate computer models are oulined. A test plan, schedule and budget are presented for a typical PWR nuclear power plant

  7. Evaluation of turbine systems for compressed air energy storage plants. Final report for FY 1976

    Energy Technology Data Exchange (ETDEWEB)

    Kartsounes, G.T.

    1976-10-01

    Compressed air energy storage plants for electric utility peak-shaving applications comprise four subsystems: a turbine system, compressor system, an underground air storage reservoir, and a motor/generator. Proposed plant designs use turbines that are derived from available gas and steam turbines with proven reliability. The study examines proposed turbine systems and presents an evaluation of possible systems that may reduce capital cost and/or improve performance. Six new turbine systems are identified for further economic evaluation.

  8. Final report for the field-reversed configuration power plant critical-issue scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Santarius, John F.; Mogahed, Elsayed A.; Emmert, Gilbert A.; Khater, Hesham Y.; Nguyen, Canh N.; Ryzhkov, Sergei V.; Stubna, Michael D.; Steinhauer, Loren C.; Miley, George H.

    2001-03-01

    This report describes research in which a team from the Universities of Wisconsin, Washington, and Illinois performed a scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis of deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core.

  9. Methods and benefits of experimental seismic evaluation of nuclear power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    This study reviews experimental techniques, instrumentation requirements, safety considerations, and benefits of performing vibration tests on nuclear power plant containments and internal components. The emphasis is on testing to improve seismic structural models. Techniques for identification of resonant frequencies, damping, and mode shapes, are discussed. The benefits of testing with regard to increased damping and more accurate computer models are oulined. A test plan, schedule and budget are presented for a typical PWR nuclear power plant.

  10. Regulatory analysis for final rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    This regulatory analysis provides the supporting information for the final rule (10 CFR Part 54) that defines the Nuclear Regulatory Commission's requirements for renewing the operating licenses of commercial nuclear power plants. A set of four specific alternatives for the safety review of license renewal applications is defined and evaluated. These are: Alternative A-current licensing basis; Alternative B-extension of Alternative A to require assessment and managing of aging; Alternative C -- extension of Alternative B to require assessment of design differences against selected new-plant standards using probabilistic risk assessment; and Alternative D -- extension of Alternative B to require compliance with all new-plant standards. A quantitative comparison of the four alternatives in terms of impact-to-value ratio is presented, and Alternative B is the most cost-beneficial safety review alternative

  11. BALTICA IV. Plant maintenance for managing life and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hietanen, S.; Auerkari, P. [eds.] [VTT Manufacturing Technology, Espoo (Finland). Operational Reliability

    1998-12-31

    BALTICA IV International Conference on Plant Maintenance Managing Life and performance held on September 7-9, 1998 on board M/S Silja Symphony on its cruise between Helsinki-Stockholm and at Aavaranta in Kirkkonummi. The BALTICA IV conference provides a forum for the transfer of technology from applied research to practice. This is one of the two volumes of the proceedings of the BALTICA IV International Conference on Plant Maintenance Managing Life and Performance. The BALTICA IV conference focuses on new technology, recent experience and applications of condition and life management, and on improvements in maintenance strategies for safe and economical operation of power plants. (orig.)

  12. BALTICA IV. Plant maintenance for managing life and performance

    Energy Technology Data Exchange (ETDEWEB)

    Hietanen, S; Auerkari, P [eds.; VTT Manufacturing Technology, Espoo (Finland). Operational Reliability

    1999-12-31

    BALTICA IV International Conference on Plant Maintenance Managing Life and performance held on September 7-9, 1998 on board M/S Silja Symphony on its cruise between Helsinki-Stockholm and at Aavaranta in Kirkkonummi. The BALTICA IV conference provides a forum for the transfer of technology from applied research to practice. This is one of the two volumes of the proceedings of the BALTICA IV International Conference on Plant Maintenance Managing Life and Performance. The BALTICA IV conference focuses on new technology, recent experience and applications of condition and life management, and on improvements in maintenance strategies for safe and economical operation of power plants. (orig.)

  13. Environmental assessment for final rule on nuclear power plant license renewal

    International Nuclear Information System (INIS)

    1991-12-01

    The Atomic Energy Act and Nuclear Regulatory Commission (NRC) regulations provide for the renewal of nuclear power plant operating licenses beyond their initial 40-year term. The Act and NRC regulations, however, do not specify the procedures, criteria, and standards that must be satisfied in order to renew a license. The NRC is promulgating a rule (10 CFR Part 54) to codify such requirements prior to the receipt of applications for license renewal. The NRC has assessed the possible environmental effects of promulgating requirements in 10 CFR Part 54 now rather than employing such requirements in an ad hoc manner in individual licensing actions. The final part 54 rule requires the development of information and analyses to identify aging problems of systems, structures, and components unique to license renewal that will be of concern during the period of extended operation and will not be controlled by existing effective programs. In general, licensee activities for license renewal may involve replacement, refurbishment, inspection, testing, or monitoring. Such actions will be generally be within the range of similar actions taken for plants during the initial operating term. These actions would be primarily confined within the plants with potential for only minor disruption to the environment. It is unlikely that these actions would change the operating conditions of plants in ways that would change the environmental effects already being experienced. Relicensing under existing regulations would also be primarily focused on aging degradation and would likely result in requirements similar to those that will result from relicensing under the final rule

  14. Reactor shutdown: nuclear power plant performance

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The article essentially looks at the performance of nine of Sweden's nuclear reactors. A table lists the percentage of time for the first three quarters of 1981 that the reactors were operating, and the number of hours out of service for planned or other reasons. In particular, one station - Ringhals 3 - was out of action because of a damaged tube in the associated steam generator. The same fault occurred with another reactor - Ringhals 4 - before this was brought into service. The reasons for the failure and its importance are briefly discussed. (G.P.)

  15. EPRI fuel performance data base: user's manual. Final report

    International Nuclear Information System (INIS)

    Simpson, J.; Lee, S.; Rumble, E.

    1980-10-01

    This user's manual provides instructions for accessing the data in the EPRI fuel performance data base (FPDB) and manipulating that data to solve specific problems that the user wishes to specify. The user interacts with the FPDB through the Relational Information Management System (RIMS) computer program. The structure and format of the FPDB and the general syntax of the data base commands are described. Instructions follow for the use of each command. Appendixes provide more detailed information about the FPDB and its software. The FPDB currently resides on a PRIME-750 computer

  16. Calculation method for the seasonal performance of heat pump compact units and validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wemhoener, C.; Dott, R.; Afjei, Th. [University of Applied Sciences Northwestern Switzerland, Institute of Energy in Buildings, Muttenz (Switzerland); Huber, H.; Helfenfinger, D.; Keller, P.; Furter, R. [University of Applied Sciences Lucerne (HTA), Test center HLKS, Horw (Switzerland)

    2007-02-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) takes a look at compact heat pump units that have been developed for the heating of low energy consumption houses built to MINERGIE or MINERGIE-P standards. These units, which combine the functions of space heating, domestic hot water preparation and ventilation in one unit are described. A testing procedure developed at the University of Applied Science in Lucerne, Switzerland, using a test rig for the measurement of the seasonal performance factor (SPF) is described. A calculation method based on temperature classes for the calculation of the SPF of combined heat pump systems for space heating and domestic hot water preparation that was developed by the Institute of Energy in Buildings at the University of Applied Sciences Northwestern Switzerland is examined. Two pilot plants allowing detailed field monitoring of two compact units are described. One pilot plant installed in a single-family house built to MINERGIE standard in Gelterkinden, Switzerland, provided data on a compact unit. These results of measurements made on this and a further installation in a MINERGIE-P ultra-low energy consumption house in Zeiningen, Switzerland, are presented and discussed. Calculation methods, including exergy considerations are reviewed and their validation is discussed.

  17. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2000-01-01

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE)

  18. 78 FR 71676 - NUREG-1482, Revision 2, “Guidelines for Inservice Testing at Nuclear Power Plants, Final Report”

    Science.gov (United States)

    2013-11-29

    ... Testing at Nuclear Power Plants, Final Report'' AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... entitled: NUREG-1482, Revision 2, ``Guidelines for Inservice Testing at Nuclear Power Plants,'' and... Restraints (Snubbers) at Nuclear Power Plants.'' In the previous Revisions 0 and 1 of NUREG-1482, the NRC...

  19. Performance of nuclear power plants in 1981

    International Nuclear Information System (INIS)

    Szeless, A.

    1982-01-01

    The performance data, such as yearly and cumulative load and operation (availability) factors for 200 reactor units worldwide and for 158 reactor units in the US and Europe, indicates that the average of the load factors of all units in 1981 was significantly higher than that of the 2 preceding years. However, it was not as high as in 1978. As in previous years, load factors continued to show an increasing trend as operating years increased. For 1981, the load factor of US reactors was 57%; that of world reactors was 60%. The operation (availability) factors were 63% for US reactors, 68% for world reactors, 76% for heavy water reactors, and 72% for gas-cooled reactors

  20. Sacramento State Solar Decathlon 2015: Research Performance Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mikael [California State Univ., Sacramento, CA (United States). Dept. of Construction Management

    2017-03-14

    Our primary objective is to design and build a 600-1000sf home that produces more energy than it consumes and to showcase this home at the 2015 Solar Decathlon in Irvine, CA. Further objectives are to educate consumers and home builders, alike (including K-12 students – the industry’s future consumers), inspire a shift towards the adoption of net-zero energy solutions in residential building, and to be a leader in the transformation of the California residential marketplace to a net-zero standard. Our specific mission statement for this project is as follows: Solar NEST strives to discover the future of sustainable, energy-efficient housing and deliver these innovations to home buyers at an affordable price. To make substantial improvements to conventional building methods with regard to aesthetics, performance, and affordability. Through our efforts, we aspire to bridge the gap between ‘what is’ and ‘what is possible’ by providing unique, elegant simplicity.

  1. Intelligent Facades for High Performance Green Buildings. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for

  2. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 3: Comment response document

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program. This volume provides responses to public comments on the Draft SEIS-II. Comments are related to: Alternatives; TRU waste; DOE credibility; Editorial; Endorsement/opposition; Environmental justice; Facility accidents; Generator site operations; Health and safety; Legal and policy issues; NEPA process; WIPP facilities; WIPP waste isolation performance; Purpose and need; WIPP operations; Site characterization; Site selection; Socioeconomics; and Transportation

  3. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mines, Greg [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhu, Guangdong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  4. Performance and value of CAD-deficient pine- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bailian Li; Houmin Chang; Hasan Jameel

    2007-02-28

    The southern US produces 58% of the nation's timber, much of it grown in intensively managed plantations of genetically improved loblolly pine. One of the fastest-growing loblolly pine selections made by the NCSU-Industry Cooperative Tree Improvement Program, whose progeny are widely planted, is also the only known natural carrier of a rare gene, cadn1. This allele codes for deficiency in an enzyme, cinnamyl alcohol dehydrogenase, which catalyzes the last step in the biosynthesis of lignin precursors. This study is to characterize this candidate gene for marker-assisted selection and deployment in the breeding program. This research will enhance the sustainability of forest production in the South, where land-use pressures will limit the total area available in the future for intensively managed plantations. Furthermore, this research will provide information to establish higher-value plantation forests with more desirable wood/fiber quality traits. A rare mutant allele (cad-n1) of the cad gene in loblolly pine (Pinus taeda L.) causes a deficiency in the production of cinnamyl alcohol dehydrogenase (CAD). The effects of this allele were examined by comparing wood density and growth traits of cad-n1 heterozygous trees with those of wild-type trees in a 10-year-old open-pollinated family trial growing under two levels of fertilization in Scotland County, North Carolina. In all, 200 trees were sampled with 100 trees for each treatment. Wood density measurements were collected from wood cores at breast height using x-ray densitometry. We found that the substitution of cad-n1 for a wild-type allele (Cad) was associated with a significant effect on wood density. The cad-n1 heterozygotes had a significantly higher wood density (+2.6%) compared to wild-type trees. The higher density was apparently due to the higher percentage of latewood in the heterozygotes. The fertilization effect was highly significant for both growth and wood density traits. While no cad genotype

  5. Survey and analysis of work structure in nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Bauman, M.B.; Pain, R.F.; Van Cott, H.P.; Davidson, M.K.

    1983-06-01

    Work-structure factors are those factors that relate to the way in which work at all levels in a plant is organized, staffed, managed, rewarded, and perceived by plant personnel. Research over many years has demonstrated that these work-structure factors are closely correlated with organizational effectiveness, safety, and profitability. The work structure of ten nuclear power plants was assessed using questionnaires. Structured critical incident interviews were conducted to verify the questionnaire results. The study revealed that a variety of work-structure factor problem areas do exist in nuclear power plants. The study recommends a prioritized set of candidate research issues to be considered as part of EPRI's Work Structure and Performance Research Program

  6. Performance of Canadian commercial nuclear units and heavy water plants

    International Nuclear Information System (INIS)

    Woodhead, L.W.; Ingolfsrud, L.J.

    The operating history of Canadian commercial CANDU type reactors, i.e. Pickering generating station-A, is described. Capacity factors and unit energy costs are analyzed in detail. Equipment performance highlights are given. The performance of the two Canadian heavy water plants is described and five more are under construction or planned. (E.C.B.)

  7. Performance of Generating Plant: New Metrics for Industry in Transition

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    This report is the result of the work of the Performance of Generating Plant task force of the World Energy Council. The report examines the challenges of measuring and improving performance and considers some of the issues related to this field.

  8. Performance measures for aging of nuclear power plants

    International Nuclear Information System (INIS)

    Ross, D.F. Jr.

    1993-01-01

    The Nuclear Power Plant licenses are granted by the US Nuclear Regulatory Commission (NRC) for a 40-year term. There is at present consideration being given to extending the authorized service lifetime beyond that, perhaps for a total of 60 or 70 years total. A logical concern for such a length of operation is whether the plant ages in such a way as to be significantly less safe as it gets older. As a corollary to this, there would be the question as to how to measure a diminution in plant safety. Each operating utility has, of course, ways to observe the plant performance. It has maintenance and surveillance programs which are used for this purpose. The NRC maintains a presence at each operating plant in the form of resident inspectors. The NRC also receives utility reports which may then be used to synthesize operating performance. It also reviews plant performance directly through what is known as the Systematic Assessment of Licensee Performance (SALP). In the paper the various data management programs used by the NRC will be described. The results of each program is presented, and observations are made as to the potential effect of age on safety performance. It is also necessary to define the size of the population being examined. There are at present 109 operating reactors. The age distribution is used to normalize the data. Some of the indicators discussed in this paper are concerned more with the indirect effect of aging, such as inadvertent shutdown. The regulated industry maintains a program known as the Nuclear Power Reliability Data System (NPRDS) to which the electric utilities participate in a voluntary manner. Data from NPRDS can be accessed to observe the direct aging effect; this is not covered in this paper. To the degree that plant operating staff learns how to cope with aging equipment and operate in a safe manner nonetheless, the performance indicators would not fully reflect the aging effect

  9. Method discussion of the performance evaluation on nuclear plant cable

    International Nuclear Information System (INIS)

    Lu Yongfang; Zhong Weixia; Sun Jiansheng; Liu Jingping

    2014-01-01

    A stock cable, which is same as the nuclear plant cable in service, was treated by thermal aging. After that, the mechanical property, the flame retardant property, the anti-oxidation were measured, and relationships between them due to the thermal aging were established. By those analysis, evaluating the in-service cable performance in nuclear plant and calculating its remaining life. Furthermore, the feasibility of this method was disscussed. (authors)

  10. Ecological Performances of Plant Species of Halophilous Hydromorphic Ecosystems

    Directory of Open Access Journals (Sweden)

    Maria Speranza

    2015-12-01

    Full Text Available Coastal wetlands are very special environments, characterized by soils permanently or seasonally saturated by salt or brackish water. They host microorganisms and plants able to adapt to anoxic conditions. This paper proposes a review of recent scientific papers dealing with the study of coastal wetlands from different points of view. Some studies examine the species composition and the pattern of the spatial distribution of plant communities, depending on the depth of the salt water table, as well as on other related factors. A significant number of studies analyse instead the coastal wetlands in their ability for the phytoremediation (phytostabilisation and/or phytoextraction and highlight the importance of interactions between the rhizosphere of the halophytes and the physical environment. Finally, more recent studies consider the plant species of the coastal wetlands as a source of useful products (food, feed, oils and expose the results of promising researches on their cultivation.

  11. Final report of the project performance assessment and economic evaluation of nuclear waste management

    International Nuclear Information System (INIS)

    Rasilainen, K.; Anttila, M.; Hautojaervi, A.

    1993-05-01

    The publication is the final report of project Performance Assessment and Economic Evaluation of Nuclear Waste Management (TOKA) at the Nuclear Engineering Laboratory of VTT (Technical Research Centre of Finland), forming part of the Publicly Financed Nuclear Waste Management Research Programme (JYT). The project covers safety and cost aspects of all phases of nuclear waste management. The main emphasis has been on developing an integrated system of models for performance assessment of nuclear waste repositories. During the four years the project has so far been in progress, the total amount of work has been around 14 person-years. Computer codes are the main tools in the project, they are either developed by the project team or acquired from abroad. In-house model development has been especially active in groundwater flow, near-field and migration modelling. The quantitative interpretation of Finnish tracer experiments in the laboratory and natural analogue studies at Palmottu support performance assessments via increased confidence in the migration concepts used. The performance assessment philosophy adopted by the team consists of deterministic modelling and pragmatic scenario analysis. This is supported by the long-term experience in practical performance assessment of the team, and in theoretical probabilistic modelling exercises. The radiological risks of spent fuel transportation from the Loviisa nuclear power plant to Russia have been analysed using a probabilistic computer code and Finnish traffic accident statistics. The project assists the authorities in the annual assessment of utility estimates of funding needs for future nuclear waste management operations. The models and methods used within the project are tested in international verification/validation projects

  12. Implementation considerations for digital control systems in power plants: Final report

    International Nuclear Information System (INIS)

    Shah, S.C.; Lehman, L.L.; Sarchet, M.M.

    1988-09-01

    Conversion of nuclear power plants fron analog to digital control systems will require careful design, testing, and integration of the control algorithms, the software which implements the algorithms, the digital instrumentation, the digital communications network, and analog/digital device interfaces. Digital control systems are more flexible than their analog counterparts, and therefore greater attention must be paid by the customer to all stages of the control system design process. This flexibility also provides the framework for development of significant safety and reliability are inherant aspects of the chosen design processes. Digital control algorithms are capable of improving their performance by on-line self-tuning of the control parameters. It is therefore incumbant on system designers to choose self-tuning algorithms for power plant control. Implementation of these algorithms in software required a careful software design and development process to minimize errors in interpretation of the engineering design and prevent the inclusion of programming errors during software production. Digital control system and communications software must exhibit sufficient ''fault tolerance'' to maintain some level of safe plant operation or execute a safe plant shutdown in the event of both hard equipment failures and the appearance of software design faults. A number of standardized digital communications protocols are available to designers of digital control systems. These standardized digital communications protocols provide reliable fault tolerant communication between all digital elements of the plant control system and can be implemented redundantly to further enhance power plant operational safety. 5 refs., 11 figs., 1 tab

  13. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Saurwein, John

    2011-07-15

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  14. Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project - Final Technical Report

    International Nuclear Information System (INIS)

    Saurwein, J.

    2011-01-01

    This report is the Final Technical Report for the Next Generation Nuclear Plant (NGNP) Prismatic HTGR Conceptual Design Project conducted by a team led by General Atomics under DOE Award DE-NE0000245. The primary overall objective of the project was to develop and document a conceptual design for the Steam Cycle Modular Helium Reactor (SC-MHR), which is the reactor concept proposed by General Atomics for the NGNP Demonstration Plant. The report summarizes the project activities over the entire funding period, compares the accomplishments with the goals and objectives of the project, and discusses the benefits of the work. The report provides complete listings of the products developed under the award and the key documents delivered to the DOE.

  15. Dionex series 8000 on-line analyzer, Sequoyah Nuclear Power Plant. Final report

    International Nuclear Information System (INIS)

    1986-03-01

    This project was initiated to develop a custom-designed online water analyzer (ion chromatograph) for secondary water chemistry control in TVA's nuclear plants. This water analyzer development was conducted pursuant to a cooperative research agreement with the Dionex Corporation. Dionex developed and installed a dual channel, six stream analyzer on the secondary side of TVA's Sequoyah Nuclear Plant. The analyzer was developed for real time detection of sodium, chloride, and sulfate in any of the six sampling streams. The analyzer is providing Sequoyah's plant personnel with reliable secondary water chemistry data in a much more timely manner than the past grab sampling techniques. Results on the performance of the analyzer show that it is performing above and beyond the expectations of plant personnel. Since its installation at Sequoyah, there have been 29 units ordered from Dionex including 1 unit for Sequoyah, 5 units for Browns Ferry, and 23 units for other utilities. In the future, the analyzer will allow plant staffs to take corrective action before corrosive conditions occur or before having to derate a unit

  16. Plant safety and performance indicators for regulatory use

    International Nuclear Information System (INIS)

    Ferjancic, M.; Nemec, T.; Cimesa, S.

    2004-01-01

    Slovenian Nuclear Safety Administration (SNSA) supervises nuclear and radiological safety of Krsko NPP. This SNSA supervision is performed through inspections, safety evaluations of plant modifications and event analyses as well as with the safety and performance indicators (SPI) which are a valuable data source for plant safety monitoring. In the past SNSA relied on the SPI provided by Krsko NPP and did not have a set of SPI which would be more appropriate for regulatory use. In 2003 SNSA started with preparation of a new set of SPI which would be more suitable for performing the regulatory oversight of the plant. New internal SNSA procedure which is under preparation will define use and evaluation of SPI and will include definitions for the proposed set of SPI. According to the evaluation of SPI values in comparison with the limiting values and/or trending, the procedure will define SNSA response and actions. (author)

  17. Audits and their effectiveness in improving plant performance

    International Nuclear Information System (INIS)

    Callen, L.J.

    1986-01-01

    For several years, the NRC's performance appraisal teams (PATs) have been assessing the effectiveness of the various audit programs established by operating nuclear power plants. A major focus of the PAT assessments is on the audit programs mandated by 10 CFR, technical specifications, industry codes and standards, and NRC operating license conditions. These audits are typically performed by a plant's quality assurance organization, and program oversight is often provided at the corporate level by a safety review committee. The scope of these audit programs is broad, typically including such functional areas as maintenance, operations, health physics, emergency preparedness, training, procurement, and security. For an audit program to be truly effective in improving plant performance beyond the minimum level established by regulatory requirements, the audits must first be effective in identifying deficiencies that go beyond minimum regulatory requirements. The PAT experience to date is that typical industry audit programs are not designed to identify these types of deficiencies

  18. Bayesian calibration of power plant models for accurate performance prediction

    International Nuclear Information System (INIS)

    Boksteen, Sowande Z.; Buijtenen, Jos P. van; Pecnik, Rene; Vecht, Dick van der

    2014-01-01

    Highlights: • Bayesian calibration is applied to power plant performance prediction. • Measurements from a plant in operation are used for model calibration. • A gas turbine performance model and steam cycle model are calibrated. • An integrated plant model is derived. • Part load efficiency is accurately predicted as a function of ambient conditions. - Abstract: Gas turbine combined cycles are expected to play an increasingly important role in the balancing of supply and demand in future energy markets. Thermodynamic modeling of these energy systems is frequently applied to assist in decision making processes related to the management of plant operation and maintenance. In most cases, model inputs, parameters and outputs are treated as deterministic quantities and plant operators make decisions with limited or no regard of uncertainties. As the steady integration of wind and solar energy into the energy market induces extra uncertainties, part load operation and reliability are becoming increasingly important. In the current study, methods are proposed to not only quantify various types of uncertainties in measurements and plant model parameters using measured data, but to also assess their effect on various aspects of performance prediction. The authors aim to account for model parameter and measurement uncertainty, and for systematic discrepancy of models with respect to reality. For this purpose, the Bayesian calibration framework of Kennedy and O’Hagan is used, which is especially suitable for high-dimensional industrial problems. The article derives a calibrated model of the plant efficiency as a function of ambient conditions and operational parameters, which is also accurate in part load. The article shows that complete statistical modeling of power plants not only enhances process models, but can also increases confidence in operational decisions

  19. Neutron dosimetry at commercial nuclear plants. Final report of Subtask B: dosimeter response

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, F.M.; Endres, G.W.R.; Brackenbush, L.W.

    1983-03-01

    As part of a larger program to evaluate personnel neutron dosimetry at commercial nuclear power plants, this study was designed to characterize neutron dosimeter responses inside the containment structure of commercial nuclear plants. In order to characterize those responses, dosimeters were irradiated inside containment at 2 pressurized water reactors and at pipe penetrations outside the biological shield at two boiling water reactors. The reactors were operating at full power during the irradiations. Measurements were also performed with electronic instruments, the tissue equivalent proportional counter (TEPC), and portable remmeters, SNOOPY, RASCAL and PNR-4.

  20. Neutron dosimetry at commercial nuclear plants. Final report of Subtask B: dosimeter response

    International Nuclear Information System (INIS)

    Cummings, F.M.; Endres, G.W.R.; Brackenbush, L.W.

    1983-03-01

    As part of a larger program to evaluate personnel neutron dosimetry at commercial nuclear power plants, this study was designed to characterize neutron dosimeter responses inside the containment structure of commercial nuclear plants. In order to characterize those responses, dosimeters were irradiated inside containment at 2 pressurized water reactors and at pipe penetrations outside the biological shield at two boiling water reactors. The reactors were operating at full power during the irradiations. Measurements were also performed with electronic instruments, the tissue equivalent proportional counter (TEPC), and portable remmeters, SNOOPY, RASCAL and PNR-4

  1. Nuclear power plant control room operators' performance research

    International Nuclear Information System (INIS)

    Gray, L.H.; Haas, P.M.

    1984-01-01

    A research program is being conducted to provide information on the performance of nuclear power plant control room operators when responding to abnormal/emergency events in the plants and in full-scope training simulators. The initial impetus for this program was the need for data to assess proposed design criteria for the choice of manual versus automatic action for accomplishing safety-related functions during design basis accidents. The program also included studies of training simulator capabilities, of procedures and data for specifying and verifying simulator performance, and of methods and applications of task analysis

  2. Chemical monitoring strategy for the assessment of advanced water treatment plant performance.

    Science.gov (United States)

    Drewes, J E; McDonald, J A; Trinh, T; Storey, M V; Khan, S J

    2011-01-01

    A pilot-scale plant was employed to validate the performance of a proposed full-scale advanced water treatment plant (AWTP) in Sydney, Australia. The primary aim of this study was to develop a chemical monitoring program that can demonstrate proper plant operation resulting in the removal of priority chemical constituents in the product water. The feed water quality to the pilot plant was tertiary-treated effluent from a wastewater treatment plant. The unit processes of the AWTP were comprised of an integrated membrane system (ultrafiltration, reverse osmosis) followed by final chlorination generating a water quality that does not present a source of human or environmental health concern. The chemical monitoring program was undertaken over 6 weeks during pilot plant operation and involved the quantitative analysis of pharmaceuticals and personal care products, steroidal hormones, industrial chemicals, pesticides, N-nitrosamines and halomethanes. The first phase consisted of baseline monitoring of target compounds to quantify influent concentrations in feed waters to the plant. This was followed by a period of validation monitoring utilising indicator chemicals and surrogate measures suitable to assess proper process performance at various stages of the AWTP. This effort was supported by challenge testing experiments to further validate removal of a series of indicator chemicals by reverse osmosis. This pilot-scale study demonstrated a simplified analytical approach that can be employed to assure proper operation of advanced water treatment processes and the absence of trace organic chemicals.

  3. Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Rubiolo, Pablo R. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Conway, Lawarence E. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Oriani, Luca [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Lahoda, Edward J. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; DeSilva, Greg [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Science and Technology Dept.; Hu, Min H. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Hartz, Josh [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Bachrach, Uriel [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Smith, Larry [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Dudek, Daniel F. [Westinghouse Electric Company LLC, Pittsburgh, PA (United States). Nuclear Services Division; Toman, Gary J. [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Feng, Dandong [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hejzlar, Pavel [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kazimi, Mujid S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-03-31

    This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a standard 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (~600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output.

  4. Advanced Power Ultra-Uprates of Existing Plants (APPU) Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    Rubiolo, Pablo R.; Conway, Lawarence E.; Oriani, Luca; Lahoda, Edward J.; DeSilva, Greg; Hu, Min H.; Hartz, Josh; Bachrach, Uriel; Smith, Larry; Dudek, Daniel F.; Toman, Gary J.; Feng, Dandong; Hejzlar, Pavel; Kazimi, Mujid S.

    2006-01-01

    This project assessed the feasibility of a Power Ultra-Uprate on an existing nuclear plant. The study determined the technical and design limitations of the current components, both inside and outside the containment. Based on the identified plant bottlenecks, the design changes for major pieces of equipment required to meet the Power Ultra-Uprate throughput were determined. Costs for modified pieces of equipment and for change-out and disposal of the replaced equipment were evaluated. These costs were then used to develop capital, fuel and operating and maintenance cost estimates for the Power Ultra-Uprate plant. The cost evaluation indicates that the largest cost components are the replacement of power (during the outage required for the uprate) and the new fuel loading. Based on these results, the study concluded that, for a ''standard'' 4-loop plant, the proposed Power Ultra-Uprate is technically feasible. However, the power uprate is likely to be more expensive than the cost (per Kw electric installed) of a new plant when large capacity uprates are considered (>25%). Nevertheless, the concept of the Power Ultra-Uprate may be an attractive option for specific nuclear power plants where a large margin exists in the steam and power conversion system or where medium power increases (∼600 MWe) are needed. The results of the study suggest that development efforts on fuel technologies for current nuclear power plants should be oriented towards improving the fuel performance (fretting-wear, corrosion, uranium load, manufacturing, safety) required to achieve higher burnup rather focusing on potential increases in the fuel thermal output

  5. Advanced nuclear power plant regulation using risk-informed and performance-based methods

    International Nuclear Information System (INIS)

    Modarres, Mohammad

    2009-01-01

    This paper proposes and discusses implications of a largely probabilistic regulatory framework using best-estimate, goal-driven, risk-informed, and performance-based methods. This framework relies on continuous probabilistic assessment of performance of a set of time-dependent, safety-critical systems, structures, components, and procedures that assure attainment of a broad set of overarching technology-neutral protective, mitigative, and preventive goals under all phases of plant operations. In this framework acceptable levels of performance are set through formal apportionment so that they are commensurate with the overarching goals. Regulatory acceptance would be the based on the confidence level with which the plant conforms to these goals and performance objectives. The proposed framework uses the traditional defense-in-depth design and operation regulatory philosophy when uncertainty in conforming to specific goals and objectives is high. Finally, the paper discusses the steps needed to develop a corresponding technology-neutral regulatory approach from the proposed framework

  6. Biochar Improves Performance of Plants for Mine Soil Revegetation

    Science.gov (United States)

    Biochar (the solid by-product of pyrolysis of biomass), has the potential to improve plant performance for revegetation of mine soils by improving soil chemistry, fertility, moisture holding capacity and by binding heavy metals. We investigated the effect of gasified conifer sof...

  7. Operational safety performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    2000-05-01

    Since the late 1980s, the IAEA has been actively sponsoring work in the area of indicators to monitor nuclear power plant (NPP) operational safety performance. The early activities were mainly focused on exchanging ideas and good practices in the development and use of these indicators at nuclear power plants. Since 1995 efforts have been directed towards the elaboration of a framework for the establishment of an operational safety performance indicator programme. The result of this work, compiled in this publication, is intended to assist NPPs in developing and implementing a monitoring programme, without overlooking the critical aspects related to operational safety performance. The framework proposed in this report was presented at two IAEA workshops on operational safety performance indicators held in Ljubljana, Slovenia, in September 1998 and at the Daya Bay NPP, Szenzhen, China, in December 1998. During these two workshops, the participants discussed and brainstormed on the indicator framework presented. These working sessions provided very useful insights and ideas which where used for the enhancement of the framework proposed. The IAEA is acknowledging the support and contribution of all the participants in these two activities. The programme development was enhanced by pilot plant studies. Four plants from different countries with different designs participated in this study with the objective of testing the applicability, usefulness and viability of this approach

  8. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...

  9. Comparative study of the performance of Jute plant ( Corchorus ...

    African Journals Online (AJOL)

    This experiment was carried out in the green house at the College of Agricultural Sciences, Olabisi Onabanjo University, Yewa Campus, to assess the performance of jute plant (Corchorus olitorius L.) on three soil-use types (viz; farmland soil, cocoa plantation soil and residential or home garden soil) treated with five ...

  10. Study on Biodiesel plants growth performance and tolerance to ...

    African Journals Online (AJOL)

    Abstract. In this research, we studied the growth performance and tolerance of three biodiesel plants namely; Jatropha curcas, Moringa oleifera and Ricinus communis to water stress. Research conducted on the three different soils from Kaita, Jibiya and Mai'adua in the semi-desert environments of Katsina State, Nigeria.

  11. The experiences to improve plant performance and reliability of Ko-Ri nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ho Weon [Korea Electric Power Corp. Ko-Ri nuclear power division, Ko-Ri (Korea, Republic of)

    1998-07-01

    This paper provides a discussion of the lessons learned from operational experience and the future plans to improve performance of the Ko-Ri plant. To operate nuclear power plants safely with good performance is the only way to mitigate the negative image of nuclear power generation to the public and to enhance the economical benefit compared to other electrical generation method. Therefore, in a continuous effort to overcome a negative challenge from outside, we have driven an aggressive 'OCTF' campaign as part of safety. As a result of our efforts, the following remarkable achievements have been accomplished. (1) 3 times of OCTF during recent three years (2) Selected twice as a top notch power plant on the list of NEI magazine in terms of plant capacity factor (3) No scram recorded in 1997 for all 4 units at Ko-Ri site. Ko-Ri is now undergoing the large scale plant betterment projects for retaking-off our operating performance to the level of new challenge target. Such improvement of critical components in the reactor coolant system and turbine system greatly contribute to increase the safety and reliability of the plant and to shortening of the planned outage period as well as to reduction of radiation exposure and radwaste. (Cho, G. S.). 5 tabs., 10 figs.

  12. The experiences to improve plant performance and reliability of Ko-Ri nuclear power plants

    International Nuclear Information System (INIS)

    Kang, Ho Weon

    1998-01-01

    This paper provides a discussion of the lessons learned from operational experience and the future plans to improve performance of the Ko-Ri plant. To operate nuclear power plants safely with good performance is the only way to mitigate the negative image of nuclear power generation to the public and to enhance the economical benefit compared to other electrical generation method. Therefore, in a continuous effort to overcome a negative challenge from outside, we have driven an aggressive 'OCTF' campaign as part of safety. As a result of our efforts, the following remarkable achievements have been accomplished. (1) 3 times of OCTF during recent three years (2) Selected twice as a top notch power plant on the list of NEI magazine in terms of plant capacity factor (3) No scram recorded in 1997 for all 4 units at Ko-Ri site. Ko-Ri is now undergoing the large scale plant betterment projects for retaking-off our operating performance to the level of new challenge target. Such improvement of critical components in the reactor coolant system and turbine system greatly contribute to increase the safety and reliability of the plant and to shortening of the planned outage period as well as to reduction of radiation exposure and radwaste. (Cho, G. S.). 5 tabs., 10 figs

  13. Final examination of trainees for nuclear power plant operators at an education and training centre

    International Nuclear Information System (INIS)

    Gieci, A.

    1986-01-01

    General and specialized theoretical training, on-the-job training in the training power plant and simulator training is followed by a final examination. The examination which is obligatory for all trainees is conceived according to Hick's law which requires linear dependence between the time which the operator needs for taking a decision on how to cope with a certain situation and the measure of entropy of the situation. Research in the field of man-machine relations has helped clarify the thinking of the operator who on the basis of received signals forms what is termed the conceptual model of the situation. The final examination should assess the trainee's ability to form conceptual models - the examination must therefore be something more than just a test of knowledge. The given questions and required answers must create a stress situation for the examinee such that the measure to which he is able to cope is conditioned by his ability to form conceptual models. The statutes of the final examinations were drawn up with the aim of achieving standardization and reproducibility. Questions are put through a special form (a model form is also given). (A.K.)

  14. A guide to qualification of electrical equipment for nuclear power plants. Final report, November 1983

    International Nuclear Information System (INIS)

    Marion, A.; Lamken, D.; Harrall, T.; Kasturi, S.; Holzman, P.; Carfagno, S.; Thompson, D.; Boyer, B.; Hanneman, H.; Rule, W.

    1983-09-01

    Equipment qualification demonstrates that nuclear power plant equipment can perform its safety function - that despite age or the adverse conditions of a design basis accident the equipment can work as needed. This report is a guide to the overall process of electrical equipment qualification. It should interest those who design such equipment, those who buy it, or test it, and even those who install and maintain it. (author)

  15. Oviposition Preference for Young Plants by the Large Cabbage Butterfly (Pieris brassicae ) Does not Strongly Correlate with Caterpillar Performance.

    Science.gov (United States)

    Fei, Minghui; Harvey, Jeffrey A; Yin, Yi; Gols, Rieta

    2017-06-01

    The effects of temporal variation in the quality of short-lived annual plants on oviposition preference and larval performance of insect herbivores has thus far received little attention. This study examines the effects of plant age on female oviposition preference and offspring performance in the large cabbage white butterfly Pieris brassicae. Adult female butterflies lay variable clusters of eggs on the underside of short-lived annual species in the family Brassicaceae, including the short-lived annuals Brassica nigra and Sinapis arvensis, which are important food plants for P. brassicae in The Netherlands. Here, we compared oviposition preference and larval performance of P. brassicae on three age classes (young, mature, and pre-senescing) of B. nigra and S. arvensis plants. Oviposition preference of P. brassicae declined with plant age in both plant species. Whereas larvae performed similarly on all three age classes in B. nigra, preference and performance were weakly correlated in S. arvensis. Analysis of primary (sugars and amino acids) and secondary (glucosinolates) chemistry in the plant shoots revealed that differences in their quality and quantity were more pronounced with respect to tissue type (leaves vs. flowers) than among different developmental stages of both plant species. Butterflies of P. brassicae may prefer younger and smaller plants for oviposition anticipating that future plant growth and size is optimally synchronized with the final larval instar, which contributes >80% of larval growth before pupation.

  16. Operations-oriented performance measures for freeway management systems : final report.

    Science.gov (United States)

    2008-12-01

    This report describes the second and final year activities of the project titled Using Operations-Oriented Performance Measures to Support Freeway Management Systems. Work activities included developing a prototype system architecture for testi...

  17. Effect of Repeated/Spaced Formative Assessments on Medical School Final Exam Performance

    Directory of Open Access Journals (Sweden)

    Edward K. Chang

    2017-06-01

    Discussion: Performance on weekly formative assessments was predictive of final exam scores. Struggling medical students will benefit from extra cumulative practice exams while students who are excelling do not need extra practice.

  18. A study of toxic emissions from a coal-fired gasification plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

  19. Performance analysis of WWER-440/230 nuclear power plants

    International Nuclear Information System (INIS)

    1997-01-01

    This report examines one particular design, the WWER-440/230, the first generation of commercial WWERs, essentially comparable to the western PWR. This design was installed widely in eastern Europe with a total of 16 unites being completed in what are now Armenia, Bulgaria, Germany (the former German Democratic Republic) the Slovak Republic and Russia. The plants in Armenia and Germany (the former German Democratic Republic) have been closed down, but particularly in Bulgaria and to a lesser extent the Slovak Republic the remaining plants supply a significant proportion of the electricity of the country and decisions to close them could not be taken lightly. The aim of this report is twofold: first to determine whether the impression given by these good overall performance indicators is confirmed using more detailed indicators covering a wide range of factors; second, to see to what extent good performance can be attributed to the industrial and institutional environment in which these plants were designed, built and operated. Particular attention is paid to identifying factors that may impact the quality of the service provided, especially those factors under management control which can be strongly influenced by current and future policy changes and those factors that are beyond the plant management control but could have influenced the performance of the power plants. Issues concerning the safety of these plants are of considerable importance, but they remain outside the scope of this report. Conclusions and recommendations formulated by the IAEA related to WWER safety are contained in the series of reports prepared in the framework of the Extrabudgetary Programme on WWER Safety. A programme progress report was published in 1994 (IAEA-TECDOC-773). Refs, figs, tabs

  20. Performance analysis of WWER-440/230 nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This report examines one particular design, the WWER-440/230, the first generation of commercial WWERs, essentially comparable to the western PWR. This design was installed widely in eastern Europe with a total of 16 unites being completed in what are now Armenia, Bulgaria, Germany (the former German Democratic Republic) the Slovak Republic and Russia. The plants in Armenia and Germany (the former German Democratic Republic) have been closed down, but particularly in Bulgaria and to a lesser extent the Slovak Republic the remaining plants supply a significant proportion of the electricity of the country and decisions to close them could not be taken lightly. The aim of this report is twofold: first to determine whether the impression given by these good overall performance indicators is confirmed using more detailed indicators covering a wide range of factors; second, to see to what extent good performance can be attributed to the industrial and institutional environment in which these plants were designed, built and operated. Particular attention is paid to identifying factors that may impact the quality of the service provided, especially those factors under management control which can be strongly influenced by current and future policy changes and those factors that are beyond the plant management control but could have influenced the performance of the power plants. Issues concerning the safety of these plants are of considerable importance, but they remain outside the scope of this report. Conclusions and recommendations formulated by the IAEA related to WWER safety are contained in the series of reports prepared in the framework of the Extrabudgetary Programme on WWER Safety. A programme progress report was published in 1994 (IAEA-TECDOC-773). Refs, figs, tabs.

  1. Fuel performance of licensed nuclear power plants through 1974

    International Nuclear Information System (INIS)

    Bobe, P.E.

    1976-01-01

    General aspects of fuel element design and specific design data for typical Pressurized and Boiling Water Reactors are presented. Based on a literature search, failure modes and specific failures incurred through December 31, 1974 are described, together with a discussion of those problems which have had a significant impact upon plant operation. The relationship between fuel element failures and the resultant coolant activity/radioactive gaseous effluents upon radiation exposure, plant availability and capacity factors, economic impact, and waste management, are discussed. An assessment was made regarding the generation, availability, and use of fuel performance data

  2. Nuclear steam power plant cycle performance calculations supported by power plant monitoring and results computer

    International Nuclear Information System (INIS)

    Bettes, R.S.

    1984-01-01

    The paper discusses the real time performance calculations for the turbine cycle and reactor and steam generators of a nuclear power plant. Program accepts plant measurements and calculates performance and efficiency of each part of the cycle: reactor and steam generators, turbines, feedwater heaters, condenser, circulating water system, feed pump turbines, cooling towers. Presently, the calculations involve: 500 inputs, 2400 separate calculations, 500 steam properties subroutine calls, 200 support function accesses, 1500 output valves. The program operates in a real time system at regular intervals

  3. Hydroponic isotope labeling of entire plants and high-performance mass spectrometry for quantitative plant proteomics.

    Science.gov (United States)

    Bindschedler, Laurence V; Mills, Davinia J S; Cramer, Rainer

    2012-01-01

    Hydroponic isotope labeling of entire plants (HILEP) combines hydroponic plant cultivation and metabolic labeling with stable isotopes using (15)N-containing inorganic salts to label whole and mature plants. Employing (15)N salts as the sole nitrogen source for HILEP leads to the production of healthy-looking plants which contain (15)N proteins labeled to nearly 100%. Therefore, HILEP is suitable for quantitative plant proteomic analysis, where plants are grown in either (14)N- or (15)N-hydroponic media and pooled when the biological samples are collected for relative proteome quantitation. The pooled (14)N-/(15)N-protein extracts can be fractionated in any suitable way and digested with a protease for shotgun proteomics, using typically reverse phase liquid chromatography nanoelectrospray ionization tandem mass spectrometry (RPLC-nESI-MS/MS). Best results were obtained with a hybrid ion trap/FT-MS mass spectrometer, combining high mass accuracy and sensitivity for the MS data acquisition with speed and high-throughput MS/MS data acquisition, increasing the number of proteins identified and quantified and improving protein quantitation. Peak processing and picking from raw MS data files, protein identification, and quantitation were performed in a highly automated way using integrated MS data analysis software with minimum manual intervention, thus easing the analytical workflow. In this methodology paper, we describe how to grow Arabidopsis plants hydroponically for isotope labeling using (15)N salts and how to quantitate the resulting proteomes using a convenient workflow that does not require extensive bioinformatics skills.

  4. Introducing Model Predictive Control for Improving Power Plant Portfolio Performance

    DEFF Research Database (Denmark)

    Edlund, Kristian Skjoldborg; Bendtsen, Jan Dimon; Børresen, Simon

    2008-01-01

    This paper introduces a model predictive control (MPC) approach for construction of a controller for balancing the power generation against consumption in a power system. The objective of the controller is to coordinate a portfolio consisting of multiple power plant units in the effort to perform...... reference tracking and disturbance rejection in an economically optimal way. The performance function is chosen as a mixture of the `1-norm and a linear weighting to model the economics of the system. Simulations show a significant improvement of the performance of the MPC compared to the current...

  5. The performance trends of nuclear power plants worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Glorian, D. [Electricite de France (EDF), 93 - Saint-Denis (France)

    2001-07-01

    Looking back to the worldwide operating experience feedback, which performance trends and conclusions could be drawn up? What is the specific situation of the French nuclear units, in comparison with the average worldwide performance? The performance of a unit or group of facilities is measured not only in technical terms (safety, availability, load control capability), but also from an economic and financial standpoint (operating and maintenance costs, fuel costs, etc). Performance in terms of radiological protection and on-the-job safety, as well as environmental protection, is also monitored in order to give the broadest possible overview of nuclear power plant performance. The main technical results are presented on the basis of selected performance indicators. The results obtained by French units are benchmarked against those of other PWR facilities in operation around the world, in accordance with comparisons made by the World Association of Nuclear Operators (WANO). (author)

  6. The performance trends of nuclear power plants worldwide

    International Nuclear Information System (INIS)

    Glorian, D.

    2001-01-01

    Looking back to the worldwide operating experience feedback, which performance trends and conclusions could be drawn up? What is the specific situation of the French nuclear units, in comparison with the average worldwide performance? The performance of a unit or group of facilities is measured not only in technical terms (safety, availability, load control capability), but also from an economic and financial standpoint (operating and maintenance costs, fuel costs, etc). Performance in terms of radiological protection and on-the-job safety, as well as environmental protection, is also monitored in order to give the broadest possible overview of nuclear power plant performance. The main technical results are presented on the basis of selected performance indicators. The results obtained by French units are benchmarked against those of other PWR facilities in operation around the world, in accordance with comparisons made by the World Association of Nuclear Operators (WANO). (author)

  7. Thermal performance monitoring and assessment in Dukovany nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Madron, F. [Chemplant Technology s.r.o., Hrncirska 4, 400 01 Usti nad Labem (Czech Republic); Papuga, J. [CEZ a.s., JE Dukovany, 675 50 Dukovany (Czech Republic); Pliska, J. [I and C ENERGO a.s., Prazska 684, 674 01 Trebic (Czech Republic)

    2006-07-01

    Competition in the European electricity market forces generators to achieve - in compliance with safety and environmental standards - efficiency of production as high as possible. This efficiency or heat rate is an important indicator of both the condition of the plant equipment and the quality of plant operation. Similar thermal performance indicators can also be calculated for components of the plant equipment such as heat exchangers. However, it is not easy to quantify these indicators with sufficient precision so that the results can be used for conduct of plant operation in near-real time and for predictive maintenance. This paper describes a present state of the system monitoring and evaluating thermal performance of the reactor units in Dukovany Nuclear Power Plant. The system provides information on actual and desirable (should-be) values of thermal performance indicators for control room operators, performance engineers and maintenance planners. The system is designed to monitor steady states and has two main functions: data validation and process simulation. Data validation is based on data reconciliation methodology and carried out with Recon software by Chemplant Technology. A detailed model of the secondary side for mass and heat balancing has been made up by means of the Recon's graphical editor; now it contains roughly 300 flows and employs data of about 200 measurements. Main advantages of the data reconciliation are: - reconciled data are consistent with the model, - reconciled data are more precise than data directly measured with consequence that the thermal power of steam generators is determined with substantially lower uncertainty than before - data reconciliation represents a solid basis for detection and identification of data corrupted by gross errors. Simulation is performed with a different analytical model of plant components configured into secondary side. The model has been developed by I and C Energo. Main purposes of simulation

  8. Performance optimization of the Växtkraft biogas production plant

    International Nuclear Information System (INIS)

    Thorin, Eva; Lindmark, Johan; Nordlander, Eva; Odlare, Monica; Dahlquist, Erik; Kastensson, Jan; Leksell, Niklas; Pettersson, Carl-Magnus

    2012-01-01

    Highlights: ► Pre-treatment of ley crop can increase the biogas plant performance. ► Membrane filtration can increase the capacity of the biogas plant. ► Mechanical pre-treatment of the ley crop shows the highest energy efficiency. ► Using a distributor to spread the residues as fertilizer show promising results. -- Abstract: All over the world there is a strong interest and also potential for biogas production from organic residues as well as from different crops. However, to be commercially competitive with other types of fuels, efficiency improvements of the biogas production process are needed. In this paper, results of improvements studies done on a full scale co-digestion plant are presented. In the plant organic wastes from households and restaurants are mixed and digested with crops from pasture land. The areas for improvement of the plant addressed in this paper are treatment of the feed material to enhance the digestion rate, limitation of the ballast of organics in the water stream recirculated in the process, and use of the biogas plant residues at farms. Results from previous studies on pre-treatment and membrane filtration of recirculated process water are combined for an estimation of the total improvement potential. Further, the possibility of using neural networks to predict biogas production using historical data from the full-scale biogas plant was investigated. Results from an investigation using the process residues as fertilizer are also presented. The results indicate a potential to increase the biogas yield from the process with up to over 30% with pre-treatment of the feed and including membrane filtration in the process. Neural networks have the potential to be used for prediction of biogas production. Further, it is shown that the residues from biogas production can be used as fertilizers but that the emission of N 2 O from the fertilized soil is dependent on the soil type and spreading technology.

  9. Reducing the occurrence of plant events through improved human performance

    International Nuclear Information System (INIS)

    Ross, T.; Burkhart, A.D.

    1993-01-01

    During a routine control room surveillance, the reactor operator is distracted by an alarming secondary annunciator and a telephone call. When the reactor operator resumes the surveillance, he inadvertently performs the procedural steps out of order. This causes a reportable nuclear event. How can procedure-related human performance problems such as this be prevented? The question is vitally important for the nuclear industry. The U.S. Nuclear Regulatory Commission's Office for Analysis and Evaluation of Operational Data observed, open-quotes With the perceived reduction in the number of events caused by equipment failures, INPO and other industry groups and human performance experts agree that a key to continued improvement in plant performance and safety is improved human performance.close quotes In fact, open-quotes more than 50% of the reportable events occurring at nuclear power plants involve human error.close quotes Prevention (or correction) of a human performance problem is normally based on properly balancing the following three factors: (1) supervisory involvement; (2) personnel training; and (3) procedures. The nuclear industry is implementing a formula known as ACME, which better balances supervisory involvement, personnel training, and procedures. Webster's New World Dictionary defines acme as the highest point, the peak. ACME human performance is the goal: ACME Adherence to and use of procedures; Self-Checking; Management Involvement; and Event Investigations

  10. Solar power plant performance evaluation: simulation and experimental validation

    International Nuclear Information System (INIS)

    Natsheh, E M; Albarbar, A

    2012-01-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P and O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  11. Solar power plant performance evaluation: simulation and experimental validation

    Science.gov (United States)

    Natsheh, E. M.; Albarbar, A.

    2012-05-01

    In this work the performance of solar power plant is evaluated based on a developed model comprise photovoltaic array, battery storage, controller and converters. The model is implemented using MATLAB/SIMULINK software package. Perturb and observe (P&O) algorithm is used for maximizing the generated power based on maximum power point tracker (MPPT) implementation. The outcome of the developed model are validated and supported by a case study carried out using operational 28.8kW grid-connected solar power plant located in central Manchester. Measurements were taken over 21 month's period; using hourly average irradiance and cell temperature. It was found that system degradation could be clearly monitored by determining the residual (the difference) between the output power predicted by the model and the actual measured power parameters. It was found that the residual exceeded the healthy threshold, 1.7kW, due to heavy snow in Manchester last winter. More important, the developed performance evaluation technique could be adopted to detect any other reasons that may degrade the performance of the P V panels such as shading and dirt. Repeatability and reliability of the developed system performance were validated during this period. Good agreement was achieved between the theoretical simulation and the real time measurement taken the online grid connected solar power plant.

  12. Development of quality assurance and performance testing for the Process Experimental Pilot Plant

    International Nuclear Information System (INIS)

    Dole, L.R.; McDaniel, E.W.; Robinson, S.M.

    1984-08-01

    The Process Experimental Pilot Plant (PREPP) is planned for operation by EG and G Idaho, Inc., to demonstrate a full-scale, cement-based, disposal process for transuranic (TRU) wastes. Procedures need to be developed to determine the quality of the waste product during processing and the durability of the final waste form produced in this facility. This report summarizes basic guidelines for the selection of the waste form composition and process conditions that affect product performance. Physical property tests that may be applicable for quality assurance during processing are also described. Approaches to accelerated performance tests needed to predict the performance of the cement-based waste form are identified, and suggestions are made for the development of processing tests to ensure the quality of the final waste-host product. 29 references, 3 figures, 4 tables

  13. Development of quality assurance and performance testing for the Process Experimental Pilot Plant

    International Nuclear Information System (INIS)

    Dole, L.R.; McDaniel, E.W.; Robinson, S.M.

    1984-06-01

    The Process Experimental Pilot Plant (PREPP) is planned for operation by EG and G Idaho, Inc., to demonstrate a full-scale, cement-based, disposal process for transuranic (TRU) wastes. Procedures need to be developed to determine the quality of the waste product during processing and the durability of the final waste form produced in this facility. This report summarizes basic guidelines for the selection of the waste form composition and process conditions that affect product performance. Physical property tests that may be applicable for quality assurance during processing are also described. Approaches to accelerated performance tests needed to predict the performance of the cement-based waste form are identified, and suggestions are made for the development of processing tests to assure the quality of the final waste-host product. 29 references, 3 figures, 3 tables

  14. Impact of aging and material structure on CANDU plant performance

    International Nuclear Information System (INIS)

    Nadeau, E.; Ballyk, J.; Ghalavand, N.

    2011-01-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  15. Impact of aging and material structure on CANDU plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, E.; Ballyk, J.; Ghalavand, N. [Candu Energy Inc., Mississauga, Ontario (Canada)

    2011-07-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  16. Sixty-five-year old final clarifier performance rivals that of modern designs.

    Science.gov (United States)

    Barnard, James L; Kunetz, Thomas E; Sobanski, Joseph P

    2008-01-01

    The Stickney plant of the Metropolitan Wastewater Reclamation District of Greater Chicago (MWRDGC), one of the largest wastewater treatment plants in the world, treats an average dry weather flow of 22 m3/s and a sustained wet weather flow of 52 m3/s that can peak to 63 m3/s. Most of the inner city of Chicago has combined sewers, and in order to reduce pollution through combined sewer overflows (CSO), the 175 km Tunnel and Reservoir Plan (TARP) tunnels, up to 9.1 m in diameter, were constructed to receive and convey CSO to a reservoir from where it will be pumped to the Stickney treatment plant. Pumping back storm flows will result in sustained wet weather flows over periods of weeks. Much of the success of the plant will depend on the ability of 96 circular final clarifiers to produce an effluent of acceptable quality. The nitrifying activated sludge plant is arranged in a plug-flow configuration, and some denitrification takes place as a result of the high oxygen demand in the first pass of the four-pass aeration basins that have a length to width ratio of 18:1. The SVI of the mixed liquor varies between 60 and 80 ml/g. The final clarifiers, which were designed by the District's design office in 1938, have functioned for more than 65 years without major changes and are still producing very high-quality effluent. This paper will discuss the design and operation of these final clarifiers and compare the design with more modern design practices. (c) IWA Publishing 2008.

  17. Dismantling and removal of the Niederaichbach nuclear power plant (KKN) to the 'Green Field'. Final report

    International Nuclear Information System (INIS)

    Valencia, L.; Prechtl, E.

    1998-04-01

    The major objective of the present project consisted in the complete dismantling and removal of the Niederaichbach nuclear power plant (KKN), ranging from the state of safe enclosure to re-establishing the original state of vegetation of the site (so-called 'green field'). By reaching this objective, principle feasibility of the complete removal of a power reactor was demonstrated. In addition, considerable experience has been gained with regard to the execution of all phases of such a complex project and project optimization. The following phases of the project can be distinguished: - Licensing procedure - dismantling of the inactive, contaminated and activated plant sections - disassembly of the activated building structures and decontamination of the buildings - demolition (conventional) of the buildings and recultivation of the site. Moreover, the project included the work performed under the direct supervision of the licensing authority, comprehensive radiation protection activities, the solution of waste management problems and the respective public relations work. (orig./MM) [de

  18. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Swain, A D; Guttmann, H E

    1983-08-01

    The primary purpose of the Handbook is to present methods, models, and estimated human error probabilities (HEPs) to enable qualified analysts to make quantitative or qualitative assessments of occurrences of human errors in nuclear power plants (NPPs) that affect the availability or operational reliability of engineered safety features and components. The Handbook is intended to provide much of the modeling and information necessary for the performance of human reliability analysis (HRA) as a part of probabilistic risk assessment (PRA) of NPPs. Although not a design guide, a second purpose of the Handbook is to enable the user to recognize error-likely equipment design, plant policies and practices, written procedures, and other human factors problems so that improvements can be considered. The Handbook provides the methodology to identify and quantify the potential for human error in NPP tasks.

  19. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report

    International Nuclear Information System (INIS)

    Swain, A.D.; Guttmann, H.E.

    1983-08-01

    The primary purpose of the Handbook is to present methods, models, and estimated human error probabilities (HEPs) to enable qualified analysts to make quantitative or qualitative assessments of occurrences of human errors in nuclear power plants (NPPs) that affect the availability or operational reliability of engineered safety features and components. The Handbook is intended to provide much of the modeling and information necessary for the performance of human reliability analysis (HRA) as a part of probabilistic risk assessment (PRA) of NPPs. Although not a design guide, a second purpose of the Handbook is to enable the user to recognize error-likely equipment design, plant policies and practices, written procedures, and other human factors problems so that improvements can be considered. The Handbook provides the methodology to identify and quantify the potential for human error in NPP tasks

  20. Performance analysis of US coal-fired power plants by measuring three DEA efficiencies

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika; Ueno, Takahiro

    2010-01-01

    Data Envelopment Analysis (DEA) has been widely used for performance evaluation of many organizations in private and public sectors. This study proposes a new DEA approach to evaluate the operational, environmental and both-unified performance of coal-fired power plants that are currently operating under the US Clean Air Act (CAA). The economic activities of power plants examined by this study are characterized by four inputs, a desirable (good) output and three undesirable (bad) outputs. This study uses Range-Adjusted Measure (RAM) because it can easily incorporate both desirable and undesirable outputs in the unified analytical structure. The output unification proposed in this study has been never investigated in the previous DEA studies even though such a unified measure is essential in guiding policy makers and corporate leaders. Using the proposed DEA approach, this study finds three important policy implications. First, the CAA has been increasingly effective on their environmental protection. The increased environmental performance leads to the enhancement of the unified efficiency. Second, the market liberalization/deregulation was an important business trend in the electric power industry. Such a business trend was legally prepared by US Energy Policy Act (EPAct). According to the level of the market liberalization, the United States is classified into regulated and deregulated states. This study finds that the operational and unified performance of coal-fired power plants in the regulated states outperforms those of the deregulated states because the investment on coal-fired power plants in the regulated states can be utilized as a financial tool under the rate-of-return criterion of regulation. The power plants in the deregulated states do not have such a regulation premium. Finally, plant managers need to balance between their environmental performance and operational efficiency.

  1. Performance evaluation of effluent treatment plant for automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Farid [Department of Applied Science and Humanities, PDM College of Engineering, Bahadurgarh (Haryana) (India); Pandey, Yashwant K. [School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore (India); Kumar, P.; Pandey, Priyanka [Department of Environmental Science, Post Graduate College Ghazipur (IN

    2013-07-01

    The automobile industry’s wastewater not only contains high levels of suspended and total solids such as oil, grease, dyestuff, chromium, phosphate in washing products, and coloring, at various stages of manufacturing but also, a significant amount of dissolved organics, resulting in high BOD or COD loads. The study reveals the performance, evaluation and operational aspects of effluent treatment plant and its treatability, rather than the contamination status of the real property. The Results revealed that the treated effluent shows most of the parameters are within permissible limits of Central Pollution Control Board (CPCB), India and based on the site visits, discussion with operation peoples, evaluation of process design, treatment system, existing effluent discharge, results of sample analyzed and found that effluent treatment plant of automobile industry are under performance satisfactory.

  2. Advanced digital technology - improving nuclear power plant performance through maintainability

    International Nuclear Information System (INIS)

    Ford, J.L.; Senechal, R.R.; Altenhein, G.D.; Harvey, R.P.

    1998-01-01

    In today's energy sector there is ever increasing pressure on utilities to operate power plants at high capacity factors. To ensure nuclear power is competitive into the next century, it is imperative that strategic design improvements be made to enhance the performance of nuclear power plants. There are a number of factors that affect a nuclear power plant's performance; lifetime maintenance is one of the major contributors. The maturing of digital technology has afforded ABB the opportunity to make significant design improvements in the area of maintainability. In keeping with ABB's evolutionary advanced nuclear plant design approach, digital technology has systematically been incorporated into the control and protection systems of the most recent Korean nuclear units in operation and under construction. One example of this was the multi-functional design team approach that was utilized for the development of ABB's Digital Plant Protection System (DPPS). The design team consisted of engineers, maintenance technicians, procurement specialists and manufacturing personnel in order to provide a complete perspective on all facets of the design. The governing design goals of increased reliability and safety, simplicity of design, use of off-the-shelf products and reduced need for periodic surveillance testing were met with the selection of proven ABB-Advant Programmable Logic Controllers (PLCs) as the heart of the DPPS. The application of digital PLC technology allows operation for extended periods without requiring routine maintenance or re-calibration. A well documented commercial dedication program approved by the United States Nuclear Regulatory Commission (US NRC) as part of the System 80+ TM Advanced Light Water Reactor Design Certification Program, allowed the use of off-the shelf products in the design of the safety protection system. In addition, a number of mechanical and electrical improvements were made which support maintainability. The result is a DPPS

  3. The development and use of plant models to assist with both the commissioning and performance optimisation of plant control systems

    International Nuclear Information System (INIS)

    Conner, A.S.; Region, S.E.

    1984-01-01

    Successful engagement of cascade control systems used to control complex nuclear plant often present control engineers with difficulties when trying to obtain early automatic operation of these systems. These difficulties often arise because prior to the start of live plant operation, control equipment performance can only be assessed using open loop techniques. By simulating simple models of plant on a computer and linking it to the site control equipment, the performance of the system can be examined and optimised prior to live plant operation. This significantly reduces the plant down time required to correct control equipment performance faults during live plant operation

  4. VI-G, Sec. 661, P.L. 91-230. Final Performance Report.

    Science.gov (United States)

    1976

    Presented is the final performance report of the CSDC model which is designed to provide services for learning disabled high school students. Sections cover the following program aspects: organizational structure, inservice sessions, identification of students, materials and equipment, evaluation of student performance, evaluation of the model,…

  5. Comparative exergetic performance analysis for certain thermal power plants in Serbia

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2016-01-01

    Full Text Available Traditional methods of analysis and calculation of complex thermal systems are based on the first law of thermodynamics. These methods use energy balance for a system. In general, energy balances do not provide any information about internal losses. In contrast, the second law of thermodynamics introduces the concept of exergy, which is useful in the analysis of thermal systems. Exergy is a measure for assessing the quality of energy, and allows one to determine the location, cause, and real size of losses incurred as well as residues in a thermal process. The purpose of this study is to comparatively analyze the performance of four thermal power plants from the energetic and exergetic viewpoint. Thermodynamic models of the plants are developed based on the first and second law of thermodynamics. The primary objectives of this paper are to analyze the system components separately and to identify and quantify the sites having largest energy and exergy losses. Finally, by means of these analyses, the main sources of thermodynamic inefficiencies as well as a reasonable comparison of each plant to others are identified and discussed. As a result, the outcomes of this study can provide a basis for the improvement of plant performance for the considered thermal power plants.

  6. Procedure for conducting a human-reliability analysis for nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Bell, B.J.; Swain, A.D.

    1983-05-01

    This document describes in detail a procedure to be followed in conducting a human reliability analysis as part of a probabilistic risk assessment when such an analysis is performed according to the methods described in NUREG/CR-1278, Handbook for Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications. An overview of the procedure describing the major elements of a human reliability analysis is presented along with a detailed description of each element and an example of an actual analysis. An appendix consists of some sample human reliability analysis problems for further study

  7. Fuel performance experience at TVO nuclear power plant

    International Nuclear Information System (INIS)

    Patrakka, E.T.

    1985-01-01

    TVO nuclear power plant consists of two BWR units of ASEA-ATOM design. The fuel performance experience extending through six cycles at TVO I and four cycles at TVO II is reported. The experience obtained so far is mainly based on ASEA-ATOM 8 x 8 fuel and has been satisfactory. Until autumn 1984 one leaking fuel assembly had been identified at TVO I and none at TVO II. Most of the problems encountered have been related to leaf spring screws and channel screws. The experience indicates that satisfactory fuel performance can be achieved when utilizing strict operational rules and proper control of fuel design and manufacture. (author)

  8. Numerical indicators of nuclear power plant safety performance

    International Nuclear Information System (INIS)

    1991-04-01

    The workshop was attended by representatives from twenty-two Member States operating nuclear power plants (NPP). The current status of the development and use of numerical indicators of NPP safety performance was presented. A consensus on the benefits of use of numerical indicators was reached. The Technical Committee Meeting reviewed the progress in the development and use of performance indicators and identified them as the most appropriate ones for international use. The purpose of this document is to summarize the discussions held and conclusions reached in both meetings. Lists of participants and all the papers of both meetings are presented

  9. Safety evaluation report related to Babcock and Wilcox Owners Group Plant Reassessment Program: [Final report

    International Nuclear Information System (INIS)

    1987-11-01

    After the accident of Three Mile Island, Unit 2, nuclear power plant owners made a number of improvements to their nuclear facilities. Despite these improvements, the US Nuclear Regulatory Commission (NRC) staff is concerned that the number and complexity of events at Babcock and Wilcox (B and W) nuclear plants have not decreased as expected. This concern was reinforced by the June 9, 1985 total-loss-of-feedwater event at Davis-Besse Nuclear Power Station and the December 26, 1985 overcooling transient at Rancho Seco Nuclear Generating Station. By letter dated January 24, 1986, the Executive Director for Operations (EDO) informed the Chairman of the B and W Owners Group (BWOG) that a number of recent events at B and W-designed reactors have led the NRC staff to conclude that the basic requirements for B and W reactors need to be reexamined. In its February 13, 1986 response to the EDO's letter, the BWOG committed to lead an effort to define concerns relative to reducing the frequency of reactor trips and the complexity of post-trip response in B and W plants. The BWOG submitted a description of the B and W program entitled ''Safety and Performance Improvement Program'' (BAW-1919) on May 15, 1986. Five revisions to BAW-1919 have also been submitted. The NRC staff has reviewed BAW-1919 and its revisions and presents its evaluation in this report. 2 figs., 34 tabs

  10. Advanced safeguards systems development for chemical processing plants. Final report for Fiscal Year 1979

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1980-01-01

    A computer system is being installed by INEL to test and evaluate safeguards monitoring concepts in an operating nuclear fuel processing plant. Safeguards development sensors and instruments installed in the ICPP provide plant information to a computer data acquisition and analysis system. Objective of the system is to collect data from process and safeguards sensors and show how this data can be analyzed to detect diversion operations or improper plant operation, and to test the performance of the monitoring devices. Approximately one-third of the installation designs and one-eighth of the installations were completed in FY 1979. The ICPP processing schedule for FY 1980 permits installation of the remaining monitoring devices before process startup in the fourth quarter of FY 1980. All computer hardware was delivered and checked out in FY 1979. Computer software system designs were completed with the majority of the programming scheduled for FY 1980. Sensor and instrument development in FY 1979 emphasized device testing for ICPP monitoring applications

  11. Good practices for improved nuclear power plant performance

    International Nuclear Information System (INIS)

    1989-04-01

    This report provides an overview of operational principles, practice and improvements which have contributed to good performance of eight selected world nuclear power stations. The IAEA Power Reactor Information System (PRIS) was used to identify a population of good performers. It is recognized that there are many other good performing nuclear power stations not included in this report. Specific criteria described in the introduction were used in selecting these eight stations. The information contained in this report was obtained by the staff from IAEA, Division of Nuclear Power. This was accomplished by visits to the stations and visits to a number of utility support groups and three independent organizations which provide support to more than one utility. The information in this report is intended as an aid for operating organizations to identify possible improvement initiatives to enhance plant performance. Figs and tabs

  12. Power plant and utility performance: how world-record outages are being achieved in the USA

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Two record-breaking refuelling outages at power reactors in the USA are described. The first, at Browns Ferry 3 BWR, was accomplished in 19 days 39 minutes - a shorter time than for an General Electric BWR anywhere in the world hitherto. The management attribute this success to planning, personnel and performance. As well as refuelling, inspections and maintenance, major modifications were carried out. These included the completion of the installation of digital feedwater reactor level control and digital feedwater heater level control. The second outage, at South Texas Project 2 BWR, at 17 days 14 hours and 10 minutes was the fastest yet recorded for any US nuclear unit. This achievement is ascribed to excellent outage preparation and scheduling, the superior condition of the plant equipment and teamwork and safety consciousness on behalf of the plant personnel. Finally, brief consideration is given to the nuclear performance recovery programme of Commonwealth Edison and Ontario Hydro Nuclear. (UK)

  13. Improving human reliability through better nuclear power plant system design. Final report

    International Nuclear Information System (INIS)

    Golay, Michael W.

    1998-01-01

    Increasing task complexity is claimed to be responsible for causing human operating errors, while a significant number of system failures are due to operating errors. An experimental study reported here was conducted to isolate varying task complexity as an important factor affecting human performance quality. Earlier work concerning problems of nuclear power plants has shown that human capability declined when dealing with increasing system complexity. The goal of this study was to investigate further the relationship between human operator performance quality and the complexity of tasks served to human operators. This was done by using a simple, interactive, dynamic and generalizable computer model to simulate the behavior of a human-operated dynamic fluid system. Twenty-two human subjects participated

  14. Waste Isolation Pilot Plant Title I operator dose calculations. Final report, LATA report No. 90

    International Nuclear Information System (INIS)

    Hughes, P.S.; Rigdon, L.D.

    1980-02-01

    The radiation exposure dose was estimated for the Waste Isolation Pilot Plant (WIPP) operating personnel who do the unloading and transporting of the transuranic contact-handled waste. Estimates of the radiation source terms for typical TRU contact-handled waste were based on known composition and properties of the waste. The operations sequence for waste movement and storage in the repository was based upon the WIPP Title I data package. Previous calculations had been based on Conceptual Design Report data. A time and motion sequence was developed for personnel performing the waste handling operations both above and below ground. Radiation exposure calculations were then performed in several fixed geometries and folded with the time and motion studies for individual workers in order to determine worker exposure on an annual basis

  15. A pilot study for the extraction and treatment of groundwater from a manufactured gas plant site. Final report

    International Nuclear Information System (INIS)

    1997-12-01

    This report describes a pilot study involving treatment of contaminated groundwater at a former manufactured gas plant site on the eastern seaboard of the US. The work was performed in order to provide the design basis for a full-scale groundwater extraction and treatment system at the site, as well as to develop a generic approach to selection of groundwater treatment sequences at other MGP sites. It included three main components: hydrogeologic investigations, bench-scale treatability studies, and pilot-scale treatability studies. Technologies evaluated in bench-scale work included gravity settling, filtration, and dissolved air flotation (DAF) for primary treatment of nonaqueous phase materials; biological degradation, air stripping, and carbon adsorption for secondary treatment of dissolved organics; and carbon adsorption as tertiary treatment of remaining dissolved contaminants. Pilot-scale studies focused on collecting system performance data fore three distinct levels of contamination. Two treatment trains were evaluated. One consisted of DAF, fluidized-bed biotreatment, and filtration plus carbon adsorption; the other used the same steps except to substitute air stripping for fluidized bed treatment. The final effluents produced by both treatment sequences were similar and demonstrated complete treatment of the groundwater. Besides detailing system design and performance for the treatability studies, the report includes an analysis of groundwater treatment applications to MGP sites in general, including a discussion of capital and operating costs

  16. Mastoidectomy performance assessment of virtual simulation training using final-product analysis

    DEFF Research Database (Denmark)

    Andersen, Steven A W; Cayé-Thomasen, Per; Sørensen, Mads S

    2015-01-01

    a modified Welling scale. The simulator gathered basic metrics on time, steps, and volumes in relation to the on-screen tutorial and collisions with vital structures. RESULTS: Substantial inter-rater reliability (kappa = 0.77) for virtual simulation and moderate inter-rater reliability (kappa = 0.......59) for dissection final-product assessment was found. The simulation and dissection performance scores had significant correlation (P = .014). None of the basic simulator metrics correlated significantly with the final-product score except for number of steps completed in the simulator. CONCLUSIONS: A modified...... version of a validated final-product performance assessment tool can be used to assess mastoidectomy on virtual temporal bones. Performance assessment of virtual mastoidectomy could potentially save the use of cadaveric temporal bones for more advanced training when a basic level of competency...

  17. Training and plant performance: a strategic planning partnership

    International Nuclear Information System (INIS)

    Coe, R.P.

    1987-01-01

    The nuclear industry as a whole, and specifically GPU Nuclear, is refocusing its attention on performance indicators. This standardized assessment of plant operational performance surfaces numerous examples of how performance-based training positively impacts plant performance. Numerous examples of high dollar savings range from scram reduction programs to reducing personnel rem exposures. The deeper the authors look the more they find that training is making a difference. The question now is, how long can they continue to afford the ever increasing demands of the pursuit of excellence. Early in 1985, the Training and Education Department at GPU Nuclear proactively began its strategic planning effort in order to address the increasing industry initiatives while facing flat or reduced commitments of resources. The Training Strategic Plan addresses detailed plans for each of the following areas: curriculum planning; program development; training and education organizational structure; training and education administrative procedures; training advisory structure and priority process; financial strategies. All of the above strategies are designed to assure training effectiveness. With the nuclear option under such strong public scrutiny, it is in the best interest of all of the nuclear utilities to assure the most cost effective approach to successful operation while achieving their standards of excellence

  18. Peak and ceiling effects in final-product analysis of mastoidectomy performance

    DEFF Research Database (Denmark)

    West, N; Konge, L; Cayé-Thomasen, P

    2015-01-01

    BACKGROUND: Virtual reality surgical simulation of mastoidectomy is a promising training tool for novices. Final-product analysis for assessing novice mastoidectomy performance could be limited by a peak or ceiling effect. These may be countered by simulator-integrated tutoring. METHODS: Twenty......-two participants completed a single session of self-directed practice of the mastoidectomy procedure in a virtual reality simulator. Participants were randomised for additional simulator-integrated tutoring. Performances were assessed at 10-minute intervals using final-product analysis. RESULTS: In all, 45.5 per...

  19. Complex effects of fertilization on plant and herbivore performance in the presence of a plant competitor and activated carbon.

    Science.gov (United States)

    Mahdavi-Arab, Nafiseh; Meyer, Sebastian T; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2014-01-01

    Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant's growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance to investigate both

  20. Complex effects of fertilization on plant and herbivore performance in the presence of a plant competitor and activated carbon.

    Directory of Open Access Journals (Sweden)

    Nafiseh Mahdavi-Arab

    Full Text Available Plant-herbivore interactions are influenced by host plant quality which in turn is affected by plant growth conditions. Competition is the major biotic and nutrient availability a major abiotic component of a plant's growth environment. Yet, surprisingly few studies have investigated impacts of competition and nutrient availability on herbivore performance and reciprocal herbivore effects on plants. We studied growth of the specialist aphid, Macrosiphoniella tanacetaria, and its host plant tansy, Tanacetum vulgare, under experimental addition of inorganic and organic fertilizer crossed with competition by goldenrod, Solidago canadensis. Because of evidence that competition by goldenrod is mediated by allelopathic compounds, we also added a treatment with activated carbon. Results showed that fertilization increased, and competition with goldenrod decreased, plant biomass, but this was likely mediated by resource competition. There was no evidence from the activated carbon treatment that allelopathy played a role which instead had a fertilizing effect. Aphid performance increased with higher plant biomass and depended on plant growth conditions, with fertilization and AC increasing, and plant competition decreasing aphid numbers. Feedbacks of aphids on plant performance interacted with plant growth conditions in complex ways depending on the relative magnitude of the effects on plant biomass and aphid numbers. In the basic fertilization treatment, tansy plants profited from increased nutrient availability by accumulating more biomass than they lost due to an increased number of aphids under fertilization. When adding additional fertilizer, aphid numbers increased so high that tansy plants suffered and showed reduced biomass compared with controls without aphids. Thus, the ecological cost of an infestation with aphids depends on the balance of effects of growth conditions on plant and herbivore performance. These results emphasize the importance

  1. Economic and environmental performance of future fusion plants in comparison

    International Nuclear Information System (INIS)

    Hamacher, T.; Saez, R.M.; Lako, P.

    2001-01-01

    If the good performance of fusion as technology with no CO 2 emission during normal operation and rather low external costs, reflecting the advantageous environmental and safety characteristics, are considered in future energy regulations, fusion can win considerable market shares in future electricity markets. The economic performance was elaborated for Western Europe for the time period till 2100. The software tool MARKAL widely used in energy research was used to simulate and optimise the development of the Western European energy system. Two different scenarios were considered, the main difference was the interest rate for investments. Stringent CO 2 -emission strategies lead to considerable market shares for fusion. As a comprehensive indicator of the environmental and safety performance of fusion plants the external costs following the ExternE method was used. External costs of fusion are rather low, much below the cost of electricity, and are in the same range as photovoltaics and wind energy. (author)

  2. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant

    International Nuclear Information System (INIS)

    Donohue, M.L.; Price, M.E.

    1984-07-01

    Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis

  3. Mirror Advanced Reactor Study (MARS). Final report. Volume 1-B. Commercial fusion electric plant

    Energy Technology Data Exchange (ETDEWEB)

    Donohue, M.L.; Price, M.E. (eds.)

    1984-07-01

    Volume 1-B contains the following chapters: (1) blanket and reflector; (2) central cell shield; (3) central cell structure; (4) heat transport and energy conversion; (5) tritium systems; (6) cryogenics; (7) maintenance; (8) safety; (9) radioactivity, activation, and waste disposal; (10) instrumentation and control; (11) balance of plant; (12) plant startup and operation; (13) plant availability; (14) plant construction; and (15) economic analysis.

  4. Short communication: final year students' deficits in physical examination skills performance in Germany.

    Science.gov (United States)

    Krautter, Markus; Diefenbacher, Katja; Koehl-Hackert, Nadja; Buss, Beate; Nagelmann, Lars; Herzog, Wolfgang; Jünger, Jana; Nikendei, Christoph

    2015-01-01

    The physical examination of patients is an important diagnostic competence, but little is known about the examination skills of final-year medical students. To investigate physical examination skills of final-year medical students. In a cross-sectional study, 40 final-year students were asked to perform a detailed physical examination on standardized patients. Their performances were video-recorded and rated by independent video assessors. Video ratings showed a mean success rate of 40.1 % (SD 8.2). As regards accompanying doctor-patient communication, final-year students achieved a mean of no more than 36.7 % (SD 8.9) in the appropriate use of the corresponding communication items. Our study revealed severe deficits among final-year medical students in performing a detailed physical examination on a standardized patient. Thus, physical examination skills training should aim to improve these deficits while also paying attention to communicative aspects. Copyright © 2015. Published by Elsevier GmbH.

  5. Performance analysis of photovoltaic plants installed in dairy cattle farms

    Directory of Open Access Journals (Sweden)

    Remo Alessio Malagnino

    2015-06-01

    Full Text Available Electric production from renewable resources, such as solar photovoltaic (PV, is playing an increasingly essential role in the agricultural industry because of the progressive increase in the energy price from fossil fuels and the simultaneous decrease in the income deriving from farming activities. A central issue in the sustainable diffusion of PV technologies is represented by the actual energy efficiency of a PV system. For these reasons, a performance analysis has been carried out in order to assess the potentials offered by different PV plants within a defined geographical context with the aim of investigating the impact of each component has on the PV generator global efficiency and defining the main technical parameters that allow to maximise the annual specific electric energy yield of an architectonically integrated plant, installed in a dairy house, compared to a ground-mounted plant. The annual performances of three grid connected PV plants installed in the same dairy cattle farm have been analysed: two are architectonically integrated plants - i.e., a rooftop unidirectional and a multi-field systems (both 99 kWp - and the other is a ground-mounted plant (480 kWp. Furthermore, the electrical performances, estimated by the photovoltaic geographical information system (PVGIS, developed by the EU Joint Research Centre, and by an analytical estimation procedure (AEP, developed on the basis of a meteo-climatic database related to the records of the nearest weather station and integrated by the components’ technical specifications, have been compared with the actual yields. The best annual performance has been given by the ground-mounted PV system, with an actual increase of 26% and in the range of 6÷12% according to different estimations, compared to the integrated systems, which were globally less efficient (average total loss of 26÷27% compared to 24% of the ground-mounted system. The AEP and PVGIS software estimates showed a good

  6. Risk-based safety performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    Chakraborty, S.; Prohaska, G.; Flodin, Y.; Grint, G.; Habermacher, H.; Hallman, A.; Isasia, R.; Melendez, E.; Verduras, E.; Karsa, Z.; Khatib-Rahbar, M.; Koeberlein, K.; Schwaeger, C.; Matahri, N.; Moravcik, I.; Tkac, M.; Preston, J.

    2003-01-01

    In a Concerted Action (CA), sponsored by the European Commission within its 5th Framework Program, a consortium of eleven partners from eight countries has reviewed and evaluated the application of Safety Performance Indicators (SPIs), which - in combination with other tools - can be used to monitor and improve the safety of nuclear power plants. The project was aimed at identification of methods that can be used in a risk-informed regulatory system and environment, and to exploit PSA techniques for the development and use of meaningful additional/alternative SPIs. The CA included the review of existing indicator systems, and the collection of information on the experience from indicator systems by means of a specific questionnaire. One of the most important and challenging issues for nuclear plant owners and/or regulators is to recognize early signs of deterioration in safety performance, caused by influences from management, organization and safety culture (MOSC), before actual events and/or mishaps take place. Most of the existing SPIs as proposed by various organizations are considered as 'lagging' indicators, that is, they are expected to show an impact only when a downward trend has already started. Furthermore, most of the available indicators are at a relatively high level, such that they will not provide useful information on fundamental weaknesses causing the problem in the first place. Regulators' and utilities' views on the use of a Safety Performance Indicator System have also been a part of the development of the CA. (author)

  7. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy''s (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE''s Environmental Management Program

  8. Thermal performance test for steam turbine of nuclear power plants

    International Nuclear Information System (INIS)

    Bu Yubing; Xu Zongfu; Wang Shiyong

    2014-01-01

    Through study of steam turbine thermal performance test of CPR1000 nuclear power plant, we solve the enthalpy calculation problems of the steam turbine in wet steam zone using heat balance method which can help to figure out the real overall heat balance diagram for the first time, and we develop a useful software for thermal heat balance calculation. Ling'ao phase II as an example, this paper includes test instrument layout, system isolation, risk control, data acquisition, wetness measurement, heat balance calculation, etc. (authors)

  9. Bus Accessing Performance Evaluation for Plant Control System

    International Nuclear Information System (INIS)

    Chung, Yang Mook

    2005-01-01

    The PCS system with 44 communication masters(CM) which process more than 30000 input and output signals, designed and manufactured by HF Contorols Corporation, is applied to UCN No. 5,6 nuclear power plant for the first time. In the process of system operation, the numerous problems have been issued and investigated and fixed so far. To share a understanding for digital communication system, UCN PCS communication methods are described herein through comparisons between the different priority techniques as well as the results of performance tests

  10. Is physiological performance a good predictor for fitness? Insights from an invasive plant species.

    Directory of Open Access Journals (Sweden)

    Marco A Molina-Montenegro

    Full Text Available Is physiological performance a suitable proxy of fitness in plants? Although, several studies have been conducted to measure some fitness-related traits and physiological performance, direct assessments are seldom found in the literature. Here, we assessed the physiology-fitness relationship using second-generation individuals of the invasive plant species Taraxacum officinale from 17 localities distributed in five continents. Specifically, we tested if i the maximum quantum yield is a good predictor for seed-output ii whether this physiology-fitness relationship can be modified by environmental heterogeneity, and iii if this relationship has an adaptive consequence for T. officinale individuals from different localities. Overall, we found a significant positive relationship between the maximum quantum yield and fitness for all localities evaluated, but this relationship decreased in T. officinale individuals from localities with greater environmental heterogeneity. Finally, we found that those individuals from localities where environmental conditions are highly seasonal performed better under heterogeneous environmental conditions. Contrarily, under homogeneous controlled conditions, those individuals from localities with low environmental seasonality performed much better. In conclusion, our results suggest that the maximum quantum yield seem to be good predictors for plant fitness. We suggest that rapid measurements, such as those obtained from the maximum quantum yield, could provide a straightforward proxy of individual's fitness in changing environments.

  11. Plant operator performance evaluation based on cognitive process analysis experiment

    International Nuclear Information System (INIS)

    Ujita, H.; Fukuda, M.

    1990-01-01

    This paper reports on an experiment to clarify plant operators' cognitive processes that has been performed, to improve the man-machine interface which supports their diagnoses and decisions. The cognitive processes under abnormal conditions were evaluated by protocol analyses interviews, etc. in the experiment using a plant training simulator. A cognitive process model is represented by a stochastic network, based on Rasmussen's decision making model. Each node of the network corresponds to an element of the cognitive process, such as observation, interpretation, execution, etc. Some observations were obtained as follows, by comparison of Monte Carlo simulation results with the experiment results: A process to reconfirm the plant parameters after execution of a task and feedback paths from this process to the observation and the task definition of next task were observed. The feedback probability average and standard deviation should be determined for each incident type to explain correctly the individual differences in the cognitive processes. The tendency for the operator's cognitive level to change from skill-based to knowledge-based via rule-based behavior was observed during the feedback process

  12. Dynamic performance of concrete undercut anchors for Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahrenholtz, Christoph, E-mail: christoph@mahrenholtz.net; Eligehausen, Rolf

    2013-12-15

    Graphical abstract: - Highlights: • Behavior of undercut anchors under dynamic actions simulating earthquakes. • First high frequency load and crack cycling tests on installed concrete anchors ever. • Comprehensive review of anchor qualification for Nuclear Power Plants. - Abstract: Post-installed anchors are widely used for structural and nonstructural connections to concrete. In many countries, concrete anchors used for Nuclear Power Plants have to be qualified to ensure reliable behavior even under extreme conditions. The tests required for qualification of concrete anchors are carried out at quasi-static loading rates well below the rates to be expected for dynamic actions deriving from earthquakes, airplane impacts or explosions. To investigate potentially beneficial effects of high loading rates and cycling frequencies, performance tests on installed undercut anchors were conducted. After introductory notes on anchor technology and a comprehensive literature review, this paper discusses the qualification of anchors for Nuclear Power Plants and the testing carried out to quantify experimentally the effects of dynamic actions on the load–displacement behavior of undercut anchors.

  13. Probabilistic Safety Goals for Nuclear Power Plants; Phases 2-4 / Final Report

    International Nuclear Information System (INIS)

    Bengtsson, Lisa; Knochenhauer, Michael; Holmberg, Jan-Erik; Rossi, Jukka

    2011-05-01

    The outcome of a probabilistic safety assessment (PSA) for a nuclear power plant is a combination of qualitative and quantitative results. Quantitative results are typically presented as the Core Damage Frequency (CDF) and as the frequency of an unacceptable radioactive release. In order to judge the acceptability of PSA results, criteria for the interpretation of results and the assessment of their acceptability need to be defined. Safety goals are defined in different ways in different countries and also used differently. Many countries are presently developing them in connection to the transfer to risk-informed regulation of both operating nuclear power plants (NPP) and new designs. However, it is far from self-evident how probabilistic safety criteria should be defined and used. On one hand, experience indicates that safety goals are valuable tools for the interpretation of results from a probabilistic safety assessment (PSA), and they tend to enhance the realism of a risk assessment. On the other hand, strict use of probabilistic criteria is usually avoided. A major problem is the large number of different uncertainties in a PSA model, which makes it difficult to demonstrate the compliance with a probabilistic criterion. Further, it has been seen that PSA results can change a lot over time due to scope extensions, revised operating experience data, method development, changes in system requirements, or increases of level of detail, mostly leading to an increase of the frequency of the calculated risk. This can cause a problem of consistency in the judgments. The first phase of the project (2006) provided a general description of the issue of probabilistic safety goals for nuclear power plants, of important concepts related to the definition and application of safety goals, and of experiences in Finland and Sweden. The second, third and fourth phases (2007-2009) have been concerned with providing guidance related to the resolution of some of the problems

  14. Regulatory supervision of safety indicators; experience with radiation safety indicators in Dukovany nuclear power plant performance

    International Nuclear Information System (INIS)

    Urbancik, L.; Kulich, V.

    2004-01-01

    The State Office for Nuclear Safety uses three sets of indicators describing the following aspects of a favourable nuclear power plant operation: smooth operation in normal circumstances, low risk to the population, and operation with a positive safety attitude. These are three safety-related areas for assessment. Each area has its own set of indicators. Overall operational safety performance indicators were identified for each attribute. From this point, a level of strategic indicators was developed, and finally, a set of specific indicators was set up. While neither the overall indicators nor the strategic indicators are directly measurable, the specific indicators are directly measurable and are targeted during inspection. (author)

  15. Performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance. Performance evaluation examples

    International Nuclear Information System (INIS)

    2005-06-01

    The Japan Society of Civil Engineers has updated performance evaluation recommendations of nuclear power plants outdoor significant civil structures earthquake resistance in June 2005. Based on experimental and analytical considerations, analytical seismic models of soils for underground structures, effects of vertical motions on time-history dynamic analysis and shear fracture of reinforced concretes by cyclic loadings have been incorporated in new recommendations. This document shows outdoor civil structures earthquake resistance and endurance performance evaluation examples based on revised recommendations. (T. Tanaka)

  16. A New Approach of Modeling an Ultra-Super-Critical Power Plant for Performance Improvement

    Directory of Open Access Journals (Sweden)

    Guolian Hou

    2016-04-01

    Full Text Available A suitable model of coordinated control system (CCS with high accuracy and simple structure is essential for the design of advanced controllers which can improve the efficiency of the ultra-super-critical (USC power plant. Therefore, with the demand of plant performance improvement, an improved T-S fuzzy model identification approach is proposed in this paper. Firstly, the improved entropy cluster algorithm is applied to identify the premise parameters which can automatically determine the cluster numbers and initial cluster centers by introducing the concept of a decision-making constant and threshold. Then, the learning algorithm is used to modify the initial cluster center and a new structure of concluding part is discussed, the incremental data around the cluster center is used to identify the local linear model through a weighted recursive least-square algorithm. Finally, the proposed approach is employed to model the CCS of a 1000 MW USC one-through boiler power plant by using on-site measured data. Simulation results show that the T-S fuzzy model built in this paper is accurate enough to reflect the dynamic performance of CCS and can be treated as a foundation model for the overall optimizing control of the USC power plant.

  17. Hospitality Industry Technology Training (HITT). Final Performance Report, April 1, 1989-December 31, 1990.

    Science.gov (United States)

    Mount Hood Community Coll., Gresham, OR.

    This final performance report includes a third-party evaluation and a replication guide. The first section describes a project to develop and implement an articulated curriculum for grades 8-14 to prepare young people for entry into hospitality/tourism-related occupations. It discusses the refinement of existing models, pilot test, curriculum…

  18. Development of web based performance analysis program for nuclear power plant turbine cycle

    International Nuclear Information System (INIS)

    Park, Hoon; Yu, Seung Kyu; Kim, Seong Kun; Ji, Moon Hak; Choi, Kwang Hee; Hong, Seong Ryeol

    2002-01-01

    Performance improvement of turbine cycle affects economic operation of nuclear power plant. We developed performance analysis system for nuclear power plant turbine cycle. The system is based on PTC (Performance Test Code), that is estimation standard of nuclear power plant performance. The system is developed using Java Web-Start and JSP(Java Server Page)

  19. Final technical report: Atmospheric emission analysis for the Hanford Waste Vitrification plant

    International Nuclear Information System (INIS)

    Andrews, G.L.; Rhoads, K.C.

    1996-03-01

    This report is an assessment of chemical and radiological effluents that are expected to be released to the atmosphere from the Hanford Waste Vitrification Plant (HWVP). The report is divided into two sections. In the first section, the impacts of carbon monoxide (CO) and nitrogen oxides as NO 2 have been estimated for areas within the Hanford Site boundary. A description of the dispersion model used to-estimate CO and NO 2 average concentrations and Hanford Site meteorological data has been included in this section. In the second section, calculations were performed to estimate the potential radiation doses to a maximally exposed off-site individual. The model used to estimate the horizontal and vertical dispersion of radionuclides is also discussed

  20. Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.

    2011-07-01

    Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

  1. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Beauheim, Richard L.; Domski, Paul S.; Roberts, Randall M.

    1999-07-01

    This report presents interpretations of hydraulic tests conducted in bedded evaporates of the Salado Formation from May 1992 through May 1995 at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The WIPP is a US Department of Energy research and development facility designed to demonstrate safe disposal of transuranic wastes from the nation's defense programs. The WIPP disposal horizon is located in the lower portion of the Permian Salado Formation. The hydraulic tests discussed in this report were performed in the WIPP underground facility by INTERA inc. (now Duke Engineering and Services, Inc.), Austin, Texas, following the Field Operations Plan and Addendum prepared by Saulnier (1988, 1991 ) under the technical direction of Sandia National Laboratories, Albuquerque, New Mexico.

  2. Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report

    International Nuclear Information System (INIS)

    Gillow, J.B.; Francis, A.

    2011-01-01

    Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid (∼70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO 2 ) and methane (CH 4 ) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

  3. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report

    International Nuclear Information System (INIS)

    Beauheim, Richard L.; Domski, Paul S.; Roberts, Randall M.

    1999-01-01

    This report presents interpretations of hydraulic tests conducted in bedded evaporates of the Salado Formation from May 1992 through May 1995 at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The WIPP is a US Department of Energy research and development facility designed to demonstrate safe disposal of transuranic wastes from the nation's defense programs. The WIPP disposal horizon is located in the lower portion of the Permian Salado Formation. The hydraulic tests discussed in this report were performed in the WIPP underground facility by INTERA inc. (now Duke Engineering and Services, Inc.), Austin, Texas, following the Field Operations Plan and Addendum prepared by Saulnier (1988, 1991 ) under the technical direction of Sandia National Laboratories, Albuquerque, New Mexico

  4. Poor academic performance: A perspective of final year diagnostic radiography students

    International Nuclear Information System (INIS)

    Gqweta, Ntokozo

    2012-01-01

    Introduction: A study was conducted on final year diagnostic radiography students at a University of Technology in Durban. The aim of the study was to investigate the final year diagnostic radiography students' opinions and views on academic performance in order to inform teaching and learning methods. The objectives were: •To explore the students' opinions regarding poor performance. •To identify strategies to improve academic performance. Method: A qualitative, interpretive approach was used to explain and understand the students' lived experiences of their academic performances. A short open ended questionnaire was administered to a cohort of final diagnostic radiography students following feedback on a written assessment. Questionnaire responses were then manually captured and analyzed. Results: Five (5) themes were identified that could possibly be associated with poor academic performance. These themes were, poor preparation, lack of independent study, difficulty in understanding learning content and misinterpretation of assessment questions, inefficient studying techniques as well as perceived improvement strategies. Conclusion: Students identified their inadequate preparation and the lack of dedicated independent studying as the main reasons for poor performance. Students preferred to be taught in an assessment oriented manner. However their identified improvement strategies were aligned with the learner centred approach.

  5. Pre-engineering assessment of Enersolve Demonstration Project. Dairy processing plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-07-15

    This study involved evaluation of a dairy processing plant to demonstrate energy conservation potential and developing a strategy to realize energy savings through retrofitting and revamping. The cheese and whey making plant of Agropur Cooperative Agro-Alimentaire located in Quebec was selected as a representative Canadian dairy processing plant. The pre-engineering assessment included a review of existing facility at the plant and plant operation, identification of plant equipment or process steps where substantial economic benefits would result from retrofitting and revamping, and estimation of budgetary cost for the subsequent engineering, procurement, construction management and monitoring of the retrofitted equipment. 3 figs., 2 tabs.

  6. 30 CFR 827.13 - Coal preparation plants: Interim performance standards.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal preparation plants: Interim performance...-COAL PREPARATION PLANTS NOT LOCATED WITHIN THE PERMIT AREA OF A MINE § 827.13 Coal preparation plants: Interim performance standards. (a) Persons operating or who have operated coal preparation plants after...

  7. WIPP [Waste Isolation Pilot Plant] test phase plan: Performance assessment

    International Nuclear Information System (INIS)

    1990-04-01

    The U.S. Department of Energy (DOE) is responsible for managing the disposition of transuranic (TRU) wastes resulting from nuclear weapons production activities of the United States. These wastes are currently stored nationwide at several of the DOE's waste generating/storage sites. The goal is to eliminate interim waste storage and achieve environmentally and institutionally acceptable permanent disposal of these TRU wastes. The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being considered as a disposal facility for these TRU wastes. This document describes the first of the following two major programs planned for the Test Phase of WIPP: Performance Assessment -- determination of the long-term performance of the WIPP disposal system in accordance with the requirements of the EPA Standard; and Operations Demonstration -- evaluation of the safety and effectiveness of the DOE TRU waste management system's ability to emplace design throughput quantities of TRU waste in the WIPP underground facility. 120 refs., 19 figs., 8 tabs

  8. The ALMT Gene Family Performs Multiple Functions in Plants

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-02-01

    Full Text Available The aluminium activated malate transporter (ALMT gene family is named after the first member of the family identified in wheat (Triticum aestivum L.. The product of this gene controls resistance to aluminium (Al toxicity. ALMT genes encode transmembrane proteins that function as anion channels and perform multiple functions involving the transport of organic anions (e.g., carboxylates and inorganic anions in cells. They share a PF11744 domain and are classified in the Fusaric acid resistance protein-like superfamily, CL0307. The proteins typically have five to seven transmembrane regions in the N-terminal half and a long hydrophillic C-terminal tail but predictions of secondary structure vary. Although widely spread in plants, relatively little information is available on the roles performed by other members of this family. In this review, we summarized functions of ALMT gene families, including Al resistance, stomatal function, mineral nutrition, microbe interactions, fruit acidity, light response and seed development.

  9. Application of Advanced Technology to Improve Plant Performance in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    Advances in computer technologies, signal processing, analytical modeling, and the advent of wireless sensors have provided the nuclear industry with ample means to automate and optimize maintenance activities and improve safety, efficiency, and availability, while reducing costs and radiation exposure to maintenance personnel. This paper provides a review of these developments and presents examples of their use in the nuclear power industry and the financial and safety benefits that they have produced. As the current generation of nuclear power plants have passed their mid-life, increased monitoring of their health is critical to their safe operation. This is especially true now that license renewal of nuclear power plants has accelerated, allowing some plants to operate up to 60 years or more. Furthermore, many utilities are maximizing their power output through uprating projects and retrofits. This puts additional demand and more stress on the plant equipment such as the instrumentation and control (I and C) systems and the reactor internal components making them more vulnerable to the effects of aging, degradation, and failure. In the meantime, the nuclear power industry is working to reduce generation costs by adopting condition-based maintenance strategies and automation of testing activities. These developments have stimulated great interest in on-line monitoring (OLM) technologies and new diagnostic and prognostic methods to anticipate, identify, and resolve equipment and process problems and ensure plant safety, efficiency, and immunity to accidents. The foundation for much of the required technologies has already been established through 40 years of research and development (R and D) efforts performed by numerous organizations, scientists, and engineers around the world including the author. This paper provides examples of these technologies and demonstrates how the gap between some of the more important R and D efforts and end users have been filled

  10. Studies on Steam Absorption Chillers Performance at a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2014-07-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers can be of either single-effect or double effect configuration and the coefficient of performance (COP depends on the selection made. The COP varies from 0.7 to 1.2 depending on the types of chillers. Single effect chillers normally have COP in the range of 0.68 to 0.79. Double effect chillers COP are higher and can reach 1.2. However due to factors such as inappropriate operations and maintenance practices, COP could drop over a period of time. In this work the performances of double effect steam absorption chillers at a cogeneration plant were studied. The study revealed that during the period of eleven years of operation the COP of the chillers deteriorated from 1.25 to 0.6. Regression models on the operation data indicated that the state of deterioration was projected to persist. Hence, it would be recommended that the chillers be considered for replacement since they had already undergone a series of costly repairs.

  11. Performance review: PBMR closed cycle gas turbine power plant

    International Nuclear Information System (INIS)

    Pradeep Kumar, K.N.; Tourlidakis, A.; Pilidis, P.

    2001-01-01

    Helium is considered as one of the ideal working fluid for closed cycle using nuclear heat source due to its low neutron absorption as well as high thermodynamic properties. The commercial viability of the Helium turbo machinery depends on operational success. The past attempts failed due to poor performances manifested in the form of drop in efficiency, inability to reach maximum load, slow response to the transients etc. Radical changes in the basic design were suggested in some instances as possible solutions. A better understanding of the operational performance is necessary for the detailed design of the plant and the control systems. This paper describes the theory behind the off design and transient modelling of a closed cycle gas turbine plant. A computer simulation model has been created specifically for this cycle. The model has been tested for various turbine entry temperatures along the steady state and its replications at various locations were observed. The paper also looks at the various control methods available for a closed cycle and some of the options were simulated. (author)

  12. 76 FR 17160 - Office of New Reactors; Final Interim Staff Guidance on the Review of Nuclear Power Plant Designs...

    Science.gov (United States)

    2011-03-28

    ... design certification (DC) application for new nuclear power reactors under Title 10 of the Code of... NUCLEAR REGULATORY COMMISSION [NRC-2010-0033; DC/COL-ISG-021] Office of New Reactors; Final Interim Staff Guidance on the Review of Nuclear Power Plant Designs Using a Gas Turbine Driven Standby...

  13. Main influence factors on the final energy generation cost of a nuclear power plant in comparison with other energy sources

    International Nuclear Information System (INIS)

    Souza, J.A.M. de; Glardon, C.; Schmidt, R.M.

    1981-01-01

    The main factors in the construction and in the operation of nuclear power plants that affect the final energy generation cost are presented. The structure of the energy generation cost, of the nuclear fuel cost and the total investment are studied. (E.G.) [pt

  14. Evaluation of the feasibility, economic impact, and effectiveness of underground nuclear power plants. Final technical report

    International Nuclear Information System (INIS)

    1978-05-01

    Information on underground nuclear power plants is presented concerning underground nuclear power plant concepts; public health impacts; technical feasibility of underground concepts; economic impacts of underground construction; and evaluation of related issues

  15. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants; FINAL

    International Nuclear Information System (INIS)

    David E. Salt

    2002-01-01

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants

  16. Safety Performance Improvement for Nuclear Power Plants Utilizing THOMAS

    International Nuclear Information System (INIS)

    Kim, Won June; Ryu, Jung Uk; Suh, Kune Y.

    2005-01-01

    THOMAS (Thermal Hydraulics Online Monitoring Advisory System) is equipped with a couple of salient features compared with existing monitoring systems. The first has to do with the three-dimensional (3D) visualization technique to support the nuclear power plant (NPP) operators and personnel using the virtual reality (VR) technology. VR depicts an environment simulated by a computer. Most of the VR environments primarily include visual experiences, displayed either on a monitor or though special stereoscopic goggles. Users can often interactively manipulate a VR environment, either through standard input devices like a keyboard, or through specially designed devices like a cybergloves. Additional devices were not applied the in THOMAS. The visualized model file is brought to the VR space from the computer-aided design (CAD) tool. In the VR space, using mapping, the component color is changed with linked value of the safety variables. Operators thus can easily recognize the plant condition. This is related with the human factor engineering. The second is the function of decision making using the influence diagram logic. The influence diagram logic is based on the total probability and Bayesian theory. The accident modeling is rooted in the emergency operating procedure (EOP). The final goal of this system is, in the accident situation, to present a success path to the operator for the recovery of the NPP system. At the current developing level, the database signals THOMAS. In other words, a spectrum of system analysis codes provides the safety parameter values to the database, which are subsequently supplied to THOMAS through the network

  17. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices

    International Nuclear Information System (INIS)

    1977-09-01

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant

  18. Portsmouth Gaseous Diffusion Plant expansion: final environmental statement. Volume 2. Appendices. [Appendices only

    Energy Technology Data Exchange (ETDEWEB)

    Liverman, James L.

    1977-09-01

    Volume 2 is comprised of appendices: Portsmouth Gaseous Diffusion Plant Existing Facilities; Ecology; Civic Involvement; Social Analysis; Population Projections; Toxicity of Air Pollutants to Biota at Portsmouth Gaseous Diffusion Plant; and Assessment of Noise Effects of an Add-On to the Portsmouth Gaseous Diffusion Plant. (LK)

  19. Performance of mashbean intercropped in cotton planted in different planting patterns

    International Nuclear Information System (INIS)

    Khan, M.B.; Ahmad, S.; Khaliq, A.

    2004-01-01

    Performance of mashbean as intercrop in cotton was studied at the Agronomic Research Area University of Agriculture, Faisalabad (Pakistan) during the years 1996-1997 and 1997-98. cotton variety NIAB 78 was planted in 80-cm apart single rows and 120-cm spaced double row strips. Experiment was laid out in a RCBD with four replications. Net plot size was 7 m x 4.8 m. Mashbean was sown as intercrop in the space between 80-cm apart single rows as well as 120-cm spaced double row strips. Mashbean was also sown as a sole crop (P/sub 3/). The inter crops produce substantially smaller yields when grown in association with cotton in either planting pattern compared to the sole crop yields. However, additional produce obtained from intercrop compensated the losses in cotton production. Intercropping of mashbean, in 120-cm apart double row strips of cotton proved to be feasible as well as convenient for farm operations. (author)

  20. TVA coal-gasification commercial demonstration plant project. Volume 5. Plant based on Koppers-Totzek gasifier. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This volume presents a technical description of a coal gasification plant, based on Koppers-Totzek gasifiers, producing a medium Btu fuel gas product. Foster Wheeler carried out a conceptual design and cost estimate of a nominal 20,000 TPSD plant based on TVA design criteria and information supplied by Krupp-Koppers concerning the Koppers-Totzek coal gasification process. Technical description of the design is given in this volume.

  1. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy's (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE's Environmental Management Program. This volume contains the following appendices: Waste inventory; Summary of the waste management programmatic environmental impact statement and its use in determining human health impacts at treatment sites; Air quality; Life-cycle costs and economic impacts; Transportation; Human health; Facility accidents; Long-term consequence analysis for proposed action and action alternatives; Long-term consequence analysis for no action alternative 2; and Updated estimates of the DOE's transuranic waste volumes

  2. Material development for waste to energy plants. Overlay welding and refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Hansson, A.

    2011-02-15

    Waste is an extremely corrosive fuel. In order to recover a higher percentage of the energy in waste, waste incineration plants have developed from purely heat producing units to heat and power producing units. The change in concept results in higher material temperatures and thereby faster material degradation. As a result material failures have been observed in many waste incineration plants. The purpose of this project was to develop materials with higher resistance to the corrosive elements, in order to reduce the cost of maintenance, increase the availability, and increase the efficiency. The focus is on overlay welding and refractory linings. Inconel 625, alloy 50, alloy 686, and Super 625 offer equivalent corrosion protection at panel walls. 100% overlay performs better than 50% overlay. The corrosion morphology changes with increasing temperature from pitting and general corrosion to pitting and selective corrosion (dendritic core or grain boundaries). The previously observed detrimental effect of Fe on the corrosion resistance was not confirmed. It probably depends on factors such as microstructure of the alloy and local metal temperature. Ni-overlay also reduces the corrosion rates on superheater tubes. However, the superheater environment is less aggressive than the water wall environment. Failure of refractory linings is linked to excess porosity, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, and thermal stress induced crack formation. Free water and not decomposition of hydrates causes spalling and cracking during the initial heating of refractory linings. Finite Element analysis confirms the stress levels between steel and refractory with the higher stress level at the top of the panel wall tube. A number of LCC mixes were formulated, adjusted and tested. Mixes with low open porosities ({approx} 10%) and state of the art resistance to KCl were achieved. (LN)

  3. Performance of Generating Plant: Managing the Changes. Part 1: International availability data exchange for thermal generating plant

    Energy Technology Data Exchange (ETDEWEB)

    Stallard, G.S.; Deschaine, R. [Black and Veatch (United States)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 1 (WG1). WG1's primary focus is to analyse the best ways to measure, evaluate, and apply power plant performance and availability data to promote plant performance improvements worldwide. The paper explores the specific work activities of 2004-2007 to extend traditional analysis and benchmarking frameworks. It is divided into two major topics: Overview of current electric supply industry issues/trends; and, Technical Methods/Tools to evaluate performance in today's ESI.

  4. Total System Performance Assessment Sensitivity Analyses for Final Nuclear Regulatory Commission Regulations

    International Nuclear Information System (INIS)

    Bechtel SAIC Company

    2001-01-01

    This Letter Report presents the results of supplemental evaluations and analyses designed to assess long-term performance of the potential repository at Yucca Mountain. The evaluations were developed in the context of the Nuclear Regulatory Commission (NRC) final public regulation, or rule, 10 CFR Part 63 (66 FR 55732 [DIRS 156671]), which was issued on November 2, 2001. This Letter Report addresses the issues identified in the Department of Energy (DOE) technical direction letter dated October 2, 2001 (Adams 2001 [DIRS 156708]). The main objective of this Letter Report is to evaluate performance of the potential Yucca Mountain repository using assumptions consistent with performance-assessment-related provisions of 10 CFR Part 63. The incorporation of the final Environmental Protection Agency (EPA) standard, 40 CFR Part 197 (66 FR 32074 [DIRS 155216]), and the analysis of the effect of the 40 CFR Part 197 EPA final rule on long-term repository performance are presented in the Total System Performance Assessment--Analyses for Disposal of Commercial and DOE Waste Inventories at Yucca Mountain--Input to Final Environmental Impact Statement and Site Suitability Evaluation (BSC 2001 [DIRS 156460]), referred to hereafter as the FEIS/SSE Letter Report. The Total System Performance Assessment (TSPA) analyses conducted and documented prior to promulgation of the NRC final rule 10 CFR Part 63 (66 FR 55732 [DIRS 156671]), were based on the NRC proposed rule (64 FR 8640 [DIRS 101680]). Slight differences exist between the NRC's proposed and final rules which were not within the scope of the FEIS/SSE Letter Report (BSC 2001 [DIRS 156460]), the Preliminary Site Suitability Evaluation (PSSE) (DOE 2001 [DIRS 155743]), and supporting documents for these reports. These differences include (1) the possible treatment of ''unlikely'' features, events and processes (FEPs) in evaluation of both the groundwater protection standard and the human-intrusion scenario of the individual

  5. Industry based performance indicators for nuclear power plants

    International Nuclear Information System (INIS)

    Connelly, E.M.; Van Hemel, S.B.; Haas, P.M.

    1990-07-01

    This report presents the results of the first phase of a two-phase study, performed with the goal of developing indirect (leading) indicators of nuclear power plant safety, using other industries as a model. It was hypothesized that other industries with similar public safety concerns could serve as analogs to the nuclear power industry. Many process industries have many more years of operating experience, and many more plants than the nuclear power industry, and thus should have accumulated much useful safety data. In Phase 1, the investigators screened a variety of potential industry analogs and chose the chemical/petrochemical manufacturing industry as the primary analog for further study. Information was gathered on safety programs and indicators in the chemical industry, as well as in the nuclear power industry. Frameworks were selected for the development of indicators which could be transferred from the chemical to the nuclear power environment, and candidate sets of direct and indirect safety indicators were developed. Estimates were made of the availability and quality of data in the chemical industry, and plans were developed for further investigating and testing these candidate indicators against safety data in both the chemical and nuclear power industries in Phase 2. 38 refs., 4 figs., 7 tabs

  6. Effects of feed process variables on Hanford Vitrification Plant performance

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Peterson, M.E.; Wagner, R.N.

    1987-01-01

    As a result of nuclear defense activities, high-level liquid radioactive wastes have been generated at the Hanford Site for over 40 yr. The Hanford Waste Vitrification Plant (HWVP) is being proposed to immobilize these wastes in a waste form suitable for disposal in a geologic repository. Prior to vitrification, the waste will undergo several conditioning steps before being fed to the melter. The effect of certain process variables on the resultant waste slurry properties must be known to assure processability of the waste slurry during feed preparation. Of particular interest are the rheological properties, which include the yield stress and apparent viscosity. Identification of the rheological properties of the slurry is required to adequately design the process equipment used for feed preparation (agitators, mixing tanks, concentrators, etc.). Knowledge of the slurry rheological properties is also necessary to establish processing conditions and operational limits for maximum plant efficiency and reliability. A multivariable study was performed on simulated HWVP feed to identify the feed process variables that have a significant impact on rheology during processing. Two process variables were evaluated in this study: (a) the amount of formic acid added to the feed and (b) the degree of shear encountered by the feed during processing. The feed was physically and rheologically characterized at various stages during feed processing

  7. Characterisation of radionuclide migration and plant uptake for performance assessment

    International Nuclear Information System (INIS)

    Mathias, S. A.; Ireson, A. M.; Butler, A. P.; Jackson, B. M.; Wheater, H. S.

    2008-01-01

    Unsaturated vegetated soils are an important component in performance assessment models used to quantify risks associated with deep engineered repositories for underground radioactive waste disposal. Therefore, experimental studies, funded by Nirex over nearly 20 years, have been undertaken at Imperial College to study the transfer of radionuclides (Cl-36, I-129, Tc-99) from contaminated groundwater into crops. In parallel to this has been a modelling programme to aid interpretation of the experimental data, obtain parameter values characterising transport in soil and plant uptake and provide new representations of near-surface processes for performance assessment. A particular challenge in achieving these objectives is that the scale of the experimental work (typically ≤1 m) is much smaller than that required in performance assessment. In this paper, a new methodology is developed for up-scaling model results obtained at the experimental scale for use in catchment scale models. The method is based on characterising soil heterogeneity using soil texture. This has the advantage of allowing hydrological and radionuclide transport parameters to be correlated in a consistent manner. An initial investigation into the calculation of effective (i.e. up-scaled) hydrological and transport parameters has been undertaken and shows the results to be potentially highly (and non-linearly) sensitive to soil properties. Consequently, they have important implications for future site characterisation programmes supporting a proposed underground waste repository. (authors)

  8. The Institute for Sustained Performance, Energy, and Resilience, University of North Carolina, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, Robert [Univ. of North Carolina, Chapel Hill, NC (United States)

    2018-01-20

    This is the final report for the UNC component of the SciDAD Institute for Sustained Performance, Energy, and Resilience. In this report, we describe activities on the SUPER project at RENCI at the University of North Carolina at Chapel Hill. While we focus particularly on UNC, we touch on project-wide activities as well as, on interactions with, and impacts on, other projects.

  9. Guidelines for preparing specifications for nuclear power plants (NCIG-04): Final report

    International Nuclear Information System (INIS)

    1988-04-01

    This document provides guidance for preparing technical requirements used in procurement and installation specifications. It is a compilation of recommend practices for writing specifications to preserve the best guidance coming out of recent years experience from construction of nuclear plants. It is intended to: Establish good practices for the content of specifications used for nuclear power plants; Be applicable to a wide range of specifications used for initial construction of plants and modifications to existing plants, including equipment replacement; and Provide guidance to specification preparers and reviewers

  10. Accident source terms for Light-Water Nuclear Power Plants. Final report

    International Nuclear Information System (INIS)

    Soffer, L.; Burson, S.B.; Ferrell, C.M.; Lee, R.Y.; Ridgely, J.N.

    1995-02-01

    In 1962 tile US Atomic Energy Commission published TID-14844, ''Calculation of Distance Factors for Power and Test Reactors'' which specified a release of fission products from the core to the reactor containment for a postulated accident involving ''substantial meltdown of the core''. This ''source term'', tile basis for tile NRC's Regulatory Guides 1.3 and 1.4, has been used to determine compliance with tile NRC's reactor site criteria, 10 CFR Part 100, and to evaluate other important plant performance requirements. During the past 30 years substantial additional information on fission product releases has been developed based on significant severe accident research. This document utilizes this research by providing more realistic estimates of the ''source term'' release into containment, in terms of timing, nuclide types, quantities and chemical form, given a severe core-melt accident. This revised ''source term'' is to be applied to the design of future light water reactors (LWRs). Current LWR licensees may voluntarily propose applications based upon it

  11. Application of analytical redundancy methods for early fault detection in nuclear power plant. Final report

    International Nuclear Information System (INIS)

    Seliger, R.

    1993-01-01

    The project activities proceeded along the following lines: Determination of the class of non-linear models to serve as a basis for the development of the residue generators. The models are to describe both the nominal and the faulty dynamic processes as precise and well-structured as possible. An aspect of particular importance was to explicitly simulate also modelling defects, such as parameter uncertainties, in order to be able to generate appropriate robustness against such effects. The class of models had to cover nonlinear space of states models for U-tube steam generators, as the algorithms developed were to be applied to this typical example of steam generators in nuclear power plant. Derivation and implementation of a mathematical model for a U-tube steam generator as required. This model was to serve as a basis for the residue generators. Verification of the mathematical decoupling conditions for the model. Implementation of a reference model on the digital computer. This reference model is not to be confused with the mathematical model for the design of the residue generators. The reference model is exclusively for the generation of test data, i.e. for generating transients and defects for testing the performance of the residue generators [de

  12. Sampling of power plant stacks for air toxic emissions: Final report for Phases 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-28

    A test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPs) was conducted . Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical characterization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on the relative toxicological effects of exposure to particulate emissions. Field testing was conducted in two phases. The Phase I field program was performed over the period of August 24 through September 20, 1992, at the Tennessee Valley Authority Widows Creek Unit 8 Power Station, located near Stevenson (Jackson County), Alabama, on the Tennessee River. Sampling activities for Phase II were conducted from September 11 through October 14, 1993. Widows Creek Unit 8 is a 575-megawatt plant that uses bituminous coal averaging 3.7% sulfur and 13% ash. Downstream of the boiler, a venture wet scrubbing system is used for control of both sulfur dioxide and particulate emissions. There is no electrostatic precipitator (ESP) in this system. This system is atypical and represents only about 5% of the US utility industry. However, this site was chosen for this study because of the lack of information available for this particulate emission control system.

  13. Frequency of chest pain in primary care, diagnostic tests performed and final diagnoses.

    Science.gov (United States)

    Hoorweg, Beatrijs Bn; Willemsen, Robert Ta; Cleef, Lotte E; Boogaerts, Tom; Buntinx, Frank; Glatz, Jan Fc; Dinant, Geert Jan

    2017-11-01

    Observational study of patients with chest pain in primary care: determination of incidence, referral rate, diagnostic tests and (agreement between) working and final diagnoses. 118 general practitioners (GPs) in the Netherlands and Belgium recorded all patient contacts during  2weeks. Furthermore, patients presenting with chest pain were registered extensively. A follow-up form was filled in after 30 days. 22 294 patient contacts were registered. In 281 (1.26%), chest pain was a reason for consulting the GP (mean age for men 54.4/women 53 years). In this cohort of 281 patients, in 38.1% of patients, acute coronary syndrome (ACS) was suspected at least temporarily during consultation, 40.2% of patients were referred to secondary care and 512 diagnostic tests were performed by GPs and consulted specialists. Musculoskeletal pain was the most frequent working (26.1%) and final diagnoses (33.1%). Potentially life-threatening diseases as final diagnosis (such as myocardial infarction) accounted for 8.4% of all chest pain cases. In 23.1% of cases, a major difference between working and final diagnoses was found, in 0.7% a severe disease was initially missed by the GP. Chest pain was present in 281 patients (1.26% of all consultations). Final diagnoses were mostly non-life-threatening. Nevertheless, in 8.4% of patients with chest pain, life-threatening underlying causes were identified. This seems reflected in the magnitude and wide variety of diagnostic tests performed in these patients by GPs and specialists, in the (safe) overestimation of life-threatening diseases by GPs at initial assessment and in the high referral rate we found. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  14. Results of fuel management at Embalse nuclear power plant. Analysis of performance at other plants

    International Nuclear Information System (INIS)

    Paz, A.O. de; Moreno, C.A.; Vinez, J.C.

    1987-01-01

    The operating experience of fuel management at the Embalse nuclear power plant from new core to the present situation (approximately 937 days at full power) is described. The average core burnup is about 4000 MW d/t U and the monthly averaged discharge burnup about 7800 MW d/t U. The neutron flux distribution is calculated by means of program PUMA-C, which is periodically checked by comparison between calculated and measured values of 102 vanadium detectors. A comparison of the performance of other reactors type CANDU 600 (Point Lepreau, Gentilly 2, Wolsung) from the point of view of fuel strategy is also presented. The data to perform the comparison were obtained by means of the CANDU system of information exchange between users (COG). (Author)

  15. LIFAC sorbent injection desulfurization demonstration project. Final report, volume II: Project performance and economics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This publication discusses the demonstration of the LIFAC sorbent injection technology at Richmond Power and Light`s Whitewater Valley Unit No. 2, performed under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5 to 1. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North America (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Public Design Report Volume 2: Project Performance and Economics is to consolidate, for public use, the technical efficiency and economy of the LIFAC Process. The report has been prepared pursuant to the Cooperative Agreement No. DE-FC22-90PC90548 between LIFAC NA and the U.S. Department of Energy.

  16. Evaluation of the Field Performance of Residential Fuel Cells: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Torrero, E.; McClelland, R.

    2004-05-01

    Distributed generation has attracted significant interest from rural electric cooperatives and their customers. Cooperatives have a particular nexus because of inherently low customer density, growth patterns at the end of long lines, and an influx of customers and high-tech industries seeking to diversify out of urban environments. Fuel cells are considered a particularly interesting DG candidate for these cooperatives because of their power quality, efficiency, and environmental benefits. The National Rural Electric Cooperative Association Cooperative Research Network residential fuel cell program demonstrated RFC power plants and assessed related technical and application issues. This final subcontract report is an assessment of the program's results. This 3-year program leveraged Department of Energy (DOE) and National Renewable Energy Laboratory (NREL) funding.

  17. Performance test of nutrient control equipment for hydroponic plants

    Science.gov (United States)

    Rahman, Nurhaidar; Kuala, S. I.; Tribowo, R. I.; Anggara, C. E. W.; Susanti, N. D.

    2017-11-01

    Automatic control equipment has been made for the nutrient content in irrigation water for hydroponic plants. Automatic control equipment with CCT53200E conductivity controller to nutrient content in irrigation water for hydroponic plants, can be used to control the amount of TDS of nutrient solution in the range of TDS numbers that can be set according to the range of TDS requirements for the growth of hydroponically cultivated crops. This equipment can minimize the work time of hydroponic crop cultivators. The equipment measurement range is set between 1260 ppm up to 1610 ppm for spinach plants. Caisim plants were included in this experiment along with spinach plants with a spinach plants TDS range. The average of TDS device is 1450 ppm, while manual (conventional) is 1610 ppm. Nutrient solution in TDS controller has pH 5,5 and temperature 29,2 °C, while manual is pH 5,6 and temperature 31,3 °C. Manually treatment to hydroponic plant crop, yields in an average of 39.6 grams/plant, greater than the yield of spinach plants with TDS control equipment, which is in an average of 24.6 grams / plant. The yield of caisim plants by manual treatment is in an average of 32.3 grams/crop, less than caisim crop yields with TDS control equipment, which is in an average of 49.4 grams/plant.

  18. Control of hydrogen sulfide emission from geothermal power plants. Volume III. Final report: demonstration plant equipment descriptions, test plan, and operating instructions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, F.C.; Harvey, W.W.; Warren, R.B.

    1977-01-01

    The elements of the final, detailed design of the demonstration plant for the copper sulfate process for the removal of hydrogen sulfide from geothermal steam are summarized. Descriptions are given of all items of equipment in sufficient detail that they can serve as purchase specifications. The process and mechanical design criteria which were used to develop the specifications, and the process descriptions and material and energy balance bases to which the design criteria were applied are included. (MHR)

  19. St. Louis demonstration final report: refuse processing plant equipment, facilities, and environmental evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Fiscus, D.E.; Gorman, P.G.; Schrag, M.P.; Shannon, L.J.

    1977-09-01

    The results are presented of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and the power plants. Data on plant material flows and operating parameters, plant operating costs, characteristics of plant material flows, and emissions from various processing operations were obtained during a testing program encompassing 53 calendar weeks. Refuse derived fuel (RDF) is the major product (80.6% by weight) of the refuse processing plant, the other being ferrous metal scrap, a marketable by-product. Average operating costs for the entire evaluation period were $8.26/Mg ($7.49/ton). The average overall processing rate for the period was 168 Mg/8-h day (185.5 tons/8-h day) at 31.0 Mg/h (34.2 tons/h). Future plants using an air classification system of the type used at the St. Louis demonstration plant will need an emissions control device for particulates from the large de-entrainment cyclone. Also in the air exhaust from the cyclone were total counts of bacteria and viruses several times higher than those of suburban ambient air. No water effluent or noise exposure problems were encountered, although landfill leachate mixed with ground water could result in contamination, given low dilution rates.

  20. Sustainable organic plant breeding. Final report: a vision, choices, consequences and steps

    NARCIS (Netherlands)

    Lammerts van Bueren, E.T.; Hulscher, M.; Haring, M.; Jongerden, J.; Mansvelt, van J.D.; Nijs, den A.P.M.; Ruivenkamp, G.T.P.

    1999-01-01

    In general, the characteristics of organic varieties - and by extension of organic plant breeding - differ from that of conventional breeding systems and conventional varieties. Realising an organic plant breeding system and subsequently steering it to meet changing demands is no less than a mammoth

  1. Regulation of polyamine synthesis in plants. Final progress report, July 1, 1991--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Malmberg, R.L.

    1995-07-01

    This research focused on unusual post-translational modifications occuring in a arginine decarboxylase cDNA clone in oats. A novel regulatory mechanism for polyamines was explored and an attempt was made to characterize it. A plant ornithine decarboxylase cDNA was identified in Arabidopsis. Further work remains on the mechanisms of polyamine regulation and function in plants.

  2. A Post Licensing Study of Community Effects at Two Operating Nuclear Power Plants. Final Report.

    Science.gov (United States)

    Purdy, Bruce J.; And Others

    In an effort to identify and assess the social, economic, and political effects of nuclear power plant construction and operation upon two host communities (Plymouth, Massachusetts and Waterford, Connecticut), a post-licensing review revealed that the primary impact of the nuclear power plants in both communities was an increase in the property…

  3. Clinical observed performance evaluation: a prospective study in final year students of surgery.

    LENUS (Irish Health Repository)

    Markey, G C

    2010-06-24

    We report a prospective study of clinical observed performance evaluation (COPE) for 197 medical students in the pre-qualification year of clinical education. Psychometric quality was the main endpoint. Students were assessed in groups of 5 in 40-min patient encounters, with each student the focus of evaluation for 8 min. Each student had a series of assessments in a 25-week teaching programme. Over time, several clinicians from a pool of 16 surgical consultants and registrars evaluated each student by direct observation. A structured rating form was used for assessment data. Variance component analysis (VCA), internal consistency and inter-rater agreement were used to estimate reliability. The predictive and convergent validity of COPE in relation to summative OSCE, long case, and overall final examination was estimated. Median number of COPE assessments per student was 7. Generalisability of a mean score over 7 COPE assessments was 0.66, equal to that of an 8 x 7.5 min station final OSCE. Internal consistency was 0.88-0.97 and inter-rater agreement 0.82. Significant correlations were observed with OSCE performance (R = 0.55 disattenuated) and long case (R = 0.47 disattenuated). Convergent validity was 0.81 by VCA. Overall final examination performance was linearly related to mean COPE score with standard error 3.7%. COPE permitted efficient serial assessment of a large cohort of final year students in a real world setting. Its psychometric quality compared well with conventional assessments and with other direct observation instruments as reported in the literature. Effect on learning, and translation to clinical care, are directions for future research.

  4. Application of Advanced Technology to Improve Plant Performance. Safety and Performance in Current NPPs

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    2011-01-01

    Advances in computer technologies, signal processing, analytical modeling, and the advent of wireless sensors have provided the nuclear industry with ample means to automate and optimize maintenance activities and improve safety, efficiency, and availability, while reducing costs and radiation exposure to maintenance personnel. This paper provides a review of these developments and presents examples of their use in the nuclear power industry and the financial and safety benefits that they have produced. As the current generation of nuclear power plants have passed their mid-life, increased monitoring of their health is critical to their safe operation. This is especially true now that license renewal of nuclear power plants has accelerated, allowing some plants to operate up to 60 years or more. Furthermore, many utilities are maximizing their power output through uprating projects and retrofits. This puts additional demand and more stress on the plant equipment such as the instrumentation and control (I and C) systems and the reactor internal components making them more vulnerable to the effects of aging, degradation, and failure. In the meantime, the nuclear power industry is working to reduce generation costs by adopting condition-based maintenance strategies and automation of testing activities. These developments have stimulated great interest in on-line monitoring (OLM) technologies and new diagnostic and prognostic methods to anticipate, identify, and resolve equipment and process problems and ensure plant safety, efficiency, and immunity to accidents. The foundation for much of the required technologies has already been established through 40 years of research and development (R and D) efforts performed by numerous organizations, scientists, and engineers around the world including the author. This paper provides examples of these technologies and demonstrates how the gap between some of the more important R and D efforts and end users have been filled

  5. Radon transport from uranium mill tailings via plant transpiration. Final report

    International Nuclear Information System (INIS)

    Lewis, B.A.G.

    1985-01-01

    Radon exhalation by vegetation planted on bare or soil-covered uranium mill wastes was studied based on an assumption that radon transport from soil to atmosphere via plants takes place in the transpiration stream. Results show that radon exhalation by plants is inversely related to water transpired, primarily a dilution effect. Radon released appeared directly related to leaf area, suggesting that radon is carried into the plant by mass flow in water; however, once within the plant, radon very likely diffuses through the entire leaf cuticle, while water vapor diffuses primarily through open stomates. Application of a computerized model for water transpiration to radon exhalation is not immediately useful until the role of water in radon transport is defined throughout the continuum from rooting medium to the atmosphere. Until then, a simple calculation based on leaf area index and Ra-226 concentration in the rooting medium can provide an estimate of radon release from revegetated wastes containing radium

  6. Stress test of the nuclear power plants performed in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.H.; Teng, W.C.; Chang, S.; Chen, Y.B. [Atomic Energy Council, Taipei, Taiwan (China)

    2014-07-01

    In the wake of Japan's Fukushima Daiichi Nuclear Power Plants event, the Atomic Energy Council (AEC) has asked Taiwan's Nuclear Power Plant operator (TPC) to re-examine and re-evaluate the vulnerabilities of its nuclear units, and furthermore, take possible countermeasures against extreme natural disasters, including earthquake, tsunami and rock-and-mud slide. The evaluation process should be based on both within and beyond Design Basis Accidents, by reference to the actions recommended by the world nuclear authorities and groups, namely, IAEA, USNRC, NEI, ENSREG and WANO. Taiwan is a very densely populated region of the world. Furthermore, like Japan, due to its geophysical position, Taiwan is prone to large scale earthquakes, and although historically rare, Taiwan also faces the potential risk of tsunamis. AEC also asked TPC to perform the stress test following the specification given by WENRA (later ENSREG) and conducted in all the EU's nuclear reactors. After completion of the stress test for all the nuclear power plants, AEC was trying to have the reports peer reviewed by international organizations, as EU did. The OECD/NEA accepted AEC's request and formed a review team specific to the review of Taiwan's National Report for the Stress Test. There were 18 follow-up items after the NEA's review. Based on these items, AEC developed five orders to require TPC further enhancing their capabilities to cope with extreme natural hazards. The ENSREG also formed a nine-expert review team for Taiwan's Stress Test in response to AEC's request almost at the same time as the OECD/NEA. The ENSREG review team began their works in June 2013 by desktop review, and ended in early October 2013 by country visit to Taiwan. While the assessment of post-Fukushima evaluation reveals neither immediate nuclear safety concerns nor threats to the public health and safety, AEC requested that TPC focus on strengthening its re-evaluation on design

  7. Stress test of the nuclear power plants performed in Taiwan

    International Nuclear Information System (INIS)

    Wu, C.H.; Teng, W.C.; Chang, S.; Chen, Y.B.

    2014-01-01

    In the wake of Japan's Fukushima Daiichi Nuclear Power Plants event, the Atomic Energy Council (AEC) has asked Taiwan's Nuclear Power Plant operator (TPC) to re-examine and re-evaluate the vulnerabilities of its nuclear units, and furthermore, take possible countermeasures against extreme natural disasters, including earthquake, tsunami and rock-and-mud slide. The evaluation process should be based on both within and beyond Design Basis Accidents, by reference to the actions recommended by the world nuclear authorities and groups, namely, IAEA, USNRC, NEI, ENSREG and WANO. Taiwan is a very densely populated region of the world. Furthermore, like Japan, due to its geophysical position, Taiwan is prone to large scale earthquakes, and although historically rare, Taiwan also faces the potential risk of tsunamis. AEC also asked TPC to perform the stress test following the specification given by WENRA (later ENSREG) and conducted in all the EU's nuclear reactors. After completion of the stress test for all the nuclear power plants, AEC was trying to have the reports peer reviewed by international organizations, as EU did. The OECD/NEA accepted AEC's request and formed a review team specific to the review of Taiwan's National Report for the Stress Test. There were 18 follow-up items after the NEA's review. Based on these items, AEC developed five orders to require TPC further enhancing their capabilities to cope with extreme natural hazards. The ENSREG also formed a nine-expert review team for Taiwan's Stress Test in response to AEC's request almost at the same time as the OECD/NEA. The ENSREG review team began their works in June 2013 by desktop review, and ended in early October 2013 by country visit to Taiwan. While the assessment of post-Fukushima evaluation reveals neither immediate nuclear safety concerns nor threats to the public health and safety, AEC requested that TPC focus on strengthening its re-evaluation on design

  8. Probabilistic safety goals for nuclear power plants; Phases 2-4. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, L.; Knochenhauer, M. (Scandpower AB (Sweden)); Holmberg, J.-E.; Rossi, J. (VTT Technical Research Centre of Finland (Finland))

    2011-05-15

    Safety goals are defined in different ways in different countries and also used differently. Many countries are presently developing them in connection to the transfer to risk-informed regulation of both operating nuclear power plants (NPP) and new designs. However, it is far from self-evident how probabilistic safety criteria should be defined and used. On one hand, experience indicates that safety goals are valuable tools for the interpretation of results from a probabilistic safety assessment (PSA), and they tend to enhance the realism of a risk assessment. On the other hand, strict use of probabilistic criteria is usually avoided. A major problem is the large number of different uncertainties in a PSA model, which makes it difficult to demonstrate the compliance with a probabilistic criterion. Further, it has been seen that PSA results can change a lot over time due to scope extensions, revised operating experience data, method development, changes in system requirements, or increases of level of detail, mostly leading to an increase of the frequency of the calculated risk. This can cause a problem of consistency in the judgments. This report presents the results from the second, third and fourth phases of the project (2007-2009), which have dealt with providing guidance related to the resolution of some specific problems, such as the problem of consistency in judgement, comparability of safety goals used in different industries, the relationship between criteria on different levels, and relations between criteria for level 2 and 3 PSA. In parallel, additional context information has been provided. This was achieved by extending the international overview by contributing to and benefiting from a survey on PSA safety criteria which was initiated in 2006 within the OECD/NEA Working Group Risk. The results from the project can be used as a platform for discussions at the utilities on how to define and use quantitative safety goals. The results can also be used by

  9. Probabilistic safety goals for nuclear power plants; Phases 2-4. Final report

    International Nuclear Information System (INIS)

    Bengtsson, L.; Knochenhauer, M.; Holmberg, J.-E.; Rossi, J.

    2011-05-01

    Safety goals are defined in different ways in different countries and also used differently. Many countries are presently developing them in connection to the transfer to risk-informed regulation of both operating nuclear power plants (NPP) and new designs. However, it is far from self-evident how probabilistic safety criteria should be defined and used. On one hand, experience indicates that safety goals are valuable tools for the interpretation of results from a probabilistic safety assessment (PSA), and they tend to enhance the realism of a risk assessment. On the other hand, strict use of probabilistic criteria is usually avoided. A major problem is the large number of different uncertainties in a PSA model, which makes it difficult to demonstrate the compliance with a probabilistic criterion. Further, it has been seen that PSA results can change a lot over time due to scope extensions, revised operating experience data, method development, changes in system requirements, or increases of level of detail, mostly leading to an increase of the frequency of the calculated risk. This can cause a problem of consistency in the judgments. This report presents the results from the second, third and fourth phases of the project (2007-2009), which have dealt with providing guidance related to the resolution of some specific problems, such as the problem of consistency in judgement, comparability of safety goals used in different industries, the relationship between criteria on different levels, and relations between criteria for level 2 and 3 PSA. In parallel, additional context information has been provided. This was achieved by extending the international overview by contributing to and benefiting from a survey on PSA safety criteria which was initiated in 2006 within the OECD/NEA Working Group Risk. The results from the project can be used as a platform for discussions at the utilities on how to define and use quantitative safety goals. The results can also be used by

  10. District heating and cooling systems for communities through power plant retrofit and distribution network. Final report. Volume I. Text

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-15

    An analysis was performed investigating the potential of retrofitting Detroit Edison's Conners Creek power plant to supply district heating and cooling to an area surrounding the plant and within the City of Detroit. A detailed analysis was made of the types and ages of the buildings in the service area as a basis for establishing loads. The analysis of the power plant established possible modifications to the turbines to serve the load in the area. Based upon the service area data and plant retrofit schemes, a distribution system was developed incrementally over a 20-y period. An economic analysis of the system was performed to provide cash flows and payback periods for a variety of energy costs, system costs, and escalation rates to determine the economic viability of the system analyzed. The legal and regulatory requirements required of the district heating and cooling system owner in Michigan were also analyzed to determine what conditions must be met to own and operate the system.

  11. High Performance Fuel Laboratory, Hanford Reservation, Richland, Washington. Final environmental impact statement

    International Nuclear Information System (INIS)

    1977-09-01

    The High Performance Fuel Laboratory (HPFL) will provide pilot scale tests of manufacturing processes, equipment, and handling systems and of accountability and safeguards, methods, and equipment while keeping radiological and chemical exposures of the workers, public, and environment at the lowest practicable levels. The experience gained from designing, constructing and operating the HPFL can be used in future commitments to commercial fuel fabrication plants in the late 1980s and beyond for processing of nuclear fuel. The HPFL site is located in the 400 Area of the 559-square mile, federally owned Hanford Reservation. This environmental impact statement considers effects of the HPFL under normal conditions and in the event of an accident

  12. Final environmental statement. Final addendum to Part II: Manufacture of floating nuclear power plants by Offshore Power Systems. DOCKET-STN--50-437

    International Nuclear Information System (INIS)

    1978-06-01

    This Addendum to Part II of the Final Environmental Statement related to manufacture of floating nuclear power plants by Offshore Power Systems (OPS), NUREG-0056, issued September 1976, was prepared by the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation. The staff's basic evaluation is presented in NUREG-0056. The current Addendum provides further consideration of a number of topics discussed in NUREG-0056, particularly additional consideration of shore zone siting at estuarine and ocean regions. This Summary and Conclusions recapitulates and is cumulative for Part II of the FES and the current Addendum. Augmentations to the Summary and Conclusions presented in Part II of the FES and arising from the evaluations contained in this Addendum are italicized

  13. Development and Implementation of a Condition Based Maintenance Program for Geothermal Power Plants; FINAL

    International Nuclear Information System (INIS)

    Steve Miller; Jim Eddy; Murray Grande; Shawn Bratt; Manuchehr Shirmohamadi

    2002-01-01

    This report describes the development of the RCM team, identifying plant assets and developing an asset hierarchy, the development of sample Failure Mode Effects Analysis (FMEAs), identifying and prioritizing plant systems and components for RCM analysis, and identifying RCM/CBM software/hardware vendors. It also includes the Failure Mode Effects Analysis (FMEA) for all Class I Systems, Maintenance Task Assignments, use of Conditioned Based Maintenance (CBM) Tools and Displays of the RCM software System Development to date

  14. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    International Nuclear Information System (INIS)

    1980-01-01

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options

  15. Input of biomass in power plants for power generation. Calculation of the financial gap. Final report

    International Nuclear Information System (INIS)

    Van Tilburg, X.; De Vries, H.J.; Pfeiffer, A.E.; Cleijne, J.W.

    2005-09-01

    The Ministry of Economic Affairs has requested ECN and KEMA to answer two questions. (1) Are the costs and benefits of projects in which wood-pellets are co-fired in a coal fired power plant representative for those of bio-oil fueled co-firing projects in a gas fired plant?; and (2) Are new projects representative for existing projects? To answer these questions, ECN and KEMA have calculated the financial gaps in six different situations: co-firing bio-oil in a gas fired power plant; co-firing bio-oil in a coal fired power plant; gasification of solid biomass; co-firing wood pellets in a coal fired power plant; co-firing agricultural residues in a coal fired power plant; and co-firing waste wood (A- and B-grade) in a coal fired power plant. The ranges and reference cases show that co-firing bio-oil on average has a smaller financial gap than the solid biomass reference case. On average it can also be concluded that when using waste wood or agro-residues, the financial gaps are smaller. Based on these findings it is concluded that: (1) The reference case of co-firing wood pellets in a coal fired power plant are not representative for bio-fuel options. A new category for bio-oil options seems appropriate; and (2) The financial gap of new projects as calculated in November 2004, is often higher then the ranges for existing projects indicate [nl

  16. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-25

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options.

  17. Portsmouth Gasseous Diffusion Plant site, Piketon, Ohio. Final environmental impact statement. Volume 1

    International Nuclear Information System (INIS)

    1977-05-01

    This environmental statement provides a detailed analysis of the environmental effects associated with continued operation of the Portsmouth Gaseous Diffusion Plant, one of the three government-owned uranium enrichment plants operated by the Energy Research and Development Administration (ERDA). The Portsmouth facility, which has been operating for over twenty years, is located in Pike County, Ohio, on a 4000-acre federally owned reservation. The uranium enrichment capacity of the plant is currently being increased through a cascade improvement program (CIP) and a cascade uprating program (CUP). This environmental statement evaluates the Portsmouth facility at the fully uprated CUP production level. Environmental impacts of the production of offsite electric power for the Portsmouth facility are also assessed. The bulk of this power is supplied by the Ohio Valley Electric Corporation (OVEC) from two coal-fired plants, the Clifty Creek Power Plant near Madison, Indiana, and the Kyger Creek Power Plant near Cheshire, Ohio. The remaining required power will be obtained on a system basis through OVEC from the 15 sponsoring utilities of OVEC. The draft statement was issued for public comment on February 15, 1977, and public hearing to afford the public further opportunity to comment was held in Cincinnati, Ohio, on April 5, 1977

  18. Generic environmental impact statement for license renewal of nuclear plants. Final report

    International Nuclear Information System (INIS)

    1996-05-01

    This GEIS examines the possible environmental impacts that could occur as a result of renewing the licenses of individual nuclear power plants under 10 CFR 54. To the extent possible, it establishes the bounds and significance of these potential impacts. The analysis encompasses all operating light-water reactors. For each type of environmental impact, the GEIS attempts to establish generic findings covering as many plants as possible. While plant and site-specific information is used in developing the generic findings, the NRC does not intend for the GEIS to be a compilation of individual plant environmental impacts statements. This document has three principal objectives: (1) to provide an understanding of the types and severity of environmental impacts that may occur as a result of license renewal, (2) to identify and assess those impacts that are expected to be generic to license renewal, and (3) to support rulemaking (10 CFR 51) to define the number and scope of issues that need to be addressed by the applicants in plant-by-plant license renewal proceedings

  19. Application of balanced score card in the development of performance indicator system in nuclear power plant

    International Nuclear Information System (INIS)

    Shen Shuguang; Huang Fang; Fang Zhaoxia

    2013-01-01

    Performance indicator, which is one of ten performance monitoring tools recommended by WANO performance improvement model, has become an effective tool for performance improvement of nuclear power plant. At present, performance indicator system has been built in nuclear power plant. However, how to establish the performance indicator system that is reasonable and applicable for plant is still a question to be discussed. Performance indictor is closely tied to the strategic direction of a corporation by a balanced score card, and the performance indicator system is established from the point of performance management and strategic development. The performance indicator system of nuclear power plant is developed by introducing the balanced score card, and can be as a reference for other domestic nuclear power plants. (authors)

  20. Regulatory basis for the Waste Isolation Pilot Plant performance assessment

    International Nuclear Information System (INIS)

    Howard, Bryan A.; Crawford, M.B.; Galson, D.A.; Marietta, Melvin G.

    2000-01-01

    The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA to demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal

  1. The 1996 performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Anderson, D.R.; Jow, H.N.; Marietta, M.G.; Chu, M.S.Y.; Shephard, L.E.; Helton, J.C.; Basabilvazo, G.

    1998-01-01

    The Waste Isolation Pilot Plant (WIPP) is under development by the US Department of Energy (DOE) for the geologic disposal of transuranic (TRU) waste that has been generated at government defense installations in the United States. The WIPP is located in an area of low population density in southeastern New Mexico. Waste disposal will take place in excavated chambers in a bedded salt formation approximately 655 m below the land surface. This presentation describes a performance assessment (PA) carried out at Sandia National Laboratories (SNL) to support the Compliance Certification Application (CCA) made by the DOE to the US Environmental Protection Agency (EPA) in October, 1996, for the certification of the WIPP for the disposal of TRU waste. Based on the CCA supported by the PA described in this presentation, the EPA has issued a preliminary decision to certify the WIPP for the disposal of TRU waste. At present (April 1998), it appears likely that the WIPP will be in operation by the end of 1998

  2. Performance analysis of PV plants: Optimization for improving profitability

    International Nuclear Information System (INIS)

    Díez-Mediavilla, M.; Alonso-Tristán, C.; Rodríguez-Amigo, M.C.; García-Calderón, T.; Dieste-Velasco, M.I.

    2012-01-01

    Highlights: ► Real PV production from two 100 kW p grid-connected installations is conducted. ► Data sets on production were collected over an entire year. ► Economic results highlight the importance of properly selecting the system components. ► Performance of PV plants is directly related to improvements of all components. - Abstract: A study is conducted of real PV production from two 100 kW p grid-connected installations located in the same area, both of which experience the same fluctuations in temperature and radiation. Data sets on production were collected over an entire year and both installations were compared under various levels of radiation. The installations were assembled with mono-Si panels, mounted on the same support system, and the power supply was equal for the inverter and the measurement system; the same parameters were also employed for the wiring, and electrical losses were calculated in both cases. The results, in economic terms, highlight the importance of properly selecting the system components and the design parameters for maximum profitability.

  3. How does synchrony with host plant affect the performance of an outbreaking insect defoliator?

    Science.gov (United States)

    Fuentealba, Alvaro; Pureswaran, Deepa; Bauce, Éric; Despland, Emma

    2017-08-01

    Phenological mismatch has been proposed as a key mechanism by which climate change can increase the severity of insect outbreaks. Spruce budworm (Choristoneura fumiferana) is a serious defoliator of North American conifers that feeds on buds in the early spring. Black spruce (Picea mariana) has traditionally been considered a poor-quality host plant since its buds open later than those of the preferred host, balsam fir (Abies balsamea). We hypothesize that advancing black spruce budbreak phenology under a warmer climate would improve its phenological synchrony with budworm and hence increase both its suitability as a host plant and resulting defoliation damage. We evaluated the relationship between tree phenology and both budworm performance and tree defoliation by placing seven cohorts of budworm larvae on black spruce and balsam fir branches at different lags with tree budburst. Our results show that on both host plants, spruce budworm survival and pupal mass decrease sharply when budbreak occurs prior to larval emergence. By contrast, emergence before budbreak decreases survival, but does not negatively impact growth or reproductive output. We also document phytochemical changes that occur as needles mature and define a window of opportunity for the budworm. Finally, larvae that emerged in synchrony with budbreak had the greatest defoliating effect on black spruce. Our results suggest that in the event of advanced black spruce phenology due to climate warming, this host species will support better budworm survival and suffer increased defoliation.

  4. The role of alternative cyanide-insensitive respiration in plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Raskin, Ilya

    1997-09-29

    This DOE funded research concentrated on the investigation of the role of respiration and oxidative stress in plant biology. Initially the authors concentrated on the possible role of cyanide-insensitive respiration in counteracting the deleterious effects of chilling stress. Although plants are considered to be poikilotherms, there are a few examples of thermogenesis, in which the tissue temperature increases well above ambient. They suggested that differences between thermogenic and non-thermogenic plants may be quantitative rather than qualitative, and that heat from increased respiration may have a local protective effect on the mitochondria, slowing or reducing the effects of chilling. They proposed that this is accomplished by a large increase in respiration, predominantly via the alternative pathway. They measured the increases in respiration, particularly via the alternative pathway, in response to chilling. They have also quantified the associated increases in heat evolution in response to chilling in a number of plant species using a microcalorimeter. For example, after 8 h exposure to 8 C, heat evolution in chilling-sensitive species increased 47--98%, compared to 7--22% for the chilling-resistant species. No increase in heat evolution was observed in the extremely chilling-sensitive ornamental Episcka cupreata (Hook). Increases in heat evolution were observed when plants were chilled in constant light or in the dark, but not when plants were chilled at high humidity. Heat evolution by mitochondria isolated from potato tuber slices were also measured. These values, together with measurements of the heat capacity of isolated mitochondria and counting of the mitochondria by flow cytometry, allow calculation of theoretical maximal rates of heating and the heat produced per mitochondrion. The obtained data was consistent with the protective role of respiratory heat production in cold-stressed plants.

  5. Inter-plant coordination and its relationships with supply chain integration and operational performance

    DEFF Research Database (Denmark)

    Yang, Cheng; Chaudhuri, Atanu; Farooq, Sami

    2016-01-01

    Based on the data obtained from the sixth version of International Manufacturing Strategy Survey (IMSS VI), this paper explores the relationships at the level of plant between (1) inter-plant coordination and operational performance, and (2) between inter-plant coordination and internal/external ......Based on the data obtained from the sixth version of International Manufacturing Strategy Survey (IMSS VI), this paper explores the relationships at the level of plant between (1) inter-plant coordination and operational performance, and (2) between inter-plant coordination and internal...

  6. Inter-varietal interactions among plants in genotypically diverse mixtures tend to decrease herbivore performance.

    Science.gov (United States)

    Grettenberger, Ian M; Tooker, John F

    2016-09-01

    Much research has explored the effects of plant species diversity on herbivore populations, but far less has considered effects of plant genotypic diversity, or how abiotic stressors, like drought, can modify effects. Mechanisms by which plant genotypic diversity affects herbivore populations remain largely unresolved. We used greenhouse studies with a model system of wheat (Triticum aestivum L.) and bird cherry-oat aphid (Rhopalosiphum padi L.) to determine whether the genotypic diversity of a plant's neighborhood influences performance and fitness of herbivores on a focal plant and if drought changes the influence of neighborhood diversity. Taken across all varieties we tested, plant-plant interactions in diverse neighborhoods reduced aphid performance and generated associational resistance, although effects on aphids depended on variety identity. In diverse mixtures, drought stress greatly diminished the genotypic diversity-driven reduction in aphid performance. Neighborhood diversity influenced mother aphid size, and appeared to partially explain how plant-plant interactions reduced the number of offspring produced in mixtures. Plant size did not mediate effects on aphid performance, although neighborhood diversity reduced plant mass across varieties and watering treatments. Our results suggest inter-varietal interactions in genotypic mixtures can affect herbivore performance in the absence of herbivore movement and that abiotic stress may diminish any effects. Accounting for how neighborhood diversity influences resistance of an individual plant to herbivores will help aid development of mixtures of varieties for managing insect pests and clarify the role of plant genotypic diversity in ecosystems.

  7. Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G.

    1982-03-01

    As a result of prior EPRI-sponsored studies, it was concluded that a research program should be designed and implemented to provide an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions. This two-volume report contains a research plan which is based on a review of the present state of the art and which defines the necessary R and D program and estimates the benefits and costs of the program. The recommended research program consists of 30 interrelated tasks. It is designed to perform the needed research; to verify the results; to develop improved components; and to publish computer-aided design methods, pump specification guidelines, and a troubleshooting manual. Most of the technology proposed in the research plan is applicable to nuclear power plants as well as to fossil-fired plants. This volume discusses the design, performance and failures of feed pumps, and recommendations for research on pump dynamics, design, and specifications.

  8. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    International Nuclear Information System (INIS)

    Telander, M.R.; Westerman, R.E.

    1997-03-01

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N 2 , CO 2 , H 2 S, and H 2 . Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H 2 on an equimolar basis with Fe reacted. Presence of CO 2 caused the initial reaction to proceed more rapidly, but CO 2 -induced passivation stopped the reaction if the CO 2 were present in sufficient quantities. Addition of H 2 S to a CO 2 -passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H 2 S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO 2 to an H 2 S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N 2 , CO 2 , and H 2 S except for the rapid and complete reaction between Cu-base materials and H 2 S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO 2 or H 2 S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures

  9. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Telander, M.R.; Westerman, R.E. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1997-03-01

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  10. Behind the Final Grade in Hybrid v. Traditional Courses: Comparing Student Performance by Assessment Type, Core Competency, and Course Objective

    Science.gov (United States)

    Bain, Lisa Z.

    2012-01-01

    There are many different delivery methods used by institutions of higher education. These include traditional, hybrid, and online course offerings. The comparisons of these typically use final grade as the measure of student performance. This research study looks behind the final grade and compares student performance by assessment type, core…

  11. Performance of Generating Plant: Managing the Changes. Supporting paper: The evolution of the electricity sector and renewable sources in Italy: opportunities and problems for wind power integration

    Energy Technology Data Exchange (ETDEWEB)

    Salvaderi, Luigi [IEEE Fellow (Italy)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This document serves as a supporting paper. Sections include: features of Italian energy and electricity; the evolution of liberalisation; support mechanism for renewables; connection to wind farm transmission network; wind source integration into power system; and, final comments.

  12. Conditioning of spent fuel for interim and final storage in the pilot conditioning plant (PKA) at Gorleben

    International Nuclear Information System (INIS)

    Lahr, H.; Willax, H.O.; Spilker, H.

    1999-01-01

    In 1994, due to the change of the nuclear law in Germany, the concept of direct final disposal for spent fuel was developed as an equivalent alternative to the waste management with reprocessing. Since 1979, tests for the direct final disposal of spent fuel have been conducted in Germany. In 1985, the State and the utilities came to an agreement to develop this concept of waste management to technical maturity. Gesellschaft fuer Nuklear-Service (GNS) was commissioned by the utilities with the following tasks: to develop and test components with regard to conditioning technology, to construct and operate the pilot conditioning plant (PKA), and to develop casks suitable for final disposal. Since 1990, the construction of the PKA has taken place at the Brennelementlager Gorleben site. The PKA has been designed as a multipurpose facility and can thus fulfil various tasks within the framework of the conditioning and management of spent fuel assemblies and radioactive waste. The pilot character of the plant allows for development and testing in the field of spent fuel assembly conditioning. The objectives of the PKA may be summarized as follows: to condition spent fuel assemblies, to reload spent fuel assemblies and waste packages, to condition radioactive waste, and to do maintenance work on transport and storage casks as well as on waste packages. Currently, the buildings of the PKA are constructed and the technical facilities are installed. The plant will be ready for service in the middle of 1999. It is the first plant of its kind in the world. (author)

  13. Plutonium uptake by plants from soil containing plutonium-238 dioxide particles. Final report

    International Nuclear Information System (INIS)

    Brown, K.W.; McFarlane, J.C.

    1977-05-01

    Three plant species--alfalfa, lettuce, and radishes were grown in soils contaminated with plutonium-238 dioxide (238)PuO2 at concentrations of 23, 69, 92, and 342 nanocuries per gram (nCi/g). The length of exposure varied from 60 days for the lettuce and radishes to 358 days for the alfalfa. The magnitude of plutonium incorporation as indicated by the discrimination ratios for these species, after being exposed to the relatively insoluble PuO2, was similar to previously reported data using different chemical forms of plutonium. Evidence indicates that the predominant factor in plutonium uptake by plants may involve the chelation of plutonium contained in the soils by the action of compounds such as citric acid and/or other similar chelating agents released from the plant roots

  14. Performance of Generating Plant: Managing the Changes. Part 3: Renewable energy plant: reports on wind, photovoltaics and biomas energies

    Energy Technology Data Exchange (ETDEWEB)

    Manoha, Bruno; Cohen, Martin [Electricite de France (France)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 3 (WG3). WG3 will promote the introduction of performance indicators for renewable energy generating plant (wind, geothermal, solar and biomass) developed by the Committee. It will also assess selected transitional technology issues and environmental factors related to non-conventional technologies. The WG3 report includes sections on Wind Energy Today, Photovoltaics Energy Today, Biomass Electricity Today and appendices.

  15. Summary report on the use of plant safety performance indicators

    International Nuclear Information System (INIS)

    2001-09-01

    In 1998, the OECD/NEA committee on Nuclear Regulatory Activities (CNRA) initiated an activity with the objective of advancing the discussion on how to enhance and measure regulatory effectiveness in relation to nuclear installations. One of the outcome of this activity was to establish a Task group to develop internal (direct) performance indicators which would be used to monitor regulatory efficiency. In parallel, a joint CNRA/CSNI group was launched in December 2000 to exchange information and develop external (indirect) indicators to measure regulatory effectiveness, i.e. impact on licensee's safety performance. These external indicators are, in other words, the traditional plant performance indicators (PI's) and these are the ones that this report deals with. This report presents the work performed by the joint CNRA/CSNI task group mentioned above. It provides a summary of the sets of PI's being used by different regulatory bodies and WANO, it describes the national practices on the use of PI's and proposes a set of PI's that could be used nationally describing regulatory effectiveness and also as a basis for an international system. The task force consisted of regulators, organisations which have a performance indicators system in operation or under testing. The task force met in Paris on February 19-20, 2001. Each participant provided a brief description of the PI System at his organisation and its usage. The group identified a list of PI's that are recommended to be used nationally by regulators. This paper has been elaborated based on the information exchanged and discussions held in the February meeting. The participating countries (Spain, Finland, US, Sweden) and WANO were asked to provide an overview of systems in use. The presently used Performance Indicators were reviewed in a three steps process. 1. First indicators used in at least two agencies were identified. 2. The second step was to identify the most used indicators. 3. The third step was to

  16. High Level Waste plant operation and maintenance concepts. Final report, March 27, 1995

    International Nuclear Information System (INIS)

    Janicek, G.P.

    1995-01-01

    The study reviews and evaluates worldwide High Level Waste (HLW) vitrification operating and maintenance (O ampersand M) philosophies, plant design concepts, and lessons learned with an aim towards developing O ampersand M recommendations for either, similar implementation or further consideration in a HLW vitrification facility at Hanford. The study includes a qualitative assessment of alternative concepts for a variety of plant and process systems and subsystems germane to HLW vitrification, such as, feed materials handling, melter configuration, glass form, canister handling, failed equipment handling, waste handling, and process control. Concept evaluations and recommendations consider impacts to Capital Cost, O ampersand M Cost, ALARA, Availability, and Reliability

  17. Relationship between push phase and final race time in skeleton performance.

    Science.gov (United States)

    Zanoletti, Costanza; La Torre, Antonio; Merati, Giampiero; Rampinini, Ermanno; Impellizzeri, Franco M

    2006-08-01

    The aim of this study was to examine the relationship between push-time and final race time in skeleton participants during a series of major international competitions to determine the importance of the push phase in skeleton performance. Correlations were computed from the first and second heat split data measured during 24 men and 24 women skeleton competitions. Body mass, height, age, and years of experience of the first 30 men and women athletes of the skeleton, bobsleigh and luge 2003-2004 World Cup ranking were used for the comparison between sliding sports. Moderate but significant correlations (p push-time and final race time in men (r(mean) = 0.48) and women (r(mean) = 0.63). No correlations were found between changes in the individual push-time between the first and second heat with the corresponding changes in final race time. The bobsleigh sliders are heavier than the athletes of the other sliding disciplines. Luge athletes have more experience and are younger than bobsleigh and skeleton sliders. The results of this study suggest that a fast push phase is a prerequisite to success in competition and confirms that the selection of skeleton athletes based on the ability to accelerate to a maximum speed quickly could be valid. However, a good or improved push-time does not ensure a placement in the top finishing positions. On the basis of these results, we suggest that strength and power training is necessary to maintain a short push-time but additional physical training aimed to enhance the push phase might not reflect performance improvements. The recruitment of younger athletes and an increase of youthful competitive activity may be another effective way to reach international competitive results.

  18. Productive performance of soybean cultivars grown in different plant densities

    Directory of Open Access Journals (Sweden)

    Augusto Belchior Marchetti Ribeiro

    Full Text Available ABSTRACT: Plants density in soybean cultivation is an important management practice to achieve high grain yield. In this way, the objective was to evaluate the agronomic traits and grain yield in soybean in different plant densities, in two locations in the south of Minas Gerais. The experimental design was in randomized blocks, arranged in a split plot design, with three replications. Plots were composed of four population densities (300, 400, 500 and 600 thousand plants per hectare and the subplots were composed of six cultivars (‘BMX Força RR’, ‘CD 250 RR’, ‘FMT 08 - 60.346/1’, ‘NA 5909 RR’, ‘TMG 7161 RR’ and ‘V - TOP RR’ grown in Lavras and Inconfidentes, both in Minas Gerais. At the time of harvest was determined the plant height, lodging, insertion of the first pod, harvest index, number of pods per plant, number of grains, number of grains per pod and yield. Regardless of the soybean cultivar, the plant density of up to 600,000 per ha does not affect grain yield, plant height, lodging, harvest index, and number of grains per pod. The cultivars ‘V-TOP RR’ and ‘BMX FORÇA RR’ showed high grain yield and good agronomic traits in Lavras and Incofidentes.

  19. Performance test of condensate polishing system for Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    You Zhaojin; Qian Shijun; Lu Ruiting

    1995-11-01

    The flow chart, resin performance and water quality specifications of the condensate polishing system for Qinshan Nuclear Power Plant (QNPP) are briefly described. The initial regeneration process and the following service of the condensate polishing system are introduced. And the ability to remove corrosion products and ionic impurities of the condensate polishing system are verified during start-up, normal power operation and condenser leakage of the plant. The result shows that the performance of condensate polishing system in QNPP can completely meet the design requirements. Especially during the start-up of the unit or the leakage of the condenser, despite the inlet water quality of the polishers is far worse than the specified standard, the outlet water quality is still controlled within the indexes. Finally, several existing problems, such as 'volume ratio between resins is not optimum' and 'the inert resin and anion resin can not be stratified completely', in the condensate polishing system are also discussed. (4 refs., 1 fig., 8 tabs.)

  20. 76 FR 53994 - Final Environmental Impact Statement, Single Nuclear Unit at the Bellefonte Plant Site, Jackson...

    Science.gov (United States)

    2011-08-30

    ... limited to, wind, solar, natural and methane gas, hydroelectric, and lignite coal. TVA also purchases... even with substantial energy replacement through conservation measures, TVA must still add new base... plant species have been previously reported to verify if the rare species are still present in the...

  1. 76 FR 55723 - Final Supplemental Environmental Impact Statement, Sequoyah Nuclear Plant Units 1 and 2 License...

    Science.gov (United States)

    2011-09-08

    ...-basis accident or severe accident is minor, and that the results of such accidents continue to be... the Fukushima accident is unlikely to occur at any TVA plant. Nonetheless, the effort has resulted in... the Fukushima Dai-ichi Accident, concluded that continued operation and continued licensing activities...

  2. Final environmental impact assessment of the Paducah Gaseous Diffusion Plant site, Paducah, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    This document considers: the need for uranium enrichment facilities; site location; plant description; and describes the power generating facilities in light of its existing environment. The impacts from continuing operations are compared with alternatives of shutdown, relocation, and alternative power systems. (PSB)

  3. Waterfowl of the Savannah River Plant: Comprehensive cooling water study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J.J.; Kennamer, R.A.; Hoppe, R.T.

    1986-06-01

    Thirty-one species of waterfowl have been documented on the Savannah River Plant (SPR). The Savannah River Ecology Laboratory (SREL) has been conducting waterfowl research on the site for the past 15 years. This research has included work on waterfowl utilization of the SRP, wood duck reproductive biology, and waterfowl wintering ecology. Results are described.

  4. Final report on effects of environmental radiation of Kori nuclear power plant on human population

    International Nuclear Information System (INIS)

    Kim, Y.J.; Kim, J.B.; Chung, K.H.; Lee, K.S.; Kim, S.R.; Yang, S.Y.

    1980-01-01

    In order to clarify and protect the effects of environmental radiation according to the operation of Kori nuclear power plant on the human population, the base line survey for the human monitoring, human life habits, expected individual exposure dose, frequencies of chromosomal aberration, gene frequencies and karyotypes in amphibia, fauna, and radiation sensitivities in microorganisms which have been living around the power plant site were carried out. Kilchonri population which took for the human monitoring lie within a 2 km distance from the power plant site. Human monitoring, house and food characteristics, individual experience of x-ray exposures, human chromosome analysis and fauna were surveyed and expressed in numerical tables. Chromosome number obtained from the amphibia which were collected around the power plant area was as follows: Kaloula borealis 2N=30, Rana amurensis 2N=26, Rana dybouskii 2N=24, Rana rugosa 2N=26, Rana nigromaculata 2N=26, Rana plancyi 2N=26, Bombina orientalis 2N=24, Hyla arborea 2N=24, Bufo stejnegeri 2N=22, Bufo bufo 2N=22. (author)

  5. 75 FR 2565 - Northern States Power Company, LLC; Monticello Nuclear Generating Plant Final Environmental...

    Science.gov (United States)

    2010-01-15

    ... impacts. NSPM currently pays annual real estate taxes to Public School District 882, Wright County, and... by plant personnel due to implementation of the proposed EPU. Postulated Accident Doses... significantly. Some of the radioactive waste streams and storage systems evaluated for postulated accidents may...

  6. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    International Nuclear Information System (INIS)

    Cohen, Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-01-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O ampersand M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O ampersand M Improvement Program. O ampersand M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O ampersand M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O ampersand M costs was achieved. Based on the lessons learned, an optimum solar- field O ampersand M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O ampersand M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts

  7. Neural network recognition of nuclear power plant transients. Final report, April 15, 1992--April 15, 1995

    International Nuclear Information System (INIS)

    Bartlett, E.B.

    1995-01-01

    The objective of this report is to describe results obtained during the second year of funding that will lead to the development of an artificial neural network (A.N.N) fault diagnostic system for the real-time classification of operational transients at nuclear power plants. The ultimate goal of this three-year project is to design, build, and test a prototype diagnostic adviser for use in the control room or technical support center at Duane Arnold Energy Center (DAEC); such a prototype could be integrated into the plant process computer or safety-parameter display system. The adviser could then warn and inform plant operators and engineers of plant component failures in a timely manner. This report describes the work accomplished in the second of three scheduled years for the project. Included herein is a summary of the second year's results as well as descriptions of each of the major topics undertaken by the researchers. Also included are reprints of the articles written under this funding as well as those that were published during the funded period

  8. Neural network recognition of nuclear power plant transients. Final report, April 15, 1992--April 15, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, E.B.

    1995-05-15

    The objective of this report is to describe results obtained during the second year of funding that will lead to the development of an artificial neural network (A.N.N) fault diagnostic system for the real-time classification of operational transients at nuclear power plants. The ultimate goal of this three-year project is to design, build, and test a prototype diagnostic adviser for use in the control room or technical support center at Duane Arnold Energy Center (DAEC); such a prototype could be integrated into the plant process computer or safety-parameter display system. The adviser could then warn and inform plant operators and engineers of plant component failures in a timely manner. This report describes the work accomplished in the second of three scheduled years for the project. Included herein is a summary of the second year`s results as well as descriptions of each of the major topics undertaken by the researchers. Also included are reprints of the articles written under this funding as well as those that were published during the funded period.

  9. 76 FR 29107 - Endangered and Threatened Wildlife and Plants; Final Revised Designation of Critical Habitat for...

    Science.gov (United States)

    2011-05-19

    ..., Anthidium dammersi, is a solitary bee that nests in the ground, likely in close proximity to A. jaegerianus plants. Ground-nesting bees are highly sensitive to activities that may compact soil, as the nests may be... preserving our world as a museum. Our Response: We recognize that the natural world is one of change...

  10. PWR radiation fields at combustion engineering plants through mid-1985: Final report

    International Nuclear Information System (INIS)

    Barshay, S.S.; Beineke, T.A.; Bradshaw, R.W.

    1987-01-01

    This report presents the results of the initial phase of the EPRI-PWR Standard Radiation Monitoring Program (SRMP) for PWR nuclear power plants with Nuclear Steam Supply Systems supplied by Combustion Engineering, Inc. The purposes of the SRMP are to provide reliable, consistent and systematic measurements of the rate of radiation-field buildup at operating PWR's; and to use that information to identify opportunities for radiation control and the consequent reduction of occupational radiation exposure. The report includes radiation surveys from seven participating power plants. These surveys were conducted at well-defined locations on the reactor coolant loop piping and steam generators, and/or inside the steam generator channel heads. In most cases only one survey is available from each power plant, so that conclusions about the rate of radiation-field buildup are not possible. Some observations are made about the distribution pattern of radiation levels within the steam generator channel heads and around the reactor coolant loops. The report discusses the relationship between out-of-core radiation fields (as measured by the SRMP) and: the pH of the reactor coolant, the concentration of lithium hydroxide in the reactor coolant, and the frequency of changes in reactor power level. In order to provide data for possible future correlations of these parameters with the SRMP radiation-field data, the report summarizes information available from participating plants on primary coolant pH, and on the frequency of changes in reactor power level. 12 refs., 22 figs., 7 tabs

  11. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  12. The performance regulatory approach in quality assurance: Its application to safety in nuclear power plants

    International Nuclear Information System (INIS)

    Sajaroff, Pedro M.

    2000-01-01

    In early 1991, the IAEA assembled an Advisory Group on the Comprehensive Revision of the Code and the Safety on Quality Assurance of the NUSS Programme. The Group was made up by specialists from a number of countries and from ISO, FORATOM, the EC and the IAEA itself, and its objective was completed in June 1995. This paper is aimed at describing the conceptual contents of the final draft of the revision 2 of the 50-C-QA Code 'Quality Assurance for Safety in Nuclear Power Plants and other Nuclear Facilities' (hereinafter, the Code) which is essentially based on performance. Although the performance regulatory approach is not new in Argentina and in other countries, what is indeed novel is applying performance based QA. In such a way the Code will contribute to preventing both QA misinterpretations (i.e., a formalistic regulatory requirement) and the execution of non-effective work without attaining the needed quality level (what may be seen as a pathological deviation of QA). The Code contains ten basic requirements to be adopted when QA programmes are established and implemented in nuclear power plants. The goal is improving safety through an improvement in the methods applied for attaining quality. In line with the current developments in quality management techniques, priority is given to effectiveness of the QA programme. All the involved individuals (that is those in the managerial level, those performing the work and those assessing the work performed) must contribute to quality in a co-ordinated manner. The revised Safety Guides are being introduced, standing out those non existing before. Interrelation between quality assurance, safety culture and quality culture is to be noted. Besides QA for safety-related software mentioned as an issue to be considered by the IAEA. (author)

  13. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992

    International Nuclear Information System (INIS)

    1992-12-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume, Volume 2, contains the technical basis for the 1992 PA. Specifically, it describes the conceptual basis for consequence modeling and the PA methodology, including the selection of scenarios for analysis, the determination of scenario probabilities, and the estimation of scenario consequences using a Monte Carlo technique and a linked system of computational models. Additional information about the 1992 PA is provided in other volumes. Volume I contains an overview of WIPP PA and results of a preliminary comparison with the long-term requirements of the EPA's Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses related to the preliminary comparison with 40 CFR 191B. Volume 5 contains uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance. Finally, guidance derived from the entire 1992 PA is presented in Volume 6

  14. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... and NH4; therefore it is classified as a strong waste. ... Key words: Wastewater, treatment plants, water reuse, wastewater characteristics, wastewater treatment,. Jordan. ..... MSc. thesis, university of Jordan. Bataineh F, Najjar ...

  15. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... while the available sources of water are limited and de-. *Corresponding author. ... 186223 m3/d inflow to Asamra wastewater treatment plant. (ASTP) (Bataineh et al., ..... MSc. thesis, university of Jordan. Bataineh F, Najjar M, ...

  16. Coal Preparation and Processing Plants New Source Performance Standards (NSPS)

    Science.gov (United States)

    Learn about the NSPS regulation for coal preparation and processing plants by reading the rule summary, the rule history, the code of federal regulation text, the federal register, and additional docket documents

  17. 76 FR 66805 - Endangered and Threatened Wildlife and Plants: Final Rulemaking To Designate Critical Habitat for...

    Science.gov (United States)

    2011-10-27

    ... Raimondi, University of California Santa Cruz (UCSC), in 2005). Black abalone generally inhabit coastal and... final rules through press releases, the Federal Register, and posting of the rules and supporting... CHRT, comprised of seven Federal biologists from NMFS, the National Park Service (NPS), US Geological...

  18. Predicting plant performance under simultaneously changing environmental conditions – the interplay between temperature, light and internode growth

    Directory of Open Access Journals (Sweden)

    Katrin eKahlen

    2015-12-01

    Full Text Available Plant performance is significantly influenced by prevailing light and temperature conditions during plant growth and development. For plants exposed to natural fluctuations in abiotic environmental conditions it is however laborious and cumbersome to experimentally assign any contribution of individual environmental factors to plant responses. This study aimed at analyzing the interplay between light, temperature and internode growth based on model approaches. We extended the light-sensitive virtual plant model L-Cucumber by implementing a common Arrhenius function for appearance rates, growth rates and growth durations. For two greenhouse experiments, the temperature-sensitive model approach resulted in a precise prediction of cucumber mean internode lengths and number of internodes, as well as in accurately predicted patterns of individual internode lengths along the main stem. In addition, a system’s analysis revealed that environmental data averaged over the experimental period were not necessarily related to internode performance. Finally, the need for a species-specific parameterization of the temperature response function and related aspects in modelling temperature effects on plant development and growth is discussed.

  19. Final waste forms project: Performance criteria for phase I treatability studies

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Hutchins, D.A.; Chodak, P. III

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide open-quotes proof-of-principleclose quotes data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.)

  20. Final waste forms project: Performance criteria for phase I treatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M. [Oak Ridge National Lab., TN (United States); Hutchins, D.A. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States); Chodak, P. III [Massachusetts Institute of Technology (United States)

    1994-06-01

    This document defines the product performance criteria to be used in Phase I of the Final Waste Forms Project. In Phase I, treatability studies will be performed to provide {open_quotes}proof-of-principle{close_quotes} data to establish the viability of stabilization/solidification (S/S) technologies. This information is required by March 1995. In Phase II, further treatability studies, some at the pilot scale, will be performed to provide sufficient data to allow treatment alternatives identified in Phase I to be more fully developed and evaluated, as well as to reduce performance uncertainties for those methods chosen to treat a specific waste. Three main factors influence the development and selection of an optimum waste form formulation and hence affect selection of performance criteria. These factors are regulatory, process-specific, and site-specific waste form standards or requirements. Clearly, the optimum waste form formulation will require consideration of performance criteria constraints from each of the three categories. Phase I will focus only on the regulatory criteria. These criteria may be considered the minimum criteria for an acceptable waste form. In other words, a S/S technology is considered viable only if it meet applicable regulatory criteria. The criteria to be utilized in the Phase I treatability studies were primarily taken from Environmental Protection Agency regulations addressed in 40 CFR 260 through 265 and 268; and Nuclear Regulatory Commission regulations addressed in 10 CFR 61. Thus the majority of the identified criteria are independent of waste form matrix composition (i.e., applicable to cement, glass, organic binders etc.).

  1. Direct application of geothermal energy at the L'eggs Product Plant, Las Cruces, New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The study program to determine the feasibility of interfacing a potential geothermal resource of Dona Ana County, New Mexico L'eggs Product industrial process is discussed in this final report. Five separate sites were evaluated initially as to geothermal potential and technical feasibility. Preliminary analysis revealed that three sites were considered normal, but that two sites (about three miles from the L'eggs Plant) had very high shallow subsurface temperature gradients (up to 14.85/sup 0/F/100 ft). An initial engineering analysis showed that to meet the L'eggs plant temperature and energy requirements a geothermal fluid temperature of about 250/sup 0/F and 200 gpm flow rate would be necessary. A brief economic comparison indicated that the L'eggs plant site and a geothermal site approximately four miles from the plant did merit further investigation. Detailed engineering and economic design and analysis of these two sites (including the drilling of an 1873 feet deep temperature gradient test hole at the L'eggs Plant) showed that development of the four mile distant site was technically feasible and was the more economic option. It was determined that a single-stage flash system interface design would be most appropriate for the L'eggs Plant. Approximately 39 billion Btu/yr of fossil fuel could be replaced with geothermal energy at the L'eggs facility for a total installed system cost of slightly over $2 million. The projected economic payback period was calculated to be 9.2 years before taxes. This payback was not considered acceptable by L'eggs Products, Inc., to merit additional design or construction work at this time.

  2. Effects of various planting ratios on the performance of maize and ...

    African Journals Online (AJOL)

    The experiment was conducted at the Teaching and Research Farm of Ambrose Alli University, Ekpoma to evaluate the performance of maize and cowpea planted at various replacement ratios. Weight of grains per plant and grain yield were higher in cowpea in maize-cowpea intercrop planted in ratio 2:1. Based on the ...

  3. Z-inertial fusion energy: power plant final report FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark (University of Wisconsin, Madison, WI); Kulcinski, Gerald (University of Wisconsin, Madison, WI); Zhao, Haihua (University of California, Berkeley, CA); Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne (Lawrence Livermore National Laboratories); McConnell, Paul E.; Ghiaasiaan, M. (Georgia Institute of Technology, Atlanta, GA); Kern, Brian (Georgia Institute of Technology, Atlanta, GA); Tajima, Yu (University of California, Los Angeles, CA); Campen, Chistopher (University of California, Berkeley, CA); Sketchley, Tomas (University of California, Los Angeles, CA); Moir, R (Lawrence Livermore National Laboratories); Bardet, Philippe M. (University of California, Berkeley, CA); Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L (University of Wisconsin, Madison, WI); Modesto-Beato, Marcos A.; Franklin, James Kenneth (University of California, Berkeley, CA); Smith, James Dean; Ying, Alice (University of California, Los Angeles, CA); Cook, Jason T.; Schmitz, Lothar (University of California, Los Angeles, CA); Abdel-Khalik, S. (Georgia Institute of Technology, Atlanta, GA); Farnum, Cathy Ottinger; Abdou, Mohamed A. (University of California, Los Angeles, CA); Bonazza, Riccardo (University of Wisconsin, Madison, WI); Rodriguez, Salvador B.; Sridharan, Kumar (University of Wisconsin, Madison, WI); Rochau, Gary Eugene; Gudmundson, Jesse (University of Wisconsin, Madison, WI); Peterson, Per F. (University of California, Berkeley, CA); Marriott, Ed (University of Wisconsin, Madison, WI); Oakley, Jason (University of Wisconsin, Madison, WI)

    2006-10-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques.

  4. Mobility of radionuclides and MCPA in the soil-water-plant system. Final report

    International Nuclear Information System (INIS)

    Gerzabek, M.H.; Haberhauer, G.; Strebl, F.; Temmel, B.

    1998-01-01

    The present report describes results of soil-to-plant transfer investigations for radionuclides in the years 1990 - 1997 obtained in lysimeter experiments of the Research Centre Seibersdorf and results of an investigation with 14 C-labelled MCPA. The lysimeter facility consists of twelve soil monoliths from four sites (Eutric Cambisol, Dystric Cambisol, Dystric Cambisol on crystalline, Dystric Gleysol/drained) with three replicates each and is located in Seibersdorf/Austria, a region with a pannonian climate (pronounced differences between hot and dry summers and wet winter conditions, annual mean of precipitation: 517 mm, mean annual temperature: 9.8 degrees C). Besides soil-to-plant transfer factors (TF) for endive, maize, wheat, mustard, sugarbeet, potato, Faba bean, rye grass, fluxes were calculated taking into account biomass production and growth time. Total median values of TF's (dry matter basis) for the three radionuclides decreased from 226 Ra (0.068 kg kg -1 ) to 137 CS (0.043 kg kg -1 ) and 60 CO (0.018 kg kg -1 ); flux values exhibited the same ranking. The varying physical and chemical properties of the four experimental soils resulted in statistically significant differences in transfer factors or fluxes between the investigated soils for 1 37 Cs and 226 Ra, but not for 60 CO . Differences in transfer between plant species and plant parts are distinct, with graminaceous species showing, on average, TF values 5.8 and 15 times lower than dicodyledonous species for 137 Cs and 60 CO, respectively. This pattern was not found for 226 Ra. It can be concluded that transfer heavily influenced by soil characteristics, whilst the plant-specific factors are the main source of TF variability for 60 Co. The variability of 226 Ra transfer originates both from soil properties and plant species behaviour. Model calculations showed that for Cs, Co and Ra leaching - at least in medium term - has no distinct impact on the overall radioactivity losses of the soil profile

  5. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  6. Z-inertial fusion energy: power plant final report FY 2006

    International Nuclear Information System (INIS)

    Anderson, Mark; Kulcinski, Gerald; Zhao, Haihua; Cipiti, Benjamin B.; Olson, Craig Lee; Sierra, Dannelle P.; Meier, Wayne; McConnell, Paul E.; Ghiaasiaan, M.; Kern, Brian; Tajima, Yu; Campen, Chistopher; Sketchley, Tomas; Moir, R; Bardet, Philippe M.; Durbin, Samuel; Morrow, Charles W.; Vigil, Virginia L.; Modesto-Beato, Marcos A.; Franklin, James Kenneth; Smith, James Dean; Ying, Alice; Cook, Jason T.; Schmitz, Lothar; Abdel-Khalik, S.; Farnum, Cathy Ottinger; Abdou, Mohamed A.; Bonazza, Riccardo; Rodriguez, Salvador B.; Sridharan, Kumar; Rochau, Gary Eugene; Gudmundson, Jesse; Peterson, Per F.; Marriott, Ed; Oakley, Jason

    2006-01-01

    This report summarizes the work conducted for the Z-inertial fusion energy (Z-IFE) late start Laboratory Directed Research Project. A major area of focus was on creating a roadmap to a z-pinch driven fusion power plant. The roadmap ties ZIFE into the Global Nuclear Energy Partnership (GNEP) initiative through the use of high energy fusion neutrons to burn the actinides of spent fuel waste. Transmutation presents a near term use for Z-IFE technology and will aid in paving the path to fusion energy. The work this year continued to develop the science and engineering needed to support the Z-IFE roadmap. This included plant system and driver cost estimates, recyclable transmission line studies, flibe characterization, reaction chamber design, and shock mitigation techniques

  7. RATU Nuclear power plant structural safety research programme 1990-1994. Final report

    International Nuclear Information System (INIS)

    Rintamaa, R.; Sarkimo, M.

    1995-12-01

    The major part of nuclear energy research in Finland has been organized as five-year nationally coordinated research programmes. The research programme on the Nuclear Power Plant Structural Safety was carried out during the period from 1990 to 1994. The total volume was about 76 person-years and the expenditure about 49 million FIM. Studies on the structural materials in nuclear power plants created the experimental data and background information necessary for the structural integrity assessments of mechanical components. The research was carried out by developing experimental fracture mechanics methods including statistical analysis methods of material property data, and by studying material ageing and, in particular, mechanisms of material deterioration due to neutron irradiation, corrosion and water chemistry. Besides material studies, new testing methods and sensors for the measurement of loading and water chemistry parameters have been developed

  8. Limiting factor analysis of high availability nuclear plants (boiling water reactors). Final report

    International Nuclear Information System (INIS)

    Frederick, L.G.; Brady, R.M.; Shor, S.W.W.; McCusker, J.T.; Alden, W.M.; Kovacs, S.

    1979-08-01

    The pertinent results are presented of a 16-month study conducted for Electric Power Research Institute by General Electric Company, Bechtel Power Corporation, and Philadelphia Electric Company. The study centered around the Peach Bottom 2 Atomic Power Station, but also included limited study of operations at 20 additional operating boiling water reactors. The purpose of the study was to identify and evaluate key factors limiting plant availability, and to identify potential improvements for eliminating or alleviating those limitations. The key limiting factors were found to be refueling activities; activities related to the reactor fuel; reactor scrams; activities related to 20 operating systems or major components; delays due to radiation, turbid water during refueling operations, facilities/working conditions, and dirt/foreign material; and general maintenance/repair of valves and piping. Existing programs to reduce the effect on plant unavailability are identified, and suggestions for further action are made

  9. Behavior of technetium-99 in soils and plants. Final report, April 1, 1974--December 31, 1978

    International Nuclear Information System (INIS)

    Gast, R.G.; Landa, E.R.; Thorvig, L.J.; Grigal, D.F.; Balogh, J.C.

    1979-01-01

    Studies described in this report were aimed at establishing the magnitude and mechanisms of 99 Tc sorption by soils and uptake by plants. Results show that 99 Tc was sorbed from solution over a period to two to five weeks by 8 of 11 soils studies. The slow rate of sorption, the lack of sorption by low organic matter soils, the elimination of sorption following sterilization and increased sorption following addition of dextrose all point to a microbial role in the sorption process. However, it has not been established whether this is a direct or indirect role nor is it possible to clearly predict the conditions under which sorption will occur. Results of plant uptake studies show that 99 Tc can be taken up and translocated into the photosynthetic tissue of higher plants with concentrations in seeds being much less than in vegetative tissue. Technetium-99 was also shown to be toxic to plants at low concentrations and evidence suggests that this is a chemically rather than radiologically induced toxicity. However, this remains to be completely resolved as well as whether there is a threshold level of 99 Tc required before toxicity occurs. Studies of short-term, dynamic, aerobic systems indicated that 99 Tc moves through the soil as a relatively large anion exhibiting characteristic miscible displacement with some asymmetric tailing. 99 Tc exhibits greater retention that C1 - , which may be attributed statistically to weak complexion by organic matter. It is unlikely that this retention phenomenon is related to the static sorption activity reported in the first part of this study

  10. Sacramento Municipal Utility District Geothermal Power Plant, SMUDGEO No. 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The proposed construction of 72-MW geothermal power plant is discussed. The following aspects are covered: the project as proposed by the utility; the environmental setting; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the Growth Inducing Impacts. (MHR)

  11. Behavior of technetium-99 in soils and plants. Final report, April 1, 1974--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Gast, R.G.; Landa, E.R.; Thorvig, L.J.; Grigal, D.F.; Balogh, J.C.

    1979-01-01

    Studies described in this report were aimed at establishing the magnitude and mechanisms of /sup 99/Tc sorption by soils and uptake by plants. Results show that /sup 99/Tc was sorbed from solution over a period to two to five weeks by 8 of 11 soils studies. The slow rate of sorption, the lack of sorption by low organic matter soils, the elimination of sorption following sterilization and increased sorption following addition of dextrose all point to a microbial role in the sorption process. However, it has not been established whether this is a direct or indirect role nor is it possible to clearly predict the conditions under which sorption will occur. Results of plant uptake studies show that /sup 99/Tc can be taken up and translocated into the photosynthetic tissue of higher plants with concentrations in seeds being much less than in vegetative tissue. Technetium-99 was also shown to be toxic to plants at low concentrations and evidence suggests that this is a chemically rather than radiologically induced toxicity. However, this remains to be completely resolved as well as whether there is a threshold level of /sup 99/Tc required before toxicity occurs. Studies of short-term, dynamic, aerobic systems indicated that /sup 99/Tc moves through the soil as a relatively large anion exhibiting characteristic miscible displacement with some asymmetric tailing. /sup 99/Tc exhibits greater retention that C1/sup -/, which may be attributed statistically to weak complexion by organic matter. It is unlikely that this retention phenomenon is related to the static sorption activity reported in the first part of this study.

  12. Plutonium-239 and americium-241 uptake by plants from soil. Final report

    International Nuclear Information System (INIS)

    Brown, K.W.

    1979-03-01

    Alfalfa was grown in soil contaminated with plutonium-239 dioxide (239PuO2) at a concentration of 29.7 nanocuries per gram (nCi/g). In addition to alfalfa, radishes, wheat, rye, and tomatoes were grown in soils contaminated with americium-241 nitrate (241Am(NO3)3) at a concentration of 189 nCi/g. The length of exposure varied from 52 days for the radishes to 237 days for the alfalfa. The magnitude of plutonium incorporation by the alfalfa as indicated by the concentration ratio, 0.0000025, was similar to previously reported data using other chemical forms of plutonium. The results did indicate, however, that differences in the biological availability of plutonium isotopes do exist. All of the species exposed to americium-241 assimilated and translocated this radioisotope to the stem, leaf, and fruiting structures. The magnitude of incorporation as signified by the concentration ratios varied from 0.00001 for the wheat grass to 0.0152 for the radishes. An increase in the uptake of americium also occurred as a function of time for four of the five plant species. Evidence indicates that the predominant factor in plutonium and americium uptake by plants may involve the chelation of these elements in soils by the action of compounds such as citric acid and/or other similar chelating agents released from plant roots

  13. Validation of generic cost estimates for construction-related activities at nuclear power plants: Final report

    International Nuclear Information System (INIS)

    Simion, G.; Sciacca, F.; Claiborne, E.; Watlington, B.; Riordan, B.; McLaughlin, M.

    1988-05-01

    This report represents a validation study of the cost methodologies and quantitative factors derived in Labor Productivity Adjustment Factors and Generic Methodology for Estimating the Labor Cost Associated with the Removal of Hardware, Materials, and Structures From Nuclear Power Plants. This cost methodology was developed to support NRC analysts in determining generic estimates of removal, installation, and total labor costs for construction-related activities at nuclear generating stations. In addition to the validation discussion, this report reviews the generic cost analysis methodology employed. It also discusses each of the individual cost factors used in estimating the costs of physical modifications at nuclear power plants. The generic estimating approach presented uses the /open quotes/greenfield/close quotes/ or new plant construction installation costs compiled in the Energy Economic Data Base (EEDB) as a baseline. These baseline costs are then adjusted to account for labor productivity, radiation fields, learning curve effects, and impacts on ancillary systems or components. For comparisons of estimated vs actual labor costs, approximately four dozen actual cost data points (as reported by 14 nuclear utilities) were obtained. Detailed background information was collected on each individual data point to give the best understanding possible so that the labor productivity factors, removal factors, etc., could judiciously be chosen. This study concludes that cost estimates that are typically within 40% of the actual values can be generated by prudently using the methodologies and cost factors investigated herein

  14. Interplant coordination, supply chain integration, and operational performance of a plant in a manufacturing network

    DEFF Research Database (Denmark)

    Yang, Cheng; Chaudhuri, Atanu; Farooq, Sami

    2016-01-01

    Purpose The objective of this paper is to investigate the relationships at the level of plant in a manufacturing network, labelled as networked plant in the paper, between (1) inter-plant coordination and operational performance, (2) supply chain integration (SCI) and operational performance......, and (3) inter-plant coordination and SCI. Design/methodology/approach This paper is developed based on the data obtained from the sixth version of International Manufacturing Strategy Survey (IMSS VI). Specifically, this paper uses a subset of the IMSS VI data set from the 606 plants that identified...

  15. Final environmental statement for decommissioning Humboldt Bay Power Plant, Unit No. 3 (Docket No. 50-133)

    International Nuclear Information System (INIS)

    1987-04-01

    The Final Environmental Statement contains the assessment of the environmental impact associated with decommissioning the Humboldt Bay Power Plant Unit 3 pursuant to the National Environmental Policy Act of 1969 (NEPA) and Title 10 of the Code of Federal Regulations, Part 51, as amended, of the Nuclear Regulatory Commission regulations. The proposed decommissioning would involve safe storage of the facility for about 30 years, after which the residual radioactivity would be removed so that the facility would be at levels of radioactivity acceptable for release of the facility to unrestricted access

  16. The AP600 advanced simplified nuclear power plant. Results of the test program and progress made toward final design approval

    International Nuclear Information System (INIS)

    Bruschi, H.J.

    1996-01-01

    At the 1994 Pacific Basin Conference, Mr. Bruschi presented a paper describing the AP600, Westinghouse's advanced light water reactor design with passive safety features. Since then, a rigorous test program was completed and AP600 became the most thoroughly tested advanced reactor system design in history. Westinghouse is now well on its way toward receiving Final Design Approval from the U.S. Nuclear Regulatory Commission for AP600. In this paper, the results of the test program will be discussed and an update on prospects for building the plant will be covered. (author)

  17. Final report on Phase II remedial action at the former Middlesex Sampling Plant and associated properties. Volume 2

    International Nuclear Information System (INIS)

    1985-04-01

    Volume 2 presents the radiological measurement data taken after remedial action on properties surrounding the former Middlesex Sampling Plant during Phase II of the DOE Middlesex Remedial Action Program. Also included are analyses of the confirmatory radiological survey data for each parcel with respect to the remedial action criteria established by DOE for the Phase II cleanup and a discussion of the final status of each property. Engineering details of this project and a description of the associated health physics and environmental monitoring activities are presented in Volume 1

  18. The AP600 advanced simplified nuclear power plant. Results of the test program and progress made toward final design approval

    Energy Technology Data Exchange (ETDEWEB)

    Bruschi, H.J. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1996-10-01

    At the 1994 Pacific Basin Conference, Mr. Bruschi presented a paper describing the AP600, Westinghouse`s advanced light water reactor design with passive safety features. Since then, a rigorous test program was completed and AP600 became the most thoroughly tested advanced reactor system design in history. Westinghouse is now well on its way toward receiving Final Design Approval from the U.S. Nuclear Regulatory Commission for AP600. In this paper, the results of the test program will be discussed and an update on prospects for building the plant will be covered. (author)

  19. Indian Point Nuclear Generating Plant Unit No. 3 (Docket No. 50-286): Final environmental statement: Volume 2

    International Nuclear Information System (INIS)

    1975-02-01

    This document contains nine appendices to Volume I, The Final Environmental Impact Statement for the Indian Point Nuclear Generating Plant Unit Number Three. Topics covered include thermal discharges to the Hudson River; supplemental information relating to biological models; radiation effects on aquatic biota; conditions, assumptions, and parameters used in calculating radioactive releases; meteorology for radiological dispersion calculations; life history information of important fish species in the Hudson River near Indian Point; additional information on cooling towers considered as alternatives; data and calculations for assessment of predicted electrical demand; and comments on draft environmental statement

  20. Technical Report Cellulosic Based Black Liquor Gasification and Fuels Plant Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fornetti, Micheal [Escanaba Paper Company, MI (United States); Freeman, Douglas [Escanaba Paper Company, MI (United States)

    2012-10-31

    The Cellulosic Based Black Liquor Gasification and Fuels Plant Project was developed to construct a black liquor to Methanol biorefinery in Escanaba, Michigan. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage’s Escanaba Paper Mill and when in full operation would: • Generate renewable energy for Escanaba Paper Mill • Produce Methanol for transportation fuel of further refinement to Dimethyl Ether • Convert black liquor to white liquor for pulping. Black liquor is a byproduct of the pulping process and as such is generated from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for black liquor gasification. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with black liquor being generated in a traditional Kraft pulping process. The black liquor would then be gasified to produce synthesis gas, sodium carbonate and hydrogen sulfide. The synthesis gas is then cleaned with hydrogen sulfide and carbon dioxide removed, and fed into a Methanol reactor where the liquid product is made. The hydrogen sulfide is converted into polysulfide for use in the Kraft pulping process. Polysulfide is a known additive to the Kraft process that increases pulp yield. The sodium carbonate salts are converted to caustic soda in a traditional recausticizing process. The caustic soda is then part of the white liquor that is used in the Kraft pulping process. Cellulosic Based Black Liquor Gasification and Fuels Plant project set out to prove that black liquor gasification could

  1. Impact of different national biomass policies on investment costs of biomass district heating plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-04-01

    The BIO-COST project - co-ordinated by E.V.A. - was funded by the European Commission's THERMIE Type B Programme. The objective of BIO-COST was to analyse the impact of national biomass policies on the investment costs of biomass district heating (DH) plants. The European comparison should help identifying measures to reduce investment costs for biomass DH plants and/or components down to a 'best practice' level. The investigation is based on the comparison of 20 biomass DH plants by country, with Denmark and Sweden having mainly high energy taxes as driver, while Austria and France rely mainly on subsidy systems. The results of BIO-COST show, that governmental policies can have a big impact especially on grid and buildings costs, effecting of course the overall costs of the plant enormously. Emission standards have their effects especially on the costs for technical equipment, however, this fact was not reflected in the BIO-COST data. The results do not show a clear advantage of either the energy tax approach or the subsidy approach: The French subsidy approach leads to fairly low cost levels compared to the Danish tax approach, while the Swedish tax approach seems to yield the lowest cost level. On the other hand the Austrian subsidy approach seems to intercrease investment costs. In principle both the tax as the subsidy approach can lead to the same effect: a project is calculated in such a way, that it just meets economic breakeven. This is typically the case when the project is not carried out by a private enterprise but by an operator aiming at enhanced public welfare (e.g. co-operative, municipality). In this case a subsidy model might yield more possibilities to encourage an economically efficient development, than a tax. Instead of giving subsidies as a fixed percentage of investments they could be adjusted to the actual needs of the project as proven by a standardised calculation. Of course this can create the incentive to expect higher

  2. Individual variability and mortality required for constant final yield in simulated plant populations

    Czech Academy of Sciences Publication Activity Database

    Fibich, P.; Lepš, Jan; Weiner, J.

    2014-01-01

    Roč. 7, č. 3 (2014), s. 263-271 ISSN 1874-1738 Grant - others:GA ČR(CZ) GA-1317118S; GA MŠk(CZ) LM2010005 Institutional support: RVO:60077344 Keywords : constant final yield * variability * mortality Subject RIV: EH - Ecology, Behaviour Impact factor: 1.553, year: 2014 http://link.springer.com/article/10.1007%2Fs12080-014-0216-x#

  3. 7X performance results - final report : ASCI Red vs Red Storm.

    Energy Technology Data Exchange (ETDEWEB)

    Dinge, Dennis C. (Cray Inc., Albuquerque, NM); Davis, Michael E. (Cray Inc., Albuquerque, NM); Haskell, Karen H.; Ballance, Robert A.; Gardiner, Thomas Anthony; Stevenson, Joel O.; Noe, John P.

    2011-04-01

    The goal of the 7X performance testing was to assure Sandia National Laboratories, Cray Inc., and the Department of Energy that Red Storm would achieve its performance requirements which were defined as a comparison between ASCI Red and Red Storm. Our approach was to identify one or more problems for each application in the 7X suite, run those problems at multiple processor sizes in the capability computing range, and compare the results between ASCI Red and Red Storm. The first part of this report describes the two computer systems, the applications in the 7X suite, the test problems, and the results of the performance tests on ASCI Red and Red Storm. During the course of the testing on Red Storm, we had the opportunity to run the test problems in both single-core mode and dual-core mode and the second part of this report describes those results. Finally, we reflect on lessons learned in undertaking a major head-to-head benchmark comparison.

  4. IMPER: Characterization of the wind field over a large wind turbine rotor - final report; Improved performance

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt Paulsen, U.; Wagner, R.

    2012-01-15

    A modern wind turbine rotor with a contemporary rotor size would easily with the tips penetrate the air between 116 m and 30 m and herby experience effects of different wind. With current rules on power performance measurements such as IEC 61400-121 the reference wind speed is measured at hub height, an oversimplification of the wind energy power over the rotor disk area is carried out. The project comprised a number of innovative and coordinated measurements on a full scale turbine with remote sensing technology and simulations on a 500 kW wind turbine for the effects of wind field characterization. The objective with the present report is to give a short overview of the different experiments carried out and results obtained within the final phase of this project. (Author)

  5. Pantex Plant final safety analysis report, Zone 4 magazines. Staging or interim storage for nuclear weapons and components: Issue D

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This Safety Analysis Report (SAR) contains a detailed description and evaluation of the significant environmental, safety, and health (ES&H) issues associated with the operations of the Pantex Plant modified-Richmond and steel arch construction (SAC) magazines in Zone 4. It provides (1) an overall description of the magazines, the Pantex Plant, and its surroundings; (2) a systematic evaluations of the hazards that could occur as a result of the operations performed in these magazines; (3) descriptions and analyses of the adequacy of the measures taken to eliminate, control, or mitigate the identified hazards; and (4) analyses of potential accidents and their associated risks.

  6. SRC-I demonstration plant analytical laboratory methods manual. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Klusaritz, M.L.; Tewari, K.C.; Tiedge, W.F.; Skinner, R.W.; Znaimer, S.

    1983-03-01

    This manual is a compilation of analytical procedures required for operation of a Solvent-Refined Coal (SRC-I) demonstration or commercial plant. Each method reproduced in full includes a detailed procedure, a list of equipment and reagents, safety precautions, and, where possible, a precision statement. Procedures for the laboratory's environmental and industrial hygiene modules are not included. Required American Society for Testing and Materials (ASTM) methods are cited, and ICRC's suggested modifications to these methods for handling coal-derived products are provided.

  7. Restriction of virus infection by plants. Final report, July 1, 1987--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Bruening, G.

    1992-12-31

    The basis of genotypic resistance of the Arlington line of cowpea (Vigna unguiculata) against cowpea mosaic virus (CPMV) has been attributed, to an inhibitor of the processing of CPMV polyproteins. We sought to purify the protein that is postulated to be the inhibitor of polyprotein processing and to characterize the inhibitor and its gene. Such information can be the basis for engineering resistance to specific viruses in plants. In studies with cherry leafroll virus (CLRV) we sought understanding of the biochemical basis of the resistance.

  8. Human factors review of nuclear power plant control room design. Final report

    International Nuclear Information System (INIS)

    Seminara, J.L.; Gonzalez, W.R.; Parsons, S.O.

    1976-11-01

    The human factors aspects of five representative nuclear power plant control rooms were evaluated using such methods as a checklist guided observation system, structured interviews with operators and trainers, direct observations of operator behavior, task analyses and procedure evaluation, and historical error analyses. The human factors aspects of design practices are illustrated, and many improvements in current practices are suggested. The study recommends that a detailed set of applicable human factors standards be developed to stimulate a uniform and systematic concern for human factors in design considerations

  9. Ecological investigations at power plant cooling lakes, reservoirs, and ponds: an annotated bibliography. Final report

    International Nuclear Information System (INIS)

    Yost, F.E.; Talmage, S.S.

    1981-06-01

    Presented as an annotated bibliography are 541 references dealing with ecological investigations at power plants which use cooling lakes, ponds, or reservoirs. The references were obtained from open literature and from environmental reports and impact statements prepared for or by the electric utility industry. The literature covers the period 1950 through mid-1980. Topics covered include site-specific studies at facilities using cooling lakes, ponds, or reservoirs, as well as special studies, engineering studies, and general studies. References are arranged alphabetically by author and indexes are provided to personal and corporate authors, facility names, regions, and taxonomic names

  10. Plant cell wall architecture. Final report, 1 June 1994--30 October 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The authors have successfully finished the DOE-supported project entitled ``Plant cell wall architecture.`` During the funding period (June 1, 1994--October 30, 1996), they have published 6 research papers and 2 review articles. A brief description of these accomplishments is outlined as follows: (1) Improved and extended tissue printing techniques to reveal different surface and wall architectures, and to localized proteins and RNA. (2) Identification of an auxin- and cytokinin-regulated gene from Zinnia which is mainly expressed in cambium. (3) It was found that caffeoyl CoA 3-O-methyltransferase is involved in an alternative methylation pathway of lignin biosynthesis. (4) It was found that two different O-methyltransferases involved in lignification are differentially regulated in different lignifying tissues during development. They propose a scheme of monolignol biosynthesis combining both methylation pathways. (5) Identification of cysteine and serine proteases which are preferentially expressed during xylogenesis. This is the first report to identify an autolysis-associated cDNA in plants. (6) Characterization of two ribonuclease genes which are induced during xylogenesis and by wounding. (7) Isolation of cinnamic acid 4-hydroxylase gene and analysis of its expression patterns during lignification.

  11. Advanced-safeguards systems development for chemical-processing plants. Final report for FY 1980

    International Nuclear Information System (INIS)

    Cartan, F.O.

    1981-04-01

    The program is installing a computer system to test and evaluate process monitoring as a new Safeguards function to supplement the usual physical security and accountability functions. Safeguards development sensors and instruments installed in the Idaho Chemical Processing Plant (ICPP) provide information via a data acquisition system to a Safeguards analysis computer. The monitoring function can significantly enhance current material control (accountability) and containment surveillance capabilities for domestic and international Safeguards uses. Installation of sensors and instruments in the ICPP was more than 75% complete in FY-1980. Installation work was halted at the request of ICPP operations near the end of the year to eliminate possible conflict with instrument calibrations prior to plant startup. Some improvements to the computer hardware were made during FY-1980. Sensor and instrument development during FY-1980 emphasized device testing for ICPP monitoring applications. Pressure transducers, pressure switches, a bubble flowmeter, and load cells were tested; an ultrasonic liquid-in-line sensor was developed and tested. Work on the portable, isotope-ratio mass spectrometer led to the comparison of the HP quadrupole instrument with a small magnetic instrument and to the selection of the quadrupole

  12. Environmental program audit: Oak Ridge Gaseous Diffusion Plant, Roane County, Tennessee. Final report

    International Nuclear Information System (INIS)

    Smith, W.M.; Waller, R.

    1985-01-01

    An environmental audit of the Oak Ridge Gaseous Diffusion Plant (ORGDP) was conducted by a team of NUS scientists and engineers during the week of June 3 through June 7, 1985. ORGDP is owned by the Department of Energy and operated by Martin-Marietta Energy Systems, Inc. To enrich uranium feedstocks for nuclear fuels. The team evaluated ORGDP in terms of compliance with environmental regulations and DOE Orders, the adequacy of pollution control equipment, the effectiveness of environmental monitoring, and the application of quality control procedures to environmental programs. The audit was conducted by observing operations, inspecting facilities, evaluating analysis and monitoring techniques, reviewing reports and data, and interviewing personnel. Overall, the ORGDP environmental program appears to be well structured and has attempted to address all areas of air, water, and land media likely to be affected by the operations of the facility. The plant management is knowledgeable about environmental concerns and has established clear, well-defined goals to address these areas. An adequate professional staff is available to manage the environmental program

  13. Generic Containment: Detailed comparison of containment simulations performed on plant scale

    International Nuclear Information System (INIS)

    Kelm, St.; Klauck, M.; Beck, S.; Allelein, H.-J.; Preusser, G.; Sangiorgi, M.; Klein-Hessling, W.; Bakalov, I.; Bleyer, A.; Bentaib, A.; Kljenak, I.; Stempniewicz, M.; Kostka, P.; Morandi, S.; Ada del Corno, B.; Bratfisch, C.; Risken, T.; Denk, L.; Parduba, Z.; Paci, S.

    2014-01-01

    Highlights: • Consequent implementation of the recommendations derived from the OECD/NEA ISP-47. • Phenomenological code-to-code comparison performed on plant scale. • Systematic identification and elimination of the user effect. • Identification of fundamental differences in the model basis. • Application to PAR system analysis. - Abstract: One outcome of the OECD/NEA ISP-47 activity was the recommendation to elaborate a ‘Generic Containment’ in order to allow comparing and rating the results obtained by different lumped-parameter models on plant scale. Within the European SARNET2 project ( (http://www.sar-net.eu)), such a Generic Containment nodalisation, based on a German PWR (1300 MW el ), was defined. This agreement on the nodalisation allows investigating the remaining differences among the results, especially the ‘user-effect’, related to the modelling choices, as well as fundamental differences in the underlying model basis in detail. The methodology applied in order to compare the different code predictions consisted of a series of three benchmark steps with increasing complexity as well as a systematic comparison of characteristic variables and observations. This paper summarises the benchmark series, the lessons learned during specifying the steps, comparing and discussing the results and finally gives an outlook on future steps

  14. Mechanisms of plant resistance to increased solar ultraviolet-B radiation. Final report

    International Nuclear Information System (INIS)

    Teramura, A.H.; Sullivan, J.H.

    1988-05-01

    Since the major conclusions of the project are being disseminated via the scientific literature, the final report consists of a compilation of 11 articles and manuscripts on the effects of ultraviolet-B radiation (UVB) on soybean growth and yield, stress interactions with UVB, and effects of UVB on seedling growth in conifers (the Pinaceae). The effects of UVB on soybeans under field and greenhouse conditions, and under water stress, drought stress and phosphorus deficiency were studied. Soybean yields, seed quality, and physiology, including seed fatty acid and sterol composition, were determined

  15. Procedural law problems with the construction of installations (plants) for the final storage of radioactive materials

    International Nuclear Information System (INIS)

    Hoppe, W.; Bunse, B.

    1984-01-01

    The underground exploration of the salt-mine Gorleben has to be permitted according to sec. 126 para. 3, 51 et seq. Federal Mining Act. There is, however, no need for carrying out a nuclear law procedure for the official approval of the plan because the construction of the exploration mine does not represent the construction of a final storage facility. The operation of exploration measures does not create legally relevant prejudices for procedures of the official approval of the plan according to Atomic Energy Law. (HP) [de

  16. Study on evaluation index system of operational performance of municipal wastewater treatment plants in China

    Science.gov (United States)

    Xiaoxin, Zhang; Jin, Huang; Ling, Lin; Yan, Li

    2018-05-01

    According to the undeveloped evaluation method for the operational performance of the municipal wastewater treatment plants, this paper analyzes the policies related to sewage treatment industry based on the investigation of the municipal wastewater treatment plants. The applicable evaluation method for the operational performance was proposed from environmental protection performance, resources and energy consumption, technical and economic performance, production management and main equipment, providing a reliable basis for scientific evaluation of the operation as well as improving the operational performance of municipal wastewater treatment plant.

  17. Monitoring of the energy performance of a district heating CHP plant based on biomass boiler and ORC generator

    International Nuclear Information System (INIS)

    Prando, Dario; Renzi, Massimiliano; Gasparella, Andrea; Baratieri, Marco

    2015-01-01

    More than seventy district heating (DH) plants based on biomass are operating in South Tyrol (Italy) and most of them supply heat to residential districts. Almost 20% of them are cogenerative systems, thus enabling primary energy savings with respect to the separate production of heat and power. However, the actual performance of these systems in real operation can considerably differ from the nominal one. The main objectives of this work are the assessment of the energy performance of a biomass boiler coupled with an Organic Rankine Cycle (i.e. ORC) generator under real operating conditions and the identification of its potential improvements. The fluxes of energy and mass of the plant have been measured onsite. This experimental evaluation has been supplemented with a thermodynamic model of the ORC generator, calibrated with the experimental data, which is capable to predict the system performance under different management strategies of the system. The results have highlighted that a decrease of the DH network temperature of 10 °C can improve the electric efficiency of the ORC generator of one percentage point. Moreover, a DH temperature reduction could decrease the main losses of the boiler, namely the exhaust latent thermal loss and the exhaust sensible thermal loss, which account for 9% and 16% of the boiler input power, respectively. The analysis of the plant has pointed out that the ORC pump, the flue gases extractor, the thermal oil pump and the condensation section fan are the main responsible of the electric self-consumption. Finally, the negative effect of the subsidisation on the performance of the plant has been discussed. - Highlights: • Energy performance of a biomass boiler coupled to an ORC turbine in real operation. • Potential improvements of a CHP plant connected to a DH network. • Performance prediction by means of a calibrated ORC thermodynamic model. • Influence of the DH temperature on the electric efficiency. • Impact of the

  18. Improving plant performance through efficient nuclear waste management - The French experience

    International Nuclear Information System (INIS)

    Peterson, C.H.

    1986-01-01

    This paper discusses high and low level waste management and its effect on Plant Performance. In France, high level waste policy is an improtant factor in plant performance. The LLW section of the paper discusses the role of French Industry organization as well as the benefits of standard plants with standard practices. The regulation of the production of waste and the waste processing by utilities is covered

  19. Field performance of spider plant ( Cleome gynandra l) under ...

    African Journals Online (AJOL)

    100 kg/ha ammonium nitrate and 300 kg/ha Compound D + 150 kg/ha ammonium nitrate). Growth parameters, vitamin A and C, crude protein, iron content, fresh and dry yield were significantly (p<0.05) increased by use of organic and inorganic fertilizers across all planting dates compared to the control where no fertilizers ...

  20. Performance of wastewater treatment plants in Jordan and suitability ...

    African Journals Online (AJOL)

    There is an increasing trend to require more efficient use of water resources, both in urban and rural environments. In Jordan, the increase in water demand, in addition to water shortage has led to growing interest in wastewater reuse. In this work, characteristics of wastewater for four wastewater treatment plants were ...

  1. MANUFACTURING AND CONTINUOUS IMPROVEMENT PERFORMANCE LEVEL IN PLANTS OF MEXICO; A COMPARATIVE ANALYSIS AMONG LARGE AND MEDIUM SIZE PLANTS

    OpenAIRE

    Carlos Monge; Jesús Cruz

    2015-01-01

    A random and statistically significant sample of 40 medium (12) and large (28) manufacturing plants of Apodaca, Mexico were surveyed using a structured and validated questionnaire to investigate the level of implementation of lean manufacturing, sustainable manufacturing, continuous improvement and operational efficiency and environmental responsibility in them, it is important to mention it was found that performance in the mentioned philosophies, on the two categories of plants is low, howe...

  2. Host-plant preference and performance of the vine weevil Otiorhynchus sulcatus

    NARCIS (Netherlands)

    van Tol, R.W.H.M.; van Dijk, N.; Sabelis, M.W.

    2004-01-01

    The relationship between reproductive performance and preference for potential host plants of the vine weevil is investigated, as shown in tests on contact (or feeding) preference, presented herein, and tests on olfactory preference, published elsewhere. Assessment of reproductive performance shows

  3. Performance evaluation and validation of 5 MWp grid connected solar photovoltaic plant in South India

    International Nuclear Information System (INIS)

    Sundaram, Sivasankari; Babu, Jakka Sarat Chandra

    2015-01-01

    Highlights: • A real time performance analysis with validation of the system is carried out for 5 MW p plant. • Dependence or interactions of input factors over performance responses are identified. • The topology of the PV system and the inverter technology is suggested for improved realization. • The average PV module, inverter and system efficiency are found to be 6.08%, 88.2% and 5.08%. • Average energy and exergy efficiency of the system is found to be 6.08% and 3.54%. - Abstract: The main objective of this paper is to present the validated annual performance analysis with the monitored results from a 5 MW p grid connected photovoltaic plant located in India at Sivagangai district in Tamilnadu. The total annual energy generated was 8495296.4 kW h which averages around 707941.4 kW h/month. In addition to the above, real time performance of the plant is validated through system software called RETscreen plus which employs regression analysis for validation. The measured annual average energy generated by the 5 MW p system is 24116.61 kW h/day which is appropriately close to the predicted annual average which was found to be 24055.25 kW h/day by RETscreen. The predicted responses are further justified by the value of statistical indicators such as mean bias error, root mean square error and mean percentage error. The annual average daily array yield, corrected reference yield, final yield, module efficiency, inverter efficiency and system efficiency were found to be 5.46 h/day, 5.128 h/day 4.810 h/day, 6.08%, 88.20% and 5.08% respectively. The overall absolute average daily capture loss and system loss of the particular system under study is 0.384 h/day and 0.65 h/day respectively. A comparison is also made between the performance indices of solar photovoltaic system situated at other locations from the literature’s published. Furthermore the effect of input factors over the output of the system is emphasized by regression coefficients obtained

  4. The development and evaluation of programmatic performance indicators associated with maintenance at nuclear power plants

    International Nuclear Information System (INIS)

    Wreathall, J.; Fragola, J.; Appignani, P.; Burlile, G.; Shen, Y.

    1990-05-01

    This report summarizes the development and evaluation of programmatic performance indicators of maintenance. These indicators were selected by: (1) creating a formal framework of plant processes; (2) identifying features of plant behavior considered important to safety; (3) evaluating existing indicators against these features; and (4) performing statistical analyses for the selected indicators. The report recommends additional testing. 32 refs., 29 figs., 11 tabs

  5. Towards the final MRPC design. Performance test with heavy ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Deppner, Ingo; Herrmann, Norbert [Physikalisches Institut Uni. Heidelberg, Heidelberg (Germany)

    2015-07-01

    The Compressed Baryonic Matter spectrometer (CBM) is a future heavy ion experiment located at the Facility for Anti-proton and Ion Research (FAIR) in Darmstadt, Germany. The key element in CBM providing hadron identification at incident energies between 2 and 35 AGeV will be a 120 m{sup 2} large Time-of-Flight (ToF) wall composed of Multi-gap Resistive Plate Chambers (MRPC) with a system time resolution better than 80 ps. Aiming for an interaction rate of 10 MHz for Au+Au collisions the MRPCs have to cope with an incident particle flux between 0.1 kHz/cm{sup 2} and 25 kHz/cm{sup 2} depending on their location. Characterized by granularity and rate capability the actual conceptual design of the ToF-wall foresees 4 different counter types called MRPC1 - MRPC4. In order to elaborate the final MRPC design of these counters a heavy ion test beam time was performed at GSI. In this contribution we present performance test results of 2 different MRPC3 full size prototypes developed at Heidelberg University and Tsinghua University, Beijing.

  6. Low-level waste disposal site performance assessment with the RQ/PQ methodology. Final report

    International Nuclear Information System (INIS)

    Rogers, V.C.; Grant, M.W.; Sutherland, A.A.

    1982-12-01

    A methodology called RQ/PQ (retention quotient/performance quotient) has been developed for relating the potential hazard of radioactive waste to the natural and man-made barriers provided by a disposal facility. The methodology utilizes a systems approach to quantify the safety of low-level waste disposed in a near-surface facility. The main advantages of the RQ/PQ methodology are its simplicity of analysis and clarity of presentation while still allowing a comprehensive set of nuclides and pathways to be treated. Site performance and facility designs for low-level waste disposal can be easily investigated with relatively few parameters needed to define the problem. Application of the methodology has revealed that the key factor affecting the safety of low-level waste disposal in near surface facilities is the potential for intrusion events. Food, inhalation and well water pathways dominate in the analysis of such events. While the food and inhalation pathways are not strongly site-dependent, the well water pathway is. Finally, burial at depths of 5 m or more was shown to reduce the impacts from intrusion events

  7. Verbal Final Exam in Introductory Biology Yields Gains in Student Content Knowledge and Longitudinal Performance

    Science.gov (United States)

    Luckie, Douglas B.; Rivkin, Aaron M.; Aubry, Jacob R.; Marengo, Benjamin J.; Creech, Leah R.; Sweeder, Ryan D.

    2013-01-01

    We studied gains in student learning over eight semesters in which an introductory biology course curriculum was changed to include optional verbal final exams (VFs). Students could opt to demonstrate their mastery of course material via structured oral exams with the professor. In a quantitative assessment of cell biology content knowledge, students who passed the VF outscored their peers on the medical assessment test (MAT), an exam built with 40 Medical College Admissions Test (MCAT) questions (66.4% [n = 160] and 62% [n = 285], respectively; p students performed better on MCAT questions in all topic categories tested; the greatest gain occurred on the topic of cellular respiration. Because the VF focused on a conceptually parallel topic, photosynthesis, there may have been authentic knowledge transfer. In longitudinal tracking studies, passing the VF also correlated with higher performance in a range of upper-level science courses, with greatest significance in physiology, biochemistry, and organic chemistry. Participation had a wide range but not equal representation in academic standing, gender, and ethnicity. Yet students nearly unanimously (92%) valued the option. Our findings suggest oral exams at the introductory level may allow instructors to assess and aid students striving to achieve higher-level learning. PMID:24006399

  8. Security Hardened Cyber Components for Nuclear Power Plants: Phase I SBIR Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Franusich, Michael D. [SpiralGen, Inc., Pittsburgh, PA (United States)

    2016-03-18

    SpiralGen, Inc. built a proof-of-concept toolkit for enhancing the cyber security of nuclear power plants and other critical infrastructure with high-assurance instrumentation and control code. The toolkit is based on technology from the DARPA High-Assurance Cyber Military Systems (HACMS) program, which has focused on applying the science of formal methods to the formidable set of problems involved in securing cyber physical systems. The primary challenges beyond HACMS in developing this toolkit were to make the new technology usable by control system engineers and compatible with the regulatory and commercial constraints of the nuclear power industry. The toolkit, packaged as a Simulink add-on, allows a system designer to assemble a high-assurance component from formally specified and proven blocks and generate provably correct control and monitor code for that subsystem.

  9. Validity and design of environmental surveillance systems for operating nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Eichholz, G.G.

    1977-12-01

    The composition and procedures of environmental surveillance programs at completed and operating nuclear power plants have been examined with respect to their validity, continuing significance and cost. It was found that many programs contain components that are mainly an extension of preoperational baseline measurements that need not be continued indefinitely and that others lack the statistical validity to make their continued application meaningful. To identify the practical limits imposed by counting statistics and realistic equipment capacity measurements were done on iodine-131 and cesium-137 containing samples to establish detectability limits and proportionate costs for sample preparation and counting. It was found that under commercial conditions effective detectability limits and expected confidence limits were substantially higher than those mentioned in NRC Regulatory Guides. This imposes a need for either selecting fewer samples and counting them for longer times or accepting a lesser accuracy on more samples, within the bounds of reasonable cost per sample

  10. Environmental Safety and Health Analytical Laboratory, Pantex Plant, Amarillo, Texas. Final Environmental Assessment

    International Nuclear Information System (INIS)

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) of the construction and operation of an Environmental Safety and Health (ES ampersand H) Analytical Laboratory and subsequent demolition of the existing Analytical Chemistry Laboratory building at Pantex Plant near Amarillo, Texas. In accordance with the Council on Environmental Quality requirements contained in 40 CFR 1500--1508.9, the Environmental Assessment examined the environmental impacts of the Proposed Action and discussed potential alternatives. Based on the analysis of impacts in the EA, conducting the proposed action, construction of an analytical laboratory and demolition of the existing facility, would not significantly effect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA) and the Council on Environmental Quality regulations in 40 CFR 1508.18 and 1508.27

  11. 1997 Gordon Research Conference on Plant Cell Walls. Final progress report

    Energy Technology Data Exchange (ETDEWEB)

    Staehelin, A.

    1999-08-25

    The Gordon Research Conference (GRC) on Plant Cell Walls was held at Tilton School, Tilton, New Hampshire, July 18-22, 1997. The conference was well attended with 106 participants. The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both US and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. In addition to these formal interactions, free time was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  12. Sequoyah Uranium Hexafluoride Plant (Docket No. 40-8027): Final environmental statement

    International Nuclear Information System (INIS)

    1975-02-01

    The proposed action is the continuation of Source Material License SUB-1010 issued to Kerr-McGee Nuclear Corporation authorizing the operation of a uranium hexafluoride manufacturing facility located in Sequoyah County, Oklahoma, close to the confluence of the Illinois and Arkansas Rivers. The plant produces high purity uranium hexafluoride using uranium concentrates (yellowcake) as the starting material. It is currently designed to produce 5000 tons of uranium per year as uranium hexafluoride and has been in operation since February 1970 without significant environmental incident or discernible offsite effect. The manufacturing process being used includes wet chemical purification to convert yellowcake to pure uranium trioxide followed by dry chemical reduction, hydrofluorination, and fluorination technique to produce uranium hexafluoride. 8 figs, 12 tabs

  13. Waste Isolation Pilot Plant RH TRU waste preoperational checkout: Final report

    International Nuclear Information System (INIS)

    1988-06-01

    This report documents the results of the Waste Isolation Pilot Plant (WIPP) Remote-Handled Transuranic (RH TRU) Waste Preoperational Checkout. The primary objective of this checkout was to demonstrate the process of handling RH TRU waste packages, from receipt through emplacement underground, using equipment, personnel, procedures, and methods to be used with actual waste packages. A further objective was to measure operational time lines to provide bases for confirming the WIPP design through put capability and for projecting operator radiation doses. Successful completion of this checkout is a prerequisite to the receipt of actual RH TRU waste. This checkout was witnessed in part by members of the Environmental Evaluation Group (EEG) of the state of New Mexico. Further, this report satisfies a key milestone contained in the Agreement for Consultation and Cooperation with the state of New Mexico. 4 refs., 26 figs., 4 tabs

  14. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, Mark T.

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysis of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, and analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: 1) to assess the potential terrorist threat to U.S. agricultural crops, 2) to determine whether suitable assays exist to monitor that threat, and 3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.

  15. Feasibility study of a Green Power Plant. Final report. [Offshore pumped hydro storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This project is a technical evaluation and a feasibility study of a concept called the Green Power Plant (GPP), developed by Seahorn Energy Aps. The Green Power Plant is an offshore pumped hydro storage facility constructed from prefabricated elements and with integrated renewable energy production. Pumped hydro storage is a known technology with a proven roundtrip energy storage efficiency of 80%. The focus of the GPP project is on simplifying and industrializing the construction of the reservoir wall, thereby achieving a cost efficient solution. The reservoir structure is dependent on the site on which the reservoir is established, thus Kriegers Flak in the Baltic Sea has been chosen as basis for the technical evaluation. As soil conditions vary, the technical evaluations have been based on a general soil profile. A water depth of 25m has been chosen as basis for the evaluation. A reservoir with a diameter of 2 km has been evaluated as baseline scenario. Feasibility of the GPP was evaluated based on the cost and income estimates. For the baseline scenario an internal rate of return of 6.6% was found for a period of 35 years. A sensitivity analysis reveals internal rates of return over 35 years varying from 4.9% to 10.9%. Especially larger reservoir diameters increase profitability of the GPP. The results from this project will be utilized in raising funds for further development of the GPP concept. Seahorn Energy Aps aims at optimizing the wind turbine integration, the steel pile wall structure and the pump-turbine integration in a future project towards construction of a demonstration facility. (LN)

  16. Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 2, Designs, assessments, and comparisons, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    The primary objective of the of the IFE Reactor Design Studies was to provide the Office of Fusion Energy with an evaluation of the potential of inertial fusion for electric power production. The term reactor studies is somewhat of a misnomer since these studies included the conceptual design and analysis of all aspects of the IFE power plants: the chambers, heat transport and power conversion systems, other balance of plant facilities, target systems (including the target production, injection, and tracking systems), and the two drivers. The scope of the IFE Reactor Design Studies was quite ambitious. The majority of our effort was spent on the conceptual design of two IFE electric power plants, one using an induction linac heavy ion beam (HIB) driver and the other using a Krypton Fluoride (KrF) laser driver. After the two point designs were developed, they were assessed in terms of their (1) environmental and safety aspects; (2) reliability, availability, and maintainability; (3) technical issues and technology development requirements; and (4) economics. Finally, we compared the design features and the results of the assessments for the two designs.

  17. Data base of system-average dose rates at nuclear power plants: Final report

    International Nuclear Information System (INIS)

    Beal, S.K.; Britz, W.L.; Cohen, S.C.; Goldin, A.S.; Goldin, D.J.

    1987-10-01

    In this work, a data base is derived of area dose rates for systems and components listed in the Energy Economic Data Base (EEDB). The data base is derived from area surveys obtained during outages at four boiling water reactors (BWRs) at three stations and eight pressurized water reactors (PWRs) at four stations. Separate tables are given for BWRs and PWRs. These tables may be combined with estimates of labor hours to provide order-of-magnitude estimates of exposure for purposes of regulatory analysis. They are only valid for work involving entire systems or components. The estimates of labor hours used in conjunction with the dose rates to estimate exposure must be adjusted to account for in-field time. Finally, the dose rates given in the data base do not reflect ALARA considerations. 11 refs., 2 figs., 3 tabs

  18. Elements of power plant design for inertial fusion energy. Final report of a coordinated research project 2000-2004

    International Nuclear Information System (INIS)

    2005-06-01

    There are two major approaches in fusion energy research: magnetic fusion energy (MFE) and inertial fusion energy (IFE). The basic physics of IFE (compression and ignition of small fuel pellets containing deuterium and tritium) is being increasingly understood. Based on recent advances by individual countries, IFE has reached a stage at which benefits could be obtained from a coordinated approach in the form of an IAEA Coordinated Research Project (CRP) on Elements of Power Plant Design for Inertial Fusion Energy. This CRP helped Member States to promote the development of plasma/fusion technology transfer and to emphasize safety and environmental advantages of fusion energy. The CRP was focused on interface issues including those related to, - the driver/target interface (e.g. focusing and beam uniformity required by the target), - the driver/chamber interface (e.g. final optics and magnets protection and shielding), - and the target/chamber interface (e.g. target survival during injection, target positioning and tracking in the chamber). The final report includes an assessment of the state of the art of the technologies required for an IFE power plant (drivers, chambers, targets) and systems integration as presented and evaluated by members of the CRP. Additional contributions by cost free invited experts to the final RCM are included. The overall objective of this CRP was to foster the inertial fusion energy development by improving international cooperation. The variety of contributions compiled in this TECDOC reflects, that the goal of stimulating the exchange of knowledge was well achieved. Further the CRP led to the creation of a network, which not only exchanged their scientific results, but also developed healthy professional relations and strong mutual interest in the work of the group members

  19. Chemical and mechanical performance properties for various final waste forms -- PSPI scoping study

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Larsen, E.D.; Sears, J.W.; Eddy, T.L.; Anderson, G.L.

    1996-09-01

    The US DOE is obtaining data on the performance properties of the various final waste forms that may be chosen as primary treatment products for the alpha-contaminated low-level and transuranic waste at the INEL's Transuranic Storage Area. This report collects and compares selected properties that are key indicators of mechanical and chemical durability for Portland cement concrete, concrete formed under elevated temperature and pressure, sulfur polymer cement, borosilicate glass, and various forms of alumino-silicate glass, including in situ vitrification glass and various compositions of iron-enriched basalt (IEB) and iron-enriched basalt IV (IEB4). Compressive strength and impact resistance properties were used as performance indicators in comparative evaluation of the mechanical durability of each waste form, while various leachability data were used in comparative evaluation of each waste form's chemical durability. The vitrified waste forms were generally more durable than the non-vitrified waste forms, with the iron-enriched alumino-silicate glasses and glass/ceramics exhibiting the most favorable chemical and mechanical durabilities. It appears that the addition of zirconia and titania to IEB (forming IEB4) increases the leach resistance of the lanthanides. The large compositional ranges for IEB and IEB4 more easily accommodate the compositions of the waste stored at the INEL than does the composition of borosilicate glass. It appears, however, that the large potential variation in IEB and IEB4 compositions resulting from differing waste feed compositions can impact waste form durability. Further work is needed to determine the range of waste stream feed compositions and rates of waste form cooling that will result in acceptable and optimized IEB or IEB4 waste form performance. 43 refs

  20. MHD channel performance for potential early commercial MHD power plants

    International Nuclear Information System (INIS)

    Swallom, D.W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation

  1. Risk management: A tool for improving nuclear power plant performance

    International Nuclear Information System (INIS)

    2001-04-01

    This technical document on risk management as a tool for improving nuclear power plant (NPP) operations is part of an ongoing project on management of NPP operations in a competitive environment. The overall objective of this project is to assist the management of operating organizations and NPPs in identifying and implementing appropriate measures to remain competitive in a rapidly changing business environment. Other reports developed through this project have identified overall strategies and techniques that NPP operating organization managers can use to succeed in more competitive energy markets. For example, in IAEA-TECDOC-1123, Strategies for Competitive Nuclear Power Plants, one of the most important strategies identified was integrated risk management. This publication provides a recommended structure for risk management along with examples of how NPP operating organizations are using this tool to help them integrate safety, operational and economic related risks in a changing business environment

  2. Development of a dynamical systems model of plant programmatic performance on nuclear power plant safety risk

    International Nuclear Information System (INIS)

    Hess, Stephen M.; Albano, Alfonso M.; Gaertner, John P.

    2005-01-01

    Application of probabilistic risk assessment (PRA) techniques to model nuclear power plant accident sequences has provided a significant contribution to understanding the potential initiating events, equipment failures and operator errors that can lead to core damage accidents. Application of the lessons learned from these analyses has resulted in significant improvements in plant operation and safety. However, this approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. The research described in this paper presents an alternative approach to addressing this issue. In this paper we propose a dynamical systems model that describes the interaction of important plant processes on nuclear safety risk. We discuss development of the mathematical model including the identification and interpretation of significant inter-process interactions. Next, we review the techniques applicable to analysis of nonlinear dynamical systems that are utilized in the characterization of the model. This is followed by a preliminary analysis of the model that demonstrates that its dynamical evolution displays features that have been observed at commercially operating plants. From this analysis, several significant insights are presented with respect to the effective control of nuclear safety risk. As an important example, analysis of the model dynamics indicates that significant benefits in effectively managing risk are obtained by integrating the plant operation and work management processes such that decisions are made utilizing a multidisciplinary and collaborative approach. We note that although the model was developed specifically to be applicable to nuclear power plants, many of the insights and conclusions obtained are likely applicable to other process industries

  3. Performance of Generating Plant: Managing the Changes. Part 2: Thermal Generating Plant Unavailability Factors and Availability Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Curley, G. Michael [North American Electric Reliability Corporation (United States); Mandula, Jiri [International Atomic Energy Agency (IAEA)

    2008-05-15

    The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 2 (WG2). WG2's main task is to facilitate the collection and input on an annual basis of power plant performance data (unit-by-unit and aggregated data) into the WEC PGP database. The statistics will be collected for steam, nuclear, gas turbine and combined cycle, hydro and pump storage plant. WG2 will also oversee the ongoing development of the availability statistics database, including the contents, the required software, security issues and other important information. The report is divided into two sections: Thermal generating, combined cycle/co-generation, combustion turbine, hydro and pumped storage unavailability factors and availability statistics; and nuclear power generating units.

  4. Effects of maize planting patterns on the performance of cassava ...

    African Journals Online (AJOL)

    sola

    The design was a split-plot arrangement, laid out in a randomized ... significant differences (P<0.05) between the treatments in the growth and yield parameters of maize. The mean effects of companion crops on maize leaf area were 0.61, 0.60, 0.60 and 0.52 m2/plant for sole maize, maize / melon, maize / cassava and.

  5. Contributions of welding technology to power plant performance

    International Nuclear Information System (INIS)

    Childs, W.J.

    1995-01-01

    Welding repairs can be a very major factor in the time and cost of maintenance outages of a power plant. The use of advanced equipment and procedures for welding can contribute significantly to reducing maintenance costs and increasing reliability. Plant failures have too often been caused by problems associated with welding, some due to improper choice of base materials, others due to welding defects. For example, stress corrosion cracking in weldments in BWR austenitic stainless steel piping was a major source of loss of availability in the 1980s. Examples of the use of improved welding equipment and procedures has been demonstrated to reduce outage time and improved weld integrity in several major areas. New welding techniques, such as laser welding, have the potential for addressing maintenance problems that can not be addressed at all with conventional welding technology and/or may provide a means of reducing greatly the time and cost of welding fabrications or repair. Methods of ensuring that the best available technology is applied in weld repair is a major problem today in the utility industry. Solutions need to be sought to remedy this situation. The key role of welding in minimizing plant outages is being recognized and steps taken to further the development and use of optimum technology

  6. Specific issues for seismic performance of power plant equipment

    Energy Technology Data Exchange (ETDEWEB)

    Nawrotzki, Peter [GERB Vibration Control Systems, Berlin (Germany)

    2010-01-15

    Power plant machinery can be dynamically decoupled from the substructure by the effective use of helical steel springs and viscous dampers. Turbine foundations, coal mills, boiler feed pumps and other machine foundations benefit from this type of elastic support systems to mitigate the transmission of operational vibration. The application of these devices may also be used to protect against earthquakes and other catastrophic events, i.e. airplane crash, of particular importance in nuclear facilities. This article illustrates basic principles of elastic support systems and applications on power plant equipment and buildings in medium and high seismic areas. Spring damper combinations with special stiffness properties are used to reduce seismic acceleration levels of turbine components and other safety or non-safety related structures. For turbine buildings, the integration of the turbine sub-structure into the machine building can further reduce stress levels in all structural members. The application of this seismic protection strategy for a spent fuel storage tank in a high seismic area is also discussed. Safety in nuclear facilities is of particular importance and recent seismic events and the resulting damage in these facilities again brings up the discussion. One of the latest events is the 2007 Chuetsu earthquake in Japan. The resulting damage in the Kashiwazaki Kariwa Nuclear Power Plant can be found in several reports, e.g. in Yamashita. (orig.)

  7. Plant litter decomposition and carbon sequestration for arable soils. Final report of works. April 2005

    International Nuclear Information System (INIS)

    Recous, S.; Barrois, F.; Coppens, F.; Garnier, P.; Grehan, E.; Balesdent, J.; Dambrine, E.; Zeller, B.; Loiseau, P.; Personeni, E.

    2002-01-01

    The general objective of this project was to contribute to the evaluation of land use and management impacts on C sequestration and nitrogen dynamics in soils. The land used through the presence/absence of crops and their species, and the land management through tillage, localisation of crop residues, fertilizer applications,... are important factors that affect the dynamics of organic matters in soils, particularly the mineralization of C and N, the losses to the atmosphere and hydrosphere, the retention of carbon into the soil. This project was conducted by four research groups, three of them having expertise in nutrient cycling of three major agro-ecosystems (arable crops, grasslands, forests) and the fourth one having expertise in modelling long term effects of land use on C storage into the soils. Within this common project one major objective was to better understand the fate of plant litter entering the soil either as above litter or as root litter. The focus was put on two factors that particularly affect decomposition: the initial biochemical quality of plant litter, and the location of the decomposing litter. One innovative aspect of the project was the use of stable isotope as 13 C for carbon, based on the use of enriched or depleted 13 C material, the only option to assess the dynamics of 'new' C entering the soil on the short term, in order to reveal the effects of decomposition factors. Another aspect was the simultaneous study of C and N. The project consisted in experiments relevant for each agro-ecosystem, in forest, grassland and arable soils for which interactions between residue quality and nitrogen availability on the one hand, residue quality and location on the other hand, was investigated. A common experiment was set up to investigate the potential degradability of the various residue used (beech leaf rape straw, young rye, Lolium and dactylic roots) in a their original soils and in a single soil was assessed. Based on these experiments, the

  8. Forecasting power plant effects on the coastal zone. EG and G final report number B-4441

    International Nuclear Information System (INIS)

    1976-06-01

    Field methods, data analyses, and calculation are presented exemplifying procedures for oceanic dispersion prediction as a tool for forecasting power plant effects on the coastal zone. Measurements were made of dye, drogues and temperatures near Pilgrim Station's discharge (Plymouth, Massachusetts), and of currents and other variables across Massachusetts Bay. Analysis of current data illustrates separation of tidal, wind-driven and inertial constituents and their significance for dispersion. Dye and temperature dispersion are compared with the currents study, and diffusion coefficients estimated. Current data from coastal sites (New Jersey and Massachusetts) are analyzed to determine field requirements for dispersion estimates. Methods to calculate expected precision of estimates based on brief current records are developed. Model calculations predicting dispersion based on observed ocean currents are described. Formulae are derived to estimate the spatial distribution of impact from a discharge. A numerical model to calculate discharge dispersion in more detail is discussed and used to study time variations of discharge effects. Model predictions are compared with field observations

  9. Defense Waste Processing Facility: Savannah River Plant, Aiken, SC. Final environmental impact statement

    International Nuclear Information System (INIS)

    1982-02-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste (HLW) currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility (DWPF) at the SRP site. The SRP is a major US Department of Envgy (DOE) installation for the production of nuclear materials for national defense. Approximately 83 x 10 3 m 3 (22 million gal) of HLW currently are stored in tanks at the SRP site. The proposed DWPF would process the liquid HLW generated by SRP operations into a stable form for ultimate disposal. This EIS assesses the effects of the proposed immobilization project on land use, air quality, water quality, ecological systems, health risk, cultural resources, endangered species, wetlands protection, resource depletion, and regional social and economic systems. The radiological and nonradiological risks of transporting the immobilized wastes are assessed. The environmental impacts of disposal alternatives have recently been evaluated in a previous EIS and are therefore only summarized in this EIS

  10. Nuclear power plant performance monitoring using Data Validation and Reconciliation (DVR). Application at the Brazilian Angra 2 PWR plant

    International Nuclear Information System (INIS)

    Tran Quang, Anh Tho; Closon, Hervé; Chares, Robert; Azola, Edson

    2011-01-01

    Operational decisions related to plant performance monitoring mainly result from raw process measurement analysis. When first signs of sub-optimal behavior occur, traditional methods mainly focus on the observation of selective pieces of information. The main disadvantages of these methods are: Investigation efforts are required to localize the problems, entailing time losses and costs; Validity and reliability of the pieces of information cannot be checked as long as the measurements are observed individually. The problem is not the lack of methods and techniques but rather a lack of reliable and consistent data and information across the entire plant. To overcome drawbacks of traditional methods, measurements are considered as interacting with one another. When related to the other measurements of the plant, the observed information becomes of an interest: its incoherency to the others identifies and localizes a problem. The Data Validation and Reconciliation technology (DVR) is based on an advanced process data coherency treatment. By using all available plant information and by closing the plant heat and mass balances based on rigorous thermodynamics, the method generates: A single set of reliable and most accurate plant process data; Alarms for incoherent measurements, highlighting potential problems; Alarms for equipment and process performance degradation; Alarms for faulty and drifting measurements. The use of the advanced DVR software package VALI offers various benefits as it allows to base operational decisions on reliable and accurate data. (author)

  11. Application of aerospace failure-reporting systems to power plants. Final report

    International Nuclear Information System (INIS)

    Koukol, J.F.; Lapin, E.E.; Leverton, W.F.; Pickering, W.H.

    1980-06-01

    Failure reporting and analysis is a principal element of the overall quality assurance scheme that helped achieve, and now sustains, a high level of reliability in our national aerospace effort. The aerospace endeavor has many points of congruence with other highly technological activities. These are marked by great economic investment, an extended interval between concept and final implementation, the involvement of many independent entities with the government exercising a dominating influence, a considerable exposure to public view and review by public bodies, a notoriety accompanying untoward events, and extreme consequences attending failure. This report is written in the expectation that the lessons learned in arriving at the present state in aerospace can be adopted by others. It is the object of the report to illuminate the essential features of the aerospace failure reporting system. Two schemes are described. One typifies that which is currently employed by the Jet Propulsion Laboratory (JPL) operated by the California Institute of Technology for the NASA/JPL Voyager project and is based on procedures developed over several decades of deep space exploration. The other is typical of that employed by the Space Divison of the Air Force for military space programs

  12. Investigation of modern methods of probalistic sensitivity analysis of final repository performance assessment models (MOSEL)

    International Nuclear Information System (INIS)

    Spiessl, Sabine; Becker, Dirk-Alexander

    2017-06-01

    Sensitivity analysis is a mathematical means for analysing the sensitivities of a computational model to variations of its input parameters. Thus, it is a tool for managing parameter uncertainties. It is often performed probabilistically as global sensitivity analysis, running the model a large number of times with different parameter value combinations. Going along with the increase of computer capabilities, global sensitivity analysis has been a field of mathematical research for some decades. In the field of final repository modelling, probabilistic analysis is regarded a key element of a modern safety case. An appropriate uncertainty and sensitivity analysis can help identify parameters that need further dedicated research to reduce the overall uncertainty, generally leads to better system understanding and can thus contribute to building confidence in the models. The purpose of the project described here was to systematically investigate different numerical and graphical techniques of sensitivity analysis with typical repository models, which produce a distinctly right-skewed and tailed output distribution and can exhibit a highly nonlinear, non-monotonic or even non-continuous behaviour. For the investigations presented here, three test models were defined that describe generic, but typical repository systems. A number of numerical and graphical sensitivity analysis methods were selected for investigation and, in part, modified or adapted. Different sampling methods were applied to produce various parameter samples of different sizes and many individual runs with the test models were performed. The results were evaluated with the different methods of sensitivity analysis. On this basis the methods were compared and assessed. This report gives an overview of the background and the applied methods. The results obtained for three typical test models are presented and explained; conclusions in view of practical applications are drawn. At the end, a recommendation

  13. Technologies and tools for high-performance distributed computing. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karonis, Nicholas T.

    2000-05-01

    In this project we studied the practical use of the MPI message-passing interface in advanced distributed computing environments. We built on the existing software infrastructure provided by the Globus Toolkit{trademark}, the MPICH portable implementation of MPI, and the MPICH-G integration of MPICH with Globus. As a result of this project we have replaced MPICH-G with its successor MPICH-G2, which is also an integration of MPICH with Globus. MPICH-G2 delivers significant improvements in message passing performance when compared to its predecessor MPICH-G and was based on superior software design principles resulting in a software base that was much easier to make the functional extensions and improvements we did. Using Globus services we replaced the default implementation of MPI's collective operations in MPICH-G2 with more efficient multilevel topology-aware collective operations which, in turn, led to the development of a new timing methodology for broadcasts [8]. MPICH-G2 was extended to include client/server functionality from the MPI-2 standard [23] to facilitate remote visualization applications and, through the use of MPI idioms, MPICH-G2 provided application-level control of quality-of-service parameters as well as application-level discovery of underlying Grid-topology information. Finally, MPICH-G2 was successfully used in a number of applications including an award-winning record-setting computation in numerical relativity. In the sections that follow we describe in detail the accomplishments of this project, we present experimental results quantifying the performance improvements, and conclude with a discussion of our applications experiences. This project resulted in a significant increase in the utility of MPICH-G2.

  14. Investigation of modern methods of probalistic sensitivity analysis of final repository performance assessment models (MOSEL)

    Energy Technology Data Exchange (ETDEWEB)

    Spiessl, Sabine; Becker, Dirk-Alexander

    2017-06-15

    Sensitivity analysis is a mathematical means for analysing the sensitivities of a computational model to variations of its input parameters. Thus, it is a tool for managing parameter uncertainties. It is often performed probabilistically as global sensitivity analysis, running the model a large number of times with different parameter value combinations. Going along with the increase of computer capabilities, global sensitivity analysis has been a field of mathematical research for some decades. In the field of final repository modelling, probabilistic analysis is regarded a key element of a modern safety case. An appropriate uncertainty and sensitivity analysis can help identify parameters that need further dedicated research to reduce the overall uncertainty, generally leads to better system understanding and can thus contribute to building confidence in the models. The purpose of the project described here was to systematically investigate different numerical and graphical techniques of sensitivity analysis with typical repository models, which produce a distinctly right-skewed and tailed output distribution and can exhibit a highly nonlinear, non-monotonic or even non-continuous behaviour. For the investigations presented here, three test models were defined that describe generic, but typical repository systems. A number of numerical and graphical sensitivity analysis methods were selected for investigation and, in part, modified or adapted. Different sampling methods were applied to produce various parameter samples of different sizes and many individual runs with the test models were performed. The results were evaluated with the different methods of sensitivity analysis. On this basis the methods were compared and assessed. This report gives an overview of the background and the applied methods. The results obtained for three typical test models are presented and explained; conclusions in view of practical applications are drawn. At the end, a recommendation

  15. 'Peripheric' pancreatic cysts: performance of CT scan, MRI and endoscopy according to final pathological examination.

    Science.gov (United States)

    Duconseil, P; Turrini, O; Ewald, J; Soussan, J; Sarran, A; Gasmi, M; Moutardier, V; Delpero, J R

    2015-06-01

    To assess the accuracy of pre-operative staging in patients with peripheral pancreatic cystic neoplasms (pPCNs). From 2005 to 2011, 148 patients underwent a pancreatectomy for pPCNs. The pre-operative examination methods of computed tomography (CT), magnetic resonance imaging (MRI), endoscopic ultrasonography (EUS) were compared for their ability to predict the suggested diagnosis accurately, and the definitive diagnosis was affirmed by pathological examination. A mural nodule was detected in 34 patients (23%): only 1 patient (3%) had an invasive pPCN at the final histological examination. A biopsy was performed in 79 patients (53%) during EUS: in 55 patients (70%), the biopsy could not conclude a diagnosis; the biopsy provided the correct and wrong diagnosis in 19 patients (24%) and 5 patients (6%), respectively. A correct diagnosis was affirmed by CT, EUS and pancreatic MRI in 60 (41%), 103 (74%) and 80 (86%) patients (when comparing EUS and MRI; P = 0.03), respectively. The positive predictive values (PPVs) of CT, EUS and MRI were 70%, 75% and 87%, respectively. Pancreatic MRI appears to be the most appropriate examination to diagnose pPCNs accurately. EUS alone had a poor PPV. Mural nodules in a PCN should not be considered an indisputable sign of pPCN invasiveness. © 2015 International Hepato-Pancreato-Biliary Association.

  16. Extended teamwork: team performance in highly automated nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Skjerve, Ann Britt; Strand, Stine; Skraaning, Gyrd Jr.

    2004-07-01

    Nuclear power plant (NPP) operation is in essence a teamwork task. The central control-room (CCR) operators are required to co-operate to achieve the operational goals, and they further depend on the assistance of the field operators and, at least in modern plants, on the assistance of the high-level automatic system. Future NPPs (e.g., advanced reactors) are foreseen to contain substantially higher automation levels, reduced staffing, and redefined roles of the remaining staff, as compared to the present situation. This paper suggests that in future plants, in which the autonomy and authority of the automatic system and of the field operators are increased, the transactions between the CCR operators and automatic system/field operators might most efficiently be conceptualized within the framework of co-operation, and thus teamwork. This framework has typically been restricted to conceptualizations of the transactions between the CCR operators, but in future settings, co-ordination, communication and mutual support between the CCR operators and the field operators/automatic system may be of increased importance for sustaining plant safety, as compared to the present situation. The paper further argues that human-system interfaces in future NPPs should be designed to support the activities of the extended team consisting of the CCR operators, the field operators, and the automatic system. The paper outlines an exploratory study aimed at generating ideas on how extended teamwork quality may be promoted. The study is currently foreseen to comprise two exemplary design solutions: a state-of-the art screen-based control-room (baseline condition) and a possible future control-room in which the activities of the field operators and the automatic system are explicitly represented on the human-system interface, where the authority and autonomy of these are increased, and the staffing level reduced, as compared to the baseline condition. The study will explore extended

  17. Extended teamwork: team performance in highly automated nuclear power plants

    International Nuclear Information System (INIS)

    Skjerve, Ann Britt; Strand, Stine; Skraaning, Gyrd Jr.

    2004-01-01

    Nuclear power plant (NPP) operation is in essence a teamwork task. The central control-room (CCR) operators are required to co-operate to achieve the operational goals, and they further depend on the assistance of the field operators and, at least in modern plants, on the assistance of the high-level automatic system. Future NPPs (e.g., advanced reactors) are foreseen to contain substantially higher automation levels, reduced staffing, and redefined roles of the remaining staff, as compared to the present situation. This paper suggests that in future plants, in which the autonomy and authority of the automatic system and of the field operators are increased, the transactions between the CCR operators and automatic system/field operators might most efficiently be conceptualized within the framework of co-operation, and thus teamwork. This framework has typically been restricted to conceptualizations of the transactions between the CCR operators, but in future settings, co-ordination, communication and mutual support between the CCR operators and the field operators/automatic system may be of increased importance for sustaining plant safety, as compared to the present situation. The paper further argues that human-system interfaces in future NPPs should be designed to support the activities of the extended team consisting of the CCR operators, the field operators, and the automatic system. The paper outlines an exploratory study aimed at generating ideas on how extended teamwork quality may be promoted. The study is currently foreseen to comprise two exemplary design solutions: a state-of-the art screen-based control-room (baseline condition) and a possible future control-room in which the activities of the field operators and the automatic system are explicitly represented on the human-system interface, where the authority and autonomy of these are increased, and the staffing level reduced, as compared to the baseline condition. The study will explore extended

  18. Individual plant examination program: Perspectives on reactor safety and plant performance. Part 6, appendices A, B, and C

    International Nuclear Information System (INIS)

    1997-12-01

    This report provides perspectives gained by reviewing 75 Individual Plant Examination (IPE) submittals pertaining to 108 nuclear power plant units. IPEs are probabilistic analyses that estimate the core damage frequency (CDF) and containment performance for accidents initiated by internal events (including internal flooding, but excluding internal fire). The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, reviewed the WE submittals with the objective of gaining perspectives in three major areas: (1) improvements made to individual plants as a result of their IPEs and the collective results of the IPE program, (2) plant-specific design and operational features and modeling assumptions that significantly affect the estimates of CDF and containment performance, and (3) strengths and weaknesses of the models and methods used in the IPEs. These perspectives are gained by assessing the core damage and containment performance results, including overall CDF, accident sequences, dominant contributions to component failure and human error, and containment failure modes. In particular, these results are assessed in relation to the design and operational characteristics of the various reactor and containment types, and by comparing the IPEs to probabilistic risk assessment characteristics. Methods, data, boundary conditions, and assumptions used in the IPEs are considered in understanding the differences and similarities observed among the various types of plants

  19. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992

    International Nuclear Information System (INIS)

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 contains an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA's Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal

  20. Software quality assurance in the 1996 performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Froehlich, Gary K.; Ogden, Harvey C.; Byle, Kathleen A.

    2000-01-01

    The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP), located in southeast New Mexico, is a deep geologic repository for the permanent disposal of transuranic waste generated by DOE defense-related activities. Sandia National Laboratories (SNL), in its role as scientific advisor to the DOE, is responsible for evaluating the long-term performance of the WIPP. This risk-based Performance Assessment (PA) is accomplished in part through the use of numerous scientific modeling codes, which rely for some of their inputs on data gathered during characterization of the site. The PA is subject to formal requirements set forth in federal regulations. In particular, the components of the calculation fall under the configuration management and software quality assurance aegis of the American Society of Mechanical Engineers(ASME) Nuclear Quality Assurance (NQA) requirements. This paper describes SNL's implementation of the NQA requirements regarding software quality assurance (SQA). The description of the implementation of SQA for a PA calculation addresses not only the interpretation of the NQA requirements, it also discusses roles, deliverables, and the resources necessary for effective implementation. Finally, examples are given which illustrate the effectiveness of SNL's SQA program, followed by a detailed discussion of lessons learned

  1. Software quality assurance in the 1996 performance assessment for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Froehlich, G.K.; Ogden, H.C.; Byle, K.A.

    2000-01-01

    The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP), located in southeast New Mexico, is a deep geologic repository for the permanent disposal of transuranic waste generated by DOE defense-related activities. Sandia National Laboratories (SNL), in its role as scientific advisor to the DOE, is responsible for evaluating the long-term performance of the WIPP. This risk-based Performance Assessment (PA) is accomplished in part through the use of numerous scientific modeling codes, which rely for some of their inputs on data gathered during characterization of the site. The PA is subject to formal requirements set forth in federal regulations. In particular, the components of the calculation fall under the configuration management and software quality assurance aegis of the American Society of Mechanical Engineers (ASME) Nuclear Quality Assurance (NQA) requirements. This paper describes SNL's implementation of the NQA requirements regarding software quality assurance (SQA). The description of the implementation of SQA for a PA calculation addresses not only the interpretation of the NQA requirements, it also discusses roles, deliverables, and the resources necessary for effective implementation. Finally, examples are given which illustrate the effectiveness of SNL's SQA program, followed by a detailed discussion of lessons learned

  2. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992

    International Nuclear Information System (INIS)

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to the EPA's Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Additional information about the 1992 PA is provided in other volumes. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions, the choice of parameters selected for sampling, and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect compliance with 40 CFR 191B are: drilling intensity, intrusion borehole permeability, halite and anhydrite permeabilities, radionuclide solubilities and distribution coefficients, fracture spacing in the Culebra Dolomite Member of the Rustler Formation, porosity of the Culebra, and spatial variability of Culebra transmissivity. Performance with respect to 40 CFR 191B is insensitive to uncertainty in other parameters; however, additional data are needed to confirm that reality lies within the assigned distributions

  3. Simulation analysis of capacity and performance improvement in wastewater treatment plants: Case study of Alexandria eastern plant

    Science.gov (United States)

    Moursy, Aly; Sorour, Mohamed T.; Moustafa, Medhat; Elbarqi, Walid; Fayd, Mai; Elreedy, Ahmed

    2018-05-01

    This study concerns the upgrading of a real domestic wastewater treatment plant (WWTP) supported by simulation. The main aims of this work are to: (1) decide between two technologies to improve WWTP capacity and its nitrogen removal efficiency; membrane bioreactor (MBR) and integrated fixed film activated sludge (IFAS), and (2) perform a cost estimation analysis for the two proposed solutions. The model used was calibrated based on data from the existing WWTP, namely, Eastern plant and located in Alexandria, Egypt. The activated sludge model No. 1 (ASM1) was considered in the model analysis by GPS-X 7 software. Steady-state analysis revealed that high performances corresponded to high compliance with Egyptian standards were achieved by the two techniques; however, MBR was better. Nonetheless, the two systems showed poor nitrogen removal efficiency according to the current situation, which reveals that the plant needs a modification to add an anaerobic treatment unit before the aerobic zone.

  4. Effects of CO(sub 2) and nitrogen fertilization on soils planted with ponderosa pine; FINAL

    International Nuclear Information System (INIS)

    Johnson, D.W.

    1996-01-01

    accounted for by plant uptake

  5. Material development for waste-to-energy plants. Refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O.

    2010-10-15

    Evaluation and SEM analysis of plant exposed, failed linings confirm over and again that failure in broad lines is linked to excess porosity, inferior quality on raw materials, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, thermal stress induced crack formation, and uncontrolled craftsmanship. Extensive evaluations, calculations and considerations revealed numerous ways to execute the formulation of experimental castable mixes, of which some formed a broad base for phase I trials. Three mixes of the experimental castable phase II batches reached apparent porosities of {approx} 10% measured with alcohol, estimated to less than 8%-9% if measured in water. These results compare favourably to the open porosities measure with water of generally applied LCCs in the Danish marketplace of 15.5-16.0%. Converted to bonding phase porosities the low levels realised in experiments look rather good: 28% vs 55-57%. Salt cup tests confirm state of the art resistance. Experiments and assessment of surface oxidation of Silicon Carbide grains of three levels of purity confirm that it is impossible to stabilise SiC by pre-oxydation for the purpose of creating a thicker, protective surface layer of SiO{sub 2}. It is evident from the literature and qualified assessment that free Si, as a remnant surplus from SiC manufacture, does indeed hydrolyse in the castable basic environment under development of H{sub 2} gas bubbles adding on to unwanted porosity. Heat conductivity measurements of six different, representative products conducted by the Danish Technological Institute from 300 dec. C to 750 dec. C according to their credited calorimetric method confirm that the pre-firing to excess temperatures and subsequent measurement according to the DIN/EUN norm does indeed give misleading data of up to 45% for a castable containing {approx} 55% Silicon Carbide. Finite Element analysis confirms the

  6. Effect of excess air on second-generation PFB combustion plant performance and economics

    International Nuclear Information System (INIS)

    Robertson, A.; Garland, R.; Newby, R.; Rehmat, A.; Rubow, L.; Bonk, D.

    1990-01-01

    This paper presents a conceptual design of a 1.4-MPa (14-atm) coal-fired second-generation pressurized fluidized bed (PFB) combustion plant and identifies the performance and economic changes that result as the excess air and thus gas turbine-to-steam turbine power ratio, is changed. The performance of these plants, another second- generation PFB combustion plant, and a conventional pulverized-coal (PC)-fired plant with wet limestone flue gas desulfurization is compared. Depending upon the conditions selected, the PFB combustion plant can achieve a 45 percent efficiency (based on the higher heating value of the coal used as fuel) and a cost of electricity at least 20 percent lower than that of the conventional PC-fired plant

  7. On the network protocol performance evaluation for large scale communication system of nuclear plant

    International Nuclear Information System (INIS)

    Song, K. S.; Lee, T. H.; Kim, H. R.; Kim, D. H.; Ku, I. S.

    1998-01-01

    Computer technology has been dramatically advanced and it is now natural to apply digital network technology into nuclear plants. Communication architecture for nuclear plant defines the coordination of safety reactor control, balance of plant, subsystem utilities, and plant monitoring functions, and how they are connected and their user interface to guarantee plant performance and guarantee safety requirements. Therefore, to implement a digital network for control and monitoring systems of advanced nuclear plant needs systematic design and evaluation procedures because of responsive and hard real-time process characteristics of nuclear plant. In this paper, we evaluate several digital network protocols in terms of network delay, link failure effects to hard real-time requirements with full scale traffic

  8. Environmental assessment of the atlas bio-energy waste wood fluidized bed gasification power plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Holzman, M.I.

    1995-08-01

    The Atlas Bio-Energy Corporation is proposing to develop and operate a 3 MW power plant in Brooklyn, New York that will produce electricity by gasification of waste wood and combustion of the produced low-Btu gas in a conventional package steam boiler coupled to a steam-electric generator. The objectives of this project were to assist Atlas in addressing the environmental permit requirements for the proposed power plant and to evaluate the environmental and economic impacts of the project compared to more conventional small power plants. The project`s goal was to help promote the commercialization of biomass gasification as an environmentally acceptable and economically attractive alternative to conventional wood combustion. The specific components of this research included: (1) Development of a permitting strategy plan; (2) Characterization of New York City waste wood; (3) Characterization of fluidized bed gasifier/boiler emissions; (4) Performance of an environmental impact analysis; (5) Preparation of an economic evaluation; and (6) Discussion of operational and maintenance concerns. The project is being performed in two phases. Phase I, which is the subject of this report, involves the environmental permitting and environmental/economic assessment of the project. Pending NYSERDA participation, Phase II will include development and implementation of a demonstration program to evaluate the environmental and economic impacts of the full-scale gasification project.

  9. Performance of dryland and wetland plant species on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T

    2011-04-01

    Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can

  10. Life assessment and emissions monitoring of Indian coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  11. Enhancing plant performance in newer CANDU plants utilizing PLiM methodologies

    International Nuclear Information System (INIS)

    Azeez, S.; Krishnan, V.S.; Nickerson, J.H.; Kakaria, B.

    2002-01-01

    Over the past 5 years, Atomic Energy of Canada Ltd. (AECL) has been working with CANDU utilities on comprehensive and integrated CANDU PLiM programs for successful and reliable operation through design life and beyond. Considerable progress has been made in the development of CANDU PLiM methodologies and implementation of the outcomes at the plants. The basis of CANDU PLiM programs is to understand the ageing degradation mechanisms, prevent/minimize the effects of these phenomena in the Critical Structures, Systems and Components (CSSCs), and maintain the CSSC condition as close as possible in the best operating condition. Effective plant practices in surveillance, maintenance, and operations are the primary means of managing ageing. From the experience to date, the CANDU PLiM program will modify and enhance, but not likely replace, existing plant programs that address ageing. However, a successful PLiM program will provide assurance that these existing plant programs are both effective and can be shown to be effective, in managing ageing. This requires a structured and managed approach to both the assessment and implementation processes

  12. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-30

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  13. Application status and performance analysis of robot in nuclear power plants

    International Nuclear Information System (INIS)

    Liu Chengze; Yan Zhi; Deng Jingshan

    2012-01-01

    Application status of robot in nuclear power plants in some countries is summarized. The related robots include accident response robot, dismantling and cleaning robot, in-service inspection robot, special-purpose robot and so on. Finally, some key technologies such as the radiation-tolerance and reliability of the robot systems are analyzed in details. (authors)

  14. Multi-dimensional regulation of metabolic networks shaping plant development and performance

    NARCIS (Netherlands)

    Kooke, R.; Keurentjes, J.J.B.

    2012-01-01

    The metabolome is an integral part of a plant’s life cycle and determines for a large part its external phenotype. It is the final, internal product of chemical interactions, obtained through developmental, genetic, and environmental inputs, and as such, it defines the state of a plant in terms of

  15. Nuclear power plant thermal-hydraulic performance research program plan

    International Nuclear Information System (INIS)

    1988-07-01

    The purpose of this program plan is to present a more detailed description of the thermal-hydraulic research program than that provided in the NRC Five-Year Plan so that the research plan and objectives can be better understood and evaluated by the offices concerned. The plan is prepared by the Office of Nuclear Regulatory Research (RES) with input from the Office of Nuclear Reactor Regulation (NRR) and updated periodically. The plan covers the research sponsored by the Reactor and Plant Systems Branch and defines the major issues (related to thermal-hydraulic behavior in nuclear power plants) the NRC is seeking to resolve and provides plans for their resolution; relates the proposed research to these issues; defines the products needed to resolve these issues; provides a context that shows both the historical perspective and the relationship of individual projects to the overall objectives; and defines major interfaces with other disciplines (e.g., structural, risk, human factors, accident management, severe accident) needed for total resolution of some issues. This plan addresses the types of thermal-hydraulic transients that are normally considered in the regulatory process of licensing the current generation of light water reactors. This process is influenced by the regulatory requirements imposed by NRC and the consequent need for technical information that is supplied by RES through its contractors. Thus, most contractor programmatic work is administered by RES. Regulatory requirements involve the normal review of industry analyses of design basis accidents, as well as the understanding of abnormal occurrences in operating reactors. Since such transients often involve complex thermal-hydraulic interactions, a well-planned thermal-hydraulic research plan is needed

  16. Solgreen 'Kraftwerk 1' PV plant in Zurich - Final report; Solgreen Kraftwerk 1 Zuerich - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.; Stettler, S.

    2008-04-15

    The 'Solgreen Kraftwerk 1' PV plant was built in Zurich, in June 2001. The Solgreen system optimizes the integration of photovoltaic modules on green flat roofs by using the ground substrate in a double function for both; as soil substrate for the vegetation and as a foundation for the modules mounting structure. The project's main goal was to test the suitability of the Solgreen system. Furthermore, the interacting influences of the roof vegetation and the photovoltaic system were examined scientifically over a 5 year period by an external expert. 12 sample areas were covered with different substrates and different seeds were used on the roof during the test period. Ecosystem diversity amounted to 140 different breeds of plants as well as insects and animals. The modules led to a higher structural diversity on the roof by creating shaded areas and different water distribution. Saplings mainly growing in low vegetation density areas, caused shading on modules and had to be removed. Mulleins were an additional shading problem on one of the rooftops; leading to a measurable energy reduction. For future installations of this type, a low substrate height in front of the modules and seeds which produce low growing plants can reduce such shading problems. This photovoltaic system's technical performance was higher compared to the average system's performance in Zurich. Visual controls of the system showed almost no soiling of the PV modules, primarily due to the frameless modules, but maybe also due to the plants' air cleaning effect. (author)

  17. Accident analyses in nuclear power plants following external initiating events and in the shutdown state. Final report

    International Nuclear Information System (INIS)

    Loeffler, Horst; Kowalik, Michael; Mildenberger, Oliver; Hage, Michael

    2016-06-01

    The work which is documented here provides the methodological basis for improvement of the state of knowledge for accident sequences after plant external initiating events and for accident sequences which begin in the shutdown state. The analyses have been done for a PWR and for a BWR reference plant. The work has been supported by the German federal ministry BMUB under the label 3612R01361. Top objectives of the work are: - Identify relevant event sequences in order to define characteristic initial and boundary conditions - Perform accident analysis of selected sequences - Evaluate the relevance of accident sequences in a qualitative way The accident analysis is performed with the code MELCOR 1.8.6. The applied input data set has been significantly improved compared to previous analyses. The event tree method which is established in PSA level 2 has been applied for creating a structure for a unified summarization and evaluation of the results from the accident analyses. The computer code EVNTRE has been applied for this purpose. In contrast to a PSA level 2, the branching probabilities of the event tree have not been determined with the usual accuracy, but they are given in an approximate way only. For the PWR, the analyses show a considerable protective effect of the containment also in the case of beyond design events. For the BWR, there is a rather high probability for containment failure under core melt impact, but nevertheless the release of radionuclides into the environment is very limited because of plant internal retention mechanisms. This report concludes with remarks about existing knowledge gaps and with regard to core melt sequences, and about possible improvements of the plant safety.

  18. YKAe Research programme on nuclear power plant systems behaviour and operational aspects of safety 1990-1994, Final report

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1995-04-01

    The research programme on Nuclear Power Plant Systems Behaviour and Operational Aspects of Safety was carried out between 1990 and 1994. In the field of Safe operational margins of nuclear fuel and reactor core, an up-to-date steady-state fuel performance model was validated for higher burn-ups and well-characterized VVER fuel experiments were carried out. A comprehensive reactor analysis code system was extended and validated for complex 3-D phenomena, such as ATWS and boron dilution transients. Advanced hydraulics methods were added to the dynamics codes. Experiments were carried out with PACTEL, the most comprehensive thermal-hydraulic test facility for VVER-440-type reactors worldwide. For example, a series of natural circulation tests were provided for the first VVER-related international standard problem of the OECD/NEA. Advanced foreign computer codes for severe accidents were evaluated and modified for the needs of Finnish power plants. Specific progress was made in modelling the reflooding of an overheated core and in the structural analysis of a pressure vessel under corium load, as well as in experimental and theoretical studies of aerosol and hydrogen behaviour. Fire modelling was improved by implementing advanced calculation methods and by validating them against our own experiments and international test data. Techniques in living probabilistic safety assessment and risk decision-making were refined in pilot applications for continuous monitoring, follow-up and management of risks of an operating power plant. In the area of human reliability and organizational performance, factors important for the continuous development of the competence of control room operator teams and plant maintenance staff were identified. (237 refs., 75 figs., 13 tabs.)

  19. Final environmental statement related to the operation of Callaway Plant, Unit No. 1 (Docket No. 50-483)

    International Nuclear Information System (INIS)

    1982-01-01

    The final environmental statement contains the second assessment of the environmental impact associated with operation of Callaway Plant Unit 1, pursuant to the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Par 51, as amended, of the NRC's regulations. This statement examines: the purpose and need for the Callaway project, alternatives to the project, the affected environment, environmental consequences and mitigating actions, and environmental and economic benefits and costs. No water-use impacts are expected from cooling-tower markup withdrawn from, or blowdown discharged into, the Missouri River. Land-use and terrestrial- and aquatic-ecological impacts will be small. Air-quality impacts from cooling-tower drift and other emissions and dust will also be small. Impacts to historic and prehistoric sites will be negligible with the development and implementation of the applicant's cultural-resources management plan. No significant impacts are anticipated from normal operational releases of radioactivity. The risk associated with accidental radiation exposure is very low. The net socioeconomic effects of the project will be beneficial. The action called for is the issuance of an operating license for Unit 1 of the Callaway Plant. 18 figs., 16 tabs

  20. FY2014 FES (Fusion Energy Sciences) Theory & Simulation Performance Target, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Guoyong [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Budny, Robert [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Gorelenkov, Nikolai [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Poli, Francesca [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Chen, Yang [Univ. of Colorado, Boulder, CO (United States); McClenaghan, Joseph [Univ. of California, Irvine, CA (United States); Lin, Zhihong [Univ. of California, Irvine, CA (United States); Spong, Don [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bass, Eric [Univ. of California, San Diego, CA (United States); Waltz, Ron [General Atomics, San Diego, CA (United States)

    2014-10-14

    We report here the work done for the FY14 OFES Theory Performance Target as given below: "Understanding alpha particle confinement in ITER, the world's first burning plasma experiment, is a key priority for the fusion program. In FY 2014, determine linear instability trends and thresholds of energetic particle-driven shear Alfven eigenmodes in ITER for a range of parameters and profiles using a set of complementary simulation models (gyrokinetic, hybrid, and gyrofluid). Carry out initial nonlinear simulations to assess the effects of the unstable modes on energetic particle transport". In the past year (FY14), a systematic study of the alpha-driven Alfven modes in ITER has been carried out jointly by researchers from six institutions involving seven codes including the transport simulation code TRANSP (R. Budny and F. Poli, PPPL), three gyrokinetic codes: GEM (Y. Chen, Univ. of Colorado), GTC (J. McClenaghan, Z. Lin, UCI), and GYRO (E. Bass, R. Waltz, UCSD/GA), the hybrid code M3D-K (G.Y. Fu, PPPL), the gyro-fluid code TAEFL (D. Spong, ORNL), and the linear kinetic stability code NOVA-K (N. Gorelenkov, PPPL). A range of ITER parameters and profiles are specified by TRANSP simulation of a hybrid scenario case and a steady-state scenario case. Based on the specified ITER equilibria linear stability calculations are done to determine the stability boundary of alpha-driven high-n TAEs using the five initial value codes (GEM, GTC, GYRO, M3D-K, and TAEFL) and the kinetic stability code (NOVA-K). Both the effects of alpha particles and beam ions have been considered. Finally, the effects of the unstable modes on energetic particle transport have been explored using GEM and M3D-K.

  1. Assessment of materials selection and performance for direct-coal- liquefaction plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Judkins, R.R.; Keiser, J.R.

    1996-09-01

    Several direct coal liquefaction processes have been demonstrated at the pilot plant level in the United States. Presently only one plant remains operational, namely, the Hydrocarbon Technologies, Inc., 4.0- ton-per-day process development unit in Lawrenceville, New Jersey. The period from 1974 to 1982 saw the greatest amount of development of direct coal liquefaction in the United States with four major pilot plants being devoted to variants of this technology. The plants included the SRC-I plant at Wilsonville, Alabama, which operated from 1974 to 1992; the SRC-I/II plant at Fort Lewis, Washington, which operated from 1974 to 1981; the H-Coal plant at Catlettsburg, Kentucky, which operated from 1980 to 1982; and the Exxon Coal Liquefaction Pilot Plant at Baytown, Texas, which operated from 1980 to 1982. Oak Ridge National Laboratory scientists and engineers were actively involved in many phases and technical disciplines at all four of these plants, especially in materials testing, evaluation, and failure analyses. In addition, ORNL materials scientists and engineers conducted reviews of the demonstration and commercial plant designs for materials selections. The ORNL staff members worked closely with materials engineers at the pilot plants in identifying causes of materials degradation and failures, and in identifying solutions to these problems. This report provides a comprehensive summary of those materials activities. Materials performance data from laboratory and coal liquefaction pilot plant tests, failure analyses, and analyses of components after use in pilot plants were reviewed and assessed to determine the extent and causes of materials degradation in direct coal liquefaction process environments. Reviews of demonstration and commercial plant design documents for materials selections were conducted. These reviews and assessments are presented to capture the knowledge base on the most likely materials of construction for direct coal liquefaction plants.

  2. Are population differences in plant quality reflected in the preference and performance of two endoparasitoid wasps?

    NARCIS (Netherlands)

    Gols, R.; Dam, van N.M.; Raaijmakers, C.E.; Dicke, M.; Harvey, J.A.

    2009-01-01

    In recent years, increasing attention has been paid in exploring the role of direct plant defence, through the production of allelochemicals, on the performance of parasitoid wasps and their hosts. However, few studies have determined if parasitoids can detect differences in plant quality and thus

  3. Labour Mobility and Plant Performance in Denmark: The Significance of Related Inflows

    DEFF Research Database (Denmark)

    Timmermans, Bram; Boschma, Ron

    This paper investigates the impact of different types of labour mobility on plant performance, making use of the IDA-database that provides detailed information on all individuals and plants for the whole of Denmark. Our study shows that the effect of labour mobility can only be assessed when one...... performance. Moreover, intra-regional skilled labour mobility had a negative effect on plant performance in general, while the effect of inter-regional labour mobility depends on the type of skills that flow into the plant. We used a sophisticated indicator of revealed relatedness that measures the degree...... accounts for the type of skills that flow into the plant, and the degree to which these match the existing set of skills at the plant level. We found that the inflow of related skills has a positive impact on plant performance, while inflows of similar and unrelated skills have a negative effect on plant...

  4. Studies on the effectiveness of measures to maintain the integrity of pressurized components in German nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Elmas, M.; Jendrich, U.; Michel, F.; Reck, H.; Schimpfke, T.; Walter, M.; Wenke, R.

    2013-03-01

    The overall objective of the project was to investigate the effectiveness of measures to maintain the as-built quality of the pressure-retaining components in German nuclear power plants. In particular, investigations were performed on the application of the break preclusion concept, existing monitoring systems and the significance of the pressure test as part of the inspection concept. Moreover, the KompInt knowledge base has been updated. Break preclusion for pipes was applied in all German plants already during planning or after commissioning to a varying extent. The basic features of the required assessments were considered in the German nuclear regulations for the first time by inclusion in the safety requirements for nuclear power plants of 2012. The requirements for assessments, differing in their degree of detail, in the interpretations of these safety requirements and in the safety standard KTA 3206 are still in the draft stage. For the first time, the vessels as well as housings of valves and pumps are also included in the concept. Through the use of advanced monitoring systems it was possible in German plants at an early stage to establish modes of operation that minimise the load on components, to carry out appropriate technical backfitting measures, and to identify damages. In plant areas where local water chemistry parameters may result that deviate from the specification, the effectiveness of water chemistry monitoring is limited. In this case, other operational measures must be taken. The results of the simulations performed with the help of the GRS-developed PROST computer code to determine the significance of pressure tests lead - in accordance with the results of operating experience evaluation - to the conclusion that pressure tests carried out within the pressure-retaining boundary contribute to safeguarding the integrity. The user-friendliness of the KompInt knowledge base has been increased by changing over to a new hardware, a software

  5. Project final report: Energetic planning focusing small scale hydroelectric power plants; Relatorio final. Projeto planejamento energetico com enfase em pequenas centrais hidreletricas

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Yara dos Santos

    1994-12-31

    Considering the increasing need for a better utilization of the Brazilian hydric resources, a deeper analysis of small scale hydroelectric power plants has been demanding. This work presents a case study of energetic planning based upon small scale hydroelectric power plants in a district of Amazon state - North Brazil 8 refs., 11 figs., 19 tabs.

  6. Presence of Stenotrophomonas maltophilia exhibiting high genetic similarity to clinical isolates in final effluents of pig farm wastewater treatment plants.

    Science.gov (United States)

    Kim, Young-Ji; Park, Jin-Hyeong; Seo, Kun-Ho

    2018-03-01

    Although the prevalence of community-acquired Stenotrophomonas maltophilia infections is sharply increasing, the sources and likely transmission routes of this bacterium are poorly understood. We studied the significance of the presence of S. maltophilia in final effluents and receiving rivers of pig farm wastewater treatment plants (WWTPs). The loads and antibiotic resistance profiles of S. maltophilia in final effluents were assessed. Antibiotic resistance determinants and biofilm formation genes were detected by PCR, and genetic similarity to clinical isolates was investigated using multilocus sequence typing (MLST). S. maltophilia was recovered from final effluents at two of three farms and one corresponding receiving river. Tests of resistance to antibiotics recommended for S. maltophilia infection revealed that for each agent, at least one isolate was classified as resistant or intermediate, with the exception of minocycline. Furthermore, multidrug resistant S. maltophilia susceptible to antibiotics of only two categories was isolated and found to carry the sul2 gene, conferring trimethoprim/sulfamethoxazole resistance. All isolates carried spgM, encoding a major factor in biofilm formation. MLST revealed that isolates of the same sequence type (ST; ST189) were present in both effluent and receiving river samples, and phylogenetic analysis showed that all of the STs identified in this study clustered with clinical isolates. Moreover, one isolate (ST192) recovered in this investigation demonstrated 99.61% sequence identity with a clinical isolate (ST98) associated with a fatal infection in South Korea. Thus, the pathogenicity of the isolates reported here is likely similar to that of those from clinical environments, and WWTPs may play a role as a source of S. maltophilia from which this bacterium spreads to human communities. To the best of our knowledge, this represents the first report of S. maltophilia in pig farm WWTPs. Our results indicate that

  7. Standard guide for in-plant performance evaluation of automatic pedestrian SNM monitors

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This guide is affiliated with Guide C1112 on special nuclear material (SNM) monitors, Guide C1169 on laboratory performance evaluation, and Guide C1189 on calibrating pedestrian SNM monitors. This guide to in-plant performance evaluation is a comparatively rapid way to verify whether a pedestrian SNM monitor performs as expected for detecting SNM or SNM-like test sources. 1.1.1 In-plant performance evaluation should not be confused with the simple daily functional test recommended in Guide C1112. In-plant performance evaluation takes place less often than daily tests, usually at intervals ranging from weekly to once every three months. In-plant evaluations are also more extensive than daily tests and may examine both a monitor's nuisance alarm record and its detection sensitivity for a particular SNM or alternative test source. 1.1.2 In-plant performance evaluation also should not be confused with laboratory performance evaluation. In-plant evaluation is comparatively rapid, takes place in the monitor...

  8. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  9. Human performance and reliability studies on nuclear power plant

    International Nuclear Information System (INIS)

    Miyaoka, S.

    1988-01-01

    The TMI accident in USA, the Chernobyl accident in USSR and other major accidents overseas have shown that it is necessary to investigate and research human factor problems related to operation, maintenance and others in order to increase the safety and reliability of nuclear power plants. Although a variety of countermeasures have been devised, the accidents and failures due to human factors still occur. So far, the problems related to human factors have not been fundamantally and systematically investigated. Also the data base related to this problem has not been developed. Therefore, the government and electric utility industry began the research on the prevention of the accidents caused by human errors. The basic research is carried out by the government, and the applied research is done by electric utility industry. The Central Research Institute of Electric Power Industry established the Human Factors Research Center on July 1, 1987. The research program in the Human Factors Research Center is divided into the basic research to clarity fundamental human characteristics, the systematic research to apply this information and the analytical research on human error experience. These research activities are reported. (Kako, I.)

  10. Construction method for plant and facility for performing the method

    International Nuclear Information System (INIS)

    Matsuura, Tadashi; Koda, Koichi; Miyahara, Ryohei; Hasegawa, Hiroshi; Tatehoko, Kazuto; Takeda, Masakado; Yoshinaga, Toshiaki.

    1997-01-01

    For constructing a nuclear power plant, it is necessary to dispose a large-scaled temporarily constructed yard for install or operate a large crane. Rails are laid in series over located positions of a plurality of buildings, and a gantry crane which moves on rails and has a size striding over the buildings is disposed. The crane can work for loading operation required for the construction of a plurality of buildings and can operate over the entire region for the range of the loading operation even for large weighted loads. The gantry crane is moved toward the seashore, and construction materials and products transported on the sea are received by the gantry crane and installed to the buildings. The transportation on the land for the construction materials and products is reduced to improve efficiency. In addition, the rails are extended beyond the region where the buildings are constructed, and a yard is constructed along the extended region. The transportation from the yard can be conducted economically and efficiently with no relaying operation. (N.H.)

  11. Plant-wide performance optimisation – The refrigeration system case

    DEFF Research Database (Denmark)

    Green, Torben; Razavi-Far, Roozbeh; Izadi-Zamanabadi, Roozbeh

    2012-01-01

    applicationsin the process industry. The paper addresses the fact that dynamic performance of the system is important, to ensure optimal changes between different operation conditions. To enable optimisation of the dynamic controller behaviour a method for designing the required excitation signal is presented...

  12. Performance comparison of plant root biofilm, gravel attached ...

    African Journals Online (AJOL)

    biofilm and planktonic microbial populations, in phenol removal within a ... This study was performed in order to understand the relative contribution of a constructed wetland (CW) system's various ... and natural physico-chemical processes are responsible for ..... rhizospheric bacterial activity: precluded by antibiotic supple-.

  13. Ionic liquid performance in pilot plant contactors for aromatics extraction

    NARCIS (Netherlands)

    Onink, S.A.F.

    2011-01-01

    The main objectives of this study were an investigation into the applicability, in this case extraction capacity and equipment performance, of room temperature ionic liquids as solvent in the extraction of aromatics from aliphatics and a comparison of three types of contactors (a rotating disc

  14. Southern hemisphere coal characteristics and their impact on plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Y Y; Dickson, A J; Lowe, A; Pearson, J M; Pitman, B L; Semark, P M [Taiwan Power Company (Taiwan)

    1992-09-01

    The paper reports performance information of specific utilities fired by coal mined in the Southern Hemisphere. It includes information from Pacific Power Services, Australia, the China Light and Power Company, Hong Kong, the Taiwan Power Company, Taiwan, and the South Africa Electricity Power Company, South Africa. 12 refs., 3 figs., 12 tabs.

  15. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Young-Deuk; Choon, Ng Kim

    2011-01-01

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling

  16. A Complete MCDM Model for NPD Performance Assessment in an LED-Based Lighting Plant Factory

    Directory of Open Access Journals (Sweden)

    Wen-Chin Chen

    2018-01-01

    Full Text Available Globally, industries and economies have undergone rapid development and expansion over the last several decades. As a result, global warming and environmental contaminations have resulted in climate change and jeopardized food security. In many developing countries, already decreasing crop yields are threatened by extreme weather and soil damaged by genetically modified food, making environmental problems worse and increasing food and organic product prices. For these reasons, this study proposes a hybrid multicriteria decision-making (MCDM model for new product development (NPD in the light-emitting diode- (LED- based lighting plant factory. First, literature reviews and expert interviews are employed in constructing a list of decision-making objectives and criteria for new product development. Then, a fuzzy Delphi method (FDM is used to screen the elements of the objectives and criteria, while a fuzzy decision-making trial and evaluation laboratory (FDEMATEL is used to determine the relationships among the objectives and criteria. Finally, a fuzzy analytic network process (FANP and a composite priority vector (CPV are manipulated to determine the relative importance weights of the critical objectives and criteria. Results show that the proposed method can create a useful and assessable MCDM model for decision-making applications in new product development, and a case study is herein performed to validate the feasibility of the proposed model in a Taiwanese LED-based lighting plant factory, which not only provides the decision-makers with a feasible hierarchical data structure for decision-making guidance but also increases the competitive advantages of trade-offs on developing novel products.

  17. Implementation of a digital feedwater control system at Dresden Nuclear Power Plant, Units 2 and 3: Final report

    International Nuclear Information System (INIS)

    Zapotocky, A.; Popovic, J.R.; Fournier, R.D.

    1988-12-01

    This report describes the Digital Feedwater Control System Implementation at the Dresden 2 or 3 Units of the BWR Nuclear Power Plant owned by the Commonwealth Edison Company. The digital system has been operational in Unit 3 since August 1986, and in Unit 2 since April 1987. The Bailey Control's Network 90 based digital control system replaced the obsolete GE/MAC 5000 analog control system in the reactor feedwater control loop as a ''like-for-like'' replacement. Operational experience from the Digital Feedwater Control installations has been good and the system demonstrated better performance than the old analog systems. 14 refs., 15 figs., 17 tabs

  18. Web-based turbine cycle performance analysis for nuclear power plants

    International Nuclear Information System (INIS)

    Heo, Gyun Young; Lee, Sung Jin; Chang, Soon Heung; Choi, Seong Soo

    2000-01-01

    As an approach to improve the economical efficiency of operating nuclear power plants, a thermal performance analysis tool for steam turbine cycle has been developed. For the validation and the prediction of the signals used in thermal performance analysis, a few statistical signal processing techniques are integrated. The developed tool provides predicted performance calculation capability that is steady-state wet steam turbine cycle simulation, and measurement performance calculation capability which determines component- and cycle-level performance indexes. Web-based interface with all performance analysis is implemented, so even remote users can achieve performance analysis. Comparing to ASME PTC6 (Performance Test Code 6), the focusing point of the developed tool is historical performance analysis rather than single accurate performance test. The proposed signal processing techniques are validated using actual plant signals, and turbine cycle models are tested by benchmarking with a commercial thermal analysis tool

  19. Identification of the impacts of maintenance and testing upon the safety of LWR power plants. Final report

    International Nuclear Information System (INIS)

    Husseiny, A.A.; Sabri, Z.A.; Turnage, J.J.

    1980-04-01

    The present study was designed to identify the impact of maintenance and testing (M and T) upon the safety of LWR power plants. The study involved data extraction from various sources reporting safety-related and operation-related nuclear power plant experience. Primary sources reviewed, including Licensee Event Reports (LER's) submitted to the NRC, revealed that only ten percent of events reported could be identified as M and T problems. The collected data were collated in a manner that would allow identification of principal types of problems which are associated with the performance of M and T tasks in LWR power plants. Frequencies of occurrence of events and their general endemic nature were analyzed using data clustering and pattern recognition techniques, as well as chi-square analyses for sparse contingency tables. The results of these analyses identified seven major categories of M and T error modes which were related to individual facilities and reactor type. Data review indicated that few M and T problems were directly related to procedural inadequacies, with the majority of events being attributable to human error

  20. Inertial-confinement fusion central-station electric-power-generating plant. Final report, March 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    Sucov, E.W.

    1981-01-01

    This report contains a complete description of the subsystems of the power plant including driver, driver power supply, pellet fabrication, pellet injection and aiming, data handling and control, evacuation, tritium and radwaste handling, first wall protection, first wall and structure, heat removal, tritium breeding and neutron shielding, maintenance and repair and balance of plant. In addition, it contains analytic support for the conceptual designs developed for each subsystem. The emphasis of the effort was on designing a viable reactor cavity and on solving the problems of interfacing the driver systems with the reactor cavity. The reactors generate 3500 MWt by irradiating a pellet whose gain is 175 from two opposite sides with a total of 2 MJ driver energy at a 10 Hz repetition rate. Because the nominal laser driver efficiency is 10% and that for the heavy ion driver is 30%, the net electric power outputs are 1207 MWe and 1346 MWe; the net plant conversion efficiencies are 28.1% and 31.3%; and the recirculating fractions are 22.9% and 14.0% respectively. The increased power output is, however, only one of the factors considered by utilities in performing a cost minimization analysis of competing power sources for system expansion. These other factors include: capital costs, cost of construction time, operating costs, environmental and licensing costs and reliability cost