WorldWideScience

Sample records for plant pathogen pseudomonas

  1. [Production of inhibiting plant growth and development hormones by pathogenic for legumes Pseudomonas genus bacteria].

    Science.gov (United States)

    Dankevich, L A

    2013-01-01

    It has been studied the ability of pathogenic for legumes pathovars of Pseudomonas genus to produce ethylene and abscisic acid in vitro. A direct correlation between the level of ethylene production by agent of bacterial pea burn--Pseudomonas syringae pv. pisi and level of its aggressiveness for plants has been found. It is shown that the amount of abscisic acid synthesized by pathogenic for legumes Pseudomonas genus bacteria correlates with their aggressiveness for plants.

  2. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea

    Directory of Open Access Journals (Sweden)

    Emmanouil A Trantas

    2015-08-01

    Full Text Available The non-fluorescent pseudomonads, Pseudomonas corrugata (Pcor and P. mediterranea (Pmed, are closely related species that cause pith necrosis, a disease of tomato that causes severe crop losses. However, they also show strong antagonistic effects against economically important pathogens, demonstrating their potential for utilization as biological control agents. In addition, their metabolic versatility makes them attractive for the production of commercial biomolecules and bioremediation. An extensive comparative genomics study is required to dissect the mechanisms that Pcor and Pmed employ to cause disease, prevent disease caused by other pathogens, and to mine their genomes for commercially significant chemical pathways. Here, we present the draft genomes of nine Pcor and Pmed strains from different geographical locations. This analysis covered significant genetic heterogeneity and allowed in-depth genomic comparison. All examined strains were able to trigger symptoms in tomato plants but not all induced a hypersensitive-like response in Nicotiana benthamiana. Genome-mining revealed the absence of a type III secretion system and of known type III effectors from all examined Pcor and Pmed strains. The lack of a type III secretion system appears to be unique among the plant pathogenic pseudomonads. Several gene clusters coding for type VI secretion system were detected in all genomes.

  3. Colonization of Arabidopsis roots by Pseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection

    NARCIS (Netherlands)

    Hase, S.; Pelt, J.A. van; Loon, L.C. van; Pieterse, C.M.J.

    2003-01-01

    Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of non-pathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salic

  4. Light regulates motility, attachment and virulence in the plant pathogen Pseudomonas syringae pv tomato DC3000.

    Science.gov (United States)

    Río-Álvarez, Isabel; Rodríguez-Herva, José Juan; Martínez, Pedro Manuel; González-Melendi, Pablo; García-Casado, Gloria; Rodríguez-Palenzuela, Pablo; López-Solanilla, Emilia

    2014-07-01

    Pseudomonas syringae pv tomato DC3000 (Pto) is the causal agent of the bacterial speck of tomato, which leads to significant economic losses in this crop. Pto inhabits the tomato phyllosphere, where the pathogen is highly exposed to light, among other environmental factors. Light represents a stressful condition and acts as a source of information associated with different plant defence levels. Here, we analysed the presence of both blue and red light photoreceptors in a group of Pseudomonas. In addition, we studied the effect of white, blue and red light on Pto features related to epiphytic fitness. While white and blue light inhibit motility, bacterial attachment to plant leaves is promoted. Moreover, these phenotypes are altered in a blue-light receptor mutant. These light-controlled changes during the epiphytic stage cause a reduction in virulence, highlighting the relevance of motility during the entry process to the plant apoplast. This study demonstrated the key role of light perception in the Pto phenotype switching and its effect on virulence.

  5. Definition of Plant-Pathogenic Pseudomonas Genomospecies of the Pseudomonas syringae Complex Through Multiple Comparative Approaches.

    Science.gov (United States)

    Marcelletti, Simone; Scortichini, Marco

    2014-12-01

    A total of 34 phytopathogenic strain genomes belonging to the Pseudomonas syringae species complex and related species, including many pathotype strains, were assessed using average nucleotide identity (ANI) analysis. Their taxonomic relationships were consistently confirmed by the tetranucleotide frequency correlation coefficient (TETRA) values, multilocus sequence typing analysis (MLSA) performed with seven housekeeping genes, using both maximum likelihood and Bayesian methods, and split consensus network analyses. The ANI, MLSA, and split consensus analyses provided consistent and identical results. We confirmed the occurrence of the well-demarcated genomospecies inferred sensu Gardan et al. using DNA-DNA hybridization and ribotyping analyses. However, some P. syringae strains of the pathovars morsprunorum and lachrymans were placed in different genomospecies in our analyses. Genomospecies 1, 2, 4, 6, and 9 resulted well demarcated, whereas strains of genomospecies 3 and 8 had ANI values between 95 and 96% in some cases, confirming that this threshold reveals very closely related species that might represent cases of splitting entities or the convergence of different species to the same ecological niche. This study confirms the robustness of the combination of genomic and phylogenetic approaches in revealing taxonomic relationships among closely related bacterial strains and provides the basis for a further reliable demarcation of the phytopathogenic Pseudomonas species. Within each species, the pathovars might represent distinct ecological units. The possibility of performing extensive and standardized host range and phenotypic tests with many strains of different pathovars can assist phytobacteriologists for better determining the boundaries of these ecological units.

  6. Pseudomonas viridiflava, a multi host plant pathogen with significant genetic variation at the molecular level.

    Directory of Open Access Journals (Sweden)

    Panagiotis F Sarris

    Full Text Available The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan, as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB, and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species.

  7. Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity

    Directory of Open Access Journals (Sweden)

    Christopher R. Clarke

    2016-10-01

    Full Text Available The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, to replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacteria use chemical-directed regulation of flagellar rotation, a process known as chemotaxis, to move towards favorable environmental conditions. Chemotactic sensing of the plant surface is a potential mechanism through which foliar plant pathogens home in on wounds or stomata, but chemotactic systems in foliar plant pathogens are not well characterized. Comparative genomics of the plant pathogen Pseudomonas syringae pathovar tomato (Pto implicated annotated chemotaxis genes in the recent adaptations of one Pto lineage. We therefore characterized the chemosensory system of Pto. The Pto genome contains two primary chemotaxis gene clusters, che1 and che2. The che2 cluster is flanked by flagellar biosynthesis genes and similar to the canonical chemotaxis gene clusters of other bacteria based on sequence and synteny. Disruption of the primary phosphorelay kinase gene of the che2 cluster, cheA2, eliminated all swimming and surface motility at 21 °C but not 28 °C for Pto. The che1 cluster is located next to Type IV pili biosynthesis genes but disruption of cheA1 has no observable effect on twitching motility for Pto. Disruption of cheA2 also alters in planta fitness of the pathogen with strains lacking functional cheA2 being less fit in host plants but more fit in a non-host interaction.

  8. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants.

    Science.gov (United States)

    Xin, Xiu-Fang; He, Sheng Yang

    2013-01-01

    Since the early 1980s, various strains of the gram-negative bacterial pathogen Pseudomonas syringae have been used as models for understanding plant-bacterial interactions. In 1991, a P. syringae pathovar tomato (Pst) strain, DC3000, was reported to infect not only its natural host tomato but also Arabidopsis in the laboratory, a finding that spurred intensive efforts in the subsequent two decades to characterize the molecular mechanisms by which this strain causes disease in plants. Genomic analysis shows that Pst DC3000 carries a large repertoire of potential virulence factors, including proteinaceous effectors that are secreted through the type III secretion system and a polyketide phytotoxin called coronatine, which structurally mimics the plant hormone jasmonate (JA). Study of Pst DC3000 pathogenesis has not only provided several conceptual advances in understanding how a bacterial pathogen employs type III effectors to suppress plant immune responses and promote disease susceptibility but has also facilitated the discovery of the immune function of stomata and key components of JA signaling in plants. The concepts derived from the study of Pst DC3000 pathogenesis may prove useful in understanding pathogenesis mechanisms of other plant pathogens.

  9. Phosphatidylcholine synthesis is essential for HrpZ harpin secretion in plant pathogenic Pseudomonas syringae and non-pathogenic Pseudomonas sp. 593.

    Science.gov (United States)

    Xiong, Min; Long, Deliang; He, Huoguang; Li, Yang; Li, Yadong; Wang, Xingguo

    2014-01-01

    Pseudomonas syringae pv. syringae van Hall is important phytopathogenic bacterium of stone fruit trees, and able to elicit hypersensitive response (HR) in nonhost plants. The HrpZ, secreted via type III secretion system (T3SS) to the extracellular space of the plant, is a T3SS-dependent protein and a sole T3SS effector able to induce the host defense response outside host cells. We deleted the phosphatidylcholine synthase gene (pcs) of P. syringae pv. syringae van Hall CFCC 1336, and found that the 1336 pcs(-) mutant was unable to synthesize phosphatidylcholine and elicit a typical HR in soybean. Further studies showed that the 1336 pcs(-) mutant was unable to secrete HrpZ harpin but could express HrpZ protein in cytoplasm as effectively as the wild type. To confirm if phosphatidylcholine affects HrpZ harpin secretion, we introduced the hrpZ gene into the soil-dwelling bacterium Pseudomonas sp. 593 and the 593 pcs(-) mutant, which were unable to express HrpZ harpin and elicit HR in tobacco or soybean. Western blotting and HR assay showed that the 593H not only secreted HrpZ harpin but also caused a strong HR in tobacco and soybean. In contrast, the 593 pcs(-)H only expressed HrpZ protein in its cytoplasm at the wild type level, but did not secrete HrpZ harpin or elicit HR reaction. Our results demonstrate that phosphatidylcholine is essential for the secretion of HrpZ harpin in P. syringae pv. syringae van Hall and other Pseudomonas strains.

  10. Identification and characterization of peach pathogen Pseudomonas syringae

    OpenAIRE

    Gavrilović, Veljko; Dolovac, Nenad; Trkulja, Nenad; Stevanović, Miloš; Živković, Svetlana; Poštić, Dobrivoj; Ivanović, Žarko

    2011-01-01

    Pseudomonas syringae is economically important plant pathogen, found on a number of hosts including fruit trees, field crops, vegetables and decorative plants. This phytopathogenic bacteria is becoming a quite widespread pathogen on the fruit trees in Serbia, causing significant economic loses. Up to now it was experimentally confirmed as a pathogen on the pear, apple, apricot, cherry, sour cherry, plum trees as well as raspberries. In this study Pseudomonas syringae was identificated as path...

  11. Impact on Arbuscular Mycorrhiza Formation of Pseudomonas Strains Used as Inoculants for Biocontrol of Soil-Borne Fungal Plant Pathogens

    Science.gov (United States)

    Barea, J. M.; Andrade, G.; Bianciotto, V.; Dowling, D.; Lohrke, S.; Bonfante, P.; O’Gara, F.; Azcon-Aguilar, C.

    1998-01-01

    The arbuscular mycorrhizal symbiosis, a key component of agroecosystems, was assayed as a rhizosphere biosensor for evaluation of the impact of certain antifungal Pseudomonas inoculants used to control soil-borne plant pathogens. The following three Pseudomonas strains were tested: wild-type strain F113, which produces the antifungal compound 2,4-diacetylphloroglucinol (DAPG); strain F113G22, a DAPG-negative mutant of F113; and strain F113(pCU203), a DAPG overproducer. Wild-type strain F113 and mutant strain F113G22 stimulated both mycelial development from Glomus mosseae spores germinating in soil and tomato root colonization. Strain F113(pCU203) did not adversely affect G. mosseae performance. Mycelial development, but not spore germination, is sensitive to 10 μM DAPG, a concentration that might be present in the rhizosphere. The results of scanning electron and confocal microscopy demonstrated that strain F113 and its derivatives adhered to G. mosseae spores independent of the ability to produce DAPG. PMID:9603857

  12. Domain shuffling in a sensor protein contributed to the evolution of insect pathogenicity in plant-beneficial Pseudomonas protegens.

    Science.gov (United States)

    Kupferschmied, Peter; Péchy-Tarr, Maria; Imperiali, Nicola; Maurhofer, Monika; Keel, Christoph

    2014-02-01

    Pseudomonas protegens is a biocontrol rhizobacterium with a plant-beneficial and an insect pathogenic lifestyle, but it is not understood how the organism switches between the two states. Here, we focus on understanding the function and possible evolution of a molecular sensor that enables P. protegens to detect the insect environment and produce a potent insecticidal toxin specifically during insect infection but not on roots. By using quantitative single cell microscopy and mutant analysis, we provide evidence that the sensor histidine kinase FitF is a key regulator of insecticidal toxin production. Our experimental data and bioinformatic analyses indicate that FitF shares a sensing domain with DctB, a histidine kinase regulating carbon uptake in Proteobacteria. This suggested that FitF has acquired its specificity through domain shuffling from a common ancestor. We constructed a chimeric DctB-FitF protein and showed that it is indeed functional in regulating toxin expression in P. protegens. The shuffling event and subsequent adaptive modifications of the recruited sensor domain were critical for the microorganism to express its potent insect toxin in the observed host-specific manner. Inhibition of the FitF sensor during root colonization could explain the mechanism by which P. protegens differentiates between the plant and insect host. Our study establishes FitF of P. protegens as a prime model for molecular evolution of sensor proteins and bacterial pathogenicity.

  13. Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity

    Science.gov (United States)

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacter...

  14. Genome-wide identification of transcriptional start sites in the plant pathogen Pseudomonas syringae pv. tomato str. DC3000.

    Directory of Open Access Journals (Sweden)

    Melanie J Filiatrault

    Full Text Available RNA-Seq has provided valuable insights into global gene expression in a wide variety of organisms. Using a modified RNA-Seq approach and Illumina's high-throughput sequencing technology, we globally identified 5'-ends of transcripts for the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. A substantial fraction of 5'-ends obtained by this method were consistent with results obtained using global RNA-Seq and 5'RACE. As expected, many 5'-ends were positioned a short distance upstream of annotated genes. We also captured 5'-ends within intergenic regions, providing evidence for the expression of un-annotated genes and non-coding RNAs, and detected numerous examples of antisense transcription, suggesting additional levels of complexity in gene regulation in DC3000. Importantly, targeted searches for sequence patterns in the vicinity of 5'-ends revealed over 1200 putative promoters and other regulatory motifs, establishing a broad foundation for future investigations of regulation at the genomic and single gene levels.

  15. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Geun Cheol eSong

    2015-10-01

    Full Text Available 3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 M and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR gene expression levels associated with defense signaling through SA, JA, and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved salicylic acid (SA and jasmonic acid (JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  16. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis.

    Science.gov (United States)

    Song, Geun C; Choi, Hye K; Ryu, Choong-Min

    2015-01-01

    3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elicited an immune response to Pseudomonas syringae pv. tomato DC3000. We performed quantitative real-time PCR to investigate the 3-pentanol-mediated Arabidopsis immune responses by determining Pathogenesis-Related (PR) gene expression levels associated with defense signaling through salicylic acid (SA), jasmonic acid (JA), and ethylene signaling pathways. The results show that exposure to 3-pentanol and subsequent pathogen challenge upregulated PDF1.2 and PR1 expression. Selected Arabidopsis mutants confirmed that the 3-pentanol-mediated immune response involved SA and JA signaling pathways and the NPR1 gene. Taken together, this study indicates that gaseous 3-pentanol triggers induced resistance in Arabidopsis by priming SA and JA signaling pathways. To our knowledge, this is the first report that a volatile compound of an insect sex pheromone triggers plant systemic resistance against a bacterial pathogen.

  17. Functional identiifcation of phenazine biosynthesis genes in plant pathogenic bacteriaPseudomonas syringae pv.tomato and Xanthomonas oryzaepv.oryzae

    Institute of Scientific and Technical Information of China (English)

    LI Wen; XU You-ping; Jean-Pierre Munyampundu; XU Xin; QI Xian-fei; GU Yuan; CAI Xin-zhong

    2016-01-01

    Phenazines are secondary metabolites with broad spectrum antibiotic activity and thus show high potential in biological control of pathogens. In this study, we identiifed phenazine biosynthesis (phz) genes in two genome-completed plant pathogenic bacteriaPseudomonas syringae pv.tomato(Pst) DC3000 andXanthomonas oryzaepv.oryzae(Xoo) PXO99A. Unlike the phz genes in typical phenazine-producing pseudomonads,phz homologs inPst DC3000 andXoo PXO99A consisted of phzC/D/E/F/G andphzC/E1/E2/F/G, respectively, and the both were not organized into an operon. Detection experiments demonstrated that phenazine-1-carboxylic acid (PCA) ofPst DC3000 accumulated to 13.4 μg L–1, while that ofXoo PXO99A was almost undetectable. Moreover,Pst DC3000 was resistant to 1 mg mL–1 PCA, whileXoo PXO99A was sensitive to 50 μg mL–1 PCA. Furthermore, mutation ofphzF blocked the PCA production and signiifcantly reduced the pathogenicity ofPst DC3000 in tomato, while the complementary strains restored these phenotypes. These results revealed thatPst DC3000 produces low level of and is resistant to phenazines and thus is unable to be biologicaly controled by phenazines. Additionaly,phz-mediated PCA production is required for ful pathogenicity ofPst DC3000. To our knowledge, this is the ifrst report of PCA production and its function in pathogenicity of a plant pathogenicP. syringaestrain.

  18. New Pseudomonas spp. Are Pathogenic to Citrus.

    Directory of Open Access Journals (Sweden)

    Farid Beiki

    Full Text Available Five putative novel Pseudomonas species shown to be pathogenic to citrus have been characterized in a screening of 126 Pseudomonas strains isolated from diseased citrus leaves and stems in northern Iran. The 126 strains were studied using a polyphasic approach that included phenotypic characterizations and phylogenetic multilocus sequence analysis. The pathogenicity of these strains against 3 cultivars of citrus is demonstrated in greenhouse and field studies. The strains were initially grouped phenotypically and by their partial rpoD gene sequences into 11 coherent groups in the Pseudomonas fluorescens phylogenetic lineage. Fifty-three strains that are representatives of the 11 groups were selected and analyzed by partial sequencing of their 16S rRNA and gyrB genes. The individual and concatenated partial sequences of the three genes were used to construct the corresponding phylogenetic trees. The majority of the strains were identified at the species level: P. lurida (5 strains, P. monteilii (2 strains, P. moraviensis (1 strain, P. orientalis (16 strains, P. simiae (7 strains, P. syringae (46 strains, distributed phylogenetically in at least 5 pathovars, and P. viridiflava (2 strains. This is the first report of pathogenicity on citrus of P. orientalis, P. simiae, P. lurida, P. moraviensis and P. monteilii strains. The remaining 47 strains that could not be identified at the species level are considered representatives of at least 5 putative novel Pseudomonas species that are not yet described.

  19. New Pseudomonas spp. Are Pathogenic to Citrus.

    Science.gov (United States)

    Beiki, Farid; Busquets, Antonio; Gomila, Margarita; Rahimian, Heshmat; Lalucat, Jorge; García-Valdés, Elena

    2016-01-01

    Five putative novel Pseudomonas species shown to be pathogenic to citrus have been characterized in a screening of 126 Pseudomonas strains isolated from diseased citrus leaves and stems in northern Iran. The 126 strains were studied using a polyphasic approach that included phenotypic characterizations and phylogenetic multilocus sequence analysis. The pathogenicity of these strains against 3 cultivars of citrus is demonstrated in greenhouse and field studies. The strains were initially grouped phenotypically and by their partial rpoD gene sequences into 11 coherent groups in the Pseudomonas fluorescens phylogenetic lineage. Fifty-three strains that are representatives of the 11 groups were selected and analyzed by partial sequencing of their 16S rRNA and gyrB genes. The individual and concatenated partial sequences of the three genes were used to construct the corresponding phylogenetic trees. The majority of the strains were identified at the species level: P. lurida (5 strains), P. monteilii (2 strains), P. moraviensis (1 strain), P. orientalis (16 strains), P. simiae (7 strains), P. syringae (46 strains, distributed phylogenetically in at least 5 pathovars), and P. viridiflava (2 strains). This is the first report of pathogenicity on citrus of P. orientalis, P. simiae, P. lurida, P. moraviensis and P. monteilii strains. The remaining 47 strains that could not be identified at the species level are considered representatives of at least 5 putative novel Pseudomonas species that are not yet described.

  20. Pathogen Phytosensing: Plants to Report Plant Pathogens

    Directory of Open Access Journals (Sweden)

    C. Neal Stewart

    2008-04-01

    Full Text Available Real-time systems that provide evidence of pathogen contamination in crops can be an important new line of early defense in agricultural centers. Plants possess defense mechanisms to protect against pathogen attack. Inducible plant defense is controlled by signal transduction pathways, inducible promoters and cis-regulatory elements corresponding to key genes involved in defense, and pathogen-specific responses. Identified inducible promoters and cis-acting elements could be utilized in plant sentinels, or ‘phytosensors’, by fusing these to reporter genes to produce plants with altered phenotypes in response to the presence of pathogens. Here, we have employed cis-acting elements from promoter regions of pathogen inducible genes as well as those responsive to the plant defense signal molecules salicylic acid, jasmonic acid, and ethylene. Synthetic promoters were constructed by combining various regulatory elements supplemented with the enhancer elements from the Cauliflower mosaic virus (CaMV 35S promoter to increase basal level of the GUS expression. The inducibility of each synthetic promoter was first assessed in transient expression assays using Arabidopsis thaliana protoplasts and then examined for efficacy in stably transgenic Arabidopsis and tobacco plants. Histochemical and fluorometric GUS expression analyses showed that both transgenic Arabidopsis and tobacco plants responded to elicitor and phytohormone treatments with increased GUS expression when compared to untreated plants. Pathogen-inducible phytosensor studies were initiated by analyzing the sensitivity of the synthetic promoters against virus infection. Transgenic tobacco plants infected with Alfalfa mosaic virus showed an increase in GUS expression when compared to mock-inoculated control plants, whereas Tobacco mosaic virus infection caused no changes in GUS expression. Further research, using these transgenic plants against a range of different

  1. Plant pathogen resistance

    Science.gov (United States)

    Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

    2012-11-27

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  2. Plant pathogen resistance

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, Jean T.; Jung, Ho Won; Tschaplinski, Timothy

    2015-10-20

    Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

  3. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds

    NARCIS (Netherlands)

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M.; Park, Kyungseok

    2015-01-01

    Abstract Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens

  4. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis

    OpenAIRE

    Song, Geun C.; Choi, Hye K.; Ryu, Choong-Min

    2015-01-01

    3-Pentanol is an active organic compound produced by plants and is a component of emitted insect sex pheromones. A previous study reported that drench application of 3-pentanol elicited plant immunity against microbial pathogens and an insect pest in crop plants. Here, we evaluated whether 3-pentanol and the derivatives 1-pentanol and 2-pentanol induced plant systemic resistance using the in vitro I-plate system. Exposure of Arabidopsis seedlings to 10 μM and 100 nM 3-pentanol evaporate elici...

  5. Structure of the HopA1(21-102)-ShcA chaperone-effector complex of Pseudomonas syringae reveals conservation of a virulence factor binding motif from animal to plant pathogens.

    Science.gov (United States)

    Janjusevic, Radmila; Quezada, Cindy M; Small, Jennifer; Stebbins, C Erec

    2013-02-01

    Pseudomonas syringae injects numerous bacterial proteins into host plant cells through a type 3 secretion system (T3SS). One of the first such bacterial effectors discovered, HopA1, is a protein that has unknown functions in the host cell but possesses close homologs that trigger the plant hypersensitive response in resistant strains. Like the virulence factors in many bacterial pathogens of animals, HopA1 depends upon a cognate chaperone in order to be effectively translocated by the P. syringae T3SS. Herein, we report the crystal structure of a complex of HopA1(21-102) with its chaperone, ShcA, determined to 1.56-Å resolution. The structure reveals that three key features of the chaperone-effector interactions found in animal pathogens are preserved in the Gram-negative pathogens of plants, namely, (i) the interaction of the chaperone with a nonglobular polypeptide of the effector, (ii) an interaction centered on the so-called β-motif, and (iii) the presence of a conserved hydrophobic patch in the chaperone that recognizes the β-motif. Structure-based mutagenesis and biochemical studies have established that the β-motif is critical for the stability of this complex. Overall, these results show that the β-motif interactions are broadly conserved in bacterial pathogens utilizing T3SSs, spanning an interkingdom host range.

  6. Threats and opportunities of plant pathogenic bacteria.

    Science.gov (United States)

    Tarkowski, Petr; Vereecke, Danny

    2014-01-01

    Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Transcriptome analysis of Pseudomonas mediterranea and P. corrugata plant pathogens during accumulation of medium-chain-length PHAs by glycerol bioconversion.

    Science.gov (United States)

    Licciardello, Grazia; Ferraro, Rosario; Russo, Marcella; Strozzi, Francesco; Catara, Antonino F; Bella, Patrizia; Catara, Vittoria

    2017-07-25

    Pseudomonas corrugata and P. mediterranea are soil inhabitant bacteria, generally living as endophytes on symptomless plants and bare soil, but also capable of causing plant diseases. They share a similar genome size and a high proteome similarity. P. corrugata produces many biomolecules which play an important role in bacterial cell survival and fitness. Both species produce different medium-chain-length PHAs (mcl-PHAs) from the bioconversion of glycerol to a transparent film in P. mediterranea and a sticky elastomer in P. corrugata. In this work, using RNA-seq we investigated the transcriptional profiles of both bacteria at the early stationary growth phase with glycerol as the carbon source. Quantitative analysis of P. mediterranea transcripts versus P. corrugata revealed that 1756 genes were differentially expressed. A total of 175 genes were significantly upregulated in P. mediterranea, while 217 were downregulated. The largest group of upregulated genes was related to transport systems and stress response, energy and central metabolism, and carbon metabolism. Expression levels of most genes coding for enzymes related to PHA biosynthesis and central metabolic pathways showed no differences or only slight variations in pyruvate metabolism. The most relevant result was the significantly increased expression in P. mediterranea of genes involved in alginate production, an important exopolysaccharide, which in other Pseudomonas spp. plays a key role as a virulence factor or in stress tolerance and shows many industrial applications. In conclusion, the results provide useful information on the co-production of mcl-PHAs and alginate from glycerol as carbon source by P. mediterranea in the design of new strategies of genetic regulation to improve the yield of bioproducts or bacterial fitness.

  8. Plant Pathogenic Fungi and Oomycetes

    NARCIS (Netherlands)

    Wit, de P.J.G.M.

    2015-01-01

    Fungi and Oomycetes are notorious plant pathogens and use similar strategies to infect plants. The majority of plants, however, is not infected by pathogens as they recognize pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors that mediate PAMP-triggered immunity (PTI) ,

  9. Plant Pathogenic Fungi and Oomycetes

    NARCIS (Netherlands)

    Wit, de P.J.G.M.

    2015-01-01

    Fungi and Oomycetes are notorious plant pathogens and use similar strategies to infect plants. The majority of plants, however, is not infected by pathogens as they recognize pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors that mediate PAMP-triggered immunity (PTI) ,

  10. The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp.

    Science.gov (United States)

    Barret, M; Frey-Klett, P; Boutin, M; Guillerm-Erckelboudt, A-Y; Martin, F; Guillot, L; Sarniguet, A

    2009-01-01

    In soil, some antagonistic rhizobacteria contribute to reduce root diseases caused by phytopathogenic fungi. Direct modes of action of these bacteria have been largely explored; however, commensal interaction also takes place between these microorganisms and little is known about the influence of filamentous fungi on bacteria. An in vitro confrontation bioassay between the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) and the biocontrol bacterial strain Pseudomonas fluorescens Pf29Arp was set up to analyse bacterial transcriptional changes induced by the fungal mycelium at three time-points of the interaction before cell contact and up until contact. For this, a Pf29Arp shotgun DNA microarray was constructed. Specifity of Ggt effect was assessed in comparison with one of two other filamentous fungi, Laccaria bicolor and Magnaporthe grisea. During a commensal interaction, Ggt increased the growth rate of Pf29Arp. Before contact, Ggt induced bacterial genes involved in mycelium colonization. At contact, genes encoding protein of stress response and a patatin-like protein were up-regulated. Among all the bacterial genes identified, xseB was specifically up-regulated at contact by Ggt but down-regulated by the other fungi. Data showed that the bacterium sensed the presence of the fungus early, but the main gene alteration occurred during bacterial-fungal cell contact.

  11. Plant growth promotion by Pseudomonas fluorescens

    NARCIS (Netherlands)

    Cheng, X.

    2016-01-01

    Pseudomonas fluorescens is a Gram-negative rod shaped bacterium that has a versatile metabolism and is widely spread in soil and water. P. fluorescens strain SBW25 (Pf.SBW25) is a well-known model strain to study bacterial evolution, plant colonization and biocontrol of plant diseases. It produces t

  12. Fructooligosacharides reduce Pseudomonas aeruginosa PAO1 pathogenicity through distinct mechanisms.

    Science.gov (United States)

    Ortega-González, Mercedes; Sánchez de Medina, Fermín; Molina-Santiago, Carlos; López-Posadas, Rocío; Pacheco, Daniel; Krell, Tino; Martínez-Augustin, Olga; Abdelali, Daddaoua

    2014-01-01

    Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF-α. Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF-κB pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed.

  13. A Proposal for a Genome Similarity-Based Taxonomy for Plant-Pathogenic Bacteria that Is Sufficiently Precise to Reflect Phylogeny, Host Range, and Outbreak Affiliation Applied to Pseudomonas syringae sensu lato as a Proof of Concept.

    Science.gov (United States)

    Vinatzer, Boris A; Weisberg, Alexandra J; Monteil, Caroline L; Elmarakeby, Haitham A; Sheppard, Samuel K; Heath, Lenwood S

    2017-01-01

    Taxonomy of plant pathogenic bacteria is challenging because pathogens of different crops often belong to the same named species but current taxonomy does not provide names for bacteria below the subspecies level. The introduction of the host range-based pathovar system in the 1980s provided a temporary solution to this problem but has many limitations. The affordability of genome sequencing now provides the opportunity for developing a new genome-based taxonomic framework. We already proposed to name individual bacterial isolates based on pairwise genome similarity. Here, we expand on this idea and propose to use genome similarity-based codes, which we now call life identification numbers (LINs), to describe and name bacterial taxa. Using 93 genomes of Pseudomonas syringae sensu lato, LINs were compared with a P. syringae genome tree whereby the assigned LINs were found to be informative of a majority of phylogenetic relationships. LINs also reflected host range and outbreak association for strains of P. syringae pathovar actinidiae, a pathovar for which many genome sequences are available. We conclude that LINs could provide the basis for a new taxonomic framework to address the shortcomings of the current pathovar system and to complement the current taxonomic system of bacteria in general.

  14. Fructooligosacharides reduce Pseudomonas aeruginosa PAO1 pathogenicity through distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Mercedes Ortega-González

    Full Text Available Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF-α. Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF-κB pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed.

  15. Recent advances in understanding Pseudomonas aeruginosa as a pathogen.

    Science.gov (United States)

    Klockgether, Jens; Tümmler, Burkhard

    2017-01-01

    The versatile and ubiquitous Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic infections in predisposed human subjects. Here we review recent progress in understanding P. aeruginosa population biology and virulence, its cyclic di-GMP-mediated switches of lifestyle, and its interaction with the mammalian host as well as the role of the type III and type VI secretion systems in P. aeruginosa infection.

  16. Analysis of the small RNA P16/RgsA in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000

    OpenAIRE

    Park, So Hae; Butcher, Bronwyn G.; Anderson, Zoe; Pellegrini, Nola; Bao, Zhongmeng; D’Amico, Katherine; Melanie J Filiatrault

    2013-01-01

    Bacteria contain small non-coding RNAs (ncRNAs) that are responsible for altering transcription, translation or mRNA stability. ncRNAs are important because they regulate virulence factors and susceptibility to various stresses. Here, the regulation of a recently described ncRNA of Pseudomonas syringae pv. tomato DC3000, P16, was investigated. We determined that RpoS regulates the expression of P16. We found that deletion of P16 results in increased sensitivity to hydrogen peroxide compared t...

  17. Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics

    NARCIS (Netherlands)

    Flury, Pascale; Aellen, Nora; Ruffner, Beat; Pechy-Tarr, Maria; Fataar, Shakira; Metla, Zane; Dominguez-Ferreras, Ana; Bloemberg, Guido; Frey, Joachim; Goesmann, Alexander; Raaijmakers, Jos M; Duffy, Brion; Hofte, Monica; Blom, Jochen; Smits, Theo H M; Keel, Christoph; Maurhofer, Monika

    2016-01-01

    Bacteria of the genus Pseudomonas occupy diverse environments. The Pseudomonas fluorescens group is particularly well-known for its plant-beneficial properties including pathogen suppression. Recent observations that some strains of this group also cause lethal infections in insect larvae, however,

  18. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-02-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important for the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread.

  19. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-06-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread. 

  20. Biosynthetic Origin of the Antibiotic Cyclocarbamate Brabantamide A (SB-253514) in Plant-Associated Pseudomonas

    NARCIS (Netherlands)

    Schmidt, Y.; van der Voort, M.; Crüsemann, M.; Piel, J.; Josten, M.; Sahl, H.-G.; Miess, H.; Raaijmakers, J.M.; Gross, H.

    2014-01-01

    Within the framework of our genome-based program to discover new antibiotic lipopeptides from Pseudomonads, brabantamides A–C were isolated from plant-associated Pseudomonas sp. SH-C52. Brabantamides A–C displayed moderate to high in vitro activities against Gram-positive bacterial pathogens. Their

  1. Biosynthetic Origin of the Antibiotic Cyclocarbamate Brabantamide A (SB-253514) in Plant-Associated Pseudomonas

    NARCIS (Netherlands)

    Schmidt, Y.; Voort, van der M.; Crüsemann, M.; Piel, J.; Josten, M.; Sahl, H.G.; Miess, H.; Raaijmakers, J.M.; Gross, H.

    2014-01-01

    Within the framework of our genome-based program to discover new antibiotic lipopeptides from Pseudomonads, brabantamides A–C were isolated from plant-associated Pseudomonas sp. SH-C52. Brabantamides A–C displayed moderate to high in vitro activities against Gram-positive bacterial pathogens. Their

  2. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267

    NARCIS (Netherlands)

    Kruijt, M.; Tran, H.; Raaijmakers, J.M.

    2009-01-01

    Aims: Plant growth-promoting Pseudomonas putida strain 267, originally isolated from the rhizosphere of black pepper, produces biosurfactants that cause lysis of zoospores of the oomycete pathogen Phytophthora capsici. The biosurfactants were characterized, the biosynthesis gene(s) partially identif

  3. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia.

    Science.gov (United States)

    Liu, Yiying; Rzeszutek, Elzbieta; van der Voort, Menno; Wu, Cheng-Hsuan; Thoen, Even; Skaar, Ida; Bulone, Vincent; Dorrestein, Pieter C; Raaijmakers, Jos M; de Bruijn, Irene

    2015-01-01

    Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (micro)biological and sustainable means to mitigate oomycete diseases in aquaculture.

  4. Diversity of Aquatic Pseudomonas Species and Their Activity against the Fish Pathogenic Oomycete Saprolegnia.

    Directory of Open Access Journals (Sweden)

    Yiying Liu

    Full Text Available Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (microbiological and sustainable means to mitigate oomycete diseases in aquaculture.

  5. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens

    Science.gov (United States)

    Monteil, Caroline L.; Yahara, Koji; Studholme, David J.; Mageiros, Leonardos; Méric, Guillaume; Swingle, Bryan; Morris, Cindy E.

    2016-01-01

    Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1, to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae. PMID:28348830

  6. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens

    Directory of Open Access Journals (Sweden)

    W. H. Gera eHol

    2013-04-01

    Full Text Available Plant growth-promoting rhizobacteria (PGPR are increasingly appreciated for their contributions to primary productivity through promotion of growth and triggering of induced systemic resistance in plants. Here we focus on the beneficial effects of one particular species of PGPR (Pseudomonas fluorescens on plants through induced plant defence. This model organism has provided much understanding of the underlying molecular mechanisms of PGPR-induced plant defence. However, this knowledge can only be appreciated at full value once we know to what extent these mechanisms also occur under more realistic, species-diverse conditions as are occurring in the plant rhizosphere. To provide the necessary ecological context, we review the literature to compare the effect of P. fluorescens on induced plant defence when it is present as a single species or in combination with other soil dwelling species. Specifically, we discuss combinations with other plant mutualists (bacterial or fungal, plant pathogens (bacterial or fungal, bacterivores (nematode or protozoa and decomposers. Synergistic interactions between P. fluorescens and other plant mutualists are much more commonly reported than antagonistic interactions. Recent developments have enabled screenings of P. fluorescens genomes for defence traits and this could help with selection of strains with likely positive interactions on biocontrol. However, studies that examine the effects of multiple herbivores, pathogens, or herbivores and pathogens together on the effectiveness of PGPR to induce plant defences are underrepresented and we are not aware of any study that has examined interactions between P. fluorescens and bacterivores or decomposers. As co-occurring soil organisms can enhance but also reduce the effectiveness of PGPR, a better understanding of the biotic factors modulating P. fluorescens -plant interactions will improve the effectiveness of introducing P. fluorescens to enhance plant production

  7. From the root to the stem: interaction between the biocontrol root endophyte Pseudomonas fluorescens PICF7 and the pathogen Pseudomonas savastanoi NCPPB 3335 in olive knots

    Science.gov (United States)

    Maldonado-González, M Mercedes; Prieto, Pilar; Ramos, Cayo; Mercado-Blanco, Jesús

    2013-01-01

    Olive knot disease, caused by Pseudomonas savastanoi pv. savastanoi, is one of the most important biotic constraints for olive cultivation. Pseudomonas fluorescens PICF7, a natural colonizer of olive roots and effective biological control agent (BCA) against Verticillium wilt of olive, was examined as potential BCA against olive knot disease. Bioassays using in vitro-propagated olive plants were carried out to assess whether strain PICF7 controlled knot development either when co-inoculated with the pathogen in stems or when the BCA (in roots) and the pathogen (in stems) were spatially separated. Results showed that PICF7 was able to establish and persist in stem tissues upon artificial inoculation. While PICF7 was not able to suppress disease development, its presence transiently decreased pathogen population size, produced less necrotic tumours, and sharply altered the localization of the pathogen in the hyperplasic tissue, which may pose epidemiological consequences. Confocal laser scanning microscopy combined with fluorescent tagging of bacteria revealed that when PICF7 was absent the pathogen tended to be localized at the knot surface. However, presence of the BCA seemed to confine P. savastanoi at inner regions of the tumours. This approach has also enabled to prove that the pathogen can moved systemically beyond the hypertrophied tissue. PMID:23425069

  8. From the root to the stem: interaction between the biocontrol root endophyte Pseudomonas fluorescens PICF7 and the pathogen Pseudomonas savastanoi NCPPB 3335 in olive knots.

    Science.gov (United States)

    Maldonado-González, M Mercedes; Prieto, Pilar; Ramos, Cayo; Mercado-Blanco, Jesús

    2013-05-01

    Olive knot disease, caused by Pseudomonas savastanoi pv. savastanoi, is one of the most important biotic constraints for olive cultivation. Pseudomonas fluorescens PICF7, a natural colonizer of olive roots and effective biological control agent (BCA) against Verticillium wilt of olive, was examined as potential BCA against olive knot disease. Bioassays using in vitro-propagated olive plants were carried out to assess whether strain PICF7 controlled knot development either when co-inoculated with the pathogen in stems or when the BCA (in roots) and the pathogen (in stems) were spatially separated. Results showed that PICF7 was able to establish and persist in stem tissues upon artificial inoculation. While PICF7 was not able to suppress disease development, its presence transiently decreased pathogen population size, produced less necrotic tumours, and sharply altered the localization of the pathogen in the hyperplasic tissue, which may pose epidemiological consequences. Confocal laser scanning microscopy combined with fluorescent tagging of bacteria revealed that when PICF7 was absent the pathogen tended to be localized at the knot surface. However, presence of the BCA seemed to confine P. savastanoi at inner regions of the tumours. This approach has also enabled to prove that the pathogen can moved systemically beyond the hypertrophied tissue.

  9. Dual Effect of the Cubic Ag₃PO₄ Crystal on Pseudomonas syringae Growth and Plant Immunity

    Directory of Open Access Journals (Sweden)

    Mi Kyung Kim

    2016-04-01

    Full Text Available We previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P. syringae. Induced expression of a plant defense marker gene PR1 by SPC alone is suggestive of its additional plant immunity-stimulating activity. Since SPC can simultaneously inhibit P. syringae growth and induce plant defense responses, it might be used as a more effective plant disease-controlling agent.

  10. The Role of 2,4-diacetylphloroglucinol- and phenazine-1-carboxylic acid-producing Pseudomonas spp. in Natural Protection of Wheat from Soilborne Pathogens

    Science.gov (United States)

    Fluorescent Pseudomonas isolated from the rhizosphere of diverse plants have been studied as biocontrol agents of soilborne pathogens worldwide. Certain strains of these bacteria are capable of exerting a variety of mechanisms of plant growth promotion and protection, including the production of the...

  11. Arabidopsis Clade I TGA Factors Regulate Apoplastic Defences against the Bacterial Pathogen Pseudomonas syringae through Endoplasmic Reticulum-Based Processes

    OpenAIRE

    Lipu Wang; Pierre R Fobert

    2013-01-01

    During the plant immune response, large-scale transcriptional reprogramming is modulated by numerous transcription (co) factors. The Arabidopsis basic leucine zipper transcription factors TGA1 and TGA4, which comprise the clade I TGA factors, have been shown to positively contribute to disease resistance against virulent strains of the bacterial pathogen Pseudomonas syringae . Despite physically interacting with the key immune regulator, NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), f...

  12. Molecular battles between plant and pathogenic bacteria in the phyllosphere

    Directory of Open Access Journals (Sweden)

    C.M. Baker

    2010-08-01

    Full Text Available The phyllosphere, i.e., the aerial parts of the plant, provides one of the most important niches for microbial colonization. This niche supports the survival and, often, proliferation of microbes such as fungi and bacteria with diverse lifestyles including epiphytes, saprophytes, and pathogens. Although most microbes may complete the life cycle on the leaf surface, pathogens must enter the leaf and multiply aggressively in the leaf interior. Natural surface openings, such as stomata, are important entry sites for bacteria. Stomata are known for their vital role in water transpiration and gas exchange between the plant and the environment that is essential for plant growth. Recent studies have shown that stomata can also play an active role in limiting bacterial invasion of both human and plant pathogenic bacteria as part of the plant innate immune system. As counter-defense, plant pathogens such as Pseudomonas syringae pv tomato (Pst DC3000 use the virulence factor coronatine to suppress stomate-based defense. A novel and crucial early battleground in host-pathogen interaction in the phyllosphere has been discovered with broad implications in the study of bacterial pathogenesis, host immunity, and molecular ecology of bacterial diseases.

  13. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    Science.gov (United States)

    BACKGROUND: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexis...

  14. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa

    Science.gov (United States)

    BACKGROUND: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexis...

  15. Foliar endophytic fungi as potential protectors from pathogens in myrmecophytic Acacia plants.

    Science.gov (United States)

    González-Teuber, Marcia; Jiménez-Alemán, Guillermo H; Boland, Wilhelm

    2014-10-01

    In defensive ant-plant interactions myrmecophytic plants express reduced chemical defense in their leaves to protect themselves from pathogens, and it seems that mutualistic partners are required to make up for this lack of defensive function. Previously, we reported that mutualistic ants confer plants of Acacia hindsii protection from pathogens, and that the protection is given by the ant-associated bacteria. Here, we examined whether foliar endophytic fungi may potentially act as a new partner, in addition to mutualistic ants and their bacteria inhabitants, involved in the protection from pathogens in myrmecophytic Acacia plants. Fungal endophytes were isolated from the asymptomatic leaves of A. hindsii plants for further molecular identification of 18S rRNA gene. Inhibitory effects of fungal endophytes were tested against Pseudomonas plant pathogens. Our findings support a potential role of fungal endophytes in pathogen the protection mechanisms against pathogens in myrmecophytic plants and provide the evidence of novel fungal endophytes capable of biosynthesizing bioactive metabolites.

  16. Plants versus pathogens: an evolutionary arms race.

    Science.gov (United States)

    Anderson, Jonathan P; Gleason, Cynthia A; Foley, Rhonda C; Thrall, Peter H; Burdon, Jeremy B; Singh, Karam B

    2010-05-20

    The analysis of plant-pathogen interactions is a rapidly moving research field and one that is very important for productive agricultural systems. The focus of this review is on the evolution of plant defence responses and the coevolution of their pathogens, primarily from a molecular-genetic perspective. It explores the evolution of the major types of plant defence responses including pathogen associated molecular patterns and effector triggered immunity as well as the forces driving pathogen evolution, such as the mechanisms by which pathogen lineages and species evolve. Advances in our understanding of plant defence signalling, stomatal regulation, R gene-effector interactions and host specific toxins are used to highlight recent insights into the coevolutionary arms race between pathogens and plants. Finally, the review considers the intriguing question of how plants have evolved the ability to distinguish friends such as rhizobia and mycorrhiza from their many foes.

  17. Plant and pathogen nutrient acquisition strategies

    OpenAIRE

    Fatima, Urooj; Senthil-Kumar, Muthappa

    2015-01-01

    Nutrients are indispensable elements required for the growth of all living organisms including plants and pathogens. Phyllosphere, rhizosphere, apoplast, phloem, xylem, and cell organelles are the nutrient niches in plants that are the target of bacterial pathogens. Depending upon nutrients availability, the pathogen adapts various acquisition strategies and inhabits the specific niche. In this review, we discuss the nutrient composition of different niches in plants, the mechanisms involved ...

  18. Biosurfactants in plant-Pseudomonas interactions and their importance to biocontrol.

    Science.gov (United States)

    D'aes, Jolien; De Maeyer, Katrien; Pauwelyn, Ellen; Höfte, Monica

    2010-06-01

    Production of biosurfactants is a common feature in bacteria, and in particular in plant-associated species. These bacteria include many plant beneficial and plant pathogenic Pseudomonas spp., which produce primarily cyclic lipopeptide and rhamnolipid type biosurfactants. Pseudomonas-derived biosurfactants are involved in many important bacterial functions. By modifying surface properties, biosurfactants can influence common traits such as surface motility, biofilm formation and colonization. Biosurfactants can alter the bio-availability of exogenous compounds, such as nutrients, to promote their uptake, and of endogenous metabolites, including phenazine antibiotics, resulting in an enhanced biological activity. Antibiotic activity of biosurfactants towards microbes could play a role in intraspecific competition, self-defence and pathogenesis. In addition, bacterial surfactants can affect plants in different ways, either protecting them from disease, or acting as a toxin in a plant-pathogen interaction. Biosurfactants are involved in the biocontrol activity of an increasing number of Pseudomonas strains. Consequently, further insight into the roles and activities of surfactants produced by bacteria could provide means to optimize the use of biological control as an alternative crop protection strategy.

  19. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens.

    Science.gov (United States)

    Ye, Lumeng; Hildebrand, Falk; Dingemans, Jozef; Ballet, Steven; Laus, George; Matthijs, Sandra; Berendsen, Roeland; Cornelis, Pierre

    2014-01-01

    Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s) with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors.

  20. Identification of quorum-sensing regulated proteins in the opportunistic pathogen Pseudomonas aeruginosa by proteomics

    DEFF Research Database (Denmark)

    Arevalo-Ferro, C.; Hentzer, Morten; Reil, G.

    2003-01-01

    The Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic human pathogen which is responsible for severe nosocomial infections in immunocompromised patients and is the major pathogen in cystic fibrosis. The bacterium utilizes two interrelated quorum-sensing (QS) systems, which rely...

  1. Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens.

    Directory of Open Access Journals (Sweden)

    Seonghee Lee

    Full Text Available Heterotrimeric G-proteins have been proposed to be involved in many aspects of plant disease resistance but their precise role in mediating nonhost disease resistance is not well understood. We evaluated the roles of specific subunits of heterotrimeric G-proteins using knock-out mutants of Arabidopsis Gα, Gβ and Gγ subunits in response to host and nonhost Pseudomonas pathogens. Plants lacking functional Gα, Gβ and Gγ1Gγ2 proteins displayed enhanced bacterial growth and disease susceptibility in response to host and nonhost pathogens. Mutations of single Gγ subunits Gγ1, Gγ2 and Gγ3 did not alter bacterial disease resistance. Some specificity of subunit usage was observed when comparing host pathogen versus nonhost pathogen. Overexpression of both Gα and Gβ led to reduced bacterial multiplication of nonhost pathogen P. syringae pv. tabaci whereas overexpression of Gβ, but not of Gα, resulted in reduced bacterial growth of host pathogen P. syringae pv. maculicola, compared to wild-type Col-0. Moreover, the regulation of stomatal aperture by bacterial pathogens was altered in Gα and Gβ mutants but not in any of the single or double Gγ mutants. Taken together, these data substantiate the critical role of heterotrimeric G-proteins in plant innate immunity and stomatal modulation in response to P. syringae.

  2. Early Arabidopsis root hair growth stimulation by pathogenic strains of Pseudomonas syringae.

    Science.gov (United States)

    Pecenková, Tamara; Janda, Martin; Ortmannová, Jitka; Hajná, Vladimíra; Stehlíková, Zuzana; Žárský, Viktor

    2017-09-01

    Selected beneficial Pseudomonas spp. strains have the ability to influence root architecture in Arabidopsis thaliana by inhibiting primary root elongation and promoting lateral root and root hair formation. A crucial role for auxin in this long-term (1week), long-distance plant-microbe interaction has been demonstrated. Arabidopsis seedlings were cultivated in vitro on vertical plates and inoculated with pathogenic strains Pseudomonas syringae pv. maculicola (Psm) and P. syringae pv. tomato DC3000 (Pst), as well as Agrobacterium tumefaciens (Atu) and Escherichia coli (Eco). Root hair lengths were measured after 24 and 48h of direct exposure to each bacterial strain. Several Arabidopsis mutants with impaired responses to pathogens, impaired ethylene perception and defects in the exocyst vesicle tethering complex that is involved in secretion were also analysed. Arabidopsis seedling roots infected with Psm or Pst responded similarly to when infected with plant growth-promoting rhizobacteria; root hair growth was stimulated and primary root growth was inhibited. Other plant- and soil-adapted bacteria induced similar root hair responses. The most compromised root hair growth stimulation response was found for the knockout mutants exo70A1 and ein2. The single immune pathways dependent on salicylic acid, jasmonic acid and PAD4 are not directly involved in root hair growth stimulation; however, in the mutual cross-talk with ethylene, they indirectly modify the extent of the stimulation of root hair growth. The Flg22 peptide does not initiate root hair stimulation as intact bacteria do, but pretreatment with Flg22 prior to Psm inoculation abolished root hair growth stimulation in an FLS2 receptor kinase-dependent manner. These early response phenomena are not associated with changes in auxin levels, as monitored with the pDR5::GUS auxin reporter. Early stimulation of root hair growth is an effect of an unidentified component of living plant pathogenic bacteria. The root

  3. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  4. Antibody-based resistance to plant pathogens.

    Science.gov (United States)

    Schillberg, S; Zimmermann, S; Zhang, M Y; Fischer, R

    2001-01-01

    Plant diseases are a major threat to the world food supply, as up to 15% of production is lost to pathogens. In the past, disease control and the generation of resistant plant lines protected against viral, bacterial or fungal pathogens, was achieved using conventional breeding based on crossings, mutant screenings and backcrossing. Many approaches in this field have failed or the resistance obtained has been rapidly broken by the pathogens. Recent advances in molecular biotechnology have made it possible to obtain and to modify genes that are useful for generating disease resistant crops. Several strategies, including expression of pathogen-derived sequences or anti-pathogenic agents, have been developed to engineer improved pathogen resistance in transgenic plants. Antibody-based resistance is a novel strategy for generating transgenic plants resistant to pathogens. Decades ago it was shown that polyclonal and monoclonal antibodies can neutralize viruses, bacteria and selected fungi. This approach has been improved recently by the development of recombinant antibodies (rAbs). Crop resistance can be engineered by the expression of pathogen-specific antibodies, antibody fragments or antibody fusion proteins. The advantages of this approach are that rAbs can be engineered against almost any target molecule, and it has been demonstrated that expression of functional pathogen-specific rAbs in plants confers effective pathogen protection. The efficacy of antibody-based resistance was first shown for plant viruses and its application to other plant pathogens is becoming more established. However, successful use of antibodies to generate plant pathogen resistance relies on appropriate target selection, careful antibody design, efficient antibody expression, stability and targeting to appropriate cellular compartments.

  5. Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5.

    Science.gov (United States)

    Paulsen, Ian T; Press, Caroline M; Ravel, Jacques; Kobayashi, Donald Y; Myers, Garry S A; Mavrodi, Dmitri V; DeBoy, Robert T; Seshadri, Rekha; Ren, Qinghu; Madupu, Ramana; Dodson, Robert J; Durkin, A Scott; Brinkac, Lauren M; Daugherty, Sean C; Sullivan, Stephen A; Rosovitz, Mary J; Gwinn, Michelle L; Zhou, Liwei; Schneider, Davd J; Cartinhour, Samuel W; Nelson, William C; Weidman, Janice; Watkins, Kisha; Tran, Kevin; Khouri, Hoda; Pierson, Elizabeth A; Pierson, Leland S; Thomashow, Linda S; Loper, Joyce E

    2005-07-01

    Pseudomonas fluorescens Pf-5 is a plant commensal bacterium that inhabits the rhizosphere and produces secondary metabolites that suppress soilborne plant pathogens. The complete sequence of the 7.1-Mb Pf-5 genome was determined. We analyzed repeat sequences to identify genomic islands that, together with other approaches, suggested P. fluorescens Pf-5's recent lateral acquisitions include six secondary metabolite gene clusters, seven phage regions and a mobile genomic island. We identified various features that contribute to its commensal lifestyle on plants, including broad catabolic and transport capabilities for utilizing plant-derived compounds, the apparent ability to use a diversity of iron siderophores, detoxification systems to protect from oxidative stress, and the lack of a type III secretion system and toxins found in related pathogens. In addition to six known secondary metabolites produced by P. fluorescens Pf-5, three novel secondary metabolite biosynthesis gene clusters were also identified that may contribute to the biocontrol properties of P. fluorescens Pf-5.

  6. Antibacterial activity of caffeine against plant pathogenic bacteria.

    Science.gov (United States)

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions.

  7. Antibody-mediated resistance against plant pathogens.

    Science.gov (United States)

    Safarnejad, Mohammad Reza; Jouzani, Gholamreza Salehi; Tabatabaei, Meisam; Tabatabaie, Meisam; Twyman, Richard M; Schillberg, Stefan

    2011-01-01

    Plant diseases have a significant impact on the yield and quality of crops. Many strategies have been developed to combat plant diseases, including the transfer of resistance genes to crops by conventional breeding. However, resistance genes can only be introgressed from sexually-compatible species, so breeders need alternative measures to introduce resistance traits from more distant sources. In this context, genetic engineering provides an opportunity to exploit diverse and novel forms of resistance, e.g. the use of recombinant antibodies targeting plant pathogens. Native antibodies, as a part of the vertebrate adaptive immune system, can bind to foreign antigens and eliminate them from the body. The ectopic expression of antibodies in plants can also interfere with pathogen activity to confer disease resistance. With sufficient knowledge of the pathogen life cycle, it is possible to counter any disease by designing expression constructs so that pathogen-specific antibodies accumulate at high levels in appropriate sub-cellular compartments. Although first developed to tackle plant viruses and still used predominantly for this purpose, antibodies have been targeted against a diverse range of pathogens as well as proteins involved in plant-pathogen interactions. Here we comprehensively review the development and implementation of antibody-mediated disease resistance in plants.

  8. Defense responses in two ecotypes of Lotus japonicus against non-pathogenic Pseudomonas syringae.

    Directory of Open Access Journals (Sweden)

    Cesar D Bordenave

    Full Text Available Lotus japonicus is a model legume broadly used to study many important processes as nitrogen fixing nodule formation and adaptation to salt stress. However, no studies on the defense responses occurring in this species against invading microorganisms have been carried out at the present. Understanding how this model plant protects itself against pathogens will certainly help to develop more tolerant cultivars in economically important Lotus species as well as in other legumes. In order to uncover the most important defense mechanisms activated upon bacterial attack, we explored in this work the main responses occurring in the phenotypically contrasting ecotypes MG-20 and Gifu B-129 of L. japonicus after inoculation with Pseudomonas syringae DC3000 pv. tomato. Our analysis demonstrated that this bacterial strain is unable to cause disease in these accessions, even though the defense mechanisms triggered in these ecotypes might differ. Thus, disease tolerance in MG-20 was characterized by bacterial multiplication, chlorosis and desiccation at the infiltrated tissues. In turn, Gifu B-129 plants did not show any symptom at all and were completely successful in restricting bacterial growth. We performed a microarray based analysis of these responses and determined the regulation of several genes that could play important roles in plant defense. Interestingly, we were also able to identify a set of defense genes with a relative high expression in Gifu B-129 plants under non-stress conditions, what could explain its higher tolerance. The participation of these genes in plant defense is discussed. Our results position the L. japonicus-P. syringae interaction as a interesting model to study defense mechanisms in legume species.

  9. Long-Term Storage of Plant-Pathogenic Bacteria in Sterile Distilled Water

    OpenAIRE

    Nicola S. Iacobellis; DeVay, James E.

    1986-01-01

    This study was made to determine the effectiveness of the preservation of plant-pathogenic bacteria in sterile distilled water. After 20 or 24 years of storage in distilled water, a very high percentage (90 to 92%) of the isolates of Agrobacterium tumefaciens and Pseudomonas spp. were still alive. Moreover, 12 of 13 viable (after 24 years) isolates of P. syringae subsp. syringae maintained their ability to produce syringomycin and were pathogenic to bean seedlings. The water-stored cells of t...

  10. The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Givskov, Michael Christian

    2007-01-01

    , and, particularly, higher organisms We have focused on Pseudomonas aeruginosa, an opportunistic pathogen producing more than 30 QS-regulated virulence factors. P. aeruginosa causes several types of nosocomial infection, and lung infection in cystic fibrosis (CF) patients. We review the role of QS...

  11. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440

    Directory of Open Access Journals (Sweden)

    Wittgens Andreas

    2011-10-01

    Full Text Available Abstract Background Rhamnolipids are potent biosurfactants with high potential for industrial applications. However, rhamnolipids are currently produced with the opportunistic pathogen Pseudomonas aeruginosa during growth on hydrophobic substrates such as plant oils. The heterologous production of rhamnolipids entails two essential advantages: Disconnecting the rhamnolipid biosynthesis from the complex quorum sensing regulation and the opportunity of avoiding pathogenic production strains, in particular P. aeruginosa. In addition, separation of rhamnolipids from fatty acids is difficult and hence costly. Results Here, the metabolic engineering of a rhamnolipid producing Pseudomonas putida KT2440, a strain certified as safety strain using glucose as carbon source to avoid cumbersome product purification, is reported. Notably, P. putida KT2440 features almost no changes in growth rate and lag-phase in the presence of high concentrations of rhamnolipids (> 90 g/L in contrast to the industrially important bacteria Bacillus subtilis, Corynebacterium glutamicum, and Escherichia coli. P. putida KT2440 expressing the rhlAB-genes from P. aeruginosa PAO1 produces mono-rhamnolipids of P. aeruginosa PAO1 type (mainly C10:C10. The metabolic network was optimized in silico for rhamnolipid synthesis from glucose. In addition, a first genetic optimization, the removal of polyhydroxyalkanoate formation as competing pathway, was implemented. The final strain had production rates in the range of P. aeruginosa PAO1 at yields of about 0.15 g/gglucose corresponding to 32% of the theoretical optimum. What's more, rhamnolipid production was independent from biomass formation, a trait that can be exploited for high rhamnolipid production without high biomass formation. Conclusions A functional alternative to the pathogenic rhamnolipid producer P. aeruginosa was constructed and characterized. P. putida KT24C1 pVLT31_rhlAB featured the highest yield and titer reported

  12. Advances on Plant Pathogenic Mycotoxin Binding Proteins

    Institute of Scientific and Technical Information of China (English)

    WANG Chao-hua; DONG Jin-gao

    2002-01-01

    Toxin-binding protein is one of the key subjects in plant pathogenic mycotoxin research. In this paper, new advances in toxin-binding proteins of 10 kinds of plant pathogenic mycotoxins belonging to Helminthosporium ,Alternaria ,Fusicoccum ,Verticillium were reviewed, especially the techniques and methods of toxin-binding proteins of HS-toxin, HV-toxin, HMT-toxin, HC-toxin. It was proposed that the isotope-labeling technique and immunological chemistry technique should be combined together in research of toxin-binding protein, which will be significant to study the molecular recognition mechanism between host and pathogenic fungus.

  13. Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens.

    Directory of Open Access Journals (Sweden)

    Lumeng Ye

    Full Text Available Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors.

  14. Resistance inducers modulate Pseudomonas syringae pv. tomato strain DC3000 response in tomato plants.

    Directory of Open Access Journals (Sweden)

    Loredana Scalschi

    Full Text Available The efficacy of hexanoic acid (Hx as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour. This work provides the first demonstration of the response of the pathogen to the changes observed in plants after Hx application in terms of not only the population size but also the transcriptional levels of genes involved in quorum sensing establishment and pathogenesis. Therefore, it is possible that Hx treatment attenuates the virulence and survival of bacteria by preventing or diminishing the appearance of symptoms and controlling the growth of the bacteria in the mesophyll. It is interesting to note that the gene transcriptional changes in the bacteria from the treated plants occur at the same time as the changes in the plants. Hx is able to alter bacteria pathogenesis and survival only when it is applied as a resistance inducer because the changes that it promotes in plants affect the bacteria.

  15. Resistance Inducers Modulate Pseudomonas syringae pv. Tomato Strain DC3000 Response in Tomato Plants

    Science.gov (United States)

    Scalschi, Loredana; Camañes, Gemma; Llorens, Eugenio; Fernández-Crespo, Emma; López, María M.; García-Agustín, Pilar; Vicedo, Begonya

    2014-01-01

    The efficacy of hexanoic acid (Hx) as an inducer of resistance in tomato plants against Pseudomonas syringae pv. tomato DC3000 was previously demonstrated, and the plant response was characterized. Because little is known about the reaction of the pathogen to this effect, the goal of the present work was to determine whether the changes in the plant defence system affect the pathogen behaviour. This work provides the first demonstration of the response of the pathogen to the changes observed in plants after Hx application in terms of not only the population size but also the transcriptional levels of genes involved in quorum sensing establishment and pathogenesis. Therefore, it is possible that Hx treatment attenuates the virulence and survival of bacteria by preventing or diminishing the appearance of symptoms and controlling the growth of the bacteria in the mesophyll. It is interesting to note that the gene transcriptional changes in the bacteria from the treated plants occur at the same time as the changes in the plants. Hx is able to alter bacteria pathogenesis and survival only when it is applied as a resistance inducer because the changes that it promotes in plants affect the bacteria. PMID:25244125

  16. Plant and pathogen nutrient acquisition strategies

    Directory of Open Access Journals (Sweden)

    Urooj eFatima

    2015-09-01

    Full Text Available Nutrients are indispensable elements required for the growth of all living organisms including plants and pathogens. Phyllosphere, rhizosphere, apoplast, phloem, xylem and cell organelles are the nutrient niches in plants that are the target of bacterial pathogens. Depending upon nutrients availability, the pathogen adapts various acquisition strategies and inhabits the specific niche. In this review, we discuss the nutrient composition of different niches in plants, the mechanisms involved in the recognition of nutrient niche and the sophisticated strategies used by the bacterial pathogens for acquiring nutrients. We provide insight into various nutrient acquisition strategies used by necrotrophic, biotrophic and hemi-biotrophic bacteria. Specifically we discuss both modulation of bacterial machinery and manipulation of host machinery. In addition, we highlight the current status of our understanding about the nutrient acquisition strategies used by bacterial pathogens, namely targeting the sugar transporters that are dedicated for the plant’s growth and development. Bacterial strategies for altering the plant cell membrane permeability to enhance the release of nutrients are also enumerated along with in-depth analysis of molecular mechanisms behind these strategies. The information presented in this review will be useful to understand the plant-pathogen interaction in nutrient perspective.

  17. Microbial Forensics and Plant Pathogens

    Science.gov (United States)

    New awareness of the vulnerability of a nation's agricultural infrastructure to the intentional introduction of pathogens or pests has led to the enhancement of programs for prevention and preparedness. A necessary component of a balanced bio-security plan is the capability to determine whether an ...

  18. Novel Micro-organisms controlling plant pathogens

    OpenAIRE

    Köhl, J

    2009-01-01

    The invention relates to control of pathogen caused diseases on leaves, fruits and ears in plants, such as apple scab (Venturia inaequalis by treatment of plant with an isolate of Cladosporium cladosporioides. The treatment is effective in both prevention and treatment of the fungal infection

  19. EPCOT, NASA and plant pathogens in space.

    Science.gov (United States)

    White, R

    1996-01-01

    Cooperative work between NASA and Walt Disney World's EPCOT Land Pavilion is described. Joint efforts include research about allelopathy in multi-species plant cropping in CELSS, LEDs as light sources in hydroponic systems, and the growth of plant pathogens in space.

  20. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  1. Deciphering the dual effect of lipopolysaccharides from plant pathogenic Pectobacterium.

    Science.gov (United States)

    Mohamed, Kettani-Halabi; Daniel, Tran; Aurélien, Dauphin; El-Maarouf-Bouteau, Hayat; Rafik, Errakhi; Arbelet-Bonnin, Delphine; Biligui, Bernadette; Florence, Val; Mustapha, Ennaji Moulay; François, Bouteau

    2015-01-01

    Lipopolysaccharides (LPS) are a component of the outer cell surface of almost all Gram-negative bacteria and play an essential role for bacterial growth and survival. Lipopolysaccharides represent typical microbe-associated molecular pattern (MAMP) molecules and have been reported to induce defense-related responses, including the expression of defense genes and the suppression of the hypersensitive response in plants. However, depending on their origin and the challenged plant, LPS were shown to have complex and different roles. In this study we showed that LPS from plant pathogens Pectobacterium atrosepticum and Pectobacterium carotovorum subsp. carotovorum induce common and different responses in A. thaliana cells when compared to those induced by LPS from non-phytopathogens Escherichia coli and Pseudomonas aeruginosa. Among common responses to both types of LPS are the transcription of defense genes and their ability to limit of cell death induced by Pectobacterium carotovorum subsp carotovorum. However, the differential kinetics and amplitude in reactive oxygen species (ROS) generation seemed to regulate defense gene transcription and be determinant to induce programmed cell death in response to LPS from the plant pathogenic Pectobacterium. These data suggest that different signaling pathways could be activated by LPS in A. thaliana cells.

  2. High levels of cyclic-di-GMP in plant-associated Pseudomonas correlate with evasion of plant immunity.

    Science.gov (United States)

    Pfeilmeier, Sebastian; Saur, Isabel Marie-Luise; Rathjen, John Paul; Zipfel, Cyril; Malone, Jacob George

    2016-05-01

    The plant innate immune system employs plasma membrane-localized receptors that specifically perceive pathogen/microbe-associated molecular patterns (PAMPs/MAMPs). This induces a defence response called pattern-triggered immunity (PTI) to fend off pathogen attack. Commensal bacteria are also exposed to potential immune recognition and must employ strategies to evade and/or suppress PTI to successfully colonize the plant. During plant infection, the flagellum has an ambiguous role, acting as both a virulence factor and also as a potent immunogen as a result of the recognition of its main building block, flagellin, by the plant pattern recognition receptors (PRRs), including FLAGELLIN SENSING2 (FLS2). Therefore, strict control of flagella synthesis is especially important for plant-associated bacteria. Here, we show that cyclic-di-GMP [bis-(3'-5')-cyclic di-guanosine monophosphate], a central regulator of bacterial lifestyle, is involved in the evasion of PTI. Elevated cyclic-di-GMP levels in the pathogen Pseudomonas syringae pv. tomato (Pto) DC3000, the opportunist P. aeruginosa PAO1 and the commensal P. protegens Pf-5 inhibit flagellin synthesis and help the bacteria to evade FLS2-mediated signalling in Nicotiana benthamiana and Arabidopsis thaliana. Despite this, high cellular cyclic-di-GMP concentrations were shown to drastically reduce the virulence of Pto DC3000 during plant infection. We propose that this is a result of reduced flagellar motility and/or additional pleiotropic effects of cyclic-di-GMP signalling on bacterial behaviour.

  3. Effects of rainfall acidification on plant pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, D. S.; Cowling, E. B.

    1978-01-01

    Wind-blown rain, rain splash, and films of free moisture play important roles in the epidemiology of many plant diseases. The chemical nature of the aqueous microenvironment at the infection court is a potentially significant factor in the successful dissemination, establishment, and survival of plant pathogenic microorganisms. Acidic rainfall has a potential for influencing not only the pathogen, but also the host organism, and the host-pathogen complex. Although host-pathogen interactions add a degree of complexity to the study of abiotic environmental stress of plants, it is our hope, through the use of a combination of general concepts, theoretical postulations, and experimental data, to describe the potential role that rainfall acidity may play in the often subtle balance between populations of plants and populations of plant pathogens. The direct effects of acidic precipitation on vegetation are becoming increasingly better understood. The indirect consequences of both acute and chronic exposure of vegetation to acidic precipitation are very complex, however. Their effect is variable in time, and involves a variety of potential interactions which are only partially understood.

  4. Fluorescent Pseudomonas Strains with only Few Plant-Beneficial Properties Are Favored in the Maize Rhizosphere

    Science.gov (United States)

    Vacheron, Jordan; Moënne-Loccoz, Yvan; Dubost, Audrey; Gonçalves-Martins, Maximilien; Muller, Daniel; Prigent-Combaret, Claire

    2016-01-01

    Plant Growth-Promoting Rhizobacteria (PGPR) enhance plant health and growth using a variety of traits. Effective PGPR strains typically exhibit multiple plant-beneficial properties, but whether they are better adapted to the rhizosphere than PGPR strains with fewer plant-beneficial properties is unknown. Here, we tested the hypothesis that strains with higher numbers of plant-beneficial properties would be preferentially selected by plant roots. To this end, the co-occurrence of 18 properties involved in enhanced plant nutrition, plant hormone modulation, or pathogen inhibition was analyzed by molecular and biochemical methods in a collection of maize rhizosphere and bulk soil isolates of fluorescent Pseudomonas. Twelve plant-beneficial properties were found among the 698 isolates. Contrarily to expectation, maize preferentially selected pseudomonads with low numbers of plant-beneficial properties (up to five). This selection was not due to the predominance of strains with specific assortments of these properties, or with specific taxonomic status. Therefore, the occurrence of only few plant-beneficial properties appeared favorable for root colonization by pseudomonads. PMID:27610110

  5. Fluorescent Pseudomonas strains with only few plant-beneficial properties are favored in the maize rhizosphere

    Directory of Open Access Journals (Sweden)

    Jordan VACHERON

    2016-08-01

    Full Text Available Plant Growth-Promoting Rhizobacteria (PGPR enhance plant health and growth using a variety of traits. Effective PGPR strains typically exhibit multiple plant-beneficial properties, but whether they are better adapted to the rhizosphere than PGPR strains with fewer plant-beneficial properties is unknown. Here, we tested the hypothesis that strains with higher numbers of plant-beneficial properties would be preferentially selected by plant roots. To this end, the co-occurrence of 18 properties involved in enhanced plant nutrition, plant hormone modulation, or pathogen inhibition was analyzed by molecular and biochemical methods in a collection of maize rhizosphere and bulk soil isolates of fluorescent Pseudomonas. Twelve plant-beneficial properties were found among the 698 isolates. Contrarily to expectation, maize preferentially selected pseudomonads with low numbers of plant-beneficial properties (up to five. This selection was not due to the predominance of strains with specific assortments of these properties, or with specific taxonomic status. Therefore, the occurrence of only few plant-beneficial properties appeared favorable for root colonization by pseudomonads.

  6. Fluorescent Pseudomonas Strains with only Few Plant-Beneficial Properties Are Favored in the Maize Rhizosphere.

    Science.gov (United States)

    Vacheron, Jordan; Moënne-Loccoz, Yvan; Dubost, Audrey; Gonçalves-Martins, Maximilien; Muller, Daniel; Prigent-Combaret, Claire

    2016-01-01

    Plant Growth-Promoting Rhizobacteria (PGPR) enhance plant health and growth using a variety of traits. Effective PGPR strains typically exhibit multiple plant-beneficial properties, but whether they are better adapted to the rhizosphere than PGPR strains with fewer plant-beneficial properties is unknown. Here, we tested the hypothesis that strains with higher numbers of plant-beneficial properties would be preferentially selected by plant roots. To this end, the co-occurrence of 18 properties involved in enhanced plant nutrition, plant hormone modulation, or pathogen inhibition was analyzed by molecular and biochemical methods in a collection of maize rhizosphere and bulk soil isolates of fluorescent Pseudomonas. Twelve plant-beneficial properties were found among the 698 isolates. Contrarily to expectation, maize preferentially selected pseudomonads with low numbers of plant-beneficial properties (up to five). This selection was not due to the predominance of strains with specific assortments of these properties, or with specific taxonomic status. Therefore, the occurrence of only few plant-beneficial properties appeared favorable for root colonization by pseudomonads.

  7. Comparative genomics of multiple strains of Pseudomonas cannabina pv. alisalensis, a potential model pathogen of both monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Panagiotis F Sarris

    Full Text Available Comparative genomics of closely related pathogens that differ in host range can provide insights into mechanisms of host-pathogen interactions and host adaptation. Furthermore, sequencing of multiple strains with the same host range reveals information concerning pathogen diversity and the molecular basis of virulence. Here we present a comparative analysis of draft genome sequences for four strains of Pseudomonas cannabina pathovar alisalensis (Pcal, which is pathogenic on a range of monocotyledonous and dicotyledonous plants. These draft genome sequences provide a foundation for understanding host range evolution across the monocot-dicot divide. Like other phytopathogenic pseudomonads, Pcal strains harboured a hrp/hrc gene cluster that codes for a type III secretion system. Phylogenetic analysis based on the hrp/hrc cluster genes/proteins, suggests localized recombination and functional divergence within the hrp/hrc cluster. Despite significant conservation of overall genetic content across Pcal genomes, comparison of type III effector repertoires reinforced previous molecular data suggesting the existence of two distinct lineages within this pathovar. Furthermore, all Pcal strains analyzed harbored two distinct genomic islands predicted to code for type VI secretion systems (T6SSs. While one of these systems was orthologous to known P. syringae T6SSs, the other more closely resembled a T6SS found within P. aeruginosa. In summary, our study provides a foundation to unravel Pcal adaptation to both monocot and dicot hosts and provides genetic insights into the mechanisms underlying pathogenicity.

  8. Combined inoculation of Pseudomonas fluorescens and Trichoderma harzianum for enhancing plant growth of vanilla (Vanilla planifolia).

    Science.gov (United States)

    Sandheep, A R; Asok, A K; Jisha, M S

    2013-06-15

    This study was conducted to evaluate the plant growth promoting efficiency of combined inoculation of rhizobacteria on Vanilla plants. Based on the in vitro performance of indigenous Trichoderma spp. and Pseudomonas spp., four effective antagonists were selected and screened under greenhouse experiment for their growth enhancement potential. The maximum percentage of growth enhancement were observed in the combination of Trichoderma harzianum with Pseudomonas fluorescens treatment followed by Pseudomonas fluorescens, Trichoderma harzianum, Pseudomonas putida and Trichoderma virens, respectively in decreasing order. Combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens registered the maximum length of vine (82.88 cm), highest number of leaves (26.67/plant), recorded the highest fresh weight of shoots (61.54 g plant(-1)), fresh weight of roots (4.46 g plant(-1)) and dry weight of shoot (4.56 g plant(-1)) where as the highest dry weight of roots (2.0806 g plant(-1)) were achieved with treatments of Pseudomonas fluorescens. Among the inoculated strains, combined inoculation of Trichoderma harzianum and Pseudomonas fluorescens recorded the maximum nitrogen uptake (61.28 mg plant(-1)) followed by the combined inoculation of Trichoderma harzianum (std) and Pseudomonas fluorescens (std) (55.03 mg plant(-1)) and the highest phosphorus uptake (38.80 mg plant(-1)) was recorded in dual inoculation of Trichoderma harzianum and Pseudomonas fluorescens.

  9. Comparative analysis of twelve Dothideomycete plant pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Robin; Aerts, Andrea; Salamov, Asaf; Goodwin, Stephen B.; Grigoriev, Igor

    2011-03-11

    The Dothideomycetes are one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops grown for biofuel, food or feed. Most Dothideomycetes have only a single host and related Dothideomycete species can have very diverse host plants. Twelve Dothideomycete genomes have currently been sequenced by the Joint Genome Institute and other sequencing centers. They can be accessed via Mycocosm which has tools for comparative analysis

  10. Suppression of soil-borne plant pathogens

    NARCIS (Netherlands)

    Agtmaal, van M.

    2015-01-01

    Soil borne plant pathogens considerably reduce crop yields worldwide and are difficult to control due to their ”masked” occurrence  in the heterogeneous soil environment. This hampers the efficacy of chemical - and microbiological control agents.   Outbreaks of crop diseas

  11. Plant Fungal Pathogens: Methods and Protocols

    NARCIS (Netherlands)

    Bolton, M.D.; Thomma, B.P.H.J.

    2012-01-01

    Over the course of evolution, fungi have adapted to occupy specific niches, from symbiotically inhabiting the flora of the intestinal tract of mammals to saprophytic growth on leaf litter resting on the forest floor. In Plant Fungal Pathogens: Methods and Protocols, expert researchers in the field d

  12. Speciation in fungal and oomycete plant pathogens.

    Science.gov (United States)

    Restrepo, Silvia; Tabima, Javier F; Mideros, Maria F; Grünwald, Niklaus J; Matute, Daniel R

    2014-01-01

    The process of speciation, by definition, involves evolution of one or more reproductive isolating mechanisms that split a single species into two that can no longer interbreed. Determination of which processes are responsible for speciation is important yet challenging. Several studies have proposed that speciation in pathogens is heavily influenced by host-pathogen dynamics and that traits that mediate such interactions (e.g., host mobility, reproductive mode of the pathogen, complexity of the life cycle, and host specificity) must lead to reproductive isolation and ultimately affect speciation rates. In this review, we summarize the main evolutionary processes that lead to speciation of fungal and oomycete plant pathogens and provide an outline of how speciation can be studied rigorously, including novel genetic/genomic developments.

  13. Plant flavonoids target Pseudomonas syringae pv. tomato DC3000 flagella and type III secretion system.

    Science.gov (United States)

    Vargas, Paola; Farias, Gabriela A; Nogales, Joaquina; Prada, Harold; Carvajal, Vivian; Barón, Matilde; Rivilla, Rafael; Martín, Marta; Olmedilla, Adela; Gallegos, María-Trinidad

    2013-12-01

    Flavonoids are among the most abundant plant secondary metabolites involved in plant protection against pathogens, but micro-organisms have developed resistance mechanisms to those compounds. We previously demonstrated that the MexAB-OprM efflux pump mediates resistance of Pseudomonas syringae pv. tomato (Pto) DC3000 to flavonoids, facilitating its survival and the colonization of the host. Here, we have shown that tomato plants respond to Pto infection producing flavonoids and other phenolic compounds. The effects of flavonoids on key traits of this model plant-pathogen bacterium have also been investigated observing that they reduce Pto swimming and swarming because of the loss of flagella, and also inhibited the expression and assembly of a functional type III secretion system. Those effects were more severe in a mutant lacking the MexAB-OprM pump. Our results suggest that flavonoids inhibit the function of the GacS/GacA two-component system, causing a depletion of rsmY RNA, therefore affecting the synthesis of two important virulence factors in Pto DC3000, flagella and the type III secretion system. These data provide new insights into the flavonoid role in the molecular dialog between host and pathogen.

  14. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms

    NARCIS (Netherlands)

    Mendes, R.; Garbeva, P.; Raaijmakers, J.M.

    2013-01-01

    Microbial communities play a pivotal role in the functioning of plants by influencing their physiology and development. While many members of the rhizosphere microbiome are beneficial to plant growth, also plant pathogenic microorganisms colonize the rhizosphere striving to break through the protect

  15. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic and human pathogenic microorganisms

    NARCIS (Netherlands)

    Mendes, R.; Garbeva, P.; Raaijmakers, J.M.

    2013-01-01

    Microbial communities play a pivotal role in the functioning of plants by influencing their physiology and development. While many members of the rhizosphere microbiome are beneficial to plant growth, also plant pathogenic microorganisms colonize the rhizosphere striving to break through the protect

  16. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms

    NARCIS (Netherlands)

    Mendes, R.; Garbeva, P.V.; Raaijmakers, J.M.

    2013-01-01

    Microbial communities play a pivotal role in the functioning of plants by influencing their physiology and development. While many members of the rhizosphere microbiome are beneficial to plant growth, also plant pathogenic microorganisms colonize the rhizosphere striving to break through the protect

  17. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots

    Science.gov (United States)

    Picard, Christine; Bosco, Marco

    2008-01-01

    Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

  18. Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25.

    Science.gov (United States)

    Sulochana, M B; Jayachandra, S Y; Kumar, S Anil; Parameshwar, A B; Reddy, K Mohan; Dayanand, A

    2014-09-01

    Siderophores scavenges Fe(+3) from the vicinity of the roots of plants, and thus limit the amount of iron required for the growth of pathogens such as Fusarium oxysporum, Pythium ultimum, and Fusarium udum, which cause wilt and root rot disease in crops. The ability of Pseudomonas to grow and to produce siderophore depends upon the iron content, pH, and temperature. Maximum yield of siderophore of 130 μM was observed at pH 7.0 ± 0.2 and temperature of 30 °C at 30 h. The threshold level of iron was 50 μM, which increases up to 150 μM, favoring growth but drastically affecting the production of siderophore by Pseudomonas aeruginosa JAS-25. The seeds of agricultural crops like Cicer arietinum (chick pea), Cajanus cajan (pigeon pea), and Arachis hypogaea (ground nut) were treated with P. aeruginosa JAS-25, which enhanced the seed germination, root length, shoot length, and dry weight of chick pea, pigeon pea, and ground nut plants under pot studies. The efficient growth of the plants was not only due to the biocontrol activity of the siderophore produced by P. aeruginosa JAS-25 but also may be by the production of indole acetic acid (IAA), which influences the growth of the plants as phytohormones.

  19. Virulence Attributes and Host Response Assays for Determining Pathogenic Potential of Pseudomonas Strains Used in Biotechnology.

    Directory of Open Access Journals (Sweden)

    Azam F Tayabali

    Full Text Available Pseudomonas species are opportunistically pathogenic to humans, yet closely related species are used in biotechnology applications. In order to screen for the pathogenic potential of strains considered for biotechnology applications, several Pseudomonas strains (P.aeruginosa (Pa, P.fluorescens (Pf, P.putida (Pp, P.stutzeri (Ps were compared using functional virulence and toxicity assays. Most Pa strains and Ps grew at temperatures between 28°C and 42°C. However, Pf and Pp strains were the most antibiotic resistant, with ciprofloxacin and colistin being the most effective of those tested. No strain was haemolytic on sheep blood agar. Almost all Pa, but not other test strains, produced a pyocyanin-like chromophore, and caused cytotoxicity towards cultured human HT29 cells. Murine endotracheal exposures indicated that the laboratory reference strain, PAO1, was most persistent in the lungs. Only Pa strains induced pro-inflammatory and inflammatory responses, as measured by elevated cytokines and pulmonary Gr-1 -positive cells. Serum amyloid A was elevated at ≥ 48 h post-exposure by only some Pa strains. No relationship was observed between strains and levels of peripheral leukocytes. The species designation or isolation source may not accurately reflect pathogenic potential, since the clinical strain Pa10752 was relatively nonvirulent, but the industrial strain Pa31480 showed comparable virulence to PAO1. Functional assays involving microbial growth, cytotoxicity and murine immunological responses may be most useful for identifying problematic Pseudomonas strains being considered for biotechnology applications.

  20. Virulence Attributes and Host Response Assays for Determining Pathogenic Potential of Pseudomonas Strains Used in Biotechnology.

    Science.gov (United States)

    Tayabali, Azam F; Coleman, Gordon; Nguyen, Kathy C

    2015-01-01

    Pseudomonas species are opportunistically pathogenic to humans, yet closely related species are used in biotechnology applications. In order to screen for the pathogenic potential of strains considered for biotechnology applications, several Pseudomonas strains (P.aeruginosa (Pa), P.fluorescens (Pf), P.putida (Pp), P.stutzeri (Ps)) were compared using functional virulence and toxicity assays. Most Pa strains and Ps grew at temperatures between 28°C and 42°C. However, Pf and Pp strains were the most antibiotic resistant, with ciprofloxacin and colistin being the most effective of those tested. No strain was haemolytic on sheep blood agar. Almost all Pa, but not other test strains, produced a pyocyanin-like chromophore, and caused cytotoxicity towards cultured human HT29 cells. Murine endotracheal exposures indicated that the laboratory reference strain, PAO1, was most persistent in the lungs. Only Pa strains induced pro-inflammatory and inflammatory responses, as measured by elevated cytokines and pulmonary Gr-1 -positive cells. Serum amyloid A was elevated at ≥ 48 h post-exposure by only some Pa strains. No relationship was observed between strains and levels of peripheral leukocytes. The species designation or isolation source may not accurately reflect pathogenic potential, since the clinical strain Pa10752 was relatively nonvirulent, but the industrial strain Pa31480 showed comparable virulence to PAO1. Functional assays involving microbial growth, cytotoxicity and murine immunological responses may be most useful for identifying problematic Pseudomonas strains being considered for biotechnology applications.

  1. [Advances in humans and animals opportunistic pathogens from environment infecting plants by crossing kingdoms].

    Science.gov (United States)

    Huang, Min; Wu, Yixin; He, Pengfei

    2016-02-04

    Some pathogenic microorganisms ubiquitous in the environment could cross kingdoms to infect diverse hosts. Several cross-kingdom human pathogens were summarized in this paper, including Serratia marcescens, Enterobacter cloacae and Pseudomonas aeuriginosa. They are ubiquitous in the nature and could cause plant diseases using the same or different infection strategies with which they infect humans and broaden host range. Among these bacteria, Klebsiella pneumoniae causes top rot disease of maize in the nature, revealing some plants in the environment could serve as a reservoir of various pathogens which might infect animals and probably humans when conditions are favorable, and even potentially harm food. Research on these cross-kingdom pathogens may play a very important role in the epidemiology of human, animal and plant diseases and be a hot topic in environment science.

  2. Antibacterial activity of ifve Peruvian medicinal plants against Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Gabriela Ulloa-Urizar; Miguel Angel Aguilar-Luis; Mara del Carmen De Lama-Odra; Jos Camarena-Lizarzaburu; Juana del Valle Mendoza

    2015-01-01

    Objective:To evaluate the susceptibility of Pseudomonas aeruginosa (P. aeruginosa) in vitro to the ethanolic extracts obtained from five different Peruvian medicinal plants. Methods:The plants were chopped and soaked in absolute ethanol (1:2, w/v). The antibacterial activity of compounds against P. aeruginosa was evaluated using the cup-plate agar diffusion method. Results:The extracts from Maytenus macrocarpa (“Chuchuhuasi”), Dracontium loretense Krause (“Jergon Sacha”), Tabebuia impetiginosa (“Tahuari”), Eucalyptus camaldulensis Dehn (eucalyptus), Uncaria tomentosa (“Uña de gato”) exhibited favorable antibacterial activity against P. aeruginosa. The inhibitory effect of the extracts on the strains of P. aeruginosa tested demonstrated that Tabebuia impetiginosa and Maytenus macrocarpa possess higher antibacterial activity. Conclusions:The results of the present study scientifically validate the inhibitory capacity of the five medicinal plants attributed by their common use in folk medicine and contribute towards the development of new treatment options based on natural products.

  3. Antibacterial activity of five Peruvian medicinal plants against Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Gabriela; Ulloa-Urizar; Miguel; Angel; Aguilar-Luis; María; del; Carmen; De; Lama-Odría; José; Camarena-Lizarzaburu; Juana; del; Valle; Mendoza

    2015-01-01

    Objective: To evaluate the susceptibility of Pseudomonas aeruginosa(P. aeruginosa)in vitro to the ethanolic extracts obtained from five different Peruvian medicinal plants.Methods: The plants were chopped and soaked in absolute ethanol(1:2, w/v). The antibacterial activity of compounds against P. aeruginosa was evaluated using the cupplate agar diffusion method.Results: The extracts from Maytenus macrocarpa("Chuchuhuasi"), Dracontium loretense Krause("Jergon Sacha"), Tabebuia impetiginosa("Tahuari"), Eucalyptus camaldulensis Dehn(eucalyptus), Uncaria tomentosa("U?a de gato") exhibited favorable antibacterial activity against P. aeruginosa. The inhibitory effect of the extracts on the strains of P. aeruginosa tested demonstrated that Tabebuia impetiginosa and Maytenus macrocarpa possess higher antibacterial activity.Conclusions: The results of the present study scientifically validate the inhibitory capacity of the five medicinal plants attributed by their common use in folk medicine and contribute towards the development of new treatment options based on natural products.

  4. Paleogene radiation of a plant pathogenic mushroom.

    Directory of Open Access Journals (Sweden)

    Martin P A Coetzee

    Full Text Available BACKGROUND: The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species. METHODS: The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP, Maximum Likelihood (ML and Bayesian Inference (BI. A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach. RESULTS: Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana. CONCLUSIONS: The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our results highlight the important role of long-distance dispersal in the radiation of fungal pathogens from the Southern Hemisphere.

  5. Characterization of Pseudomonas Species Isolated from the Rhizosphere of Plants Grown in Serozem Soil, Semi-Arid Region of Uzbekistan

    Directory of Open Access Journals (Sweden)

    Dilfuza Egamberdiyeva

    2005-01-01

    Full Text Available Collections of native Pseudomonas spp. are kept at the NCAM of Uzbekistan. Some of those organisms were isolated from the rhizosphere of cotton, wheat, corn, melon, alfalfa, and tomato grown in field locations within a semi-arid region of Uzbekistan. Strains used for this study were Pseudomonas alcaligenes, P. aurantiaca, P. aureofaciens, P. denitrificans, P. mendocina, P. rathonis, and P. stutzeri. Some of the pseudomonads have been characterized in this report. These strains produced enzymes, phytohormone auxin (IAA, and were antagonist against plant pathogenic fungi in in vitro experiments. Most of the strains were salt tolerant and temperature resistant. Some of the Pseudomonas spp. isolated in this study have been found to increase the growth of wheat, corn, and tomato in pot experiments.

  6. NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishiga

    2016-04-01

    Full Text Available Chloroplasts are cytoplasmic organelles for photosynthesis in eukaryotic cells. In addition, recent studies have shown that chloroplasts have a critical role in plant innate immunity against invading pathogens. Hydrogen peroxide is a toxic by-product from photosynthesis, which also functions as a signaling compound in plant innate immunity. Therefore, it is important to regulate the level of hydrogen peroxide in response to pathogens. Chloroplasts maintain components of the redox detoxification system including enzymes such as 2-Cys peroxiredoxins (2-Cys Prxs, and NADPH-dependent thioredoxin reductase C (NTRC. However, the significance of 2-Cys Prxs and NTRC in the molecular basis of nonhost disease resistance is largely unknown. We evaluated the roles of Prxs and NTRC using knock-out mutants of Arabidopsis in response to nonhost Pseudomonas syringae pathogens. Plants lacking functional NTRC showed localized cell death (LCD accompanied by the elevated accumulation of hydrogen peroxide in response to nonhost pathogens. Interestingly, the Arabidopsis ntrc mutant showed enhanced bacterial growth and disease susceptibility of nonhost pathogens. Furthermore, the expression profiles of the salicylic acid (SA and jasmonic acid (JA-mediated signaling pathways and phytohormone analyses including SA and JA revealed that the Arabidopsis ntrc mutant shows elevated JA-mediated signaling pathways in response to nonhost pathogen. These results suggest the critical role of NTRC in plant innate immunity against nonhost P. syringae pathogens.

  7. Pathogenic factors of Pseudomonas aeruginosa – the role of biofilm in pathogenicity and as a target for phage therapy

    Directory of Open Access Journals (Sweden)

    Fairoz Al-Wrafy

    2017-02-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen that can cause several acute and chronic infections in humans, and it has become an important cause of nosocomial infections and antibiotic resistance. Biofilm represents an important virulence factor for these bacteria, plays a role in P. aeruginosa infections and avoidance of immune defence mechanisms, and has the ability to protect the bacteria from antibiotics. Alginate, Psl and Pel, three exopolysaccharides, are the main components in biofilm matrix, with many biological functions attributed to them, especially with respect to the protection of the bacterial cell from antibiotics and the immune system. Pseudomonas infections, biofilm formation and development of resistance to antibiotics all require better understanding to achieve the best results using alternative treatment with phage therapy. This review describes the P. aeruginosa pathogenicity and virulence factors with a special focus on the biofilm and its role in infection and resistance to antibiotics and summarizes phage therapy as an alternative approach in treatment of P. aeruginosa infections.

  8. Pseudomoniasis phytotherapy: a review on most important Iranian medicinal plants effective on Pseudomonas aeruginosa

    Science.gov (United States)

    Bahmani, Mahmoud; Rafieian-Kopaei, Mahmoud; Hassanzadazar, Hassan; Taherikalani, Morovat

    2016-01-01

    Background and Objectives: Pseudomonas aeruginosa is a Gram-negative, aerobic bacterium found in water and soil. It is a normal flora in skin and gastrointestinal tract of human beings. P. aeruginosa as an opportunistic pathogen involved in nosocomial infections having multiple pathogenic factors and shows high rate of resistance to different antibiotics. The aim of this study was to identify the most important native medicinal plants of Iran effective on P. aeruginosa. Materials and Methods: All required information was obtained by searching keywords such as P. aeruginosa, medicinal plant extracts or essential oils in published articles in authentic scientific databases such as Science Direct, Wiley-Blackwell, Springer, Google scholar, Scientific Information Database (SID) and Magiran. Results: According to the literature review, our results showed 12 different native medicinal plants were effective against P. aeruginosa in Iran including Eucalyptus camadulensis, Marticaria chamomilla, Ferula gummosa Boiss, Lawsonia inermis, Ocimumgra tissimum, Allium sativum, Satureja hortensis L, Satureja bachtiarica Bunge, Satureja khuzestanica (Jamzad), Thymus daenensis Celak, Thymus carmanicus Jalals and Camellia sinensis. Conclusion: Phytochemical analysis has shown that bioactive compounds of medicinal plants with their antioxidant and antimicrobial properties can be good alternatives for the synthetic medicines in food and drug industry. PMID:28149496

  9. Antagonistic effect of Pseudomonas aeruginosa isolates from various ecological niches on Vibrio species pathogenic to crustaceans

    Institute of Scientific and Technical Information of China (English)

    Prabhakaran Priyaja; Puthumana Jayesh; Neil Scolastin Correya; Balachandran Sreelakshmi; Naduthalmuriparambil S Sudheer; Rosamma Philip; Isaac Sarogeni Bright Singh

    2014-01-01

    Objective: To abrogate pathogenic vibrios in aquaculture by testing the potential of Pseudomonas isolates from fresh water, brackish and marine environments as probiotics.Methods:Antagonistic activity of the compound against 7 Vibrio spp. was performed. Influence of salinity on the production of pyocyanin and the toxicity was done through the compound using brine shrimp lethality assay. Molecular characterization was performed to confirm that the isolates werePseudomonas aeruginosa. Results: Salinity was found to regulate the levels of pyocyanin production, with 5-10 g/L as the optimum. All Pseudomonas isolates grew at salinities ranging from 5 to 70 g/L. Isolates of marine origin produced detectable levels of pyocyanin up to 45 g/L salinity. Brackish and freshwater isolates ceased to produce pyocyanin at salinities above 30 g/L and 20 g/L, respectively. Culture supernatants of all 5 Pseudomonas isolates possessed the ability to restrict the growth of Vibrio spp. and maximum antagonistic effect on Vibrio harveyi was obtained when they were grown at salinities of 5 to 10 g/L. The marine isolate MCCB117, even when grown at a salinity of 45 g/L possessed the ability to inhibit Vibrio spp.Conclusions:Purification and structural elucidation of antagonistic compound were carried out. ideal for application in freshwater, MCCB102 and MCCB103 in brackish water and MCCB117 and The present investigation showed that Pseudomonas aeruginosa MCCB119 would be MCCB118 in marine aquaculture systems as putative probiotics in the management of vibrios.

  10. Antagonistic effect of Pseudomonas aeruginosa isolates from various ecological niches on Vibrio species pathogenic to crustaceans

    Directory of Open Access Journals (Sweden)

    Prabhakaran Priyaja

    2014-01-01

    Full Text Available Objective: To abrogate pathogenic vibrios in aquaculture by testing the potential of Pseudomonas isolates from fresh water, brackish and marine environments as probiotics. Methods: Purification and structural elucidation of antagonistic compound were carried out. Antagonistic activity of the compound against 7 Vibrio spp. was performed. Influence of salinity on the production of pyocyanin and the toxicity was done through the compound using brine shrimp lethality assay. Molecular characterization was performed to confirm that the isolates were Pseudomonas aeruginosa. Results: Salinity was found to regulate the levels of pyocyanin production, with 5-10 g/L as the optimum. All Pseudomonas isolates grew at salinities ranging from 5 to 70 g/L. Isolates of marine origin produced detectable levels of pyocyanin up to 45 g/L salinity. Brackish and freshwater isolates ceased to produce pyocyanin at salinities above 30 g/L and 20 g/L, respectively. Culture supernatants of all 5 Pseudomonas isolates possessed the ability to restrict the growth of Vibrio spp. and maximum antagonistic effect on Vibrio harveyi was obtained when they were grown at salinities of 5 to 10 g/L. The marine isolate MCCB117, even when grown at a salinity of 45 g/L possessed the ability to inhibit Vibrio spp. Conclusions: The present investigation showed that Pseudomonas aeruginosa MCCB119 would be ideal for application in freshwater, MCCB102 and MCCB103 in brackish water and MCCB117 and MCCB118 in marine aquaculture systems as putative probiotics in the management of vibrios.

  11. Conjugative type IVb pilus recognizes lipopolysaccharide of recipient cells to initiate PAPI-1 pathogenicity island transfer in Pseudomonas aeruginosa

    Science.gov (United States)

    Pseudomonas aeruginosa pathogenicity island 1 (PAPI-1) is one of the largest genomic islands of this important opportunistic human pathogen. Previous studies have shown that PAPI-1 encodes several putative virulence factors, a major regulator of biofilm formation, and antibiotic-resistance traits, a...

  12. The Genetic and Molecular Basis of Plant Resistance to Pathogens

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Thomas Lubberstedt; Mingliang Xu

    2013-01-01

    Plant pathogens have evolved numerous strategies to obtain nutritive materials from their host,and plants in turn have evolved the preformed physical and chemical barriers as well as sophisticated two-tiered immune system to combat pathogen attacks.Genetically,plant resistance to pathogens can be divided into qualitative and quantitative disease resistance,conditioned by major gene(s) and multiple genes with minor effects,respectively.Qualitative disease resistance has been mostly detected in plant defense against biotrophic pathogens,whereas quantitative disease resistance is involved in defense response to all plant pathogens,from biotrophs,hemibiotrophs to necrotrophs.Plant resistance is achieved through interception of pathogen-derived effectors and elicitation of defense response.In recent years,great progress has been made related to the molecular basis underlying host-pathogen interactions.In this review,we would like to provide an update on genetic and molecular aspects of plant resistance to pathogens.

  13. Draft Genome Sequence Analysis of a Pseudomonas putida W15Oct28 Strain with Antagonistic Activity to Gram-Positive and Pseudomonas sp. Pathogens

    NARCIS (Netherlands)

    Ye, L.; Hildebrandt, F.; Ballet, S.; Laus, M.S.; Berendsen, Roeland; Cornelis, P.

    2014-01-01

    Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s) with antimicrobial activity against the opportunistic pathogens Staphylococcus

  14. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae

    Directory of Open Access Journals (Sweden)

    Klessig Daniel F

    2007-01-01

    Full Text Available Abstract Background A common feature of plant defense responses is the transcriptional regulation of a large number of genes upon pathogen infection or treatment with pathogen elicitors. A large body of evidence suggests that plant WRKY transcription factors are involved in plant defense including transcriptional regulation of plant host genes in response to pathogen infection. However, there is only limited information about the roles of specific WRKY DNA-binding transcription factors in plant defense. Results We analyzed the role of the WRKY25 transcription factor from Arabidopsis in plant defense against the bacterial pathogen Pseudomonas syringae. WRKY25 protein recognizes the TTGACC W-box sequences and its translational fusion with green fluorescent protein is localized to the nucleus. WRKY25 expression is responsive to general environmental stress. Analysis of stress-induced WRKY25 in the defense signaling mutants npr1, sid2, ein2 and coi1 further indicated that this gene is positively regulated by the salicylic acid (SA signaling pathway and negatively regulated by the jasmonic acid signaling pathway. Two independent T-DNA insertion mutants for WRKY25 supported normal growth of a virulent strain of P. syringae but developed reduced disease symptoms after infection. By contrast, Arabidopsis constitutively overexpressing WRKY25 supported enhanced growth of P. syringae and displayed increased disease symptom severity as compared to wild-type plants. These WRKY25-overexpressing plants also displayed reduced expression of the SA-regulated PR1 gene after the pathogen infection, despite normal levels of free SA. Conclusion The nuclear localization and sequence-specific DNA-binding activity support that WRKY25 functions as a transcription factor. Based on analysis of both T-DNA insertion mutants and transgenic overexpression lines, stress-induced WRKY25 functions as a negative regulator of SA-mediated defense responses to P. syringae. This

  15. Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata

    Directory of Open Access Journals (Sweden)

    Baldwin Ian T

    2008-10-01

    Full Text Available Abstract Background The adage from Shakespeare, "troubles, not as single spies, but in battalions come," holds true for Nicotiana attenuata, which is commonly attacked by both pathogens (Pseudomonas spp. and herbivores (Manduca sexta in its native habitats. Defense responses targeted against the pathogens can directly or indirectly influence the responses against the herbivores. Nadefensin is an effective induced defense gene against the bacterial pathogen Pseudomonas syringae pv tomato (PST DC3000, which is also elicited by attack from M. sexta larvae, but whether this defense protein influences M. sexta's growth and whether M. sexta-induced Nadefensin directly or indirectly influences PST DC3000 resistance are unknown. Results M. sexta larvae consumed less on WT and on Nadefensin-silenced N. attenuata plants that had previously been infected with PST DC3000 than on uninfected plants. WT plants infected with PST DC3000 showed enhanced resistance to PST DC3000 and decreased leaf consumption by M. sexta larvae, but larval mass gain was unaffected. PST DC3000-infected Nadefensin-silenced plants were less resistant to subsequent PST DC3000 challenge, and on these plants, M. sexta larvae consumed less and gained less mass. WT and Nadefensin-silenced plants previously damaged by M. sexta larvae were better able to resist subsequent PST DC3000 challenges than were undamaged plants. Conclusion These results demonstrate that Na-defensin directly mediates defense against PST DC3000 and indirectly against M. sexta in N. attenuata. In plants that were previously infected with PST DC3000, the altered leaf chemistry in PST DC3000-resistant WT plants and PST DC3000-susceptible Nadefensin-silenced plants differentially reduced M. sexta's leaf consumption and mass gain. In plants that were previously damaged by M. sexta, the combined effect of the altered host plant chemistry and a broad spectrum of anti-herbivore induced metabolomic responses was more

  16. Use of Pseudomonas stutzeri and Candida utilis in the improvement of the conditions of Artemia culture and protection against pathogens

    Directory of Open Access Journals (Sweden)

    Mahdhi Abdelkarim

    2010-03-01

    Full Text Available To evaluate the effect of two bacterial strains isolated from Artemia cysts and yeast (Candida utilis on the survival, growth and total biomass production of its larvae, challenge tests were performed with Candida utilis, Pseudomonas stutzeri and Pasteurella haemolityca. In addition, a pathogenic strain of Vibrio alginolyticus was tested for comparative purposes. Pseudomonas stutzeri and Candida utilis have no impact on survival, but enhance growth and total biomass production of the larvae. However, we noted that Pasteurella haemolityca affect negatively Artemia larvae. The adhesion and antagonism assay demonstrates that Candida utilis and Pseudomonas stutzeri are fairly adherent and play an important role in the enhancement of the protection of Artemia culture against pathogens. On the basis of these results, it's suggested that it's possible to use Candida utilis and Pseudomonas stutzeri, potential candidates, as probiotic for the culture of Artemia larvae.

  17. Genetic Control of Plant Root Colonization by the Biocontrol agent, Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Benjamin J.; Fletcher, Meghan; Waters, Jordan; Wetmore, Kelly; Blow, Matthew J.; Deutschbauer, Adam M.; Dangl, Jeffry L.; Visel, Axel

    2015-03-19

    Plant growth promoting rhizobacteria (PGPR) are a critical component of plant root ecosystems. PGPR promote plant growth by solubilizing inaccessible minerals, suppressing pathogenic microorganisms in the soil, and directly stimulating growth through hormone synthesis. Pseudomonas fluorescens is a well-established PGPR isolated from wheat roots that can also colonize the root system of the model plant, Arabidopsis thaliana. We have created barcoded transposon insertion mutant libraries suitable for genome-wide transposon-mediated mutagenesis followed by sequencing (TnSeq). These libraries consist of over 105 independent insertions, collectively providing loss-of-function mutants for nearly all genes in the P.fluorescens genome. Each insertion mutant can be unambiguously identified by a randomized 20 nucleotide sequence (barcode) engineered into the transposon sequence. We used these libraries in a gnotobiotic assay to examine the colonization ability of P.fluorescens on A.thaliana roots. Taking advantage of the ability to distinguish individual colonization events using barcode sequences, we assessed the timing and microbial concentration dependence of colonization of the rhizoplane niche. These data provide direct insight into the dynamics of plant root colonization in an in vivo system and define baseline parameters for the systematic identification of the bacterial genes and molecular pathways using TnSeq assays. Having determined parameters that facilitate potential colonization of roots by thousands of independent insertion mutants in a single assay, we are currently establishing a genome-wide functional map of genes required for root colonization in P.fluorescens. Importantly, the approach developed and optimized here for P.fluorescens>A.thaliana colonization will be applicable to a wide range of plant-microbe interactions, including biofuel feedstock plants and microbes known or hypothesized to impact on biofuel-relevant traits including biomass productivity

  18. Microbial populations responsible for specific soil suppressiveness to plant pathogens.

    Science.gov (United States)

    Weller, David M; Raaijmakers, Jos M; Gardener, Brian B McSpadden; Thomashow, Linda S

    2002-01-01

    Agricultural soils suppressive to soilborne plant pathogens occur worldwide, and for several of these soils the biological basis of suppressiveness has been described. Two classical types of suppressiveness are known. General suppression owes its activity to the total microbial biomass in soil and is not transferable between soils. Specific suppression owes its activity to the effects of individual or select groups of microorganisms and is transferable. The microbial basis of specific suppression to four diseases, Fusarium wilts, potato scab, apple replant disease, and take-all, is discussed. One of the best-described examples occurs in take-all decline soils. In Washington State, take-all decline results from the buildup of fluorescent Pseudomonas spp. that produce the antifungal metabolite 2,4-diacetylphloroglucinol. Producers of this metabolite may have a broader role in disease-suppressive soils worldwide. By coupling molecular technologies with traditional approaches used in plant pathology and microbiology, it is possible to dissect the microbial composition and complex interactions in suppressive soils.

  19. Nonagricultural reservoirs contribute to emergence and evolution of Pseudomonas syringae crop pathogens.

    Science.gov (United States)

    Monteil, Caroline L; Cai, Rongman; Liu, Haijie; Llontop, Marco E Mechan; Leman, Scotland; Studholme, David J; Morris, Cindy E; Vinatzer, Boris A

    2013-08-01

    While the existence of environmental reservoirs of human pathogens is well established, less is known about the role of nonagricultural environments in emergence, evolution, and spread of crop pathogens. Here, we analyzed phylogeny, virulence genes, host range, and aggressiveness of Pseudomonas syringae strains closely related to the tomato pathogen P. syringae pv. tomato (Pto), including strains isolated from snowpack and streams. The population of Pto relatives in nonagricultural environments was estimated to be large and its diversity to be higher than that of the population of Pto and its relatives on crops. Ancestors of environmental strains, Pto, and other genetically monomorphic crop pathogens were inferred to have frequently recombined, suggesting an epidemic population structure for P. syringae. Some environmental strains have repertoires of type III-secreted effectors very similar to Pto, are almost as aggressive on tomato as Pto, but have a wider host range than typical Pto strains. We conclude that crop pathogens may have evolved through a small number of evolutionary events from a population of less aggressive ancestors with a wider host range present in nonagricultural environments.

  20. The Identification of Genes Important in Pseudomonas syringae pv. phaseolicola Plant Colonisation Using In Vitro Screening of Transposon Libraries.

    Directory of Open Access Journals (Sweden)

    Bharani Manoharan

    Full Text Available The bacterial plant pathogen Pseudomonas syringae pv. phaseolicola (Pph colonises the surface of common bean plants before moving into the interior of plant tissue, via wounds and stomata. In the intercellular spaces the pathogen proliferates in the apoplastic fluid and forms microcolonies (biofilms around plant cells. If the pathogen can suppress the plant's natural resistance response, it will cause halo blight disease. The process of resistance suppression is fairly well understood, but the mechanisms used by the pathogen in colonisation are less clear. We hypothesised that we could apply in vitro genetic screens to look for changes in motility, colony formation, and adhesion, which are proxies for infection, microcolony formation and cell adhesion. We made transposon (Tn mutant libraries of Pph strains 1448A and 1302A and found 106/1920 mutants exhibited alterations in colony morphology, motility and biofilm formation. Identification of the insertion point of the Tn identified within the genome highlighted, as expected, a number of altered motility mutants bearing mutations in genes encoding various parts of the flagellum. Genes involved in nutrient biosynthesis, membrane associated proteins, and a number of conserved hypothetical protein (CHP genes were also identified. A mutation of one CHP gene caused a positive increase in in planta bacterial growth. This rapid and inexpensive screening method allows the discovery of genes important for in vitro traits that can be correlated to roles in the plant interaction.

  1. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Alex Wong

    2012-09-01

    Full Text Available Adaptation is likely to be an important determinant of the success of many pathogens, for example when colonizing a new host species, when challenged by antibiotic treatment, or in governing the establishment and progress of long-term chronic infection. Yet, the genomic basis of adaptation is poorly understood in general, and for pathogens in particular. We investigated the genetics of adaptation to cystic fibrosis-like culture conditions in the presence and absence of fluoroquinolone antibiotics using the opportunistic pathogen Pseudomonas aeruginosa. Whole-genome sequencing of experimentally evolved isolates revealed parallel evolution at a handful of known antibiotic resistance genes. While the level of antibiotic resistance was largely determined by these known resistance genes, the costs of resistance were instead attributable to a number of mutations that were specific to individual experimental isolates. Notably, stereotypical quinolone resistance mutations in DNA gyrase often co-occurred with other mutations that, together, conferred high levels of resistance but no consistent cost of resistance. This result may explain why these mutations are so prevalent in clinical quinolone-resistant isolates. In addition, genes involved in cyclic-di-GMP signalling were repeatedly mutated in populations evolved in viscous culture media, suggesting a shared mechanism of adaptation to this CF-like growth environment. Experimental evolutionary approaches to understanding pathogen adaptation should provide an important complement to studies of the evolution of clinical isolates.

  2. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms.

    Science.gov (United States)

    Mendes, Rodrigo; Garbeva, Paolina; Raaijmakers, Jos M

    2013-09-01

    Microbial communities play a pivotal role in the functioning of plants by influencing their physiology and development. While many members of the rhizosphere microbiome are beneficial to plant growth, also plant pathogenic microorganisms colonize the rhizosphere striving to break through the protective microbial shield and to overcome the innate plant defense mechanisms in order to cause disease. A third group of microorganisms that can be found in the rhizosphere are the true and opportunistic human pathogenic bacteria, which can be carried on or in plant tissue and may cause disease when introduced into debilitated humans. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, for the vast majority of rhizosphere microorganisms no knowledge exists. To enhance plant growth and health, it is essential to know which microorganism is present in the rhizosphere microbiome and what they are doing. Here, we review the main functions of rhizosphere microorganisms and how they impact on health and disease. We discuss the mechanisms involved in the multitrophic interactions and chemical dialogues that occur in the rhizosphere. Finally, we highlight several strategies to redirect or reshape the rhizosphere microbiome in favor of microorganisms that are beneficial to plant growth and health. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Genotypic diversity and rhizosphere competence of antibiotic-producing Pseudomonas species

    NARCIS (Netherlands)

    Bergsma-Vlami, M.

    2008-01-01

    The phenolic antibiotic 2,4-diacetylphloroglucinol (DAPG) has been implicated in biological control of multiple plant pathogens by fluorescent Pseudomonas species. DAPG-producing Pseudomonas strains are effective biocontrol agents, however, their ecological performance is often highly variable resul

  4. [Antimicrobial activities of ant Ponericin W1 against plant pathogens in vitro and the disease resistance in its transgenic Arabidopsis].

    Science.gov (United States)

    Chen, Yong-Fang; Sun, Peng-Wei; Tang, Ding-Zhong

    2013-08-01

    The antimicrobial peptides (AMPs) exhibit a broad antimicrobial spectrum. The application of AMPs from non-plant organisms attracts considerable attention in plant disease resistance engineering. Ponericin W1, isolated from the venom of ant (Pachycondyla goeldii), shows antimicrobial activities against Gram-positive bacteria, Gram-negative bacteria and the budding yeast (Saccharomyces cerevisiae); however, it is not clear whether Ponericin W1 is effective against plant pathogens. The results of this study indicated synthesized Ponericin W1 inhibited mycelial growth of Magnaporthe oryzae and Botrytis cinerea, as well as hyphal growth and spore production of Fusarium graminearum. Besides, Ponericin W1 exhibited antibacterial activities against Pseudomonas syringae pv. tomato and Xanthomonas oryzae pv. oryzae. After codon optimization, Ponericin W1 gene was constructed into plant expression vector, and transformed into Arabidopsis thaliana by floral dip method. The Ponericin W1 was located in intercellular space of the transgenic plants as expected. Compared with the wild-type plants, there were ungerminated spores and less hyphal, conidia on the leaves of transgenic plants after innoculation with the powdery mildew fungus Golovinomyces cichoracearum. After innoculation with the pathogenic bac-terium Pseudomonas syringae pv. tomato, the baceria in the leaves of transgenic plants was significantly less than the wild-type plants, indicating that the transgenic plants displayed enhanced disease resistance to pathogens. These results demonstrate a potential use of Ponericin W1 in genetic engineering for broad-spectrum plant disease resistance.

  5. Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack.

    Science.gov (United States)

    Ardanov, Pavlo; Sessitsch, Angela; Häggman, Hely; Kozyrovska, Natalia; Pirttilä, Anna Maria

    2012-01-01

    Plant inoculation with endophytic bacteria that normally live inside the plant without harming the host is a highly promising approach for biological disease control. The mechanism of resistance induction by beneficial bacteria is poorly understood, because pathways are only partly known and systemic responses are typically not seen. The innate endophytic community structures change in response to external factors such as inoculation, and bacterial endophytes can exhibit direct or indirect antagonism towards pathogens. Earlier we showed that resistance induction by an endophytic Methylobacterium sp. in potato towards Pectobacterium atrosepticum was dependent on the density of the inoculum, whereas the bacterium itself had no antagonistic activity. To elucidate the role of innate endophyte communities in plant responses, we studied community changes in both in vitro and greenhouse experiments using various combinations of plants, endophyte inoculants, and pathogens. Induction of resistance was studied in several potato (Solanum tuberosum L.) cultivars by Methylobacterium sp. IMBG290 against the pathogens P. atrosepticum, Phytophthora infestans and Pseudomonas syringae pv. tomato DC3000, and in pine (Pinus sylvestris L.) by M. extorquens DSM13060 against Gremmeniella abietina. The capacities of the inoculated endophytic Methylobacterium spp. strains to induce resistance were dependent on the plant cultivar, pathogen, and on the density of Methylobacterium spp. inoculum. Composition of the endophyte community changed in response to inoculation in shoot tissues and correlated with resistance or susceptibility to the disease. Our results demonstrate that endophytic Methylobacterium spp. strains have varying effects on plant disease resistance, which can be modulated through the endophyte community of the host.

  6. The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolicola is homologous to a highly conserved domain of several procaryotic regulatory proteins.

    OpenAIRE

    Grimm, C.; Panopoulos, N J

    1989-01-01

    A ca. 20-kilobase (kb) region (hrp) that controls the interaction of Pseudomonas syringae pv. phaseolicola with its host (pathogenicity) and nonhost plants (hypersensitive reaction) was previously cloned and partially characterized. In this study we defined the limits and determined the nucleotide sequence of a hrp locus (hrpS), located near the right end of the hrp cluster. The largest open reading frame (ORF302) in hrpS has a coding capacity for a 302-amino-acid polypeptide. The predicted a...

  7. The predicted protein product of a pathogenicity locus from Pseudomonas syringae pv. phaseolicola is homologous to a highly conserved domain of several procaryotic regulatory proteins.

    OpenAIRE

    GRIMM, C; Panopoulos, N J

    1989-01-01

    A ca. 20-kilobase (kb) region (hrp) that controls the interaction of Pseudomonas syringae pv. phaseolicola with its host (pathogenicity) and nonhost plants (hypersensitive reaction) was previously cloned and partially characterized. In this study we defined the limits and determined the nucleotide sequence of a hrp locus (hrpS), located near the right end of the hrp cluster. The largest open reading frame (ORF302) in hrpS has a coding capacity for a 302-amino-acid polypeptide. The predicted a...

  8. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies

    Directory of Open Access Journals (Sweden)

    Bertrand eDelaunois

    2014-06-01

    Full Text Available Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.

  9. Isolation of plant growth-promoting Pseudomonas sp. PPR8 from the rhizosphere of Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Kumar Pankaj

    2016-01-01

    Full Text Available In vitro screening of plant growth-promoting (PGP traits was carried out using eight Pseudomonas spp., PPR1 to PPR8, isolated from the rhizosphere of Phaseolus vulgaris growing on the Uttarakhand Himalayan range in India. All the isolates were fast growers, positive for catalase, oxidase and urease activities, and utilized lactose and some amino acids. All the isolates were indole acetic acid (IAA positive, however PPR8 solubilized potassium and zinc along with various other types of inorganic (tricalcium, dicalcium and zinc phosphate and organic (calcium phytate phosphates, as well as producing siderophore and ACC deaminase. PPR8 also produced cyanogens, extracellular chitinase, β-1,3-glucanase, β-1,4-glucanase and oxalate oxidase. Based on the PGP traits of all isolates, PPR8 was found to be the most potent plant growth-promoting rhizobacteria (PGPR. Further, PPR8 was identified as Pseudomonas sp. PPR8, based on 16S rRNA gene sequencing analysis. Moreover, the PGP activities of PPR8 confirmed it to be a potent biocontrol agent, inhibiting the growth of various plant pathogenic fungi. This study reveals the potential of Pseudomonas sp. PPR8 to be used as a good bioinoculant for growth promotion of common bean and for the protection of important legume crops from various deleterious phytopathogens.

  10. SCREENING OF FLUORESCENT RHIZOBACTERIA FOR THE BIOCONTROL OF SOILBORNE PLANT PATHOGENIC FUNGI

    Directory of Open Access Journals (Sweden)

    ANELISE DIAS

    2014-01-01

    Full Text Available The biocontrol of soilborne plant pathogens represents a promising approach from the environ- mental and practical points of view. Fluorescent pseudomonad rhizobacteria are well known by their antagonis- tic capacity towards several plant pathogens due to a diversity of antimicrobial metabolites they produce. This study was conceived to select and characterize rhizobacteria having antagonistic potential towards the patho- genic fungi Rhizoctonia solani and Sclerotium rolfsii. A total of 94 bacterial strains isolated from the rhizospheres of four vegetable species under organic cultivation were evaluated. Twenty-two strains which predominate in lettuce and rudbeckia rhizospheres showed identical biochemical profiles to Pseudomonas fluo- rescens, while in kale and parsley rhizospheres identical profiles to Pseudomonas putida (subgroups A and B strains prevailed. Two types of antagonism were verified in vitro and defined as competition and inhibition of mycelial growth. Sixty percent of the evaluated strains showed antagonistic potential and, among those, 24 strains expressed antagonism to both target fungi, with P. fluorescens being the most representative bacterial species. This work clearly identified a number of strains with potential for use as plant growth-promoting and biocontrol of the two soilborne fungal pathogens in vegetable crops production systems.

  11. Label-free molecular imaging of bacterial communities of the opportunistic pathogen Pseudomonas aeruginosa

    Science.gov (United States)

    Baig, Nameera; Polisetti, Sneha; Morales-Soto, Nydia; Dunham, Sage J. B.; Sweedler, Jonathan V.; Shrout, Joshua D.; Bohn, Paul W.

    2016-09-01

    Biofilms, such as those formed by the opportunistic human pathogen Pseudomonas aeruginosa are complex, matrix enclosed, and surface-associated communities of cells. Bacteria that are part of a biofilm community are much more resistant to antibiotics and the host immune response than their free-floating counterparts. P. aeruginosa biofilms are associated with persistent and chronic infections in diseases such as cystic fibrosis and HIV-AIDS. P. aeruginosa synthesizes and secretes signaling molecules such as the Pseudomonas quinolone signal (PQS) which are implicated in quorum sensing (QS), where bacteria regulate gene expression based on population density. Processes such as biofilms formation and virulence are regulated by QS. This manuscript describes the powerful molecular imaging capabilities of confocal Raman microscopy (CRM) and surface enhanced Raman spectroscopy (SERS) in conjunction with multivariate statistical tools such as principal component analysis (PCA) for studying the spatiotemporal distribution of signaling molecules, secondary metabolites and virulence factors in biofilm communities of P. aeruginosa. Our observations reveal that the laboratory strain PAO1C synthesizes and secretes 2-alkyl-4-hydroxyquinoline N-oxides and 2-alkyl-4-hydroxyquinolones in high abundance, while the isogenic acyl homoserine lactone QS-deficient mutant (ΔlasIΔrhlI) strain produces predominantly 2-alkyl-quinolones during biofilm formation. This study underscores the use of CRM, along with traditional biological tools such as genetics, for studying the behavior of microbial communities at the molecular level.

  12. First report of the crucifer pathogen Pseudomonas cannabina pv. alisalensis causing bacterial blight on radish (Raphanus sativus) in Germany

    Science.gov (United States)

    Pseudomonas cannabina pv. alisalensis is a severe pathogen of crucifers across the U.S. We compared a strain isolated from diseased radish (Raphanus sativus) in Germany to pathotypes and additional strains of P. cannabina pv. alisalensis and P. syringae pv. maculicola. We demonstrated that the patho...

  13. A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages.

    Science.gov (United States)

    Torres-Barceló, Clara; Arias-Sánchez, Flor I; Vasse, Marie; Ramsayer, Johan; Kaltz, Oliver; Hochberg, Michael E

    2014-01-01

    The evolution of antibiotic resistance in bacteria is a global concern and the use of bacteriophages alone or in combined therapies is attracting increasing attention as an alternative. Evolutionary theory predicts that the probability of bacterial resistance to both phages and antibiotics will be lower than to either separately, due for example to fitness costs or to trade-offs between phage resistance mechanisms and bacterial growth. In this study, we assess the population impacts of either individual or combined treatments of a bacteriophage and streptomycin on the nosocomial pathogen Pseudomonas aeruginosa. We show that combining phage and antibiotics substantially increases bacterial control compared to either separately, and that there is a specific time delay in antibiotic introduction independent of antibiotic dose, that minimizes both bacterial density and resistance to either antibiotics or phage. These results have implications for optimal combined therapeutic approaches.

  14. Pathogenic variation in isolates of Pseudomonas causing the brown blotch of cultivated mushroom, Agaricus bisporus

    Directory of Open Access Journals (Sweden)

    Mohamed A. Abou-Zeid

    2012-09-01

    Full Text Available Twenty seven bacterial isolates were isolated from superficial brown discolorations on the caps of cultivated Agaricus bisporus. After White Line Assay (WLA and the assist of Biolog computer-identification system, isolates were divided into groups: (I comprised ninteen bacterial isolates that positively responded to a Pseudomonas "reactans" reference strain (NCPPB1311 in WLA and were identified as Pseudomonas tolaasii, (II comprised two isolates which were WLA+ towards the reference strain (JCM21583 of P. tolaasii and were proposed to be P. "reactans". The third group comprised six isolates, two of which weakly responded to the strain of P. tolaasii and were identified as P. gingeri whereas the other four were WLA- and identified as P. fluorescens (three isolates and P. marginalis (one isolate. Isolates of P. tolaasii showed high aggressiveness compared with those of P. "reactans" in pathogenicity tests. Cubes of 1 cm³ of A. bisporus turned brown and decreased in size when were inoculated with 10 µl of P. tolaasii suspension containing 10(8 CFU ml-1, whereas a similar concentration of P. "reactans" caused only light browning. Fifty µl of the same concentration of P. tolaasii isolates gave typical brown blotch symptoms on fresh mushroom sporophores whereas the two P. "reactans" isolates caused superficial light discoloration only after inoculation with 100 µl of the same concentration. Mixture from both bacterial suspensions increased the brown areas formed on the pileus. This is the first pathogenicity report of P. tolasii and P. "reactans" isolated from cultivated A. bisporus in Egypt.

  15. Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens PS006.

    Science.gov (United States)

    Gamez, Rocío M; Rodríguez, Fernando; Ramírez, Sandra; Gómez, Yolanda; Agarwala, Richa; Landsman, David; Mariño-Ramírez, Leonardo

    2016-05-05

    Pseudomonas fluorescens is a well-known plant growth-promoting rhizobacterium (PGPR). We report here the first whole-genome sequence of PGPR P. fluorescens evaluated in Colombian banana plants. The genome sequences contains genes involved in plant growth and defense, including bacteriocins, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, and genes that provide resistance to toxic compounds.

  16. Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants.

    Science.gov (United States)

    Meziane, Hamid; VAN DER Sluis, Ientse; VAN Loon, Leendert C; Höfte, Monica; Bakker, Peter A H M

    2005-03-01

    SUMMARY Pseudomonas putida WCS358 is a plant growth-promoting rhizobacterium originally isolated from the rhizosphere of potato. It can suppress soil-borne plant diseases by siderophore-mediated competition for iron, but it has also been reported to result in induced systemic resistance (ISR) in Arabidopsis thaliana. Bacterial determinants of this strain involved in inducing systemic resistance in Arabidopsis were investigated using a Tn5 transposon mutant defective in biosynthesis of the fluorescent siderophore pseudobactin, a non-motile Tn5 mutant lacking flagella, and a spontaneous phage-resistant mutant lacking the O-antigenic side chain of the lipopolysaccharides (LPS). When using Pseudomonas syringae pv. tomato as the challenging pathogen, purified pseudobactin, flagella and LPS all triggered ISR. However, the mutants were all as effective as the parental strain, suggesting redundancy in ISR-triggering traits in WCS358. The Botrytis cinerea-tomato, B. cinerea-bean and Colletotrichum lindemuthianum-bean model systems were used to test further the potential of P. putida WCS358 to induce ISR. Strain WCS358 significantly reduced disease development in all three systems, indicating that also on tomato and bean WCS358 can trigger ISR. In both tomato and bean, the LPS mutant had lost the ability to induce resistance, whereas the flagella mutant was still effective. In bean, the pseudobactin mutant was still effective, whereas this mutant has lost its effectivity in tomato. In both bean and tomato, flagella isolated from the parental strain were not effective, whereas LPS or pseudobactin did induce systemic resistance.

  17. Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis.

    Science.gov (United States)

    Alegre, Isabel; Viñas, Inmaculada; Usall, Josep; Teixidó, Neus; Figge, Marian J; Abadias, Maribel

    2013-06-01

    The consumption of fresh-cut fruit has substantially risen over the last few years, leading to an increase in the number of outbreaks associated with fruit. Moreover, consumers are currently demanding wholesome, fresh-like, safe foods without added chemicals. As a response, the aim of this study was to determine if the naturally occurring microorganisms on fruit are "competitive with" or "antagonistic to" potentially encountered pathogens. Of the 97 and 107 isolates tested by co-inoculation with Escherichia coli O157:H7, Salmonella and Listeria innocua on fresh-cut apple and peach, respectively, and stored at 20 °C, seven showed a strong antagonistic capacity (more than 1-log unit reduction). One of the isolates, CPA-7, achieved the best reduction values (from 2.8 to 5.9-log units) and was the only isolate able to inhibit E. coli O157:H7 at refrigeration temperatures on both fruits. Therefore, CPA-7 was selected for further assays. Dose-response assays showed that CPA-7 should be present in at least the same amount as the pathogen to adequately reduce the numbers of the pathogen. From the results obtained in in vitro assays, competition seemed to be CPA-7's mode of action against E. coli O157:H7. The CPA-7 strain was identified as Pseudomonas graminis. Thus, the results support the potential use of CPA-7 as a bioprotective agent against foodborne pathogens in minimally processed fruit. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae.

    Science.gov (United States)

    Campos, Laura; Lisón, Purificación; López-Gresa, María Pilar; Rodrigo, Ismael; Zacarés, Laura; Conejero, Vicente; Bellés, José María

    2014-10-01

    Hydroxycinnamic acid amides (HCAA) are secondary metabolites involved in plant development and defense that have been widely reported throughout the plant kingdom. These phenolics show antioxidant, antiviral, antibacterial, and antifungal activities. Hydroxycinnamoyl-CoA:tyramine N-hydroxycinnamoyl transferase (THT) is the key enzyme in HCAA synthesis and is induced in response to pathogen infection, wounding, or elicitor treatments, preceding HCAA accumulation. We have engineered transgenic tomato plants overexpressing tomato THT. These plants displayed an enhanced THT gene expression in leaves as compared with wild type (WT) plants. Consequently, leaves of THT-overexpressing plants showed a higher constitutive accumulation of the amide coumaroyltyramine (CT). Similar results were found in flowers and fruits. Moreover, feruloyltyramine (FT) also accumulated in these tissues, being present at higher levels in transgenic plants. Accumulation of CT, FT and octopamine, and noradrenaline HCAA in response to Pseudomonas syringae pv. tomato infection was higher in transgenic plants than in the WT plants. Transgenic plants showed an enhanced resistance to the bacterial infection. In addition, this HCAA accumulation was accompanied by an increase in salicylic acid levels and pathogenesis-related gene induction. Taken together, these results suggest that HCAA may play an important role in the defense of tomato plants against P. syringae infection.

  19. Evolution and genome architecture in fungal plant pathogens.

    Science.gov (United States)

    Möller, Mareike; Stukenbrock, Eva H

    2017-08-07

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  20. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the extracell

  1. Insights into Cross-Kingdom Plant Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Morgan W.B. Kirzinger

    2011-11-01

    Full Text Available Plant and human pathogens have evolved disease factors to successfully exploit their respective hosts. Phytopathogens utilize specific determinants that help to breach reinforced cell walls and manipulate plant physiology to facilitate the disease process, while human pathogens use determinants for exploiting mammalian physiology and overcoming highly developed adaptive immune responses. Emerging research, however, has highlighted the ability of seemingly dedicated human pathogens to cause plant disease, and specialized plant pathogens to cause human disease. Such microbes represent interesting systems for studying the evolution of cross-kingdom pathogenicity, and the benefits and tradeoffs of exploiting multiple hosts with drastically different morphologies and physiologies. This review will explore cross-kingdom pathogenicity, where plants and humans are common hosts. We illustrate that while cross-kingdom pathogenicity appears to be maintained, the directionality of host association (plant to human, or human to plant is difficult to determine. Cross-kingdom human pathogens, and their potential plant reservoirs, have important implications for the emergence of infectious diseases.

  2. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the

  3. The top 10 oomycete pathogens in molecular plant pathology

    Science.gov (United States)

    Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens that threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant pathogenic oomycete taxa based on scientific and economic importance. In total, ...

  4. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the extracell

  5. The Top 10 oomycete pathogens in molecular plant pathology

    NARCIS (Netherlands)

    Kamoun, Sophien; Furzer, Oliver; Jones, Jonathan D G; Judelson, Howard S; Ali, Gul Shad; Dalio, Ronaldo J D; Roy, Sanjoy Guha; Schena, Leonardo; Zambounis, Antonios; Panabières, Franck; Cahill, David; Ruocco, Michelina; Figueiredo, Andreia; Chen, Xiao-Ren; Hulvey, Jon; Stam, Remco; Lamour, Kurt; Gijzen, Mark; Tyler, Brett M; Grünwald, Niklaus J; Mukhtar, M Shahid; Tomé, Daniel F A; Tör, Mahmut; Van Den Ackerveken, Guido; McDowell, John; Daayf, Fouad; Fry, William E; Lindqvist-Kreuze, Hannele; Meijer, Harold J G; Petre, Benjamin; Ristaino, Jean; Yoshida, Kentaro; Birch, Paul R J; Govers, Francine

    2015-01-01

    Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In tot

  6. Toxicity of twenty-two plant essential oils against pathogenic bacteria of vegetables and mushrooms.

    Science.gov (United States)

    Todorović, Biljana; Potočnik, Ivana; Rekanović, Emil; Stepanović, Miloš; Kostić, Miroslav; Ristić, Mihajlo; Milijašević-Marčić, Svetlana

    2016-12-01

    ASBTRACT Toxicity of twenty-two essential oils to three bacterial pathogens in different horticultural systems: Xanthomonas campestris pv. phaseoli (causing blight of bean), Clavibacter michiganensis subsp. michiganensis (bacterial wilt and canker of tomato), and Pseudomonas tolaasii (causal agent of bacterial brown blotch on cultivated mushrooms) was tested. Control of bacterial diseases is very difficult due to antibiotic resistance and ineffectiveness of chemical products, to that essential oils offer a promising alternative. Minimal inhibitory and bactericidal concentrations are determined by applying a single drop of oil onto the inner side of each plate cover in macrodilution assays. Among all tested substances, the strongest and broadest activity was shown by the oils of wintergreen (Gaultheria procumbens), oregano (Origanum vulgare), and lemongrass (Cymbopogon flexuosus. Carvacrol (64.0-75.8%) was the dominant component of oregano oils, while geranial (40.7%) and neral (26.7%) were the major constituents of lemongrass oil. Xanthomonas campestris pv. phaseoli was the most sensitive to plant essential oils, being susceptible to 19 oils, while 11 oils were bactericidal to the pathogen. Sixteen oils inhibited the growth of Clavibacter michiganensis subsp. michiganensis and seven oils showed bactericidal effects to the pathogen. The least sensitive species was Pseudomonas tolaasii as five oils inhibited bacterial growth and two oils were bactericidal. Wintergreen, oregano, and lemongrass oils should be formulated as potential biochemical bactericides against different horticultural pathogens.

  7. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Gopaljee Jha

    2009-01-01

    Full Text Available Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed.

  8. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.

    Science.gov (United States)

    Barak, Jeri D; Schroeder, Brenda K

    2012-01-01

    Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.

  9. An orphan chemotaxis sensor regulates virulence and antibiotic tolerance in the human pathogen Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Heather Pearl McLaughlin

    Full Text Available The synthesis of virulence factors by pathogenic bacteria is highly regulated and occurs in response to diverse environmental cues. An array of two component systems (TCSs serves to link perception of different cues to specific changes in gene expression and/or bacterial behaviour. Those TCSs that regulate functions associated with virulence represent attractive targets for interference in anti-infective strategies for disease control. We have previously identified PA2572 as a putative response regulator required for full virulence of Pseudomonas aeruginosa, the opportunistic human pathogen, to Galleria mellonella (Wax moth larvae. Here we have investigated the involvement of candidate sensors for signal transduction involving PA2572. Mutation of PA2573, encoding a probable methyl-accepting chemotaxis protein, gave rise to alterations in motility, virulence, and antibiotic resistance, functions which are also controlled by PA2572. Comparative transcriptome profiling of mutants revealed that PA2572 and PA2573 regulate expression of a common set of 49 genes that are involved in a range of biological functions including virulence and antibiotic resistance. Bacterial two-hybrid analysis indicated a REC-dependent interaction between PA2572 and PA2573 proteins. Finally expression of PA2572 in the PA2573 mutant background restored virulence to G. mellonella towards wild-type levels. The findings indicate a role for the orphan chemotaxis sensor PA2573 in the regulation of virulence and antibiotic tolerance in P. aeruginosa and indicate that these effects are exerted in part through signal transduction involving PA2572.

  10. Antibiotic stress selects against cooperation in the pathogenic bacterium Pseudomonas aeruginosa

    Science.gov (United States)

    Vasse, Marie; Noble, Robert J.; Akhmetzhanov, Andrei R.; Torres-Barceló, Clara; Gurney, James; Benateau, Simon; Gougat-Barbera, Claire; Kaltz, Oliver; Hochberg, Michael E.

    2017-01-01

    Cheats are a pervasive threat to public goods production in natural and human communities, as they benefit from the commons without contributing to it. Although ecological antagonisms such as predation, parasitism, competition, and abiotic environmental stress play key roles in shaping population biology, it is unknown how such stresses generally affect the ability of cheats to undermine cooperation. We used theory and experiments to address this question in the pathogenic bacterium, Pseudomonas aeruginosa. Although public goods producers were selected against in all populations, our competition experiments showed that antibiotics significantly increased the advantage of nonproducers. Moreover, the dominance of nonproducers in mixed cultures was associated with higher resistance to antibiotics than in either monoculture. Mathematical modeling indicates that accentuated costs to producer phenotypes underlie the observed patterns. Mathematical analysis further shows how these patterns should generalize to other taxa with public goods behaviors. Our findings suggest that explaining the maintenance of cooperative public goods behaviors in certain natural systems will be more challenging than previously thought. Our results also have specific implications for the control of pathogenic bacteria using antibiotics and for understanding natural bacterial ecosystems, where subinhibitory concentrations of antimicrobials frequently occur. PMID:28049833

  11. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis

    DEFF Research Database (Denmark)

    Moser, Claus; van Gennip, Maria; Bjarnsholt, Thomas;

    2009-01-01

    Moser C, van Gennip M, Bjarnsholt T, Jensen PO, Lee B, Hougen HP, Calum H, Ciofu O, Givskov M, Molin S, Hoiby N. Novel experimental Pseudomonas aeruginosa lung infection model mimicking long-term host-pathogen interactions in cystic fibrosis. APMIS 2009; 117: 95-107. The dominant cause of premature...... death in patients suffering from cystic fibrosis (CF) is chronic lung infection with Pseudomonas aeruginosa. The chronic lung infection often lasts for decades with just one clone. However, as a result of inflammation, antibiotic treatment and different niches in the lungs, the clone undergoes...

  12. Bacterial pathogen phytosensing in transgenic tobacco and Arabidopsis plants.

    Science.gov (United States)

    Liu, Wusheng; Mazarei, Mitra; Rudis, Mary R; Fethe, Michael H; Peng, Yanhui; Millwood, Reginald J; Schoene, Gisele; Burris, Jason N; Stewart, C Neal

    2013-01-01

    Plants are subject to attack by a wide range of phytopathogens. Current pathogen detection methods and technologies are largely constrained to those occurring post-symptomatically. Recent efforts were made to generate plant sentinels (phytosensors) that can be used for sensing and reporting pathogen contamination in crops. Engineered phytosensors indicating the presence of plant pathogens as early-warning sentinels potentially have tremendous utility as wide-area detectors. We previously showed that synthetic promoters containing pathogen and/or defence signalling inducible cis-acting regulatory elements (RE) fused to a fluorescent protein (FP) reporter could detect phytopathogenic bacteria in a transient phytosensing system. Here, we further advanced this phytosensing system by developing stable transgenic tobacco and Arabidopsis plants containing candidate constructs. The inducibility of each synthetic promoter was examined in response to biotic (bacterial pathogens) or chemical (plant signal molecules salicylic acid, ethylene and methyl jasmonate) treatments using stably transgenic plants. The treated plants were visualized using epifluorescence microscopy and quantified using spectrofluorometry for FP synthesis upon induction. Time-course analyses of FP synthesis showed that both transgenic tobacco and Arabidopsis plants were capable to respond in predictable ways to pathogen and chemical treatments. These results provide insights into the potential applications of transgenic plants as phytosensors and the implementation of emerging technologies for monitoring plant disease outbreaks in agricultural fields.

  13. Metabolic pathways of Pseudomonas aeruginosa involved in competition with respiratory bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Marie eBeaume

    2015-04-01

    Full Text Available Background: Chronic airway infection by Pseudomonas aeruginosa considerably contributes to lung tissue destruction and impairment of pulmonary function in cystic-fibrosis (CF patients. Complex interplays between P. aeruginosa and other co-colonizing pathogens including Staphylococcus aureus, Burkholderia spp and Klebsiella pneumoniae may be crucial for pathogenesis and disease progression.Methods: We generated a library of PA14 transposon insertion mutants to identify P. aeruginosa genes required for exploitative and direct competitions with S. aureus, B. cenocepacia, and K. pneumoniae. Results: Whereas wild type PA14 inhibited S. aureus growth, two transposon insertions located in pqsC and carB, resulted in reduced growth inhibition. PqsC is involved in the synthesis of 4-hydroxy-2-alkylquinolines (HAQs, a family of molecules having antibacterial properties, while carB is a key gene in pyrimidine biosynthesis. The carB mutant was also unable to grow in the presence of B. cepacia and K. pneumoniae but not E. coli and S. epidermidis. We further identified a transposon insertion in purF, encoding a key enzyme of purine metabolism. This mutant displayed a severe growth deficiency in the presence of Gram-negative but not of Gram-positive bacteria. We identified a beneficial interaction in a bioA transposon mutant, unable to grow on rich medium. This growth defect could be restored either by addition of biotin or by co-culturing the mutant in the presence of K. pneumoniae or E. coli.Conclusions: Complex interactions take place between the various bacterial species colonizing CF-lungs. This work identified both detrimental and beneficial interactions occurring between P. aeruginosa and three other respiratory pathogens involving several major metabolic pathways. Manipulating these pathways could be used to interfere with bacterial interactions and influence the colonization by respiratory pathogens.

  14. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere

    Directory of Open Access Journals (Sweden)

    Hai-Bi Li

    2017-07-01

    Full Text Available The study was designed to isolate and characterize Pseudomonas spp. from sugarcane rhizosphere, and to evaluate their plant- growth- promoting (PGP traits and nitrogenase activity. A biological nitrogen-fixing microbe has great potential to replace chemical fertilizers and be used as a targeted biofertilizer in a plant. A total of 100 isolates from sugarcane rhizosphere, belonging to different species, were isolated; from these, 30 isolates were selected on the basis of preliminary screening, for in vitro antagonistic activities against sugarcane pathogens and for various PGP traits, as well as nitrogenase activity. The production of IAA varied from 312.07 to 13.12 μg mL−1 in tryptophan supplemented medium, with higher production in AN15 and lower in CN20 strain. The estimation of ACC deaminase activity, strains CY4 and BA2 produced maximum and minimum activity of 77.0 and 15.13 μmoL mg−1 h−1. For nitrogenase activity among the studied strains, CoA6 fixed higher and AY1 fixed lower in amounts (108.30 and 6.16 μmoL C2H2 h−1 mL−1. All the strains were identified on the basis of 16S rRNA gene sequencing, and the phylogenetic diversity of the strains was analyzed. The results identified all strains as being similar to Pseudomonas spp. Polymerase chain reaction (PCR amplification of nifH and antibiotic genes was suggestive that the amplified strains had the capability to fix nitrogen and possessed biocontrol activities. Genotypic comparisons of the strains were determined by BOX, ERIC, and REP PCR profile analysis. Out of all the screened isolates, CY4 (Pseudomonas koreensis and CN11 (Pseudomonas entomophila showed the most prominent PGP traits, as well as nitrogenase activity. Therefore, only these two strains were selected for further studies; Biolog profiling; colonization through green fluorescent protein (GFP-tagged bacteria; and nifH gene expression using quantitative real-time polymerase chain reaction (qRT-PCR analysis. The

  15. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere.

    Science.gov (United States)

    Li, Hai-Bi; Singh, Rajesh K; Singh, Pratiksha; Song, Qi-Qi; Xing, Yong-Xiu; Yang, Li-Tao; Li, Yang-Rui

    2017-01-01

    The study was designed to isolate and characterize Pseudomonas spp. from sugarcane rhizosphere, and to evaluate their plant- growth- promoting (PGP) traits and nitrogenase activity. A biological nitrogen-fixing microbe has great potential to replace chemical fertilizers and be used as a targeted biofertilizer in a plant. A total of 100 isolates from sugarcane rhizosphere, belonging to different species, were isolated; from these, 30 isolates were selected on the basis of preliminary screening, for in vitro antagonistic activities against sugarcane pathogens and for various PGP traits, as well as nitrogenase activity. The production of IAA varied from 312.07 to 13.12 μg mL(-1) in tryptophan supplemented medium, with higher production in AN15 and lower in CN20 strain. The estimation of ACC deaminase activity, strains CY4 and BA2 produced maximum and minimum activity of 77.0 and 15.13 μmoL mg(-1) h(-1). For nitrogenase activity among the studied strains, CoA6 fixed higher and AY1 fixed lower in amounts (108.30 and 6.16 μmoL C2H2 h(-1) mL(-1)). All the strains were identified on the basis of 16S rRNA gene sequencing, and the phylogenetic diversity of the strains was analyzed. The results identified all strains as being similar to Pseudomonas spp. Polymerase chain reaction (PCR) amplification of nifH and antibiotic genes was suggestive that the amplified strains had the capability to fix nitrogen and possessed biocontrol activities. Genotypic comparisons of the strains were determined by BOX, ERIC, and REP PCR profile analysis. Out of all the screened isolates, CY4 (Pseudomonas koreensis) and CN11 (Pseudomonas entomophila) showed the most prominent PGP traits, as well as nitrogenase activity. Therefore, only these two strains were selected for further studies; Biolog profiling; colonization through green fluorescent protein (GFP)-tagged bacteria; and nifH gene expression using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The Biolog phenotypic

  16. Epigenetic regulation of development and pathogenesis in fungal plant pathogens.

    Science.gov (United States)

    Dubey, Akanksha; Jeon, Junhyun

    2017-08-01

    Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen-induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  17. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung.

    Science.gov (United States)

    Hogardt, Michael; Heesemann, Jürgen

    2013-01-01

    Pseudomonas aeruginosa is the leading pathogen of chronic cystic fibrosis (CF) lung infection. Life-long persistance of P. aeruginosa in the CF lung requires a sophisticated habitat-specific adaptation of this pathogen to the heterogeneous and fluctuating lung environment. Due to the high selective pressure of inflamed CF lungs, P. aeruginosa increasingly experiences complex physiological and morphological changes. Pulmonary adaptation of P. aeruginosa is mediated by genetic variations that are fixed by the repeating interplay of mutation and selection. In this context, the emergence of hypermutable phenotypes (mutator strains) obviously improves the microevolution of P. aeruginosa to the diverse microenvironments of the CF lung. Mutator phenotypes are amplified during CF lung disease and accelerate the intraclonal diversification of P. aeruginosa. The resulting generation of numerous subclonal variants is advantegous to prepare P. aeruginosa population for unpredictable stresses (insurance hypothesis) and thus supports long-term survival of this pathogen. Oxygen restriction within CF lung environment further promotes persistence of P. aeruginosa due to increased antibiotic tolerance, alginate production and biofilm formation. Finally, P. aeruginosa shifts from an acute virulent pathogen of early infection to a host-adapted chronic virulent pathogen of end-stage infection of the CF lung. Common changes that are observed among chronic P. aeruginosa CF isolates include alterations in surface antigens, loss of virulence-associated traits, increasing antibiotic resistances, the overproduction of the exopolysaccharide alginate and the modulation of intermediary and micro-aerobic metabolic pathways (Hogardt and Heesemann, Int J Med Microbiol 300(8):557-562, 2010). Loss-of-function mutations in mucA and lasR genes determine the transition to mucoidity and loss of quorum sensing, which are hallmarks of the chronic virulence potential of P. aeruginosa. Metabolic factors

  18. Insight into the Interaction between Plants and Associated Fluorescent Pseudomonas spp.

    Directory of Open Access Journals (Sweden)

    Akansha Jain

    2016-01-01

    Full Text Available Fluorescent Pseudomonas are known for their plant growth promoting and disease protection abilities. In past years, a number of studies have focused on how these bacteria suppress disease and induce resistance. They are known to produce antibiotics and siderophores, promote growth, and induce systemic resistance in the host plant. This bacterium has come out as a model organism for ecological studies going on in rhizosphere and for studying plant-beneficial microbe interaction. This review focuses on the current state of knowledge on biocontrol potential of fluorescent Pseudomonas strains and the mechanisms adopted by them.

  19. Influence of plant species on population dynamics, genotypic diversity and antibiotic production by indigenous Pseudomonas spp

    NARCIS (Netherlands)

    Bergsma-Vlami, M.; Prins, M.E.; Raaijmakers, J.M.

    2005-01-01

    The population dynamics, genotypic diversity and activity of naturally-occurring 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas spp. was investigated for four plant species (wheat, sugar beet, potato, lily) grown in two different soils. All four plant species tested, except lily and in some

  20. UV Light Inactivation of Human and Plant Pathogens in Unfiltered Surface Irrigation Water

    Science.gov (United States)

    Jones, Lisa A.; Worobo, Randy W.

    2014-01-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 108 or 109 CFU/liter for bacteria or 104 or 105 zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively. PMID:24242253

  1. UV light inactivation of human and plant pathogens in unfiltered surface irrigation water.

    Science.gov (United States)

    Jones, Lisa A; Worobo, Randy W; Smart, Christine D

    2014-02-01

    Fruit and vegetable growers continually battle plant diseases and food safety concerns. Surface water is commonly used in the production of fruits and vegetables and can harbor both human- and plant-pathogenic microorganisms that can contaminate crops when used for irrigation or other agricultural purposes. Treatment methods for surface water are currently limited, and there is a need for suitable treatment options. A liquid-processing unit that uses UV light for the decontamination of turbid juices was analyzed for its efficacy in the treatment of surface waters contaminated with bacterial or oomycete pathogens, i.e., Escherichia coli, Salmonella enterica, Listeria monocytogenes, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, and Phytophthora capsici. Five-strain cocktails of each pathogen, containing approximately 10(8) or 10(9) CFU/liter for bacteria or 10(4) or 10(5) zoospores/liter for Ph. capsici, were inoculated into aliquots of two turbid surface water irrigation sources and processed with the UV unit. Pathogens were enumerated before and after treatment. In general, as the turbidity of the water source increased, the effectiveness of the UV treatment decreased, but in all cases, 99.9% or higher inactivation was achieved. Log reductions ranged from 10.0 to 6.1 and from 5.0 to 4.2 for bacterial pathogens and Ph. capsici, respectively.

  2. Chromatin versus pathogens: the function of epigenetics in plant immunity

    Directory of Open Access Journals (Sweden)

    Bo eDing

    2015-09-01

    Full Text Available To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed.

  3. Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp.

    Science.gov (United States)

    Elasri, M; Delorme, S; Lemanceau, P; Stewart, G; Laue, B; Glickmann, E; Oger, P M; Dessaux, Y

    2001-03-01

    A total of 137 soilborne and plant-associated bacterial strains belonging to different Pseudomonas species were tested for their ability to synthesize N-acyl-homoserine lactones (NAHL). Fifty-four strains synthesized NAHL. Interestingly, NAHL production appears to be more common among plant-associated than among soilborne Pseudomonas spp. Indeed, 40% of the analyzed Pseudomonas syringae strains produced NAHL which were identified most often as the short-chain NAHL, N-hexanoyl-L-homoserine lactone, N-(3-oxo-hexanoyl)-homoserine lactone, and N-(3-oxo-octanoyl)-L-homoserine lactone (no absolute correlation between genomospecies of P. syringae and their ability to produce NAHL could be found). Six strains of fluorescent pseudomonads, belonging to the species P. chlororaphis, P. fluorescens, and P. putida, isolated from the plant rhizosphere produced different types of NAHL. In contrast, none of the strains isolated from soil samples were shown to produce NAHL. The gene encoding the NAHL synthase in P. syringae pv. maculicola was isolated by complementation of an NAHL-deficient Chromobacterium mutant. Sequence analysis revealed the existence of a luxI homologue that we named psmI. This gene is sufficient to confer NAHL synthesis upon its bacterial host and has strong homology to psyI and ahlI, two genes involved in NAHL production in P. syringae pv. tabaci and P. syringae pv. syringae, respectively. We identified another open reading frame that we termed psmR, transcribed convergently in relation to psmI and partly overlapping psmI; this gene encodes a putative LuxR regulatory protein. This gene organization, with luxI and luxR homologues facing each other and overlapping, has been found so far only in the enteric bacteria Erwinia and Pantoea and in the related species P. syringae pv. tabaci.

  4. What It Takes to Be a Pseudomonas aeruginosa? The Core Genome of the Opportunistic Pathogen Updated.

    Directory of Open Access Journals (Sweden)

    Benoît Valot

    Full Text Available Pseudomonas aeruginosa is an opportunistic bacterial pathogen able to thrive in highly diverse ecological niches and to infect compromised patients. Its genome exhibits a mosaic structure composed of a core genome into which accessory genes are inserted en bloc at specific sites. The size and the content of the core genome are open for debate as their estimation depends on the set of genomes considered and the pipeline of gene detection and clustering. Here, we redefined the size and the content of the core genome of P. aeruginosa from fully re-analyzed genomes of 17 reference strains. After the optimization of gene detection and clustering parameters, the core genome was defined at 5,233 orthologs, which represented ~ 88% of the average genome. Extrapolation indicated that our panel was suitable to estimate the core genome that will remain constant even if new genomes are added. The core genome contained resistance determinants to the major antibiotic families as well as most metabolic, respiratory, and virulence genes. Although some virulence genes were accessory, they often related to conserved biological functions. Long-standing prophage elements were subjected to a genetic drift to eventually display a G+C content as higher as that of the core genome. This contrasts with the low G+C content of highly conserved ribosomal genes. The conservation of metabolic and respiratory genes could guarantee the ability of the species to thrive on a variety of carbon sources for energy in aerobiosis and anaerobiosis. Virtually all the strains, of environmental or clinical origin, have the complete toolkit to become resistant to the major antipseudomonal compounds and possess basic pathogenic mechanisms to infect humans. The knowledge of the genes shared by the majority of the P. aeruginosa isolates is a prerequisite for designing effective therapeutics to combat the wide variety of human infections.

  5. What It Takes to Be a Pseudomonas aeruginosa? The Core Genome of the Opportunistic Pathogen Updated.

    Science.gov (United States)

    Valot, Benoît; Guyeux, Christophe; Rolland, Julien Yves; Mazouzi, Kamel; Bertrand, Xavier; Hocquet, Didier

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic bacterial pathogen able to thrive in highly diverse ecological niches and to infect compromised patients. Its genome exhibits a mosaic structure composed of a core genome into which accessory genes are inserted en bloc at specific sites. The size and the content of the core genome are open for debate as their estimation depends on the set of genomes considered and the pipeline of gene detection and clustering. Here, we redefined the size and the content of the core genome of P. aeruginosa from fully re-analyzed genomes of 17 reference strains. After the optimization of gene detection and clustering parameters, the core genome was defined at 5,233 orthologs, which represented ~ 88% of the average genome. Extrapolation indicated that our panel was suitable to estimate the core genome that will remain constant even if new genomes are added. The core genome contained resistance determinants to the major antibiotic families as well as most metabolic, respiratory, and virulence genes. Although some virulence genes were accessory, they often related to conserved biological functions. Long-standing prophage elements were subjected to a genetic drift to eventually display a G+C content as higher as that of the core genome. This contrasts with the low G+C content of highly conserved ribosomal genes. The conservation of metabolic and respiratory genes could guarantee the ability of the species to thrive on a variety of carbon sources for energy in aerobiosis and anaerobiosis. Virtually all the strains, of environmental or clinical origin, have the complete toolkit to become resistant to the major antipseudomonal compounds and possess basic pathogenic mechanisms to infect humans. The knowledge of the genes shared by the majority of the P. aeruginosa isolates is a prerequisite for designing effective therapeutics to combat the wide variety of human infections.

  6. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense

    Directory of Open Access Journals (Sweden)

    Clemencia M Rojas

    2014-02-01

    Full Text Available Plants are constantly exposed to microorganisms in the environment and, as a result, have evolved intricate mechanisms to recognize and defend themselves against potential pathogens. One of these responses is the downregulation of photosynthesis and other processes associated with primary metabolism that are essential for plant growth. It has been suggested that the energy saved by downregulation of primary metabolism is diverted and used for defense responses. However, several studies have shown that upregulation of primary metabolism also occurs during plant-pathogen interactions. We propose that upregulation of primary metabolism modulates signal transduction cascades that lead to plant defense responses. In support of this thought, we here compile evidence from the literature to show that upon exposure to pathogens or elicitors, plants induce several genes associated with primary metabolic pathways, such as those involved in the synthesis or degradation of carbohydrates, amino acids and lipids. In addition, genetic studies have confirmed the involvement of these metabolic pathways in plant defense responses. This review provides a new perspective highlighting the relevance of primary metabolism in regulating plant defense against pathogens with the hope to stimulate further research in this area.

  7. The cuticle and plant defense to pathogens

    Directory of Open Access Journals (Sweden)

    Jean-Pierre eMetraux

    2014-06-01

    Full Text Available The cuticle provides a physical barrier against water loss and protects against irradiation, xenobiotics and pathogens. Components of the cuticle are perceived by invading fungi and activate developmental processes during pathogenesis. In addition, cuticle alterations of various types induce a syndrome of reactions that often results in resistance to necrotrophs. This article reviews the current knowledge on the role of the cuticle in relation to the perception of pathogens and activation of defenses.

  8. Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practica

    NARCIS (Netherlands)

    Lievens, B.; Thomma, B.P.H.J.

    2005-01-01

    The failure to adequately identify plant pathogens from culture-based morphological techniques has led to the development of culture-independent molecular approaches. Increasingly, diagnostic laboratories are pursuing fast routine methods that provide reliable identification, sensitive detection, an

  9. Carbohydrate-related enzymes of important Phytophthora plant pathogens

    NARCIS (Netherlands)

    Brouwer, Henk; Coutinho, Pedro M; Henrissat, Bernard; de Vries, Ronald P; van den Brink, J.

    2014-01-01

    Carbohydrate-Active enZymes (CAZymes) form particularly interesting targets to study in plant pathogens. Despite the fact that many CAZymes are pathogenicity factors, oomycete CAZymes have received significantly less attention than effectors in the literature. Here we present an analysis of the CAZy

  10. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi

    NARCIS (Netherlands)

    Gomes, R.R.; Glienke, C.; Videira, S.I.R.; Lombard, L.; Groenewald, J.Z.; Crous, P.W.

    2013-01-01

    Diaporthe (Phomopsis) species have often been reported as plant pathogens, non-pathogenic endophytes or saprobes, commonly isolated from a wide range of hosts. The primary aim of the present study was to resolve the taxonomy and phylogeny of a large collection of Diaporthe species occurring on diver

  11. MEDICINAL PLANTS FROM BRAZILIAN CAATINGA: ANTIBIOFILM AND ANTIBACTERIAL ACTIVITIES AGAINST Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    DANIELLE SILVA TRENTIN

    2014-01-01

    Full Text Available The Caatinga biome covers a vast area in northeastern Brazil and presents a high level of biodiversity. It is known that about 400 plant species are used by semi-arid local communities for medical purposes. Based on ethnopharmacological reports, this study aims to screen 24 species from Caatinga regarding the ability to prevent biofilm formation and to inhibit the growth of Pseudomonas aeruginosa - a major opportunistic human pathogen and an important causative agent of morbidity and mortality. The effects of aqueous extracts, at 0.4 and 4.0 mg mL-1, on biofilm formation and on growth of P. aeruginosa ATCC 27853 were studied using the crystal violet assay and the OD600 absorbance, respectively. The most active extracts were analyzed by thinlayer chromatography and high performance liquid chromatography. Our investigation pointed extracts of four species with potential application for the control of P. aeruginosa: Anadenanthera colubrina (Vell. Brenan, Commiphora leptophloeos (Mart. J.B. Gillett, Myracrodruoun urundeuva Allemão, whose antibiofilm effects (89%, 56% and 79% inhibition of biofilm, respectively were associated with complete inhibition of bacterial growth, and Pityrocarpa moniliformis (Benth. Luckow & R.W. Jobson, which were able avoid 68% of biofilm formation and inhibited 30% bacterial growth. The qualitative phytochemical analyses reveal the complexity of the samples as well as the presence of compounds with high molecular weight.

  12. Fate of a Pseudomonas savastanoi pv. savastanoi type III secretion system mutant in olive plants (Olea europaea L.).

    Science.gov (United States)

    Pérez-Martínez, Isabel; Rodríguez-Moreno, Luis; Lambertsen, Lotte; Matas, Isabel M; Murillo, Jesús; Tegli, Stefania; Jiménez, Antonio J; Ramos, Cayo

    2010-06-01

    Pseudomonas savastanoi pv. savastanoi strain NCPPB 3335 is a model bacterial pathogen for studying the molecular basis of disease production in woody hosts. We report the sequencing of the hrpS-to-hrpZ region of NCPPB 3335, which has allowed us to determine the phylogenetic position of this pathogen with respect to previously sequenced Pseudomonas syringae hrp clusters. In addition, we constructed a mutant of NCPPB 3335, termed T3, which carries a deletion from the 3' end of the hrpS gene to the 5' end of the hrpZ operon. Despite its inability to multiply in olive tissues and to induce tumor formation in woody olive plants, P. savastanoi pv. savastanoi T3 can induce knot formation on young micropropagated olive plants. However, the necrosis and formation of internal open cavities previously reported in knots induced by the wild-type strain were not observed in those induced by P. savastanoi pv. savastanoi T3. Tagging of P. savastanoi pv. savastanoi T3 with green fluorescent protein (GFP) allowed real-time monitoring of its behavior on olive plants. In olive plant tissues, the wild-type strain formed aggregates that colonized the intercellular spaces and internal cavities of the hypertrophic knots, while the mutant T3 strain showed a disorganized distribution within the parenchyma of the knot. Ultrastructural analysis of knot sections revealed the release of extensive outer membrane vesicles from the bacterial cell surface of the P. savastanoi pv. savastanoi T3 mutant, while the wild-type strain exhibited very few vesicles. This phenomenon has not been described before for any other bacterial phytopathogen during host infection.

  13. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses.

    Directory of Open Access Journals (Sweden)

    Junqi Song

    2014-04-01

    Full Text Available Immune responses and DNA damage repair are two fundamental processes that have been characterized extensively, but the links between them remain largely unknown. We report that multiple bacterial, fungal and oomycete plant pathogen species induce double-strand breaks (DSBs in host plant DNA. DNA damage detected by histone γ-H2AX abundance or DNA comet assays arose hours before the disease-associated necrosis caused by virulent Pseudomonas syringae pv. tomato. Necrosis-inducing paraquat did not cause detectable DSBs at similar stages after application. Non-pathogenic E. coli and Pseudomonas fluorescens bacteria also did not induce DSBs. Elevation of reactive oxygen species (ROS is common during plant immune responses, ROS are known DNA damaging agents, and the infection-induced host ROS burst has been implicated as a cause of host DNA damage in animal studies. However, we found that DSB formation in Arabidopsis in response to P. syringae infection still occurs in the absence of the infection-associated oxidative burst mediated by AtrbohD and AtrbohF. Plant MAMP receptor stimulation or application of defense-activating salicylic acid or jasmonic acid failed to induce a detectable level of DSBs in the absence of introduced pathogens, further suggesting that pathogen activities beyond host defense activation cause infection-induced DNA damage. The abundance of infection-induced DSBs was reduced by salicylic acid and NPR1-mediated defenses, and by certain R gene-mediated defenses. Infection-induced formation of γ-H2AX still occurred in Arabidopsis atr/atm double mutants, suggesting the presence of an alternative mediator of pathogen-induced H2AX phosphorylation. In summary, pathogenic microorganisms can induce plant DNA damage. Plant defense mechanisms help to suppress rather than promote this damage, thereby contributing to the maintenance of genome integrity in somatic tissues.

  14. Distribution, diversity, and activity of antibiotic-producing Pseudomonas spp.

    NARCIS (Netherlands)

    Souza, de J.T.

    2002-01-01

    Bacteria of the genus Pseudomonas are potential biocontrol agents of plant diseases caused by various fungi and oomycetes. Antibiotic production is an important trait responsible for the activity of several Pseudomonas strains against plant pathogens. Despite the amount of informati

  15. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    Science.gov (United States)

    Justin B. Runyon; Mark C. Mescher; Consuelo M. De Moraes

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years...

  16. Chromatin versus pathogens: the function of epigenetics in plant immunity

    OpenAIRE

    Ding, Bo; Wang, Guo-Liang

    2015-01-01

    To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin r...

  17. Engineered resistance against fungal plant pathogens

    NARCIS (Netherlands)

    Honée, G.

    1999-01-01

    Development of genetic engineering technology and molecular characterization of plant defense responses have provided strategies for controlling plant diseases additional to those based on chemical control or classical breeding programs. Most of these alternative strategies are based on the overprod

  18. Detection and Diagnostics of Plant Pathogens

    NARCIS (Netherlands)

    Gullino, M.L.; Bonants, P.J.M.

    2014-01-01

    This book is part of the Plant Pathology in the 21st Century Series, started in the occasion of the IX International Congress of Plant Pathology, Torino, 2008. In conjunction with the Xth International Congress of Plant Pathology, held in Beijing in August 2013. Although deriving from a Congress, th

  19. Methylobacterium-induced endophyte community changes correspond with protection of plants against pathogen attack.

    Directory of Open Access Journals (Sweden)

    Pavlo Ardanov

    Full Text Available Plant inoculation with endophytic bacteria that normally live inside the plant without harming the host is a highly promising approach for biological disease control. The mechanism of resistance induction by beneficial bacteria is poorly understood, because pathways are only partly known and systemic responses are typically not seen. The innate endophytic community structures change in response to external factors such as inoculation, and bacterial endophytes can exhibit direct or indirect antagonism towards pathogens. Earlier we showed that resistance induction by an endophytic Methylobacterium sp. in potato towards Pectobacterium atrosepticum was dependent on the density of the inoculum, whereas the bacterium itself had no antagonistic activity. To elucidate the role of innate endophyte communities in plant responses, we studied community changes in both in vitro and greenhouse experiments using various combinations of plants, endophyte inoculants, and pathogens. Induction of resistance was studied in several potato (Solanum tuberosum L. cultivars by Methylobacterium sp. IMBG290 against the pathogens P. atrosepticum, Phytophthora infestans and Pseudomonas syringae pv. tomato DC3000, and in pine (Pinus sylvestris L. by M. extorquens DSM13060 against Gremmeniella abietina. The capacities of the inoculated endophytic Methylobacterium spp. strains to induce resistance were dependent on the plant cultivar, pathogen, and on the density of Methylobacterium spp. inoculum. Composition of the endophyte community changed in response to inoculation in shoot tissues and correlated with resistance or susceptibility to the disease. Our results demonstrate that endophytic Methylobacterium spp. strains have varying effects on plant disease resistance, which can be modulated through the endophyte community of the host.

  20. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism and photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pelletier, Dale A [ORNL; Morrell-Falvey, Jennifer L [ORNL; Karve, Abhijit A [ORNL; Lu, Tse-Yuan S [ORNL; Tschaplinski, Timothy J [ORNL; Tuskan, Gerald A [ORNL; Chen, Jay [ORNL; Martin, Madhavi Z [ORNL; Jawdy, Sara [ORNL; Weston, David [ORNL; Doktycz, Mitchel John [ORNL; Schadt, Christopher Warren [ORNL

    2012-01-01

    Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.

  1. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    Science.gov (United States)

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance.

  2. Investigating the Antibacterial Effects of Plant Extracts on Pseudomonas aeruginosa and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jahani

    2016-04-01

    Full Text Available Background Scientists are seeking an appropriate alternative method for curing infections caused by resistant bacteria, since drug resistance is continually increasing. Objectives This research aims to discover the function of some medicine plants on pestiferous Pseudomonas aeruginosa and Escherichia coli in humans. Materials and Methods Bacterial strains were obtained from a standard laboratory. The strains of Pseudomonas aeruginosa ATCC27853 and E.coli ATCC25922 bacteria were used for antimicrobial testing of the extractions. Results Our results showed that Teucrium polium extracts have the minimum density of inhibitory for Escherichia coli, 25 ppm, whereas the maximum of this is for Peganum harmala and Prangos ferulaceae with 100 ppm. The lowest minimum concentration inhibitory value of extracts P. harmala, T. polium, T. pratensis and Rumex was found in 25 ppm against P.aeruginosa. Conclusions The results of our study showed that plant extracts have good antibacterial properties against Pseudomonas aeruginosa and Escherichia coli.

  3. 14-3-3 proteins in plant-pathogen interactions.

    Science.gov (United States)

    Lozano-Durán, Rosa; Robatzek, Silke

    2015-05-01

    14-3-3 proteins define a eukaryotic-specific protein family with a general role in signal transduction. Primarily, 14-3-3 proteins act as phosphosensors, binding phosphorylated client proteins and modulating their functions. Since phosphorylation regulates a plethora of different physiological responses in plants, 14-3-3 proteins play roles in multiple signaling pathways, including those controlling metabolism, hormone signaling, cell division, and responses to abiotic and biotic stimuli. Increasing evidence supports a prominent role of 14-3-3 proteins in regulating plant immunity against pathogens at various levels. In this review, potential links between 14-3-3 function and the regulation of plant-pathogen interactions are discussed, with a special focus on the regulation of 14-3-3 proteins in response to pathogen perception, interactions between 14-3-3 proteins and defense-related proteins, and 14-3-3 proteins as targets of pathogen effectors.

  4. Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans.

    Science.gov (United States)

    Hunziker, Lukas; Bönisch, Denise; Groenhagen, Ulrike; Bailly, Aurélien; Schulz, Stefan; Weisskopf, Laure

    2015-02-01

    Bacteria emit volatile organic compounds with a wide range of effects on bacteria, fungi, plants, and animals. The antifungal potential of bacterial volatiles has been investigated with a broad span of phytopathogenic organisms, yet the reaction of oomycetes to these volatile signals is largely unknown. For instance, the response of the late blight-causing agent and most devastating oomycete pathogen worldwide, Phytophthora infestans, to bacterial volatiles has not been assessed so far. In this work, we analyzed this response and compared it to that of selected fungal and bacterial potato pathogens, using newly isolated, potato-associated bacterial strains as volatile emitters. P. infestans was highly susceptible to bacterial volatiles, while fungal and bacterial pathogens were less sensitive. Cyanogenic Pseudomonas strains were the most active, leading to complete growth inhibition, yet noncyanogenic ones also produced antioomycete volatiles. Headspace analysis of the emitted volatiles revealed 1-undecene as a compound produced by strains inducing volatile-mediated P. infestans growth inhibition. Supplying pure 1-undecene to P. infestans significantly reduced mycelial growth, sporangium formation, germination, and zoospore release in a dose-dependent manner. This work demonstrates the high sensitivity of P. infestans to bacterial volatiles and opens new perspectives for sustainable control of this devastating pathogen.

  5. THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW.

    Science.gov (United States)

    Shuping, D S S; Eloff, J N

    2017-01-01

    Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms "plant fungal pathogen", "plant extracts" and "phytopathogens". Proposals are made on the best extractants and bioassay techniques to be used. In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase

  6. Migrate or evolve: options for plant pathogens under climate change.

    Science.gov (United States)

    Chakraborty, Sukumar

    2013-07-01

    Findings on climate change influence on plant pathogens are often inconsistent and context dependent. Knowledge of pathogens affecting agricultural crops and natural plant communities remains fragmented along disciplinary lines. By broadening the perspective beyond agriculture, this review integrates cross-disciplinary knowledge to show that at scales relevant to climate change, accelerated evolution and changing geographic distribution will be the main implications for pathogens. New races may evolve rapidly under elevated temperature and CO2 , as evolutionary forces act on massive pathogen populations boosted by a combination of increased fecundity and infection cycles under favourable microclimate within enlarged canopy. Changing geographic distribution will bring together diverse lineages/genotypes that do not share common ecological niche, potentially increasing pathogen diversity. However, the uncertainty of model predictions and a lack of synthesis of fragmented knowledge remain as major deficiencies in knowledge. The review contends that the failure to consider scale and human intervention through new technology are major sources of uncertainty. Recognizing that improved biophysical models alone will not reduce uncertainty, it proposes a generic framework to increase focus and outlines ways to integrate biophysical elements and technology change with human intervention scenarios to minimize uncertainty. To synthesize knowledge of pathogen biology and life history, the review borrows the concept of 'fitness' from population biology as a comprehensive measure of pathogen strengths and vulnerabilities, and explores the implications of pathogen mode of nutrition to fitness and its interactions with plants suffering chronic abiotic stress under climate change. Current and future disease management options can then be judged for their ability to impair pathogenic and saprophytic fitness. The review pinpoints improving confidence in model prediction by minimizing

  7. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp.

    Science.gov (United States)

    Barret, Matthieu; Frey-Klett, Pascale; Guillerm-Erckelboudt, Anne-Yvonne; Boutin, Morgane; Guernec, Gregory; Sarniguet, Alain

    2009-12-01

    Traits contributing to the competence of biocontrol bacteria to colonize plant roots are often induced in the rhizosphere in response to plant components. These interactions have been studied using the two partners in gnotobiotic systems. However, in nature, beneficial or pathogenic fungi often colonize roots. Influence of these plant-fungus interactions on bacterial behavior remains to be investigated. Here, we have examined the influence of colonization of wheat roots by the take-all fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Bacteria were inoculated onto healthy, early G. graminis var. tritici-colonized and necrotic roots and transcriptomes were compared by shotgun DNA microarray. Pf29Arp decreased disease severity when inoculated before the onset of necrosis. Necrotic roots exerted a broader effect on gene expression compared with early G. graminis var. tritici-colonized and healthy roots. A gene encoding a putative type VI secretion system effector was only induced in necrotic conditions. A common pool of Pf29Arp genes differentially expressed on G. graminis var. tritici-colonized roots was related to carbon metabolism and oxidative stress, with a highest fold-change with necrosis. Overall, the data showed that the association of the pathogenic fungus with the roots strongly altered Pf29Arp adaptation with differences between early and late G. graminis var. tritici infection steps.

  8. Characterization of an insecticidal toxin and pathogenicity of Pseudomonas taiwanensis against insects.

    Directory of Open Access Journals (Sweden)

    Wen-Jen Chen

    2014-08-01

    Full Text Available Pseudomonas taiwanensis is a broad-host-range entomopathogenic bacterium that exhibits insecticidal activity toward agricultural pests Plutella xylostella, Spodoptera exigua, Spodoptera litura, Trichoplusia ni and Drosophila melanogaster. Oral infection with different concentrations (OD = 0.5 to 2 of wild-type P. taiwanensis resulted in insect mortality rates that were not significantly different (92.7%, 96.4% and 94.5%. The TccC protein, a component of the toxin complex (Tc, plays an essential role in the insecticidal activity of P. taiwanensis. The ΔtccC mutant strain of P. taiwanensis, which has a knockout mutation in the tccC gene, only induced 42.2% mortality in P. xylostella, even at a high bacterial dose (OD = 2.0. TccC protein was cleaved into two fragments, an N-terminal fragment containing an Rhs-like domain and a C-terminal fragment containing a Glt symporter domain and a TraT domain, which might contribute to antioxidative stress activity and defense against macrophagosis, respectively. Interestingly, the primary structure of the C-terminal region of TccC in P. taiwanensis is unique among pathogens. Membrane localization of the C-terminal fragment of TccC was proven by flow cytometry. Sonicated pellets of P. taiwanensis ΔtccC strain had lower toxicity against the Sf9 insect cell line and P. xylostella larvae than the wild type. We also found that infection of Sf9 and LD652Y-5d cell lines with P. taiwanensis induced apoptotic cell death. Further, natural oral infection by P. taiwanensis triggered expression of host programmed cell death-related genes JNK-2 and caspase-3.

  9. Silver(I) complexes with phthalazine and quinazoline as effective agents against pathogenic Pseudomonas aeruginosa strains.

    Science.gov (United States)

    Glišić, Biljana Đ; Senerovic, Lidija; Comba, Peter; Wadepohl, Hubert; Veselinovic, Aleksandar; Milivojevic, Dusan R; Djuran, Miloš I; Nikodinovic-Runic, Jasmina

    2016-02-01

    Five silver(I) complexes with aromatic nitrogen-containing heterocycles, phthalazine (phtz) and quinazoline (qz), were synthesized, characterized and analyzed by single-crystal X-ray diffraction analysis. Although different AgX salts reacted with phtz, only dinuclear silver(I) complexes of the general formula {[Ag(X-O)(phtz-N)]2(μ-phtz-N,N')2} were formed, X=NO3(-) (1), CF3SO3(-) (2) and ClO4(-) (3). However, reactions of qz with an equimolar amount of AgCF3SO3 and AgBF4 resulted in the formation of polynuclear complexes, {[Ag(CF3SO3-O)(qz-N)]2}n (4) and {[Ag(qz-N)][BF4]}n (5). Complexes 1-5 were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound and nosocomial infections. The obtained results indicate that all tested silver(I) complexes have good antibacterial activity with MIC (minimum inhibitory concentration) values in the range from 2.9 to 48.0μM against the investigated strains. Among the investigated strains, these complexes were particularly efficient against pathogenic Pseudomonas aeruginosa (MIC=2.9-29μM) and had a marked ability to disrupt clinically relevant biofilms of strains with high inherent resistance to antibiotics. On the other hand, their activity against the fungus Candida albicans was moderate. In order to determine the therapeutic potential of silver(I) complexes 1-5, their antiproliferative effect on the human lung fibroblastic cell line MRC5, has been also evaluated. The binding of complexes 1-5 to the genomic DNA of P. aeruginosa was demonstrated by gel electrophoresis techniques and well supported by molecular docking into the DNA minor groove. All investigated complexes showed an improved cytotoxicity profile in comparison to the clinically used AgNO3.

  10. Plant systems for recognition of pathogen-associated molecular patterns.

    Science.gov (United States)

    Postel, Sandra; Kemmerling, Birgit

    2009-12-01

    Research of the last decade has revealed that plant immunity consists of different layers of defense that have evolved by the co-evolutional battle of plants with its pathogens. Particular light has been shed on PAMP- (pathogen-associated molecular pattern) triggered immunity (PTI) mediated by pattern recognition receptors. Striking similarities exist between the plant and animal innate immune system that point for a common optimized mechanism that has evolved independently in both kingdoms. Pattern recognition receptors (PRRs) from both kingdoms consist of leucine-rich repeat receptor complexes that allow recognition of invading pathogens at the cell surface. In plants, PRRs like FLS2 and EFR are controlled by a co-receptor SERK3/BAK1, also a leucine-rich repeat receptor that dimerizes with the PRRs to support their function. Pathogens can inject effector proteins into the plant cells to suppress the immune responses initiated after perception of PAMPs by PRRs via inhibition or degradation of the receptors. Plants have acquired the ability to recognize the presence of some of these effector proteins which leads to a quick and hypersensitive response to arrest and terminate pathogen growth.

  11. Genome sequence of the plant growth-promoting rhizobacterium Pseudomonas putida S11.

    Science.gov (United States)

    Ponraj, Paramasivan; Shankar, Manoharan; Ilakkiam, Devaraj; Rajendhran, Jeyaprakash; Gunasekaran, Paramasamy

    2012-11-01

    Here we report the genome sequence of a plant growth-promoting rhizobacterium, Pseudomonas putida S11. The length of the draft genome sequence is approximately 5,970,799 bp, with a G+C content of 62.4%. The genome contains 6,076 protein-coding sequences.

  12. Evolutionary history of the phl gene cluster in the plant-associated bacterium Pseudomonas fluorescens

    NARCIS (Netherlands)

    Moynihan, J.A.; Morrissey, J.P.; Coppoolse, E.; Stiekema, W.J.; O'Gara, F.; Boyd, E.F.

    2009-01-01

    Pseudomonas fluorescens is of agricultural and economic importance as a biological control agent largely because of its plant-association and production of secondary metabolites, in particular 2, 4-diacetylphloroglucinol (2, 4-DAPG). This polyketide, which is encoded by the eight gene phl cluster,

  13. How do filamentous pathogens deliver effector proteins into plant cells?

    Directory of Open Access Journals (Sweden)

    Benjamin Petre

    2014-02-01

    Full Text Available Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens.

  14. How Do Filamentous Pathogens Deliver Effector Proteins into Plant Cells?

    Science.gov (United States)

    Petre, Benjamin; Kamoun, Sophien

    2014-01-01

    Fungal and oomycete plant parasites are among the most devastating pathogens of food crops. These microbes secrete effector proteins inside plant cells to manipulate host processes and facilitate colonization. How these effectors reach the host cytoplasm remains an unclear and debated area of plant research. In this article, we examine recent conflicting findings that have generated discussion in the field. We also highlight promising approaches based on studies of both parasite and host during infection. Ultimately, this knowledge may inform future broad spectrum strategies for protecting crops from such pathogens. PMID:24586116

  15. The use of plants to protect plants and food against fungal pathogens

    African Journals Online (AJOL)

    The use of plants to protect plants and food against fungal pathogens: a review. ... associated with these chemicals have motivated researchers and cultivators to ... may be lower if the different compounds affect a different metabolic process.

  16. Plant growth promoting potential of pseudomonas sp. SP0113 isolated from potable water from a closed water well

    Directory of Open Access Journals (Sweden)

    Przemieniecki Wojciech Sebastian

    2015-01-01

    Full Text Available The Pseudomonas sp. SP0113 strain from a partially closed aquatic environment was identified as a plant growth promoting bacterium (PGPB. Laboratory tests revealed that PS0113 has multiple plant growth promoting traits, including mineral phosphate solubilizing ability, ammonifying ability that increases nitrogen availability for plants via the root system, and phosphatase activity that plays an important role in organic phosphorus mineralization. Tricalcium phosphate (Ca3(PO42 solubilizing ability was described as average (2-3 mm after 7 days of incubation and as high (>3 mm after 14 days of incubation. The analyzed bacterium was an antagonist of major crop pathogenic fungi. A high degree of pathogen growth inhibition was reported with regard to Rhizoctonia solani (38%, whereas the tested strain's ability to inhibit the growth of fungi of the genera Fusarium and Microdochium nivalis was somewhat lower at 20-29%. The bacterium proliferated in Roundup 360 SL solutions with concentrations of 0.1, 1 and 10 mg•ml-1.

  17. Changing fitness of a necrotrophic plant pathogen under increasing temperature.

    Science.gov (United States)

    Sabburg, Rosalie; Obanor, Friday; Aitken, Elizabeth; Chakraborty, Sukumar

    2015-08-01

    Warmer temperatures associated with climate change are expected to have a direct impact on plant pathogens, challenging crops and altering plant disease profiles in the future. In this study, we have investigated the effect of increasing temperature on the pathogenic fitness of Fusarium pseudograminearum, an important necrotrophic plant pathogen associated with crown rot disease of wheat in Australia. Eleven wheat lines with different levels of crown rot resistance were artificially inoculated with F. pseudograminearum and maintained at four diurnal temperatures 15/15°C, 20/15°C, 25/15°C and 28/15°C in a controlled glasshouse. To quantify the success of F. pseudograminearum three fitness measures, these being disease severity, pathogen biomass in stem base and flag leaf node, and deoxynivalenol (DON) in stem base and flag leaf node of mature plants were used. F. pseudograminearum showed superior overall fitness at 15/15°C, and this was reduced with increasing temperature. Pathogen fitness was significantly influenced by the level of crown rot resistance of wheat lines, but the influence of line declined with increasing temperature. Lines that exhibited superior crown rot resistance in the field were generally associated with reduced overall pathogen fitness. However, the relative performance of the wheat lines was dependent on the measure of pathogen fitness, and lines that were associated with one reduced measure of pathogen fitness did not always reduce another. There was a strong correlation between DON in stem base tissue and disease severity, but length of browning was not a good predictor of Fusarium biomass in the stem base. We report that a combination of host resistance and rising temperature will reduce pathogen fitness under increasing temperature, but further studies combining the effect of rising CO2 are essential for more realistic assessments. © 2015 John Wiley & Sons Ltd.

  18. Host-Pathogen Interactions: VII. Plant Pathogens Secrete Proteins which Inhibit Enzymes of the Host Capable of Attacking the Pathogen.

    Science.gov (United States)

    Albersheim, P; Valent, B S

    1974-05-01

    The results presented demonstrate that microbial pathogens of plants have the ability to secrete proteins which effectively inhibit an enzyme synthesized by the host; an enzyme whose substrate is a constituent of the cell wall of the pathogen. The system in which this was discovered is the anthracnose-causing fungal pathogen (Colletotrichum lindemuthianum) and its host, the French bean (Phaseolus vulgaris). An endo-beta-1, 3-glucanase present in the bean leaves is specifically inhibited by a protein secreted by C. lindemuthianum. The cell walls of C. lindemuthianum are shown to be composed largely of a 1, 3-glucan.

  19. Pseudomonas genomes: diverse and adaptable.

    Science.gov (United States)

    Silby, Mark W; Winstanley, Craig; Godfrey, Scott A C; Levy, Stuart B; Jackson, Robert W

    2011-07-01

    Members of the genus Pseudomonas inhabit a wide variety of environments, which is reflected in their versatile metabolic capacity and broad potential for adaptation to fluctuating environmental conditions. Here, we examine and compare the genomes of a range of Pseudomonas spp. encompassing plant, insect and human pathogens, and environmental saprophytes. In addition to a large number of allelic differences of common genes that confer regulatory and metabolic flexibility, genome analysis suggests that many other factors contribute to the diversity and adaptability of Pseudomonas spp. Horizontal gene transfer has impacted the capability of pathogenic Pseudomonas spp. in terms of disease severity (Pseudomonas aeruginosa) and specificity (Pseudomonas syringae). Genome rearrangements likely contribute to adaptation, and a considerable complement of unique genes undoubtedly contributes to strain- and species-specific activities by as yet unknown mechanisms. Because of the lack of conserved phenotypic differences, the classification of the genus has long been contentious. DNA hybridization and genome-based analyses show close relationships among members of P. aeruginosa, but that isolates within the Pseudomonas fluorescens and P. syringae species are less closely related and may constitute different species. Collectively, genome sequences of Pseudomonas spp. have provided insights into pathogenesis and the genetic basis for diversity and adaptation.

  20. Antimicrobial Activity of Various Plant Extracts on Pseudomonas Species Associated with Spoilage of Chilled Fish

    Directory of Open Access Journals (Sweden)

    Osan Bahurmiz

    2016-11-01

    Full Text Available The antimicrobial activity of various plant extracts on Pseudomonas bacteria isolated from spoiled chilled tilapia (Oreochromis sp. was evaluated in this study. In the first stage of this study, red tilapia was subjected to chilled storage (4°C for 3 weeks, and spoilage bacteria were isolated and identified from the spoiled fish. Pseudomonas was the dominant bacteria isolated from the spoiled fish and further identification revealed that P. putida, P. fluorescens and Pseudomonas spp. were the main species of this group. In the second stage, methanolic extracts of 15 selected plant species were screened for their antimicrobial activity, by agar disc diffusion method, against the Pseudomonas isolates. Results indicated that most of the extracts had different degrees of activity against the bacterial isolates. The strongest activity was exhibited by bottlebrush flower (Callistemon viminalis extract. This was followed by extracts from guava bark (Psidium guajava and henna leaf (Lawsonia inermis. Moderate antimicrobial activities were observed in extracts of clove (Syzygium aromaticum, leaf and peel of tamarind (Tamarindus indica, cinnamon bark (Cinnamomum zeylanicum, wild betel leaf (Piper sarmentosum and fresh thyme (Thymus spp.. Weak or no antimicrobial activity was observed from the remaining extracts. The potential antimicrobial activity shown by some plant extracts in this study could significantly contribute to the fish preservation.

  1. Molecular diversity at the plant-pathogen interface.

    Science.gov (United States)

    McDowell, John M; Simon, Stacey A

    2008-01-01

    Plants have evolved a robust innate immune system that exhibits striking similarities as well as significant differences with various metazoan innate immune systems. For example, plants are capable of perceiving pathogen-associated molecular patterns through pattern recognition receptors that bear structural similarities to animal Toll-like receptors. In addition, plants have evolved a second surveillance system based on cytoplasmic "NB-LRR" proteins (nucleotide-binding, leucine-rich repeat) that are structurally similar to animal nucleotide-binding and oligomerization domain (NOD)-like receptors. Plant NB-LRR proteins do not detect PAMPs; rather, they perceive effector proteins that pathogens secrete into plant cells to promote virulence. This review summarizes the current state of knowledge about the molecular functionality and evolution of these immune surveillance genes.

  2. Stress-and Pathogen-Induced Arabidopsis WRKY48 is a Transcriptional Activator that Represses Plant Basal Defense

    Institute of Scientific and Technical Information of China (English)

    Deng-Hui Xing; Zi-Bing Lai; Zu-Yu Zheng; K. M. Vinod; Bao-Fang Fan; Zhi-Xiang Chen

    2008-01-01

    Plant WRKY transcription factors can function as either positive or negative regulators of plant basal disease resistance. Arabidopsis WRKY48 is induced by mechanical and/or osmotic stress due to infiltration and pathogen infection and, therefore, may play a role in plant defense responses. WRKY48 is localized to the nucleus, recognizes the TrGACC Wbox sequence with a high affinity in vitro and functions in plant cells as a strong transcriptional activator. To determine the biological functions directly, we have isolated loss-of-function T-DNA insertion mutants and generated gain-of-function transgenic overexpression plants for WRKY48 in Arabidopsis. Growth of a virulent strain of the bacterial pathogen Pseudomonas syringae was decreased in the wrky48T-DNA insertion mutants. The enhanced resistance of the loss-of-function mutants was associated with increased induction of salicylic acid-regulated PR1 by the bacterial pathogen. By contrast, transgenic WRKY48-0verexpressing plants support enhanced growth of P syringae and the enhanced susceptibility was associated with reduced expression of defense-related PR genes. These results suggest that WRKY48 is a negative regulator of PR gene expression and basal resistance to the bacterial pathogen P syringae.

  3. Mining Genomes of Biological Control Strains of Pseudomonas spp.: Unexpected Gems and Tailings

    Science.gov (United States)

    The biocontrol bacterium Pseudomonas fluorescens Pf-5 suppresses numerous soilborne plant diseases and produces an array of structurally-characterized secondary metabolites that are toxic to plant pathogenic bacteria, fungi and Oomycetes. Biosynthetic gene clusters for these metabolites compose nea...

  4. Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus.

    Science.gov (United States)

    Ruffner, Beat; Péchy-Tarr, Maria; Höfte, Monica; Bloemberg, Guido; Grunder, Jürg; Keel, Christoph; Maurhofer, Monika

    2015-08-16

    Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution.

  5. Fungicide resistance assays for fungal plant pathogens.

    Science.gov (United States)

    Secor, Gary A; Rivera, Viviana V

    2012-01-01

    Fungicide resistance assays are useful to determine if a fungal pathogen has developed resistance to a fungicide used to manage the disease it causes. Laboratory assays are used to determine loss of sensitivity, or resistance, to a fungicide and can explain fungicide failures and for developing successful fungicide recommendations in the field. Laboratory assays for fungicide resistance are conducted by measuring reductions in growth or spore germination of fungi in the presence of fungicide, or by molecular procedures. This chapter describes two techniques for measuring fungicide resistance, using the sugarbeet leaf spot fungus Cercospora beticola as a model for the protocol. Two procedures are described for fungicides from two different classes; growth reduction for triazole (sterol demethylation inhibitor; DMI) fungicides, and inhibition of spore germination for quinone outside inhibitor (QoI) fungicides.

  6. Identification of a genomic island present in the majority of pathogenic isolates of Pseudomonas aeruginosa.

    Science.gov (United States)

    Liang, X; Pham, X Q; Olson, M V; Lory, S

    2001-02-01

    Pseudomonas aeruginosa, a ubiquitous gram-negative bacterium, is capable of colonizing a wide range of environmental niches and can also cause serious infections in humans. In order to understand the genetic makeup of pathogenic P. aeruginosa strains, a method of differential hybridization of arrayed libraries of cloned DNA fragments was developed. An M13 library of DNA from strain X24509, isolated from a patient with a urinary tract infection, was screened using a DNA probe from P. aeruginosa strain PAO1. The genome of PAO1 has been recently sequenced and can be used as a reference for comparisons of genetic organization in different strains. M13 clones that did not react with a DNA probe from PAO1 carried X24509-specific inserts. When a similar array hybridization analysis with DNA probes from different strains was used, a set of M13 clones which carried sequences present in the majority of human P. aeruginosa isolates from a wide range of clinical sources was identified. The inserts of these clones were used to identify cosmids encompassing a contiguous 48.9-kb region of the X24509 chromosome called PAGI-1 (for "P. aeruginosa genomic island 1"). PAGI-1 is incorporated in the X24509 chromosome at a locus that shows a deletion of a 6,729-bp region present in strain PAO1. Survey of the incidence of PAGI-1 revealed that this island is present in 85% of the strains from clinical sources. Approximately half of the PAGI-1-carrying strains show the same deletion as X24509, while the remaining strains contain both the PAGI-1 sequences and the 6,729-bp PAO1 segment. Sequence analysis of PAGI-1 revealed that it contains 51 predicted open reading frames. Several of these genes encoded products with predictable function based on their sequence similarities to known genes, including insertion sequences, determinants of regulatory proteins, a number of dehydrogenase gene homologs, and two for proteins of implicated in detoxification of reactive oxygen species. It is very

  7. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi.

    Science.gov (United States)

    Kubicek, Christian P; Starr, Trevor L; Glass, N Louise

    2014-01-01

    Approximately a tenth of all described fungal species can cause diseases in plants. A common feature of this process is the necessity to pass through the plant cell wall, an important barrier against pathogen attack. To this end, fungi possess a diverse array of secreted enzymes to depolymerize the main structural polysaccharide components of the plant cell wall, i.e., cellulose, hemicellulose, and pectin. Recent advances in genomic and systems-level studies have begun to unravel this diversity and have pinpointed cell wall-degrading enzyme (CWDE) families that are specifically present or enhanced in plant-pathogenic fungi. In this review, we discuss differences between the CWDE arsenal of plant-pathogenic and non-plant-pathogenic fungi, highlight the importance of individual enzyme families for pathogenesis, illustrate the secretory pathway that transports CWDEs out of the fungal cell, and report the transcriptional regulation of expression of CWDE genes in both saprophytic and phytopathogenic fungi.

  8. Bacteriocins active against plant pathogenic bacteria.

    Science.gov (United States)

    Grinter, Rhys; Milner, Joel; Walker, Daniel

    2012-12-01

    Gram-negative phytopathogens cause significant losses in a diverse range of economically important crop plants. The effectiveness of traditional countermeasures, such as the breeding and introduction of resistant cultivars, is often limited by the dearth of available sources of genetic resistance. An alternative strategy to reduce loss to specific bacterial phytopathogens is to use narrow-spectrum protein antibiotics such as colicin-like bacteriocins as biocontrol agents. A number of colicin-like bacteriocins active against phytopathogenic bacteria have been described previously as have strategies for their application to biocontrol. In the present paper, we discuss these strategies and our own recent work on the identification and characterization of candidate bacteriocins and how these potent and selective antimicrobial agents can be effectively applied to the control of economically important plant disease.

  9. Pathogenic amoebae in power-plant cooling lakes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tyndall, R.L.; Willaert, E.; Stevens, A.R.

    1981-06-01

    Cooling waters and associated algae and sediments from four northern and four southern/western electric power plants were tested for the presence of pathogenic amoebae. Unheated control waters and algae/sediments from four northern and five southern/western sites were also tested. When comparing results from the test versus control sites, a significantly higher proportion (P less than or equal to 0.05) of the samples from the test sites were positive for thermophilic amoeba, thermophilic Naegleria and pathogenic Naegleria. The difference in number of samples positive for thermophilic Naegleria between heated and unheated waters, however, was attributable predominantly to the northern waters and algae/sediments. While two of four northern test sites yielded pathogenic Naegleria, seven of the eight isolates were obtained from one site. Seasonality effects relative to the isolation of the pathogen were also noted at this site. One pathogen was isolated from a southwestern test site. Pathogens were not isolated from any control sites. Some of the pathogenic isolates were analyzed serologically and classified as pathogenic Naegleria fowleri. Salinity, pH, conductivity, and bacteriological profiles did not obviously correlate with the presence or absence of pathogenic Naegleria. While thermal addition was significantly associated with the presence of thermophilic Naegleria (P less than or equal to 0.05), the data implicate other as yet undefined parameters associated with the presence of the pathogenic thermophile. Until further delineation of these parameters is effected, generalizations cannot be made concerning the effect of thermal impact on the growth of pathogenic amoeba in a particular cooling system.

  10. When genome-based approach meets the ‘old but good’: revealing genes involved in the antibacterial activity of Pseudomonas sp. P482 against soft rot pathogens.

    Directory of Open Access Journals (Sweden)

    Dorota Magdalena Krzyżanowska

    2016-05-01

    Full Text Available Dickeya solani and Pectobacterium carotovorum subsp. brasili¬ense are recently established species of bacterial plant pathogens causing black leg and soft rot of many vegetables and ornamental plants. Pseudomonas sp. strain P482 inhibits the growth of these pathogens, a desired trait considering the limited measures to combat these diseases. In this study, we determined the genetic background of the antibacterial activity of P482, and established the phylogenetic position of this strain.Pseudomonas sp. P482 was classified as Pseudomonas donghuensis. Genome mining revealed that the P482 genome does not contain genes determining the synthesis of known antimicrobials. However, the ClusterFinder algorithm, designed to detect atypical or novel classes of secondary metabolite gene clusters, predicted 18 such clusters in the genome. Screening of a Tn5 mutant library yielded an antimicrobial negative transposon mutant. The transposon insertion was located in a gene encoding an HpcH/HpaI aldolase/citrate lyase family protein. This gene is located in a hypothetical cluster predicted by the ClusterFinder, together with the downstream homologues of four nfs genes, that confer production of a nonfluorescent siderophore by P. donghuensis HYST. Site-directed inactivation of the HpcH/HpaI aldolase gene, the adjacent short chain dehydrogenase gene, as well as a homologue of an essential nfs cluster gene, all abolished the antimicrobial activity of the P482, suggesting their involvement in a common biosynthesis pathway. However, none of the mutants showed a decreased siderophore yield, neither was the antimicrobial activity of the wild type P482 compromised by high iron bioavailability.A genomic region comprising the nfs cluster and three upstream genes is involved in the antibacterial activity of P. donghuensis P482 against D. solani and P. carotovorum subsp. brasiliense. The genes studied are unique to the two known P. donghuensis strains. This study

  11. Distribution of Pseudomonas Species in a Dairy Plant Affected by Occasional Blue Discoloration

    Science.gov (United States)

    Lomonaco, Sara; Nucera, Daniele; Garoglio, Davide; Dalmasso, Alessandra; Civera, Tiziana

    2014-01-01

    During 2010 many cases of discoloration in mozzarella, popularly termed as blue mozzarella, have been reported to the attention of public opinion. Causes of the alteration were bacteria belonging to the genus Pseudomonas. The strong media impact of such cases has created confusion, not only among consumers, but also among experts. In order to help improving the knowledge on microbial ecology of this microorganism a study has been set up with the collaboration of a medium-sized dairy plant producing fresh mozzarella cheese, with occasional blue discoloration, conducting surveys and sampling in the pre-operational, operational and post-operational process phase, milk before and after pasteurization, water (n=12), environmental surfaces (n=22) and the air (n=27). A shelf life test was conducted on finished products stored at different temperatures (4-8°C). Among the isolates obtained from the microbiological analysis of the samples, 60 were subjected to biomolecular tests in order to confirm the belonging to Pseudomonas genus and to get an identification at species level by the amplification and sequencing of the gyrB gene. The results of microbiological tests demonstrated the presence of microorganisms belonging to the genus Pseudomonas along the entire production lane; molecular tests showed 7 different species among the 40 isolates identified. One particular species (Pseudomonas koreensis) was isolated from blue discolored mozzarella cheese and was indicated as the most relevant for the production plant, both for the distribution along the processing chain and for the consequences on the finished product.

  12. Influence of ethereal oils extracted from Lamiaceae family plants on some pathogen microorganisms

    Directory of Open Access Journals (Sweden)

    Klaus Anita S.

    2008-01-01

    Full Text Available As pathogen microorganisms can be found in different kinds of food, using of natural antimicrobial compounds, like ethereal oils, could be important in the preservation of different groceries. To evaluate antimicrobial activity of ethereal oils extracted from Lamiaceae family plants - Rosmarinus officinalis L., Thymus vulgaris L., Majorana hortensis M o e n c h, and Salvia officinalis L screening of their effects against food borne bacteria Staphylococcus aureus, Enterococcus faecalis, Proteus mirabilis, Salmonella enteritidis, Pseudomonas aeruginosa, Bacillus cereus, Bacillus subtilis, Escherichia coli, Escherichia coli O157:H7, Listeria monocytogenes and yeasts Candida albicans and Saccharomyces cerevisiae were applied. All investigated concentrations and pure Majorana hortensis and Thymus vulgaris ethereal oils showed microbicidal effect on majority of tested microorganisms.

  13. Plant Growth Promotion Induced by Phosphate Solubilizing Endophytic Pseudomonas Isolates

    Directory of Open Access Journals (Sweden)

    Nicholas eOtieno

    2015-07-01

    Full Text Available The use of plant growth promoting bacterial inoculants as live microbial biofertilisers provides a promising alternative to chemical fertilisers and pesticides. Inorganic phosphate solubilisation is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilise the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilisation. The study presented here describes the ability of endophytic bacterial isolates to produce gluconic acid, solubilise insoluble phosphate and stimulate the growth of Pea plants (Pisum sativum. This study also describes the genetic systems within three of these endophyte isolates thought to be responsible for their effective phosphate solubilising abilities. The results showed that many of the endophytic isolates produced gluconic acid (14-169 mM and have moderate to high phosphate solubilisation capacities (~ 400-1300 mg L-1. When inoculated to Pea plants grown in sand/soil under soluble phosphate limiting conditions, the endophyte isolates that produced medium to high levels of gluconic acid also displayed enhanced plant growth promotion effects.

  14. Plant integrity: an important factor in plant-pathogen interactions

    DEFF Research Database (Denmark)

    Orlowska, Elzbieta Zofia; Llorente, Briardo; Cvitanich, Cristina

    2013-01-01

    the hemibiotrophic oomycete pathogen Phytophthora infestans. Furthermore, in the Sarpo Mira–P. infestans interactions, the plant’s meristems, the stalks or both, seem to be associated with the development of the hypersensitive response and both the plant’s roots and shoots contain antimicrobial compounds when...

  15. SIDEROPHORE PRODUCING Pseudomonas AS PATHOGENIC Rhisoctonia solani AND Botrytis cinerea ANTAGONISTS

    Directory of Open Access Journals (Sweden)

    Martha Páez

    2005-06-01

    Full Text Available Pseudomonas aeruginosa, Pseudomonas putida biovar B, Pseudomonas marginalis y Burkholderia cepacia, aisladas de rizosfera y filosfera de plantas de rosa y alstroemeria, identificadas por ensayos bioquímicos y cultivadas en medio King B, mostraron propiedades antagónicas contra los patógenos (se usó medio PDA agar par el cultivo Rhizoctonia solani y Botrytis cinerea. Estas propiedades coincidieron con la presencia de un sideróforo, sustancia polar con bandas de absorción en 260 nm y 402 nm. Se observó incremento del crecimiento longitudinal de las plantas, medido sobre el tallo central, por influencia de P. putida biovar B, P. aeruginosa y P. marginalis. El crecimiento de rizomas (a: 0.05 fue notorio bajo la influencia de P. marginalis.

  16. Antibacterial activity of five Peruvian medicinal plants against Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Gabriela Ulloa-Urizar

    2015-11-01

    Conclusions: The results of the present study scientifically validate the inhibitory capacity of the five medicinal plants attributed by their common use in folk medicine and contribute towards the development of new treatment options based on natural products.

  17. Unraveling Plant Responses to Bacterial Pathogens through Proteomics

    Directory of Open Access Journals (Sweden)

    Tamara Zimaro

    2011-01-01

    Full Text Available Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens.

  18. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara

    2011-11-03

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  19. Drastic Attenuation of Pseudomonas aeruginosa Pathogenicity in a Holoxenic Mouse Experimental Model Induced by Subinhibitory Concentrations of Phenyllactic acid (PLA

    Directory of Open Access Journals (Sweden)

    Elena Sasarman

    2007-07-01

    Full Text Available The discovery of communication systems regulating bacterial virulence hasafforded a novel opportunity to control infectious bacteria without interfering withgrowth. In this paper we describe the effect of subinhibitory concentrations of phenyl-lactic acid (PLA on the pathogenicity of Pseudomonas aeruginosa in mice. The animalswere inoculated by oral (p.o., intranasal (i.n., intravenous (i.v. and intraperitoneal (i.p.routes with P. aeruginoasa wild and PLA-treated cultures. The mice were followed upduring 16 days after infection and the body weight, mortality and morbidity rate weremeasured every day. The microbial charge was studied by viable cell counts in lungs,spleen, intestinal mucosa and blood. The mice batches infected with wild P. aeruginosabacterial cultures exhibited high mortality rates (100 % after i.v. and i.p. route and veryhigh cell counts in blood, lungs, intestine and spleen. In contrast, the animal batchesinfected with PLA treated bacterial cultures exhibited good survival rates (0 % mortality and the viable cell counts in the internal organs revealed with one exception the complete abolition of the invasive capacity of the tested strains. In this study, using a mouse infection model we show that D-3-phenyllactic acid (PLA can act as a potent antagonist of Pseudomonas (P. aeruginosa pathogenicity, without interfering with the bacterial growth, as demonstrated by the improvement of the survival rates as well as the clearance of bacterial strains from the body.

  20. Drastic Attenuation of Pseudomonas aeruginosa Pathogenicity in a Holoxenic Mouse Experimental Model Induced by Subinhibitory Concentrations of Phenyllactic acid (PLA)

    Science.gov (United States)

    Chifiriuc, Mariana–Carmen; Veronica, Lazar; Dracea, Olguta; Ditu, Lia-Mara; Smarandache, Diana; Bucur, Marcela; Larion, Cristina; Cernat, Ramona; Sasarman, Elena

    2007-01-01

    The discovery of communication systems regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. In this paper we describe the effect of subinhibitory concentrations of phenyllactic acid (PLA) on the pathogenicity of Pseudomonas aeruginosa in mice. The animals were inoculated by oral (p.o.), intranasal (i.n.), intravenous (i.v.) and intraperitoneal (i.p.) routes with P. aeruginoasa wild and PLA-treated cultures. The mice were followed up during 16 days after infection and the body weight, mortality and morbidity rate were measured every day. The microbial charge was studied by viable cell counts in lungs, spleen, intestinal mucosa and blood. The mice batches infected with wild P. aeruginosa bacterial cultures exhibited high mortality rates (100 % after i.v. and i.p. route) and very high cell counts in blood, lungs, intestine and spleen. In contrast, the animal batches infected with PLA treated bacterial cultures exhibited good survival rates (0 % mortality) and the viable cell counts in the internal organs revealed with one exception the complete abolition of the invasive capacity of the tested strains. In this study, using a mouse infection model we show that D-3-phenyllactic acid (PLA) can act as a potent antagonist of Pseudomonas (P.) aeruginosa pathogenicity, without interfering with the bacterial growth, as demonstrated by the improvement of the survival rates as well as the clearance of bacterial strains from the body.

  1. Avirulence proteins of plant pathogens: determinants of victory and defeat

    NARCIS (Netherlands)

    Luderer, R.; Joosten, M.H.A.J.

    2001-01-01

    The simplest way to explain the biochemical basis of the gene-for-gene concept is by direct interaction between a pathogen-derived avirulence (Avr) gene product and a receptor protein, which is encoded by the matching resistance (R) gene of the host plant. The number of R genes for which the

  2. The Top 10 fungal pathogens in molecular plant pathology

    NARCIS (Netherlands)

    Dean, R.; Kan, van J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Pietro, Di A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; Foster, G.D.

    2012-01-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a ‘Top 10’ based on scientific/economic importance. The survey generated 495 votes from the international co

  3. Splash : the dispersal of fungal plant pathogens in rain events

    NARCIS (Netherlands)

    Pielaat, A.

    2000-01-01

    Models were developed to study splash dispersal of fungal plant pathogens in space and time. The models incorporate the main mechanisms involved in splash dispersal, that is 1. A raindrop hits the thin water film on the crop surface containing spores and spores are dispersed in the splashing rain dr

  4. The Top 10 fungal pathogens in molecular plant pathology

    NARCIS (Netherlands)

    Dean, R.; Kan, van J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Pietro, Di A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; Foster, G.D.

    2012-01-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a ‘Top 10’ based on scientific/economic importance. The survey generated 495 votes from the international

  5. The Top 10 fungal pathogens in molecular plant pathology

    NARCIS (Netherlands)

    Dean, R.; Kan, van J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Pietro, Di A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; Foster, G.D.

    2012-01-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a ‘Top 10’ based on scientific/economic importance. The survey generated 495 votes from the international co

  6. Microbial populations responsible for specific soil suppressiveness to plant pathogens

    NARCIS (Netherlands)

    Weller, D.M.; Raaijmakers, J.M.; McSpadden Gardener, B.B.; Thomashow, L.S.

    2002-01-01

    Agricultural soils suppressive to soilborne plant pathogens occur worldwide, and for several of these soils the biological basis of suppressiveness has been described. Two classical types of suppressiveness are known. General suppression owes its activity to the total microbial biomass in soil and i

  7. Improving ITS sequence data for identification of plant pathogenic fungi

    Science.gov (United States)

    R. Henrik Nilsson; Kevin D. Hyde; Julia Pawłowska; Martin Ryberg; Leho Tedersoo; Anders Bjørnsgard Aas; Siti A. Alias; Artur Alves; Cajsa Lisa Anderson; Alexandre Antonelli; A. Elizabeth Arnold; Barbara Bahnmann; Mohammad Bahram; Johan Bengtsson-Palme; Anna Berlin; Sara Branco; Putarak Chomnunti; Asha Dissanayake; Rein Drenkhan; Hanna Friberg; Tobias Guldberg Frøslev; Bettina Halwachs; Martin Hartmann; Beatrice Henricot; Ruvishika Jayawardena; Ari Jumpponen; Håvard Kauserud; Sonja Koskela; Tomasz Kulik; Kare Liimatainen; Björn D. Lindahl; Daniel Lindner; Jian-Kui Liu; Sajeewa Maharachchikumbura; Dimuthu Manamgoda; Svante Martinsson; Maria Alice Neves; Tuula Niskanen; Stephan Nylinder; Olinto Liparini Pereira; Danilo Batista Pinho; Teresita M. Porter; Valentin Queloz; Taavi Riit; Marisol Sánchez-García; Filipe de Sousa; Emil Stefańczyk; Mariusz Tadych; Susumu Takamatsu; Qing Tian; Dhanushka Udayanga; Martin Unterseher; Zheng Wang; Saowanee Wikee; Jiye Yan; Ellen Larsson; Karl-Henrik Larsson; Urmas Kõljalg; Kessy Abarenkov

    2014-01-01

    Plant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult...

  8. Anti-pseudomona and Anti-bacilli Activity of Some Medicinal Plants of Iran

    Directory of Open Access Journals (Sweden)

    Gholam Hosein Shahidi Bonjar

    2003-10-01

    Full Text Available The use of plants in treatment of burns, dermatophytes, and infectious diseases is common in traditional medicine of Iran. Based on ethno pharmacological and taxonomic information, antibacterial activities of methanol extracts of some medicinal plants of Iran were determined by In Vitro bioassays using agar diffusion-method against standard strains of Pseudomonas aeruginosa, P. fluorescens, Bacillus subtilis, B. cereus and B. pumilis at 20 mg/ml. From 180 plant species of 72 families, 78 species (43.3% in 42 families (58.3% showed antibacterial activities against B. cereus (88.4%, B. subtilis (39.7%, B. pumilis (37.1%, P. fluorescens (37.1% and P. aeruginos (10.2%. The most active plant families were Apiaceae, Compositae and Labiatae with 9, 8 and 7 active plant species respectively. Minimum inhibitory concentrations (MIC of the active plants were determined using two fold serial dilutions. Most active plant against Bacilli was Myrtus communis L. with MIC of 1.87 mg/ml. For Pseudomonas species, Dianthus caryophyllus L. and Terminalia chebula (Gaertner Retz. were more active with the MIC of 0.46 mg/ml for P. fluorescens and of 1.87 mg/ml for P. aeruginosa respectively.

  9. High quality permanent draft genome sequence of Phaseolibacter flectens ATCC 12775(T), a plant pathogen of French bean pods.

    Science.gov (United States)

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Lapidus, Alla; Copeland, Alex; Reddy, Tbk; Huntemann, Marcel; Pillay, Manoj; Markowitz, Victor; Göker, Markus; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos C; Halpern, Malka

    2016-01-01

    Phaseolibacter flectens strain ATCC 12775(T) (Halpern et al., Int J Syst Evol Microbiol 63:268-273, 2013) is a Gram-negative, rod shaped, motile, aerobic, chemoorganotroph bacterium. Ph. flectens is as a plant-pathogenic bacterium on pods of French bean and was first identified by Johnson (1956) as Pseudomonas flectens. After its phylogenetic position was reexamined, Pseudomonas flectens was transferred to the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Here we describe the features of this organism, together with the draft genome sequence and annotation. The DNA GC content is 44.34 mol%. The chromosome length is 2,748,442 bp. It encodes 2,437 proteins and 89 RNA genes. Ph. flectens genome is part of the Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes study.

  10. Assessment of the relevance of the antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine from Pantoea agglomerans biological control strains against bacterial plant pathogens

    Science.gov (United States)

    Sammer, Ulrike F; Reiher, Katharina; Spiteller, Dieter; Wensing, Annette; Völksch, Beate

    2012-01-01

    The epiphyte Pantoea agglomerans 48b/90 (Pa48b) is a promising biocontrol strain against economically important bacterial pathogens such as Erwinia amylovora. Strain Pa48b produces the broad-spectrum antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine (APV) in a temperature-dependent manner. An APV-negative mutant still suppressed the E. amylovora population and fire blight disease symptoms in apple blossom experiments under greenhouse conditions, but was inferior to the Pa48b wild-type indicating the influence of APV in the antagonism. In plant experiments with the soybean pathogen Pseudomonas syringae pv. glycinea both, Pa48b and the APV-negative mutant, successfully suppressed the pathogen. Our results demonstrate that the P. agglomerans strain Pa48b is an efficient biocontrol organism against plant pathogens, and we prove its ability for fast colonization of plant surfaces over a wide temperature range. PMID:23233458

  11. Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies

    DEFF Research Database (Denmark)

    Hassett, Daniel J; Korfhagen, Thomas R; Irvin, Randall T;

    2010-01-01

    CF airway mucus can be infected by opportunistic microorganisms, notably Pseudomonas aeruginosa. Once organisms are established as biofilms, even the most potent antibiotics have little effect on their viability, especially during late-stage chronic infections. Better understanding of the mechani...... of the mechanisms used by P. aeruginosa to circumvent host defenses and therapeutic intervention strategies is critical for advancing novel treatment strategies....

  12. The Pseudomonas aeruginosa Pathogenicity Island PAPI-1 is transferred via a novel Type IV pilus

    Science.gov (United States)

    Pseudomonas aeruginosa is a major cause of nosocomial infections, particularly in immunocompromised patients or in individuals with cystic fibrosis. The notable ability of P. aeruginosa to inhabit a broad range of environments including humans is in part due to its large and diverse genomic repertoi...

  13. Inhibitory effect against pathogenic and spoilage bacteria of Pseudomonas strains isolated from spoiled and fresh fish.

    Science.gov (United States)

    Gram, L

    1993-01-01

    The antibacterial effects of 209 Pseudomonas strains isolated from spoiled iced fish and newly caught fish were assessed by screening target organisms in agar diffusion assays. One-third (67 strains) inhibited the growth of one or several of six target organisms (Escherichia coli, Shewanella putrefaciens, Aeromonas sobria, Pseudomonas fluorescens, Listeria monocytogenes, and Staphylococcus aureus), of which S. aureus and A. sobria were the most sensitive. The inhibitory action was most pronounced among the strains producing siderophores, and the presence of iron eliminated the antibacterial effect of two-thirds of the inhibitory strains. Siderophore-mediated competition for iron may explain the inhibitory activity of these strains. All but nine of the inhibiting strains were found to inhibit the growth of 38 psychrotrophic S. putrefaciens strains isolated from spoiling fish and fish products. Siderophore-containing Pseudomonas culture supernatants inhibited growth of S. putrefaciens, as did the addition of iron chelators (ethylenediamine dihydroxyphenylacetic acid [EDDHA]). In particular, Pseudomonas strains isolated from newly caught and spoiled Nile perch (Lates niloticus) inhibited S. putrefaciens. This suggests that microbial interaction (e.g., competition or antagonism) may influence the selection of a microflora for some chilled food products. PMID:8357253

  14. Antibacterial activity of ethanolic extracts of selected medicinal plants against human pathogens

    Institute of Scientific and Technical Information of China (English)

    Renisheya Joy Jeba Malar T; Johnson M; Mary Uthith M; Arthy A

    2011-01-01

    Objective: To evaluate the antimicrobial potential of five medicinally important plants namely, Curcuma mangga (C. mangga) Valeton & Van Zijp, Ficus racemosa (F. racemosa) Roxb., Vitexnegundo (V. negundo) L., Ocimum basilicum (O. basilicum) L., and Etlingera elatior (E. elatior) K. Schum. against the human bacterial pathogens. Methods: The Klebsiella pneumonia (K.pneumonia ), Staphylococcus aureus (S. aureus) (ATCC 6538), Salmonella typhi (S. typhi) (MTCC 733), Proteus vulgaris (P. vulgaris), Pseudomonas aeruginosa (P. aeruginosa) were isolated from clinical samples. The bacteria were identified and confirmed by conventional microbiology procedure. Antimicrobial study was carried out by disc diffusion method against the pathogens by using the crude ethanolic extracts. Results: The results of the present study showed the presence of wide spectrum of antibacterial activities against all the above bacterial pathogens studied. The maximum zone of inhibition observed for each bacterium was as follows: S. typhi (12 mm), K. pneumonia (13 mm), P. vulgaris (20 mm), P. aeruginosa (16 mm) and S. aureus (12 mm).Conclusions:The present study demonstrates that the C. mangga, F. racemosa, V. negundo, O. basilicum, and E. elatior are potentially good sources of antibacterial agents against the pathogensviz., K. pneumonia, S. aureus, S. typhi, P. vulgaris and P. aeruginosa.

  15. Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives.

    Science.gov (United States)

    Puopolo, Gerardo; Masi, Marco; Raio, Aida; Andolfi, Anna; Zoina, Astolfo; Cimmino, Alessio; Evidente, Antonio

    2013-01-01

    Pseudomonas chlororaphis subsp. aureofaciens strain M71 produced two phenazine compounds as main secondary metabolites. These metabolites were identified as phenazine-1-carboxylic acid (PCA) and 2-hydroxyphenazine (2-OH P). In this study, the spectrum of the activity of PCA and 2-OH P was evaluated against a group of crop and forestal plant pathogenic fungi by an agar plate bioassay. PCA was active against most of the tested plant pathogens, while 2-OH P slightly inhibited a few fungal species. Furthermore, four semisynthesised derivatives of PCA (phenazine-1-carboxymethyl, phenazine-1-carboxamide, phenazine-1-hydroxymethyl and phenazine-1-acetoxymethyl) were assayed for their antifungal activity against 11 phytopathogenic species. Results showed that the carboxyl group is a structural feature important for the antifungal activity of PCA. Since the activity of phenazine-1-carboxymethyl and phenazine-1-carboxamide, the two more lipophilic and reversible PCA derivatives remained substantially unaltered compared with PCA.

  16. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    Science.gov (United States)

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J; Glick, Bernard R

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.

  17. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    Directory of Open Access Journals (Sweden)

    Jin Duan

    Full Text Available The plant growth-promoting bacterium (PGPB Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.

  18. Pseudomonas fluorescens filamentous hemagglutinin, an iron-regulated protein, is an important virulence factor that modulates bacterial pathogenicity

    Directory of Open Access Journals (Sweden)

    Yuan-yuan Sun

    2016-08-01

    Full Text Available Pseudomonas fluorescens is a common bacterial pathogen to a wide range of aquaculture animals including various species of fish. In this study, we employed proteomic analysis and identified filamentous hemagglutinin (FHA as an iron-responsive protein secreted by TSS, a pathogenic P. fluorescens isolate. In vitro study showed that compared to the wild type, the fha mutant TSSfha (i exhibited a largely similar vegetative growth profile but significantly retarded in the ability of biofilm growth and producing extracellular matrix, (ii displayed no apparent flagella and motility, (iii was defective in the attachment to host cells and unable to form self-aggregation, (iv displayed markedly reduced capacity of hemagglutination and surviving in host serum. In vivo infection analysis revealed that TSSfha was significantly attenuated in the ability of dissemination in fish tissues and inducing host mortality, and that antibody blocking of the natural FHA produced by the wild type TSS impaired the infectivity of the pathogen. Furthermore, when introduced into turbot as a subunit vaccine, recombinant FHA elicited a significant protection against lethal TSS challenge. Taken together, these results indicate for the first time that P. fluorescens FHA is a key virulence factor essential to multiple biological processes associated with pathogenicity.

  19. Elicitation of Induced Resistance against Pectobacterium carotovorum and Pseudomonas syringae by Specific Individual Compounds Derived from Native Korean Plant Species

    Directory of Open Access Journals (Sweden)

    Choong-Min Ryu

    2013-10-01

    Full Text Available Plants have developed general and specific defense mechanisms for protection against various enemies. Among the general defenses, induced resistance has distinct characteristics, such as broad-spectrum resistance and long-lasting effectiveness. This study evaluated over 500 specific chemical compounds derived from native Korean plant species to determine whether they triggered induced resistance against Pectobacterium carotovorum supsp. carotovorum (Pcc in tobacco (Nicotiana tabacum and Pseudomonas syringae pv. tomato (Pst in Arabidopsis thaliana. To select target compound(s with direct and indirect (volatile effects, a new Petri-dish-based in vitro disease assay system with four compartments was developed. The screening assay showed that capsaicin, fisetin hydrate, jaceosidin, and farnesiferol A reduced the disease severity significantly in tobacco. Of these four compounds, capsaicin and jaceosidin induced resistance against Pcc and Pst, which depended on both salicylic acid (SA and jasmonic acid (JA signaling, using Arabidopsis transgenic and mutant lines, including npr1 and NahG for SA signaling and jar1 for JA signaling. The upregulation of the PR2 and PDF1.2 genes after Pst challenge with capsaicin pre-treatment indicated that SA and JA signaling were primed. These results demonstrate that capsaicin and jaceosidin can be effective triggers of strong induced resistance against both necrotrophic and biotrophic plant pathogens.

  20. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi

    Directory of Open Access Journals (Sweden)

    Bergstrom Gary C

    2011-02-01

    Full Text Available Abstract Background The discovery and development of novel plant cell wall degrading enzymes is a key step towards more efficient depolymerization of polysaccharides to fermentable sugars for the production of liquid transportation biofuels and other bioproducts. The industrial fungus Trichoderma reesei is known to be highly cellulolytic and is a major industrial microbial source for commercial cellulases, xylanases and other cell wall degrading enzymes. However, enzyme-prospecting research continues to identify opportunities to enhance the activity of T. reesei enzyme preparations by supplementing with enzymatic diversity from other microbes. The goal of this study was to evaluate the enzymatic potential of a broad range of plant pathogenic and non-pathogenic fungi for their ability to degrade plant biomass and isolated polysaccharides. Results Large-scale screening identified a range of hydrolytic activities among 348 unique isolates representing 156 species of plant pathogenic and non-pathogenic fungi. Hierarchical clustering was used to identify groups of species with similar hydrolytic profiles. Among moderately and highly active species, plant pathogenic species were found to be more active than non-pathogens on six of eight substrates tested, with no significant difference seen on the other two substrates. Among the pathogenic fungi, greater hydrolysis was seen when they were tested on biomass and hemicellulose derived from their host plants (commelinoid monocot or dicot. Although T. reesei has a hydrolytic profile that is highly active on cellulose and pretreated biomass, it was less active than some natural isolates of fungi when tested on xylans and untreated biomass. Conclusions Several highly active isolates of plant pathogenic fungi were identified, particularly when tested on xylans and untreated biomass. There were statistically significant preferences for biomass type reflecting the monocot or dicot host preference of the

  1. Transgenerational Defense Priming for Crop Protection against Plant Pathogens: A Hypothesis.

    Science.gov (United States)

    Ramírez-Carrasco, Gabriela; Martínez-Aguilar, Keren; Alvarez-Venegas, Raúl

    2017-01-01

    Throughout evolution, plants have developed diverse mechanisms of defense that "prime" their innate immune system for more robust and active induction of defense responses against different types of stress. Nowadays there are numerous reports concerning the molecular bases of priming, as well as the generational priming mechanisms. Information concerning transgenerational priming, however, remains deficient. Some reports have indicated, nonetheless, that the priming status of a plant can be inherited to its offspring. Here, we show that the priming agent β-aminobutyric acid induced resistance to Pseudomonas syringae pv. phaseolicola infection in the common bean (Phaseolus vulgaris L.) We have analyzed the transgenerational patterns of gene expression of the PvPR1 gene (Phaseolus vulgaris PR1), a highly responsive gene to priming, and show that a transgenerational priming response against pathogen attack can last for at least two generations. We hypothesize that a defense-resistant phenotype and easily identifiable, generational and transgenerational, "primed patterns" of gene expression are excellent indicators of the priming response in crop plants. Furthermore, we propose here that modern plant breeding methods and crop improvement efforts must include the use of elicitors to prime induced resistance in the field and, above all, to select for induced heritable states in progeny that is primed for defense.

  2. Innovative tools for detection of plant pathogenic viruses and bacteria.

    Science.gov (United States)

    López, María M; Bertolini, Edson; Olmos, Antonio; Caruso, Paola; Gorris, María Teresa; Llop, Pablo; Penyalver, Ramón; Cambra, Mariano

    2003-12-01

    Detection of harmful viruses and bacteria in plant material, vectors or natural reservoirs is essential to ensure safe and sustainable agriculture. The techniques available have evolved significantly in the last few years to achieve rapid and reliable detection of pathogens, extraction of the target from the sample being important for optimising detection. For viruses, sample preparation has been simplified by imprinting or squashing plant material or insect vectors onto membranes. To improve the sensitivity of techniques for bacterial detection, a prior enrichment step in liquid or solid medium is advised. Serological and molecular techniques are currently the most appropriate when high numbers of samples need to be analysed. Specific monoclonal and/or recombinant antibodies are available for many plant pathogens and have contributed to the specificity of serological detection. Molecular detection can be optimised through the automatic purification of nucleic acids from pathogens by columns or robotics. New variants of PCR, such as simple or multiplex nested PCR in a single closed tube, co-operative-PCR and real-time monitoring of amplicons or quantitative PCR, allow high sensitivity in the detection of one or several pathogens in a single assay. The latest development in the analysis of nucleic acids is micro-array technology, but it requires generic DNA/RNA extraction and pre-amplification methods to increase detection sensitivity. The advances in research that will result from the sequencing of many plant pathogen genomes, especially now in the era of proteomics, represent a new source of information for the future development of sensitive and specific detection techniques for these microorganisms.

  3. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    Directory of Open Access Journals (Sweden)

    Marija Ravlić

    2014-06-01

    Full Text Available Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chemical herbicides are not allowed, if resistant weed species are present or in the integrated pest management against weeds with reduced herbicides doses and other non-chemical measures, but it has certain limitations and disadvantages.

  4. Responses to Elevated c-di-GMP Levels in Mutualistic and Pathogenic Plant-Interacting Bacteria

    Science.gov (United States)

    Pérez-Mendoza, Daniel; Aragón, Isabel M.; Prada-Ramírez, Harold A.; Romero-Jiménez, Lorena; Ramos, Cayo; Gallegos, María-Trinidad; Sanjuán, Juan

    2014-01-01

    Despite a recent burst of research, knowledge on c-di-GMP signaling pathways remains largely fragmentary and molecular mechanisms of regulation and even c-di-GMP targets are yet unknown for most bacteria. Besides genomics or bioinformatics, accompanying alternative approaches are necessary to reveal c-di-GMP regulation in bacteria with complex lifestyles. We have approached this study by artificially altering the c-di-GMP economy of diverse pathogenic and mutualistic plant-interacting bacteria and examining the effects on the interaction with their respective host plants. Phytopathogenic Pseudomonas and symbiotic Rhizobium strains with enhanced levels of intracellular c-di-GMP displayed common free-living responses: reduction of motility, increased production of extracellular polysaccharides and enhanced biofilm formation. Regarding the interaction with the host plants, P. savastanoi pv. savastanoi cells containing high c-di-GMP levels formed larger knots on olive plants which, however, displayed reduced necrosis. In contrast, development of disease symptoms in P. syringae-tomato or P. syringae-bean interactions did not seem significantly affected by high c-di-GMP. On the other hand, increasing c-di-GMP levels in symbiotic R. etli and R. leguminosarum strains favoured the early stages of the interaction since enhanced adhesion to plant roots, but decreased symbiotic efficiency as plant growth and nitrogen contents were reduced. Our results remark the importance of c-di-GMP economy for plant-interacting bacteria and show the usefulness of our approach to reveal particular stages during plant-bacteria associations which are sensitive to changes in c-di-GMP levels. PMID:24626229

  5. The biotechnological use and potential of plant pathogenic smut fungi.

    Science.gov (United States)

    Feldbrügge, Michael; Kellner, Ronny; Schipper, Kerstin

    2013-04-01

    Plant pathogens of the family Ustilaginaceae parasitise mainly on grasses and cause smut disease. Among the best characterised members of this family are the covered smut fungus Ustilago hordei colonising barley and oat as well as the head smut Sporisorium reilianum and the corn smut Ustilago maydis, both infecting maize. Over the past years, U. maydis in particular has matured into a model system for diverse topics like plant-pathogen interaction, cellular transport processes or DNA repair. Consequently, a broad set of genetic, molecular and system biological methods has been established. This set currently serves as a strong foundation to improve existing and establish novel biotechnological applications. Here, we review four promising aspects covering different fields of applied science: (1) synthesis of secondary metabolites produced at fermenter level. (2) Lipases and other hydrolytic enzymes with potential roles in biocatalytic processes. (3) Degradation of ligno-cellulosic plant materials for biomass conversion. (4) Protein expression based on unconventional secretion, a novel approach inspired by basic research on mRNA transport. Thus, plant pathogenic Ustilaginaceae offer a great potential for future biotechnological applications by combining basic research and applied science.

  6. Green and Red Light Reduces the Disease Severity by Pseudomonas cichorii JBC1 in Tomato Plants via Upregulation of Defense-Related Gene Expression.

    Science.gov (United States)

    Nagendran, Rajalingam; Lee, Yong Hoon

    2015-04-01

    Light influences many physiological processes in most organisms. To investigate the influence of light on plant and pathogen interaction, we challenged tomato seedlings with Pseudomonas cichorii JBC1 by flood inoculation and incubated the seedlings under different light conditions. Tomato seedlings exposed to green or red light showed a significant reduction in disease incidence compared with those grown under white light or dark conditions. To understand the underlying mechanisms, we investigated the effects of each light wavelength on P. cichorii JBC1 and tomato plants. Treatment with various light wavelengths at 120 µmol m(-2) s(-1) revealed no significant difference in growth, swarming motility, or biofilm formation of the pathogen. In addition, when we vacuum-infiltrated P. cichorii JBC1 into tomato plants, green and red light also suppressed disease incidence which indicated that the reduced disease severity was not from direct influence of light on the pathogen. Significant upregulation of the defense-related genes, phenylalanine ammonia-lyase (PAL) and pathogenesis-related protein 1a (PR-1a) was observed in P. cichorii JBC1-infected tomato seedlings grown under green or red light compared with seedlings grown under white light or dark conditions. The results of this study indicate that light conditions can influence plant defense mechanisms. In particular, green and red light increase the resistance of tomato plants to infection by P. cichorii.

  7. Identification of an ISR-related metabolite produced by Pseudomonas chlororaphis O6 against the wildfire pathogen pseudomonas syringae pv.tabaci in tobacco.

    Science.gov (United States)

    Park, Myung Ryeol; Kim, Young Cheol; Park, Ju Yeon; Han, Song Hee; Kim, Kil Yong; Lee, Sun Woo; Kim, In Seon

    2008-10-01

    Pseudomonas chlororaphis O6 exhibits induced systemic resistance (ISR) against P. syringae pv. tabaci in tobacco. To identify one of the ISR metabolites, O6 cultures were extracted with organic solvents, and the organic extracts were subjected to column chromatography followed by spectroscopy analyses. The ISR bioassay-guided fractionation was carried out for isolation of the metabolite. Highresolution mass spectrometric analysis of the metabolite found C(9)H(9)O(3)N with an exact mass of 179.0582. LC/MS analysis in positive mode showed an (M+H)(+) peak at m/zeta 180. Nuclear magnetic resonance ((1)H, (13)C) analyses identified all protons and carbons of the metabolite. Based on the spectroscopy data, the metabolite was identified 4-(aminocarbonyl) phenylacetate (4-ACPA). 4-ACPA applied at 68.0 mM exhibited ISR activity at a level similar 1.0 mM salicylic acid. This is the first report to identify an ISR metabolite produced by P. chlororaphis O6 against the wildfire pathogen P. syringae pv. tabaci in tobacco.

  8. Salmonella, a cross-kingdom pathogen infecting humans and plants.

    Science.gov (United States)

    Hernández-Reyes, Casandra; Schikora, Adam

    2013-06-01

    Infections with non-typhoidal Salmonella strains are constant and are a non-negligible threat to the human population. In the last two decades, salmonellosis outbreaks have increasingly been associated with infected fruits and vegetables. For a long time, Salmonellae were assumed to survive on plants after a more or less accidental infection. However, this notion has recently been challenged. Studies on the infection mechanism in vegetal hosts, as well as on plant immune systems, revealed an active infection process resembling in certain features the infection in animals. On one hand, Salmonella requires the type III secretion systems to effectively infect plants and to suppress their resistance mechanisms. On the other hand, plants recognize these bacteria and react to the infection with an induced defense mechanism similar to the reaction to other plant pathogens. In this review, we present the newest reports on the interaction between Salmonellae and plants. We discuss the possible ways used by these bacteria to infect plants as well as the plant responses to the infection. The recent findings indicate that plants play a central role in the dissemination of Salmonella within the ecosystem.

  9. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  10. Pathogenic infection and the oxidative defences in plant apoplast.

    Science.gov (United States)

    Bolwell, P P; Page, A; Piślewska, M; Wojtaszek, P

    2001-01-01

    The structural and functional continuum of the plant apoplast is the first site of contact with a pathogen and plays a crucial role in initiation and coordination of many defence responses. In this paper, we present an overview of the involvement of the plant apoplast in plant-pathogen interactions. The process of infection of French bean (Phaseolus vulgaris L.) plants by Colletotrichum lindemuthianum is analysed. The ultrastructural features of plant defence responses to fungal infection are then compared with those observed in plants or cell suspensions treated with various elicitors. Changes in cell walls and in whole plant cells responding to infection seem to be highly similar in all systems used. Model systems of French bean and white lupin (Lupinus albus L.) are then utilised to provide some biochemical characteristics of oxidative reactions in the apoplast evoked by elicitor treatment. The species specificity of various mechanisms generating reactive oxygen species is discussed, and some details of pH-dependent H2O2-generating activity of peroxidases are demonstrated. As its exocellular nature is an important feature of the oxidative burst, the major consequence of this event, i.e., the oxidative cross-linking of wall components during the papilla formation and strengthening of the walls, is analysed. Finally, the possible involvement of other wall-associated and developmentally regulated H2O2-generating mechanisms, like amine and oxalate oxidases, in plant defence is demonstrated. It is concluded that under stress conditions, such apoplastic mechanisms might be employed to increase plants' chances of survival.

  11. Lifestyles of the effector-rich: genome-enabled characterization of bacterial plant pathogens

    Science.gov (United States)

    Genome sequencing of bacterial plant pathogens is providing transformative insights into the complex network of molecular plant-microbe interactions mediated by extracellular effectors during pathogenesis. Bacterial pathogens sequenced to completion are phylogenetically diverse and vary significant...

  12. The Brucella suis Genome Reveals Fundamental Similarities between Animal and Plant Pathogens and Symbionts

    National Research Council Canada - National Science Library

    Ian T. Paulsen; Rekha Seshadri; Karen E. Nelson; Jonathan A. Eisen; John F. Heidelberg; Timothy D. Read; Robert J. Dodson; Lowell Umayam; Lauren M. Brinkac; Maureen J. Beanan; Sean C. Daugherty; Robert T. Deboy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; William C. Nelson; Bola Ayodeji; Margaret Kraul; Jyoti Shetty; Joel Malek; Susan E. van Aken; Steven Riedmuller; Herve Tettelin; Steven R. Gill; Owen White; Steven L. Salzberg; David L. Hoover; Luther E. Lindler; Shirley M. Halling; Stephen M. Boyle; Claire M. Fraser

    2002-01-01

    .... Extensive gene synteny between B. suis chromosome 1 and the genome of the plant symbiont Mesorhizobium loti emphasizes the similarity between this animal pathogen and plant pathogens and symbionts...

  13. An image classification approach to analyze the suppression of plant immunity by the human pathogen Salmonella Typhimurium

    Directory of Open Access Journals (Sweden)

    Schikora Marek

    2012-07-01

    Full Text Available Abstract Background The enteric pathogen Salmonella is the causative agent of the majority of food-borne bacterial poisonings. Resent research revealed that colonization of plants by Salmonella is an active infection process. Salmonella changes the metabolism and adjust the plant host by suppressing the defense mechanisms. In this report we developed an automatic algorithm to quantify the symptoms caused by Salmonella infection on Arabidopsis. Results The algorithm is designed to attribute image pixels into one of the two classes: healthy and unhealthy. The task is solved in three steps. First, we perform segmentation to divide the image into foreground and background. In the second step, a support vector machine (SVM is applied to predict the class of each pixel belonging to the foreground. And finally, we do refinement by a neighborhood-check in order to omit all falsely classified pixels from the second step. The developed algorithm was tested on infection with the non-pathogenic E. coli and the plant pathogen Pseudomonas syringae and used to study the interaction between plants and Salmonella wild type and T3SS mutants. We proved that T3SS mutants of Salmonella are unable to suppress the plant defenses. Results obtained through the automatic analyses were further verified on biochemical and transcriptome levels. Conclusion This report presents an automatic pixel-based classification method for detecting “unhealthy” regions in leaf images. The proposed method was compared to existing method and showed a higher accuracy. We used this algorithm to study the impact of the human pathogenic bacterium Salmonella Typhimurium on plants immune system. The comparison between wild type bacteria and T3SS mutants showed similarity in the infection process in animals and in plants. Plant epidemiology is only one possible application of the proposed algorithm, it can be easily extended to other detection tasks, which also rely on color information, or

  14. Plant-pathogen interactions: what microarray tells about it?

    Science.gov (United States)

    Lodha, T D; Basak, J

    2012-01-01

    Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant-pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.

  15. Effects of alkyl parabens on plant pathogenic fungi.

    Science.gov (United States)

    Ito, Shinsaku; Yazawa, Satoru; Nakagawa, Yasutaka; Sasaki, Yasuyuki; Yajima, Shunsuke

    2015-04-15

    Alkyl parabens are used as antimicrobial preservatives in cosmetics, food, and pharmaceutical products. However, the mode of action of these chemicals has not been assessed thoroughly. In this study, we determined the effects of alkyl parabens on plant pathogenic fungi. All the fungi tested, were susceptible to parabens. The effect of linear alkyl parabens on plant pathogenic fungi was related to the length of the alkyl chain. In addition, the antifungal activity was correlated with the paraben-induced inhibition of oxygen consumption. The antifungal activity of linear alkyl parabens likely originates, at least in part, from their ability to inhibit the membrane respiratory chain, especially mitochondrial complex II. Additionally, we determined that some alkyl parabens inhibit Alternaria brassicicola infection of cabbage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Tobraviruses--plant pathogens and tools for biotechnology.

    Science.gov (United States)

    Macfarlane, Stuart A

    2010-07-01

    The tobraviruses, Tobacco rattle virus (TRV), Pea early-browning virus (PEBV) and Pepper ringspot virus (PepRSV), are positive-strand RNA viruses with rod-shaped virus particles that are transmitted between plants by trichodorid nematodes. As a group, these viruses infect many plant species, with TRV having the widest host range. Recent studies have begun to dissect the interaction of TRV with potato, currently the most commercially important crop disease caused by any of the tobraviruses. As well as being successful plant pathogens, these viruses have become widely used as vectors for expression in plants of nonviral proteins or, more frequently, as initiators of virus-induced gene silencing (VIGS). Precisely why tobraviruses should be so effective as VIGS vectors is not known; however, molecular studies of the mode of action of the tobravirus silencing suppressor protein are shedding some light on this process.

  17. Distribution of Pseudomonas species in a dairy plant affected by occasional blue discoloration

    Directory of Open Access Journals (Sweden)

    Francesco Chiesa

    2014-12-01

    Full Text Available During 2010 many cases of discoloration in mozzarella, popularly termed as blue mozzarella, have been reported to the attention of public opinion. Causes of the alteration were bacteria belonging to the genus Pseudomonas. The strong media impact of such cases has created confusion, not only among consumers, but also among experts. In order to help improving the knowledge on microbial ecology of this microorganism a study has been set up with the collaboration of a medium-sized dairy plant producing fresh mozzarella cheese, with occasional blue discoloration, conducting surveys and sampling in the pre-operational, operational and post-operational process phase, milk before and after pasteurization, water (n=12, environmental surfaces (n=22 and the air (n=27. A shelf life test was conducted on finished products stored at different temperatures (4-8°C. Among the isolates obtained from the microbiological analysis of the samples, 60 were subjected to biomolecular tests in order to confirm the belonging to Pseudomonas genus and to get an identification at species level by the amplification and sequencing of the gyrB gene. The results of microbiological tests demonstrated the presence of microorganisms belonging to the genus Pseudomonas along the entire production lane; molecular tests showed 7 different species among the 40 isolates identified. One particular species (Pseudomonas koreensis was isolated from blue discolored mozzarella cheese and was indicated as the most relevant for the production plant, both for the distribution along the processing chain and for the consequences on the finished product.

  18. A common origin of rickettsiae and certain plant pathogens.

    Science.gov (United States)

    Weisburg, W G; Woese, C R; Dobson, M E; Weiss, E

    1985-11-01

    On the basis of ribosomal RNA sequence comparisons, the rickettsia Rochalimaea quintana has been found to be a member of subgroup 2 of the alpha subdivision of the so-called purple bacteria, which is one of about ten major eubacterial divisions. Within subgroup alpha-2, R. quintana is specifically related to the agrobacteria and rhizobacteria, organisms that also have close associations with eukaryotic cells. This genealogical grouping of the rickettsiae with certain plant pathogens and intracellular symbionts suggests a possible evolution of the rickettsiae from plant-associated bacteria.

  19. Anticandidal activity of medicinal plants and Pseudomonas aeruginosa strains of clinical specimens.

    Science.gov (United States)

    Bora, Limpon

    2016-04-01

    This study was designed to investigate the in vitro anticandidal activity of some medicinal plants and Pseudomonas aeruginosa strains against Candida species. The antifungal activity of methanolic extracts of five medicinal plants, namely, Cinnamomum porrectum, Lippia nudiflora, Cestrum nocturnum, Trachyspermum ammi, and Sida carpinifolia were studied. The medicinal characteristics of these plants were compared with commercially used antibiotics. The antimicrobial assay was done by agar well diffusion and the broth dilution method. Among the plants used, T. ammi and C. nocturnum were found to be more potent than the others. Twenty P. aeruginosa strains were isolated from various clinical specimens. The total inhibitions obtained were found to be 47%, 38%, and 36% in blood agar, whereas in Sabouraud dextrose agar (SDA) the inhibitions were 57%, 48%, and 37%, respectively.

  20. The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15.

    Science.gov (United States)

    Pham, Van T K; Rediers, Hans; Ghequire, Maarten G K; Nguyen, Hiep H; De Mot, René; Vanderleyden, Jos; Spaepen, Stijn

    2017-04-01

    The use of plant growth-promoting rhizobacteria as a sustainable alternative for chemical nitrogen fertilizers has been explored for many economically important crops. For one such strain isolated from rice rhizosphere and endosphere, nitrogen-fixing Pseudomonas stutzeri A15, unequivocal evidence of the plant growth-promoting effect and the potential contribution of biological nitrogen fixation (BNF) is still lacking. In this study, we investigated the effect of P. stutzeri A15 inoculation on the growth of rice seedlings in greenhouse conditions. P. stutzeri A15 induced significant growth promotion compared to uninoculated rice seedlings. Furthermore, inoculation with strain A15 performed significantly better than chemical nitrogen fertilization, clearly pointing to the potential of this bacterium as biofertilizer. To assess the contribution of BNF to the plant growth-promoting effect, rice seedlings were also inoculated with a nitrogen fixation-deficient mutant. Our results suggest that BNF (at best) only partially contributes to the stimulation of plant growth.

  1. Two strains of Pseudomonas fluorscens bacteria differentially affect survivorship of waxworm (Galleria mellonella) larvae exposed to an arthropod fungal pathogen, Beauveria bassiana

    Science.gov (United States)

    Two strains of Pseudomonas fluorescens were found contaminating a biopesticide used in a previous study against Varroa destructor infestations in honey bee hives. In the aforementioned study the biopesticide, a formulation of the arthropod pathogen Beauveria bassiana, failed to have any impact on t...

  2. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection.

    Science.gov (United States)

    Kamber, Tim; Buchmann, Jan P; Pothier, Joël F; Smits, Theo H M; Wicker, Thomas; Duffy, Brion

    2016-02-17

    The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora.

  3. Human lysozyme peptidase resistance is perturbed by the anionic glycolipid biosurfactant rhamnolipid produced by the opportunistic pathogen Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Andersen, Kell K; Vad, Brian Stougaard; Scavenius, Carsten;

    2016-01-01

    Infection by the opportunistic pathogen Pseudomonas aeruginosa (PA) is accompanied by the secretion of virulence factors such as the secondary metabolite rhamnolipid (RL) as well as an array of bacterial enzymes, including the protease elastase. The human immune system tries to counter this via...... defensive proteins such as human lysozyme (HLZ). HLZ targets the bacterial cell wall but may also have other antimicrobial activities. The enzyme contains four disulfide bonds and shows high thermodynamic stability and resistance to proteolytic attack. Here we show that RL promotes HLZ degradation...... by several unrelated proteases, including the PA elastase and human proteases. This occurs although RL does not by itself denature HLZ. Nevertheless, RL binds in a sufficiently high stoichiometry (8 RL:1 HLZ) to neutralize the highly cationic surface of HLZ. The initial cleavage sites agree well...

  4. Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions

    Science.gov (United States)

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. PMID:23675499

  5. Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions.

    Science.gov (United States)

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops.

  6. Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions.

    Directory of Open Access Journals (Sweden)

    Lorena Setten

    Full Text Available Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops.

  7. Plant growth-promotion (PGP) activities and molecular characterization of rhizobacterial strains isolated from soybean (Glycine max L. Merril) plants against charcoal rot pathogen, Macrophomina phaseolina.

    Science.gov (United States)

    Choudhary, D K

    2011-11-01

    Charcoal rot disease, caused by the fungus Macrophomina phaseolina, leads to significant yield losses of soybean crops. One strategy to control charcoal rot is the use of antagonistic, root-colonizing bacteria. Rhizobacteria A(5)F and FPT(7)21 and Pseudomonas sp. strain GRP(3) were characterized for their plant growth-promotion activities against the pathogen. Rhizobacterium FPT(7)21 exhibited higher antagonistic activity against the pathogen on dual plate assay compared to strain A(5)F and GRP(3). FPT(7)21 and GRP(3) gave decreased disease intensity in terms of average number of pathogen-infested plants. Lipoxygenase (LOX), phenylalanine ammonia-lyase (PAL), and peroxidase (POD) activities were estimated in extracts of plants grown from seeds that were treated with rhizobacteria, and inoculated with spore suspension of M. phaseolina. The activity of these enzymes after challenge with the test pathogen increased. Strains FPT(7)21 and GRP(3) exhibited maximum increases in LOX, PAL and POD activity (U mg(-1) fresh leaf wt) compared to strain A(5)F.

  8. [Selective enrichment of Pseudomonas spp. in the rhizoplane of different plant species].

    Science.gov (United States)

    Marrero, Mariana A; Agaras, Betina; Wall, Luis G; Valverde, Claudio

    2015-01-01

    In contrast to rhizobia-legume symbiosis, the specificity for root colonization by pseudomonads seems to be less strict. However, several studies about bacterial diversity in the rhizosphere highlight the influence of plant species on the selective enrichment of certain microorganisms from the bulk soil community. In order to evaluate the effect that different crops have on the structure of pseudomonad community on the root surface, we performed plant trap experiments, using surface-disinfected maize, wheat or soybean seeds that were sown in pots containing the same pristine soil as substrate. Rhizoplane suspensions were plated on a selective medium for Pseudomonas, and pooled colonies served as DNA source to carry out PCR-RFLP community structure analysis of the pseudomonads-specific marker genes oprF and gacA. PCR-RFLP profiles were grouped by plant species, and were distinguished from those of bulk soil samples. Partial sequencing of 16S rDNA genes of some representative colonies of Pseudomonas confirmed the selective enrichment of distinctive genotypes in the rhizoplane of each plant species. These results support the idea that the root systems of agricultural crops such as soybean, maize and wheat, select differential sets of pseudomonads from the native microbial repertoire inhabiting the bulk soil.

  9. Pathogen filtration to control plant disease outbreak in greenhouse production

    Science.gov (United States)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei

    2016-04-01

    Previous research has been extensively focused on understanding the fate and transport of human microbial pathogens in soil and water environments. However, little is known about the transport of plant pathogens, although these pathogens are often found in irrigation waters and could cause severe crop damage and economical loss. Water mold pathogens including Phytophthora spp. and Pythium spp. are infective to a wide range of vegetable and floriculture crops, and they are primarily harbored in soils and disseminated through water flow. It is challenging to control these pathogens because they often quickly develop resistance to many fungicides. Therefore, this multi-scale study aimed to investigate physical removal of plant pathogens from water by filtration, thus reducing the pathogen exposure risks to crops. In column-scale experiments, we studied controlling factors on the transport and retention of Phytophthora capsici zoospores in saturated columns packed with iron oxide coated-sand and uncoated-sand under varying solution chemistry. Biflagellate zoospores were less retained than encysted zoospores, and lower solution pH and greater iron oxide content increased the retention of encysted zoospores. These results provided insights on environmental dispersal of Phytophthora zoospores in natural soils as well as on developing cost-effective engineered filtration systems for pathogen removal. Using small-scale greenhouse filtration systems, we further investigated the performance of varying filter media (i.e., granular sand, iron oxide coated ceramic porous media, and activated carbon) in mitigating disease outbreaks of Phytophthora and Pythium for greenhouse-grown squash and poinsettia, respectively, in comparison with fungicide treatment. For squash, filtration by iron oxide coated media was more effective in reducing the Phytophthora infection, comparing to sand filtration and fungicide application. For poinsettia, sand filtration performed better in controlling

  10. Genome Analysis of Pseudomonas fluorescens PCL1751: A Rhizobacterium that Controls Root Diseases and Alleviates Salt Stress for Its Plant Host.

    Science.gov (United States)

    Cho, Shu-Ting; Chang, Hsing-Hua; Egamberdieva, Dilfuza; Kamilova, Faina; Lugtenberg, Ben; Kuo, Chih-Horng

    2015-01-01

    Pseudomonas fluorescens PCL1751 is a rod-shaped Gram-negative bacterium isolated from the rhizosphere of a greenhouse-grown tomato plant in Uzbekistan. It controls several plant root diseases caused by Fusarium fungi through the mechanism of competition for nutrients and niches (CNN). This mechanism does not rely on the production of antibiotics, so it avoids the concerns of resistance development and is environmentally safe. Additionally, this bacterium promotes plant growth by alleviating salt stress for its plant host. To investigate the genetic mechanisms that may explain these observations, we determined the complete genome sequence of this bacterium, examined its gene content, and performed comparative genomics analysis with other Pseudomonas strains. The genome of P. fluorescens PCL1751 consisted of one circular chromosome that is 6,143,950 base-pairs (bp) in size; no plasmid was found. The annotation included 19 rRNA, 70 tRNA, and 5,534 protein-coding genes. The gene content analysis identified a large number of genes involved in chemotaxis and motility, colonization of the rhizosphere, siderophore biosynthesis, and osmoprotectant production. In contrast, the pathways involved in the biosynthesis of phytohormones or antibiotics were not found. Comparison with other Pseudomonas genomes revealed extensive variations in their genome size and gene content. The presence and absence of secretion system genes were highly variable. As expected, the synteny conservation among strains decreased as a function of phylogenetic divergence. The integration of prophages appeared to be an important driver for genome rearrangements. The whole-genome gene content analysis of this plant growth-promoting rhizobacterium (PGPR) provided some genetic explanations to its phenotypic characteristics. The extensive and versatile substrate utilization pathways, together with the presence of many genes involved in competitive root colonization, provided further support for the finding

  11. Genome Analysis of Pseudomonas fluorescens PCL1751: A Rhizobacterium that Controls Root Diseases and Alleviates Salt Stress for Its Plant Host.

    Directory of Open Access Journals (Sweden)

    Shu-Ting Cho

    Full Text Available Pseudomonas fluorescens PCL1751 is a rod-shaped Gram-negative bacterium isolated from the rhizosphere of a greenhouse-grown tomato plant in Uzbekistan. It controls several plant root diseases caused by Fusarium fungi through the mechanism of competition for nutrients and niches (CNN. This mechanism does not rely on the production of antibiotics, so it avoids the concerns of resistance development and is environmentally safe. Additionally, this bacterium promotes plant growth by alleviating salt stress for its plant host. To investigate the genetic mechanisms that may explain these observations, we determined the complete genome sequence of this bacterium, examined its gene content, and performed comparative genomics analysis with other Pseudomonas strains. The genome of P. fluorescens PCL1751 consisted of one circular chromosome that is 6,143,950 base-pairs (bp in size; no plasmid was found. The annotation included 19 rRNA, 70 tRNA, and 5,534 protein-coding genes. The gene content analysis identified a large number of genes involved in chemotaxis and motility, colonization of the rhizosphere, siderophore biosynthesis, and osmoprotectant production. In contrast, the pathways involved in the biosynthesis of phytohormones or antibiotics were not found. Comparison with other Pseudomonas genomes revealed extensive variations in their genome size and gene content. The presence and absence of secretion system genes were highly variable. As expected, the synteny conservation among strains decreased as a function of phylogenetic divergence. The integration of prophages appeared to be an important driver for genome rearrangements. The whole-genome gene content analysis of this plant growth-promoting rhizobacterium (PGPR provided some genetic explanations to its phenotypic characteristics. The extensive and versatile substrate utilization pathways, together with the presence of many genes involved in competitive root colonization, provided further support

  12. Plant hemoglobin gene expression adjusts Arabidopsis susceptibility to Pseudomonas synringae and Botrytis cinerea though scavenging of nitric oxide

    DEFF Research Database (Denmark)

    Sivakumaran, Anushen; Hebelstrup, Kim; Cristescu, Simona

    2011-01-01

    NO has earlier been shown to influence ethylene production during Pseudomonas syringae elicited hypersensitive response in tobacco. In this work Arabidopsis plants with silencing or null mutation of hemoglobin genes (glb1 and glb2) and transgenic lines over-expressing Glb1 and Glb2 demonstrated a...... a causal link between NO generation, hemoglobin-dependent NO scavenging, the production of ethylene and resistance to Botrytis or Pseudomonas....

  13. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission.

    Directory of Open Access Journals (Sweden)

    Bhabesh Dutta

    Full Text Available The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1 × 10(6 colony forming units (CFUs/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion. Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating, respectively and they were not significantly different (P = 0.67. The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03. None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be

  14. Interactions of Seedborne Bacterial Pathogens with Host and Non-Host Plants in Relation to Seed Infestation and Seedling Transmission

    Science.gov (United States)

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1×106 colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized

  15. Fungal life-styles and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes and saprophytes

    Science.gov (United States)

    Rodriguez, R.J.; Redman, R.S.

    1997-01-01

    This chapter discusses various biochemical, genetic, ecological, and evolutionary aspects of fungi that express either symbiotic or saprophytic life-styles. An enormous pool of potential pathogens exists in both agricultural and natural ecosystems, and virtually all plant species are susceptible to one or more fungal pathogens. Fungal pathogens have the potential to impact on the genetic structure of populations of individual plant species, the composition of plant communities and the process of plant succession. Endophytic fungi exist for at least part of their life cycles within the tissues of a plant host. This group of fungi is distinguished from plant pathogens because they do not elicit significant disease symptoms. However, endophytes do maintain the genetic and biochemical mechanisms required for infection and colonization of plant hosts. Fungi that obtain chemical nutrients from dead organic matter are known as saprophytes and are critical to the dynamics and resilience of ecosystems. There are two modes of saprophytic growth: one in which biomolecules that are amenable to transport across cell walls and membranes are directly absorbed, and another in which fungi must actively convert complex biopolymers into subunit forms amenable to transportation into cells. Regardless of life-style, fungi employ similar biochemical mechanisms for the acquisition and conversion of nutrients into complex biomolecules that are necessary for vegetative growth, production and dissemination of progeny, organismal competition, and survival during periods of nutrient deprivation or environmental inclemency.

  16. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens.

    Science.gov (United States)

    Runyon, Justin B; Mescher, Mark C; De Moraes, Consuelo M

    2010-08-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling, and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens--notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)--also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across Kingdoms.

  17. Cell-surface signaling in Pseudomonas: stress responses, iron transport, and pathogenicity.

    Science.gov (United States)

    Llamas, María A; Imperi, Francesco; Visca, Paolo; Lamont, Iain L

    2014-07-01

    Membrane-spanning signaling pathways enable bacteria to alter gene expression in response to extracytoplasmic stimuli. Many such pathways are cell-surface signaling (CSS) systems, which are tripartite molecular devices that allow Gram-negative bacteria to transduce an extracellular stimulus into a coordinated transcriptional response. Typically, CSS systems are composed of the following: (1) an outer membrane receptor, which senses the extracellular stimulus; (2) a cytoplasmic membrane-spanning protein involved in signal transduction from the periplasm to the cytoplasm; and (3) an extracytoplasmic function (ECF) sigma factor that initiates expression of the stimulus-responsive gene(s). Members of genus Pseudomonas provide a paradigmatic example of how CSS systems contribute to the global control of gene expression. Most CSS systems enable self-regulated uptake of iron via endogenous (pyoverdine) or exogenous (xenosiderophores, heme, and citrate) carriers. Some are also implicated in virulence, biofilm formation, and cell-cell interactions. Incorporating insights from the well-characterized alginate regulatory circuitry, this review will illustrate common themes and variations at the level of structural and functional properties of Pseudomonas CSS systems. Control of the expression and activity of ECF sigma factors are central to gene regulation via CSS, and the variety of intrinsic and extrinsic factors influencing these processes will be discussed.

  18. Novel AroA from Pseudomonas putida Confers Tobacco Plant with High Tolerance to Glyphosate

    Science.gov (United States)

    Yan, Hai-Qin; Chang, Su-Hua; Tian, Zhe-Xian; Zhang, Le; Sun, Yi-Cheng; Li, Yan; Wang, Jing; Wang, Yi-Ping

    2011-01-01

    Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1optimized) at the 5′ end. The PparoA1optimized gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T1 progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1optimized gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future. PMID:21611121

  19. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas

    Directory of Open Access Journals (Sweden)

    Vyas Pratibha

    2009-08-01

    Full Text Available Abstract Background Phosphorus deficiency is a major constraint to crop production due to rapid binding of the applied phosphorus into fixed forms not available to the plants. Microbial solubilization of inorganic phosphates has been attributed mainly to the production of organic acids. Phosphate-solubilizing microorganisms enhance plant growth under conditions of poor phosphorus availability by solubilizing insoluble phosphates in the soil. This paper describes the production of organic acids during inorganic phosphate solubilization and influence on plant growth as a function of phosphate solubilization by fluorescent Pseudomonas. Results Nineteen phosphate-solubilizing fluorescent Pseudomonas strains of P. fluorescens, P. poae, P. trivialis, and Pseudomonas spp. produced gluconic acid, oxalic acid, 2-ketogluconic acid, lactic acid, succinic acid, formic acid, citric acid and malic acid in the culture filtrates during the solubilization of tricalcium phosphate, Mussoorie rock phosphate, Udaipur rock phosphate and North Carolina rock phosphate. The strains differed quantitatively and qualitatively in the production of organic acids during solubilization of phosphate substrates. Cluster analysis based on organic acid profiling revealed inter-species and intra-species variation in organic acids produced by Pseudomonas strains. The phosphate-solubilizing bacterial treatments P. trivialis BIHB 745, P. trivialis BIHB 747, Pseudomonas sp. BIHB 756 and P. poae BIHB 808 resulted in significantly higher or statistically at par growth and total N, P and K content over single super phosphate treatment in maize. These treatments also significantly affected pH, organic matter, and N, P, and K content of the soil. Conclusion The results implied that organic acid production by Pseudomonas strains is independent of their genetic relatedness and each strain has its own ability of producing organic acids during the solubilization of inorganic phosphates

  20. Plant genes involved in harbouring symbiotic rhizobia or pathogenic nematodes.

    Science.gov (United States)

    Damiani, Isabelle; Baldacci-Cresp, Fabien; Hopkins, Julie; Andrio, Emilie; Balzergue, Sandrine; Lecomte, Philippe; Puppo, Alain; Abad, Pierre; Favery, Bruno; Hérouart, Didier

    2012-04-01

    The establishment and development of plant-microorganism interactions involve impressive transcriptomic reprogramming of target plant genes. The symbiont (Sinorhizobium meliloti) and the root knot-nematode pathogen (Meloidogyne incognita) induce the formation of new root organs, the nodule and the gall, respectively. Using laser-assisted microdissection, we specifically monitored, at the cell level, Medicago gene expression in nodule zone II cells, which are preparing to receive rhizobia, and in gall giant and surrounding cells, which play an essential role in nematode feeding and constitute the typical root swollen structure, respectively. We revealed an important reprogramming of hormone pathways and C1 metabolism in both interactions, which may play key roles in nodule and gall neoformation, rhizobia endocytosis and nematode feeding. Common functions targeted by rhizobia and nematodes were mainly down-regulated, whereas the specificity of the interaction appeared to involve up-regulated genes. Our transcriptomic results provide powerful datasets to unravel the mechanisms involved in the accommodation of rhizobia and root-knot nematodes. Moreover, they raise the question of host specificity and the evolution of plant infection mechanisms by a symbiont and a pathogen.

  1. Vector-borne bacterial plant pathogens: Interactions with hemipteran insects and plants

    Directory of Open Access Journals (Sweden)

    Laura M Perilla-Henao

    2016-08-01

    Full Text Available Hemipteran insects are devastating pests of crops due to their wide host range, rapid reproduction, and ability to transmit numerous plant-infecting pathogens as vectors. While the field of plant-virus-vector interactions has flourished in recent years, plant-bacteria-vector interactions remain poorly understood. Leafhoppers and psyllids are by far the most important vectors of bacterial pathogens, yet there are still significant gaps in our understanding of their feeding behavior, salivary secretions, and plant responses as compared to important viral vectors, such as whiteflies and aphids. Even with an incomplete understanding of plant-bacteria-vector interactions, some common themes have emerged: 1 all known vector-borne bacteria share the ability to propagate in the plant and insect host; 2 particular hemipteran families appear to be incapable of transmitting vector-borne bacteria; 3 all known vector-borne bacteria have highly reduced genomes and coding capacity, resulting in host-dependence; and 4 vector-borne bacteria encode proteins that are essential for colonization of specific hosts, though only a few types of proteins have been investigated. Here, we review the current knowledge on important vector-borne bacterial pathogens, including Xylella fastidiosa, Spiroplasma spp., Liberibacter spp., and 'Candidatus Phytoplasma spp.’. We then highlight recent approaches used in the study of vector-borne bacteria. Finally, we discuss the application of this knowledge for control and future directions that will need to be addressed in the field of vector-plant-bacteria interactions.

  2. ISOLATION AND IDENTIFICATION OF A THERMOTOLERANT PLANT GROWTH PROMOTING PSEUDOMONAS PUTIDA PRODUCING TREHALOSE SYNTHASE

    Directory of Open Access Journals (Sweden)

    Ali Sk.Z.

    2013-08-01

    Full Text Available A thermotolerant plant growth promoting Pseudomonas isolate growing at 40oC producing trehalose synthase (TreS was isolated from rhizosphere soil under semi arid conditions of India. Trehalose synthase was extracted; purified and enzymatic activity was examined at various temperatures and pH. The optimum temperature and pH was 38oC and pH 7.5 and the activity declined at above or below the optimum pH and temperature. The enzyme was active on maltose and trehalose among saccharides tested. The enzyme had a higher catalytic activity for maltose with a trehalose yield of 72% than for trehalose where 30% yield of maltose was achieved, indicating maltose as preferred substrate. The isolate showed multiple plant growth promoting traits (indole acetic acid (IAA, phosphate solubilization, siderophore and ammonia both at ambient (28oC and high temperature (40oC. Based on phenotypic and 16SrRNA analysis the isolate was identified as Pseudomonas putida (Accession No. GU396283.

  3. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity.

    Directory of Open Access Journals (Sweden)

    Georgina Fabro

    2011-11-01

    Full Text Available Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis. We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70% of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP-triggered immunity (PTI. We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether

  4. Antimicrobial activity of plant extracts against sexually transmitted pathogens.

    Science.gov (United States)

    Jadhav, Nutan; Kulkarni, Sangeeta; Mane, Arati; Kulkarni, Roshan; Palshetker, Aparna; Singh, Kamalinder; Joshi, Swati; Risbud, Arun; Kulkarni, Smita

    2015-01-01

    Comprehensive management of sexually transmitted infections (STIs) using vaginal or rectal microbicide-based intervention is one of the strategies for prevention of HIV infection. Herbal products have been used for treating STIs traditionally. Herein, we present in vitro activity of 10 plant extracts and their 34 fractions against three sexually transmitted/reproductive tract pathogens - Neisseria gonorrhoeae, Haemophilus ducreyi and Candida albicans. The plant parts were selected; the extracts/fractions were prepared and screened by disc diffusion method. The minimum inhibitory and minimum cidal concentrations were determined. The qualitative phytochemical analysis of selected extracts/fractions showing activity was performed. Of the extracts/fractions tested, three inhibited C. albicans, ten inhibited N. gonorrhoeae and five inhibited H. ducreyi growth. Our study demonstrated that Terminalia paniculata Roth. extracts/fractions inhibited growth of all three organisms. The ethyl acetate fraction of Syzygium cumini Linn. and Bridelia retusa (L.) Spreng. extracts was found to inhibit N. gonorrhoeae at lowest concentrations.

  5. Host cell modulation by human, animal and plant pathogens.

    Science.gov (United States)

    Andersson, Siv G E; Kempf, Volkhard A J

    2004-04-01

    Members of the alpha-proteobacteria display a broad range of interactions with higher eukaryotes. Some are pathogens of humans, such as Rickettsia and Bartonella that are associated with diseases like epidemic typhus, trench fever, cat scratch disease and bacillary angiomatosis. Others like the Brucella cause abortions in pregnant animals. Yet other species have evolved elaborate interactions with plants; in this group we find both plant symbionts and parasites. Despite radically different host preferences, extreme genome size variations and the absence of toxin genes, similarities in survival strategies and host cell interactions can be recognized among members of the alpha-proteobacteria. Here, we review some of these similarities, with a focus on strategies for modulation of the host target cell.

  6. Draft Genome Sequence of the Plant Growth–Promoting Pseudomonas punonensis Strain D1-6 Isolated from the Desert Plant Erodium hirtum in Jordan

    Science.gov (United States)

    Lafi, Feras F.; AlBladi, Maha L.; Salem, Nida M.; Al-Banna, Luma; Alam, Intikhab; Bajic, Vladimir B.

    2017-01-01

    ABSTRACT Pseudomonas punonensis strain D1-6 was isolated from roots of the desert plant Erodium hirtum, near the Dead Sea in Jordan. The genome of strain D1-6 reveals several key plant growth–promoting and herbicide-resistance genes, indicating a possible specialized role for this endophyte. PMID:28082490

  7. Draft Genome Sequence of the Plant Growth–Promoting Pseudomonas punonensis Strain D1-6 Isolated from the Desert Plant Erodium hirtum in Jordan

    KAUST Repository

    Lafi, Feras Fawzi

    2017-01-13

    Pseudomonas punonensis strain D1-6 was isolated from roots of the desert plant Erodium hirtum, near the Dead Sea in Jordan. The genome of strain D1-6 reveals several key plant growth-promoting and herbicide-resistance genes, indicating a possible specialized role for this endophyte.

  8. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    OpenAIRE

    Chantal ePlanchamp; Gaetan eGlauser; Brigitte eMauch-Mani

    2015-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization b...

  9. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    OpenAIRE

    Chantal ePlanchamp; Gaetan eGlauser; Brigitte eMauch-Mani

    2015-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization b...

  10. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Atikya Farjana

    2014-09-01

    Full Text Available Objective: To determine antibacterial activity of water, oil and methanol extracts of guava (Psidium guajava, green tea (Camellia sinensis, neem (Azadirachta indica and marigold (Calendula officinalis against different species of bacteria, Pseudomonas spp., Vibrio cholerae, Vibrio parahaemolyticus (V. parahaemolyticus, Klebsiella spp., Escherichia coli, Salmonella spp. and Staphylococcus aureus (S. aureus. Methods: Antibacterial activity of plant extracts was measured by agar well diffusion method. Results: Boiled water extracts of guava leaf showed the largest zone of inhibition (22 mm against V. parahaemolyticus. Water extracts of green tea leaf at boiling and room temperature showed 17.5 mm and 19 mm zone of inhibitions against V. parahaemolyticus and S. aureus, respectively. Boiled water extract of neem leaf showed moderate zone of inhibition against Escherichia coli (10 mm and Klebsiella spp. (11 mm. Water and oil extracts of marigold leaf at both boiling and room temperature did not show any zone of inhibition against any of the tested microorganisms. Methanol extracts of both guava and green tea leaves showed same zone of inhibition against Pseudomonus spp. (18 mm. Methanol extract of neem leaf showed antibacterial acitivity against Klebsiella spp. (16 mm and Vibrio cholerae (14 mm and that of marigold leaf showed antimicrobial activity against S. aureus (18 mm and Klebsiella spp. (12 mm. Conclusions: The results from the study suggest that the leaves of guava, green tea, neem and marigold show anibacterial activity against different bacterial species. They could be used as alternatives to common antimicrobial agents for treatment of bacterial infections.

  11. Pseudomonas aeruginosa, an emerging pathogen among burn patients in Kurdistan Province, Iran.

    Science.gov (United States)

    Kalantar, Enayat; Taherzadeh, Shadi; Ghadimi, Tayeb; Soheili, Fariborz; Salimizand, Heiman; Hedayatnejad, Alireza

    2012-05-01

    This study was conducted to determine the incidence of Pseudomonas aeruginosa infections among burn patients at Tohid Hospital, Iran. A total of 176 clinical specimens were obtained from 145 burn patients admitted to the burn unit of Tohid Hospital to detect the presence of P. aeruginosa. Antimicrobial susceptibility testing was conducted to detect extended spectrum beta-lactamase (ESBL) producing P. aeruginiosa using Clinical and Laboratory Standards Institute guidelines with the double disc synergy test (DDST). A polymerase chain reaction was used to detect PER-1 and OXA-10 among the isolates. The mean age, total body surface area and length of hospital stay among patients were 29 years, 37.7%, and 10 days, respectively. Kerosene was the commonest cause of burn (60%), followed by gas (30%). During the study, P. aeruginosa was detected in 100 isolates. The antibiotics they were most commonly resistant to were cefotaxime, ceftriaxone and ciprofloxacin. Of the 100 P. aeroginusa isolates, 28% were positive for ESBL production with the DDST, 48% and 52% were PER-1 and OXA-10 producers, respectively. The high frequency of PER-1 and OXA-10 producers at this hospital is of concern considering their potential spread among burn patients.

  12. Genetic diversity and antifungal activity of native Pseudomonas isolated from maize plants grown in a central region of Argentina.

    Science.gov (United States)

    Cordero, Paula; Cavigliasso, Andrea; Príncipe, Analía; Godino, Agustina; Jofré, Edgardo; Mori, Gladys; Fischer, Sonia

    2012-07-01

    Pseudomonas strains producing antimicrobial secondary metabolites play an important role in the biocontrol of phytopathogenic fungi. In this study, native Pseudomonas spp. isolates were obtained from the rhizosphere, endorhizosphere and bulk soil of maize fields in Córdoba (Argentina) during both the vegetative and reproductive stages of plant growth. However, the diversity based on repetitive-element PCR (rep-PCR) and amplified ribosomal DNA restriction analysis (ARDRA) fingerprinting was not associated with the stage of plant growth. Moreover, the antagonistic activity of the native isolates against phytopathogenic fungi was evaluated in vitro. Several strains inhibited members of the genera Fusarium, Sclerotinia or Sclerotium and this antagonism was related to their ability to produce secondary metabolites. A phylogenetic analysis based on rpoB or 16S rRNA gene sequences confirmed that the isolates DGR22, MGR4 and MGR39 with high biocontrol potential belonged to the genus Pseudomonas. Some native strains of Pseudomonas were also able to synthesise indole acetic acid and to solubilise phosphate, thus possessing potential plant growth-promoting (PGPR) traits, in addition to their antifungal activity. It was possible to establish a relationship between PGPR or biocontrol activity and the phylogeny of the strains. The study allowed the creation of a local collection of indigenous Pseudomonas which could be applied in agriculture to minimise the utilisation of chemical pesticides and fertilisers.

  13. In vitro evaluation of Pseudomonas bacterial isolates from rice phylloplane for biocontrol of Rhizoctonia solani and plant growth promoting traits.

    Science.gov (United States)

    Akter, Shamima; Kadir, Jugah; Juraimi, Abdul Shukor; Saud, Halimi Mohd

    2016-07-01

    The ability for biocontrol and plant growth promotion of three Pseudomonas bacterial isolates namely Pseudomonas fluorescens (UMB20), Pseudomonas aeruginosa (KMB25) and Pseudomonas asplenii (BMB42) obtained from rice plants was investigated. Fungal growth inhibition by the isolates ranged from 86.85 to 93.15% in volatile and 100% in diffusible metabolites test. Among the isolates, BMB42 showed fungal growth inhibition significantly in the volatile metabolite test. Isolates UMB20 and BMB42 were able to synthesis chitinase with chitinolytic indices of 13.66 and 13.50, respectively. In case of -1,3-glucanase, all the isolates showed activity to produce this enzyme at varied levels and isolate KMB25 showed significantly highest activity (53.53 ppm). Among the three isolates, KMB25 showed positive response to protease production and all of them were negative to pectinase and lipase and positive to the production of siderophore, and HCN, and were able to solubilize tricalcium phosphate. All the three bacterial isolates were capable of forming biofilm at different levels. Above results suggest that phylloplane Pseudomonas bacterial isolates have potential for antifungal activities and plant growth promotion.

  14. Viruses of the plant pathogenic fungus Sclerotinia sclerotiorum.

    Science.gov (United States)

    Jiang, Daohong; Fu, Yanping; Guoqing, Li; Ghabrial, Said A

    2013-01-01

    Sclerotinia sclerotiorum is a notorious plant fungal pathogen with a broad host range including many important crops, such as oilseed rape, soybean, and numerous vegetable crops. Hypovirulence-associated mycoviruses have attracted much attention because of their potential as biological control agents for combating plant fungal diseases and for use in fundamental studies on fungal pathogenicity and other properties. This chapter describes several mycoviruses that were isolated from hypovirulent strains except for strain Sunf-M, which has a normal phenotype. These viruses include the geminivirus-like mycovirus Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), Sclerotinia debilitation-associated RNA virus (SsDRV), Sclerotinia sclerotiorum RNA virus L (SsRV-L), Sclerotinia sclerotiorum hypovirus 1 (SsHV-1), Sclerotinia sclerotiorum mitoviruses 1 and 2 (SsMV-1, SsMV-2), and Sclerotinia sclerotiorum partitivirus S (SsPV-S). Unlike many other fungi, incidences of mixed infections with two or more mycoviruses in S. sclerotiorum are particularly high and very common. The interaction between SsDRV and S. sclerotiorum is likely to be unique. The significance of these mycoviruses to fungal ecology and viral evolution and the potential for biological control of Sclerotinia diseases using mycoviruses are discussed.

  15. Pseudomonas fluorescens induces strain-dependent and strain-independent host plant responses in defense networks, primary metabolism, photosynthesis, and fitness.

    Science.gov (United States)

    Weston, David J; Pelletier, Dale A; Morrell-Falvey, Jennifer L; Tschaplinski, Timothy J; Jawdy, Sara S; Lu, Tse-Yuan; Allen, Sara M; Melton, Sarah J; Martin, Madhavi Z; Schadt, Christopher W; Karve, Abhijit A; Chen, Jin-Gui; Yang, Xiaohan; Doktycz, Mitchel J; Tuskan, Gerald A

    2012-06-01

    Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.

  16. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper.

    Science.gov (United States)

    Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min

    2012-07-01

    Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks.

  17. Chemosensitization of plant pathogenic fungi to agricultural fungicides.

    Directory of Open Access Journals (Sweden)

    Vitaly eDzhavakhiya

    2012-03-01

    Full Text Available A common consequence of using agricultural fungicides is the development of resistance by fungal pathogens, which undermines reliability of fungicidal effectiveness. A potentially new strategy to aid in overcoming or minimizing this problem is enhancement of pathogen sensitivity to fungicides, or chemosensitization. Chemosensitization can be accomplished by combining a commercial fungicide with a certain non- or marginally fungicidal substance at levels where, alone, neither compound would be effective. Chemosensitization decreases the probability of the pathogen developing resistance, reduces the toxic impact on the environment by lowering effective dosage levels of toxic fungicides, and improves efficacy of antifungal agents. The present study shows that the antifungal activity of azole and strobilurin fungicides can be significantly enhanced through their co-application with certain natural or synthetic products against several economically important plant pathogenic fungi. Quadris (azoxystrobin combined with thymol at a non-fungitoxic concentration produced much higher growth inhibition of Bipolaris sorokiniana, Phoma glomerata, Alternaria sp. and Stagonospora nodorum than the fungicide alone. The effect of Dividend (difenoconazole applied with thymol significantly enhanced antifungal activity against B. sorokiniana and S. nodorum. Folicur (tebuconazole combined with 4-hydroxybenzaldehyde (4-HBA, 2,3-dihydroxybenzaldehyde or thymol significantly inhibited growth of A. alternata, at a much greater level than the fungicide alone. In addition, co-application of Folicur and 4-HBA resulted in a similar enhancement of antifungal activity against Fusarium culmorum. Lastly, we discovered that metabolites in the culture liquid of F. sambucinum biocontrol isolate FS-94 also had chemosensitizing activity, increasing S. nodorum sensitivity to Folicur and Dividend.

  18. Chemosensitization of plant pathogenic fungi to agricultural fungicides.

    Science.gov (United States)

    Dzhavakhiya, Vitaly; Shcherbakova, Larisa; Semina, Yulia; Zhemchuzhina, Natalia; Campbell, Bruce

    2012-01-01

    A common consequence of using agricultural fungicides is the development of resistance by fungal pathogens, which undermines reliability of fungicidal effectiveness. A potentially new strategy to aid in overcoming or minimizing this problem is enhancement of pathogen sensitivity to fungicides, or "chemosensitization." Chemosensitization can be accomplished by combining a commercial fungicide with a certain non- or marginally fungicidal substance at levels where, alone, neither compound would be effective. Chemosensitization decreases the probability of the pathogen developing resistance, reduces the toxic impact on the environment by lowering effective dosage levels of toxic fungicides, and improves efficacy of antifungal agents. The present study shows that the antifungal activity of azole and strobilurin fungicides can be significantly enhanced through their co-application with certain natural or synthetic products against several economically important plant pathogenic fungi. Quadris (azoxystrobin) combined with thymol at a non-fungitoxic concentration produced much higher growth inhibition of Bipolaris sorokiniana, Phoma glomerata, Alternaria sp. and Stagonospora nodorum than the fungicide alone. The effect of Dividend (difenoconazole) applied with thymol significantly enhanced antifungal activity against B. sorokiniana and S. nodorum. Folicur (tebuconazole) combined with 4-hydroxybenzaldehyde (4-HBA), 2,3-dihydroxybenzaldehyde or thymol significantly inhibited growth of Alternaria alternata, at a much greater level than the fungicide alone. In addition, co-application of Folicur and 4-HBA resulted in a similar enhancement of antifungal activity against Fusarium culmorum. Lastly, we discovered that metabolites in the culture liquid of Fusarium sambucinum biocontrol isolate FS-94 also had chemosensitizing activity, increasing S. nodorum sensitivity to Folicur and Dividend.

  19. Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens.

    Science.gov (United States)

    Pogorelko, Gennady; Lionetti, Vincenzo; Fursova, Oksana; Sundaram, Raman M; Qi, Mingsheng; Whitham, Steven A; Bogdanove, Adam J; Bellincampi, Daniela; Zabotina, Olga A

    2013-05-01

    The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens.

  20. Extracytoplasmic function sigma factors in Pseudomonas syringae

    DEFF Research Database (Denmark)

    Kiil, Kristoffer; Oguiza, J.A.; Ussery, D.W.

    2005-01-01

    Genome analyses of the plant pathogens Pseudomonas syringae pv. tomato DC3000, pv. syringae B728a and pv. phaseolicola 1448A reveal fewer extracytoplasmic function (ECF) sigma factors than in related Pseudomonads with different lifestyles. We highlight the presence of a P. syringae-specific ECF...

  1. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las, affects host preference behavior of its psyllid (Diaphorina citri Kuwayama vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of

  2. Agaricus Blazei Hot Water Extract Shows Anti Quorum Sensing Activity in the Nosocomial Human Pathogen Pseudomonas Aeruginosa

    Directory of Open Access Journals (Sweden)

    Marina Soković

    2014-04-01

    Full Text Available The edible mushroom Agaricus blazei Murill is known to induce protective immunomodulatory action against a variety of infectious diseases. In the present study we report potential anti-quorum sensing properties of A. blazei hot water extract. Quorum sensing (QS plays an important role in virulence, biofilm formation and survival of many pathogenic bacteria, including the Gram negative Pseudomonas aeruginosa, and is considered as a novel and promising target for anti-infectious agents. In this study, the effect of the sub-MICs of Agaricus blazei water extract on QS regulated virulence factors and biofilm formation was evaluated against P. aeruginosa PAO1. Sub-MIC concentrations of the extract which did not kill P. aeruginosa nor inhibited its growth, demonstrated a statistically significant reduction of virulence factors of P. aeruginosa, such as pyocyanin production, twitching and swimming motility. The biofilm forming capability of P. aeruginosa was also reduced in a concentration-dependent manner at sub-MIC values. Water extract of A. blazei is a promising source of antiquorum sensing and antibacterial compounds.

  3. The ppuI-rsaL-ppuR quorum-sensing system regulates cellular motility, pectate lyase activity, and virulence in potato opportunistic pathogen Pseudomonas sp. StFLB209.

    Science.gov (United States)

    Kato, Taro; Morohoshi, Tomohiro; Someya, Nobutaka; Ikeda, Tsukasa

    2015-01-01

    Pseudomonas sp. StFLB209 was isolated from potato leaf as an N-acylhomoserine lactone (AHL)-producing bacterium and showed a close phylogenetic relationship with P. cichorii, a known plant pathogen. Although there are no reports of potato disease caused by pseudomonads in Japan, StFLB209 was pathogenic to potato leaf. In this study, we reveal the complete genome sequence of StFLB209, and show that the strain possesses a ppuI-rsaL-ppuR quorum-sensing system, the sequence of which shares a high similarity with that of Pseudomonas putida. Disruption of ppuI results in a loss of AHL production as well as remarkable reduction in motility. StFLB209 possesses strong pectate lyase activity and causes maceration on potato tuber and leaf, which was slightly reduced in the ppuI mutant. These results suggest that the quorum-sensing system is well conserved between StFLB209 and P. putida and that the system is essential for motility, full pectate lyase activity, and virulence in StFLB209.

  4. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens

    Science.gov (United States)

    Infection of plant pathogenic fungi by mycoviruses can attenuate their virulence on plants and vigor in culture. In this study, we described the viromes of 275 isolates of five widely dispersed plant pathogenic fungal species (Colletotrichum truncatum, Macrophomina phaseolina, Phomopsis longicolla, ...

  5. Genomic analysis of the biocontrol strain Pseudomonas fluorescens Pf29Arp with evidence of T3SS and T6SS gene expression on plant roots.

    Science.gov (United States)

    Marchi, Muriel; Boutin, Morgane; Gazengel, Kévin; Rispe, Claude; Gauthier, Jean-Pierre; Guillerm-Erckelboudt, Anne-Yvonne; Lebreton, Lionel; Barret, Matthieu; Daval, Stéphanie; Sarniguet, Alain

    2013-06-01

    Several bacterial strains of the Pseudomonas genus provide plant growth stimulation, plant protection against pests or bioremediation. Among these bacteria, P. fluorescens Pf29Arp reduces the severity of take-all, a disease caused by the pathogenic fungus Gaeumannomyces graminis var. tritici (Ggt) on wheat roots. In this study, we obtained a draft genome of Pf29Arp and subsequent comparative genomic analyses have revealed that this bacterial strain is closely related to strains of the 'P. brassicacearum-like' subgroup including P. brassicacearum ssp. brassicacearum NFM421 and P. fluorescens F113. Despite an overall chromosomal organization similar to these strains, a number of features including antibiotic synthesis gene clusters from secondary metabolism are not found in the Pf29Arp genome. But Pf29Arp possesses different protein secretion systems including type III (T3SS) and type VI (T6SS) secretion systems. Pf29Arp is the first Pseudomonas sp. strain described with four T6SS clusters (cluster I, II, III and IV). In addition, some protein-coding genes involved in the assembly of these secretion systems are basally expressed during Pf29Arp colonization of healthy wheat roots and display different expression patterns on necrotized roots caused by Ggt. These data suggest a role of T3SS and T6SS in the Pf29Arp adaptation to different root environments.

  6. Biodiversity in agricultural soils, sustainable plant production and control of plant pathogens

    Directory of Open Access Journals (Sweden)

    A. J. Reinecke

    2010-01-01

    Full Text Available Pathogens Soils are very heterogeneous substrates providing an environmental matrix with varying spatial and temporal gradients of pH, organic carbon, particle size distribution and moisture content. Chemical, physical as well as biological factors are operational and soil includes a vast variety of soil-dwelling invertebrates and microbes that interact with each other and the environment to influence plant productivity directly and indirectly. A review of recent literature on the role of soil biodiversity highlights the important role of soil invertebrates, notably earthworms, in influencing soil characteristics and soil borne plant pathogens. Earthworms are widely recognized as having critical functions in soil in regulating key processes that impact favourably on plant productivity and simultaneously eliminating or reducing soil borne diseases. The aim of this review is firstly to contribute towards a clarification of the role of soil biodiversity in general and to focus specifically on that of earthworms and their role in influencing plant pathogens and parasites. Evidence is provided that their activities can support plant productivity and suppress pathogens. Once the nature and extent of their role is better known and they are confirmed to support plant productivity to the extent that many soil biologists believe, the next logical step is to utilize knowledge of their ecology to create and manage favourable environmental conditions to ensure their survival and activity in agricultural soils. Agricultural management practices that favour soil organisms are also reviewed. Implementing these will make the services of soil biota available to improve and sustain agro-ecosystems. This requires a better understanding of the preferences and tolerance ranges of these organisms and their interactions before we can apply methodologies in general to manipulate environmental conditions to maximise the benefits that they may offer.

  7. A Mathematical model to investigate quorum sensing regulation and its heterogenecity in pseudomonas syringae on leaves

    Science.gov (United States)

    The bacterium Pseudomonas syringae is a plant-pathogen, which through quorum sensing (QS), controls virulence. In this paper, by means of mathematical modeling, we investigate QS of this bacterium when living on leaf surfaces. We extend an existing stochastic model for the formation of Pseudomonas s...

  8. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis

    Science.gov (United States)

    Jun Fan; Casey Crooks; Gary Creissen; Lionel Hill; Shirley Fairhurst; Peter Doerner; Chris Lamb

    2011-01-01

    Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in Pseudomonas...

  9. Role of soil, crop debris, and a plant pathogen in Salmonella enterica contamination of tomato plants.

    Directory of Open Access Journals (Sweden)

    Jeri D Barak

    Full Text Available BACKGROUND: In the U.S., tomatoes have become the most implicated vehicle for produce-associated Salmonellosis with 12 outbreaks since 1998. Although unconfirmed, trace backs suggest pre-harvest contamination with Salmonella enterica. Routes of tomato crop contamination by S. enterica in the absence of direct artificial inoculation have not been investigated. METHODOLOGY/PRINCIPAL FINDINGS: This work examined the role of contaminated soil, the potential for crop debris to act as inoculum from one crop to the next, and any interaction between the seedbourne plant pathogen Xanthomonas campestris pv. vesicatoria and S. enterica on tomato plants. Our results show S. enterica can survive for up to six weeks in fallow soil with the ability to contaminate tomato plants. We found S. enterica can contaminate a subsequent crop via crop debris; however a fallow period between crop incorporation and subsequent seeding can affect contamination patterns. Throughout these studies, populations of S. enterica declined over time and there was no bacterial growth in either the phyllosphere or rhizoplane. The presence of X. campestris pv. vesicatoria on co-colonized tomato plants had no effect on the incidence of S. enterica tomato phyllosphere contamination. However, growth of S. enterica in the tomato phyllosphere occurred on co-colonized plants in the absence of plant disease. CONCLUSIONS/SIGNIFICANCE: S. enterica contaminated soil can lead to contamination of the tomato phyllosphere. A six week lag period between soil contamination and tomato seeding did not deter subsequent crop contamination. In the absence of plant disease, presence of the bacterial plant pathogen, X. campestris pv. vesicatoria was beneficial to S. enterica allowing multiplication of the human pathogen population. Any event leading to soil contamination with S. enterica could pose a public health risk with subsequent tomato production, especially in areas prone to bacterial spot disease.

  10. Diversity of TonB-dependent outer-membrane proteins in plant-associated strains of Pseudomonas fluorescens

    Science.gov (United States)

    Genomic sequences of ten strains of plant-associated Pseudomonas spp. were surveyed for the presence of TonB-dependent outer-membrane proteins (TBDPs), which function in the uptake of substrates from the environment by many Gram-negative bacteria. The ten strains, representing P. fluorescens, P. ch...

  11. Variation in the TonB-dependent Outer-Membrane Proteins in Plant-Associated Strains of Pseudomonas fluorescens

    Science.gov (United States)

    Nutrient acquisition is key to the ecological fitness of environmental bacteria such as Pseudomonas fluorescens and TonB-dependent outer-membrane proteins are important components of the cellular machinery for the uptake of substrates from the environment. Genomic sequences of ten strains of plant-a...

  12. Iron-regulated metabolites of plant growth-promoting Pseudomonas fluorescens WCS374 : Their role in induced systemic resistance

    NARCIS (Netherlands)

    Djavaheri, M.

    2007-01-01

    The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r effectively suppresses fusarium wilt in radish by induced systemic resistance (ISR). In radish, WCS374r-mediated ISR depends partly on iron-regulated metabolites. Under iron-limiting conditions, P. fluorescens WCS374r produces

  13. Isolation and Molecular Characterization of Potential Plant Growth Promoting Bacillus cereus GGBSTD1 and Pseudomonas spp. GGBSTD3 from Vermisources

    Directory of Open Access Journals (Sweden)

    Balayogan Sivasankari

    2014-01-01

    Full Text Available Vermicompost was prepared from leaf materials of Gliricidia sepium + Cassia auriculata + Leucaena leucocephala with cow dung (1 : 1 : 2 using Eudrilus eugeniae (Kinberg and Eisenia fetida for 60 days. Nineteen bacterial strains which have the capability to fix nitrogen, solubilize inorganic phosphate, and produce phytohormones were isolated from vermicompost, vermisources, and earthworm (fore, mid, and hind guts and tested for plant growth studies. Among the bacterial strains only five strains had both activities; among the five Bacillus spp. showed more nitrogen fixing activity and Pseudomonas spp. showed more phosphate solubilizing activity. Hence these bacterial strains were selected for further molecular analysis and identified Bacillus cereus GGBSTD1 and Pseudomonas spp. GGBSTD3. Plant growth studies use these two organisms separately and as consortium (Bacillus cereus + Pseudomonas spp. in (1 : 1 ratio at different concentrations using Vigna unguiculata (L. Walp. at different day intervals. The germination percent, shoot length, root length, leaf area, chlorophyll a content of the leaves, chlorophyll b content of the leaves, total chlorophyll content of the leaves, fresh weight of the whole plant, and dry weight of the whole plant were significantly enhanced by the consortium (Bacillus cereus + Pseudomonas spp. of two organisms at 5 mL concentrations on the 15th day compared to others.

  14. Comparative genomics of plant-asssociated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions

    NARCIS (Netherlands)

    Loper, J.E.; Hassan, K.A.; Mavrodi, D.V.; Davis II, E.W.; Lim, C.K.; Shaffer, B.T.; Elbourne, L.D.H.; Stockwell, V.O.; Hartney, S.L.; Breakwell, K.; Henkels, M.D.; Tetu, S.G.; Rangel, L.I.; Kidarsa, T.A.; Wilson, N.L.; Mortel, van de J.E.; Song, C.; Blumhagen, R.; Radune, D.; Hostetler, J.B.; Brinkac, L.M.; Durkin, A.C.; Kluepfel, D.A.; Wechter, W.P.; Anderson, A.J.; Kim, Y.C.; Pierson III, L.S.; Pierson, E.A.; Lindow, S.E.; Kobayashi, D.Y.; Raaijmakers, J.; Weller, D.M.; Thomashow, L.S.; Allen, A.E.; Paulsen, I.T.

    2012-01-01

    We provide here a comparative genome analysis of ten strains within the Pseudomonas fluorescens group including seven new genomic sequences. These strains exhibit a diverse spectrum of traits involved in biological control and other multitrophic interactions with plants, microbes, and insects. Multi

  15. Herbs, Spices and Medicinal Plants Used In Hispanic Traditional Medicine Can Decrease Quorum Sensing Dependent Virulence in Pseudomonas aeruginosa

    OpenAIRE

    V Huerta; Mihalik, K; S H Crixell; D A Vattem

    2008-01-01

    Summary: Inhibition of quorum sensing (QS), a cell density dependent regulation of bacterial virulent gene expression by autoinducers (AI) is an attractive strategy for the discovery of novel antimicrobials and overcome antibiotic resistance. Pseudomonas aeruginosa (PAO1), an opportunistic pathogen in immune compromised patients is under the regulation of the LasR-RhlR system for its QS mediated development of virulence. Natural products have recently become a promising source for deriving mo...

  16. Carbohydrate-related enzymes of important Phytophthora plant pathogens.

    Science.gov (United States)

    Brouwer, Henk; Coutinho, Pedro M; Henrissat, Bernard; de Vries, Ronald P

    2014-11-01

    Carbohydrate-Active enZymes (CAZymes) form particularly interesting targets to study in plant pathogens. Despite the fact that many CAZymes are pathogenicity factors, oomycete CAZymes have received significantly less attention than effectors in the literature. Here we present an analysis of the CAZymes present in the Phytophthora infestans, Ph. ramorum, Ph. sojae and Pythium ultimum genomes compared to growth of these species on a range of different carbon sources. Growth on these carbon sources indicates that the size of enzyme families involved in degradation of cell-wall related substrates like cellulose, xylan and pectin is not always a good predictor of growth on these substrates. While a capacity to degrade xylan and cellulose exists the products are not fully saccharified and used as a carbon source. The Phytophthora genomes encode larger CAZyme sets when compared to Py. ultimum, and encode putative cutinases, GH12 xyloglucanases and GH10 xylanases that are missing in the Py. ultimum genome. Phytophthora spp. also encode a larger number of enzyme families and genes involved in pectin degradation. No loss or gain of complete enzyme families was found between the Phytophthora genomes, but there are some marked differences in the size of some enzyme families.

  17. Microbial pathogens in wastewater treatment plants (WWTP) in Hamburg.

    Science.gov (United States)

    Ajonina, Caroline; Buzie, Christopher; Rubiandini, Rafi Herfini; Otterpohl, Ralf

    2015-01-01

    Microbial pathogens are among the major health problems associated with water and wastewater. Classical indicators of fecal contamination include total coliforms, Escherichia coli, and Clostridium perfringens. These fecal indicators were monitored in order to obtain information regarding their evolution during wastewater treatment processes. Helminth eggs survive for a long duration in the environment and have a high potential for waterborne transmission, making them reliable contaminant indicators. A large quantity of helminth eggs was detected in the wastewater samples using the Bailanger method. Eggs were found in the influent and effluent with average concentration ranging from 11 to 50 eggs/L. Both E. coli and total coliforms concentrations were significantly 1- to 3-fold higher in influent than in effluent. The average concentrations of E. coli ranged from 2.5×10(3) to 4.4×10(5) colony-forming units (CFU)/100 ml. Concentrations of total coliforms ranged from 3.6×10(3) to 7.9×10(5) CFU/100 ml. Clostridium perfringens was also detected in influent and effluent of wastewater treatment plants (WWTP) at average concentrations ranging from 5.4×10(2) to 9.1×10(2) most probable number (MPN)/100 ml. Significant Spearman rank correlations were found between helminth eggs and microbial indicators (total coliform, E. coli, and C. perfringens) in the WWTP. There is therefore need for additional microbial pathogen monitoring in the WWTP to minimize public health risk.

  18. The plant cell nucleus: a true arena for the fight between plants and pathogens.

    Science.gov (United States)

    Deslandes, Laurent; Rivas, Susana

    2011-01-01

    Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.

  19. EFFICACY OF EXTRACTS OF SIX MEDICINAL PLANTS OF INDIA AGAINST SOME PATHOGENIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Indranil Bhattacharjee

    2013-02-01

    Full Text Available The sensitivity of the pathogenic multi-drug resistant bacteria (Aeromonas hydrophila, Bacillus licheniformis, Bacillus mycoides, Bacillus niacini, Bacillus subtilis, Escherichia coli, Geobacillus thermodenitrificans, Klebsiella pneumoniae, Paenibacillus koreensis, Paenibacillus larvae larvae, Proteus vulgaris, Pseudomonas aeruginosa, Pseudomonas flourescens, Pseudomonas putida and Staphylocccus aureus was tested against aqueous, acetone and ethanol extracts of mature leaves of Mimosa pudica Linn. (Mimosaceae and Moringa oleifera Lam. (Moringaceae, stems of Michelia champaca Linn. (Magnoliaceae and Musa paradisiaca Linn.(Musaceae, roots of Momordica charantia Linn. (Cucurbitaceae and Murraya koenigii Linn. (Rutaceae by agar well diffusion method. Gatifloxacin was the most effective antibiotic against all the reference bacteria. Though all the extracts were found effective, the ethanol extract showed maximum inhibition against the test microorganisms followed by acetone and aqueous extract. Bacillus niacini is the most resistant bacteria and Klebsiella pneumoniae is the most sensitive bacteria against all the extracts used. MIC values of each bacterium were also determined

  20. Phytohormone production by strains of Pantoea agglomerans from knots on olive plants caused by Pseudomonas savastanoi pv. savastanoi

    OpenAIRE

    Cimmino, A; A. Andolfi; MARCHI, G.; Surico, G.; Evidente, A

    2006-01-01

    Pantoea agglomerans is a common epiphyte of many plant species, and it is associated with Pseudomonas savastanoi pv. savastanoi in young and apparently intact olive knots. Strains of P. agglomerans collected from various olive groves in central Italy were studied for their ability to accumulate plant growth substances in culture. All the strains produced indole-3-aldehyde, indole-3-ethanol and indole-3-acetic acid (IAA), this last compound in amounts (average 8.7 mg l-1) comparabl...

  1. Complete genome of Pseudomonas sp. strain L10.10, a psychrotolerant biofertilizer that could promote plant growth.

    Science.gov (United States)

    See-Too, Wah Seng; Lim, Yan-Lue; Ee, Robson; Convey, Peter; Pearce, David A; Yin, Wai-Fong; Chan, Kok Gan

    2016-03-20

    Pseudomonas sp. strain L10.10 (=DSM 101070) is a psychrotolerant bacterium which was isolated from Lagoon Island, Antarctica. Analysis of its complete genome sequence indicates its possible role as a plant-growth promoting bacterium, including nitrogen-fixing ability and indole acetic acid (IAA)-producing trait, with additional suggestion of plant disease prevention attributes via hydrogen cyanide production. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Pathogenic effects of biofilm with chronic pseudomonas aeruginosa lung infection in rats

    Institute of Scientific and Technical Information of China (English)

    Ping Yan; Yiqiang Chen; Zhijun Song; Hong Wu; Jinliang Kong; Xuejun Qin

    2008-01-01

    Objective: To establish an animal model of P.aeruginosa biofilm associated with chronic pulmonary infection and investigate the pathogenic effects of biofilm. Methods: Experiments in vitro, measuring the MICS, MBCS of ievofloxacin(LFX), ceftazidime(CAZ) in PAO579 in alginate beads and planktonic PAO579. Rats were challenged with 0.1 ml of PAO579(109CFU/ml) in alginate beads or 0.1 ml of planktonic PAO579(109CFU/ml), 3,7,14 days after challenging, bacteriological, pathological features were observed. Results: The MICS, MBCS of LFX, CAZ in PAO579 in alginate beads were higher than those in planktonic PAO579 in vitro. CFU/lung in alginate beads group was significantly higher than that in planktonic bacteria group(P = 0.002, P =0.004, P = 0.002, respectively); macroscopic lung pathology and the inflammation in alginate beads group were significantly more severe compared to those in planktonic bacteria group in vivo. Conclusion: P.aeruginosa biofilm protected bacterium from killing of antibiotics and might mediate the host immune damage in the lung tissue and made bacterium evade the host immune defense.

  3. A novel small RNA is important for biofilm formation and pathogenicity in Pseudomonas aeruginosa.

    Science.gov (United States)

    Taylor, Patrick K; Van Kessel, Antonius T M; Colavita, Antonio; Hancock, Robert E W; Mah, Thien-Fah

    2017-01-01

    The regulation of biofilm development requires multiple mechanisms and pathways, but it is not fully understood how these are integrated. Small RNA post-transcriptional regulators are a strong candidate as a regulatory mechanism of biofilm formation. More than 200 small RNAs in the P. aeruginosa genome have been characterized in the literature to date; however, little is known about their biological roles in the cell. Here we describe the identification of the novel regulatory small RNA, SrbA. This locus was up-regulated 45-fold in P. aeruginosa strain PA14 biofilm cultures. Loss of SrbA expression in a deletion strain resulted in a 66% reduction in biofilm mass. Furthermore, the mortality rate over 72 hours in C. elegans infections was reduced to 39% when infected with the srbA deletion strain compared to 78% mortality when infected with the parental wild-type P. aeruginosa strain. There was no significant effect on culture growth or adherence to surfaces with loss of SrbA expression. Also loss of SrbA expression had no effect on antibiotic resistance to ciprofloxacin, gentamicin, and tobramycin. We conclude that SrbA is important for biofilm formation and full pathogenicity of P. aeruginosa.

  4. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria

    NARCIS (Netherlands)

    Zamioudis, C.; Mastranesti, P.; Dhonukshe, P.; Blilou, I.; Pieterse, C.M.J.

    2013-01-01

    Plant roots are colonized by an immense number of microbes, referred to as the root microbiome. Selected strains of beneficial soil-borne bacteria can protect against abiotic stress and prime the plant immune system against a broad range of pathogens. Pseudomonas spp. rhizobacteria represent one of

  5. Unraveling Root Developmental Programs Initiated by Beneficial Pseudomonas spp. Bacteria

    NARCIS (Netherlands)

    Zamioudis, C.; Mastranesti, P.; Dhonukshe, P.; Blilou, I.; Pieterse, C.M.J.

    2013-01-01

    Plant roots are colonized by an immense number of microbes, referred to as the root microbiome. Selected strains of beneficial soil-borne bacteria can protect against abiotic stress and prime the plant immune system against a broad range of pathogens. Pseudomonas spp. rhizobacteria represent one of

  6. Unraveling Root Developmental Programs Initiated by Beneficial Pseudomonas spp. Bacteria

    NARCIS (Netherlands)

    Zamioudis, C.; Mastranesti, P.; Dhonukshe, P.; Blilou, I.; Pieterse, C.M.J.

    2013-01-01

    Plant roots are colonized by an immense number of microbes, referred to as the root microbiome. Selected strains of beneficial soil-borne bacteria can protect against abiotic stress and prime the plant immune system against a broad range of pathogens. Pseudomonas spp. rhizobacteria represent one of

  7. Mechanisms of PGPR-induced resistance against pathogens

    NARCIS (Netherlands)

    Loon, L.C. van; Bakker, P.A.H.M.; Pieterse, C.M.J.

    1997-01-01

    Plant growth-promoting rhizobacteria can suppress diseases through antagonism between the bacteria and soilborne pathogens, as well as by inducing a systemic resistance in the plant against both root and foliar pathogens. Specific Pseudomonas strains induce systemic resistance in carnation, cucumber

  8. In Vitro Screening for Abiotic Stress Tolerance in Potent Biocontrol and Plant Growth Promoting Strains of Pseudomonas and Bacillus spp.

    Directory of Open Access Journals (Sweden)

    G. Praveen Kumar

    2014-01-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR has been identified as a group of microbes that are used for plant growth enhancement and biocontrol for management of plant diseases. The inconsistency in performance of these bacteria from laboratory to field conditions is compounded due to the prevailing abiotic stresses in the field. Therefore, selection of bacterial strains with tolerance to abiotic stresses would benefit the end-user by successful establishment of the strain for showing desired effects. In this study we attempted to isolate and identify strains of Bacillus and Pseudomonas spp. with stress tolerance and proven ability to inhibit the growth of potential phytopathogenic fungi. Screening of bacterial strains for high temperature (50°C, salinity (7% NaCl, and drought (−1.2 MPa showed that stress tolerance was pronounced less in Pseudomonas isolates than in Bacillus strains. The reason behind this could be the formation of endospores by Bacillus isolates. Tolerance to drought was high in Pseudomonas strains than the other two stresses. Three strains, P8, P20 and P21 showed both salinity and temperature tolerance. P59 strain possessed promising antagonistic activity and drought tolerance. The magnitude of antagonism shown by Bacillus isolates was also higher when compared to Pseudomonas strains. To conclude, identification of microbial candidate strains with stress tolerance and other added characteristic features would help the end-user obtain the desired beneficial effects.

  9. In Vitro Screening for Abiotic Stress Tolerance in Potent Biocontrol and Plant Growth Promoting Strains of Pseudomonas and Bacillus spp.

    Science.gov (United States)

    Praveen Kumar, G; Mir Hassan Ahmed, S K; Desai, Suseelendra; Leo Daniel Amalraj, E; Rasul, Abdul

    2014-01-01

    Plant growth promoting rhizobacteria (PGPR) has been identified as a group of microbes that are used for plant growth enhancement and biocontrol for management of plant diseases. The inconsistency in performance of these bacteria from laboratory to field conditions is compounded due to the prevailing abiotic stresses in the field. Therefore, selection of bacterial strains with tolerance to abiotic stresses would benefit the end-user by successful establishment of the strain for showing desired effects. In this study we attempted to isolate and identify strains of Bacillus and Pseudomonas spp. with stress tolerance and proven ability to inhibit the growth of potential phytopathogenic fungi. Screening of bacterial strains for high temperature (50°C), salinity (7% NaCl), and drought (-1.2 MPa) showed that stress tolerance was pronounced less in Pseudomonas isolates than in Bacillus strains. The reason behind this could be the formation of endospores by Bacillus isolates. Tolerance to drought was high in Pseudomonas strains than the other two stresses. Three strains, P8, P20 and P21 showed both salinity and temperature tolerance. P59 strain possessed promising antagonistic activity and drought tolerance. The magnitude of antagonism shown by Bacillus isolates was also higher when compared to Pseudomonas strains. To conclude, identification of microbial candidate strains with stress tolerance and other added characteristic features would help the end-user obtain the desired beneficial effects.

  10. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms.

    Science.gov (United States)

    Richards, Thomas A; Dacks, Joel B; Jenkinson, Joanna M; Thornton, Christopher R; Talbot, Nicholas J

    2006-09-19

    Filamentous fungi and oomycetes are eukaryotic microorganisms that grow by producing networks of thread-like hyphae, which secrete enzymes to break down complex nutrients, such as wood and plant material, and recover the resulting simple sugars and amino acids by osmotrophy. These organisms are extremely similar in both appearance and lifestyle and include some of the most economically important plant pathogens . However, the morphological similarity of fungi and oomycetes is misleading because they represent some of the most distantly related eukaryote evolutionary groupings, and their shared osmotrophic growth habit is interpreted as being the result of convergent evolution . The fungi branch with the animals, whereas the oomycetes branch with photosynthetic algae as part of the Chromalveolata . In this report, we provide strong phylogenetic evidence that multiple horizontal gene transfers (HGT) have occurred from filamentous ascomycete fungi to the distantly related oomycetes. We also present evidence that a subset of the associated gene families was initially the product of prokaryote-to-fungi HGT. The predicted functions of the gene products associated with fungi-to-oomycete HGT suggest that this process has played a significant role in the evolution of the osmotrophic, filamentous lifestyle on two separate branches of the eukaryote tree.

  11. Phytophagous arthropods and a pathogen sharing a host plant: evidence for indirect plant-mediated interactions.

    Directory of Open Access Journals (Sweden)

    Raphaëlle Mouttet

    Full Text Available In ecological systems, indirect interactions between plant pathogens and phytophagous arthropods can arise when infestation by a first attacker alters the common host plant so that although a second attacker could be spatially or temporally separated from the first one, the former could be affected. The induction of plant defense reactions leading to the production of secondary metabolites is thought to have an important role since it involves antagonistic and/or synergistic cross-talks that may determine the outcome of such interactions. We carried out experiments under controlled conditions on young rose plants in order to assess the impact of these indirect interactions on life history traits of three pests: the necrotrophic fungus Botrytis cinerea Pers.: Fr. (Helotiales: Sclerotiniaceae, the aphid Rhodobium porosum Sanderson (Hemiptera: Aphididae and the thrips Frankliniella occidentalis Pergande (Thysanoptera: Thripidae. Our results indicated (i a bi-directional negative interaction between B. cinerea and R. porosum, which is conveyed by decreased aphid growth rate and reduced fungal lesion area, as well as (ii an indirect negative effect of B. cinerea on insect behavior. No indirect effect was observed between thrips and aphids. This research highlights several complex interactions that may be involved in structuring herbivore and plant pathogen communities within natural and managed ecosystems.

  12. Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Baltrus, David A; McCann, Honour C; Guttman, David S

    2017-01-01

    A remarkable shift in our understanding of plant-pathogenic bacteria is underway. Until recently, nearly all research on phytopathogenic bacteria was focused on a small number of model strains, which provided a deep, but narrow, perspective on plant-microbe interactions. Advances in genome sequencing technologies have changed this by enabling the incorporation of much greater diversity into comparative and functional research. We are now moving beyond a typological understanding of a select collection of strains to a more generalized appreciation of the breadth and scope of plant-microbe interactions. The study of natural populations and evolution has particularly benefited from the expansion of genomic data. We are beginning to have a much deeper understanding of the natural genetic diversity, niche breadth, ecological constraints and defining characteristics of phytopathogenic species. Given this expanding genomic and ecological knowledge, we believe the time is ripe to evaluate what we know about the evolutionary dynamics of plant pathogens. © 2016 BSPP and John Wiley & Sons Ltd.

  13. Mutations in γ-aminobutyric acid (GABA) transaminase genes in plants or Pseudomonas syringae reduce bacterial virulence.

    Science.gov (United States)

    Park, Duck Hwan; Mirabella, Rossana; Bronstein, Philip A; Preston, Gail M; Haring, Michel A; Lim, Chun Keun; Collmer, Alan; Schuurink, Robert C

    2010-10-01

    Pseudomonas syringae pv. tomato DC3000 is a bacterial pathogen of Arabidopsis and tomato that grows in the apoplast. The non-protein amino acid γ-amino butyric acid (GABA) is produced by Arabidopsis and tomato and is the most abundant amino acid in the apoplastic fluid of tomato. The DC3000 genome harbors three genes annotated as gabT GABA transaminases. A DC3000 mutant lacking all three gabT genes was constructed and found to be unable to utilize GABA as a sole carbon and nitrogen source. In complete minimal media supplemented with GABA, the mutant grew less well than wild-type DC3000 and showed strongly reduced expression of hrpL and avrPto, which encode an alternative sigma factor and effector, respectively, associated with the type III secretion system. The growth of the gabT triple mutant was weakly reduced in Arabidopsis ecotype Landberg erecta (Ler) and strongly reduced in the Ler pop2-1 GABA transaminase-deficient mutant that accumulates higher levels of GABA. Much of the ability to grow on GABA-amended minimal media or in Arabidopsis pop2-1 leaves could be restored to the gabT triple mutant by expression in trans of just gabT2. The ability of DC3000 to elicit the hypersensitive response (HR) in tobacco leaves is dependent upon deployment of the type III secretion system, and the gabT triple mutant was less able than wild-type DC3000 to elicit this HR when bacteria were infiltrated along with GABA at levels of 1 mm or more. GABA may have multiple effects on P. syringae-plant interactions, with elevated levels increasing disease resistance.

  14. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities.

    Science.gov (United States)

    Jain, Rahul; Pandey, Anita

    2016-09-01

    The genus Pseudomonas is known to comprise a huge diversity of species with the ability to thrive in different habitats, including those considered as extreme environments. In the present study, a psychrotolerant, wide pH tolerant and halotolerant strain of Pseudomonas chlororaphis GBPI_507 (MCC2693), isolated from the wheat rhizosphere growing in a mountain location in Indian Himalayan Region (IHR), has been investigated for its antimicrobial potential with particular reference to phenazine production and plant growth promoting traits. GBPI_507 showed phenazine production at the temperatures ranged from 14 to 25°C. The benzene extracted compound identified as phenazine-1-carboxylic acid (PCA) through GC-MS exhibited antimicrobial properties against Gram positive bacteria and actinomycetes. The inhibition of phytopathogens in diffusible biocontrol assays was recorded in an order: Alternaria alternata>Phytophthora sp.>Fusarium solani>F. oxysporum. In volatile metabolite assays, all the pathogens, except Phytophthora sp. produced distorted colonies, characterized by restricted sporulation. The isolate also possessed other growth promoting and biocontrol traits including phosphate solubilization and production of siderophores, HCN, ammonia, and lytic enzymes (lipase and protease). Molecular studies confirmed production of PCA by the bacterium GBPI_507 through presence of phzCD and phzE genes in its genome. The polyextremophilic bacterial strain possesses various important characters to consider it as a potential agent for field applications, especially in mountain ecosystem, for sustainable and eco-friendly crop production.

  15. Fluorescence techniques to detect and to assess viability of plant pathogenic bacteria

    NARCIS (Netherlands)

    Chitarra, L.G.

    2001-01-01

    Plant pathogenic bacteria cause major economic losses in commercial crop production worldwide every year. The current methods used to detect and to assess the viability of bacterial pathogens and to test seed lots or plants for contamination are usually based on plate assays or on serological techni

  16. Plant chemical defense against herbivores and pathogens: generalized defense or trade-offs?

    NARCIS (Netherlands)

    Biere, A.; Marak, H.B.; Van Damme, J.M.M.

    2004-01-01

    Plants are often attacked by multiple enemies, including pathogens and herbivores. While many plant secondary metabolites show specific effects toward either pathogens or herbivores, some can affect the performance of both these groups of natural enemies and are considered to be generalized defense

  17. HOPM1 mediated disease resistance to Pseudomonas syringae in Arabidopsis

    Science.gov (United States)

    He, Sheng Yang [Okemos, MI; Nomura, Kinya [East Lansing, MI

    2011-11-15

    The present invention relates to compositions and methods for enhancing plant defenses against pathogens. More particularly, the invention relates to enhancing plant immunity against bacterial pathogens, wherein HopM1.sub.1-300 mediated protection is enhanced, such as increased protection to Pseudomonas syringae pv. tomato DC3000 HopM1 and/or there is an increase in activity of an ATMIN associated plant protection protein, such as ATMIN7. Reagents of the present invention further provide a means of studying cellular trafficking while formulations of the present inventions provide increased pathogen resistance in plants.

  18. Plants as a habitat for beneficial and/or human pathogenic bacteria.

    Science.gov (United States)

    Tyler, Heather L; Triplett, Eric W

    2008-01-01

    Non-plant pathogenic endophytic bacteria can promote plant growth, improve nitrogen nutrition, and, in some cases, are human pathogens. Recent work in several laboratories has shown that enteric bacteria are common inhabitants of the interior of plants. These observations led to the experiments that showed the entry into plants of enteric human pathogens such as Salmonella and E. coli O157:H7. The extent of endophytic colonization by strains is regulated by plant defenses and several genetic determinants necessary for this interior colonization in endophytic bacteria have been identified. The genomes of four endophytic bacteria now available should promote discovery of other genes that contribute to this phenotype. Common virulence factors in plant and animal pathogens have also been described in bacteria that can infect both plant and animal models. Future directions in all of these areas are proposed.

  19. Inhibitory activity of Iranian plant extracts on growth and biofilm formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Mansouri, S.

    2013-01-01

    Full Text Available Aims: Pseudomonas aeruginosa is a drug resistance opportunistic bacterium. Biofilm formation is key factor for survivalof P. aeruginosa in various environments. Polysaccharides may be involved in biofilm formation. The purpose of thisstudy was to evaluate antimicrobial and anti-biofilm activities of seven plant extracts with known alpha-glucosidaseinhibitory activities on different strains of P. aeruginosa.Methodology and results: Plants were extracted with methanol by the maceration method. Antimicrobial activities weredetermined by agar dilution and by growth yield as measured by OD560nm of the Luria Bertani broth (LB culture with orwithout extracts. In agar dilution method, extracts of Quercus infectoria inhibited the growth of all, while Myrtuscommunis extract inhibited the growth of 3 out of 8 bacterial strains with minimum inhibitory concentration (MIC of 1000μg/mL. All extracts significantly (p≤0.003 reduced growth rate of the bacteria in comparison with the control withoutextracts in LB broth at sub-MIC concentrations (500 μg/mL. All plant extracts significantly (p≤0.003 reduced biofilmformation compared to the controls. Glycyrrhiza glabra and Q. infectoria had the highest anti-biofilm activities. Nocorrelation between the alpha-glucosidase inhibitory activity with growth or the intensity of biofilm formation was found.Conclusion, significance and impact of study: Extracts of Q. infectoria and M. communis had the most antimicrobial,while Q. infectoria and G. glabra had the highest anti-biofilm activities. All plant extracts had anti-biofilm activities withmarginal effect on growth, suggesting that the mechanisms of these activities are unrelated to static or cidal effects.Further work to understand the relation between antimicrobial and biofilm formation is needed for development of newmeans to fight the infectious caused by this bacterium in future.

  20. Anti-biotic Effect of Slightly Acidic Electrolyzed Water on Plant Bacterial / Fungal Pathogen

    OpenAIRE

    津野, 和宣; 中村, 悌一

    2012-01-01

    The anti-biotic effect of slightly acidic electrolyzed water on plant pathogen was determined. The spores of 4 kinds of fungal pathogen and 17 kinds of plant pathogenic bacteria were applied at different concentration.###Slightly acidic electrolyzed water showed strong growth inhibition in germination of fungi spores tested. In addition, by the treatment with slightly acidic electrolyzed water for 30 sec., all kinds of bacteria tested were inhibited to grow on the medium.###The anti-biotic ef...

  1. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens.

    Science.gov (United States)

    Hernández-Reyes, Casandra; Schenk, Sebastian T; Neumann, Christina; Kogel, Karl-Heinz; Schikora, Adam

    2014-11-01

    The implementation of beneficial microorganisms for plant protection has a long history. Many rhizobia bacteria are able to influence the immune system of host plants by inducing resistance towards pathogenic microorganisms. In this report, we present a translational approach in which we demonstrate the resistance-inducing effect of Ensifer meliloti (Sinorhizobium meliloti) on crop plants that have a significant impact on the worldwide economy and on human nutrition. Ensifer meliloti is usually associated with root nodulation in legumes and nitrogen fixation. Here, we suggest that the ability of S. meliloti to induce resistance depends on the production of the quorum-sensing molecule, oxo-C14-HSL. The capacity to enhanced resistance provides a possibility to the use these beneficial bacteria in agriculture. Using the Arabidopsis-Salmonella model, we also demonstrate that the application of N-acyl-homoserine lactones-producing bacteria could be a successful strategy to prevent plant-originated infections with human pathogens. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. The two-speed genomes of filamentous pathogens: waltz with plants.

    Science.gov (United States)

    Dong, Suomeng; Raffaele, Sylvain; Kamoun, Sophien

    2015-12-01

    Fungi and oomycetes include deep and diverse lineages of eukaryotic plant pathogens. The last 10 years have seen the sequencing of the genomes of a multitude of species of these so-called filamentous plant pathogens. Already, fundamental concepts have emerged. Filamentous plant pathogen genomes tend to harbor large repertoires of genes encoding virulence effectors that modulate host plant processes. Effector genes are not randomly distributed across the genomes but tend to be associated with compartments enriched in repetitive sequences and transposable elements. These findings have led to the 'two-speed genome' model in which filamentous pathogen genomes have a bipartite architecture with gene sparse, repeat rich compartments serving as a cradle for adaptive evolution. Here, we review this concept and discuss how plant pathogens are great model systems to study evolutionary adaptations at multiple time scales. We will also introduce the next phase of research on this topic.

  3. Molecular inversion probe: a new tool for highly specific detection of plant pathogens.

    Directory of Open Access Journals (Sweden)

    Han Yih Lau

    Full Text Available Highly specific detection methods, capable of reliably identifying plant pathogens are crucial in plant disease management strategies to reduce losses in agriculture by preventing the spread of diseases. We describe a novel molecular inversion probe (MIP assay that can be potentially developed into a robust multiplex platform to detect and identify plant pathogens. A MIP has been designed for the plant pathogenic fungus Fusarium oxysporum f.sp. conglutinans and the proof of concept for the efficiency of this technology is provided. We demonstrate that this methodology can detect as little as 2.5 ng of pathogen DNA and is highly specific, being able to accurately differentiate Fusarium oxysporum f.sp. conglutinans from other fungal pathogens such as Botrytis cinerea and even pathogens of the same species such as Fusarium oxysporum f.sp. lycopersici. The MIP assay was able to detect the presence of the pathogen in infected Arabidopsis thaliana plants as soon as the tissues contained minimal amounts of pathogen. MIP methods are intrinsically highly multiplexable and future development of specific MIPs could lead to the establishment of a diagnostic method that could potentially screen infected plants for hundreds of pathogens in a single assay.

  4. Rutin-Mediated Priming of Plant Resistance to Three Bacterial Pathogens Initiating the Early SA Signal Pathway.

    Directory of Open Access Journals (Sweden)

    Wei Yang

    Full Text Available Flavonoids are ubiquitous in the plant kingdom and have many diverse functions, including UV protection, auxin transport inhibition, allelopathy, flower coloring and insect resistance. Here we show that rutin, a proud member of the flavonoid family, could be functional as an activator to improve plant disease resistances. Three plant species pretreated with 2 mM rutin were found to enhance resistance to Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Pseudomonas syringae pv. tomato strain DC3000 in rice, tobacco and Arabidopsis thaliana respectively. While they were normally propagated on the cultural medium supplemented with 2 mM rutin for those pathogenic bacteria. The enhanced resistance was associated with primed expression of several pathogenesis-related genes. We also demonstrated that the rutin-mediated priming resistance was attenuated in npr1, eds1, eds5, pad4-1, ndr1 mutants, and NahG transgenic Arabidopsis plant, while not in either snc1-11, ein2-5 or jar1 mutants. We concluded that the rutin-priming defense signal was modulated by the salicylic acid (SA-dependent pathway from an early stage upstream of NDR1 and EDS1.

  5. Rutin-Mediated Priming of Plant Resistance to Three Bacterial Pathogens Initiating the Early SA Signal Pathway.

    Science.gov (United States)

    Yang, Wei; Xu, Xiaonan; Li, Yang; Wang, Yingzi; Li, Ming; Wang, Yong; Ding, Xinhua; Chu, Zhaohui

    2016-01-01

    Flavonoids are ubiquitous in the plant kingdom and have many diverse functions, including UV protection, auxin transport inhibition, allelopathy, flower coloring and insect resistance. Here we show that rutin, a proud member of the flavonoid family, could be functional as an activator to improve plant disease resistances. Three plant species pretreated with 2 mM rutin were found to enhance resistance to Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Pseudomonas syringae pv. tomato strain DC3000 in rice, tobacco and Arabidopsis thaliana respectively. While they were normally propagated on the cultural medium supplemented with 2 mM rutin for those pathogenic bacteria. The enhanced resistance was associated with primed expression of several pathogenesis-related genes. We also demonstrated that the rutin-mediated priming resistance was attenuated in npr1, eds1, eds5, pad4-1, ndr1 mutants, and NahG transgenic Arabidopsis plant, while not in either snc1-11, ein2-5 or jar1 mutants. We concluded that the rutin-priming defense signal was modulated by the salicylic acid (SA)-dependent pathway from an early stage upstream of NDR1 and EDS1.

  6. Endocytosis in the plant-pathogenic fungus Ustilago maydis.

    Science.gov (United States)

    Fuchs, U; Steinberg, G

    2005-10-01

    Filamentous fungi are an important group of tip-growing organisms, which include numerous plant pathogens such as Magnaporthe grisea and Ustilago maydis. Despite their ecological and economical relevance, we are just beginning to unravel the importance of endocytosis in filamentous fungi. Most evidence for endocytosis in filamentous fungi is based on the use of endocytic tracer dyes that are taken up into the cell and delivered to the vacuole. Moreover, genomewide screening for candidate genes in Neurospora crassa and U. maydis confirmed the presence of most components of the endocytic machinery, indicating that endocytosis participates in filamentous growth. Indeed, it was shown that in U. maydis early endosomes cluster at sites of growth, where they support morphogenesis and polar growth, most likely via endosome-based membrane recycling. In humans, such recycling processes to the plasma membrane involve small GTPases such as Rab4. A homologue of this protein is encoded in the genome of U. maydis but is absent from the yeast Saccharomyces cerevisiae, suggesting that Rab4-mediated recycling is important for filamentous growth. Furthermore, human Rab4 regulates traffic of early endosomes along microtubules, and a similar microtubule-based transport is described for U. maydis. These observations suggest that Rab4-like GTPases might regulate endosome- and microtubule-based recycling during tip growth of filamentous fungi.

  7. The Pathogenicity of Pseudomonas syringae MB03 against Caenorhabditis elegans and the Transcriptional Response of Nematicidal Genes upon Different Nutritional Conditions

    Science.gov (United States)

    Ali, Muhammad; Sun, Yu; Xie, Li; Yu, Huafu; Bashir, Anum; Li, Lin

    2016-01-01

    Different species of the Pseudomonas genus have been reported for their pathogenic potential against animal cells. However, the pathogenicity of Pseudomonas syringae against Caenorhabditis elegans has never been reported. In this study, the interaction of P. syringae MB03 with C. elegans was studied. Different bioassays such as killing assay, lawn leaving assay, food preference assay, L4 growth assay and newly developed “secretion assay” were performed to evaluate the pathogenic potential of P. syringae on different growth media. The results of the killing assay showed that P. syringae MB03 was able to kill C. elegans under specific conditions, as the interaction between the host and the pathogen varied from non-pathogenic (assay on NGM medium) to pathogenic (assay on PG medium). The lawn leaving assay and the food preference assay illustrated that C. elegans identified P. syringae MB03 as a pathogen when assays were performed on PG medium. Green fluorescent protein was used as the reporter protein to study gut colonization by P. syringae MB03. Our results suggested that MB03 has the ability to colonize the gut of C. elegans. Furthermore, to probe the role of selected virulence determinants, qRT-PCR was used. The genes for pyoverdine, phoQ/phoP, phoR/phoB, and flagella were up regulated during the interaction of P. syringae MB03 and C. elegans on PG medium. Other than these, the genes for some proteases, such as pepP, clpA, and clpS, were also up regulated. On the other hand, kdpD and kdpB were down regulated more than threefold in the NGM – C. elegans interaction model. The deletion of the kdpD and kdpE genes altered the pathogenicity of the bacterial strain against C. elegans. Overall, our results suggested that the killing of C. elegans by P. syringae requires a prolonged interaction between the host and pathogen in an agar-based assay. Moreover, it seemed that some toxic metabolites were secreted by the bacterial strain that were sensed by C. elegans

  8. The pathogenicity of Pseudomonas syringae MB03 against Caenorhabditis elegans and the transcriptional response of nematicidal genes upon different nutritional conditions

    Directory of Open Access Journals (Sweden)

    Muhammad eAli

    2016-05-01

    Full Text Available Different species of the Pseudomonas genus have been reported for their pathogenic potential against animal cells. However, the pathogenicity of Pseudomonas syringae against Caenorhabditis elegans has never been reported. In this study, the interaction of P. syringae MB03 with C. elegans was studied. Different bioassays such as killing assay, lawn leaving assay, food preference assay, L4 growth assay and newly developed secretion assay were performed to evaluate the pathogenic potential of P. syringae on different growth media. The results of the killing assay showed that P. syringae MB03 was able to kill C. elegans under specific conditions, as the interaction between the host and the pathogen varied from non-pathogenic (assay on NGM medium to pathogenic (assay on PG medium. The lawn leaving assay and the food preference assay illustrated that C. elegans identified P. syringae MB03 as a pathogen when assays were performed on PG medium. Green fluorescent protein was used as the reporter protein to study gut colonization by P. syringae MB03. Our results suggested that MB03 has the ability to colonize the gut of C. elegans. Furthermore, to probe the role of selected virulence determinants, qRT-PCR was used. The genes for pyoverdine, phoQ/phoP, phoR/phoB and flagella were up regulated during the interaction of P. syringae MB03 and C. elegans on PG medium. Other than these, the genes for some proteases, such as pepP, clpA and clpS, were also up regulated. On the other hand, kdpD and kdpB were down regulated more than 3-fold in the NGM - C. elegans interaction model. The deletion of the kdpD and kdpE genes altered the pathogenicity of the bacterial strain against C. elegans. Overall, our results suggested that the killing of C. elegans by P. syringae requires a prolonged interaction between the host and pathogen in an agar-based assay. Moreover, it seemed that some toxic metabolites were secreted by the bacterial strain that were sensed by C. elegans

  9. The Pathogenicity of Pseudomonas syringae MB03 against Caenorhabditis elegans and the Transcriptional Response of Nematicidal Genes upon Different Nutritional Conditions.

    Science.gov (United States)

    Ali, Muhammad; Sun, Yu; Xie, Li; Yu, Huafu; Bashir, Anum; Li, Lin

    2016-01-01

    Different species of the Pseudomonas genus have been reported for their pathogenic potential against animal cells. However, the pathogenicity of Pseudomonas syringae against Caenorhabditis elegans has never been reported. In this study, the interaction of P. syringae MB03 with C. elegans was studied. Different bioassays such as killing assay, lawn leaving assay, food preference assay, L4 growth assay and newly developed "secretion assay" were performed to evaluate the pathogenic potential of P. syringae on different growth media. The results of the killing assay showed that P. syringae MB03 was able to kill C. elegans under specific conditions, as the interaction between the host and the pathogen varied from non-pathogenic (assay on NGM medium) to pathogenic (assay on PG medium). The lawn leaving assay and the food preference assay illustrated that C. elegans identified P. syringae MB03 as a pathogen when assays were performed on PG medium. Green fluorescent protein was used as the reporter protein to study gut colonization by P. syringae MB03. Our results suggested that MB03 has the ability to colonize the gut of C. elegans. Furthermore, to probe the role of selected virulence determinants, qRT-PCR was used. The genes for pyoverdine, phoQ/phoP, phoR/phoB, and flagella were up regulated during the interaction of P. syringae MB03 and C. elegans on PG medium. Other than these, the genes for some proteases, such as pepP, clpA, and clpS, were also up regulated. On the other hand, kdpD and kdpB were down regulated more than threefold in the NGM - C. elegans interaction model. The deletion of the kdpD and kdpE genes altered the pathogenicity of the bacterial strain against C. elegans. Overall, our results suggested that the killing of C. elegans by P. syringae requires a prolonged interaction between the host and pathogen in an agar-based assay. Moreover, it seemed that some toxic metabolites were secreted by the bacterial strain that were sensed by C. elegans

  10. The Pseudomonas viridiflava phylogroups in the P. syringae species complex are characterized by genetic variability and phenotypic plasticity of pathogenicity-related traits.

    Science.gov (United States)

    Bartoli, Claudia; Berge, Odile; Monteil, Caroline L; Guilbaud, Caroline; Balestra, Giorgio M; Varvaro, Leonardo; Jones, Corbin; Dangl, Jeffery L; Baltrus, David A; Sands, David C; Morris, Cindy E

    2014-07-01

    As a species complex, Pseudomonas syringae exists in both agriculture and natural aquatic habitats. P.viridiflava, a member of this complex, has been reported to be phenotypically largely homogenous. We characterized strains from different habitats, selected based on their genetic similarity to previously described P.viridiflava strains. We revealed two distinct phylogroups and two different kinds of variability in phenotypic traits and genomic content. The strains exhibited phase variation in phenotypes including pathogenicity and soft rot on potato. We showed that the presence of two configurations of the Type III Secretion System [single (S-PAI) and tripartite (T-PAI) pathogenicity islands] are not correlated with pathogenicity or with the capacity to induce soft rot in contrast to previous reports. The presence/absence of the avrE effector gene was the only trait we found to be correlated with pathogenicity of P.viridiflava. Other Type III secretion effector genes were not correlated with pathogenicity. A genomic region resembling an exchangeable effector locus (EEL) was found in S-PAI strains, and a probable recombination between the two PAIs is described. The ensemble of the variability observed in these phylogroups of P.syringae likely contributes to their adaptability to alternating opportunities for pathogenicity or saprophytic survival.

  11. Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes

    NARCIS (Netherlands)

    Garbeva, P; van Veen, JA; van Elsas, JD

    2004-01-01

    The genus Pseudomonas is one of the best-studied bacterial groups in soil, and includes numerous species of environmental interest. Pseudomonas species play key roles in soil, for instance in biological control of soil-borne plant pathogens and in bioremediation of pollutants. A polymerase chain rea

  12. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat

    NARCIS (Netherlands)

    McSpadden Gardener, B.B.; Schroeder, K.L.; Kalloger, S.E.; Raaijmakers, J.M.; Thomashow, L.S.; Weller, D.M.

    2000-01-01

    Production of 2,4-diacetylphloroglucinol (2,4-DAPG) in the rhizosphere by strains of fluorescent Pseudomonas spp. results in the suppression of root diseases caused by certain fungal plant pathogens. In this study, fluorescent Pseudomonas strains containing phlD, which is directly involved in the bi

  13. Insights into the mechanisms of Promysalin, a secondary metabolite with genus-specific antibacterial activity against Pseudomonas

    Science.gov (United States)

    Promysalin, a secondary metabolite produced by Pseudomonas putida RW10S1, has antibacterial activity against a wide variety of Pseudomonas sp., including both human and plant pathogens. Promysalin induces swarming and biofilm formation in the producing species, and inhibits growth of susceptible sp...

  14. Assessment of the diversity, and antagonism towards Rhizoctonia solani AG3, of Pseudomonas species in soil from different agricultural regimes

    NARCIS (Netherlands)

    Garbeva, P.; Veen, van J.A.; Elsas, van J.D.

    2004-01-01

    The genus Pseudomonas is one of the best-studied bacterial groups in soil, and includes numerous species of environmental interest. Pseudomonas species play key roles in soil, for instance in biological control of soil-borne plant pathogens and in bioremediation of pollutants. A polymerase chain

  15. Indole-3-acetic acid in plant-pathogen interactions: a key molecule for in planta bacterial virulence and fitness.

    Science.gov (United States)

    Cerboneschi, Matteo; Decorosi, Francesca; Biancalani, Carola; Ortenzi, Maria Vittoria; Macconi, Sofia; Giovannetti, Luciana; Viti, Carlo; Campanella, Beatrice; Onor, Massimo; Bramanti, Emilia; Tegli, Stefania

    The plant pathogenic bacterium Pseudomonas savastanoi, the causal agent of olive and oleander knot disease, uses the so-called "indole-3-acetamide pathway" to convert tryptophan to indole-3-acetic acid (IAA) via a two-step pathway catalyzed by enzymes encoded by the genes in the iaaM/iaaH operon. Moreover, pathovar nerii of P. savastanoi is able to conjugate IAA to lysine to generate the less biologically active compound IAA-Lys via the enzyme IAA-lysine synthase encoded by the iaaL gene. Interestingly, iaaL is now known to be widespread in many Pseudomonas syringae pathovars, even in the absence of the iaaM and iaaH genes for IAA biosynthesis. Here, two knockout mutants, ΔiaaL and ΔiaaM, of strain Psn23 of P. savastanoi pv. nerii were produced. Pathogenicity tests using the host plant Nerium oleander showed that ΔiaaL and ΔiaaM were hypervirulent and hypovirulent, respectively and these features appeared to be related to their differential production of free IAA. Using the Phenotype Microarray approach, the chemical sensitivity of these mutants was shown to be comparable to that of wild-type Psn23. The main exception was 8 hydroxyquinoline, a toxic compound that is naturally present in plant exudates and is used as a biocide, which severely impaired the growth of ΔiaaL and ΔiaaM, as well as growth of the non-pathogenic mutant ΔhrpA, which lacks a functional Type Three Secretion System (TTSS). According to bioinformatics analysis of the Psn23 genome, a gene encoding a putative Multidrug and Toxic compound Extrusion (MATE) transporter, was found upstream of iaaL. Similarly to iaaL and iaaM, its expression appeared to be TTSS-dependent. Moreover, auxin-responsive elements were identified for the first time in the modular promoters of both the iaaL gene and the iaaM/iaaH operon of P. savastanoi, suggesting their IAA-inducible transcription. Gene expression analysis of several genes related to TTSS, IAA metabolism and drug resistance confirmed the presence of a

  16. Foliar endophytic fungi as potential protectors from pathogens in myrmecophytic Acacia plants

    OpenAIRE

    González-Teuber, M.; Jimenez-Aleman, G.; W Boland

    2014-01-01

    In defensive ant-plant interactions myrmecophytic plants express reduced chemical defense in their leaves to protect themselves from pathogens, and it seems that mutualistic partners are required to make up for this lack of defensive function. Previously, we reported that mutualistic ants confer plants of Acacia hindsii protection from pathogens, and that the protection is given by the ant-associated bacteria. Here, we examined whether foliar endophytic fungi may potentially act as a new part...

  17. Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens.

    Science.gov (United States)

    McArt, Scott H; Koch, Hauke; Irwin, Rebecca E; Adler, Lynn S

    2014-05-01

    Several floral microbes are known to be pathogenic to plants or floral visitors such as pollinators. Despite the ecological and economic importance of pathogens deposited in flowers, we often lack a basic understanding of how floral traits influence disease transmission. Here, we provide the first systematic review regarding how floral traits attract vectors (for plant pathogens) or hosts (for animal pathogens), mediate disease establishment and evolve under complex interactions with plant mutualists that can be vectors for microbial antagonists. Attraction of floral visitors is influenced by numerous phenological, morphological and chemical traits, and several plant pathogens manipulate floral traits to attract vectors. There is rapidly growing interest in how floral secondary compounds and antimicrobial enzymes influence disease establishment in plant hosts. Similarly, new research suggests that consumption of floral secondary compounds can reduce pathogen loads in animal pollinators. Given recent concerns about pollinator declines caused in part by pathogens, the role of floral traits in mediating pathogen transmission is a key area for further research. We conclude by discussing important implications of floral transmission of pathogens for agriculture, conservation and human health, suggesting promising avenues for future research in both basic and applied biology. © 2014 John Wiley & Sons Ltd/CNRS.

  18. Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Koch, Birgit; Nielsen, Tommy Harder

    2003-01-01

    Pseudomonas sp. DSS73 was isolated from the rhizoplane of sugar beet seedlings. This strain exhibits antagonism towards the root-pathogenic microfungi Pythium ultimum and Rhizoctonia solani. Production of the cyclic lipopeptide amphisin in combination with expression of flagella enables the growi...... bacterial culture to move readily over the surface of laboratory media. Amphisin is a new member of a group of dual-functioning compounds such as tensin, viscosin and viscosinamid that display both biosurfactant and antifungal properties. The ability of DSS73 to efficiently contain root...

  19. Surface motility in Pseudomonas sp DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum

    DEFF Research Database (Denmark)

    Andersen, Jens Bo; Koch, Birgit; Nielsen, T.H.;

    2003-01-01

    Pseudomonas sp. DSS73 was isolated from the rhizoplane of sugar beet seedlings. This strain exhibits antagonism towards the root-pathogenic microfungi Pythium ultimum and Rhizoctonia solani. Production of the cyclic lipopeptide amphisin in combination with expression of flagella enables the growing...... bacterial culture to move readily over the surface of laboratory media. Amphisin is a new member of a group of dual-functioning compounds such as tensin, viscosin and viscosinamid that display both biosurfactant and antifungal properties. The ability of DSS73 to efficiently contain root...

  20. The arable plant ecosystem as battleground for emergence of human pathogens

    Directory of Open Access Journals (Sweden)

    Leo eVan Overbeek

    2014-03-01

    Full Text Available Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh vegetables, sprouts and occasionally fruits made clear that these pathogens are not only transmitted to humans via the ‘classical’ routes of meat, eggs and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure, water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.

  1. Antifungal Activities of Extracts from Selected Lebanese Wild Plants against Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Y. Abou-Jawdah

    2004-12-01

    Full Text Available Extracts of nine plant species growing wild in Lebanon were tested for their efficacy against seven plant pathogenic fungi: Botrytis cinerea, Alternaria solani, Penicillium sp., Cladosporium sp., Fusarium oxysporum f. sp. melonis, Rhizoctonia solani and Sphaerotheca cucurbitae. Extracts of three of the plants, Origanum syriacum, Micromeria nervosa and Plumbago maritima, showed the highest levels of in vitro activity against spore germination and mycelial growth of the fungi tested. Inula viscosa showed high activity against spore germination but only moderate activity against mycelial growth. The other five plant species tested Calamintha origanifolia, Micromeria juliana, Ruta sp., Sideritis pullulans and Urginea maritima showed only moderate to low activity against these fungi. Preventive sprays with extracts of O. syriacum, M. nervosa, P. maritima and I. viscosa, applied at concentrations ranging between 4 and 8% to squash and cucumber seedlings, gave efficient protection against gray mold caused by B. cinerea and powdery mildew caused by S. cucurbitae. However, these extracts did not control green mold of citrus fruits caused by Penicillium sp. Thin layer chromatography revealed three inhibitory bands in extracts of O. syriacum, two in I. viscosa and only one in each of the other plants tested: M. nervosa, P. maritima, C. origanifolia and Ruta sp.

  2. Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen.

    Directory of Open Access Journals (Sweden)

    Jes Johannesen

    Full Text Available Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a and its vector (Hyalesthes obsoletus: Cixiidae affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.

  3. Exserohilum rostratum: characterization of a cross-kingdom pathogen of plants and humans.

    Directory of Open Access Journals (Sweden)

    Kalpana Sharma

    Full Text Available Pathogen host shifts represent a major source of new infectious diseases. There are several examples of cross-genus host jumps that have caused catastrophic epidemics in animal and plant species worldwide. Cross-kingdom jumps are rare, and are often associated with nosocomial infections. Here we provide an example of human-mediated cross-kingdom jumping of Exserohilum rostratum isolated from a patient who had received a corticosteroid injection and died of fungal meningitis in a Florida hospital in 2012. The clinical isolate of E. rostratum was compared with two plant pathogenic isolates of E. rostratum and an isolate of the closely related genus Bipolaris in terms of morphology, phylogeny, and pathogenicity on one C3 grass, Gulf annual rye grass (Lolium multiflorum, and two C4 grasses, Japanese stilt grass (Microstegium vimineum and bahia grass (Paspalum notatum. Colony growth and color, as well as conidia shape and size were the same for the clinical and plant isolates of E. rostratum, while these characteristics differed slightly for the Bipolaris sp. isolate. The plant pathogenic and clinical isolates of E. rostratum were indistinguishable based on morphology and ITS and 28S rDNA sequence analysis. The clinical isolate was as pathogenic to all grass species tested as the plant pathogenic strains that were originally isolated from plant hosts. The clinical isolate induced more severe symptoms on stilt grass than on rye grass, while this was the reverse for the plant isolates of E. rostratum. The phylogenetic similarity between the clinical and plant-associated E. rostratum isolates and the ability of the clinical isolate to infect plants suggests that a plant pathogenic strain of E. rostratum contaminated the corticosteroid injection fluid and was able to cause systemic disease in the affected patient. This is the first proof that a clinical isolate of E. rostratum is also an effective plant pathogen.

  4. The xylem as battleground for plant hosts and vascular wilt pathogens

    Directory of Open Access Journals (Sweden)

    Koste eYadeta

    2013-04-01

    Full Text Available Vascular wilts are among the most destructive plant diseases that occur in annual crops as well as in woody perennials. These diseases are generally caused by soil-borne bacteria, fungi and oomycetes that infect through the roots and enter the water-conducting xylem vessels where they proliferate and obstruct the transportation of water and minerals. As a consequence, leaves wilt and die, which may lead to impairment of the whole plant and eventually to death of the plant. Cultural, chemical and biological measures to control this group of plant pathogens are generally ineffective, and the most effective control strategy is the use of genetic resistance. Owing to the fact that vascular wilt pathogens live deep in the interior of their host plants, studies into the biology of vascular pathogens are complicated. However, to design novel strategies to combat vascular wilt diseases, understanding the (molecular biology of vascular pathogens and the molecular mechanisms underlying plant defense against these pathogens is crucial. In this review we discuss the current knowledge on interactions of vascular wilt pathogens with their host plants, with emphasis on host defense responses against this group of pathogens.

  5. Phenotypic variation in the plant pathogenic bacterium Acidovorax citrulli.

    Directory of Open Access Journals (Sweden)

    Ram Kumar Shrestha

    Full Text Available Acidovorax citrulli causes bacterial fruit blotch (BFB of cucurbits, a disease that threatens the cucurbit industry worldwide. Despite the economic importance of BFB, little is known about pathogenicity and fitness strategies of the bacterium. We have observed the phenomenon of phenotypic variation in A. citrulli. Here we report the characterization of phenotypic variants (PVs of two strains, M6 and 7a1, isolated from melon and watermelon, respectively. Phenotypic variation was observed following growth in rich medium, as well as upon isolation of bacteria from inoculated plants or exposure to several stresses, including heat, salt and acidic conditions. When grown on nutrient agar, all PV colonies possessed a translucent appearance, in contrast to parental strain colonies that were opaque. After 72 h, PV colonies were bigger than parental colonies, and had a fuzzy appearance relative to parental strain colonies that are relatively smooth. A. citrulli colonies are generally surrounded by haloes detectable by the naked eye. These haloes are formed by type IV pilus (T4P-mediated twitching motility that occurs at the edge of the colony. No twitching haloes could be detected around colonies of both M6 and 7a1 PVs, and microscopy observations confirmed that indeed the PVs did not perform twitching motility. In agreement with these results, transmission electron microscopy revealed that M6 and 7a1 PVs do not produce T4P under tested conditions. PVs also differed from their parental strain in swimming motility and biofilm formation, and interestingly, all assessed variants were less virulent than their corresponding parental strains in seed transmission assays. Slight alterations could be detected in some DNA fingerprinting profiles of 7a1 variants relative to the parental strain, while no differences at all could be seen among M6 variants and parental strain, suggesting that, at least in the latter, phenotypic variation is mediated by slight genetic

  6. Optimization of Culture Conditions for Mass Production of the Probiotics Pseudomonas MCCB 102 and 103 Antagonistic to Pathogenic Vibrios in Aquaculture.

    Science.gov (United States)

    Preetha, R; Vijayan, K K; Jayapraksh, N S; Alavandi, S V; Santiago, T C; Singh, I S Bright

    2015-06-01

    Rapid growth of shrimp farming industry is affected by the recurrence of diverse diseases, among which vibriosis is predominant. Eco-friendly disease management strategy by the application of antagonistic probiotics is widely accepted. In the present study, culture conditions of antagonistic probiotics, Pseudomonas MCCB 102 and 103, were optimized to enhance their biomass production and antagonistic activity against the shrimp pathogen V. harveyi MCCB 111. Primarily, one-dimensional screening was carried out to fix the optimum range of sodium chloride concentration, pH and temperature. The second step optimization was done using a full-factorial central composite design of response surface methodology. As per the model, 12.9 g/L sodium chloride and pH 6.5 for Pseudomonas MCCB 102, and 5 g/L sodium chloride and pH 7 for Pseudomonas MCCB 103 were found to be ideal to maximize antagonistic activity. However, optimum temperature was the same (25 °C) for both isolates. Finally, the models were experimentally validated for enhanced biomass production and antagonistic activity. The optima for biomass and antagonistic activity were more or less the same, suggesting the possible influence of biomass on antagonistic activity.

  7. Combating Pathogenic Microorganisms Using Plant-Derived Antimicrobials: A Minireview of the Mechanistic Basis

    Directory of Open Access Journals (Sweden)

    Abhinav Upadhyay

    2014-01-01

    Full Text Available The emergence of antibiotic resistance in pathogenic bacteria has led to renewed interest in exploring the potential of plant-derived antimicrobials (PDAs as an alternative therapeutic strategy to combat microbial infections. Historically, plant extracts have been used as a safe, effective, and natural remedy for ailments and diseases in traditional medicine. Extensive research in the last two decades has identified a plethora of PDAs with a wide spectrum of activity against a variety of fungal and bacterial pathogens causing infections in humans and animals. Active components of many plant extracts have been characterized and are commercially available; however, research delineating the mechanistic basis of their antimicrobial action is scanty. This review highlights the potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted by plant compounds on various virulence factors that are critical for pathogenicity inside the host. In addition, the potential effect of PDAs on gut microbiota is discussed.

  8. Frontiers for research on the ecology of plant-pathogenic bacteria: fundamentals for sustainability: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Morris, Cindy E; Barny, Marie-Anne; Berge, Odile; Kinkel, Linda L; Lacroix, Christelle

    2017-02-01

    Methods to ensure the health of crops owe their efficacy to the extent to which we understand the ecology and biology of environmental microorganisms and the conditions under which their interactions with plants lead to losses in crop quality or yield. However, in the pursuit of this knowledge, notions of the ecology of plant-pathogenic microorganisms have been reduced to a plant-centric and agro-centric focus. With increasing global change, i.e. changes that encompass not only climate, but also biodiversity, the geographical distribution of biomes, human demographic and socio-economic adaptations and land use, new plant health problems will emerge via a range of processes influenced by these changes. Hence, knowledge of the ecology of plant pathogens will play an increasingly important role in the anticipation and response to disease emergence. Here, we present our opinion on the major challenges facing the study of the ecology of plant-pathogenic bacteria. We argue that the discovery of markedly novel insights into the ecology of plant-pathogenic bacteria is most likely to happen within a framework of more extensive scales of space, time and biotic interactions than those that currently guide much of the research on these bacteria. This will set a context that is more propitious for the discovery of unsuspected drivers of the survival and diversification of plant-pathogenic bacteria and of the factors most critical for disease emergence, and will set the foundation for new approaches to the sustainable management of plant health. We describe the contextual background of, justification for and specific research questions with regard to the following challenges: Development of terminology to describe plant-bacterial relationships in terms of bacterial fitness. Definition of the full scope of the environments in which plant-pathogenic bacteria reside or survive. Delineation of pertinent phylogenetic contours of plant-pathogenic bacteria and naming of strains

  9. Advances on plant-pathogen interactions from molecular toward systems biology perspectives.

    Science.gov (United States)

    Peyraud, Rémi; Dubiella, Ullrich; Barbacci, Adelin; Genin, Stéphane; Raffaele, Sylvain; Roby, Dominique

    2016-11-21

    In the past 2 decades, progress in molecular analyses of the plant immune system has revealed key elements of a complex response network. Current paradigms depict the interaction of pathogen-secreted molecules with host target molecules leading to the activation of multiple plant response pathways. Further research will be required to fully understand how these responses are integrated in space and time, and exploit this knowledge in agriculture. In this review, we highlight systems biology as a promising approach to reveal properties of molecular plant-pathogen interactions and predict the outcome of such interactions. We first illustrate a few key concepts in plant immunity with a network and systems biology perspective. Next, we present some basic principles of systems biology and show how they allow integrating multiomics data and predict cell phenotypes. We identify challenges for systems biology of plant-pathogen interactions, including the reconstruction of multiscale mechanistic models and the connection of host and pathogen models. Finally, we outline studies on resistance durability through the robustness of immune system networks, the identification of trade-offs between immunity and growth and in silico plant-pathogen co-evolution as exciting perspectives in the field. We conclude that the development of sophisticated models of plant diseases incorporating plant, pathogen and climate properties represent a major challenge for agriculture in the future.

  10. Draft Genome Sequence of the Phosphate-Solubilizing Bacterium Pseudomonas argentinensis Strain SA190 Isolated from the Desert Plant Indigofera argentea

    KAUST Repository

    Lafi, Feras Fawzi

    2016-12-23

    Pseudomonas argentinensis strain SA190 is a plant endophytic-inhabiting bacterium that was isolated from root nodules of the desert plant Indigofera argentea collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of SA190, highlighting several functional genes related to plant growth-promoting activity, environment adaption, and antifungal activity.

  11. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens.

    Science.gov (United States)

    Lai, Zhibing; Wang, Fei; Zheng, Zuyu; Fan, Baofang; Chen, Zhixiang

    2011-06-01

    Autophagy is a pathway for degradation of cytoplasmic components. In plants, autophagy plays an important role in nutrient recycling during nitrogen or carbon starvation, and in responses to abiotic stress. Autophagy also regulates age- and immunity-related programmed cell death, which is important in plant defense against biotrophic pathogens. Here we show that autophagy plays a critical role in plant resistance to necrotrophic pathogens. ATG18a, a critical autophagy protein in Arabidopsis, interacts with WRKY33, a transcription factor that is required for resistance to necrotrophic pathogens. Expression of autophagy genes and formation of autophagosomes are induced in Arabidopsis by the necrotrophic fungal pathogen Botrytis cinerea. Induction of ATG18a and autophagy by B. cinerea was compromised in the wrky33 mutant, which is highly susceptible to necrotrophic pathogens. Arabidopsis mutants defective in autophagy exhibit enhanced susceptibility to the necrotrophic fungal pathogens B. cinerea and Alternaria brassicicola based on increased pathogen growth in the mutants. The hypersusceptibility of the autophagy mutants was associated with reduced expression of the jasmonate-regulated PFD1.2 gene, accelerated development of senescence-like chlorotic symptoms, and increased protein degradation in infected plant tissues. These results strongly suggest that autophagy cooperates with jasmonate- and WRKY33-mediated signaling pathways in the regulation of plant defense responses to necrotrophic pathogens.

  12. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens.

    Science.gov (United States)

    Fones, H N; McCurrach, H; Mithani, A; Smith, J A C; Preston, G M

    2016-05-11

    Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant-pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves. © 2016 The Author(s).

  13. Plant-associated fluorescent Pseudomonas from red lateritic soil: Beneficial characteristics and their impact on lettuce growth.

    Science.gov (United States)

    Maroniche, Guillermo A; Rubio, Esteban J; Consiglio, Adrián; Perticari, Alejandro

    2016-11-25

    Fluorescent Pseudomonas are ubiquitous soil bacteria that usually establish mutualistic associations with plants, promoting their growth and health by several mechanisms. This makes them interesting candidates for the development of crop bio-inoculants. In this work, we isolated phosphate-solubilizing fluorescent Pseudomonas from the rhizosphere and inner tissues of different plant species growing in red soil from Misiones, Argentina. Seven isolates displaying strong phosphate solubilization were selected for further studies. Molecular identification by rpoD genotyping indicated that they belong to different species within the P. fluorescens and P. putida phylogenetic groups. Screening for in vitro traits such as phosphate solubilization, growth regulators synthesis or degradation, motility and antagonism against phytopathogens or other bacteria, revealed a unique profile of characteristics for each strain. Their plant growth-promoting potential was assayed using lettuce as a model for inoculation under controlled and greenhouse conditions. Five of the strains increased the growth of lettuce plants. Overall, the strongest lettuce growth promoter under both conditions was strain ZME4, isolated from inner tissues of maize. No clear association between lettuce growth promotion and in vitro beneficial traits was detected. In conclusion, several phosphate solubilizing pseudomonads from red soil were isolated that display a rich array of plant growth promotion traits, thus showing a potential for the development of new inoculants.

  14. Controlling hormone signaling is a plant and pathogen challenge for growth and survival.

    Science.gov (United States)

    López, Miguel Angel; Bannenberg, Gerard; Castresana, Carmen

    2008-08-01

    Plants and pathogens have continuously confronted each other during evolution in a battle for growth and survival. New advances in the field have provided fascinating insights into the mechanisms that have co-evolved to gain a competitive advantage in this battle. When plants encounter an invading pathogen, not only responses signaled by defense hormones are activated to restrict pathogen invasion, but also the modulation of additional hormone pathways is required to serve other purposes, which are equally important for plant survival, such as re-allocation of resources, control of cell death, regulation of water stress, and modification of plant architecture. Notably, pathogens can counteract both types of responses as a strategy to enhance virulence. Pathogens regulate production and signaling responses of plant hormones during infection, and also produce phytohormones themselves to modulate plant responses. These results indicate that hormone signaling is a relevant component in plant-pathogen interactions, and that the ability to dictate hormonal directionality is critical to the outcome of an interaction.

  15. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria.

    Science.gov (United States)

    Tampakaki, Anastasia P

    2014-01-01

    Plant pathogenic bacteria and rhizobia infect higher plants albeit the interactions with their hosts are principally distinct and lead to completely different phenotypic outcomes, either pathogenic or mutualistic, respectively. Bacterial protein delivery to plant host plays an essential role in determining the phenotypic outcome of plant-bacteria interactions. The involvement of type III secretion systems (T3SSs) in mediating animal- and plant-pathogen interactions was discovered in the mid-80's and is now recognized as a multiprotein nanomachine dedicated to trans-kingdom movement of effector proteins. The discovery of T3SS in bacteria with symbiotic lifestyles broadened its role beyond virulence. In most T3SS-positive bacterial pathogens, virulence is largely dependent on functional T3SSs, while in rhizobia the system is dispensable for nodulation and can affect positively or negatively the mutualistic associations with their hosts. This review focuses on recent comparative genome analyses in plant pathogens and rhizobia that uncovered similarities and variations among T3SSs in their genetic organization, regulatory networks and type III secreted proteins and discusses the evolutionary adaptations of T3SSs and type III secreted proteins that might account for the distinguishable phenotypes and host range characteristics of plant pathogens and symbionts.

  16. Consequences of flagellin export through the type III secretion system of Pseudomonas syringae reveal a major difference in the innate immune systems of mammals and the model plant Nicotiana benthamiana.

    Science.gov (United States)

    Wei, Hai-Lei; Chakravarthy, Suma; Worley, Jay N; Collmer, Alan

    2013-04-01

    Bacterial flagellin is perceived as a microbe (or pathogen)-associated molecular pattern (MAMP or PAMP) by the extracellular pattern recognition receptors, FLS2 and TLR5, of plants and mammals respectively. Flagellin accidently translocated into mammalian cells by pathogen type III secretion systems (T3SSs) is recognized by nucleotide-binding leucine-rich repeat receptor NLRC4 as a pattern of pathogenesis and induces a death-associated immune response. The non-pathogen Pseudomonas fluorescens Pf0-1, expressing a Pseudomonas syringae T3SS, and the plant pathogen P. syringae pv. tomato DC3000 were used to seek evidence of an analogous cytoplasmic recognition system for flagellin in the model plant Nicotiana benthamiana. Flagellin (FliC) was secreted in culture and translocated into plant cells by the T3SS expressed in Pf0-1 and DC3000 and in their ΔflgGHI flagellar pathway mutants. ΔfliC and ΔflgGHI mutants of Pf0-1 and DC3000 were strongly reduced in elicitation of reactive oxygen species production and in immunity induction as indicated by the ability of challenge bacteria inoculated 6 h later to translocate a type III effector-reporter and to elicit effector-triggered cell death. Agrobacterium-mediated transient expression in N. benthamiana of FliC with or without a eukaryotic export signal peptide, coupled with virus-induced gene silencing of FLS2, revealed no immune response that was not FLS2 dependent. Transiently expressed FliC from DC3000 and Pectobacterium carotovorum did notinduce cell death in N. benthamiana, tobacco or tomato leaves. Flagellin is the major Pseudomonas MAMP perceived by N. benthamiana, and although flagellin secretion through the plant cell wall by the T3SS may partially contribute to FLS2-dependent immunity, flagellin in the cytosol does not elicit immune-associated cell death. We postulate that a death response to translocated MAMPs would produce vulnerability to the many necrotrophic pathogens of plants, such as P

  17. Method of inhibiting plant virus pathogen infections by crispr/cas9-mediated interference

    KAUST Repository

    Mahfouz, Magdy Mahmoud

    2016-11-24

    A genetically modified tobacco plant or tomato plant resistant to at least one pathogenic geminiviridae virus species is provided. The plant comprises a heterologous CRISPR/Cas9 system and at least one heterologous nucleotide sequence that is capable of hybridizing to a nucleotide sequence of the pathogenic virus and that directs inactivation of the pathogenic virus species or plurality of viral species by the CRISPR/Cas9 system. The heterologous nucleotide sequence can be complementary to, but not limited to an Intergenic Region (IR) of the Tomato Yellow Leaf Curl Virus (TYLCV), Further provided are methods of generating a genetically modified plant that is resistant to a virus pathogen by a heterologous CRISPR/Cas9 system and expression of a gRNA specifically targeting the virus.

  18. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

    NARCIS (Netherlands)

    O'Connell, R.J.; Thon, M.R.; Hacquard, S.; Amyotte, S.G.; Kleemann, J.; Torres, M.F.; Damm, U.; Buiate, E.A.; Epstein, L.; Alkan, N.; Altmuller, J.; Alvarado-Balderrama, L.; Bauser, C.A.; Becker, C.; Birren, B.W.; Chen, Z.; Choi, J.; Crouch, J.A.; Duvick, J.P.; Farman, M.A.; Gan, P.; Heiman, D.; Henrissat, B.; Howard, R.J.; Kabbage, M.; Koch, C.; Kracher, B.; Kubo, Y.; Law, A.D.; Lebrun, M.-H.; Lee, Y.-H.; Miyara, I.; Moore, N.; Neumann, U.; Nordstrom, K.; Panaccione, D.G.; Panstruga, R.; Place, M.; Proctor, R.H.; Prusky, D.; Rech, G.; Reinhardt, R.; Rollins, J.A.; Rounsley, S.; Schardl, C.L.; Schwartz, D.C.; Shenoy, N.; Shirasu, K.; Sikhakolli, U.R.; Stuber, K.; Sukno, S.A.; Sweigard, J.A.; Takano, Y.; Takahara, H.; Trail, F.; Does, H.C.; Voll, L.M.; Will, I.; Young, S.; Zeng, Q.; Zhang, Jingze; Zhou, S.; Dickman, M.B.; Schulze-Lefert, P.; Verloren van Themaat, E.; Ma, L.-J.; Vaillancourt, L.J.

    2012-01-01

    Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and

  19. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

    NARCIS (Netherlands)

    O'Connell, R.J.; Thon, M.R.; Hacquard, S.; Amyotte, S.G.; Kleemann, J.; Torres, M.F.; Damm, U.; Buiate, E.A.; Epstein, L.; Alkan, N.; Altmuller, J.; Alvarado-Balderrama, L.; Bauser, C.A.; Becker, C.; Birren, B.W.; Chen, Z.; Choi, J.; Crouch, J.A.; Duvick, J.P.; Farman, M.A.; Gan, P.; Heiman, D.; Henrissat, B.; Howard, R.J.; Kabbage, M.; Koch, C.; Kracher, B.; Kubo, Y.; Law, A.D.; Lebrun, M.-H.; Lee, Y.-H.; Miyara, I.; Moore, N.; Neumann, U.; Nordstrom, K.; Panaccione, D.G.; Panstruga, R.; Place, M.; Proctor, R.H.; Prusky, D.; Rech, G.; Reinhardt, R.; Rollins, J.A.; Rounsley, S.; Schardl, C.L.; Schwartz, D.C.; Shenoy, N.; Shirasu, K.; Sikhakolli, U.R.; Stuber, K.; Sukno, S.A.; Sweigard, J.A.; Takano, Y.; Takahara, H.; Trail, F.; Does, H.C.; Voll, L.M.; Will, I.; Young, S.; Zeng, Q.; Zhang, Jingze; Zhou, S.; Dickman, M.B.; Schulze-Lefert, P.; Verloren van Themaat, E.; Ma, L.-J.; Vaillancourt, L.J.

    2012-01-01

    Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and tr

  20. The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity

    National Research Council Canada - National Science Library

    Virginie Tavernier; Sandrine Cadiou; Karine Pageau; Richard Laugé; Michèle Reisdorf-Cren; Thierry Langin; Céline Masclaux-Daubresse

    2007-01-01

    .... In order to study nitrogen recycling and mobilization in host plants during pathogen attack and invasion, the Colletotrichum lindemuthianum/Phaseolus vulgaris interaction was used as a model. C...

  1. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens

    Science.gov (United States)

    Fones, H. N.; McCurrach, H.; Mithani, A.; Smith, J. A. C.

    2016-01-01

    Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant–pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves. PMID:27170725

  2. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization

    NARCIS (Netherlands)

    Seidl, M.F.; Ackerveken, van den G.; Govers, F.; Snel, B.

    2011-01-01

    Oomycetes comprise a diverse group of organisms that morphologically resemble fungi but belong to the stramenopile lineage within the supergroup of chromalveolates. Recent studies have shown that plant pathogenic oomycetes have expanded gene families that are possibly linked to their pathogenic life

  3. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens

    NARCIS (Netherlands)

    Vleeshouwers, V.G.A.A.; Oliver, R.P.

    2014-01-01

    One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of

  4. How filamentous pathogens co-opt plants; the ins and outs of eukaryotic effectors

    Science.gov (United States)

    Research on effectors secreted by pathogens during host attack has dominated the field of molecular plant-microbe interactions over recent years. Functional analysis of type III secreted effectors that are injected by pathogenic bacteria into host cells has significantly advanced the field and demon...

  5. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding.

    Science.gov (United States)

    Hammond-Kosack, Kim E; Parker, Jane E

    2003-04-01

    Activation of local and systemic plant defences in response to pathogen attack involves dramatic cellular reprogramming. Over the past 10 years many novel genes, proteins and molecules have been discovered as a result of investigating plant-pathogen interactions. Most attempts to harness this knowledge to engineer improved disease resistance in crops have failed. Although gene efficacy in transgenic plants has often been good, commercial exploitation has not been possible because of the detrimental effects on plant growth, development and crop yield. Biotechnology approaches have now shifted emphasis towards marker-assisted breeding and the construction of vectors containing highly regulated transgenes that confer resistance in several distinct ways.

  6. bryophyte extracts with activity against plant pathogenic fungi

    African Journals Online (AJOL)

    Preferred Customer

    evidenced on treated plants at 4 hours before the inoculation. However, plants treated by the same ... posing of toxicity dangers to the society in Western. Ethiopia have resulted in ...... of extinction due to deforestation and habitat degradation.

  7. A fungal symbiont of plant-roots modulates mycotoxin gene expression in the pathogen Fusarium sambucinum.

    Directory of Open Access Journals (Sweden)

    Youssef Ismail

    Full Text Available Fusarium trichothecenes are fungal toxins that cause disease on infected plants and, more importantly, health problems for humans and animals that consume infected fruits or vegetables. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens. In this study, we isolated and characterized sixteen Fusarium strains from naturally infected potato plants in the field. Pathogenicity tests were carried out in the greenhouse to evaluate the virulence of the strains on potato plants as well as their trichothecene production capacity, and the most aggressive strain was selected for further studies. This strain, identified as F. sambucinum, was used to determine if trichothecene gene expression was affected by the symbiotic Arbuscular mycorrhizal fungus (AMF Glomus irregulare. AMF form symbioses with plant roots, in particular by improving their mineral nutrient uptake and protecting plants against soil-borne pathogens. We found that that G. irregulare significantly inhibits F. sambucinum growth. We also found, using RT-PCR assays to assess the relative expression of trichothecene genes, that in the presence of the AMF G. irregulare, F. sambucinum genes TRI5 and TRI6 were up-regulated, while TRI4, TRI13 and TRI101 were down-regulated. We conclude that AMF can modulate mycotoxin gene expression by a plant fungal pathogen. This previously undescribed effect may be an important mechanism for biological control and has fascinating implications for advancing our knowledge of plant-microbe interactions and controlling plant pathogens.

  8. A fungal symbiont of plant-roots modulates mycotoxin gene expression in the pathogen Fusarium sambucinum.

    Science.gov (United States)

    Ismail, Youssef; McCormick, Susan; Hijri, Mohamed

    2011-03-24

    Fusarium trichothecenes are fungal toxins that cause disease on infected plants and, more importantly, health problems for humans and animals that consume infected fruits or vegetables. Unfortunately, there are few methods for controlling mycotoxin production by fungal pathogens. In this study, we isolated and characterized sixteen Fusarium strains from naturally infected potato plants in the field. Pathogenicity tests were carried out in the greenhouse to evaluate the virulence of the strains on potato plants as well as their trichothecene production capacity, and the most aggressive strain was selected for further studies. This strain, identified as F. sambucinum, was used to determine if trichothecene gene expression was affected by the symbiotic Arbuscular mycorrhizal fungus (AMF) Glomus irregulare. AMF form symbioses with plant roots, in particular by improving their mineral nutrient uptake and protecting plants against soil-borne pathogens. We found that that G. irregulare significantly inhibits F. sambucinum growth. We also found, using RT-PCR assays to assess the relative expression of trichothecene genes, that in the presence of the AMF G. irregulare, F. sambucinum genes TRI5 and TRI6 were up-regulated, while TRI4, TRI13 and TRI101 were down-regulated. We conclude that AMF can modulate mycotoxin gene expression by a plant fungal pathogen. This previously undescribed effect may be an important mechanism for biological control and has fascinating implications for advancing our knowledge of plant-microbe interactions and controlling plant pathogens.

  9. Development of a visual loop-mediated isothermal amplification method for rapid detection of the bacterial pathogen Pseudomonas putida of the large yellow croaker (Pseudosciaena crocea).

    Science.gov (United States)

    Mao, Zhijuan; Qiu, Yangyu; Zheng, Lei; Chen, Jigang; Yang, Jifang

    2012-06-01

    In recent years, the large yellow croaker (Pseudosciaena crocea), an important marine fish farmed in the coastal areas of Zhejiang province, east China, has become severely endangered as a result of the bacterial pathogen Pseudomonas putida. This paper reports the development of a visual loop-mediated isothermal amplification (LAMP) assay for rapid detection of the pathogen. Four primers, F3, B3, FIP and BIP, were designed on the basis of DNA sequence of the rpoN gene of P. putida. After optimization of the reaction conditions, the detection limit of LAMP assay was 4.8cfu per reaction, 10-fold higher than that of conventional PCR. The assay showed high specificity to discriminate all P. putida isolates from nine other Gram-negative bacteria. The assay also successfully detected the pathogen DNA in the tissues of infected fish. For visual LAMP without cross-contamination, SYBR Green I was embedded in a microcrystalline wax capsule and preset in the reaction tubes; after the reaction the wax was melted at 85°C to release the dye and allow intercalation with the amplicons. The simple, highly sensitive, highly specific and cost-effective characteristics of visual LAMP may encourage its application in the rapid diagnosis of this pathogen.

  10. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance

    OpenAIRE

    Manosalva, P; Manohar, M; von Reuss, S.; Chen, S.; Koch, A; Kaplan, F; Choe, A.; Micikas, R.; X. Wang; Kogel, K.; Sternberg, P.; Williamson, V; Schroeder, D; Klessig, F.

    2015-01-01

    Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentratio...

  11. Herbs, Spices and Medicinal Plants Used In Hispanic Traditional Medicine Can Decrease Quorum Sensing Dependent Virulence in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    V Huerta

    2008-06-01

    Full Text Available Summary: Inhibition of quorum sensing (QS, a cell density dependent regulation of bacterial virulent gene expression by autoinducers (AI is an attractive strategy for the discovery of novel antimicrobials and overcome antibiotic resistance. Pseudomonas aeruginosa (PAO1, an opportunistic pathogen in immune compromised patients is under the regulation of the LasR-RhlR system for its QS mediated development of virulence. Natural products have recently become a promising source for deriving molecules that can potentially inhibit quorum sensing.  Herbs, Spices and Medicinal Plants (HSMP used in Hispanic cultures have been used for treating common ailments for many centuries. However, few studies have investigated its QS related antivirulent activities. Our objective was to determine the ability of 25 popular Hispanic HSMP on the expression of QS regulated virulence factors in PAO1. Effect of these extracts on QS mediated PAO1 virulent factors pyocyanin, elastase, and total proteolytic activity were quantified by standard protocols. Results indicated that several extracts reduced pyocyanin synthesis, with some extracts completely inhibiting its formation and secretion. The extracts that decreased the pyocyanin formation also decreased the expression and activity of elastase and other proteolytic enzymes important for the virulence. We observed that HSMP from Central/South American countries can inhibit QS dependent and independent virulent processes in PA-O1. Further research into the exact mechanism of action can lead to better understanding and discovery of new category of drugs and strategies for the management of PAO1 infections and antimicrobial resistance.   Industrial relevance: Quorum sensing is an important process involved in bacterial survival and infections, recent research has focused on the development of therapeutic agents which prevent or manage bacterial pathogenesis by inhibiting bacterial QS. Inhibition of quorum sensing offers an

  12. Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance towards Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants

    Directory of Open Access Journals (Sweden)

    Sofie Van Holle

    2016-10-01

    Full Text Available Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL groups all proteins with homology to the tobacco (Nicotiana tabacum lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (Glycine max, referred to as GmNLL1 and GmNLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in Nicotiana benthamiana leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the GmNLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment, Phytophthora sojae infection and Aphis glycines infestation trigger the expression of particular NLL genes. Stress experiments with Arabidopsis lines overexpressing the NLLs from soybean yielded an enhanced tolerance of the plant towards bacterial infection (Pseudomonas syringae, insect infestation (Myzus persicae and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions.

  13. Overexpression of Nictaba-Like Lectin Genes from Glycine max Confers Tolerance toward Pseudomonas syringae Infection, Aphid Infestation and Salt Stress in Transgenic Arabidopsis Plants

    Science.gov (United States)

    Van Holle, Sofie; Smagghe, Guy; Van Damme, Els J. M.

    2016-01-01

    Plants have evolved a sophisticated immune system that allows them to recognize invading pathogens by specialized receptors. Carbohydrate-binding proteins or lectins are part of this immune system and especially the lectins that reside in the nucleocytoplasmic compartment are known to be implicated in biotic and abiotic stress responses. The class of Nictaba-like lectins (NLL) groups all proteins with homology to the tobacco (Nicotiana tabacum) lectin, known as a stress-inducible lectin. Here we focus on two Nictaba homologs from soybean (Glycine max), referred to as GmNLL1 and GmNLL2. Confocal laser scanning microscopy of fusion constructs with the green fluorescent protein either transiently expressed in Nicotiana benthamiana leaves or stably transformed in tobacco BY-2 suspension cells revealed a nucleocytoplasmic localization for the GmNLLs under study. RT-qPCR analysis of the transcript levels for the Nictaba-like lectins in soybean demonstrated that the genes are expressed in several tissues throughout the development of the plant. Furthermore, it was shown that salt treatment, Phytophthora sojae infection and Aphis glycines infestation trigger the expression of particular NLL genes. Stress experiments with Arabidopsis lines overexpressing the NLLs from soybean yielded an enhanced tolerance of the plant toward bacterial infection (Pseudomonas syringae), insect infestation (Myzus persicae) and salinity. Our data showed a better performance of the transgenic lines compared to wild type plants, indicating that the NLLs from soybean are implicated in the stress response. These data can help to further elucidate the physiological importance of the Nictaba-like lectins from soybean, which can ultimately lead to the design of crop plants with a better tolerance to changing environmental conditions. PMID:27826309

  14. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): an in vitro study.

    Science.gov (United States)

    Santoro, M V; Cappellari, L R; Giordano, W; Banchio, E

    2015-11-01

    Plant growth-promoting rhizobacteria (PGPR) affect growth of host plants through various direct and indirect mechanisms. Three native PGPR (Pseudomonas putida) strains isolated from rhizospheric soil of a Mentha piperita (peppermint) crop field near Córdoba, Argentina, were characterised and screened in vitro for plant growth-promoting characteristics, such as indole-3-acetic acid (IAA) production, phosphate solubilisation and siderophore production, effects of direct inoculation on plant growth parameters (shoot fresh weight, root dry weight, leaf number, node number) and accumulation and composition of essential oils. Each of the three native strains was capable of phosphate solubilisation and IAA production. Only strain SJ04 produced siderophores. Plants directly inoculated with the native PGPR strains showed increased shoot fresh weight, glandular trichome number, ramification number and root dry weight in comparison with controls. The inoculated plants had increased essential oil yield (without alteration of essential oil composition) and biosynthesis of major essential oil components. Native strains of P. putida and other PGPR have clear potential as bio-inoculants for improving productivity of aromatic crop plants. There have been no comparative studies on the role of inoculation with native strains on plant growth and secondary metabolite production (specially monoterpenes). Native bacterial isolates are generally preferable for inoculation of crop plants because they are already adapted to the environment and have a competitive advantage over non-native strains. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Comprehensive analysis of draft genomes of two closely related Pseudomonas syringae phylogroup 2b strains infecting mono and dicotyledon host plants

    Science.gov (United States)

    In recent years, the damage caused by bacterial pathogens to major crops has been increasing worldwide. Pseudomonas syringae is a widespread bacterial species that infects almost all major crops. Different P. syringae strains use a wide range of biochemical mechanisms, including phytotoxins and effe...

  16. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4.

    Science.gov (United States)

    Schön, Moritz; Töller, Armin; Diezel, Celia; Roth, Charlotte; Westphal, Lore; Wiermer, Marcel; Somssich, Imre E

    2013-07-01

    Simultaneous mutation of two WRKY-type transcription factors, WRKY18 and WRKY40, renders otherwise susceptible wild-type Arabidopsis plants resistant towards the biotrophic powdery mildew fungus Golovinomyces orontii. Resistance in wrky18 wrky40 double mutant plants is accompanied by massive transcriptional reprogramming, imbalance in salicylic acid (SA) and jasmonic acid (JA) signaling, altered ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) expression, and accumulation of the phytoalexin camalexin. Genetic analyses identified SA biosynthesis and EDS1 signaling as well as biosynthesis of the indole-glucosinolate 4MI3G as essential components required for loss-of-WRKY18 WRKY40-mediated resistance towards G. orontii. The analysis of wrky18 wrky40 pad3 mutant plants impaired in camalexin biosynthesis revealed an uncoupling of pre- from postinvasive resistance against G. orontii. Comprehensive infection studies demonstrated the specificity of wrky18 wrky40-mediated G. orontii resistance. Interestingly, WRKY18 and WRKY40 act as positive regulators in effector-triggered immunity, as the wrky18 wrky40 double mutant was found to be strongly susceptible towards the bacterial pathogen Pseudomonas syringae DC3000 expressing the effector AvrRPS4 but not against other tested Pseudomonas strains. We hypothesize that G. orontii depends on the function of WRKY18 and WRKY40 to successfully infect Arabidopsis wild-type plants while, in the interaction with P. syringae AvrRPS4, they are required to mediate effector-triggered immunity.

  17. Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insect vector

    Directory of Open Access Journals (Sweden)

    Xavier eMartini

    2014-05-01

    Full Text Available Interactions between plant pathogens and arthropods have been predominantly studied through the prism of herbivorous arthropods. Currently, little is known about the effect of plant pathogens on the third trophic level. This question is particularly interesting in cases where pathogens manipulate host phenotype to increase vector attraction and presumably increase their own proliferation. Indeed, a predator or a parasitoid of a vector may take advantage of this manipulated phenotype to increase its foraging performance. We explored the case of a bacterial pathogen, Candidatus Liberibacter asiaticus (Las, which modifies the odors released by its host plant (citrus trees to attract its vector, the psyllid Diaphorina citri. We found that the specialist parasitoid of D. citri, Tamarixia radiata, was attracted more toward Las-infected than uninfected plants. We demonstrated that this attractiveness was due to the release of methyl salicylate. Parasitization of D. citri nymphs on Las-infected plants was higher than on uninfected controls. Also, parasitization was higher on uninfected plants baited with methyl salicylate than on non-baited controls. This is the first report of a parasitoid ‘eavesdropping’ on a plant volatile induced by bacterial pathogen infection, which also increases effectiveness of host seeking behavior of its herbivorous vector.

  18. Genetic and Epigenetic Effects of Plant-Pathogen Interactions: An Evolutionary Perspective

    Institute of Scientific and Technical Information of China (English)

    Alex Boyko; Igor Kovalchuk

    2011-01-01

    Recent reports suggest that exposure to stress is capable of influencing the frequency and pattern of inherited changes in various parts of the genome.In this review,we will discuss the influence of viral pathogens on somatic and meiotic genome stability of Nicotiana tabacum and Arabidopsis thaliana.Plants infected with a compatible pathogen generate a systemic recombination signal that precedes the spread of pathogens and results in changes in the somatic and meiotic recombination frequency.The progeny of infected plants exhibit changes in global and locusspecific DNA methylation patterns,genomic rearrangements at transgenic reporter loci and resistance gene-like-loci,and even tolerance to pathogen infection and abiotic stress.Here,we will discuss the contribution of environmental stresses to genome evolution and will focus on the role of heritable epigenetic changes in response to pathogen infection.

  19. Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease Suppression

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2016-12-01

    Full Text Available Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The survival of introduced Pseudomonas consortia increased with increasing diversity. Further, high Pseudomonas diversity reduced pathogen density in the rhizosphere and decreased the disease incidence due to both intensified resource competition and interference with the pathogen. These results provide novel mechanistic insights into elevated pathogen suppression by diverse probiotic consortia in naturally diverse plant rhizospheres. Ecologically based community assembly rules could thus play a key role in engineering functionally reliable microbiome applications.

  20. The evolutionary strategies of plant defenses have a dynamic impact on the adaptations and interactions of vectors and pathogens

    Institute of Scientific and Technical Information of China (English)

    Ordom Brian Huot; Punya Nachappa; Cecilia Tamborindeguy

    2013-01-01

    Plants have evolved and diversified to reduce the damages imposed by infectious pathogens and herbivorous insects.Living in a sedentary lifestyle,plants are constantly adapting to their environment.They employ various strategies to increase performance and fitness.Thus,plants developed cost-effective strategies to defend against specific insects and pathogens.Plant defense,however,imposes selective pressure on insects and pathogens.This selective pressure provides incentives for pathogens and insects to diversify and develop strategies to counter plant defense.This results in an evolutionary arms race among plants,pathogens and insects.The ever-changing adaptations and physiological alterations among these organisms make studying plant-vector-pathogen interactions a challenging and fascinating field.Studying plant defense and plant protection requires knowledge of the relationship among organisms and the adaptive strategies each organism utilize.Therefore,this review focuses on the integral parts of plant-vectorpathogen interactions in order to understand the factors that affect plant defense and disease development.The review addresses plant-vector-pathogen co-evolution,plant defense strategies,specificity of plant defenses and plant-vector-pathogen interactions.Improving the comprehension of these factors will provide a multi-dimensional perspective for the future research in pest and disease management.

  1. Forest species diversity reduces disease risk in a generalist plant pathogen invasion

    Science.gov (United States)

    Haas, Sarah E.; Hooten, Mevin B.; Rizzo, David M.; Meentemeyer, Ross K.

    2011-01-01

    Empirical evidence suggests that biodiversity loss can increase disease transmission, yet our understanding of the 'diversity-disease hypothesis' for generalist pathogens in natural ecosystems is limited. We used a landscape epidemiological approach to examine two scenarios regarding diversity effects on the emerging plant pathogen Phytophthora ramorum across a broad, heterogeneous ecoregion: (1) an amplification effect exists where disease risk is greater in areas with higher plant diversity due to the pathogen's wide host range, or (2) a dilution effect where risk is reduced with increasing diversity due to lower competency of alternative hosts. We found evidence for pathogen dilution, whereby disease risk was lower in sites with higher species diversity, after accounting for potentially confounding effects of host density and landscape heterogeneity. Our results suggest that although nearly all plants in the ecosystem are hosts, alternative hosts may dilute disease transmission by competent hosts, thereby buffering forest health from infectious disease.

  2. Understanding the plant-pathogen interactions in the context of proteomics-generated apoplastic proteins inventory.

    Science.gov (United States)

    Gupta, Ravi; Lee, So Eui; Agrawal, Ganesh K; Rakwal, Randeep; Park, Sangryeol; Wang, Yiming; Kim, Sun T

    2015-01-01

    The extracellular space between cell wall and plasma membrane acts as the first battle field between plants and pathogens. Bacteria, fungi, and oomycetes that colonize the living plant tissues are encased in this narrow region in the initial step of infection. Therefore, the apoplastic region is believed to be an interface which mediates the first crosstalk between host and pathogen. The secreted proteins and other metabolites, derived from both host and pathogen, interact in this apoplastic region and govern the final relationship between them. Hence, investigation of protein secretion and apoplastic interaction could provide a better understanding of plant-microbe interaction. Here, we are briefly discussing the methods available for the isolation and normalization of the apoplastic proteins, as well as the current state of secretome studies focused on the in-planta interaction between the host and the pathogen.

  3. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire.

    Science.gov (United States)

    The P. ultimum DAOM BR144 (=CBS 805.95 = ATCC200006) genome (42.8 Mb) encodes 15,290 genes, and has extensive sequence similarity and synteny with related Phytophthora spp., including the potato late blight pathogen Phytophthora infestans. Whole transcriptome sequencing revealed expression of 86 % o...

  4. Draft Genome Sequences of Pseudomonas fluorescens Strains SF39a and SF4c, Potential Plant Growth Promotion and Biocontrol Agents.

    Science.gov (United States)

    Ly, Lindsey K; Underwood, Grace E; McCully, Lucy M; Bitzer, Adam S; Godino, Agustina; Bucci, Vanni; Brigham, Christopher J; Príncipe, Analía; Fischer, Sonia E; Silby, Mark W

    2015-03-26

    Pseudomonas fluorescens SF4c and SF39a, strains isolated from wheat rhizosphere, have potential applications in plant growth promotion and biocontrol of fungal diseases of crop plants. We report the draft genome sequences of SF4c and SF39a with estimated sizes of 6.5 Mb and 5.9 Mb, respectively.

  5. Plant growth promoting rhizobacterium

    Science.gov (United States)

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  6. Plant growth promoting rhizobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  7. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens

    Science.gov (United States)

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant ...

  8. The role of the secondary cell walls in plant resistance to pathogens

    Directory of Open Access Journals (Sweden)

    Eva eMiedes

    2014-08-01

    Full Text Available Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defence mechanisms, and as a source of signalling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodelling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.

  9. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria.

    Science.gov (United States)

    Choi, Min-Seon; Kim, Wooki; Lee, Chanhui; Oh, Chang-Sik

    2013-10-01

    Harpins are glycine-rich and heat-stable proteins that are secreted through type III secretion system in gram-negative plant-pathogenic bacteria. Many studies show that these proteins are mostly targeted to the extracellular space of plant tissues, unlike bacterial effector proteins that act inside the plant cells. Over the two decades since the first harpin of pathogen origin, HrpN of Erwinia amylovora, was reported in 1992 as a cell-free elicitor of hypersensitive response (HR), diverse functional aspects of harpins have been determined. Some harpins were shown to have virulence activity, probably because of their involvement in the translocation of effector proteins into plant cytoplasm. Based on this function, harpins are now considered to be translocators. Their abilities of pore formation in the artificial membrane, binding to lipid components, and oligomerization are consistent with this idea. When harpins are applied to plants directly or expressed in plant cells, these proteins trigger diverse beneficial responses such as induction of defense responses against diverse pathogens and insects and enhancement of plant growth. Therefore, in this review, we will summarize the functions of harpins as virulence factors (or translocators) of bacterial pathogens, elicitors of HR and immune responses, and plant growth enhancers.

  10. Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions

    NARCIS (Netherlands)

    Eppinga, M.B.; Rietkerk, M.G.; Dekker, S.C.; Ruiter, P.C. de; Putten, W.H. van der

    2006-01-01

    Recent studies have concluded that release from native soil pathogens may explain invasion of exotic plant species. However, release from soil enemies does not explain all plant invasions. The invasion of Ammophila arenaria (marram grass or European beach grass) in California provides an illustrativ

  11. Investigation for zoonotic disease pathogens (Aeromonas hydrophila, Pseudomonas fluorescens, Streptococcus iniae) seen in carp farms in Duhok region of Northern Iraq by molecular methods

    Science.gov (United States)

    Mohammed, Kamiran Abdulrahman; Arabacı, Muhammed; Önalan, Şükrü

    2017-04-01

    The aim of this study was to determine the zoonotic bacteria in carp farms in Duhok region of the Northern Iraq. Carp is the main fish species cultured in the Duhok region. The most common zoonotic bacteria generally seen in carp farms are Aeromonas hydrophila, Pseudomonas fluorescens and Streptococcus iniae. Samples were collected from 20 carp farms in the Duhok Region of the Northern Iraq. Six carp samples were collected from each carp farm. Head kidney tissue samples and intestine tissue samples were collected from each carp sample. Than head kidney and intestine tissue samples were pooled. The total bacterial DNA extraction from the pooled each 20 head kidney tissue samples and pooled each 20 intestinal tissue samples. Primers for pathogens were originally designed from 16S Ribosomal gene region. Zoonotic bacteria were scanned in all tissue samples by absent / present analysis in the RT-PCR. After RT-PCR, Capillary gel electrophoresis bands were used for the confirmation of the size of amplicon which was planned during primer designing stage. As a result, one sample was positive in respect to Aeromonas hydrophila, from intestine and one carp farm was positive in respect to Pseudomonas fluorescens from intestine and two carp farms were positive in respect to Streptococcus iniae. Totally 17 of 20 carp farms were negative in respect to the zoonotic bacteria. In conclusion the zoonotic bacteria were very low (15 %) in carp farms from the Duhok Region in the Northern Iraq. Only in one Carp farms, both Aeromonas hydrophila and Pseudomonas fluorescens were positive. Also Streptococcus inia were positive in two carp farms.

  12. Induction of Pseudoactinorhizae by the Plant Pathogen Agrobacterium rhizogenes.

    Science.gov (United States)

    Berg, R H; Liu, L; Dawson, J O; Savka, M A; Farrand, S K

    1992-02-01

    Infection of Elaeagnus angustifolia cotyledonary wounds by Agrobacterium rhizogenes strain NCPPB 2659 resulted in the formation of pseudoactinorhizae on roots differentiated from callus. These pseudoactinorhizal root nodules were anatomically indistinguishable from the actinorhizae induced by the plant's microsymbiont Frankia. This unusual hairy root phenotype provides support for the concept that the genetic program for actinorhiza morphogenesis resides in the plant's genome.

  13. Chemical- and pathogen-induced programmed cell death in plants

    NARCIS (Netherlands)

    Iakimova, E.T.; Atanassov, A.; Woltering, E.J.

    2005-01-01

    This review focuses on recent update in the understanding of programmed cell death regarding the differences and similarities between the diverse types of cell death in animal and plant systems and describes the morphological and some biochemical determinants. The role of PCD in plant development an

  14. Chemical- and pathogen-induced programmed cell death in plants

    NARCIS (Netherlands)

    Iakimova, E.T.; Atanassov, A.; Woltering, E.J.

    2005-01-01

    This review focuses on recent update in the understanding of programmed cell death regarding the differences and similarities between the diverse types of cell death in animal and plant systems and describes the morphological and some biochemical determinants. The role of PCD in plant development

  15. The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity.

    Science.gov (United States)

    Tavernier, Virginie; Cadiou, Sandrine; Pageau, Karine; Laugé, Richard; Reisdorf-Cren, Michèle; Langin, Thierry; Masclaux-Daubresse, Céline

    2007-01-01

    Nitrogen plays an essential role in the nutrient relationship between plants and pathogens. Some studies report that the nitrogen-mobilizing plant metabolism that occurs during abiotic and biotic stress could be a 'slash-and-burn' defence strategy. In order to study nitrogen recycling and mobilization in host plants during pathogen attack and invasion, the Colletotrichum lindemuthianum/Phaseolus vulgaris interaction was used as a model. C. lindemuthianum is a hemibiotroph that causes anthracnose disease on P. vulgaris. Non-pathogenic mutants and the pathogenic wild-type strain were used to compare their effects on plant metabolism. The deleterious effects of infection were monitored by measuring changes in chlorophyll, protein, and amino acid concentrations. It was shown that amino acid composition changed depending on the plant-fungus interaction and that glutamine accumulated mainly in the leaves infected by the pathogenic strain. Glutamine accumulation correlated with the accumulation of cytosolic glutamine synthetase (GS1 alpha) mRNA. The most striking result was that the GS1 alpha gene was induced in all the fungus-infected leaves, independent of the strain used for inoculation, and that GS1 alpha expression paralleled the PAL3 and CHS defence gene expression. It is concluded that a role of GS1 alpha in plant defence has to be considered.

  16. Synergisms between microbial pathogens in plant disease complexes: a growing trend

    Directory of Open Access Journals (Sweden)

    Jay Ram eLamichhane

    2015-05-01

    Full Text Available Plant diseases are often thought to be caused by one species or even by a specific strain. Microbes in nature however mostly occur as part of complex communities and this has been noted since the time of van Leeuwenhoek. Interestingly, most laboratory studies focus on single microbial strains grown in pure culture; we were therefore unaware of possible interspecies and/or inter-kingdom interactions of pathogenic microbes in the wild. In human and animal infections, it is now being recognized that many diseases are the result of multispecies synergistic interactions. This increases the complexity of the disease and has to be taken into consideration in the development of more effective control measures. On the other hand, there are only a few reports of synergistic pathogen-pathogen interactions in plant diseases and the mechanisms of interactions are currently unknown. Here we review some of these reports of synergism between different plant pathogens and their possible implications in crop health. Finally, we briefly highlight the recent technological advances in diagnostics as these are beginning to provide important insights into the microbial communities associated with complex plant diseases. These examples of synergistic interactions of plant pathogens that lead to disease complexes might prove to be more common than expected and understanding the underlying mechanisms might have important implications in plant disease epidemiology and management.

  17. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens

    Directory of Open Access Journals (Sweden)

    Aarzoo eQamar

    2015-07-01

    Full Text Available Pyrroline-5-carboxylate (P5C is an intermediate product of both proline biosynthesis and catabolism. Recent evidences indicate that proline-P5C metabolism is tightly regulated in plants, especially during pathogen infection and abiotic stress. However, role of P5C and its metabolism in plants has not yet been fully understood. Studies indicate that P5C synthesized in mitochondria has a role in both resistance (R-gene-mediated and nonhost resistance against invading pathogens. Proline dehydrogenase (ProDH and delta-ornithine amino transferase (δOAT-encoding genes, both involved in P5C synthesis in mitochondria are implicated in defense response of Nicotiana benthamiana and Arabidopsis thaliana against bacterial pathogens. Such defense response is proposed to involve salicylic acid-dependent pathway, reactive oxygen species (ROS and hypersensitive response (HR-associated cell death. Recently HR, a form of programmed cell death (PCD, has been proposed to be induced by changes in mitochondrial P5C synthesis or the increase in P5C levels per se in plants inoculated with either a host pathogen carrying suitable avirulent (Avr gene or a nonhost pathogen. Consistently, A. thaliana mutant plants deficient in P5C catabolism showed HR like cell death when grown in external P5C or proline supplemented medium. Similarly, yeast and plant cells under oxidative stress were shown to increase ROS production and PCD due to increase in P5C levels. Similar mechanism has also been reported as one of the triggers for apoptosis in mammalian cells. This review critically analyzes results from various studies and enumerates the pathways for regulation of P5C levels in the plant cell, especially in mitochondria, during pathogen infection. Further, mechanisms regulating P5C- mediated defense responses, namely HR are outlined. This review also provides new insights into the differential role of proline-P5C metabolism in plants exposed to pathogen infection.

  18. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2013-10-15

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  19. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    Science.gov (United States)

    Wan, Jinrong [Columbia, MO; Stacey, Gary [Columbia, MO; Stacey, Minviluz [Columbia, MO; Zhang, Xuecheng [Columbia, MO

    2012-01-17

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  20. Characterization of the expression of transcriptionally silent loci during the plant response against Pseudomonas syringae

    OpenAIRE

    Hulak, Natasa

    2014-01-01

    Pseudomonas syringae es una bacteria en forma de bacilo, Gram-negativa, hemibiotrófa y con flagelos polares, que provoca una amplia variedad de síntomas en plantas, incluyendo manchas necróticas y/o cloróticas foliares y agallas. Pseudomonas syringae sobrevive en las superficies de las hojas como una epífita, antes de entrar en el espacio intercelular a través de aberturas naturales como estomas o heridas, para iniciar el proceso de infección (Hirano and Upper, 2000). P. syringae pv. tomato (...

  1. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture.

    Science.gov (United States)

    Kenney, Eric; Eleftherianos, Ioannis

    2016-01-01

    Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  2. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance.

    Science.gov (United States)

    Manosalva, Patricia; Manohar, Murli; von Reuss, Stephan H; Chen, Shiyan; Koch, Aline; Kaplan, Fatma; Choe, Andrea; Micikas, Robert J; Wang, Xiaohong; Kogel, Karl-Heinz; Sternberg, Paul W; Williamson, Valerie M; Schroeder, Frank C; Klessig, Daniel F

    2015-07-23

    Plant-defense responses are triggered by perception of conserved microbe-associated molecular patterns (MAMPs), for example, flagellin or peptidoglycan. However, it remained unknown whether plants can detect conserved molecular patterns derived from plant-parasitic animals, including nematodes. Here we show that several genera of plant-parasitic nematodes produce small molecules called ascarosides, an evolutionarily conserved family of nematode pheromones. Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated protein kinases, as well as salicylic acid- and jasmonic acid-mediated defense signalling pathways. Ascr#18 perception increases resistance in Arabidopsis, tomato, potato and barley to viral, bacterial, oomycete, fungal and nematode infections. These results indicate that plants recognize ascarosides as a conserved molecular signature of nematodes. Using small-molecule signals such as ascarosides to activate plant immune responses has potential utility to improve economic and environmental sustainability of agriculture.

  3. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple

    Institute of Scientific and Technical Information of China (English)

    Maria Diana Cerqueira Sales; Helber Barcellos Costa; Jose Aires Ventura; Debora Dummer Meira

    2016-01-01

    Objective: To evaluate the in vitro antifungal activity of extracts, resins, oils and mother tinctures from plants against the filamentous fungi Fusarium guttiforme (F. guttiforme) and Chalara paradoxa, and to evaluate the control of the pineapple fusariosis in situ using mother tinctures. Methods: The screening of the antifungal potential of 131 extract forms from 63 plant species was performed in vitro by using plate-hole method. To control pineapple fusar-iosis in situ, preventive and post-infection treatments were performed on detached pineapple leaves of cv. P´erola (susceptible). Results: The quantitative study indicated that among the 49 mother tincture samples analyzed, 46% were effective against F. guttiforme and 29% for the Chalara paradoxa. The natural plant extracts, mother tincture of Glycyrrhiza glabra (MTGG1), mother tincture of Myroxylon balsamum (MTBT2), mother tincture of Aloe vera (MTAV3), mother tincture of Allium sativum (MTAS4), resin of Protium heptaphyllum (RESAM5) and crude extracts of Rhizophora mangle (CEMV6), exhibited an antifungal activity against F. guttiforme. In the preventive treatment against pineapple fusariosis, MTAV3, MTAS4 and MTGG1 were statistically similar to the treatment with tebuconazol fungicide. The curative treatments with MTAV3, MTAS4, MTGG1 and MTBT2 presented similar activity to fungicide (P Conclusions: The findings of the present study concluded that mother tinctures can effectively control phytopathogens. The mother tincture extract of Myroxylon balsamum showed antifungal activity and was used here for the first time for inhibition of phyto-pathogenic fungi. This study paves the way for the development of bioactive natural products with phytosanitary applications, with the added benefits of an environmentally safe and economically viable product.

  4. The Multitrophic Plant-Herbivore-Parasitoid-Pathogen System

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2011-01-01

    In the past three decades there has been an increasing number of studies concerned with the effects that alterations in biodiversity may have on ecosystem functioning. In these studies a great emphasis has been on ecological processes such as productivity, energy flow and nutrient cycling. The mo...... in many different empirical studies of what we could call the “multitrophic plant–herbivore–parasitoid–pathogen system”....

  5. A 16-year retrospective surveillance report on the pathogenic features and antimicrobial susceptibility of Pseudomonas aeruginosa isolates from FAHJU in Guangzhou representative of Southern China.

    Science.gov (United States)

    Xie, Jinhong; Yang, Ling; Peters, Brian M; Chen, Lequn; Chen, Dingqiang; Li, Bing; Li, Lin; Yu, Guangchao; Xu, Zhenbo; Shirtliff, Mark E

    2017-09-01

    Pseudomonas aeruginosa is a major pathogen responsible for nosocomial infections. A 16-year retrospective report from 2000 to 2015 was conducted to assess the antimicrobial resistance of P. aeruginosa in Southern China. A total of 1387 P. aeruginosa were collected from inpatients and outpatients. Susceptibility testing results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI, 2015). Piperacillin, piperacillin-tazobactam, ceftazidime, aminoglycosides and carbapenems remained to be active against P. aeruginosa, with resistance rates ranging from 5.6% to 29.7%. Generally, ampicillin, ampicillin-sulbactam, ceftriaxone and trimethoprim-sulfamethoxazole nearly lost the effect on P. aeruginosa, as the resistance rates increase up to 90%. Notably, sputum and blood specimen showed higher resistance rates than other sources in carbapenems, suggesting more caution should be paid on the choice of antibiotic against infections associated with respiratory tract. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Identification of a previously uncharacterized global regulator in Pseudomonas syringae pv. tomato DC3000

    Science.gov (United States)

    Pseudomonas syringae pv. tomato DC3000 (Pst) is used as a model system to understand the dynamics behind molecular plant-microbe interactions. Identification of conserved genes necessary for survival of bacterial plant pathogens in the apoplast could lead to new management methods. We have identifie...

  7. The rare codon AGA is involved in regulation of pyoluteorin biosynthesis in Pseudomonas protegens Pf-5

    Science.gov (United States)

    The soil bacterium Pseudomonas protegens Pf-5 can colonize root and seed surfaces of many plants, protecting them from infection by plant pathogenic fungi and oomycetes. This capacity to suppress disease is attributed in part to Pf-5’s production of a large spectrum of antibiotics, which is controll...

  8. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance

    National Research Council Canada - National Science Library

    Manosalva, Patricia; Manohar, Murli; von Reuss, Stephan H; Chen, Shiyan; Koch, Aline; Kaplan, Fatma; Choe, Andrea; Micikas, Robert J; Wang, Xiaohong; Kogel, Karl-Heinz; Sternberg, Paul W; Williamson, Valerie M; Schroeder, Frank C; Klessig, Daniel F

    2015-01-01

    .... Picomolar to micromolar concentrations of ascr#18, the major ascaroside in plant-parasitic nematodes, induce hallmark defense responses including the expression of genes associated with MAMP-triggered immunity, activation of mitogen-activated...

  9. Pathogenicity of eight formae speciales of Fusarium oxysporum Schlecht. in relation to different plants species

    Directory of Open Access Journals (Sweden)

    Maria Wagner

    2014-08-01

    Full Text Available Eight formae speciales of Fusarium oxysporum were isolated from plants of aster, flax, bean, pea, tomato, carnation, yellow lupine and pine, showing visible symptoms of wilting. Plants of the eight species were inoculated with each of the studied formae speciales of F. oxysporum, F. oxysporum f. sp. lupini could be reisolated only from lupine, while the others were pathogenic for the hosts and showed ability to colonize another plants.

  10. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58.

    Science.gov (United States)

    Goodner, B; Hinkle, G; Gattung, S; Miller, N; Blanchard, M; Qurollo, B; Goldman, B S; Cao, Y; Askenazi, M; Halling, C; Mullin, L; Houmiel, K; Gordon, J; Vaudin, M; Iartchouk, O; Epp, A; Liu, F; Wollam, C; Allinger, M; Doughty, D; Scott, C; Lappas, C; Markelz, B; Flanagan, C; Crowell, C; Gurson, J; Lomo, C; Sear, C; Strub, G; Cielo, C; Slater, S

    2001-12-14

    Agrobacterium tumefaciens is a plant pathogen capable of transferring a defined segment of DNA to a host plant, generating a gall tumor. Replacing the transferred tumor-inducing genes with exogenous DNA allows the introduction of any desired gene into the plant. Thus, A. tumefaciens has been critical for the development of modern plant genetics and agricultural biotechnology. Here we describe the genome of A. tumefaciens strain C58, which has an unusual structure consisting of one circular and one linear chromosome. We discuss genome architecture and evolution and additional genes potentially involved in virulence and metabolic parasitism of host plants.

  11. Friend or foe: genetic and functional characterization of plant endophytic Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Kumar, A.; Munder, A.; Aravind, R.; Eapen, S.J.; Tümmler, B.; Raaijmakers, J.M.

    2013-01-01

    Endophytic Pseudomonas aeruginosa strain BP35 was originally isolated from black pepper grown in the rain forest in Kerala, India. Strain PaBP35 was shown to provide significant protection to black pepper against infections by Phytophthora capsici and Radopholus similis. For registration and impleme

  12. The pathogenicity factor HrpF interacts with HrpA and HrpG to modulate type III secretion system (T3SS) function and t3ss expression in Pseudomonas syringae pv. averrhoi.

    Science.gov (United States)

    Huang, Yi-Chiao; Lin, Yuan-Chuen; Wei, Chia-Fong; Deng, Wen-Ling; Huang, Hsiou-Chen

    2016-09-01

    To ensure the optimal infectivity on contact with host cells, pathogenic Pseudomonas syringae has evolved a complex mechanism to control the expression and construction of the functional type III secretion system (T3SS) that serves as a dominant pathogenicity factor. In this study, we showed that the hrpF gene of P. syringae pv. averrhoi, which is located upstream of hrpG, encodes a T3SS-dependent secreted/translocated protein. Mutation of hrpF leads to the loss of bacterial ability on elicitation of disease symptoms in the host and a hypersensitive response in non-host plants, and the secretion or translocation of the tested T3SS substrates into the bacterial milieu or plant cells. Moreover, overexpression of hrpF in the wild-type results in delayed HR and reduced t3ss expression. The results of protein-protein interactions demonstrate that HrpF interacts directly with HrpG and HrpA in vitro and in vivo, and protein stability assays reveal that HrpF assists HrpA stability in the bacterial cytoplasm, which is reduced by a single amino acid substitution at the 67th lysine residue of HrpF with alanine. Taken together, the data presented here suggest that HrpF has two roles in the assembly of a functional T3SS: one by acting as a negative regulator, possibly involved in the HrpSVG regulation circuit via binding to HrpG, and the other by stabilizing HrpA in the bacterial cytoplasm via HrpF-HrpA interaction prior to the secretion and formation of Hrp pilus on the bacterial surface.

  13. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases.

    Science.gov (United States)

    García-Guzmán, Graciela; Heil, Martin

    2014-03-01

    Plant pathogens affect the fitness of their hosts and maintain biodiversity. However, we lack theories to predict the type and intensity of infections in wild plants. Here we demonstrate using fungal pathogens of tropical plants that an examination of the life histories of hosts and pathogens can reveal general patterns in their interactions. Fungal infections were more commonly reported for light-demanding than for shade-tolerant species and for evergreen rather than for deciduous hosts. Both patterns are consistent with classical defence theory, which predicts lower resistance in fast-growing species and suggests that the deciduous habit can reduce enemy populations. In our literature survey, necrotrophs were found mainly to infect shade-tolerant woody species whereas biotrophs dominated in light-demanding herbaceous hosts. Far-red signalling and its inhibitory effects on jasmonic acid signalling are likely to explain this phenomenon. Multiple changes between the necrotrophic and the symptomless endophytic lifestyle at the ecological and evolutionary scale indicate that endophytes should be considered when trying to understand large-scale patterns in the fungal infections of plants. Combining knowledge about the molecular mechanisms of pathogen resistance with classical defence theory enables the formulation of testable predictions concerning general patterns in the infections of wild plants by fungal pathogens. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  14. The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range.

    Directory of Open Access Journals (Sweden)

    Patrik Inderbitzin

    Full Text Available Hybridization plays a central role in plant evolution, but its overall importance in fungi is unknown. New plant pathogens are thought to arise by hybridization between formerly separated fungal species. Evolution of hybrid plant pathogens from non-pathogenic ancestors in the fungal-like protist Phytophthora has been demonstrated, but in fungi, the most important group of plant pathogens, there are few well-characterized examples of hybrids. We focused our attention on the hybrid and plant pathogen Verticillium longisporum, the causal agent of the Verticillium wilt disease in crucifer crops. In order to address questions related to the evolutionary origin of V. longisporum, we used phylogenetic analyses of seven nuclear loci and a dataset of 203 isolates of V. longisporum, V. dahliae and related species. We confirmed that V. longisporum was diploid, and originated three different times, involving four different lineages and three different parental species. All hybrids shared a common parent, species A1, that hybridized respectively with species D1, V. dahliae lineage D2 and V. dahliae lineage D3, to give rise to three different lineages of V. longisporum. Species A1 and species D1 constituted as yet unknown taxa. Verticillium longisporum likely originated recently, as each V. longisporum lineage was genetically homogenous, and comprised species A1 alleles that were identical across lineages.

  15. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    Science.gov (United States)

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  16. Nitrogen fertilization of the host plant influences production and pathogenicity of Botrytis cinerea secondary inoculum.

    Science.gov (United States)

    Abro, Manzoor Ali; Lecompte, François; Bryone, Florian; Nicot, Philippe C

    2013-03-01

    The influence of nitrogen (N) nutrition on a plant's susceptibility to Botrytis spp. and other pathogens is well documented. However, little is known of possible effects on sporulation of the pathogen on diseased tissue and on the pathogenicity of resulting secondary inoculum. To address this question, sporulation by two strains of Botrytis cinerea was quantified on tomato plants produced under different N irrigation regimes with inputs of NO(3)- at 0.5 to 45 mmol liter(-1) (mM). Sporulation decreased significantly (P fertilization up to NO(3)- at 15 to 30 mM. The secondary inoculum was collected and used to inoculate pruning wounds on tomato plants produced under a standard fertilization regime. Pathogenicity of the spores was significantly influenced by the nutritional status of their production substrate. Disease severity was highest with spores produced on plants with very low or very high N fertilization (NO(3)- at 0.5 or 30 mM). It was lowest for inoculum from plants with moderate levels of N fertilization. These results suggest that it may be possible to find an optimum level of N fertilization to reduce the production of secondary inoculum and its pathogenicity to tomato.

  17. Probiotic Diversity Enhances Rhizosphere Microbiome Function and Plant Disease Suppression

    OpenAIRE

    Hu, Jie; Wei, Zhong; Friman, Ville Petri; Gu, Shao-Hua; Wang, Xiao-Fang; Eisenhauer, Nico; Yang, Tian-jie; Ma, Jing; Shen, Qi-Rong; Xu, Yang-chun; Jousset, Alexandre

    2016-01-01

    Bacterial communities associated with plant roots play an important role in the suppression of soil-borne pathogens, and multispecies probiotic consortia may enhance disease suppression efficacy. Here we introduced defined Pseudomonas species consortia into naturally complex microbial communities and measured the importance of Pseudomonas community diversity for their survival and the suppression of the bacterial plant pathogen Ralstonia solanacearum in the tomato rhizosphere microbiome. The ...

  18. Phylogenetic Analysis of Polygalacturonase-Producing Bacillus and Pseudomonas Isolated From Plant Waste Material

    Science.gov (United States)

    Sohail, Muhammad; Latif, Zakia

    2016-01-01

    Background: Keeping in mind the commercial application of polygalacturonase (PG) in juice and beverages industry, bacterial strains were isolated from rotten fruits and vegetables to screen for competent producers of PG. Objectives: In this study, the plate method was used for preliminary screening of polygalacturonase-producing bacteria, while the Dinitrosalicylic Acid (DNS) method was used for quantifications of PG. Materials and Methods: Biochemically-identified polygalacturonase-producing Bacillus and Pseudomonas species were further characterized by molecular markers. The genetic diversity among these selected strains was analyzed by investigating microsatellite distribution in their genome. Out of 110 strains, 17 competent strains of Bacillus and eight strains of Pseudomonas were selected, identified and confirmed biochemically. Selected strains were characterized by 16S rRNA sequencing and data was submitted to the national center for biotechnology information (NCBI) website for accession numbers. Results: Among the Bacillus, Bacillus vallismortis (JQ990307) isolated from mango was the most competent producer of PG; producing up to 4.4 U/µL. Amongst Pseudomonas, Pseudomonas aeruginosa (JQ990314) isolated from oranges was the most competent PG producer equivalent to B. vallismortis (JQ990307). To determine genetic diversity of different strains of Pseudomonas and Bacillus varying in PG production, fingerprinting was done on the basis of Simple Sequence Repeats (SSR) or microsatellites. The data was analyzed and a phylogenetic tree was constructed using the Minitab 3 software for comparison of bacterial isolates producing different concentrations of PG. Fingerprinting showed that presence or absence of certain microsatellites correlated with the ability of PG production. Conclusions: Bacteria from biological waste were competent producers of PG and must be used on an industrial scale to cope with the demand of PG in the food industry. PMID:27099686

  19. Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosacystic fibrosis bacterial isolates

    DEFF Research Database (Denmark)

    Friman, Ville-Petri; Soanes-Brown, Daniel; Sierocinski, Pawel

    2016-01-01

    Recent years have seen renewed interest in phage therapy - the use of viruses to specifically kill disease-causing bacteria – because of the alarming rise in antibiotic resistance. However, a major limitation of phage therapy is the ease at with bacteria can evolve resistance to phages. Here we...... determined if in vitro experimental coevolution can increase the efficiency of phage therapy by limiting the resistance evolution of intermittent and chronic cystic fibrosis Pseudomonas aeruginosa lung isolates to four different phages. We first pre-adapted all phage strains against all bacterial strains...... and then compared the efficacy of pre-adapted and non-adapted phages against ancestral bacterial strains. We found that evolved phages were more efficient in reducing bacterial densities than ancestral phages. This was primarily because only 50% of bacterial strains were able to evolve resistance to evolved phages...

  20. The Pseudomonas aeruginosa type III secretion system has an exotoxin S/T/Y independent pathogenic role during acute lung infection.

    Directory of Open Access Journals (Sweden)

    Marlies Galle

    Full Text Available The type III secretion system (T3SS is a complex nanomachine of many pathogenic gram-negative bacteria. It forms a proteinaceous channel that is inserted into the host eukaryotic cell membrane for injection of bacterial proteins that manipulate host cell signaling. However, few studies have focused on the effector-independent functions of the T3SS. Using a murine model of acute lung infection with Pseudomonas aeruginosa, an important human opportunistic pathogen, we compared the pathogenicity of mutant bacteria that lack all of the known effector toxins ( ΔSTY, with mutant bacteria that also lack the major translocator protein PopB (ΔSTY/ΔPopB and so cannot form a functional T3SS channel in the host cell membrane. Mortality was higher among mice challenged with ΔSTY compared to mice challenged with ΔSTY/ΔPopB mutant bacteria. In addition, mice infected with ΔSTY showed decreased bacterial clearance from the lungs compared to those infected with ΔSTY/ΔPopB. Infection was in both cases associated with substantial killing of lung infiltrating macrophages. However, macrophages from ΔSTY-infected mice died by pro-inflammatory necrosis characterized by membrane permeabilization and caspase-1 mediated IL-1β production, whereas macrophages from ΔSTY/ΔPopB infected mice died by apoptosis, which is characterized by annexin V positive staining of the cell membrane and caspase-3 activation. This was confirmed in macrophages infected in vitro. These results demonstrate a T3SS effector toxin independent role for the T3SS, in particular the T3SS translocator protein PopB, in the pathogenicity of P. aeruginosa during acute lung infection.

  1. Isolation, plant colonization potential, and phenanthrene degradation performance of the endophytic bacterium Pseudomonas sp. Ph6-gfp

    Science.gov (United States)

    Sun, Kai; Liu, Juan; Gao, Yanzheng; Jin, Li; Gu, Yujun; Wang, Wanqing

    2014-06-01

    This investigation provides a novel method of endophyte-aided removal of polycyclic aromatic hydrocarbons (PAHs) from plant bodies. A phenanthrene-degrading endophytic bacterium Pseudomonas sp. Ph6 was isolated from clover (Trifolium pratense L.) grown in a PAH-contaminated site. After being marked with the GFP gene, the colonization and distribution of strain Ph6-gfp was directly visualized in plant roots, stems, and leaves for the first time. After ryegrass (Lolium multiflorum Lam.) roots inoculation, strain Ph6-gfp actively and internally colonized plant roots and transferred vertically to the shoots. Ph6-gfp had a natural capacity to cope with phenanthrene in vitro and in planta. Ph6-gfp degraded 81.1% of phenanthrene (50 mg.L-1) in a culture solution within 15 days. The inoculation of plants with Ph6-gfp reduced the risks associated with plant phenanthrene contamination based on observations of decreased concentration, accumulation, and translocation factors of phenanthrene in ryegrass. Our results will have important ramifications in the assessment of the environmental risks of PAHs and in finding ways to circumvent plant PAH contamination.

  2. Nutrient acquisition and secondary metabolites in plant pathogenic fungi

    DEFF Research Database (Denmark)

    Droce, Aida

    and infection processes of these two distinct phytopathogens are described with special attention on the importance of uptake and reallocation of nutrients. Nutrient uptake from host plant is crucial for fungi to grow and proliferate and during several developmental processes nutrient reallocation, a mechanism...... called autophagy, is crucial. In this ph.d project autophagy and dipeptide transport in Fg and Bgh is assessed with respect to pathology, developmental processes and mycotoxins production. Several techniques within molecular biology, bioinformatics, microbiology, analytical chemistry and plant pathology...

  3. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants

    OpenAIRE

    Alejandra Moenne; Jorge Castro; Jeannette Vera; Alberto Gonzalez

    2011-01-01

    Plants interact with the environment by sensing “non-self” molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae) corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense res...

  4. Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies.

    Science.gov (United States)

    Lin, Lan; Ge, Hui Ming; Yan, Tong; Qin, Yan Hua; Tan, Ren Xiang

    2012-12-01

    Each plant species in nature harbors endophytes, a community of microbes living within host plants without causing any disease symptom. However, the exploitation of endophyte-based phytoprotectants is hampered by the paucity of mechanistic understandings of endophyte-plant interaction. We here reported two endophytic Streptomyces isolates IFB-A02 and IFB-A03 recovered from a stress-tolerant dicotyledonous plant Artemisia annua L. After the determination of their non-pathogenicity at the genomic level and from the toxin (thaxtomin A, TXT) level, the endophytism of both isolates was supported by their successful colonization in planta. Of the two endophytes, IFB-A03 was further studied for the mechanism of endophyte-conferred phytoprotection owing to its plant growth promotion in model eudicot Arabidopsis thaliana. Using the endophyte-Arabidopsis co-cultivation system into which pathogenic Streptomyces scabies was introduced, we demonstrated that IFB-A03 pre-inoculation could activate the salicylic acid (SA)-mediated plant defense responses upon pathogen challenge. Moreover, IFB-A03 was shown to partially rescue the defense deficiency in eds5 (enhanced disease susceptibility 5) Arabidopsis mutants, putatively acting at the upstream of SA accumulation in the defense signaling pathway associated with the systemic acquired resistance (SAR). These data suggest that endophytic Streptomyces sp. IFB-A03 could be a promising candidate for biocontrol agents against S. scabies--a causative pathogen of common scab diseases prevailing in agronomic systems.

  5. The Clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens.

    Science.gov (United States)

    Eichenlaub, Rudolf; Gartemann, Karl-Heinz

    2011-01-01

    Clavibacter michiganensis subspecies are actinomycete plant pathogens residing mainly in the xylem vessels that infect economically important host plants. In the Clavibacter subspecies michiganensis and sepedonicus, infecting tomato and potato, respectively, essential factors for disease induction are plasmid encoded and loss of the virulence plasmids converts these biotrophic pathogens into endophytes. The genes responsible for successful colonization of the host plant, including evasion/suppression of plant defense reactions, are chromosomally encoded. Several serine proteases seem to be involved in colonization. They are secreted by Clavibacter, but their targets remain unknown. A type 3 secretion system (T3SS) translocating effectors into the plant cells is absent in these gram-positive pathogens. With the development of the modern 'omics technologies for RNA and proteins based on the known genome sequences, a new phase in the investigation of the mechanisms of plant pathogenicity has begun to allow the genome-wide investigation of the Clavibacter-host interaction. Copyright © 2011 by Annual Reviews. All rights reserved.

  6. Phytohormone Production by Strains of Pantoea agglomerans from Knots on Olive Plants Caused by Pseudomonas savastanoi pv. savastanoi

    Directory of Open Access Journals (Sweden)

    A. Cimmino

    2006-12-01

    Full Text Available Pantoea agglomerans is a common epiphyte of many plant species, and it is associated with Pseudomonas savastanoi pv. savastanoi in young and apparently intact olive knots. Strains of P. agglomerans collected from various olive groves in central Italy were studied for their ability to accumulate plant growth substances in culture. All the strains produced indole-3-aldehyde, indole-3-ethanol and indole-3-acetic acid (IAA, this last compound in amounts (average 8.7 mg l-1 comparable to those produced in vitro by virulent strains of P. savastanoi. None of the olive strains produced cytokinins. It is suggested that the IAA produced by P. agglomerans may increase the size of the knots caused on olive by P. savastanoi.

  7. Genome Analysis of Pseudomonas fluorescens PCL1751: A Rhizobacterium that Controls Root Diseases and Alleviates Salt Stress for Its Plant Host

    OpenAIRE

    2015-01-01

    Pseudomonas fluorescens PCL1751 is a rod-shaped Gram-negative bacterium isolated from the rhizosphere of a greenhouse-grown tomato plant in Uzbekistan. It controls several plant root diseases caused by Fusarium fungi through the mechanism of competition for nutrients and niches (CNN). This mechanism does not rely on the production of antibiotics, so it avoids the concerns of resistance development and is environmentally safe. Additionally, this bacterium promotes plant growth by alleviating s...

  8. Microbial conversion of tomato by a plant pathogenic bacterium Pectobacterium atrosepticum: a plant-microbial approach to control pathogenic Candida species.

    Science.gov (United States)

    Bajpai, Vivek K; Kang, Sun Chul; Lee, Soon-Gu; Baek, Kwang-Hyun

    2012-01-01

    This study was carried out to produce bioconverted products by microbial fermentation of tomato using a plant pathogenic bacterium Pectobacterium atrosepticum and to evaluate their in vitro antimycotic effect against pathogenic Candida species. The bioconverted products (500 microg/disc) provoked promising antimycotic effects against pathogenic isolates of Candida species as shown by the diameters of zones of inhibition (9 +/- 0.6 to 14 +/- 0.4 mm), along with their respective minimum inhibitory and minimum fungicidal concentration values, which increased from 250 to 1000 and 250 to 2000 microg/mL, respectively. With the viable counts of the tested fungal pathogens, exposure of the bioconverted products revealed a remarkable antimycotic effect. In addition, the morphology of a clinical isolate of C. glabrata KBN06P00368, visualized by scanning electron microscopy, showed a severe detrimental effect produced by the bioconverted products at the minimum inhibitory concentration (250 microg/mL). The bioconverted products significantly inhibited the in vitro growth of all the tested clinical and pathogenic laboratory isolates of Candida species. This study confirmed the potent antimycotic efficacy of the bioconverted products of tomato, hence justifying the therapeutic uses of bioconverted products in pharmaceutical preparations as an alternative approach to support the antifungal activity of conventional antimycotics.

  9. Antibacterial activity of plant defensins against alfalfa crown rot pathogens

    Science.gov (United States)

    Alfalfa (Medicago sativa) is the fourth most widely grown crop in the United States. Alfalfa crown rot is a disease complex that severely decreases alfalfa stand density and productivity in all alfalfa-producing areas. Currently, there are no viable methods of disease control. Plant defensins are sm...

  10. Conserved nematode signaling molecules elicit plant defenses and pathogen resistance

    Science.gov (United States)

    Nematodes, which are ubiquitous in soil and are estimated to cause $100 B of agricultural damage annually, produce novel, highly conserved small sugar-based molecules call ascarosides. Ascarosides play critical roles in nematode development and behavior. We report here that plants recognize these un...

  11. Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants.

    Science.gov (United States)

    Schalchli, H; Tortella, G R; Rubilar, O; Parra, L; Hormazabal, E; Quiroz, A

    2016-01-01

    Fungi are an extraordinary and immensely diverse group of microorganisms that colonize many habitats even competing with other microorganisms. Fungi have received recognition for interesting metabolic activities that have an enormous variety of biotechnological applications. Previously, volatile organic compounds produced by fungi (FVOCs) have been demonstrated to have a great capacity for use as antagonist products against plant pathogens. However, in recent years, FVOCs have been received attention as potential alternatives to the use of traditional pesticides and, therefore, as important eco-friendly biotechnological tools to control plant pathogens. Therefore, highlighting the current state of knowledge of these fascinating FVOCs, the actual detection techniques and the bioactivity against plant pathogens is essential to the discovery of new products that can be used as biopesticides.

  12. A systems biology perspective on plant-microbe interactions: biochemical and structural targets of pathogen effectors.

    Science.gov (United States)

    Pritchard, Leighton; Birch, Paul

    2011-04-01

    Plants have biochemical defences against stresses from predators, parasites and pathogens. In this review we discuss the interaction of plant defences with microbial pathogens such as bacteria, fungi and oomycetes, and viruses. We examine principles of complex dynamic networks that allow identification of network components that are differentially and predictably sensitive to perturbation, thus making them likely effector targets. We relate these principles to recent developments in our understanding of known effector targets in plant-pathogen systems, and propose a systems-level framework for the interpretation and modelling of host-microbe interactions mediated by effectors. We describe this framework briefly, and conclude by discussing useful experimental approaches for populating this framework.

  13. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production

    Directory of Open Access Journals (Sweden)

    Andreas eHofmann

    2014-05-01

    Full Text Available In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system or via agricultural soil amended with spiked organic fertilizers (soil system. In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4x10CFU/ml in the axenic system or 4x105CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in

  14. Effects of hydrogen fluoride on plant-pathogen interactions. [Lycopersicon esculentum; Phaseolus vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    McCune, D.C.; Weinstein, L.H.; Mancini, J.F.; van Lueken, P.

    1973-01-01

    Experiments in fumigation chambers with tomato (Lycopersicon esculentum) and pinto bean (Phaseolus vulgaris) plants were performed to assess the effects of hydrogen fluoride on plant-pathogen (fungal and bacterial) interactions. Hydrogen fluoride was found to alter the plant-pathogen interaction, although the kind and consistency of effect caused by HF depended upon the host, pathogen, and several other factors. A reduction in powdery mildew probably indicates that HF was affecting the infectivity of the pathogen itself because reduction in disease was proportional to the length of the exposure period, infection was continuous during the exposure period, and the pathogen itself was epiphytic. The effect of fluoride on bean rust may have been due to accumulated fluoride in the leaf having a direct or indirect effect on the pathogen because both pre- and post-inoculation exposures to HF were effective and additive. Other evidence for an indirect effect of fluoride was found in halo-blight where stem collapse was affected but foliar symptoms were not, and the site affected was spatially removed from the site of fluoride accumulation. Effects on early blight of tomato also indicated an effect of fluoride in the leaf.

  15. Molecular detection of plant pathogenic bacteria using polymerase chain reaction single-strand conformation polymorphism.

    Science.gov (United States)

    Srinivasa, Chandrashekar; Sharanaiah, Umesha; Shivamallu, Chandan

    2012-03-01

    The application of polymerase chain reaction (PCR) technology to molecular diagnostics holds great promise for the early identification of agriculturally important plant pathogens. Ralstonia solanacearum, Xanthomoans axonopodis pv. vesicatoria, and Xanthomonas oryzae pv. oryzae are phytopathogenic bacteria, which can infect vegetables, cause severe yield loss. PCR-single-strand conformation polymorphism (PCR-SSCP) is a simple and powerful technique for identifying sequence changes in amplified DNA. The technique of PCR-SSCP is being exploited so far, only to detect and diagnose human bacterial pathogens in addition to plant pathogenic fungi. Selective media and serology are the commonly used methods for the detection of plant pathogens in infected plant materials. In this study, we developed PCR-SSCP technique to identify phytopathogenic bacteria. The PCR product was denatured and separated on a non-denaturing polyacrylamide gel. SSCP banding patterns were detected by silver staining of nucleic acids. We tested over 56 isolates of R. solanacearum, 44 isolates of X. axonopodis pv. vesicatoria, and 20 isolates of X. oryzae pv. oryzae. With the use of universal primer 16S rRNA, we could discriminate such species at the genus and species levels. Species-specific patterns were obtained for bacteria R. solanacearum, X. axonopodis pv. vesicatoria, and X. oryzae pv. oryzae. The potential use of PCR-SSCP technique for the detection and diagnosis of phytobacterial pathogens is discussed in the present paper.

  16. Molecular detection of plant pathogenic bacteria using polymerase chain reaction single-strand conformation polymorphism

    Institute of Scientific and Technical Information of China (English)

    Chandrashekar Srinivasa; Umesha Sharanaiah; Chandan Shivamallu

    2012-01-01

    The application of polymerase chain reaction (PCR) technology to molecular diagnostics holds great promise for the early identification of agriculturally important plant pathogens.Ralstonia solanacearum,Xanthomoans axonopodis pv.vesicatoria,and Xanthomonas oryzae pv.oryzae are phytopathogenic bacteria,which can infect vegetables,cause severe yield loss.PCR-single-strand conformation polymorphism (PCR-SSCP) is a simple and powerful technique for identifying sequence changes in amplified DNA.The technique of PCR-SSCP is being exploited so far,only to detect and diagnose human bacterial pathogens in addition to plant pathogenic fungi.Selective media and serology are the commonly used methods for the detection of plant pathogens in infected plant materials.In this study,we developed PCR-SSCP technique to identify phytopathogenic bacteria.The PCR product was denatured and separated on a non-denaturing polyacrylamide gel.SSCP banding patterns were detected by silver staining of nucleic acids.We tested over 56 isolates of R. solanacearum,44 isolates of X. axonopodis pv.vesicatoria,and 20 isolates of X.oryzae pv.oryzae.With the use of universal primer 16S rRNA,we could discriminate such species at the genus and species levels.Speciesspecific patterns were obtained for bacteria R.solanacearum,X.axonopodis pv.vesicatoria,and X.oryzae pv.oryzae.The potential use of PCR-SSCP technique for the detection and diagnosis of phytobacterial pathogens is discussed in the present paper.

  17. The Multitrophic Plant-Herbivore-Parasitoid-Pathogen System

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2011-01-01

    In the past three decades there has been an increasing number of studies concerned with the effects that alterations in biodiversity may have on ecosystem functioning. In these studies a great emphasis has been on ecological processes such as productivity, energy flow and nutrient cycling......”, that is, biologists in different sub-disciplines are assigning increasing importance to the informational processes in living systems and are paying more attention to the “context” (e.g., from quorum sensing to info-chemicals to signal transduction in general). There is a new and exciting epistemological...... in many different empirical studies of what we could call the “multitrophic plant–herbivore–parasitoid–pathogen system”....

  18. Chemical Modification and Detoxification of the Pseudomonas aeruginosa Toxin 2-Heptyl-4-hydroxyquinoline N-Oxide by Environmental and Pathogenic Bacteria.

    Science.gov (United States)

    Thierbach, Sven; Birmes, Franziska S; Letzel, Matthias C; Hennecke, Ulrich; Fetzner, Susanne

    2017-07-27

    2-Heptyl-4-hydroxyquinoline N-oxide (HQNO), a major secondary metabolite and virulence factor produced by the opportunistic pathogen Pseudomonas aeruginosa, acts as a potent inhibitor of respiratory electron transfer and thereby affects host cells as well as microorganisms. In this study, we demonstrate the previously unknown capability of environmental and pathogenic bacteria to transform and detoxify this compound. Strains of Arthrobacter and Rhodococcus spp. as well as Staphylococcus aureus introduced a hydroxyl group at C-3 of HQNO, whereas Mycobacterium abscessus, M. fortuitum, and M. smegmatis performed an O-methylation, forming 2-heptyl-1-methoxy-4-oxoquinoline as the initial metabolite. Bacillus spp. produced the glycosylated derivative 2-heptyl-1-(β-d-glucopyranosydyl)-4-oxoquinoline. Assaying the effects of these metabolites on cellular respiration and on quinol oxidase activity of membrane fractions revealed that their EC50 values were up to 2 orders of magnitude higher than that of HQNO. Furthermore, cellular levels of reactive oxygen species were significantly lower in the presence of the metabolites than under the influence of HQNO. Therefore, the capacity to transform HQNO should lead to a competitive advantage against P. aeruginosa. Our findings contribute new insight into the metabolic diversity of bacteria and add another layer of complexity to the metabolic interactions which likely contribute to shaping polymicrobial communities comprising P. aeruginosa.

  19. Selective and High Dynamic Range Assay Format for Multiplex Detection of Pathogenic Pseudomonas aeruginosa, Salmonella typhimurium, and Legionella pneumophila RNAs Using Surface Plasmon Resonance Imaging.

    Science.gov (United States)

    Melaine, F; Saad, M; Faucher, S; Tabrizian, M

    2017-07-18

    Due to its well-characterized and highly conserved structure, as well as its relative abundance in metabolically active cells, bacterial 16S rRNA sequence plays an important role in microbial identification. In this work, a biosensing strategy has been developed for simultaneous detection of 16S rRNA analytes of three pathogenic bacterial strains: Legionella pneumophila, Pseudomonas aeruginosa, and Salmonella typhimurium. Surface plasmon resonance imaging (SPRi) was used as a detection technique coupled with DNA probe sandwich assemblies and gold nanoparticles (GNPs) for signal amplification. The targets 16S rRNA were selectively captured at the interface of the biosensor by surface-bound DNA probes through a hybridization process. GNP-grafted DNA detection probes were then introduced and were hybridized with a defined 16S rRNA region on the long DNA-RNA sandwich assemblies, resulting in a significant increase of the SPR signal. The results demonstrated the successful implementation of this strategy for detecting 16S rRNA sequences in total RNA mixed samples extracted from the three pathogenic strains at a concentration down to 10 pg mL(-1) with a large dynamic range of 0.01-100 ng mL(-1) and high selectivity. Since no particular optimization of the probe design was applied, this method should be relatively easy to adapt for quantification of a wide range of bacteria in various liquids.

  20. Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality.

    Science.gov (United States)

    Opota, Onya; Vallet-Gély, Isabelle; Vincentelli, Renaud; Kellenberger, Christine; Iacovache, Ioan; Gonzalez, Manuel Rodrigo; Roussel, Alain; van der Goot, Françoise-Gisou; Lemaitre, Bruno

    2011-09-01

    Pseudomonas entomophila is an entomopathogenic bacterium that infects and kills Drosophila. P. entomophila pathogenicity is linked to its ability to cause irreversible damages to the Drosophila gut, preventing epithelium renewal and repair. Here we report the identification of a novel pore-forming toxin (PFT), Monalysin, which contributes to the virulence of P. entomophila against Drosophila. Our data show that Monalysin requires N-terminal cleavage to become fully active, forms oligomers in vitro, and induces pore-formation in artificial lipid membranes. The prediction of the secondary structure of the membrane-spanning domain indicates that Monalysin is a PFT of the ß-type. The expression of Monalysin is regulated by both the GacS/GacA two-component system and the Pvf regulator, two signaling systems that control P. entomophila pathogenicity. In addition, AprA, a metallo-protease secreted by P. entomophila, can induce the rapid cleavage of pro-Monalysin into its active form. Reduced cell death is observed upon infection with a mutant deficient in Monalysin production showing that Monalysin plays a role in P. entomophila ability to induce intestinal cell damages, which is consistent with its activity as a PFT. Our study together with the well-established action of Bacillus thuringiensis Cry toxins suggests that production of PFTs is a common strategy of entomopathogens to disrupt insect gut homeostasis.

  1. Monalysin, a novel ß-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality.

    Directory of Open Access Journals (Sweden)

    Onya Opota

    2011-09-01

    Full Text Available Pseudomonas entomophila is an entomopathogenic bacterium that infects and kills Drosophila. P. entomophila pathogenicity is linked to its ability to cause irreversible damages to the Drosophila gut, preventing epithelium renewal and repair. Here we report the identification of a novel pore-forming toxin (PFT, Monalysin, which contributes to the virulence of P. entomophila against Drosophila. Our data show that Monalysin requires N-terminal cleavage to become fully active, forms oligomers in vitro, and induces pore-formation in artificial lipid membranes. The prediction of the secondary structure of the membrane-spanning domain indicates that Monalysin is a PFT of the ß-type. The expression of Monalysin is regulated by both the GacS/GacA two-component system and the Pvf regulator, two signaling systems that control P. entomophila pathogenicity. In addition, AprA, a metallo-protease secreted by P. entomophila, can induce the rapid cleavage of pro-Monalysin into its active form. Reduced cell death is observed upon infection with a mutant deficient in Monalysin production showing that Monalysin plays a role in P. entomophila ability to induce intestinal cell damages, which is consistent with its activity as a PFT. Our study together with the well-established action of Bacillus thuringiensis Cry toxins suggests that production of PFTs is a common strategy of entomopathogens to disrupt insect gut homeostasis.

  2. The impact of plant-pathogen studies on medicinal drug discovery.

    Science.gov (United States)

    Ottmann, Christian; van der Hoorn, Renier A L; Kaiser, Markus

    2012-04-21

    The pharmaceutical industry is reliant on a constant supply of new chemical entities and molecular targets for disease intervention. In this tutorial review, we want to illustrate that basic research studies on the biological function of natural products involved in plant-pathogen interactions can serve as an inspiring source for the identification of new bioactive entities as well as of strategies on how to achieve small molecule manipulation of biological systems. An application of findings from plant-pathogen interaction studies might therefore display a significant impact on drug discovery. This journal is © The Royal Society of Chemistry 2012

  3. Can Plant Viruses Cross the Kingdom Border and Be Pathogenic to Humans?

    Directory of Open Access Journals (Sweden)

    Fanny Balique

    2015-04-01

    Full Text Available Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans.

  4. Future Scenarios for Plant Virus Pathogens as Climate Change Progresses.

    Science.gov (United States)

    Jones, R A C

    2016-01-01

    Knowledge of how climate change is likely to influence future virus disease epidemics in cultivated plants and natural vegetation is of great importance to both global food security and natural ecosystems. However, obtaining such knowledge is hampered by the complex effects of climate alterations on the behavior of diverse types of vectors and the ease by which previously unknown viruses can emerge. A review written in 2011 provided a comprehensive analysis of available data on the effects of climate change on virus disease epidemics worldwide. This review summarizes its findings and those of two earlier climate change reviews and focuses on describing research published on the subject since 2011. It describes the likely effects of the full range of direct and indirect climate change parameters on hosts, viruses and vectors, virus control prospects, and the many information gaps and deficiencies. Recently, there has been encouraging progress in understanding the likely effects of some climate change parameters, especially over the effects of elevated CO2, temperature, and rainfall-related parameters, upon a small number of important plant viruses and several key insect vectors, especially aphids. However, much more research needs to be done to prepare for an era of (i) increasingly severe virus epidemics and (ii) increasing difficulties in controlling them, so as to mitigate their detrimental effects on future global food security and plant biodiversity.

  5. Effect of a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic canola plants.

    Science.gov (United States)

    Rodriguez, Hilda; Vessely, Susanne; Shah, Saleh; Glick, Bernard R

    2008-08-01

    Four bacterial strains were isolated from soils at nickel-contaminated sites based on their ability to utilize 1-aminocyclopropane-1-carboxylate (ACC) as a sole source of nitrogen. The four isolates were all identified as Pseudomonas putida Biovar B, and subsequent testing revealed that they all exhibited traits previously associated with plant growth promotion (i.e., indoleacetic acid and siderophore production and ACC deaminase activity). These four strains were also tolerant of nickel concentrations of up to 13.2 mM in the culture medium. The strain, HS-2, selected for further characterization, was used in pot experiments to inoculate both nontransformed and transgenic canola plants (expressing a bacterial ACC deaminase gene in its roots). Plants inoculated with the HS-2 strain produced an increase in plant biomass as well as in nickel (Ni) uptake by shoots and roots. The results suggest that this strain is a potential candidate to be used as an inoculant in both phytoremediation protocols and in plant growth promotion.

  6. Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling

    Directory of Open Access Journals (Sweden)

    Thiruvengadam Raguchander

    2009-12-01

    Full Text Available Abstract Background Plant Growth Promoting Rhizobacteria (PGPR, Pseudomonas fluorescens strain KH-1 was found to exhibit plant growth promotional activity in rice under both in-vitro and in-vivo conditions. But the mechanism underlying such promotional activity of P. fluorescens is not yet understood clearly. In this study, efforts were made to elucidate the molecular responses of rice plants to P. fluorescens treatment through protein profiling. Two-dimensional polyacrylamide gel electrophoresis strategy was adopted to identify the PGPR responsive proteins and the differentially expressed proteins were analyzed by mass spectrometry. Results Priming of P. fluorescens, 23 different proteins found to be differentially expressed in rice leaf sheaths and MS analysis revealed the differential expression of some important proteins namely putative p23 co-chaperone, Thioredoxin h- rice, Ribulose-bisphosphate carboxylase large chain precursor, Nucleotide diPhosphate kinase, Proteosome sub unit protein and putative glutathione S-transferase protein. Conclusion Functional analyses of the differential proteins were reported to be directly or indirectly involved in growth promotion in plants. Thus, this study confirms the primary role of PGPR strain KH-1 in rice plant growth promotion.

  7. Biofilm as a production platform for heterologous production of rhamnolipids by the non‑pathogenic strain Pseudomonas putida KT2440

    DEFF Research Database (Denmark)

    Wigneswaran, Vinoth; Nielsen, Kristian Fog; Sternberg, Claus

    2016-01-01

    C10 fatty acids. Conclusion This study shows a successful application of synthetic promoter library in P. putida KT2440 and a heterologous biosynthesis of rhamnolipids in biofilm encased cells without hampering biofilm capabilities. These findings expands the possibilities of cultivation setups......Background Although a transition toward sustainable production of chemicals is needed, the physiochemical properties of certain biochemicals such as biosurfactants make them challenging to produce in conventional bioreactor systems. Alternative production platforms such as surface-attached biofilm...... as the model compound in biofilm encased Pseudomonas putida KT2440. The rhlAB operon from P. aeruginosa was introduced into P. putida to produce mono-rhamnolipids. A synthetic promoter library was used in order to bypass the normal regulation of rhamnolipid synthesis and to provide varying expression levels...

  8. PATHOGENICITY OF FUSARIUM SPP. ISOLATED FROM WEEDS AND PLANT DEBRIS IN EASTERN CROATIA TO WHEAT AND MAIZE

    Directory of Open Access Journals (Sweden)

    Jelena Ilić

    2012-12-01

    Full Text Available Pathogenicity of thirty isolates representing 14 Fusarium species isolated from weeds and plant debris in eastern Croatia was investigated in the laboratory. Pathogenicity tests were performed on wheat and maize seedlings. The most pathogenic Fusarium spp. was F. graminearum isolated from Amaranthus retroflexus, Abutilon theophrasti and Chenopodium album. There was a noticeable inter- and intraspecies variability in pathogenicity towards wheat and maize. Isolates of F. solani from Sonchus arvensis and F. verticillioides from C. album were highly pathogenic to wheat seedlings and apathogenic to maize seedlings. Isolates of F. venenatum were very pathogenic to wheat and maize being the first report about pathogenicity of this species. This experiment proves that weeds and plant debris can serve as alternate hosts and source of inoculum of plant pathogens.

  9. Silencing and Innate Immunity in Plant Defense Against Viral and Non-Viral Pathogens

    Directory of Open Access Journals (Sweden)

    Anna S. Zvereva

    2012-10-01

    Full Text Available The frontline of plant defense against non-viral pathogens such as bacteria, fungi and oomycetes is provided by transmembrane pattern recognition receptors that detect conserved pathogen-associated molecular patterns (PAMPs, leading to pattern-triggered immunity (PTI. To counteract this innate defense, pathogens deploy effector proteins with a primary function to suppress PTI. In specific cases, plants have evolved intracellular resistance (R proteins detecting isolate-specific pathogen effectors, leading to effector-triggered immunity (ETI, an amplified version of PTI, often associated with hypersensitive response (HR and programmed cell death (PCD. In the case of plant viruses, no conserved PAMP was identified so far and the primary plant defense is thought to be based mainly on RNA silencing, an evolutionary conserved, sequence-specific mechanism that regulates gene expression and chromatin states and represses invasive nucleic acids such as transposons. Endogenous silencing pathways generate 21-24 nt small (sRNAs, miRNAs and short interfering (siRNAs, that repress genes post-transcriptionally and/or transcriptionally. Four distinct Dicer-like (DCL proteins, which normally produce endogenous miRNAs and siRNAs, all contribute to the biogenesis of viral siRNAs in infected plants. Growing evidence indicates that RNA silencing also contributes to plant defense against non-viral pathogens. Conversely, PTI-based innate responses may contribute to antiviral defense. Intracellular R proteins of the same NB-LRR family are able to recognize both non-viral effectors and avirulence (Avr proteins of RNA viruses, and, as a result, trigger HR and PCD in virus-resistant hosts. In some cases, viral Avr proteins also function as silencing suppressors. We hypothesize that RNA silencing and innate immunity (PTI and ETI function in concert to fight plant viruses. Viruses counteract this dual defense by effectors that suppress both PTI-/ETI-based innate responses

  10. High quality draft genome sequences of Pseudomonas fulva DSM 17717(T), Pseudomonas parafulva DSM 17004(T) and Pseudomonas cremoricolorata DSM 17059(T) type strains.

    Science.gov (United States)

    Peña, Arantxa; Busquets, Antonio; Gomila, Margarita; Mulet, Magdalena; Gomila, Rosa M; Reddy, T B K; Huntemann, Marcel; Pati, Amrita; Ivanova, Natalia; Markowitz, Victor; García-Valdés, Elena; Göker, Markus; Woyke, Tanja; Klenk, Hans-Peter; Kyrpides, Nikos; Lalucat, Jorge

    2016-01-01

    Pseudomonas has the highest number of species out of any genus of Gram-negative bacteria and is phylogenetically divided into several groups. The Pseudomonas putida phylogenetic branch includes at least 13 species of environmental and industrial interest, plant-associated bacteria, insect pathogens, and even some members that have been found in clinical specimens. In the context of the Genomic Encyclopedia of Bacteria and Archaea project, we present the permanent, high-quality draft genomes of the type strains of 3 taxonomically and ecologically closely related species in the Pseudomonas putida phylogenetic branch: Pseudomonas fulva DSM 17717(T), Pseudomonas parafulva DSM 17004(T) and Pseudomonas cremoricolorata DSM 17059(T). All three genomes are comparable in size (4.6-4.9 Mb), with 4,119-4,459 protein-coding genes. Average nucleotide identity based on BLAST comparisons and digital genome-to-genome distance calculations are in good agreement with experimental DNA-DNA hybridization results. The genome sequences presented here will be very helpful in elucidating the taxonomy, phylogeny and evolution of the Pseudomonas putida species complex.

  11. Host Resistance and Temperature-Dependent Evolution of Aggressiveness in the Plant Pathogen Zymoseptoria tritici

    Directory of Open Access Journals (Sweden)

    Fengping Chen

    2017-06-01

    Full Text Available Understanding how habitat heterogeneity may affect the evolution of plant pathogens is essential to effectively predict new epidemiological landscapes and manage genetic diversity under changing global climatic conditions. In this study, we explore the effects of habitat heterogeneity, as determined by variation in host resistance and local temperature, on the evolution of Zymoseptoria tritici by comparing the aggressiveness development of five Z. tritici populations originated from different parts of the world on two wheat cultivars varying in resistance to the pathogen. Our results show that host resistance plays an important role in the evolution of Z. tritici. The pathogen was under weak, constraining selection on a host with quantitative resistance but under a stronger, directional selection on a susceptible host. This difference is consistent with theoretical expectations that suggest that quantitative resistance may slow down the evolution of pathogens and therefore be more durable. Our results also show that local temperature interacts with host resistance in influencing the evolution of the pathogen. When infecting a susceptible host, aggressiveness development of Z. tritici was negatively correlated to temperatures of the original collection sites, suggesting a trade-off between the pathogen’s abilities of adapting to higher temperature and causing disease and global warming may have a negative effect on the evolution of pathogens. The finding that no such relationship was detected when the pathogen infected the partially resistant cultivars indicates the evolution of pathogens in quantitatively resistant hosts is less influenced by environments than in susceptible hosts.

  12. A theoretical framework for biological control of soil-borne plant pathogens: Identifying effective strategies.

    Science.gov (United States)

    Cunniffe, Nik J; Gilligan, Christopher A

    2011-06-07

    We develop and analyse a flexible compartmental model of the interaction between a plant host, a soil-borne pathogen and a microbial antagonist, for use in optimising biological control. By extracting invasion and persistence thresholds of host, pathogen and biological control agent, performing an equilibrium analysis, and numerical investigation of sensitivity to parameters and initial conditions, we determine criteria for successful biological control. We identify conditions for biological control (i) to prevent a pathogen entering a system, (ii) to eradicate a pathogen that is already present and, if that is not possible, (iii) to reduce the density of the pathogen. Control depends upon the epidemiology of the pathogen and how efficiently the antagonist can colonise particular habitats (i.e. healthy tissue, infected tissue and/or soil-borne inoculum). A sharp transition between totally effective control (i.e. eradication of the pathogen) and totally ineffective control can follow slight changes in biologically interpretable parameters or to the initial amounts of pathogen and biological control agent present. Effective biological control requires careful matching of antagonists to pathosystems. For preventative/eradicative control, antagonists must colonise susceptible hosts. However, for reduction in disease prevalence, the range of habitat is less important than the antagonist's bulking-up efficiency.

  13. Proximal Sensing of Plant-Pathogen Interactions in Spring Barley with Three Fluorescence Techniques

    Directory of Open Access Journals (Sweden)

    Georg Leufen

    2014-06-01

    Full Text Available In the last years fluorescence spectroscopy has come to be viewed as an essential approach in key research fields of applied plant sciences. However, the quantity and particularly the quality of information produced by different equipment might vary considerably. In this study we investigate the potential of three optical devices for the proximal sensing of plant-pathogen interactions in four genotypes of spring barley. For this purpose, the fluorescence lifetime, the image-resolved multispectral fluorescence and selected indices of a portable multiparametric fluorescence device were recorded at 3, 6, and 9 days after inoculation (dai from healthy leaves as well as from leaves inoculated with powdery mildew (Blumeria graminis or leaf rust (Puccinia hordei. Genotype-specific responses to pathogen infections were revealed already at 3 dai by higher fluorescence mean lifetimes in the spectral range from 410 to 560 nm in the less susceptible varieties. Noticeable pathogen-induced modifications were also revealed by the ‘Blue-to-Far-Red Fluorescence Ratio’ and the ‘Simple Fluorescence Ratio’. Particularly in the susceptible varieties the differences became more evident in the time-course of the experiment i.e., following the pathogen development. The relevance of the blue and green fluorescence to exploit the plant-pathogen interaction was demonstrated by the multispectral fluorescence imaging system. As shown, mildewed leaves were characterized by exceptionally high blue fluorescence, contrasting the values observed in rust inoculated leaves. Further, we confirm that the intensity of green fluorescence depends on the pathogen infection and the stage of disease development; this information might allow a differentiation of both diseases. Moreover, our results demonstrate that the detection area might influence the quality of the information, although it had a minor impact only in the current study. Finally, we highlight the relevance of

  14. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants.

    Science.gov (United States)

    Planchamp, Chantal; Glauser, Gaetan; Mauch-Mani, Brigitte

    2014-01-01

    Pseudomonas putida KT2440 (KT2440) rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots) and systemic (leaves) early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots 3 days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR) against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal growth in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as resistance inducers.

  15. Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants

    Directory of Open Access Journals (Sweden)

    Chantal ePlanchamp

    2015-01-01

    Full Text Available Pseudomonas putida KT2440 (KT2440 rhizobacteria colonize a wide range of plants. They have been extensively studied for their capacity to adhere to maize seeds, to tolerate toxic secondary metabolites produced by maize roots and to be attracted by maize roots. However, the response of maize plants to KT2440 colonization has not been investigated yet. Maize roots were inoculated with KT2440 and the local (roots and systemic (leaves early plant responses were investigated. The colonization behavior of KT2440 following application to maize seedlings was investigated and transcriptional analysis of stress- and defense-related genes as well as metabolite profiling of local and systemic maize tissues of KT2440-inoculated were performed. The local and systemic responses differed and more pronounced changes were observed in roots compared to leaves. Early in the interaction roots responded via jasmonic acid- and abscisic acid-dependent signaling. Interestingly, during later steps, the salicylic acid pathway was suppressed. Metabolite profiling revealed the importance of plant phospholipids in KT2440-maize interactions. An additional important maize secondary metabolite, a form of benzoxazinone, was also found to be differently abundant in roots three days after KT2440 inoculation. However, the transcriptional and metabolic changes observed in bacterized plants early during the interaction were minor and became even less pronounced with time, indicating an accommodation state of the plant to the presence of KT2440. Since the maize plants reacted to the presence of KT2440 in the rhizosphere, we also investigated the ability of these bacteria to trigger induced systemic resistance (ISR against the maize anthracnose fungus Colletotrichum graminicola. The observed resistance was expressed as strongly reduced leaf necrosis and fungal development in infected bacterized plants compared to non-bacterized controls, showing the potential of KT2440 to act as

  16. Fluorescent Pseudomonas Strains with only Few Plant-Beneficial Properties Are Favored in the Maize Rhizosphere

    OpenAIRE

    Vacheron, Jordan; Yvan Moënne-Loccoz; Dubost, Audrey; Maximilien Gonçalves-Martins; Daniel Muller; Claire Prigent-Combaret

    2016-01-01

    Plant Growth-Promoting Rhizobacteria (PGPR) enhance plant health and growth using a variety of traits. Effective PGPR strains typically exhibit multiple plant-beneficial properties, but whether they are better adapted to the rhizosphere than PGPR strains with fewer plant-beneficial properties is unknown. Here, we tested the hypothesis that strains with higher numbers of plant-beneficial properties would be preferentially selected by plant roots. To this end, the co-occurrence of 18 properties...

  17. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium.

    Science.gov (United States)

    Zhang, Xinjian; Harvey, Paul R; Stummer, Belinda E; Warren, Rosemary A; Zhang, Guangzhi; Guo, Kai; Li, Jishun; Yang, Hetong

    2015-09-01

    Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research

  18. Sequencing and Analysis of the Pseudomonas fluorescens GcM5-1A Genome: A Pathogen Living in the Surface Coat of Bursaphelenchus xylophilus.

    Directory of Open Access Journals (Sweden)

    Kai Feng

    Full Text Available It is known that several bacteria are adherent to the surface coat of pine wood nematode (Bursaphelenchus xylophilus, but their function and role in the pathogenesis of pine wilt disease remains debatable. The Pseudomonas fluorescens GcM5-1A is a bacterium isolated from the surface coat of pine wood nematodes. In previous studies, GcM5-1A was evident in connection with the pathogenicity of pine wilt disease. In this study, we report the de novo sequencing of the GcM5-1A genome. A 600-Mb collection of high-quality reads was obtained and assembled into sequence contigs spanning a 6.01-Mb length. Sequence annotation predicted 5,413 open reading frames, of which 2,988 were homologous to genes in the other four sequenced P. fluorescens isolates (SBW25, WH6, Pf0-1 and Pf-5 and 1,137 were unique to GcM5-1A. Phylogenetic studies and genome comparison revealed that GcM5-1A is more closely related to SBW25 and WH6 isolates than to Pf0-1 and Pf-5 isolates. Towards study of pathogenesis, we identified 79 candidate virulence factors in the genome of GcM5-1A, including the Alg, Fl, Waa gene families, and genes coding the major pathogenic protein fliC. In addition, genes for a complete T3SS system were identified in the genome of GcM5-1A. Such systems have proved to play a critical role in subverting and colonizing the host organisms of many gram-negative pathogenic bacteria. Although the functions of the candidate virulence factors need yet to be deciphered experimentally, the availability of this genome provides a basic platform to obtain informative clues to be addressed in future studies by the pine wilt disease research community.

  19. Sequencing and Analysis of the Pseudomonas fluorescens GcM5-1A Genome: A Pathogen Living in the Surface Coat of Bursaphelenchus xylophilus.

    Science.gov (United States)

    Feng, Kai; Li, Ronggui; Chen, Yingnan; Zhao, Boguang; Yin, Tongming

    2015-01-01

    It is known that several bacteria are adherent to the surface coat of pine wood nematode (Bursaphelenchus xylophilus), but their function and role in the pathogenesis of pine wilt disease remains debatable. The Pseudomonas fluorescens GcM5-1A is a bacterium isolated from the surface coat of pine wood nematodes. In previous studies, GcM5-1A was evident in connection with the pathogenicity of pine wilt disease. In this study, we report the de novo sequencing of the GcM5-1A genome. A 600-Mb collection of high-quality reads was obtained and assembled into sequence contigs spanning a 6.01-Mb length. Sequence annotation predicted 5,413 open reading frames, of which 2,988 were homologous to genes in the other four sequenced P. fluorescens isolates (SBW25, WH6, Pf0-1 and Pf-5) and 1,137 were unique to GcM5-1A. Phylogenetic studies and genome comparison revealed that GcM5-1A is more closely related to SBW25 and WH6 isolates than to Pf0-1 and Pf-5 isolates. Towards study of pathogenesis, we identified 79 candidate virulence factors in the genome of GcM5-1A, including the Alg, Fl, Waa gene families, and genes coding the major pathogenic protein fliC. In addition, genes for a complete T3SS system were identified in the genome of GcM5-1A. Such systems have proved to play a critical role in subverting and colonizing the host organisms of many gram-negative pathogenic bacteria. Although the functions of the candidate virulence factors need yet to be deciphered experimentally, the availability of this genome provides a basic platform to obtain informative clues to be addressed in future studies by the pine wilt disease research community.

  20. Taxonomic similarity, more than contact opportunity, explains novel plant-pathogen associations between native and alien taxa.

    Science.gov (United States)

    Bufford, Jennifer L; Hulme, Philip E; Sikes, Benjamin A; Cooper, Jerry A; Johnston, Peter R; Duncan, Richard P

    2016-11-01

    Novel associations between plants and pathogens can have serious impacts on managed and natural ecosystems world-wide. The introduction of alien plants increases the potential for biogeographically novel plant-pathogen associations to arise when pathogens are transmitted from native to alien plant species and vice versa. We quantified biogeographically novel associations recorded in New Zealand over the last 150 yr between plant pathogens (fungi, oomycetes and plasmodiophorids) and vascular plants. We examined the extent to which taxonomic similarity, pathogen traits, contact opportunity and sampling effort could explain the number of novel associates for host and pathogen species. Novel associations were common; approximately one-third of surveyed plants and pathogens were recorded with at least one biogeographically novel associate. Native plants had more alien pathogens than vice versa. Taxonomic similarity between the native and alien flora and the total number of recorded associations (a measure of sampling effort) best explained the number of novel associates among species. The frequency of novel associations and the importance of sampling effort as an explanatory variable emphasize the need for effective monitoring and risk assessment tools to mitigate the potential environmental and economic impact of novel pathogen associations.

  1. Investigation of zoonotic disease pathogens (Aeromonas hydrophila, Pseudomonas fluorescens, Streptococcus iniae) seen in carp farms in the Northern Iraq-Erbil region by molecular methods

    Science.gov (United States)

    Ibraheem, Azad Saber; Önalan, Şükrü; Arabacı, Muhammed

    2017-04-01

    The aim of this study was to determine the zoonotic bacteria in carp farms in the Northern Iraq-Erbil region. Carp is the main fish species cultured in Erbil region. The most common zoonotic bacteria generally seen in carp farms are Aeromonas hydrophila, Pseudomonas fluorescens and Streptococcus iniae. Samples were collected from 25 carp farms in the Northern Iraq-Erbil region. Six carp samples were collected from each carp farm. Head kidney and intestine tissue samples were collected from each carp sample. Then head kidney and intestine tissue samples were pooled separately from each carp farm. Total bacterial DNA had been extracted from the 25 pooled head kidney and 25 intestinal tissue samples. The pathogen Primers were originally designed from 16S RNA gene region. Zoonotic bacteria were scanned in all tissue samples with absent/present analysis by RT-PCR. Furthermore, the capillary gel electrophoresis bands were used for confirmation of amplicon size which was planned during primer designing stage. As a result, thirteen carp farms were positive in the respect to Aeromonas hydrophila, eight carp farms were positive from head kidney and six carp farms were positive from the intestine, only one carp farm was positive from both head kidney and the intestine tissue samples. In the respect to Streptococcus iniae, four carp farms were positive from head kidney and two carp farms were positive from the intestine. Only one carp farm was positive in the respect to Pseudomonas fluorescens from the intestine. Totally, 9 of 25 carp farms were cleared (negative) the zoonotic bacteria. In conclusion, the zoonotic bacteria were high (64 %) in carp farms in the Northern Iraq-Erbil region.

  2. Biofilm formation by enteric pathogens and its role in plant colonization and persistence

    OpenAIRE

    2014-01-01

    The significant increase in foodborne outbreaks caused by contaminated fresh produce, such as alfalfa sprouts, lettuce, melons, tomatoes and spinach, during the last 30 years stimulated investigation of the mechanisms of persistence of human pathogens on plants. Emerging evidence suggests that Salmonella enterica and Escherichia coli, which cause the vast majority of fresh produce outbreaks, are able to adhere to and to form biofilms on plants leading to persistence and resistance to disinfec...

  3. Population Structure of Pseudomonas aeruginosa

    National Research Council Canada - National Science Library

    Lutz Wiehlmann; Gerd Wagner; Nina Cramer; Benny Siebert; Peter Gudowius; Gracia Morales; Thilo Köhler; Christian van Delden; Christian Weinel; Peter Slickers; Burkhard Tümmler

    2007-01-01

    The metabolically versatile Gram-negative bacterium Pseudomonas aeruginosa inhabits terrestrial, aquatic, animal-, human-, and plant-host-associated environments and is an important causative agent...

  4. Small RNAs--the secret agents in the plant-pathogen interactions.

    Science.gov (United States)

    Weiberg, Arne; Jin, Hailing

    2015-08-01

    Eukaryotic regulatory small RNAs (sRNAs) that induce RNA interference (RNAi) are involved in a plethora of biological processes, including host immunity and pathogen virulence. In plants, diverse classes of sRNAs contribute to the regulation of host innate immunity. These immune-regulatory sRNAs operate through distinct RNAi pathways that trigger transcriptional or post-transcriptional gene silencing. Similarly, many pathogen-derived sRNAs also regulate pathogen virulence. Remarkably, the influence of regulatory sRNAs is not limited to the individual organism in which they are generated. It can sometimes extend to interacting species from even different kingdoms. There they trigger gene silencing in the interacting organism, a phenomenon called cross-kingdom RNAi. This is exhibited in advanced pathogens and parasites that produce sRNAs to suppress host immunity. Conversely, in host-induced gene silencing (HIGS), diverse plants are engineered to trigger RNAi against pathogens and pests to confer host resistance. Cross-kingdom RNAi opens up a vastly unexplored area of research on mobile sRNAs in the battlefield between hosts and pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Alterações metabólicas em plantas de feijão originadas de sementes microbiolizadas por Pseudomonas sp. e inoculadas com Xanthomonas axonopodis pv. phaseoli Metabolic alterations on bean plants originated from microbiolization of seeds with Pseudomonas sp. and inoculated with Xanthomnas axonopodis pv. phaseoli

    Directory of Open Access Journals (Sweden)

    Eliane Gonçalves da Silva

    2009-06-01

    . Em relação à atividade de PO houve redução da mesma nas plantas tratadas com o isolado de Pseudomonas (DFs842. Esses resultados evidenciaram que a microbiolização das sementes provocou alterações metabólicas nas plantas delas originadas, pelo aumento do teor de PST e atividade de PPO, indicando uma provável participação destas enzimas na indução de resistência ativada pela microbiolização com o isolado de Pseudomonas (DFs842.Many enzymes are involved in plant defense against pathogens. The purpose of this study was to verify alterations in activity of some enzymes in bean plants originated from microbiolization of seeds with a fluorescent isolate (DFs842 of Pseudomonas. Bean seeds (cv. "BRS Valente" were immersed in a bacterial suspension of a 24 hours old Pseudomonas culture (OD540=0,5 known as a Xanthomonas axonopodis pv. phaseoli biocontroler. Check treatment consisted of seeds immersed in a saline solution (NaCl 0,85%. After microbiolization for 5 hours at 10ºC, seeds were sowed in a non sterilized substrate composed of soil, sand and bovine manure mixture (3:1:1 ratio disposed in pots in a greenhouse. The pathogen was inoculated by cutting the third true leaves with scissors previously immersed in the bacterial suspension (X. axonopodis pv. phaseoli prepared from a 24 hours old culture (OD540=0,4. Plants were kept in moister chambers for 24 hours before and after the inoculation. For protein extraction preparation, the three true leaves were collected individually at five different times: immediately before inoculation and 6, 24, 72 hours and 15 days after inoculation. The leaf extract was used for determination of total soluble proteins (TSP, and the activity of polyphenol oxidase (PPO and peroxidase (PO by spectrophometry. The results showed a significant increase in TSP content and PPO activity in plants treated with the isolated DFs842, when TSP content was the double of the non-treated plants. It was also observed that, even before

  6. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection.

    Directory of Open Access Journals (Sweden)

    Leonardo De La Fuente

    Full Text Available Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen.

  7. Plant Phenotypic and Transcriptional Changes Induced by Volatiles from the Fungal Root Pathogen Rhizoctonia solani

    Science.gov (United States)

    Cordovez, Viviane; Mommer, Liesje; Moisan, Kay; Lucas-Barbosa, Dani; Pierik, Ronald; Mumm, Roland; Carrion, Victor J.; Raaijmakers, Jos M.

    2017-01-01

    Beneficial soil microorganisms can affect plant growth and resistance by the production of volatile organic compounds (VOCs). Yet, little is known on how VOCs from soil-borne plant pathogens affect plant growth and resistance. Here we show that VOCs released from mycelium and sclerotia of the fungal root pathogen Rhizoctonia solani enhance growth and accelerate development of Arabidopsis thaliana. Seedlings briefly exposed to the fungal VOCs showed similar phenotypes, suggesting that enhanced biomass and accelerated development are primed already at early developmental stages. Fungal VOCs did not affect plant resistance to infection by the VOC-producing pathogen itself but reduced aboveground resistance to the herbivore Mamestra brassicae. Transcriptomics of A. thaliana revealed that genes involved in auxin signaling were up-regulated, whereas ethylene and jasmonic acid signaling pathways were down-regulated by fungal VOCs. Mutants disrupted in these pathways showed similar VOC-mediated growth responses as the wild-type A. thaliana, suggesting that other yet unknown pathways play a more prominent role. We postulate that R. solani uses VOCs to predispose plants for infection from a distance by altering root architecture and enhancing root biomass. Alternatively, plants may use enhanced root growth upon fungal VOC perception to sacrifice part of the root biomass and accelerate development and reproduction to survive infection. PMID:28785271

  8. Effect of corn plant on survival and phenanthrene degradation capacity of Pseudomonas sp. UG14LR in two soils.

    Science.gov (United States)

    Chouychai, Waraporn; Thongkukiatkul, Amporn; Upatham, Suchart; Pokethitiyook, Prayad; Kruatrachue, Maleeya; Lee, Hung

    2012-07-01

    A study was undertaken to assess if corn (Zea mays L.) can enhance phenanthrene degradation in two soils inoculated with Pseudomonas sp. UG14Lr. Corn increased the number of UG14Lr cells in both soils, especially in the acidic soiL Phenanthrene was degraded to a greater extent in UG14Lr-inoculated or corn-planted soils than uninoculated and unplanted soils. The spiked phenanthrene was completely removed within 70 days in all the treatments in slightly alkaline soil. However, in acidic soil, complete phenanthrene removal was found only in the corn-planted treatments. The shoot and root lengths of corn grown in UG14Lr-inoculated soils were not different from those in non-inoculated soil between the treatments. The results showed that in unplanted soil, low pH adversely affected the survival and phenanthrene degradation ability of UG14Lr. Planting of corn significantly enhanced the survival of UG14Lr cells in both the bulk and rhizospheric soil, and this in turn significantly improved phenanthrene degradation in acidic soil. Re-inoculation of UG14Lr in the acidic soil increased the number of UG14Lr cells and enhanced phenanthrene degradation in unplanted soil. However, in corn-planted acidic soils, re-inoculation of UG14Lr did not further enhance the already active phenanthrene degradation occurring in both the bulk or rhizospheric soils.

  9. Draft Genome Sequence of Pseudomonas sp. EpS/L25, Isolated from the Medicinal Plant Echinacea purpurea and Able To Synthesize Antimicrobial Compounds

    Science.gov (United States)

    Presta, Luana; Bosi, Emanuele; Fondi, Marco; Maida, Isabel; Perrin, Elena; Miceli, Elisangela; Maggini, Valentina; Bogani, Patrizia; Firenzuoli, Fabio; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio

    2016-01-01

    We announce here the draft genome sequence of Pseudomonas sp. strain EpS/L25, isolated from the stem/leaves of the medicinal plant Echinacea purpurea. This genome will allow for comparative genomics in order to identify genes associated with the production of bioactive compounds and antibiotic resistance. PMID:27151804

  10. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity

    NARCIS (Netherlands)

    Engelhardt, S.; Lee, J.; Gäbler, Y.; Kemmerling, B.; Haapalainen, M.L.; Li, C.M.; Wei, Z.; Keller, H.; Joosten, M.; Taira, S.; Nürnberger, T.

    2009-01-01

    The HrpZ1 gene product from phytopathogenic Pseudomonas syringae is secreted in a type-III secretion system-dependent manner during plant infection. The ability of HrpZ1 to form ion-conducting pores is proposed to contribute to bacterial effector delivery into host cells, or may facilitate the nutri

  11. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity

    NARCIS (Netherlands)

    Engelhardt, S.; Lee, J.; Gäbler, Y.; Kemmerling, B.; Haapalainen, M.L.; Li, C.M.; Wei, Z.; Keller, H.; Joosten, M.; Taira, S.; Nürnberger, T.

    2009-01-01

    The HrpZ1 gene product from phytopathogenic Pseudomonas syringae is secreted in a type-III secretion system-dependent manner during plant infection. The ability of HrpZ1 to form ion-conducting pores is proposed to contribute to bacterial effector delivery into host cells, or may facilitate the

  12. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens.

    Science.gov (United States)

    Evangelista-Martínez, Zahaed

    2014-05-01

    The use of antagonist microorganisms against fungal plant pathogens is an attractive and ecologically alternative to the use of chemical pesticides. Streptomyces are beneficial soil bacteria and potential candidates for biocontrol agents. This study reports the isolation, characterization and antagonist activity of soil streptomycetes from the Los Petenes Biosphere Reserve, a Natural protected area in Campeche, Mexico. The results showed morphological, physiological and biochemical characterization of six actinomycetes and their inhibitory activity against Curvularia sp., Aspergillus niger, Helminthosporium sp. and Fusarium sp. One isolate, identified as Streptomyces sp. CACIS-1.16CA showed the potential to inhibit additional pathogens as Alternaria sp., Phytophthora capsici, Colletotrichum sp. and Rhizoctonia sp. with percentages ranging from 47 to 90 %. This study identified a streptomycete strain with a broad antagonist activity that could be used for biocontrol of plant pathogenic fungi.

  13. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens.

    Science.gov (United States)

    Vleeshouwers, Vivianne G A A; Oliver, Richard P

    2014-03-01

    One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.

  14. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses.

    Science.gov (United States)

    O'Connell, Richard J; Thon, Michael R; Hacquard, Stéphane; Amyotte, Stefan G; Kleemann, Jochen; Torres, Maria F; Damm, Ulrike; Buiate, Ester A; Epstein, Lynn; Alkan, Noam; Altmüller, Janine; Alvarado-Balderrama, Lucia; Bauser, Christopher A; Becker, Christian; Birren, Bruce W; Chen, Zehua; Choi, Jaeyoung; Crouch, Jo Anne; Duvick, Jonathan P; Farman, Mark A; Gan, Pamela; Heiman, David; Henrissat, Bernard; Howard, Richard J; Kabbage, Mehdi; Koch, Christian; Kracher, Barbara; Kubo, Yasuyuki; Law, Audrey D; Lebrun, Marc-Henri; Lee, Yong-Hwan; Miyara, Itay; Moore, Neil; Neumann, Ulla; Nordström, Karl; Panaccione, Daniel G; Panstruga, Ralph; Place, Michael; Proctor, Robert H; Prusky, Dov; Rech, Gabriel; Reinhardt, Richard; Rollins, Jeffrey A; Rounsley, Steve; Schardl, Christopher L; Schwartz, David C; Shenoy, Narmada; Shirasu, Ken; Sikhakolli, Usha R; Stüber, Kurt; Sukno, Serenella A; Sweigard, James A; Takano, Yoshitaka; Takahara, Hiroyuki; Trail, Frances; van der Does, H Charlotte; Voll, Lars M; Will, Isa; Young, Sarah; Zeng, Qiandong; Zhang, Jingze; Zhou, Shiguo; Dickman, Martin B; Schulze-Lefert, Paul; Ver Loren van Themaat, Emiel; Ma, Li-Jun; Vaillancourt, Lisa J

    2012-09-01

    Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.