WorldWideScience

Sample records for plant pathogen botrytis

  1. Genes under positive selection in a model plant pathogenic fungus, Botrytis.

    Science.gov (United States)

    Aguileta, Gabriela; Lengelle, Juliette; Chiapello, Hélène; Giraud, Tatiana; Viaud, Muriel; Fournier, Elisabeth; Rodolphe, François; Marthey, Sylvain; Ducasse, Aurélie; Gendrault, Annie; Poulain, Julie; Wincker, Patrick; Gout, Lilian

    2012-07-01

    The rapid evolution of particular genes is essential for the adaptation of pathogens to new hosts and new environments. Powerful methods have been developed for detecting targets of selection in the genome. Here we used divergence data to compare genes among four closely related fungal pathogens adapted to different hosts to elucidate the functions putatively involved in adaptive processes. For this goal, ESTs were sequenced in the specialist fungal pathogens Botrytis tulipae and Botrytis ficariarum, and compared with genome sequences of Botrytis cinerea and Sclerotinia sclerotiorum, responsible for diseases on over 200 plant species. A maximum likelihood-based analysis of 642 predicted orthologs detected 21 genes showing footprints of positive selection. These results were validated by resequencing nine of these genes in additional Botrytis species, showing they have also been rapidly evolving in other related species. Twenty of the 21 genes had not previously been identified as pathogenicity factors in B. cinerea, but some had functions related to plant-fungus interactions. The putative functions were involved in respiratory and energy metabolism, protein and RNA metabolism, signal transduction or virulence, similarly to what was detected in previous studies using the same approach in other pathogens. Mutants of B. cinerea were generated for four of these genes as a first attempt to elucidate their functions. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Arabidopsis thaliana: A model host plant to study plant-pathogen interaction using Chilean field isolates of Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    JUAN GONZÁLEZ

    2006-01-01

    Full Text Available One of the fungal pathogens that causes more agriculture damage is Botrytis cinerea. Botrytis is a constant threat to crops because the fungus infects a wide range of host species, both native and cultivated. Furthermore, Botrytis persists on plant debris in and on the soil. Some of the most serious diseases caused by Botrytis include gray mold on vegetables and fruits, such as grapes and strawberries. Botrytis also causes secondary soft rot of fruits and vegetables during storage, transit and at the market. In many plant-pathogen interactions, resistance often is associated with the deposition of callose, accumulation of autofluorescent compounds, the synthesis and accumulation of salicylic acid as well as pathogenesis-related proteins. Arabidopsis thaliana has been used as a plant model to study plant-pathogen interaction. The genome of Arabidopsis has been completely sequenced and this plant serves as a good genetic and molecular model. In this study, we demonstrate that Chilean field isolates infect Arabidopsis thaliana and that Arabidopsis subsequently activates several defense response mechanisms associated with a hypersensitive response. Furthermore, we propose that Arabidopsis may be used as a model host species to analyze the diversity associated with infectivity among populations of Botrytis cinerea field isolates

  3. Genome analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    NARCIS (Netherlands)

    Amselem, J.; Cuomo, C.A.; Kan, van J.A.L.; Viaud, M.; Benito, E.P.; Couloux, A.; Coutinho, P.M.; Vries, de R.P.; Dyer, P.S.; Fillinger, S.; Fournier, E.; Gout, L.; Hahn, M.; Kohn, L.; Lapalu, N.; Plummer, K.M.; Pradier, J.M.; Quévillon, E.; Sharon, A.; Simon, A.; Have, ten A.; Tudzynski, B.; Tudzynski, P.; Wincker, P.; Andrew, M.; Anthouard, V.; Beever, R.E.; Beffa, R.; Benoit, I.; Bouzid, O.; Brault, B.; Chen, Z.; Choquer, M.; Collemare, J.; Cotton, P.; Danchin, E.G.; Silva, Da C.; Gautier, A.; Giraud, C.; Giraud, T.; Gonzalez, C.; Grossetete, S.; Güldener, U.; Henrissat, B.; Howlett, B.J.; Kodira, C.; Kretschmer, M.; Lappartient, A.; Leroch, M.; Levis, C.; Mauceli, E.; Neuvéglise, C.; Oeser, B.; Pearson, M.; Poulain, J.; Poussereau, N.; Quesneville, H.; Rascle, C.; Schumacher, J.; Ségurens, B.; Sexton, A.; Silva, E.; Sirven, C.; Soanes, D.M.; Talbot, N.J.; Templeton, M.; Yandava, C.; Yarden, O.; Zeng, Q.; Rollins, J.A.; Lebrun, M.H.; Dickman, M.

    2011-01-01

    Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity.

  4. Key factors to inoculate Botrytis cinerea in tomato plants

    OpenAIRE

    Borges,Álefe Vitorino; Saraiva,Rodrigo Moreira; Maffia,Luiz Antonio

    2014-01-01

    Studies addressing the biological control of Botrytis cinerea have been unsuccessful because of fails in inoculating tomato plants with the pathogen. With the aim of establishing a methodology for inoculation into stems, experiments were designed to assess: i. the aggressiveness of pathogen isolates; ii. the age at which tomato plants should be inoculated; iii. the susceptibility of tissues at different stem heights; iv. the need for a moist chamber after inoculation; and v. the effectiveness...

  5. Inhibitory effect of Xenorhabdus nematophila TB on plant pathogens Phytophthora capsici and Botrytis cinerea in vitro and in planta.

    Science.gov (United States)

    Fang, Xiangling; Zhang, Manrang; Tang, Qian; Wang, Yonghong; Zhang, Xing

    2014-03-06

    Entomopathogenic bacteria Xenorhabdus spp. produce secondary metabolites with potential antimicrobial activity for use in agricultural productions. This study evaluated the inhibitory effect of X. nematophila TB culture on plant pathogens Botrytis cinerea and Phytophthora capsici. The cell-free filtrate of TB culture showed strong inhibitory effects (>90%) on mycelial growth of both pathogens. The methanol-extracted bioactive compounds (methanol extract) of TB culture also had strong inhibitory effects on mycelial growth and spore germinations of both pathogens. The methanol extract (1000 μg/mL) and cell-free filtrate both showed strong therapeutic and protective effects (>70%) on grey mold both in detached tomato fruits and plants, and leaf scorch in pepper plants. This study demonstrates X. nematophila TB produces antimicrobial metabolites of strong activity on plant pathogens, with great potential for controlling tomato grey mold and pepper leaf scorch and being used in integrated disease control to reduce chemical application.

  6. Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Malick eMbengue

    2016-03-01

    Full Text Available Fungal plant pathogens are major threats to food security worldwide. Sclerotinia sclerotiorum and Botrytis cinerea are closely related Ascomycete plant pathogens causing mold diseases on hundreds of plant species. There is no genetic source of complete plant resistance to these broad host range pathogens known to date. Instead, natural plant populations show a continuum of resistance levels controlled by multiple genes, a phenotype designated as quantitative disease resistance. Little is known about the molecular mechanisms controlling the interaction between plants and S. sclerotiorum and B. cinerea but significant advances were made on this topic in the last years. This minireview highlights a selection of nine themes that emerged in recent research reports on the molecular bases of plant-S. sclerotiorum and plant-B. cinerea interactions. On the fungal side, this includes progress on understanding the role of oxalic acid, on the study of fungal small secreted proteins. Next, we discuss the exchanges of small RNA between organisms and the control of cell death in plant and fungi during pathogenic interactions. Finally on the plant side, we highlight defense priming by mechanical signals, the characterization of plant Receptor-like proteins and the hormone abscisic acid in the response to B. cinerea and S. sclerotiorum , the role of plant general transcription machinery and plant small bioactive peptides. These represent nine trends we selected as remarkable in our understanding of fungal molecules causing disease and plant mechanisms associated with disease resistance to two devastating broad host range fungi.

  7. ‘Omics’ and Plant Responses to Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Synan F. AbuQamar

    2016-11-01

    Full Text Available Botrytis cinerea is a dangerous plant pathogenic fungus with wide host ranges. This aggressive pathogen uses multiple weapons to invade and cause serious damages on its host plants. The continuing efforts of how to solve the puzzle of the multigenic nature of B. cinerea’s pathogenesis and plant defense mechanisms against the disease caused by this mold, the integration of omic approaches, including genomics, transcriptomics, proteomics and metabolomics, along with functional analysis could be a potential solution. Omic studies will provide a foundation for development of genetic manipulation and breeding programs that will eventually lead to crop improvement and protection. In this mini-review, we will highlight the current progresses in research in plant stress responses to B. cinerea using high-throughput omic technologies. We also discuss the opportunities that omic technologies can provide to research on B. cinerea-plant interactions as an example showing the impacts of omics on agricultural research.

  8. DNA sequence analysis of herbarium specimens facilitates the revival of Botrytis mali, a postharvest pathogen of apple.

    Science.gov (United States)

    O'Gorman, Daniel T; Sholberg, Peter L; Stokes, Sarah C; Ginns, J

    2008-01-01

    The fungus Botrytis cinerea has been widely accepted as the species responsible for causing gray mold decay of apple, although a second species causing apple decay, B. mali, was reported in 1931. Botrytis mali was validly published in 1931, nevertheless it has always been considered a doubtful species. To study the relationship of Botrytis isolates causing gray mold on apple, DNA sequence analysis was employed. Twenty-eight Botrytis isolates consisting of 10 species were sampled, including two B. mali herbarium specimens from apple originally deposited in 1932. The DNA sequence analysis of the beta-tubulin and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) genes placed the isolates into groupings with defined species boundaries that generally reflected the morphologically based model for Botrytis classification. The B. cinerea isolates from apple and other host plants were placed in a single clade. The B. mali herbarium specimens however always fell well outside that clade. The DNA sequence analysis reported in this study support the initial work by Ruehle (1931) describing the apple pathogen B. mali as a unique species.

  9. Ocurrence and diversity of endophytic colonization of taraxacum officinale by botrytis species: a preliminary study

    OpenAIRE

    Yánez Navarrete, Zoila Elizabeth

    2014-01-01

    The genus Botrytis (sexual form Botryotinia Whetzel) contains renowned plant pathogenic species with a necrotrophic lifestyle in which kill and feed on its hosts. Recent reports of symptomless endophytic colonization by Botrytis cinerea in cultivated plants of lettuce (Lactuca sativa) and Botrytis spp. in the wild plants dandelion (Taraxacum agg) and spotted knapweed (Centaura stoebe) reveal a different “side” of Botrytis spp. These findings, expose additional strategies of Botrytis species t...

  10. Effect of electron beam irradiation on conidial germination activity and pathogenicity of Botrytis cinerea

    International Nuclear Information System (INIS)

    Zhang Ting; Qiao Yongjin; Chen Zhaoliang

    2011-01-01

    Conidia of Botrytis cinerea were irradiated by electron beam at 0.5, 1.0, 2.0 and 3.0 kGy. The influence of electron beam on the activities of conidial germination and pathogenicity at the temperatures of 5 ℃ and 25 ℃ were tested, respectively. The results showed that the electron beam could inhibit germination of conidia and the length of germ tube of Botrytis cinerea, and delay the germination time. It could also decrease the pathogenicity obviously and higher irradiation dose showed stronger effects. Compared with control, the complete germination time of conidia extended to 5 and 9 d at the cultivate temperatures of 25 ℃ and 5 ℃, after 2 kGy of irradiation, and the germination rate was reduced 46.57% and 33.68%, respectively. The inhibition rates of germ tube were 25.12% and 74.29% when cultured 24 h. The pathogenicity of Botrytis cinerea to strawberry was reduced significantly. After 2.0 kGy irradiation and cultivate at 25 ℃ for 2 d, the disease index was 4.17 and it decreased to 15.28 after cultivation of 5 ℃ for 15 d. Electron beam treatment could inhibit the spore germination and germ tube elongation of Botrytis cinerea significantly, delayed the germination time, and reduced its pathogenicity, the higher the dose, the effect was more obvious. (authors)

  11. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.

    Science.gov (United States)

    Finiti, Ivan; de la O Leyva, María; Vicedo, Begonya; Gómez-Pastor, Rocío; López-Cruz, Jaime; García-Agustín, Pilar; Real, Maria Dolores; González-Bosch, Carmen

    2014-08-01

    Treatment with the resistance priming inducer hexanoic acid (Hx) protects tomato plants from Botrytis cinerea by activating defence responses. To investigate the molecular mechanisms underlying hexanoic acid-induced resistance (Hx-IR), we compared the expression profiles of three different conditions: Botrytis-infected plants (Inf), Hx-treated plants (Hx) and Hx-treated + infected plants (Hx+Inf). The microarray analysis at 24 h post-inoculation showed that Hx and Hx+Inf plants exhibited the differential expression and priming of many Botrytis-induced genes. Interestingly, we found that the activation by Hx of other genes was not altered by the fungus at this time point. These genes may be considered to be specific targets of the Hx priming effect and may help to elucidate its mechanisms of action. It is noteworthy that, in Hx and Hx+Inf plants, there was up-regulation of proteinase inhibitor genes, DNA-binding factors, enzymes involved in plant hormone signalling and synthesis, and, remarkably, the genes involved in oxidative stress. Given the relevance of the oxidative burst occurring in plant-pathogen interactions, the effect of Hx on this process was studied in depth. We showed by specific staining that reactive oxygen species (ROS) accumulation in Hx+Inf plants was reduced and more restricted around infection sites. In addition, these plants showed higher ratios of reduced to oxidized glutathione and ascorbate, and normal levels of antioxidant activities. The results obtained indicate that Hx protects tomato plants from B. cinerea by regulating and priming Botrytis-specific and non-specific genes, preventing the harmful effects of oxidative stress produced by infection. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  12. Functional analysis of an extracellular catalase of Botrytis cinerea

    NARCIS (Netherlands)

    Schouten, A.; Tenberge, K.B.; Vermeer, J.; Stewart, J.; Wagemakers, L.; Williamson, B.; Kan, van J.A.L.

    2002-01-01

    There is evidence that the necrotrophic fungal pathogen Botrytis cinerea is exposed to oxidative processes within plant tissues. The pathogen itself also generates active oxygen species and H2O2 as pathogenicity factors. Our aim was to study how the pathogen may defend itself against cellular damage

  13. Key factors to inoculate Botrytis cinerea in tomato plants

    Directory of Open Access Journals (Sweden)

    Álefe Vitorino Borges

    2014-09-01

    Full Text Available Studies addressing the biological control of Botrytis cinerea have been unsuccessful because of fails in inoculating tomato plants with the pathogen. With the aim of establishing a methodology for inoculation into stems, experiments were designed to assess: i. the aggressiveness of pathogen isolates; ii. the age at which tomato plants should be inoculated; iii. the susceptibility of tissues at different stem heights; iv. the need for a moist chamber after inoculation; and v. the effectiveness of gelatin regarding inoculum adhesion. Infection with an isolate from tomato plants that was previously inoculated into petioles and then re-isolated was successful. An isolate from strawberry plants was also aggressive, although less than that from tomato plants. Tomato plants close to flowering, at 65 days after sowing, and younger, middle and apical stem portions were more susceptible. There was positive correlation between lesion length and sporulation and between lesion length and broken stems. Lesion length and the percentage of sporulation sites were reduced by using a moist chamber and were not affected by adding gelatin to the inoculum suspension. This methodology has been adopted in studies of B. cinerea in tomato plants showing reproducible results. The obtained results may assist researchers who study the gray mold.

  14. Variation among volatile profiles induced by Botrytis cinerea infection of tomato plants

    OpenAIRE

    Jansen, R.M.C.

    2007-01-01

    Botrytis blight caused by the fungus Botrytis cinerea is probably the most common disease of greenhouse-grown crops like tomato. Botrytis blight in tomato plants is mainly detected by visual inspection or destructive biochemical and molecular determinations. These methods are time consuming and not suitable for large sample sizes. In contrast we propose a fast and non-destructive detection method for plant diagnosis using volatiles as an early indicator of plant diseases. This report presents...

  15. Botrytis species on bulb crops

    NARCIS (Netherlands)

    Lorbeer, J.W.; Seyb, A.M.; Boer, de M.; Ende, van den J.E.

    2007-01-01

    Abstract. A number of Botrytis species are pathogens of bulb crops. Botrytis squamosa (teleomorph=Botrytotinia squamosa) causal agent of botrytis leaf blight and B. allii the causal agent of botrytis neck rotare two of the most important fungal diseases of onion. The taxonomics of several of the

  16. Effects of ozone on the sporulation, germination, and pathogenicity of Botrytis cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.R.; Weidensaul, T.C.

    1978-02-01

    Studies were initiated to determine if Botrytis cinerea conidia remain viable when grown in vivo and in vitro in the presence of ambient ozone levels and whether ozonized conidia retain pathogenicity. Experimental materials and methods used are described.

  17. Variation among volatile profiles induced by Botrytis cinerea infection of tomato plants

    NARCIS (Netherlands)

    Jansen, R.M.C.

    2007-01-01

    Botrytis blight caused by the fungus Botrytis cinerea is probably the most common disease of greenhouse-grown crops like tomato. Botrytis blight in tomato plants is mainly detected by visual inspection or destructive biochemical and molecular determinations. These methods are time consuming and not

  18. The role of pectin degradation in pathogenesis of Botrytis cinerea

    NARCIS (Netherlands)

    Kars, I.

    2007-01-01

    Botrytis cinerea is a fungal plant pathogen that causes soft rot in many plant species. During the infection process, from the moment a conidium lands on the plant surface until complete host colonization, the fungus secretes numerous enzymes and metabolites that may contribute to virulence.

  19. Changes in volatile production during an infection of tomato plants by Botrytis cinerea

    NARCIS (Netherlands)

    Jansen, R.M.C.; Miebach, M.; Kleist, E.; Henten, van E.J.; Wildt, J.

    2006-01-01

    Botrytis blight caused by the fungus Botrytis cinerea is probably the most common disease of greenhouse-grown crops like tomato. Botrytis blight in tomato plants is mainly detected by visual inspection or destructive biochemical and molecular determinations. These methods are time consuming and not

  20. Antifungal activity and fungal metabolism of steroidal glycosides of Easter lily (Lilium longiflorum Thunb.) by the plant pathogenic fungus, Botrytis cinerea.

    Science.gov (United States)

    Munafo, John P; Gianfagna, Thomas J

    2011-06-08

    Botrytis cinerea Pers. Fr. is a plant pathogenic fungus and the causal organism of blossom blight of Easter lily (Lilium longiflorum Thunb.). Easter lily is a rich source of steroidal glycosides, compounds which may play a role in the plant-pathogen interaction of Easter lily. Five steroidal glycosides, including two steroidal glycoalkaloids and three furostanol saponins, were isolated from L. longiflorum and evaluated for fungal growth inhibition activity against B. cinerea, using an in vitro plate assay. All of the compounds showed fungal growth inhibition activity; however, the natural acetylation of C-6''' of the terminal glucose in the steroidal glycoalkaloid, (22R,25R)-spirosol-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-[6-O-acetyl-β-D-glucopyranosyl-(1→4)]-β-D-glucopyranoside (2), increased antifungal activity by inhibiting the rate of metabolism of the compound by B. cinerea. Acetylation of the glycoalkaloid may be a plant defense response to the evolution of detoxifying mechanisms by the pathogen. The biotransformation of the steroidal glycoalkaloids by B. cinerea led to the isolation and characterization of several fungal metabolites. The fungal metabolites that were generated in the model system were also identified in Easter lily tissues infected with the fungus by LC-MS. In addition, a steroidal glycoalkaloid, (22R,25R)-spirosol-5-en-3β-yl O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (6), was identified as both a fungal metabolite of the steroidal glycoalkaloids and as a natural product in L. longiflorum for the first time.

  1. Botrytis cinerea: the cause of grey mould disease

    NARCIS (Netherlands)

    Williamson, B.; Tudzynski, B.; Tudzynski, P.; Kan, van J.A.L.

    2007-01-01

    Introduction: Botrytis cinerea (teleomorph: Botryotinia fuckeliana) is an airborne plant pathogen with a necrotrophic lifestyle attacking over 200 crop hosts worldwide. Although there are fungicides for its control, many classes of fungicides have failed due to its genetic plasticity. It has become

  2. Biological activity of triazole fungicides towards Botrytis cinerea

    NARCIS (Netherlands)

    Stehmann, C.

    1995-01-01

    Botrytis cinerea Pers. ex Fr., the causal agent of grey mould, is one of the most ubiquitous plant pathogens. The fungus is of high economic importance in various major crops and during transport and storage of agricultural products. Protectant fungicides such as

  3. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/Botrytis Pathosystem.

    Science.gov (United States)

    Zhang, Wei; Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Eshbaugh, Robert; Chen, Fang; Atwell, Susana; Kliebenstein, Daniel J

    2017-11-01

    To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis thaliana - Botrytis cinerea pathosystem to test how the host's defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1 , individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in B. cinerea This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen. © 2017 American Society of Plant Biologists. All rights reserved.

  4. Nicotiana benthamiana MAPK-WRKY pathway confers resistance to a necrotrophic pathogen Botrytis cinerea.

    Science.gov (United States)

    Adachi, Hiroaki; Ishihama, Nobuaki; Nakano, Takaaki; Yoshioka, Miki; Yoshioka, Hirofumi

    2016-06-02

    MEK2-SIPK/WIPK cascade, a Nicotiana benthamiana mitogen-activated protein kinase (MAPK) cascade, is an essential signaling pathway for plant immunity and involved in hypersensitive response (HR) accompanied by cell death. WRKY transcription factors as substrates of SIPK and WIPK have been isolated and implicated in HR cell death. Here, we show virus-induced gene silencing of WRKY genes compromised constitutively active MEK2-triggered cell death in N. benthamiana leaves. In general, HR cell death enhances susceptibility to necrotrophic pathogens such as Botrytis cinerea. However, the WRKY gene silencing elevated susceptibility to B. cinerea. These findings suggest that downstream WRKYs of MEK2-SIPK/WIPK cascade are required for cell death-dependent and -independent immunities in N. benthamiana.

  5. Proteomic analysis of the Arabidopsis thaliana-Botrytis cinerea ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-30

    Nov 30, 2011 ... translation modifications following translation either in the form of covalent modifications (such as acetylation, ... of the corresponding translated proteins at either steady state or in response to a stimulus. ...... the plant pathogenic genus Botrytis and the evolution of host specificity. Mol. Biol. Evol. 22: 333-346.

  6. The Endo-Arabinanase BcAra1 Is a Novel Host-Specific Virulence Factor of the Necrotic Fungal Phytopathogen Botrytis cinerea

    DEFF Research Database (Denmark)

    Nafisi, Majse; Stranne, Maria; Zhang, Lisha

    2014-01-01

    The plant cell wall is one of the first physical interfaces encountered by plant pathogens and consists of polysaccharides, of which arabinan is an important constituent. During infection, the necrotrophic plant pathogen Botrytis cinerea secretes a cocktail of plant cell-wall-degrading enzymes...

  7. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea

    NARCIS (Netherlands)

    Díaz, J.; Have, ten A.; Kan, van J.A.L.

    2002-01-01

    Ethylene, jasmonate, and salicylate play important roles in plant defense responses to pathogens. To investigate the contributions of these compounds in resistance of tomato (Lycopersicon esculentum) to the fungal pathogen Botrytis cinerea, three types of experiments were conducted: (a) quantitative

  8. Roles of Arabidopsis WRKY3 and WRKY4 Transcription Factors in Plant Responses to Pathogens

    Directory of Open Access Journals (Sweden)

    Fan Baofang

    2008-06-01

    Full Text Available Abstract Background Plant WRKY DNA-binding transcription factors are involved in plant responses to biotic and abiotic responses. It has been previously shown that Arabidopsis WRKY3 and WRKY4, which encode two structurally similar WRKY transcription factors, are induced by pathogen infection and salicylic acid (SA. However, the role of the two WRKY transcription factors in plant disease resistance has not been directly analyzed. Results Both WRKY3 and WRKY4 are nuclear-localized and specifically recognize the TTGACC W-box sequences in vitro. Expression of WRKY3 and WRKY4 was induced rapidly by stress conditions generated by liquid infiltration or spraying. Stress-induced expression of WRKY4 was further elevated by pathogen infection and SA treatment. To determine directly their role in plant disease resistance, we have isolated T-DNA insertion mutants and generated transgenic overexpression lines for WRKY3 and WRKY4. Both the loss-of-function mutants and transgenic overexpression lines were examined for responses to the biotrophic bacterial pathogen Pseudomonas syringae and the necrotrophic fungal pathogen Botrytis cinerea. The wrky3 and wrky4 single and double mutants exhibited more severe disease symptoms and support higher fungal growth than wild-type plants after Botrytis infection. Although disruption of WRKY3 and WRKY4 did not have a major effect on plant response to P. syringae, overexpression of WRKY4 greatly enhanced plant susceptibility to the bacterial pathogen and suppressed pathogen-induced PR1 gene expression. Conclusion The nuclear localization and sequence-specific DNA-binding activity support that WRKY3 and WRKY4 function as transcription factors. Functional analysis based on T-DNA insertion mutants and transgenic overexpression lines indicates that WRKY3 and WRKY4 have a positive role in plant resistance to necrotrophic pathogens and WRKY4 has a negative effect on plant resistance to biotrophic pathogens.

  9. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Joelle Amselem

    2011-08-01

    Full Text Available Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these

  10. Differences in epicuticular wax layer in tulip can influence resistance to Botrytis tulipae

    NARCIS (Netherlands)

    Leon-Reyes, A.; Prins, T.W.; Empel, van J.P.M.; Tuyl, van J.M.

    2004-01-01

    Botrytis tulipae is one of the major diseases of tulip. The pathogen is a necrotroph and infection normally results in host cell death, resulting in serious damage to plant tissues and culminating in rotten plants. Several defense strategies are required to counter attack this aggressive invader.

  11. Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers.

    Science.gov (United States)

    Kefi, Asma; Ben Slimene, Imen; Karkouch, Ines; Rihouey, Christophe; Azaeiz, Sana; Bejaoui, Marwa; Belaid, Rania; Cosette, Pascal; Jouenne, Thierry; Limam, Ferid

    2015-12-01

    Eighty endophytic bacteria were isolated from healthy tissues of roots, stems, leaves and fruits of tomato plants (Lycopersicon esculentum). Four strains, named BL1, BT5, BR8 and BF11 were selected for their antagonism against Botrytis cinerea, a phytopathogenic fungus responsible of gray mold in several important crops, with growth inhibitory activity ranging from 27 to 53%. Morphological, biochemical, and molecular parameters as 16S rDNA sequencing demonstrated that the selected bacterial strains were related to Bacillus species which are known to produce and secrete a lot of lipopeptides with strong inhibitory effect against pathogen mycelial growth. Electrospray mass spectrometry analysis showed that these strains produced heterogeneous mixture of antibiotics belonging to fengycin and surfactin for BL1 and BT5, to iturin and surfactin for BR8, to bacillomycin D, fengycin and surfactin for BF11. Furthermore, these bacteria exhibited biocontrol potential by reducing the disease severity when tested on detached leaflets. Based on their antifungal activity against Botrytis cinerea, these strains could be used for biological control of plant diseases.

  12. Diversity and environmental relations of cryptic, systemic Botrytis infections in symptomless hosts.

    Directory of Open Access Journals (Sweden)

    Michael W. Shaw

    2016-05-01

    Full Text Available Botrytis species are generally considered to be aggressive, necrotrophic plant pathogens. By contrast to this general perception, however, Botrytis species could frequently be isolated from the interior of multiple tissues in apparently healthy hosts of many species. Infection frequencies reached 50% of samples or more, but were commonly less, and cryptic infections were rare or absent in some plant species. Prevalence varied substantially from year to year and from tissue to tissue, but some host species routinely had high prevalence. The same genotype was found to occur throughout a host, representing mycelial spread. B. cinerea and B. pseudocinerea are the species that most commonly occur as cryptic infections, but phylogenetically distant isolates of Botrytis were also detected, one of which does not correspond to previously described species. Sporulation and visible damage occurred only when infected tissues were stressed, or became mature or senescent. There was no evidence of cryptic infection having a deleterious effect on growth of the host, and prevalence was probably greater in plants grown in high light conditions. Isolates from cryptic infections were often capable of causing disease (to varying extents when spore suspensions were inoculated onto their own host as well as on distinct host species, arguing against co-adaptation between cryptic isolates and their hosts. These data collectively suggest that several Botrytis species, including the most notorious pathogenic species, exist frequently in cryptic form to an extent that has thus far largely been neglected, and do not need to cause disease on healthy hosts in order to complete their life-cycles.

  13. Ectopic Expression of the Wild Grape WRKY Transcription Factor VqWRKY52 in Arabidopsis thaliana Enhances Resistance to the Biotrophic Pathogen Powdery Mildew But Not to the Necrotrophic Pathogen Botrytis cinerea.

    Science.gov (United States)

    Wang, Xianhang; Guo, Rongrong; Tu, Mingxing; Wang, Dejun; Guo, Chunlei; Wan, Ran; Li, Zhi; Wang, Xiping

    2017-01-01

    WRKY transcription factors are known to play important roles in plant responses to biotic stresses. We previously showed that the expression of the WRKY gene, VqWRKY52 , from Chinese wild Vitis quinquangularis was strongly induced 24 h post inoculation with powdery mildew. In this study, we analyzed the expression levels of VqWRKY52 following treatment with the defense related hormones salicylic acid (SA) and methyl jasmonate, revealing that VqWRKY52 was strongly induced by SA but not JA. We characterized the VqWRKY52 gene, which encodes a WRKY III gene family member, and found that ectopic expression in Arabidopsis thaliana enhanced resistance to powdery mildew and Pseudomonas syringae pv. tomato DC3000, but increased susceptibility to Botrytis cinerea , compared with wild type (WT) plants. The transgenic A. thaliana lines displayed strong cell death induced by the biotrophic powdery mildew pathogen, the hemibiotrophic P. syringe pathogen and the necrotrophic pathogen B. cinerea . In addition, the relative expression levels of various defense-related genes were compared between the transgenic A. thaliana lines and WT plants following the infection by different pathogens. Collectively, the results indicated that VqWRKY52 plays essential roles in the SA dependent signal transduction pathway and that it can enhance the hypersensitive response cell death triggered by microbial pathogens.

  14. Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts

    Directory of Open Access Journals (Sweden)

    Barbara eBlanco-Ulate

    2014-09-01

    Full Text Available Cell walls are barriers that impair colonization of host tissues, but also are important reservoirs of energy-rich sugars. Growing hyphae of necrotrophic fungal pathogens, such as Botrytis cinerea (Botrytis, henceforth, secrete enzymes that disassemble cell wall polysaccharides. In this work we describe the annotation of 275 putative secreted Carbohydrate-Active enZymes (CAZymes identified in the Botrytis B05.10 genome. Using RNAseq we determined which Botrytis CAZymes were expressed during infections of lettuce leaves, ripe tomato fruit, and grape berries. On the three hosts, Botrytis expressed a common group of 229 potentially secreted CAZymes, including 28 pectin backbone-modifying enzymes, 21 hemicellulose-modifying proteins, 18 enzymes that might target pectin and hemicellulose side-branches, and 16 enzymes predicted to degrade cellulose. The diversity of the Botrytis CAZymes may be partly responsible for its wide host range. Thirty-six candidate CAZymes with secretion signals were found exclusively when Botrytis interacted with ripe tomato fruit and grape berries. Pectin polysaccharides are notably abundant in grape and tomato cell walls, but lettuce leaf walls have less pectin and are richer in hemicelluloses and cellulose. The results of this study not only suggest that Botrytis targets similar wall polysaccharide networks on fruit and leaves, but also that it may selectively attack host wall polysaccharide substrates depending on the host tissue.

  15. Defense responses in plants of Eucalyptus elicited by Streptomyces and challenged with Botrytis cinerea.

    Science.gov (United States)

    Salla, Tamiris D; Astarita, Leandro V; Santarém, Eliane R

    2016-04-01

    Elicitation of E. grandis plants with Streptomyces PM9 reduced the gray-mold disease, through increasing the levels of enzymes directly related to the induction of plant defense responses, and accumulation of specific phenolic compounds. Members of Eucalyptus are economically important woody species, especially as a raw material in many industrial sectors. Species of this genus are susceptible to pathogens such as Botrytis cinerea (gray mold). Biological control of plant diseases using rhizobacteria is one alternative to reduce the use of pesticides and pathogen attack. This study evaluated the metabolic and phenotypic responses of Eucalyptus grandis and E. globulus plants treated with Streptomyces sp. PM9 and challenged with the pathogenic fungus B. cinerea. Metabolic responses were evaluated by assessing the activities of the enzymes polyphenol oxidase and peroxidase as well as the levels of phenolic compounds and flavonoids. The incidence and progression of the fungal disease in PM9-treated plants and challenged with B. cinerea were evaluated. Treatment with Streptomyces sp. PM9 and challenge with B. cinerea led to changes in the activities of polyphenol oxidase and peroxidase as well as in the levels of phenolic compounds in the plants at different time points. Alterations in enzymes of PM9-treated plants were related to early defense responses in E. grandis. Gallic and chlorogenic acids were on average more abundant, although caffeic acid, benzoic acid and catechin were induced at specific time points during the culture period. Treatment with Streptomyces sp. PM9 significantly delayed the establishment of gray mold in E. grandis plants. These results demonstrate the action of Streptomyces sp. PM9 in inducing plant responses against B. cinerea, making this organism a potential candidate for biological control in Eucalyptus.

  16. Biological activity of triazole fungicides towards Botrytis cinerea

    OpenAIRE

    Stehmann, C.

    1995-01-01

    Botrytis cinerea Pers. ex Fr., the causal agent of grey mould, is one of the most ubiquitous plant pathogens. The fungus is of high economic importance in various major crops and during transport and storage of agricultural products. Protectant fungicides such as chlorothalonil, dichlofluanid, folpet or thiram are widely used for disease control. Since their introduction in the 1960S/1970s, systemic fungicides such as the benzimidazoles or dicarboximides have bee...

  17. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Barbara eBlanco-Ulate

    2013-05-01

    Full Text Available Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and hormonal signaling networks. The interplay between multiple plant stress hormones in the interaction between plant vegetative tissues and microbial pathogens has been documented extensively, but the relevance of these hormones during infections of fruit is unclear. In this work, we analyzed a transcriptome study of tomato fruit infected with Botrytis cinerea in order to profile the expression of genes for the biosynthesis, modification and signal transduction of ethylene (ET, salicylic acid (SA, jasmonic acid (JA, and abscisic acid (ABA, hormones that may be not only involved in ripening, but also in fruit interactions with pathogens. The changes in relative expression of key genes during infection and assays of susceptibility of fruit with impaired synthesis or perception of these hormones were used to formulate hypotheses regarding the involvement of these regulators in the outcome of the tomato fruit-B. cinerea interaction.

  18. The Top 10 fungal pathogens in molecular plant pathology.

    Science.gov (United States)

    Dean, Ralph; Van Kan, Jan A L; Pretorius, Zacharias A; Hammond-Kosack, Kim E; Di Pietro, Antonio; Spanu, Pietro D; Rudd, Jason J; Dickman, Marty; Kahmann, Regine; Ellis, Jeff; Foster, Gary D

    2012-05-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resumé of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  19. Conserved Responses in a War of Small Molecules between a Plant-Pathogenic Bacterium and Fungi.

    Science.gov (United States)

    Spraker, Joseph E; Wiemann, Philipp; Baccile, Joshua A; Venkatesh, Nandhitha; Schumacher, Julia; Schroeder, Frank C; Sanchez, Laura M; Keller, Nancy P

    2018-05-22

    Small-molecule signaling is one major mode of communication within the polymicrobial consortium of soil and rhizosphere. While microbial secondary metabolite (SM) production and responses of individual species have been studied extensively, little is known about potentially conserved roles of SM signals in multilayered symbiotic or antagonistic relationships. Here, we characterize the SM-mediated interaction between the plant-pathogenic bacterium Ralstonia solanacearum and the two plant-pathogenic fungi Fusarium fujikuroi and Botrytis cinerea We show that cellular differentiation and SM biosynthesis in F. fujikuroi are induced by the bacterially produced lipopeptide ralsolamycin (synonym ralstonin A). In particular, fungal bikaverin production is induced and preferentially accumulates in fungal survival spores (chlamydospores) only when exposed to supernatants of ralsolamycin-producing strains of R. solanacearum Although inactivation of bikaverin biosynthesis moderately increases chlamydospore invasion by R. solanacearum , we show that other metabolites such as beauvericin are also induced by ralsolamycin and contribute to suppression of R. solanacearum growth in vitro Based on our findings that bikaverin antagonizes R. solanacearum and that ralsolamycin induces bikaverin biosynthesis in F. fujikuroi , we asked whether other bikaverin-producing fungi show similar responses to ralsolamycin. Examining a strain of B. cinerea that horizontally acquired the bikaverin gene cluster from Fusarium , we found that ralsolamycin induced bikaverin biosynthesis in this fungus. Our results suggest that conservation of microbial SM responses across distantly related fungi may arise from horizontal transfer of protective gene clusters that are activated by conserved regulatory cues, e.g., a bacterial lipopeptide, providing consistent fitness advantages in dynamic polymicrobial networks. IMPORTANCE Bacteria and fungi are ubiquitous neighbors in many environments, including

  20. The p450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea

    DEFF Research Database (Denmark)

    Siewers, V.; Smedsgaard, Jørn; Tudzynski, P.

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids...

  1. Defense responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to tolerance of petunia to Botrytis cinerea

    Science.gov (United States)

    The death of cells can be a programmed event that occurs when plants are attacked by pathogens. Botrytis cinerea (B. cinerea), a model necrotrophic pathogen, triggers the host cell death response because it produces toxins. A hypersensitive reaction (HR) occurs at the site of contact. In Arabidopsis...

  2. Functional analysis of ABC transporter genes from Botrytis cinerea identifies BcatrB as a transporter of eugenol

    NARCIS (Netherlands)

    Schoonbeek, H.; Nistelrooy, van J.G.M.; Waard, de M.A.

    2003-01-01

    The role of multiple ATP-binding cassette (ABC) and major facilitator superfamily (MFS) transporter genes from the plant pathogenic fungus Botrytis cinerea in protection against natural fungitoxic compounds was studied by expression analysis and phenotyping of gene-replacement mutants. The

  3. Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection

    Directory of Open Access Journals (Sweden)

    Janick eMathys

    2012-05-01

    Full Text Available In this study, the molecular basis of the induced systemic resistance (ISR in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime and after (ISR-boost additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance (SAR, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance towards secondary infections. Treatment with Trichoderma hamatum T382 primes the plant (ISR-prime, resulting in an accelerated activation of the defense response against Botrytis cinerea during ISR-boost and a subsequent moderation of the Botrytis cinerea induced defense response (BIDR. Microarray results were confirmed for representative genes by qRT-PCR, by analysis of transgenic plants expressing relevant promoter-GUS constructs and by phenotypic analysis of mutants affected in various defense-related pathways, thereby proving the validity of our approach.

  4. A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris.

    Science.gov (United States)

    Kittl, Roman; Mueangtoom, Kitti; Gonaus, Christoph; Khazaneh, Shima Tahvilda; Sygmund, Christoph; Haltrich, Dietmar; Ludwig, Roland

    2012-01-20

    Fungal laccases from basidiomycetous fungi are thoroughly investigated in respect of catalytic mechanism and industrial applications, but the number of reported and well characterized ascomycetous laccases is much smaller although they exhibit interesting catalytic properties. We report on a highly chloride tolerant laccase produced by the plant pathogen ascomycete Botrytis aclada, which was recombinantly expressed in Pichia pastoris with an extremely high yield and purified to homogeneity. In a fed-batch fermentation, 495 mg L(-1) of laccase was measured in the medium, which is the highest concentration obtained for a laccase by a yeast expression system. The recombinant B. aclada laccase has a typical molecular mass of 61,565 Da for the amino acid chain. The pI is approximately 2.4, a very low value for a laccase. Glycosyl residues attached to the recombinant protein make up for approximately 27% of the total protein mass. B. aclada laccase exhibits very low K(M) values and high substrate turnover numbers for phenolic and non-phenolic substrates at acidic and near neutral pH. The enzyme's stability increases in the presence of chloride ions and, even more important, its substrate turnover is only weakly inhibited by chloride ions (I(50)=1.4M), which is in sharp contrast to most other described laccases. This high chloride tolerance is mandatory for some applications such as implantable biofuel cells and laccase catalyzed reactions, which suffer from the presence of chloride ions. The high expression yield permits fast and easy production for further basic and applied research. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea

    NARCIS (Netherlands)

    Sun, K.; Tuinen, van A.; Kan, van J.A.L.; Wolters, A.M.A.; Jacobsen, E.; Visser, R.G.F.; Bai, Y.

    2017-01-01

    Background
    Botrytis cinerea, a necrotrophic pathogenic fungus, attacks many crops including potato and tomato. Major genes for complete resistance to B. cinerea are not known in plants, but a few quantitative trait loci have been described in tomato. Loss of function of particular susceptibility

  6. Functional analysis of mating type genes and transcriptome analysis during fruiting body development of botrytis cinerea

    NARCIS (Netherlands)

    Rodenburg, Sander Y.A.; Terhem, Razak B.; Veloso, Javier; Stassen, Joost H.M.; Kan, van Jan A.L.

    2018-01-01

    Botrytis cinerea is a plant-pathogenic fungus producing apothecia as sexual fruiting bodies. To study the function of mating type (MAT) genes, single-gene deletion mutants were generated in both genes of the MAT1-1 locus and both genes of the MAT1-2 locus. Deletion mutants in two MAT genes were

  7. How light affects the life of Botrytis.

    Science.gov (United States)

    Schumacher, Julia

    2017-09-01

    Fungi, like other organisms, actively sense the environmental light conditions in order to drive adaptive responses, including protective mechanisms against the light-associated stresses, and to regulate development. Ecological niches are characterized by different light regimes, for instance light is absent underground, and light spectra from the sunlight are changed underwater or under the canopy of foliage due to the absorption of distinct wavelengths by bacterial, algal and plant pigments. Considering the fact that fungi have evolved to adapt to their habitats, the complexities of their 'visual' systems may vary significantly. Fungi that are pathogenic on plants experience a special light regime because the host always seeks the optimum light conditions for photosynthesis - and the pathogen has to cope with this environment. When the pathogen lives under the canopy and is indirectly exposed to sunlight, it is confronted with an altered light spectrum enriched for green and far-red light. Botrytis cinerea, the gray mold fungus, is an aggressive plant pathogen mainly infecting the above-ground parts of the plant. As outlined in this review, the Leotiomycete maintains a highly sophisticated light signaling machinery, integrating (near)-UV, blue, green, red and far-red light signals by use of at least eleven potential photoreceptors to trigger a variety of responses, i.e. protection (pigmentation, enzymatic systems), morphogenesis (conidiation, apothecial development), entrainment of a circadian clock, and positive and negative tropism of multicellular (conidiophores, apothecia) and unicellular structures (conidial germ tubes). In that sense, 'looking through the eyes' of this plant pathogen will expand our knowledge of fungal photobiology. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  8. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control

    NARCIS (Netherlands)

    Baarlen, van P.; Woltering, E.J.; Staats, M.; Kan, van J.A.L.

    2007-01-01

    Susceptibility was evaluated of host and non-host plants to three pathogenic Botrytis species: the generalist B. cinerea and the specialists B. elliptica (lily) and B. tulipae (tulip). B. tulipae was, unexpectedly, able to infect plant species other than tulip, and to a similar extent as B. cinerea.

  9. Contribution of proteomics to the study of plant pathogenic fungi.

    Science.gov (United States)

    Gonzalez-Fernandez, Raquel; Jorrin-Novo, Jesus V

    2012-01-01

    Phytopathogenic fungi are one of the most damaging plant parasitic organisms, and can cause serious diseases and important yield losses in crops. The study of the biology of these microorganisms and the interaction with their hosts has experienced great advances in recent years due to the development of moderm, holistic and high-throughput -omic techniques, together with the increasing number of genome sequencing projects and the development of mutants and reverse genetics tools. We highlight among these -omic techniques the importance of proteomics, which has become a relevant tool in plant-fungus pathosystem research. Proteomics intends to identify gene products with a key role in pathogenicity and virulence. These studies would help in the search of key protein targets and in the development of agrochemicals, which may open new ways for crop disease diagnosis and protection. In this review, we made an overview on the contribution of proteomics to the knowledge of life cycle, infection mechanisms, and virulence of the plant pathogenic fungi. Data from current, innovative literature, according to both methodological and experimental systems, were summarized and discussed. Specific sections were devoted to the most studied fungal phytopathogens: Botrytis cinerea, Sclerotinia sclerotiorum, and Fusarium graminearum.

  10. Defence responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to the tolerance of petunia to Botrytis cinerea.

    Science.gov (United States)

    Wang, Hong; Liu, Gang; Li, Chunxia; Powell, Ann L T; Reid, Michael S; Zhang, Zhen; Jiang, Cai-Zhong

    2013-06-01

    Ethylene and jasmonate (JA) have powerful effects when plants are challenged by pathogens. The inducible promoter-regulated expression of the Arabidopsis ethylene receptor mutant ethylene-insensitive1-1 (etr1-1) causes ethylene insensitivity in petunia. To investigate the molecular mechanisms involved in transgenic petunia responses to Botrytis cinerea related to the ethylene and JA pathways, etr1-1-expressing petunia plants were inoculated with Botrytis cinerea. The induced expression of etr1-1 by a chemical inducer dexamethasone resulted in retarded senescence and reduced disease symptoms on detached leaves and flowers or intact plants. The extent of decreased disease symptoms correlated positively with etr1-1 expression. The JA pathway, independent of the ethylene pathway, activated petunia ethylene response factor (PhERF) expression and consequent defence-related gene expression. These results demonstrate that ethylene induced by biotic stress influences senescence, and that JA in combination with delayed senescence by etr1-1 expression alters tolerance to pathogens. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  11. Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules

    Directory of Open Access Journals (Sweden)

    Pilar eMartínez-Hidalgo

    2015-09-01

    Full Text Available Micromonospora is a Gram positive bacterium that can be isolated from nitrogen fixing nodules from healthy leguminous plants, where they could be beneficial to the plant. Their plant growth promoting activity in legume and non-legume plants has been previously demonstrated. The present study explores the ability of Micromonospora strains to control fungal pathogens and to stimulate plant immunity. Micromonospora strains isolated from surface sterilized nodules of alfalfa showed in vitro antifungal activity against several pathogenic fungi. Moreover, root inoculation of tomato plants with these Micromonospora strains effectively reduced leaf infection by the fungal pathogen Botrytis cinerea, despite spatial separation between both microorganisms. This induced systemic resistance, confirmed in different tomato cultivars, is long lasting. Gene expression analyses evidenced that Micromonospora stimulates the plant capacity to activate defense mechanisms upon pathogen attack. The defensive response of tomato plants inoculated with Micromonospora spp. differs from that of non-inoculated plants, showing a stronger induction of jasmonate-regulated defenses when the plant is challenged with a pathogen. The hypothesis of jasmonates playing a key role in this defense priming effect was confirmed using defense-impaired tomato mutants, since the JA-deficient line def1 was unable to display a long term induced resistance upon Micromonospora spp. inoculation.In conclusion, nodule isolated Micromonospora strains should be considered excellent candidates as biocontrol agents as they combine both direct antifungal activity against plant pathogens and the ability to prime plant immunity.

  12. Cloning and characterization of a glutathione S-transferase homologue from the plant pathogenic fungus Botrytis cinerea

    NARCIS (Netherlands)

    Prins, T.W.; Wagemakers, L.; Schouten, A.; Kan, van J.A.L.

    2000-01-01

    A gene was cloned from Botrytis cinerea that encodes a protein homologous to glutathione S-transferase (GST). The gene, denominated Bcgst1, is present in a single copy and represents the first example of such a gene from a filamentous fungus. The biochemical function of GSTs is to conjugate toxic

  13. Inadvertent gene silencing of argininosuccinate synthase (bcass1) in Botrytis cinerea by the pLOB1 vector system

    NARCIS (Netherlands)

    Patel, R.M.; Kan, van J.A.L.; Bailey, A.M.; Foster, G.D.

    2010-01-01

    For several years, researchers working on the plant pathogen Botrytis cinerea and a number of other related fungi have routinely used the pLOB1 vector system, based on hygromycin resistance, under the control of the Aspergillus nidulans oliC promoter and what was reported to be the ß-tubulin (tubA)

  14. Genome-wide analysis of pectate-induced gene expression in Botrytis cinerea: identification and functional analysis of putative D-galacturonic acid transporters

    NARCIS (Netherlands)

    Zhang, L.; Hua, C.; Stassen, J.H.M.; Chatterjee, S.; Cornelissen, M.; Kan, van J.A.L.

    2014-01-01

    The fungal plant pathogen Botrytis cinerea produces a spectrum of cell wall degrading enzymes for the decomposition of host cell wall polysaccharides and the consumption of the monosaccharides that are released. Especially pectin is an abundant cell wall component, and the decomposition of pectin by

  15. Machinale Botrytis-detectie

    NARCIS (Netherlands)

    Jansen, R.M.C.

    2007-01-01

    Onder laboratoriumomstandigheden blijkt het goed mogelijk om een Botrytis-infectie in tomatenplanten te detecteren met behulp van vluchtige stoffen. Onderzoekers van Wageningen Universiteit en Plant Research International bekijken nu of het mogelijk is om deze stoffen te detecteren in een kas zodat

  16. A novel Botrytis species is associated with a newly emergent foliar disease in cultivated Hemerocallis.

    Directory of Open Access Journals (Sweden)

    Robert T Grant-Downton

    Full Text Available Foliar tissue samples of cultivated daylilies (Hemerocallis hybrids showing the symptoms of a newly emergent foliar disease known as 'spring sickness' were investigated for associated fungi. The cause(s of this disease remain obscure. We isolated repeatedly a fungal species which proved to be member of the genus Botrytis, based on immunological tests. DNA sequence analysis of these isolates, using several different phyogenetically informative genes, indicated that they represent a new Botrytis species, most closely related to B. elliptica (lily blight, fire blight which is a major pathogen of cultivated Lilium. The distinction of the isolates was confirmed by morphological analysis of asexual sporulating cultures. Pathogenicity tests on Hemerocallis tissues in vitro demonstrated that this new species was able to induce lesions and rapid tissue necrosis. Based on this data, we infer that this new species, described here as B. deweyae, is likely to be an important contributor to the development of 'spring sickness' symptoms. Pathogenesis may be promoted by developmental and environmental factors that favour assault by this necrotrophic pathogen. The emergence of this disease is suggested to have been triggered by breeding-related changes in cultivated hybrids, particularly the erosion of genetic diversity. Our investigation confirms that emergent plant diseases are important and deserve close monitoring, especially in intensively in-bred plants.

  17. Antifungal Activity of Bacillus coagulans TQ33, Isolated from Skimmed Milk Powder, against Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Rui Feng Xiao

    2013-01-01

    Full Text Available Bacillus coagulans TQ33 is isolated from the skimmed milk powder and has a broad antifungal activity against pathogens such as Botrytis cinerea, Alternaria solani, Phytophthora drechsleri Tucker, Fusarium oxysporum and Glomerella cingulata. The characteristics of active antifungal substances produced by B. coagulans TQ33 and its antifungal effects against the growth of plant pathogenic fungi has been evaluated. The effect of pH, temperature and protease on the antifungal activity of B. coagulans TQ33 was determined. The results of partial characterization of the antifungal compound indicated that its activity is likely to be due to the production of a proteinaceous substance together with other substances. The greenhouse trials suggest that B. coagulans TQ33 has a great potential for the control of plant pathogenic fungi.

  18. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both?

    Directory of Open Access Journals (Sweden)

    Choong-Min eRyu

    2016-02-01

    Full Text Available Biological control (biocontrol agents act on plants via numerous mechanisms, and can be used to protect plants from pathogens. Biocontrol agents can act directly as pathogen antagonists or competitors or indirectly to promote plant induced systemic resistance (ISR. Whether a biocontrol agent acts directly or indirectly depends on the specific strain and the pathosystem type. We reported previously that bacterial volatile organic compounds (VOCs are determinants for eliciting plant ISR. Emerging data suggest that bacterial VOCs also can directly inhibit fungal and plant growth. The aim of the current study was to differentiate direct and indirect mechanisms of bacterial VOC effects against Botrytis cinerea infection of Arabidopsis. Volatile emissions from Bacillus subtilis GB03 successfully protected Arabidopsis seedlings against B. cinerea. First, we investigated the direct effects of bacterial VOCs on symptom development and different phenological stages of B. cinerea including spore germination, mycelial attachment to the leaf surface, mycelial growth, and sporulation in vitro and in planta. Volatile emissions inhibited hyphal growth in a dose-dependent manner in vitro, and interfered with fungal attachment on the hydrophobic leaf surface. Second, the optimized bacterial concentration that did not directly inhibit fungal growth successfully protected Arabidopsis from fungal infection, which indicates that bacterial VOC-elicited plant ISR has a more important role in biocontrol than direct inhibition of fungal growth on Arabidopsis. We performed qRT-PCR to investigate the priming of the defense-related genes PR1, PDF1.2, and ChiB at 0, 12, 24, and 36 hours post-infection and 14 days after the start of plant exposure to bacterial VOCs. The results indicate that bacterial VOCs potentiate expression of PR1 and PDF1.2 but not ChiB, which stimulates SA- and JA-dependent signaling pathways in plant ISR and protects plants against pathogen

  19. Biological control of Botrytis gray mould on tomato cultivated in greenhouse.

    Science.gov (United States)

    Fiume, F; Fiume, G

    2006-01-01

    Research was carried out to evaluate the effectiveness of the biological control of the Botrytis gray mould, caused by Botrytis cinerea Pers., one of the most important fungal diseases of the tomato (Lycopersicon esculentum Mill.). Biological control was performed by using Trichoderma harzianum Rifai, an antagonist that is a naturally occurring fungus found on some plants and in the soil worldwide. Trichoderma spp. are fungi diffused in nearly all agricultural soils and in other environments such as decaying wood. The object of this research is to find control strategies to reduce chemical treatments that cause damage to the environment and increase the pathogen resistance, applying the biological control by using T. harzianum against B. cinerea. A commercial product containing a natural isolate of T. harzianum is trichodex (Makhteshim Chemical Works, LTD). The research was performed in laboratory and in greenhouse. In laboratory, radial growth reduction of B. cinerea, in presence of T. harzianum, was calculated in relation to the growth of the pathogen control, by using a specific formula that measures the percentage of the inhibition of the radial mycelial growth. In greenhouse, starting from the tomato fruit setting, the research was carried out comparing, by a randomized complete block experiment design, replicated four times, the following treatments:1) untreated control; 2) pyrimethanil (400 g/L of a.i.), at 200 cc/hL of c.i. (pyrimidine fungicides); 3) trichodex at 100g/hL (1 kg/ha); 4) trichodex at 200 g/hL (2 kg/ha); 5) trichodex at 400 g/hL (4 kg/ha). Before fruit setting, the plots were all treated against Botrytis gray mould with iprodione 50% (100 g/hL), procymidone 50% (100 g/hL) and switch (Novartis plant protection) at 80 g/hL. In dual culture, the inhibition of B. cinerea radial mycelial growth was 76%. No inhibition halo was observed between B. cinerea and T. harzianum colonies but, after 3 days, the pathogen colony radius resulted no more than 1

  20. Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable

    NARCIS (Netherlands)

    Rolke, Y.; Liu, S.; Quidde, T.; Williamson, B.; Schouten, A.; Weltring, K.M.; Siewers, V.; Tenberge, K.B.; Tudzynski, B.; Tudzynski, P.

    2004-01-01

    The oxidative burst, a transient and rapid accumulation of reactive oxygen species (ROS), is a widespread defence mechanism of higher plants against pathogen attack. There is increasing evidence that the necrotrophic fungal pathogen Botrytis cinerea itself generates ROS, and that this capability

  1. Spread of Botrytis cinerea Strains with Multiple Fungicide Resistance in German Horticulture.

    Science.gov (United States)

    Rupp, Sabrina; Weber, Roland W S; Rieger, Daniel; Detzel, Peter; Hahn, Matthias

    2016-01-01

    Botrytis cinerea is a major plant pathogen, causing gray mold rot in a variety of cultures. Repeated fungicide applications are common but have resulted in the development of fungal populations with resistance to one or more fungicides. In this study, we have monitored fungicide resistance frequencies and the occurrence of multiple resistance in Botrytis isolates from raspberries, strawberries, grapes, stone fruits and ornamental flowers in Germany in 2010 to 2015. High frequencies of resistance to all classes of botryticides was common in all cultures, and isolates with multiple fungicide resistance represented a major part of the populations. A monitoring in a raspberry field over six seasons revealed a continuous increase in resistance frequencies and the emergence of multiresistant Botrytis strains. In a cherry orchard and a vineyard, evidence of the immigration of multiresistant strains from the outside was obtained. Inoculation experiments with fungicide-treated leaves in the laboratory and with strawberry plants cultivated in the greenhouse or outdoors revealed a nearly complete loss of fungicide efficacy against multiresistant strains. B. cinerea field strains carrying multiple resistance mutations against all classes of site-specific fungicides were found to show similar fitness as sensitive field strains under laboratory conditions, based on their vegetative growth, reproduction, stress resistance, virulence and competitiveness in mixed infection experiments. Our data indicate an alarming increase in the occurrence of multiresistance in B. cinerea populations from different cultures, which presents a major threat to the chemical control of gray mold.

  2. Population structure and temporal maintenance of the multihost fungal pathogen Botrytis cinerea: causes and implications for disease management.

    Science.gov (United States)

    Walker, Anne-Sophie; Gladieux, Pierre; Decognet, Véronique; Fermaud, Marc; Confais, Johann; Roudet, Jean; Bardin, Marc; Bout, Alexandre; Nicot, Philippe C; Poncet, Christine; Fournier, Elisabeth

    2015-04-01

    Understanding the causes of population subdivision is of fundamental importance, as studying barriers to gene flow between populations may reveal key aspects of the process of adaptive divergence and, for pathogens, may help forecasting disease emergence and implementing sound management strategies. Here, we investigated population subdivision in the multihost fungus Botrytis cinerea based on comprehensive multiyear sampling on different hosts in three French regions. Analyses revealed a weak association between population structure and geography, but a clear differentiation according to the host plant of origin. This was consistent with adaptation to hosts, but the distribution of inferred genetic clusters and the frequency of admixed individuals indicated a lack of strict host specificity. Differentiation between individuals collected in the greenhouse (on Solanum) and outdoor (on Vitis and Rubus) was stronger than that observed between individuals from the two outdoor hosts, probably reflecting an additional isolating effect associated with the cropping system. Three genetic clusters coexisted on Vitis but did not persist over time. Linkage disequilibrium analysis indicated that outdoor populations were regularly recombining, whereas clonality was predominant in the greenhouse. Our findings open up new perspectives for disease control by managing plant debris in outdoor conditions and reinforcing prophylactic measures indoor. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Antifungal Activities of Extracts from Selected Lebanese Wild Plants against Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Y. Abou-Jawdah

    2004-12-01

    Full Text Available Extracts of nine plant species growing wild in Lebanon were tested for their efficacy against seven plant pathogenic fungi: Botrytis cinerea, Alternaria solani, Penicillium sp., Cladosporium sp., Fusarium oxysporum f. sp. melonis, Rhizoctonia solani and Sphaerotheca cucurbitae. Extracts of three of the plants, Origanum syriacum, Micromeria nervosa and Plumbago maritima, showed the highest levels of in vitro activity against spore germination and mycelial growth of the fungi tested. Inula viscosa showed high activity against spore germination but only moderate activity against mycelial growth. The other five plant species tested Calamintha origanifolia, Micromeria juliana, Ruta sp., Sideritis pullulans and Urginea maritima showed only moderate to low activity against these fungi. Preventive sprays with extracts of O. syriacum, M. nervosa, P. maritima and I. viscosa, applied at concentrations ranging between 4 and 8% to squash and cucumber seedlings, gave efficient protection against gray mold caused by B. cinerea and powdery mildew caused by S. cucurbitae. However, these extracts did not control green mold of citrus fruits caused by Penicillium sp. Thin layer chromatography revealed three inhibitory bands in extracts of O. syriacum, two in I. viscosa and only one in each of the other plants tested: M. nervosa, P. maritima, C. origanifolia and Ruta sp.

  4. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    OpenAIRE

    Peng, Hui; Yang, Tianbao; Jurick, Wayne M.

    2014-01-01

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs) in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen in...

  5. Generation and analysis of expressed sequence tags from Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    EVELYN SILVA

    2006-01-01

    Full Text Available Botrytis cinerea is a filamentous plant pathogen of a wide range of plant species, and its infection may cause enormous damage both during plant growth and in the post-harvest phase. We have constructed a cDNA library from an isolate of B. cinerea and have sequenced 11,482 expressed sequence tags that were assembled into 1,003 contigs sequences and 3,032 singletons. Approximately 81% of the unigenes showed significant similarity to genes coding for proteins with known functions: more than 50% of the sequences code for genes involved in cellular metabolism, 12% for transport of metabolites, and approximately 10% for cellular organization. Other functional categories include responses to biotic and abiotic stimuli, cell communication, cell homeostasis, and cell development. We carried out pair-wise comparisons with fungal databases to determine the B. cinerea unisequence set with relevant similarity to genes in other fungal pathogenic counterparts. Among the 4,035 non-redundant B. cinerea unigenes, 1,338 (23% have significant homology with Fusarium verticillioides unigenes. Similar values were obtained for Saccharomyces cerevisiae and Aspergillus nidulans (22% and 24%, respectively. The lower percentages of homology were with Magnaporthe grisae and Neurospora crassa (13% and 19%, respectively. Several genes involved in putative and known fungal virulence and general pathogenicity were identified. The results provide important information for future research on this fungal pathogen

  6. Expansive phenotypic landscape of Botrytis cinerea shows differential contribution of genetic diversity and plasticity

    DEFF Research Database (Denmark)

    Corwin, Jason A; Subedy, Anushriya; Eshbaugh, Robert

    2016-01-01

    and genetic diversity for virulence-associated phenotypes in a generalist plant pathogen, we grew a population of 15 isolates of Botrytis cinerea from throughout the world, under a variety of in vitro and in planta conditions. Under in planta conditions, phenotypic differences between the isolates were......The modern evolutionary synthesis suggests that both environmental variation and genetic diversity are critical determinants of pathogen success. However, the relative contribution of these two sources of variation is not routinely measured. To estimate the relative contribution of plasticity...... determined by the combination of genotypic variation within the pathogen and environmental variation. In contrast, phenotypic differences between the isolates under in vitro conditions were predominantly determined by genetic variation in the pathogen. Using a correlation network approach, we link...

  7. Proteomic analysis of the Arabidopsis thaliana-Botrytis cinerea ...

    African Journals Online (AJOL)

    A two-dimensional liquid chromatography (2D LC) system, ProteomeLab PF 2D, was employed to study the defence proteome of Arabidopsis following infection with the necrotrophic fungal pathogen, Botrytis cinerea. This system demonstrated differential protein expression in control and treated samples in some fractions.

  8. The genetics of Botrytis cinerea resistance in tomato

    NARCIS (Netherlands)

    Finkers, H.J.

    2007-01-01

    Botrytis cinerea Pers:Fr(teleomorph: Botryotina fuckeliana (de Bary) Whetzel) is a necrotrophic pathogenic fungus with a wide host range of at least 235 species (Elad et al. 2004).

  9. Antifungal activity of saponins originated from Medicago hybrida against some ornamental plant pathogens

    Directory of Open Access Journals (Sweden)

    Alicja Saniewska

    2012-12-01

    Full Text Available Antifungal activity of total saponins originated from roots of Medicago hybrida (Pourret Trautv. were evaluated in vitro against six pathogenic fungi and eight individual major saponin glycosides were tested against one of the most susceptible fungi. The total saponins showed fungitoxic effect at all investigated concentrations (0.01%, 0.05% and 0.1% but their potency was different for individual fungi. The highest saponin concentration (0.1% was the most effective and the inhibition of Fusarium oxysporum f. sp. callistephi, Botrytis cinerea, Botrytis tulipae, Phoma narcissi, Fusarium oxysporum f. sp. narcissi was 84.4%, 69.9%, 68.6%, 57.2%, 55.0%, respectively. While Fusarium oxysporum Schlecht., a pathogen of Muscari armeniacum, was inhibited by 9.5% only. Eight major saponin glycosides isolated from the total saponins of M. hybrida roots were tested against the mycelium growth of Botrytis tulipae. The mycelium growth of the pathogen was greatly inhibited by hederagenin 3-O-β-D-glucopyranoside and medicagenic acid 3-O-β-D-glucopyranoside. Medicagenic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside and oleanolic acid 3-O-[β-D-glucuronopyranosyl(1→2-α-L-galactopyranosyl]-28-O-β-D-glucopyranoside showed low fungitoxic activity. Medicagenic acid 3-O-a-D-glucopyranosyl- 28-O-β-D-glucopyranoside, hederagenin 3-O-[α-L- hamnopyranosyl(1→2-β-D-glucopyranosyl(1→2-β-D-glucopyranosyl]- 28-O-α-D-glucopyranoside and hederagenin 3-O-β-D-glucuronopyranosyl-28-O-β-D- lucopyranoside did not limit or only slightly inhibited growth of the tested pathogen. While 2β, 3β-dihydroxyolean-12 ene-23-al-28-oic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside slightly stimulated mycelium growth of B. tulipae.

  10. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2014-08-01

    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  11. Arabidopsis and Brachypodium distachyon Transgenic Plants Expressing Aspergillus nidulans Acetylesterases Have Decreased Degree of Polysaccharide Acetylation and Increased Resistance to Pathogens1[C][W][OA

    Science.gov (United States)

    Pogorelko, Gennady; Lionetti, Vincenzo; Fursova, Oksana; Sundaram, Raman M.; Qi, Mingsheng; Whitham, Steven A.; Bogdanove, Adam J.; Bellincampi, Daniela; Zabotina, Olga A.

    2013-01-01

    The plant cell wall has many significant structural and physiological roles, but the contributions of the various components to these roles remain unclear. Modification of cell wall properties can affect key agronomic traits such as disease resistance and plant growth. The plant cell wall is composed of diverse polysaccharides often decorated with methyl, acetyl, and feruloyl groups linked to the sugar subunits. In this study, we examined the effect of perturbing cell wall acetylation by making transgenic Arabidopsis (Arabidopsis thaliana) and Brachypodium (Brachypodium distachyon) plants expressing hemicellulose- and pectin-specific fungal acetylesterases. All transgenic plants carried highly expressed active Aspergillus nidulans acetylesterases localized to the apoplast and had significant reduction of cell wall acetylation compared with wild-type plants. Partial deacetylation of polysaccharides caused compensatory up-regulation of three known acetyltransferases and increased polysaccharide accessibility to glycosyl hydrolases. Transgenic plants showed increased resistance to the fungal pathogens Botrytis cinerea and Bipolaris sorokiniana but not to the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. These results demonstrate a role, in both monocot and dicot plants, of hemicellulose and pectin acetylation in plant defense against fungal pathogens. PMID:23463782

  12. Botrytis cinerea Control and the Problem of Fungicide Resistance

    Directory of Open Access Journals (Sweden)

    Brankica Tanović

    2011-01-01

    Full Text Available Botrytis cinerea, the causal agent of grey mould, greatly affects fruit, grapevine, vegetable and ornamental crops production. It is a common causal agent of diseases in plants grown in protected areas, as well as fruit decay during storage and transport. The fungusinvades almost all parts of the plant in all developmental stages, and the symptoms are usually described as grey mould, grey mildew, brown rot and seedling blight. The paper reviews the current knowledge on control possibilities of this necrotrophic pathogen. Theattention is particularly paid to the mode of action of novel fungicides and to the problem of resistance. It is pointed out that by limiting the number of treatments in the growing season, avoiding the use of only one fungicide with a high risk for resistance development,appropriate application rate and timing, using mixtures of pesticides with different modes of action, as well as by alternative use of pesticides from different resistance groups, a longterm preservation of pesticide efficacy is provided.

  13. The COP9 signalosome controls jasmonic acid synthesis and plant responses to herbivory and pathogens.

    Science.gov (United States)

    Hind, Sarah R; Pulliam, Sarah E; Veronese, Paola; Shantharaj, Deepak; Nazir, Azka; Jacobs, Nekaiya S; Stratmann, Johannes W

    2011-02-01

    The COP9 signalosome (CSN) is a multi-protein complex that regulates the activities of cullin-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate proteins in order to target them for proteasomal degradation. The CSN is required for proper plant development. Here we show that the CSN also has a profound effect on plant defense responses. Silencing of genes for CSN subunits in tomato plants resulted in a mild morphological phenotype and reduced expression of wound-responsive genes in response to mechanical wounding, attack by Manduca sexta larvae, and Prosystemin over-expression. In contrast, expression of pathogenesis-related genes was increased in a stimulus-independent manner in these plants. The reduced wound response in CSN-silenced plants corresponded with reduced synthesis of jasmonic acid (JA), but levels of salicylic acid (SA) were unaltered. As a consequence, these plants exhibited reduced resistance against herbivorous M. sexta larvae and the necrotrophic fungal pathogen Botrytis cinerea. In contrast, susceptibility to tobacco mosaic virus (TMV) was not altered in CSN-silenced plants. These data demonstrate that the CSN orchestrates not only plant development but also JA-dependent plant defense responses. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  14. The toolbox of Trichoderma spp. in the biocontrol of Botrytis cinerea disease.

    Science.gov (United States)

    Vos, Christine M F; De Cremer, Kaat; Cammue, Bruno P A; De Coninck, Barbara

    2015-05-01

    Botrytis cinerea is a necrotrophic fungal pathogen causing disease in many plant species, leading to economically important crop losses. So far, fungicides have been widely used to control this pathogen. However, in addition to their detrimental effects on the environment and potential risks for human health, increasing fungicide resistance has been observed in the B. cinerea population. Biological control, that is the application of microbial organisms to reduce disease, has gained importance as an alternative or complementary approach to fungicides. In this respect, the genus Trichoderma constitutes a promising pool of organisms with potential for B. cinerea control. In the first part of this article, we review the specific mechanisms involved in the direct interaction between the two fungi, including mycoparasitism, the production of antimicrobial compounds and enzymes (collectively called antagonism), and competition for nutrients and space. In addition, biocontrol has also been observed when Trichoderma is physically separated from the pathogen, thus implying an indirect systemic plant defence response. Therefore, in the second part, we describe the consecutive steps leading to induced systemic resistance (ISR), starting with the initial Trichoderma-plant interaction and followed by the activation of downstream signal transduction pathways and, ultimately, the defence response resulting in ISR (ISR-prime phase). Finally, we discuss the ISR-boost phase, representing the effect of ISR priming by Trichoderma spp. on plant responses after additional challenge with B. cinerea. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  15. In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Banik, S.; Pérez-de-Luque, A.

    2017-07-01

    Copper-based chemicals are effectively used as antimicrobials in agriculture. However, with respect to its nanoparticulate form there has been limited number of studies. In this investigation, in vitro tests on effect of copper nanoparticles (CuNPs) against plant pathogenic fungi, oomycete, bacteria, beneficial microbes Trichoderma harzianum and Rhizobium spp., and wheat seeds were conducted. Integration of CuNPs with non-nano copper like copper oxychloride (CoC) at 50 mg/L concentration each recorded 76% growth inhibition of the oomycete Phytophthora cinnamomi in vitro compared to the control. CuNPs also showed synergistic inhibitory effect with CoC on mycelial growth and sporulation of A. alternata. Pseudomonas syringae was inhibited at 200 mg/L of CuNPs. CuNPs were not significantly biocidal against Rhizobium spp. and Trichoderma harzianum compared to CoC. Evaluation of the effect of CuNP on wheat revealed that rate of germination of wheat seeds was higher in presence of CuNPs and CoC compared to control. Germination vigor index, root length, shoot dry weight and seed metabolic efficiency of wheat were negatively affected. At low concentration, CuNPs promoted the growth of the plant pathogenic fungi Botrytis fabae, Fusarium oxysporum f.sp. ciceris, F.oxysporum f.sp. melonis, Alternaria alternate and P. syringae, and sporulation of T. harzianum. Synergistic effect of CuNPs and CoC in inhibiting P. cinnamomi offers a possibility of developing new fungicide formulation for better control of the oomycetes. Non-biocidal effect of CuNPs against beneficial microbes indicates its potential use in the agri-ecosystem.

  16. In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants

    International Nuclear Information System (INIS)

    Banik, S.; Pérez-de-Luque, A.

    2017-01-01

    Copper-based chemicals are effectively used as antimicrobials in agriculture. However, with respect to its nanoparticulate form there has been limited number of studies. In this investigation, in vitro tests on effect of copper nanoparticles (CuNPs) against plant pathogenic fungi, oomycete, bacteria, beneficial microbes Trichoderma harzianum and Rhizobium spp., and wheat seeds were conducted. Integration of CuNPs with non-nano copper like copper oxychloride (CoC) at 50 mg/L concentration each recorded 76% growth inhibition of the oomycete Phytophthora cinnamomi in vitro compared to the control. CuNPs also showed synergistic inhibitory effect with CoC on mycelial growth and sporulation of A. alternata. Pseudomonas syringae was inhibited at 200 mg/L of CuNPs. CuNPs were not significantly biocidal against Rhizobium spp. and Trichoderma harzianum compared to CoC. Evaluation of the effect of CuNP on wheat revealed that rate of germination of wheat seeds was higher in presence of CuNPs and CoC compared to control. Germination vigor index, root length, shoot dry weight and seed metabolic efficiency of wheat were negatively affected. At low concentration, CuNPs promoted the growth of the plant pathogenic fungi Botrytis fabae, Fusarium oxysporum f.sp. ciceris, F.oxysporum f.sp. melonis, Alternaria alternate and P. syringae, and sporulation of T. harzianum. Synergistic effect of CuNPs and CoC in inhibiting P. cinnamomi offers a possibility of developing new fungicide formulation for better control of the oomycetes. Non-biocidal effect of CuNPs against beneficial microbes indicates its potential use in the agri-ecosystem.

  17. Isolate dependency of Brassica rapa resistance QTLs to Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2016-02-01

    Full Text Available Generalist necrotrophic pathogens including Botrytis cinerea cause significant yield and financial losses on Brassica crops. However, there is little knowledge about the mechanisms underlying the complex interactions encoded by both host and pathogen genomes in this interaction. This potentially includes multiple layers of plant defense and pathogen virulence mechanisms that could complicate in breeding broad spectrum resistance within Brassica species. Glucosinolates are a diverse group of defense metabolites that play a key role in interaction between Brassica and biotic attackers. In this study, we utilized a collection of diverse B. cinerea isolates to investigate resistance within the B. rapa R500 x IMB211 recombinant inbred line population. We tested variation on lesion development and glucosinolate accumulation in parental lines and all population lines. We then mapped quantitative trait loci (QTL for both resistances to B. cinerea and defense metabolites in this population. Phenotypic analysis and QTL mapping demonstrate that the genetic basis of resistance to B. cinerea in B. rapa is isolate specific and polygenic with transgressive segregation that both parents contribute resistance alleles. QTLs controlling defensive glucosinolates are highly dependent on pathogen infection. An overlap of two QTLs identified between resistance to B. cinerea and defense metabolites also showed isolate specific effects. This work suggests that directly searching for resistance loci may not be the best approach at improving resistance in B. rapa to necrotrophic pathogen.

  18. Gray Mold on Saintpaulia ionantha Caused by Botrytis cinerea in Korea

    Directory of Open Access Journals (Sweden)

    Hyung-Moo Kim

    2011-04-01

    Full Text Available Gray mold caused by Botrytis cinerea occurred on Saintpaulia ionantha in flower shop of the Jeonju city in Korea. Typical symptoms with brown water-soaked and rotting lesions were appeared on the flowers, leaves and petiole of infected plants. Many conidia spores appeared on the lesions under humid conditions. Colonies were grayish brown and sclerotial formation on potato dextrose agar. Conidia were one celled, mostly ellipsoidal or ovoid in shape, and were colorless to pale brown in color. The conidia were 7~14×5~9 μm in size. Based on pathogenicity and morphological characteristics of the isolated fungus, the causal fungus was identified as B. cinerea Persoon: Fries. Gray mold of S. ionantha was proposed to the name of this disease.

  19. Identification of QTLs for Botrytis cinerea Resistance in S. Habrochaites LYC4

    NARCIS (Netherlands)

    Finkers, H.J.; Heusden, van A.W.; Have, van der A.J.; Kan, van J.A.L.; Lindhout, P.

    2006-01-01

    BOTRYTIS cinerea Pers:Fr (teleomorph: Botryotina fuckeliana (de Bary) Whetzel) is a necrotrophic pathogenic fungus with an exceptionally wide host range of at least 235 species. Modern hybrid tomato (Solanum lycopersicum) cultivars are susceptible to B. cinerea although there are cultivars with some

  20. Botrytis cinerea Manipulates the Antagonistic Effects between Immune Pathways to Promote Disease Development in Tomato[C][W][OA

    Science.gov (United States)

    El Oirdi, Mohamed; El Rahman, Taha Abd; Rigano, Luciano; El Hadrami, Abdelbasset; Rodriguez, María Cecilia; Daayf, Fouad; Vojnov, Adrian; Bouarab, Kamal

    2011-01-01

    Plants have evolved sophisticated mechanisms to sense and respond to pathogen attacks. Resistance against necrotrophic pathogens generally requires the activation of the jasmonic acid (JA) signaling pathway, whereas the salicylic acid (SA) signaling pathway is mainly activated against biotrophic pathogens. SA can antagonize JA signaling and vice versa. Here, we report that the necrotrophic pathogen Botrytis cinerea exploits this antagonism as a strategy to cause disease development. We show that B. cinerea produces an exopolysaccharide, which acts as an elicitor of the SA pathway. In turn, the SA pathway antagonizes the JA signaling pathway, thereby allowing the fungus to develop its disease in tomato (Solanum lycopersicum). SA-promoted disease development occurs through Nonexpressed Pathogen Related1. We also show that the JA signaling pathway required for tomato resistance against B. cinerea is mediated by the systemin elicitor. These data highlight a new strategy used by B. cinerea to overcome the plant’s defense system and to spread within the host. PMID:21665999

  1. Autophagy in plant pathogenic fungi.

    Science.gov (United States)

    Liu, Xiao-Hong; Xu, Fei; Snyder, John Hugh; Shi, Huan-Bin; Lu, Jian-Ping; Lin, Fu-Cheng

    2016-09-01

    Autophagy is a conserved cellular process that degrades cytoplasmic constituents in vacuoles. Plant pathogenic fungi develop special infection structures and/or secrete a range of enzymes to invade their plant hosts. It has been demonstrated that monitoring autophagy processes can be extremely useful in visualizing the sequence of events leading to pathogenicity of plant pathogenic fungi. In this review, we introduce the molecular mechanisms involved in autophagy. In addition, we explore the relationship between autophagy and pathogenicity in plant pathogenic fungi. Finally, we discuss the various experimental strategies available for use in the study of autophagy in plant pathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Transformation of Botrytis cinerea by direct hyphal blasting or by wound-mediated transformation of sclerotia

    Directory of Open Access Journals (Sweden)

    Ish - Shalom Shahar

    2011-12-01

    Full Text Available Abstract Background Botrytis cinerea is a haploid necrotrophic ascomycete which is responsible for 'grey mold' disease in more than 200 plant species. Broad molecular research has been conducted on this pathogen in recent years, resulting in the sequencing of two strains, which has generated a wealth of information toward developing additional tools for molecular transcriptome, proteome and secretome investigations. Nonetheless, transformation protocols have remained a significant bottleneck for this pathogen, hindering functional analysis research in many labs. Results In this study, we tested three different transformation methods for B. cinerea: electroporation, air-pressure-mediated and sclerotium-mediated transformation. We demonstrate successful transformation with three different DNA constructs using both air-pressure- and sclerotium-mediated transformation. Conclusions These transformation methods, which are fast, simple and reproducible, can expedite functional gene analysis of B. cinerea.

  3. Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Andrea eVega

    2015-11-01

    Full Text Available Nitrogen (N is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to respond effectively when challenged by different pathogens. However, the molecular mechanisms involved in N-modulation of plant susceptibility to pathogens are poorly characterized. In this work, we show that Solanum lycopersicum defense response to the necrotrophic fungus Botrytis cinerea is affected by plant N availability, with higher susceptibility in nitrate-limiting conditions. Global gene expression responses of tomato against B. cinerea under contrasting nitrate conditions reveals that plant primary metabolism is affected by the fungal infection regardless of N regimes. This result suggests that differential susceptibility to pathogen attack under contrasting N conditions is not only explained by a metabolic alteration. We used a systems biology approach to identify the transcriptional regulatory network implicated in plant response to the fungus infection under contrasting nitrate conditions. Interestingly, hub genes in this network are known key transcription factors involved in ethylene and jasmonic acid signaling. This result positions these hormones as key integrators of nitrate and defense against B. cinerea in tomato plants. Our results provide insights into potential crosstalk mechanisms between necrotrophic defense response and N status in plants.

  4. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea.

    Science.gov (United States)

    Agudelo-Romero, Patricia; Erban, Alexander; Rego, Cecília; Carbonell-Bejerano, Pablo; Nascimento, Teresa; Sousa, Lisete; Martínez-Zapater, José M; Kopka, Joachim; Fortes, Ana Margarida

    2015-04-01

    Vitis vinifera berries are sensitive towards infection by the necrotrophic pathogen Botrytis cinerea, leading to important economic losses worldwide. The combined analysis of the transcriptome and metabolome associated with fungal infection has not been performed previously in grapes or in another fleshy fruit. In an attempt to identify the molecular and metabolic mechanisms associated with the infection, peppercorn-sized fruits were infected in the field. Green and veraison berries were collected following infection for microarray analysis complemented with metabolic profiling of primary and other soluble metabolites and of volatile emissions. The results provided evidence of a reprogramming of carbohydrate and lipid metabolisms towards increased synthesis of secondary metabolites involved in plant defence, such as trans-resveratrol and gallic acid. This response was already activated in infected green berries with the putative involvement of jasmonic acid, ethylene, polyamines, and auxins, whereas salicylic acid did not seem to be involved. Genes encoding WRKY transcription factors, pathogenesis-related proteins, glutathione S-transferase, stilbene synthase, and phenylalanine ammonia-lyase were upregulated in infected berries. However, salicylic acid signalling was activated in healthy ripening berries along with the expression of proteins of the NBS-LRR superfamily and protein kinases, suggesting that the pathogen is able to shut down defences existing in healthy ripening berries. Furthermore, this study provided metabolic biomarkers of infection such as azelaic acid, a substance known to prime plant defence responses, arabitol, ribitol, 4-amino butanoic acid, 1-O-methyl- glucopyranoside, and several fatty acids that alone or in combination can be used to monitor Botrytis infection early in the vineyard. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email

  5. Factors influencing activity of triazole fungicides towards Botrytis cinerea.

    NARCIS (Netherlands)

    Stehmann, C.; Waard, de M.A.

    1996-01-01

    The activity of triazole fungicides towards Botrytis cinerea was investigated in vitro (radial growth on fungicide-amended agar) and in vivo (foliar-sprayed tomato plants and dip-treated grapes). In both tests the benzimidazoles, benomyl and thiabendazole, and the dicarboximides, iprodione and

  6. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Science.gov (United States)

    Dobón, Albor; Canet, Juan Vicente; García-Andrade, Javier; Angulo, Carlos; Neumetzler, Lutz; Persson, Staffan; Vera, Pablo

    2015-04-01

    Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs) from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence) factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  7. Novel disease susceptibility factors for fungal necrotrophic pathogens in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Albor Dobón

    2015-04-01

    Full Text Available Host cells use an intricate signaling system to respond to invasions by pathogenic microorganisms. Although several signaling components of disease resistance against necrotrophic fungal pathogens have been identified, our understanding for how molecular components and host processes contribute to plant disease susceptibility is rather sparse. Here, we identified four transcription factors (TFs from Arabidopsis that limit pathogen spread. Arabidopsis mutants defective in any of these TFs displayed increased disease susceptibility to Botrytis cinerea and Plectosphaerella cucumerina, and a general activation of non-immune host processes that contribute to plant disease susceptibility. Transcriptome analyses revealed that the mutants share a common transcriptional signature of 77 up-regulated genes. We characterized several of the up-regulated genes that encode peptides with a secretion signal, which we named PROVIR (for provirulence factors. Forward and reverse genetic analyses revealed that many of the PROVIRs are important for disease susceptibility of the host to fungal necrotrophs. The TFs and PROVIRs identified in our work thus represent novel genetic determinants for plant disease susceptibility to necrotrophic fungal pathogens.

  8. Występowanie szarej pleśni tulipanow – Botrytis tulipae (Lib. Lind na plantacjach produkcyjnych [Botrytis tulipae (Lib. Lind in tulip plantations

    Directory of Open Access Journals (Sweden)

    Cz. Zamorski

    2015-06-01

    Full Text Available The incidence of disease caused by Botrytis tulipae (Lib. Lind was studied in selected tulip plantations. Primary and secondary infection, as well as infections of daughter bulbs were observed. The number of affected plants differed according (to the variety, season, and rainfall.

  9. Dataset of the Botrytis cinerea phosphoproteome induced by different plant-based elicitors.

    Science.gov (United States)

    Liñeiro, Eva; Chiva, Cristina; Cantoral, Jesús M; Sabido, Eduard; Fernández-Acero, Francisco Javier

    2016-06-01

    Phosphorylation is one of the main post-translational modification (PTM) involved in signaling network in the ascomycete Botrytis cinerea , one of the most relevant phytopathogenic fungus. The data presented in this article provided a differential mass spectrometry-based analysis of the phosphoproteome of B. cinerea under two different phenotypical conditions induced by the use of two different elicitors: glucose and deproteinized Tomate Cell Walls (TCW). A total 1138 and 733 phosphoproteins were identified for glucose and TCW culture conditions respectively. Raw data are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier (PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD003099). Further interpretation and discussion of these data are provided in our research article entitled "Phosphoproteome analysis of B.cinerea in response to different plant-based elicitors" (Liñeiro et al., 2016) [1].

  10. Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Bentancor Marcel

    2007-10-01

    Full Text Available Abstract Background Vascular plants respond to pathogens by activating a diverse array of defense mechanisms. Studies with these plants have provided a wealth of information on pathogen recognition, signal transduction and the activation of defense responses. However, very little is known about the infection and defense responses of the bryophyte, Physcomitrella patens, to well-studied phytopathogens. The purpose of this study was to determine: i whether two representative broad host range pathogens, Erwinia carotovora ssp. carotovora (E.c. carotovora and Botrytis cinerea (B. cinerea, could infect Physcomitrella, and ii whether B. cinerea, elicitors of a harpin (HrpN producing E.c. carotovora strain (SCC1 or a HrpN-negative strain (SCC3193, could cause disease symptoms and induce defense responses in Physcomitrella. Results B. cinerea and E.c. carotovora were found to readily infect Physcomitrella gametophytic tissues and cause disease symptoms. Treatments with B. cinerea spores or cell-free culture filtrates from E.c. carotovoraSCC1 (CF(SCC1, resulted in disease development with severe maceration of Physcomitrella tissues, while CF(SCC3193 produced only mild maceration. Although increased cell death was observed with either the CFs or B. cinerea, the occurrence of cytoplasmic shrinkage was only visible in Evans blue stained protonemal cells treated with CF(SCC1 or inoculated with B. cinerea. Most cells showing cytoplasmic shrinkage accumulated autofluorescent compounds and brown chloroplasts were evident in a high proportion of these cells. CF treatments and B. cinerea inoculation induced the expression of the defense-related genes: PR-1, PAL, CHS and LOX. Conclusion B. cinerea and E.c. carotovora elicitors induce a defense response in Physcomitrella, as evidenced by enhanced expression of conserved plant defense-related genes. Since cytoplasmic shrinkage is the most common morphological change observed in plant PCD, and that harpins and B

  11. Biosensors for plant pathogen detection.

    Science.gov (United States)

    Khater, Mohga; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2017-07-15

    Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Role of temperature and free moisture in onion flower blight. [Botrytis squamosa; Botrytis cinerea; and Botrytis allii

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, G.R.; Lorbeer, J.W.

    1986-06-01

    The cardinal temperatures at which onion umbels were blighted (after inoculation when two-thirds of the florets were open) with Botrytis squamosa, B. cinerea, and B. allii (isolated from blighted onion florets) were near 9, 21, and 27 C for B. squamosa, near 12, 21, and 30 C for B. cinerea, and near 9, 24, and 30 C for B. allii. The cardinal temperatures for mycelial growth (potato-dextrose agar) of B. squamosa, B. cinerea, and B. allii were near 5, 22, and 30 C for each fungus. The cardinal temperatures for conidial germination (on purified water agar) were near 6, 15, and 30 C for B. squamosa; 3, 18, and 33 C for B. cinerea; and 6, 24, and 33 C for B. allii. When the duration of free moisture on umbels after inoculation with the three pathogens was increased from 0 to 96 hr. the percentages of unopened florets, open florets, and immature seed capsules blighted at 21 C were increased significantly. Free moisture durations of 12-24, 6-12, and 6-12 hr were necessary for blighting of unopen florets, open florets, and immature seed capsules, respectively, by each pathogen at 21 C. A positive correlation between the amount of July rainfall and the natural incidence of onion flower blight was observed in Orange County, New York, from 1976 to 1981. 10 references, 2 figures, 1 table.

  13. ABC transporters from Botrytis cinerea in biotic and abiotic interactions

    NARCIS (Netherlands)

    Schoonbeek, H.

    2004-01-01

    Botrytis cinereais the causal agent of grey mould disease on a wide variety of crop plants. It is relatively insensitive to natural and synthetic fungitoxic compounds. This thesis describes how ABC (ATP-binding cassette) transporters contribute to protection by actively

  14. Modes of action for biological control of Botrytis cinerea by antagonistic bacteria

    Directory of Open Access Journals (Sweden)

    Rana HAIDAR

    2017-01-01

    Full Text Available The role of beneficial bacteria in biocontrol of plant diseases, particularly those caused by the necrotrophic fungus Botrytis cinerea, has been investigated by testing many bacteria under laboratory and field conditions. Bacteria may protect plants against B. cinerea by direct antagonistic interactions between biocontrol agents and this pathogen, as well as indirect effects through the induction of host resistance. This review focuses on various bacteria that act as biological control agents (BCAs of B. cinerea and their associated mechanisms. The modes of action (MoAs include: i synthesis of anti-fungal metabolites, such as antibiotics, cell wall-degrading enzymes and volatile organic compounds (VOCs; ii competition for nutrients and/or a niche; and iii induction of host resistance. The challenge for development of BCAs is to reduce the variability of efficiency and to prove persistence under a large range of conditions. We discuss the advantages and drawbacks of MoA for future applications of bacteria in the field and in post-harvest storage, as well as combination of different MoAs as a strategy to achieve a more regular efficacy.

  15. Arabidopsis AtERF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Huijuan eZhang

    2015-09-01

    Full Text Available Upon pathogen infection, activation of immune response requires effective transcriptional reprogramming that regulates inducible expression of a large set of defense genes. A number of ethylene-responsive factor transcription factors have been shown to play critical roles in regulating immune responses in plants. In the present study, we explored the functions of Arabidopsis AtERF15 in immune responses against Pseudomonas syringae pv. tomato (Pst DC3000, a (hemibiotrophic bacterial pathogen, and Botrytis cinerea, a necrotrophic fungal pathogen. Expression of AtERF15 was induced by infection of Pst DC3000 and B. cinerea and by treatments with salicylic acid (SA and methyl jasmonate. Biochemical assays demonstrated that AtERF15 is a nucleus-localized transcription activator. The AtERF15-overexpressing (AtERF15-OE plants displayed enhanced resistance while the AtERF15-RNAi plants exhibited decreased resistance against Pst DC3000 and B. cinerea. Meanwhile, Pst DC3000- or B. cinerea-induced expression of defense genes was upregulated in AtERF15-OE plants but downregulated in AtERF15-RNAi plants, as compared to the expression in wild type plants. In response to infection with B. cinerea, the AtERF15-OE plants accumulated less reactive oxygen species (ROS while the AtERF15-RNAi plants accumulated more ROS. The flg22- and chitin-induced oxidative burst was abolished and expression levels of the pattern-triggered immunity-responsive genes AtFRK1 and AtWRKY53 were suppressed in AtER15-RNAi plants upon treatment with flg22 or chitin. Furthermore, SA-induced defense response was also partially impaired in the AtERF15-RNAi plants. These data demonstrate that AtERF15 is a positive regulator of multiple layers of the immune responses in Arabidopsis.

  16. The Kynurenine 3-Monooxygenase Encoding Gene, BcKMO, Is Involved in the Growth, Development, and Pathogenicity of Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2018-05-01

    Full Text Available A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea. A novel pathogenicity-related gene BcKMO, which encodes kynurenine 3-monooxygenase (KMO, was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO-complementing mutant (BCG183/BcKMO were similar to those of the wild-type (WT strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/BcKMO. Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H2O2, and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP and mitogen-activated protein kinase (MAPK signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1, Pka2, PkaR, Bcg2, Bcg3, bmp1, and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea. Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea.

  17. The Kynurenine 3-Monooxygenase Encoding Gene, BcKMO, Is Involved in the Growth, Development, and Pathogenicity of Botrytis cinerea.

    Science.gov (United States)

    Zhang, Kang; Yuan, Xuemei; Zang, Jinping; Wang, Min; Zhao, Fuxin; Li, Peifen; Cao, Hongzhe; Han, Jianmin; Xing, Jihong; Dong, Jingao

    2018-01-01

    A pathogenic mutant, BCG183, was obtained by screening the T-DNA insertion library of Botrytis cinerea . A novel pathogenicity-related gene BcKMO , which encodes kynurenine 3-monooxygenase (KMO), was isolated and identified via thermal asymmetric interlaced PCR, bioinformatics analyses, and KMO activity measurement. The mutant BCG183 grew slowly, did not produce conidia and sclerotia, had slender hyphae, and presented enhanced pathogenicity. The phenotype and pathogenicity of the BcKMO -complementing mutant (BCG183/ BcKMO ) were similar to those of the wild-type (WT) strain. The activities of polymethylgalacturonase, polygalacturonase, and toxins were significantly higher, whereas acid production was significantly decreased in the mutant BCG183, when compared with those in the WT and BCG183/ BcKMO . Moreover, the sensitivity of mutant BCG183 to NaCl and KCl was remarkably increased, whereas that to fluconazole, Congo Red, menadione, H 2 O 2 , and SQ22536 and U0126 [cAMP-dependent protein kinase (cAMP) and mitogen-activated protein kinase (MAPK) signaling pathways inhibitors, respectively] were significantly decreased compared with the other strains. Furthermore, the key genes involved in the cAMP and MAPK signaling pathways, Pka1 , Pka2 , PkaR , Bcg2 , Bcg3 , bmp1 , and bmp3, were significantly upregulated or downregulated in the mutant BCG183. BcKMO expression levels were also upregulated or downregulated in the RNAi mutants of the key genes involved in the cAMP and MAPK signaling pathways. These findings indicated that BcKMO positively regulates growth and development, but negatively regulates pathogenicity of B. cinerea . Furthermore, BcKMO was found to be involved in controlling cell wall degrading enzymes activity, toxins activity, acid production, and cell wall integrity, and participate in cAMP and MAPK signaling pathways of B. cinerea .

  18. Irradiation and evolution of the gray rot botrytis cinerea at the strawberry plant

    International Nuclear Information System (INIS)

    Labidi, Arbia

    2005-01-01

    Strawberry was introduced since french colonization in tunisia as one of plants cultivated. At the end of the 1970's the strawberries (Fragaria ananassa) was developed in area of Cap Bon. grey mold, caused by botrytis cinerea is by far the most widespread and serious of strawberry fruit diseases and an ever-present threat to the crop. A wide variety of symptoms is caused by B. Cinerea such as a rot on fruit and blight on leaves. this fungus causes domages bith in the field and during storage. In order to reduce severity of grey mold, biological control in field and radiation on post-harvest are developed. The objective of this study was to determine the antagonism of some microorganisms against B.Cinerea such as Trichoderma and Bacillus in greenhouse. On the other hand we tested the efficacity of biological products such as Prev-Am and BM 86on enhancing plant defense. For the post-harvest studies, the goal is to provide a wear tool to manage better the fungus by gamma rays radiation. (author). 29 refs

  19. Dataset of the Botrytis cinerea phosphoproteome induced by different plant-based elicitors

    Directory of Open Access Journals (Sweden)

    Eva Liñeiro

    2016-06-01

    Full Text Available Phosphorylation is one of the main post-translational modification (PTM involved in signaling network in the ascomycete Botrytis cinerea, one of the most relevant phytopathogenic fungus. The data presented in this article provided a differential mass spectrometry-based analysis of the phosphoproteome of B. cinerea under two different phenotypical conditions induced by the use of two different elicitors: glucose and deproteinized Tomate Cell Walls (TCW. A total 1138 and 733 phosphoproteins were identified for glucose and TCW culture conditions respectively. Raw data are deposited at the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier (PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD003099. Further interpretation and discussion of these data are provided in our research article entitled “Phosphoproteome analysis of B.cinerea in response to different plant-based elicitors” (Liñeiro et al., 2016 [1].

  20. Effect of temperature on the morphological characteristics of Botrytis cinerea and its correlated with the genetic variability

    Directory of Open Access Journals (Sweden)

    Jorge G Fernández

    2014-07-01

    Full Text Available Objective: To study the effect of temperature on the morphological characteristics of Botrytis cinerea (B. cinerea and its correlated with the genetic variability. B. cinerea is a plant-pathogenic fungus that produces the disease known as grey mould in a wide variety of agriculturally important hosts in many countries. Methods: Six strains from different host collected have been isolated and characterized by several methods as mycelial growth, fungicide resistance, pathogenicity and the effects of the temperature. Also was analyzed by PCR and distinguished by the presence or absence of transposable elements. Results: Results showed that clear morphological differences exist between strains at the temperature of 4, 12 and 28 °C. All strains analyzed molecularly were classified as Group II (transposa-type. Demonstrating a negative correlation between mycelial growth and other characteristics as the fungicide resistance and pathogenicity. Lastly, it is difficult to establish relationships phenotypic and genotypic between strains of B. cinerea. Conclusions: The results indicated that the mycelial growth, resistance at fungicide and pathogenicity are independent of the characteristics molecular, however, are dependent of a factor such as temperature.

  1. The nitrogen availability interferes with mycorrhiza-induced resistance against Botrytis cinerea in tomato

    Directory of Open Access Journals (Sweden)

    Paloma Sanchez-Bel

    2016-10-01

    Full Text Available Mycorrhizal plants are generally quite efficient in coping with environmental challenges. It has been shown that the symbiosis with arbuscular mycorrhizal fungi (AMF can confer resistance against root and foliar pathogens, although the molecular mechanisms underlying such mycorrhiza-induced resistance (MIR are poorly understood. Tomato plants colonized with the AMF Rhizophagus irregularis display enhanced resistance against the necrotrophic foliar pathogen Botrytis cinerea. Leaves from arbuscular mycorrhizal (AM plants develop smaller necrotic lesions, mirrored also by a reduced levels of fungal biomass. A plethora of metabolic changes takes place in AMF colonized plants upon infection. Certain changes located in the oxylipin pathway indicate that several intermediaries are over-accumulated in the AM upon infection. AM plants react by accumulating higher levels of the vitamins folic acid and riboflavin, indolic derivatives and phenolic compounds such as ferulic acid and chlorogenic acid. Transcriptional analysis support the key role played by the LOX pathway in the shoots associated with MIR against B. cinerea.Interestingly, plants that have suffered a short period of nitrogen starvation appear to react by reprogramming their metabolic and genetic responses by prioritizing abiotic stress tolerance. Consequently, plants subjected to a transient nitrogen depletion become more susceptible to B. cinerea. Under these experimental conditions, MIR is severely affected although still functional. Many metabolic and transcriptional responses which are accumulated or activated by MIR such NRT2 transcript induction and OPDA and most Trp and indolic derivatives accumulation during MIR were repressed or reduced when tomato plants were depleted of N for 48 h prior infection. These results highlight the beneficial roles of AMF in crop protection by promoting induced resistance not only under optimal nutritional conditions but also buffering the susceptibility

  2. Plant innate immunity against human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Maeli eMelotto

    2014-08-01

    Full Text Available Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens.

  3. Immunity to plant pathogens and iron homeostasis.

    Science.gov (United States)

    Aznar, Aude; Chen, Nicolas W G; Thomine, Sebastien; Dellagi, Alia

    2015-11-01

    Iron is essential for metabolic processes in most living organisms. Pathogens and their hosts often compete for the acquisition of this nutrient. However, iron can catalyze the formation of deleterious reactive oxygen species. Hosts may use iron to increase local oxidative stress in defense responses against pathogens. Due to this duality, iron plays a complex role in plant-pathogen interactions. Plant defenses against pathogens and plant response to iron deficiency share several features, such as secretion of phenolic compounds, and use common hormone signaling pathways. Moreover, fine tuning of iron localization during infection involves genes coding iron transport and iron storage proteins, which have been shown to contribute to immunity. The influence of the plant iron status on the outcome of a given pathogen attack is strongly dependent on the nature of the pathogen infection strategy and on the host species. Microbial siderophores emerged as important factors as they have the ability to trigger plant defense responses. Depending on the plant species, siderophore perception can be mediated by their strong iron scavenging capacity or possibly via specific recognition as pathogen associated molecular patterns. This review highlights that iron has a key role in several plant-pathogen interactions by modulating immunity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. The genome of Botrytis cinerea, a ubiquitous broad host range necrotroph

    NARCIS (Netherlands)

    Hahn, M.; Viaud, M.; Kan, van J.A.L.

    2014-01-01

    Botrytis cinerea is a necrotrophic ascomycete, causing serious pre- and postharvest crop losses worldwide on a wide variety of plant species. Considerable research in recent years has unraveled a variety of molecular tools that enables the fungus to invade host tissue, including the secretion of

  5. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000

    Directory of Open Access Journals (Sweden)

    Mengnan Wang

    2018-03-01

    Full Text Available Ethylene response factor (ERF transcription factors play important roles in regulating immune responses in plants. In our study, we characterized a member of the ERF transcription factor family, VaERF20, from the Chinese wild Vitis genotype, V. amurensis Rupr “Shuangyou”. Phylogenetic analysis indicated that VaERF20 belongs to group IXc of the ERF family, in which many members are known to contribute to fighting pathogen infection. Consistent with this, expression of VaERF20 was induced by treatment with the necrotrophic fungal pathogen Botrytis cinerea (B. cinerea in “Shuangyou” and V. vinifera “Red Globe”. Arabidopsis thaliana plants over-expressing VaERF20 displayed enhanced resistance to B. cinerea and the bacterium Pseudomonas syringae pv. tomato (Pst DC3000. Patterns of pathogen-induced reactive oxygen species (ROS accumulation were entirely distinct in B. cinerea and PstDC3000 inoculated plants. Examples of both salicylic acid (SA and jasmonic acid/ethylene (JA/ET responsive defense genes were up-regulated after B. cinerea and PstDC3000 inoculation of the VaERF20-overexpressing transgenic A. thaliana plants. Evidence of pattern-triggered immunity (PTI, callose accumulation and stomatal defense, together with increased expression of PTI genes, was also greater in the transgenic lines. These data indicate that VaERF20 participates in various signal transduction pathways and acts as an inducer of immune responses.

  6. Pathogenic mycoflora on carrot seeds

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available Altogether 300 seed samples were collected during 9 years in 8 regions of Poland and the fungi Were isolated and their pathogenicity to carrot seedlings was examined. Alternaria rudicina provcd to be the most important pathogen although. A. alternata was more common. The other important pathogens were Fusarium spp., Phoma spp. and Botrytis cinerea. The infection of carrot seeds by A. radicina should be used as an important criterium in seed quality evaluation.

  7. Chemical signaling between plants and plant-pathogenic bacteria.

    Science.gov (United States)

    Venturi, Vittorio; Fuqua, Clay

    2013-01-01

    Studies of chemical signaling between plants and bacteria in the past have been largely confined to two models: the rhizobial-legume symbiotic association and pathogenesis between agrobacteria and their host plants. Recent studies are beginning to provide evidence that many plant-associated bacteria undergo chemical signaling with the plant host via low-molecular-weight compounds. Plant-produced compounds interact with bacterial regulatory proteins that then affect gene expression. Similarly, bacterial quorum-sensing signals result in a range of functional responses in plants. This review attempts to highlight current knowledge in chemical signaling that takes place between pathogenic bacteria and plants. This chemical communication between plant and bacteria, also referred to as interkingdom signaling, will likely become a major research field in the future, as it allows the design of specific strategies to create plants that are resistant to plant pathogens.

  8. A multiplex PCR assay for the detection and quantification of Sclerotinia sclerotiorum and Botrytis cinerea.

    Science.gov (United States)

    Reich, J D; Alexander, T W; Chatterton, S

    2016-05-01

    Traditional culture methods for identifying the plant fungal pathogens Sclerotinia sclerotiorum (Lib.) de Bary and Botrytis cinerea Pers.:Fr. are slow and laborious. The goal of this study was to develop a multiplex real-time PCR (qPCR) assay to detect and quantify DNA from S. sclerotiorum and B. cinerea. A primer set (SsIGS_5) for S. sclerotiorum was designed that targeted the intergenic spacer (IGS) regions of the ribosomal DNA. Addition of a probe to the assay increased its specificity: when the primer/probe set was tested against 21 fungal species (35 strains), amplification was detected from all S. sclerotiorum strains and no other species. For qPCR, the SsIGS_5 primer and probe set exhibited a linear range from 7·0 ng to 0·07 pg target DNA (R(2)  = 0·99). SsIGS_5 was then multiplexed with a previously published primer/probe set for B. cinerea to develop a high-throughput method for the detection and quantification of DNA from both pathogens. When multiplexed, the sensitivity and specificity of both assays were not different from individual qPCR reactions. The multiplex assay is currently being used to detect and quantify S. sclerotiorum and B. cinerea DNA from aerosol samples collected in commercial seed alfalfa fields. A primer and probe set for the quantification of Sclerotinia sclerotiorum DNA in a PCR assay was developed. The probe-based nature of this assay signifies an improvement over previous assays for this species by allowing multiplex reactions while maintaining high sensitivity. The primer/probe set was used in a multiplex real-time PCR assay for the quantification of S. sclerotiorum and Botrytis cinerea DNA, enabling rapid analysis of environmental samples. In crops susceptible to both pathogens, this multiplex assay can be used to quickly quantify the presence of each pathogen. © 2016 Her Majesty the Queen in Right of Canada © 2016 The Society for Applied Microbiology. Reproduced with the permission of the Office of the

  9. Partial stem and leaf resistance against the fungal pathogen Botrytis cinerea in wild relatives of tomato

    NARCIS (Netherlands)

    Have, ten A.; Berloo, van R.; Lindhout, P.; Kan, van J.A.L.

    2007-01-01

    Tomato (Solanum lycopersicum) is one of many greenhouse crops that can be infected by the necrotrophic ascomycete Botrytis cinerea. Commercial cultivation of tomato is hampered by the lack of resistance. Quantitative resistance has been reported in wild tomato relatives, mostly based on leaf assays.

  10. Effectiveness of electron beam irradiation in the control of some soilborne pathogens

    International Nuclear Information System (INIS)

    Orlikowski, L.B.; Ptaszek, M.; Migdal, W.; Gryczka, U.

    2011-01-01

    Electron beam (EB) irradiation was tested against Botrytis cinerea, Pythium ultimum and Phytophthora citricola the most dangerous pathogens causing stem and root rot of seedlings, cuttings and older plants. In the laboratory trials cultures of 3 species were irradiated with doses 0 (control), 1.5, 3.0, 4.5 and 6.0 kGy whereas peat was treated with 10, 15 and 25 kGy. P. citricola was the most sensitive species for irradiation. In greenhouse trials 15 kGy irradiation of peat protected chrysanthemum cuttings against B. cinerea and P. ultimum as well as rhododendron young plants against P. citricola. Irradiation of peat did not influence the growth and development of the tested plants. (authors)

  11. Botrytis cinerea als parasiet van vlas

    NARCIS (Netherlands)

    Spek, van der J.

    1965-01-01

    After some introductory words on flax, different forms of the parasite Botrytis cinerea Pers. ex Fr. were compared. Use of differences in production of organic acids as done by van Beyma Thoe Kingma were not a satisfactory distinction between formae lini of Botrytis. The M, Sc and Sp growth forms,

  12. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies.

    Science.gov (United States)

    Delaunois, Bertrand; Jeandet, Philippe; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan; Cordelier, Sylvain

    2014-01-01

    Plant pathogens have evolved by developing different strategies to infect their host, which in turn have elaborated immune responses to counter the pathogen invasion. The apoplast, including the cell wall and extracellular space outside the plasma membrane, is one of the first compartments where pathogen-host interaction occurs. The plant cell wall is composed of a complex network of polysaccharides polymers and glycoproteins and serves as a natural physical barrier against pathogen invasion. The apoplastic fluid, circulating through the cell wall and intercellular spaces, provides a means for delivering molecules and facilitating intercellular communications. Some plant-pathogen interactions lead to plant cell wall degradation allowing pathogens to penetrate into the cells. In turn, the plant immune system recognizes microbial- or damage-associated molecular patterns (MAMPs or DAMPs) and initiates a set of basal immune responses, including the strengthening of the plant cell wall. The establishment of defense requires the regulation of a wide variety of proteins that are involved at different levels, from receptor perception of the pathogen via signaling mechanisms to the strengthening of the cell wall or degradation of the pathogen itself. A fine regulation of apoplastic proteins is therefore essential for rapid and effective pathogen perception and for maintaining cell wall integrity. This review aims to provide insight into analyses using proteomic approaches of the apoplast to highlight the modulation of the apoplastic protein patterns during pathogen infection and to unravel the key players involved in plant-pathogen interaction.

  13. Enhanced Botrytis cinerea resistance of Arabidopsis plants grown in compost may be explained by increased expression of defense-related genes, as revealed by microarray analysis.

    Directory of Open Access Journals (Sweden)

    Guillem Segarra

    Full Text Available Composts are the products obtained after the aerobic degradation of different types of organic matter waste and can be used as substrates or substrate/soil amendments for plant cultivation. There is a small but increasing number of reports that suggest that foliar diseases may be reduced when using compost, rather than standard substrates, as growing medium. The purpose of this study was to examine the gene expression alteration produced by the compost to gain knowledge of the mechanisms involved in compost-induced systemic resistance. A compost from olive marc and olive tree leaves was able to induce resistance against Botrytis cinerea in Arabidopsis, unlike the standard substrate, perlite. Microarray analyses revealed that 178 genes were differently expressed, with a fold change cut-off of 1, of which 155 were up-regulated and 23 were down-regulated in compost-grown, as against perlite-grown plants. A functional enrichment study of up-regulated genes revealed that 38 Gene Ontology terms were significantly enriched. Response to stress, biotic stimulus, other organism, bacterium, fungus, chemical and abiotic stimulus, SA and ABA stimulus, oxidative stress, water, temperature and cold were significantly enriched, as were immune and defense responses, systemic acquired resistance, secondary metabolic process and oxireductase activity. Interestingly, PR1 expression, which was equally enhanced by growing the plants in compost and by B. cinerea inoculation, was further boosted in compost-grown pathogen-inoculated plants. Compost triggered a plant response that shares similarities with both systemic acquired resistance and ABA-dependent/independent abiotic stress responses.

  14. Plants, plant pathogens, and microgravity--a deadly trio

    Science.gov (United States)

    Leach, J. E.; Ryba-White, M.; Sun, Q.; Wu, C. J.; Hilaire, E.; Gartner, C.; Nedukha, O.; Kordyum, E.; Keck, M.; Leung, H.; hide

    2001-01-01

    Plants grown in spaceflight conditions are more susceptible to colonization by plant pathogens. The underlying causes for this enhanced susceptibility are not known. Possibly the formation of structural barriers and the activation of plant defense response components are impaired in spaceflight conditions. Either condition would result from altered gene expression of the plant. Because of the tools available, past studies focused on a few physiological responses or biochemical pathways. With recent advances in genomics research, new tools, including microarray technologies, are available to examine the global impact of growth in the spacecraft on the plant's gene expression profile. In ground-based studies, we have developed cDNA subtraction libraries of rice that are enriched for genes induced during pathogen infection and the defense response. Arrays of these genes are being used to dissect plant defense response pathways in a model system involving wild-type rice plants and lesion mimic mutants. The lesion mimic mutants are ideal experimental tools because they erratically develop defense response-like lesions in the absence of pathogens. The gene expression profiles from these ground-based studies will provide the molecular basis for understanding the biochemical and physiological impacts of spaceflight on plant growth, development and disease defense responses. This, in turn, will allow the development of strategies to manage plant disease for life in the space environment.

  15. Physcomitrella patens activates reinforcement of the cell wall, programmed cell death and accumulation of evolutionary conserved defence signals, such as salicylic acid and 12-oxo-phytodienoic acid, but not jasmonic acid, upon Botrytis cinerea infection.

    Science.gov (United States)

    Ponce De León, Inés; Schmelz, Eric A; Gaggero, Carina; Castro, Alexandra; Álvarez, Alfonso; Montesano, Marcos

    2012-10-01

    The moss Physcomitrella patens is an evolutionarily basal model system suitable for the analysis of plant defence responses activated after pathogen assault. Upon infection with the necrotroph Botrytis cinerea, several defence mechanisms are induced in P. patens, including the fortification of the plant cell wall by the incorporation of phenolic compounds and the induced expression of related genes. Botrytis cinerea infection also activates the accumulation of reactive oxygen species and cell death with hallmarks of programmed cell death in moss tissues. Salicylic acid (SA) levels also increase after fungal infection, and treatment with SA enhances transcript accumulation of the defence gene phenylalanine ammonia-lyase (PAL) in P. patens colonies. The expression levels of the genes involved in 12-oxo-phytodienoic acid (OPDA) synthesis, including lipoxygenase (LOX) and allene oxide synthase (AOS), increase in P. patens gametophytes after pathogen assault, together with a rise in free linolenic acid and OPDA concentrations. However, jasmonic acid (JA) could not be detected in healthy or infected tissues of this plant. Our results suggest that, although conserved defence signals, such as SA and OPDA, are synthesized and are probably involved in the defence response of P. patens against B. cinerea infection, JA production appears to be missing. Interestingly, P. patens responds to OPDA and methyl jasmonate by reducing moss colony growth and rhizoid length, suggesting that jasmonate perception is present in mosses. Thus, P. patens can provide clues with regard to the evolution of different defence pathways in plants, including signalling and perception of OPDA and jasmonates in nonflowering and flowering plants. © 2012 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2012 BSPP AND BLACKWELL PUBLISHING LTD.

  16. Purification and Phytotoxic Analysis of Botrytis cinerea Virulence Factors: New Avenues for Crop Protection

    Directory of Open Access Journals (Sweden)

    Maria R. Davis

    2012-07-01

    Full Text Available Botrytis cinerea is a necrotrophic fungus infecting over 230 plant species worldwide. This highly adaptable pathogen can afflict agricultural products from seed to storage, causing significant economic losses and instability in the food supply. Small protein virulence factors secreted by B. cinerea during infection play an important role in initiation and spread of disease. BcSnod1 was found to be abundantly expressed upon exposure to media containing strawberry extract. From sequence similarity, BcSnod2 was also identified and both were recognized as members of the Ceratoplatanin family of small phytotoxic proteins. Recombinant BcSnod1 was shown to have a phytotoxic effect and play an important role in pathogenicity while the role of BcSnod2 remains less clear. Both bacterial and yeast production systems are reported, though the bacterial protein is less toxic and mostly unfolded relative to that made in yeast. Compared to BcSnod1, recombinant bacterial BcSnod2 shows similar, but delayed phytotoxicity on tomato leaves. Further studies of these critical virulence factors and their inhibition promise to provide new avenues for crop protection.

  17. Evaluation of host resistance to Botrytis bunch rot in Vitis spp. and its correlation with Botrytis leaf spot

    Science.gov (United States)

    Botrytis cinerea, the causal agent of Botrytis bunch rot and gray mold, is the number one postharvest disease of fresh grapes in the United States. Fungicide applications are used to manage the disease, but fungicide-resistant isolates are common and postharvest losses occur annually. Host resistanc...

  18. PECTOPLATE: the simultaneous phenotyping of pectin methylesterases, pectinases and oligogalacturonides in plants during biotic stresses

    Directory of Open Access Journals (Sweden)

    Vincenzo eLionetti

    2015-05-01

    Full Text Available Degradation of pectin, a major component of plant cell wall, is important for fungal necrotrophs to achieve a successful infection. The activities of pectin methylesterases from both plants and pathogens and the degree and pattern of pectin methylesterification are critical for the outcome of plant-pathogen interaction. Partial degradation of pectin by pectin degrading enzymes releases oligogalacturonides, elicitors of plant defence responces. Few analytical techniques are available to monitor pectin methylesterification-modulating machineries and oligogalacturonides produced during plant pathogen interaction. In the present study, Ruthenium Red is presented as useful dye to monitor both Botrytis cinerea mycelium growth and the induction of PME activity in plant tissue during fungal infection. Moreover a simple, inexpensive and sensitive method, named PECTOPLATE, is proposed that allows a simultaneous phenotyping of PME and pectinase activities expressed during pathogen infection and of pectinase potential in generating oligogalacturonides. The results in the manuscript also indicate that PMEIs can be used in PECTOPLATE as a tool to discriminate the activities of plant PMEs from those of pathogen PMEs expressed during pathogenesis.

  19. Botrytis cinerea protein O-mannosyltransferases play critical roles in morphogenesis, growth, and virulence.

    Directory of Open Access Journals (Sweden)

    Mario González

    Full Text Available Protein O-glycosylation is crucial in determining the structure and function of numerous secreted and membrane-bound proteins. In fungi, this process begins with the addition of a mannose residue by protein O-mannosyltransferases (PMTs in the lumen side of the ER membrane. We have generated mutants of the three Botrytis cinerea pmt genes to study their role in the virulence of this wide-range plant pathogen. B. cinerea PMTs, especially PMT2, are critical for the stability of the cell wall and are necessary for sporulation and for the generation of the extracellular matrix. PMTs are also individually required for full virulence in a variety of hosts, with a special role in the penetration of intact plant leaves. The most significant case is that of grapevine leaves, whose penetration requires the three functional PMTs. Furthermore, PMT2 also contributes significantly to fungal adherence on grapevine and tobacco leaves. Analysis of extracellular and membrane proteins showed significant changes in the pattern of protein secretion and glycosylation by the pmt mutants, and allowed the identification of new protein substrates putatively glycosylated by specific PMTs. Since plants do no possess these enzymes, PMTs constitute a promising target in the development of novel control strategies against B. cinerea.

  20. Variety of plant pathogens of ornamental shrubs of the genus Rosa L.

    Directory of Open Access Journals (Sweden)

    Marchenko Alla Borisovna

    2015-12-01

    In the Ukraine’s forest-steppe environment, over the years of research, the most common disease among different representatives of the genus Rosa L. is Diplocarpon rosae FA Wolf, about 52.7%. Diseases caused by Sphaerotheca pannosa var. rosae Woron account for 28.3%: Coniothyrium wernsdorffiae Laubert―19.2%; Botrytis cinerea Pers.―16.9%; Phragmidium mucronatum (Pers. Schltdl., Phragmidium tuberculatum Müll. Hal., Nectria cinnabarina (Tode Fr.―from 7.2 to 6.7%. Pathogens Alternaria alternata (Fr. Keissl., Alternaria tenuissima (Kunze Wiltshire, Fusarium oxysporum Schltdl., Fusarium solani (Mart. Sacc., Phytophthora cactorum J. Schröt., Verticillium dahliae Kleb., Verticillium albo-atrum Reinke Berthold are less common―5%.

  1. Endopolygalacturonases van Botrytis cinerea: karakteristieken in vitro

    NARCIS (Netherlands)

    Krooshof, G.H.; Kester, H.C.M.; Burgers, K.; Benen, J.A.E.

    2003-01-01

    In dit artikel samenvattingen van lezingen van zeven presentaties van zestien onderzoekers van de KNPV-werkgroep Botrytis die op 18 september 2002 hun jaarlijkse bijeenkomst op het PPO Bomen in Boskoop hielden. De lezingen hadden de volgende onderwerpen: 1) Botrytis problems in hardy ornamentals; 2)

  2. The Quantitative Basis of the Arabidopsis Innate Immune System to Endemic Pathogens Depends on Pathogen Genetics.

    Directory of Open Access Journals (Sweden)

    Jason A Corwin

    2016-02-01

    Full Text Available The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabidopsis-Botrytis pathosystem to explore the quantitative genetic architecture underlying host innate immune system in a population of Arabidopsis thaliana. By infecting a diverse panel of Arabidopsis accessions with four phenotypically and genotypically distinct isolates of the fungal necrotroph B. cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence of pathogen genetic variation in analyzing host quantitative resistance. While known resistance genes, such as receptor-like kinases (RLKs and nucleotide-binding site leucine-rich repeat proteins (NLRs, were found to be enriched among associated genes, they only account for a small fraction of the total genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance, including defense hormone signaling and ROS production, as well as novel processes, such as leaf development. Validation of single gene T-DNA knockouts in a Col-0 background demonstrate a high success rate (60% when accounting for differences in environmental and Botrytis genetic variation. This study shows that the genetic architecture underlying host innate immune system is extremely complex and is likely able to sense and respond to differential virulence among pathogen

  3. A Proteomic Study of Pectin Degrading Enzymes Secreted by Botrytis cinerea Grown in Liquid Culture

    Science.gov (United States)

    Shah, Punit; Gutierrez-Sanchez, Gerardo; Orlando, Ron; Bergmann, Carl

    2009-01-01

    Botrytis cinerea is a pathogenic filamentous fungus which infects more than 200 plant species. The enzymes secreted by B. cinerea play an important role in the successful colonization of a host plant. Some of the secreted enzymes are involved in the degradation of pectin, a major component of the plant cell wall. A total of 126 proteins secreted by B. cinerea were identified by growing the fungus on highly or partially esterified pectin, or on sucrose in liquid culture. Sixty-seven common proteins were identified in each of the growth conditions, of which 50 proteins exhibited a Signal P motif. Thirteen B. cinerea proteins with functions related to pectin degradation were identified in both pectin growth conditions, while only four were identified in sucrose. Our results indicate it is unlikely that the activation of B. cinerea from the dormant state to active infection is solely dependent on changes in the degree of esterification of the pectin component of the plant cell wall. Further, these results suggest that future studies of the B. cinerea secretome in infections of ripe and unripe fruits will provide important information that will describe the mechanisms that the fungus employs to access nutrients and decompose tissues. PMID:19526562

  4. BcCFEM1, a CFEM Domain-Containing Protein with Putative GPI-Anchored Site, Is Involved in Pathogenicity, Conidial Production, and Stress Tolerance in Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Wenjun Zhu

    2017-09-01

    Full Text Available We experimentally isolated and characterized a CFEM protein with putative GPI-anchored site BcCFEM1 in Botrytis cinerea. BcCFEM1 contains a CFEM (common in several fungal extracellular membrane proteins domain with the characteristic eight cysteine residues at N terminus, and a predicted GPI modification site at C terminus. BcCFEM1 was significantly up-regulated during early stage of infection on bean leaves and induced chlorosis in Nicotiana benthamiana leaves using Agrobacterium infiltration method. Targeted deletion of BcCFEM1 in B. cinerea affected virulence, conidial production and stress tolerance, but not growth rate, conidial germination, colony morphology, and sclerotial formation. However, over expression of BcCFEM1 did not make any observable phenotype change. Therefore, our data suggested that BcCFEM1 contributes to virulence, conidial production, and stress tolerance. These findings further enhance our understanding on the sophisticated pathogenicity of B. cinerea beyond necrotrophic stage, highlighting the importance of CFEM protein to B. cinerea and other broad-host-range necrotrophic pathogens.

  5. Top 10 plant pathogenic bacteria in molecular plant pathology.

    Science.gov (United States)

    Mansfield, John; Genin, Stephane; Magori, Shimpei; Citovsky, Vitaly; Sriariyanum, Malinee; Ronald, Pamela; Dow, Max; Verdier, Valérie; Beer, Steven V; Machado, Marcos A; Toth, Ian; Salmond, George; Foster, Gary D

    2012-08-01

    Many plant bacteriologists, if not all, feel that their particular microbe should appear in any list of the most important bacterial plant pathogens. However, to our knowledge, no such list exists. The aim of this review was to survey all bacterial pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate the bacterial pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 458 votes from the international community, and allowed the construction of a Top 10 bacterial plant pathogen list. The list includes, in rank order: (1) Pseudomonas syringae pathovars; (2) Ralstonia solanacearum; (3) Agrobacterium tumefaciens; (4) Xanthomonas oryzae pv. oryzae; (5) Xanthomonas campestris pathovars; (6) Xanthomonas axonopodis pathovars; (7) Erwinia amylovora; (8) Xylella fastidiosa; (9) Dickeya (dadantii and solani); (10) Pectobacterium carotovorum (and Pectobacterium atrosepticum). Bacteria garnering honourable mentions for just missing out on the Top 10 include Clavibacter michiganensis (michiganensis and sepedonicus), Pseudomonas savastanoi and Candidatus Liberibacter asiaticus. This review article presents a short section on each bacterium in the Top 10 list and its importance, with the intention of initiating discussion and debate amongst the plant bacteriology community, as well as laying down a benchmark. It will be interesting to see, in future years, how perceptions change and which bacterial pathogens enter and leave the Top 10. © 2012 The Authors. Molecular Plant Pathology © 2012 BSPP and Blackwell Publishing Ltd.

  6. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    OpenAIRE

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the extracellular fungal pathogen Cladosporium fulvum serves as a model system to study host resistance and susceptibility in plant-pathogen interactions. Resistance to C. fulvum in tomato plants follows the ge...

  7. Epigenetic control of effectors in plant pathogens

    Directory of Open Access Journals (Sweden)

    Mark eGijzen

    2014-11-01

    Full Text Available Plant pathogens display impressive versatility in adapting to host immune systems. Pathogen effector proteins facilitate disease but can become avirulence (Avr factors when the host acquires discrete recognition capabilities that trigger immunity. The mechanisms that lead to changes to pathogen Avr factors that enable escape from host immunity are diverse, and include epigenetic switches that allow for reuse or recycling of effectors. This perspective outlines possibilities of how epigenetic control of Avr effector gene expression may have arisen and persisted in plant pathogens, and how it presents special problems for diagnosis and detection of specific pathogen strains or pathotypes.

  8. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions.

    Science.gov (United States)

    Berger, Susanne; Sinha, Alok K; Roitsch, Thomas

    2007-01-01

    Phytopathogen infection leads to changes in secondary metabolism based on the induction of defence programmes as well as to changes in primary metabolism which affect growth and development of the plant. Therefore, pathogen attack causes crop yield losses even in interactions which do not end up with disease or death of the plant. While the regulation of defence responses has been intensively studied for decades, less is known about the effects of pathogen infection on primary metabolism. Recently, interest in this research area has been growing, and aspects of photosynthesis, assimilate partitioning, and source-sink regulation in different types of plant-pathogen interactions have been investigated. Similarly, phytopathological studies take into consideration the physiological status of the infected tissues to elucidate the fine-tuned infection mechanisms. The aim of this review is to give a summary of recent advances in the mutual interrelation between primary metabolism and pathogen infection, as well as to indicate current developments in non-invasive techniques and important strategies of combining modern molecular and physiological techniques with phytopathology for future investigations.

  9. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.

    Science.gov (United States)

    Barak, Jeri D; Schroeder, Brenda K

    2012-01-01

    Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.

  10. Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato.

    Science.gov (United States)

    Rahman, Taha Abd El; Oirdi, Mohamed El; Gonzalez-Lamothe, Rocio; Bouarab, Kamal

    2012-12-01

    Plants use different immune pathways to combat pathogens. The activation of the jasmonic acid (JA)-signaling pathway is required for resistance against necrotrophic pathogens; however, to combat biotrophic pathogens, the plants activate mainly the salicylic acid (SA)-signaling pathway. SA can antagonize JA signaling and vice versa. NPR1 (noninducible pathogenesis-related 1) is considered a master regulator of SA signaling. NPR1 interacts with TGA transcription factors, ultimately leading to the activation of SA-dependent responses. SA has been shown to promote disease development caused by the necrotrophic pathogen Botrytis cinerea through NPR1, by suppressing the expression of two JA-dependent defense genes, proteinase inhibitors I and II. We show here that the transcription factor TGA1.a contributes to disease development caused by B. cinerea in tomato by suppressing the expression of proteinase inhibitors I and II. Finally, we present evidence that the SA-signaling pathway contributes to disease development caused by another necrotrophic pathogen, Alternaria solani, in tomato. Disease development promoted by SA through NPR1 requires the TGA1.a transcription factor. These data highlight how necrotrophs manipulate the SAsignaling pathway to promote their disease in tomato.

  11. Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 show increased susceptibility to a group of fungal and oomycete pathogens.

    Science.gov (United States)

    Bultreys, Alain; Trombik, Tomasz; Drozak, Anna; Boutry, Marc

    2009-09-01

    SUMMARY The behaviour of Nicotiana plumbaginifolia plants silenced for the ATP-binding cassette transporter gene NpPDR1 was investigated in response to fungal and oomycete infections. The importance of NpPDR1 in plant defence was demonstrated for two organs in which NpPDR1 is constitutively expressed: the roots and the petal epidermis. The roots of the plantlets of two lines silenced for NpPDR1 expression were clearly more sensitive than those of controls to the fungal pathogens Botrytis cinerea, Fusarium oxysporum sp., F. oxysporum f. sp. nicotianae, F. oxysporum f. sp. melonis and Rhizoctonia solani, as well as to the oomycete pathogen Phytophthora nicotianae race 0. The Ph gene-linked resistance of N. plumbaginifolia to P. nicotianae race 0 was totally ineffective in NpPDR1-silenced lines. In addition, the petals of the NpPDR1-silenced lines were spotted 15%-20% more rapidly by B. cinerea than were the controls. The rapid induction (after 2-4 days) of NpPDR1 expression in N. plumbaginifolia and N. tabacum mature leaves in response to pathogen presence was demonstrated for the first time with fungi and one oomycete: R. solani, F. oxysporum and P. nicotianae. With B. cinerea, such rapid expression was not observed in healthy mature leaves. NpPDR1 expression was not observed during latent infections of B. cinerea in N. plumbaginifolia and N. tabacum, but was induced when conditions facilitated B. cinerea development in leaves, such as leaf ageing or an initial root infection. This work demonstrates the increased sensitivity of NpPDR1-silenced N. plumbaginifolia plants to all of the fungal and oomycete pathogens investigated.

  12. Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes.

    Science.gov (United States)

    Brader, Günter; Compant, Stéphane; Vescio, Kathryn; Mitter, Birgit; Trognitz, Friederike; Ma, Li-Jun; Sessitsch, Angela

    2017-08-04

    Plants are colonized on their surfaces and in the rhizosphere and phyllosphere by a multitude of different microorganisms and are inhabited internally by endophytes. Most endophytes act as commensals without any known effect on their plant host, but multiple bacteria and fungi establish a mutualistic relationship with plants, and some act as pathogens. The outcome of these plant-microbe interactions depends on biotic and abiotic environmental factors and on the genotype of the host and the interacting microorganism. In addition, endophytic microbiota and the manifold interactions between members, including pathogens, have a profound influence on the function of the system plant and the development of pathobiomes. In this review, we elaborate on the differences and similarities between nonpathogenic and pathogenic endophytes in terms of host plant response, colonization strategy, and genome content. We furthermore discuss environmental effects and biotic interactions within plant microbiota that influence pathogenesis and the pathobiome.

  13. Evolution and genome architecture in fungal plant pathogens.

    Science.gov (United States)

    Möller, Mareike; Stukenbrock, Eva H

    2017-12-01

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  14. Threats and opportunities of plant pathogenic bacteria.

    Science.gov (United States)

    Tarkowski, Petr; Vereecke, Danny

    2014-01-01

    Plant pathogenic bacteria can have devastating effects on plant productivity and yield. Nevertheless, because these often soil-dwelling bacteria have evolved to interact with eukaryotes, they generally exhibit a strong adaptivity, a versatile metabolism, and ingenious mechanisms tailored to modify the development of their hosts. Consequently, besides being a threat for agricultural practices, phytopathogens may also represent opportunities for plant production or be useful for specific biotechnological applications. Here, we illustrate this idea by reviewing the pathogenic strategies and the (potential) uses of five very different (hemi)biotrophic plant pathogenic bacteria: Agrobacterium tumefaciens, A. rhizogenes, Rhodococcus fascians, scab-inducing Streptomyces spp., and Pseudomonas syringae. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Profiling the extended phenotype of plant pathogens: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Preston, Gail M

    2017-04-01

    One of the most fundamental questions in plant pathology is what determines whether a pathogen grows within a plant? This question is frequently studied in terms of the role of elicitors and pathogenicity factors in the triggering or overcoming of host defences. However, this focus fails to address the basic question of how the environment in host tissues acts to support or restrict pathogen growth. Efforts to understand this aspect of host-pathogen interactions are commonly confounded by several issues, including the complexity of the plant environment, the artificial nature of many experimental infection systems and the fact that the physiological properties of a pathogen growing in association with a plant can be very different from the properties of the pathogen in culture. It is also important to recognize that the phenotype and evolution of pathogen and host are inextricably linked through their interactions, such that the environment experienced by a pathogen within a host, and its phenotype within the host, is a product of both its interaction with its host and its evolutionary history, including its co-evolution with host plants. As the phenotypic properties of a pathogen within a host cannot be defined in isolation from the host, it may be appropriate to think of pathogens as having an 'extended phenotype' that is the product of their genotype, host interactions and population structure within the host environment. This article reflects on the challenge of defining and studying this extended phenotype, in relation to the questions posed below, and considers how knowledge of the phenotype of pathogens in the host environment could be used to improve disease control. What determines whether a pathogen grows within a plant? What aspects of pathogen biology should be considered in describing the extended phenotype of a pathogen within a host? How can we study the extended phenotype in ways that provide insights into the phenotypic properties of pathogens

  16. ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility

    Directory of Open Access Journals (Sweden)

    Anushen eSivakumaran

    2016-05-01

    Full Text Available Abscisic acid (ABA production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with NO in tomato following challenge with the ABA-synthesising pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production – an established mediator of defence against this pathogen - occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA (abscisic acid, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS generation but this was reduced in both L-NAME and ABA treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production.

  17. Identification of metabolic pathways expressed by Pichia anomala Kh6 in the presence of the pathogen Botrytis cinerea on apple: new possible targets for biocontrol improvement.

    Directory of Open Access Journals (Sweden)

    Anthony Kwasiborski

    Full Text Available Yeast Pichia anomala strain Kh6 Kurtzman (Saccharomycetales: Endomycetaceae exhibits biological control properties that provide an alternative to the chemical fungicides currently used by fruit or vegetable producers against main post-harvest pathogens, such as Botrytis cinerea (Helotiales: Sclerotiniaceae. Using an in situ model that takes into account interactions between organisms and a proteomic approach, we aimed to identify P. anomala metabolic pathways influenced by the presence of B. cinerea. A total of 105 and 60 P. anomala proteins were differentially represented in the exponential and stationary growth phases, respectively. In the exponential phase and in the presence of B. cinerea, the pentose phosphate pathway seems to be enhanced and would provide P. anomala with the needed nucleic acids and energy for the wound colonisation. In the stationary phase, P. anomala would use alcoholic fermentation both in the absence and presence of the pathogen. These results would suggest that the competitive colonisation of apple wounds could be implicated in the mode of action of P. anomala against B. cinerea.

  18. Combining Ascochyta blight and Botrytis grey mould resistance in chickpea through interspecific hybridization

    Directory of Open Access Journals (Sweden)

    Livinder KAUR

    2013-05-01

    Full Text Available Ascochyta blight (AB caused by Ascochyta rabiei (Pass. Labr. and Botrytis grey mould (BGM caused by Botrytis cinerea (Pers. ex Fr. are important diseases of the aerial plant parts of chickpea in most chickpea growing areas of the world. Although conventional approaches have contributed to reducing disease, the use of new technologies is expected to further reduce losses through these biotic stresses. Reliable screening techniques were developed: ‘field screening technique’ for adult plant screening, ‘cloth chamber technique’ and ‘growth chamber technique’ for the study of races of the pathogen and for segregating generations. Furthermore, the ‘cut twig technique’ for interspecific population for AB and BGM resistance was developed. For introgression of high levels of AB and BGM resistance in cultivated chickpea from wild relatives, accessions of seven annual wild Cicer spp. were evaluated and identified: C. judaicum accessions 185, ILWC 95 and ILWC 61, C. pinnatifidum accessions 188, 199 and ILWC 212 as potential donors. C. pinnatifidum accession188 was crossed with ICCV 96030 and 62 F9 lines resistant to AB and BGM were derived. Of the derived lines, several are being evaluated for agronomic traits and yield parameters while four lines, GL 29029, GL29206, GL29212, GL29081 possessing high degree of resistance were crossed with susceptible high yielding cultivars BG 256 to improve resistance and to undertake molecular studies. Genotyping of F2 populations with SSR markers from the chickpea genome was done to identify markers potentially linked with AB and BGM resistance genes. In preliminary studies, of 120 SSR markers used, six (Ta 2, Ta 110, Ta 139, CaSTMS 7, CaSTMS 24 and Tr 29 were identified with polymorphic bands between resistant derivative lines and the susceptible parent. The study shows that wild species of Cicer are the valuable gene pools of resistance to AB and BGM. The resistant derivative lines generated here can

  19. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Directory of Open Access Journals (Sweden)

    Ratthaphol Charlermroj

    Full Text Available Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac, chilli vein-banding mottle virus (CVbMV, potyvirus, watermelon silver mottle virus (WSMoV, tospovirus serogroup IV and melon yellow spot virus (MYSV, tospovirus. An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour was much shorter than that of ELISA (4 hours. This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  20. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Science.gov (United States)

    Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Oplatowska, Michalina; Gajanandana, Oraprapai; Grant, Irene R; Karoonuthaisiri, Nitsara; Elliott, Christopher T

    2013-01-01

    Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  1. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-06-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread. 

  2. Ecological niche of plant pathogens

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2011-02-01

    Full Text Available Disease ecology is a new approach to the understanding of the spread and dynamics of pathogens in natural and man-made environments. Defining and describing the ecological niche of the pathogens is one of the major tasks for ecological theory, as well as for practitioners preoccupied with the control and forecasting of established and emerging diseases. Niche theory has been periodically revised, not including in an explicit way the pathogens. However, many progresses have been achieved in niche modeling of disease spread, but few attempts were made to construct a theoretical frame for the ecological niche of pathogens. The paper is a review of the knowledge accumulated during last decades in the niche theory of pathogens and proposes an ecological approach in research. It quest for new control methods in what concerns forest plant pathogens, with a special emphasis on fungi like organisms of the genus Phytophthora. Species of Phytophthora are the most successful plant pathogens of the moment, affecting forest and agricultural systems worldwide, many of them being invasive alien organisms in many ecosystems. The hyperspace of their ecological niche is defined by hosts, environment and human interference, as main axes. To select most important variables within the hyperspace, is important for the understanding of the complex role of pathogens in the ecosystems as well as for control programs. Biotic relationships within ecosystem of host-pathogen couple are depicted by ecological network and specific metrics attached to this. The star shaped network is characterized by few high degree nodes, by short path lengths and relatively low connectivity, premises for a rapid disturbance spread.

  3. Matrix metalloproteinases operate redundantly in Arabidopsis immunity against necrotrophic and biotrophic fungal pathogens.

    Directory of Open Access Journals (Sweden)

    Puyan Zhao

    Full Text Available Matrix metalloproteinases (MMPs are evolutionarily conserved and multifunctional effector molecules playing pivotal roles in development and homeostasis. In this study we explored the involvement of the five Arabidopsis thaliana At-MMPs in plant defence against microbial pathogens. Expression of At2-MMP was most responsive to inoculation with fungi and a bacterial pathogen followed by At3-MMP and At5-MMP, while At1-MMP and At4-MMP were non-responsive to these biotic stresses. Loss-of-function mutants for all tested At-MMPs displayed increased susceptibility to the necrotrophic fungus Botrytis cinerea and double mutant at2,3-mmp and triple mutant at2,3,5-mmp plants developed even stronger symptoms. Consistent with this, transgenic Arabidopsis plants that expressed At2-MMP constitutively under the Cauliflower mosaic virus 35S promoter showed enhanced resistance to the necrotrophic pathogen. Similarly, resistance to the biotrophic Arabidopsis powdery mildew fungus Golovinomyces orontii was also compromised particularly in the at2,3-mmp / at2,3,5-mmp multiplex mutants, and increased in At2-MMP overexpressor plants. The degree of disease resistance of at-mmp mutants and At2-MMP overexpressor plants also correlated positively with the degree of MAMP-triggered callose deposition in response to the bacterial flagellin peptide flg22, suggesting that matrix metalloproteinases contribute to pattern-triggered immunity (PTI in interactions of Arabidopsis with necrotrophic and biotrophic pathogens.

  4. List of New Names of Plant Pathogenic Bacteria (2008-2010)

    Science.gov (United States)

    In 2010 the International Society of Plant Pathology Committee on the Taxonomy of Plant Pathogenic Bacteria published the Comprehensive List of Names of Plant Pathogenic Bacteria, 1980-2007 to provide an authoritative register of names of plant pathogens. In this manuscript we up-date the list of na...

  5. Plant pathology: monitoring a pathogen-targeted host protein.

    Science.gov (United States)

    Ellis, Jeff; Dodds, Peter

    2003-05-13

    A plant protein RIN4 is targeted and modified by bacterial pathogens as part of the disease process. At least two host resistance proteins monitor this pathogen interference and trigger the plant's defence responses.

  6. THE USE OF PLANTS TO PROTECT PLANTS AND FOOD AGAINST FUNGAL PATHOGENS: A REVIEW.

    Science.gov (United States)

    Shuping, D S S; Eloff, J N

    2017-01-01

    Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal diseases, farmers have used fungicides to manage the damage of plant pathogenic fungi. Drawbacks such as development of resistance and environmental toxicity associated with these chemicals have motivated researchers and cultivators to investigate other possibilities. Several databases were accessed to determine work done on protecting plants against plant fungal pathogens with plant extracts using search terms "plant fungal pathogen", "plant extracts" and "phytopathogens". Proposals are made on the best extractants and bioassay techniques to be used. In addition to chemical fungicides, biological agents have been used to deal with plant fungal diseases. There are many examples where plant extracts or plant derived compounds have been used as commercial deterrents of fungi on a large scale in agricultural and horticultural setups. One advantage of this approach is that plant extracts usually contain more than one antifungal compound. Consequently the development of resistance of pathogens may be lower if the different compounds affect a different metabolic process. Plants cultivated using plants extracts may also be marketed as organically produced. Many papers have been published on effective antimicrobial compounds present in plant extracts focusing on applications in human health. More research is required to develop suitable, sustainable, effective, cheaper botanical products that can be used to help overcome the scourge of plant fungal diseases. Scientists who have worked only on using plants to control human and animal fungal pathogens should consider the advantages of focusing on plant fungal pathogens. This approach could not only potentially increase

  7. Molecular mimicry modulates plant host responses to pathogens.

    Science.gov (United States)

    Ronald, Pamela; Joe, Anna

    2018-01-25

    Pathogens often secrete molecules that mimic those present in the plant host. Recent studies indicate that some of these molecules mimic plant hormones required for development and immunity. This Viewpoint reviews the literature on microbial molecules produced by plant pathogens that functionally mimic molecules present in the plant host. This article includes examples from nematodes, bacteria and fungi with emphasis on RaxX, a microbial protein produced by the bacterial pathogen Xanthomonas oryzae pv. oryzae. RaxX mimics a plant peptide hormone, PSY (plant peptide containing sulphated tyrosine). The rice immune receptor XA21 detects sulphated RaxX but not the endogenous peptide PSY. Studies of the RaxX/XA21 system have provided insight into both host and pathogen biology and offered a framework for future work directed at understanding how XA21 and the PSY receptor(s) can be differentially activated by RaxX and endogenous PSY peptides. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Plant Pathogenicity in Spaceflight Environments

    OpenAIRE

    Bishop, Deborah L.; Levine, Howard G.; Anderson, Anne J.

    1996-01-01

    Plants grown in microgravity are subject to many environmental stresses, which may promote microbial growth and result in pathogenicity to the plant. Recent plant experiments with super dwarf wheat aboard the NASA Space Shuttle and NASA/Russian Mir Space Station returned from the mission with severe degrees of fungal contamination. Understanding the cause of such microbial contamination and methods to eliminate it are necessary prerequisites for continued plant growth and development studies ...

  9. Sensitivity of Botrytis cinerea Isolates Against Some Fungicides ...

    African Journals Online (AJOL)

    Desen

    2012-01-26

    Jan 26, 2012 ... In:15 th. Int. Botrytis Sym. 31 th May–4 th June Cadiz, Spain. Vallejo I, Carbu M, Rebordinos L, Cantoral JM (2003). Virulence of. Botrytis cinerea strains on two grapevine varieties in South-Western. Spain. Biologia Bratislava. 58: 1067-1074. Walter M, Harris-Virgin P, Morgan C, Stanley J, Body-Wilson KSH.

  10. Development and evaluation of a novel and rapid detection assay for Botrytis cinerea based on loop-mediated isothermal amplification.

    Directory of Open Access Journals (Sweden)

    Ya-Bing Duan

    Full Text Available Botrytis cinerea is a devastating plant pathogen that causes grey mould disease. In this study, we developed a visual detection method of B. cinerea based on the Bcos5 sequence using loop-mediated isothermal amplification (LAMP with hydroxynaphthol blue dye (HNB. The LAMP reaction was optimal at 63 °C for 45 min. When HNB was added prior to amplification, samples with B. cinerea DNA developed a characteristic sky blue color after the reaction but those without DNA or with DNA of other plant pathogenic fungi did not. Results of HNB staining method were reconfirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for B. cinerea was 10(-3 ng µL(-1 of genomic DNA per reaction, which was 10-fold more sensitive than conventional PCR (10(-2 ng µL(-1. Detection of the LAMP assay for inoculum of B. cinerea was possible in the inoculated tomato and strawberry petals. In the 191 diseased samples, 180 (94.2% were confirmed as positive by LAMP, 172 (90.1% positive by the tissue separation, while 147 (77.0% positive by PCR. Because the LAMP assay performed well in aspects of sensitivity, specificity, repeatability, reliability, and visibility, it is suitable for rapid detection of B. cinerea in infected plant materials prior to storage and during transportation, such as cut flowers, fruits and vegetables.

  11. Proteomics of Plant Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Raquel González-Fernández

    2010-01-01

    Full Text Available Plant pathogenic fungi cause important yield losses in crops. In order to develop efficient and environmental friendly crop protection strategies, molecular studies of the fungal biological cycle, virulence factors, and interaction with its host are necessary. For that reason, several approaches have been performed using both classical genetic, cell biology, and biochemistry and the modern, holistic, and high-throughput, omic techniques. This work briefly overviews the tools available for studying Plant Pathogenic Fungi and is amply focused on MS-based Proteomics analysis, based on original papers published up to December 2009. At a methodological level, different steps in a proteomic workflow experiment are discussed. Separate sections are devoted to fungal descriptive (intracellular, subcellular, extracellular and differential expression proteomics and interactomics. From the work published we can conclude that Proteomics, in combination with other techniques, constitutes a powerful tool for providing important information about pathogenicity and virulence factors, thus opening up new possibilities for crop disease diagnosis and crop protection.

  12. Histone Acetylation in Fungal Pathogens of Plants

    Directory of Open Access Journals (Sweden)

    Junhyun Jeon

    2014-03-01

    Full Text Available Acetylation of histone lysine residues occurs in different organisms ranging from yeast to plants and mammals for the regulation of diverse cellular processes. With the identification of enzymes that create or reverse this modification, our understanding on histone acetylation has expanded at an amazing pace during the last two decades. In fungal pathogens of plants, however, the importance of such modification has only just begun to be appreciated in the recent years and there is a dearth of information on how histone acetylation is implicated in fungal pathogenesis. This review covers the current status of research related to histone acetylation in plant pathogenic fungi and considers relevant findings in the interaction between fungal pathogens and host plants. We first describe the families of histone acetyltransferases and deacetylases. Then we provide the cases where histone acetylation was investigated in the context of fungal pathogenesis. Finally, future directions and perspectives in epigenetics of fungal pathogenesis are discussed.

  13. The WRKY57 Transcription Factor Affects the Expression of Jasmonate ZIM-Domain Genes Transcriptionally to Compromise Botrytis cinerea Resistance.

    Science.gov (United States)

    Jiang, Yanjuan; Yu, Diqiu

    2016-08-01

    Although necrotrophic pathogens cause many devastating plant diseases, our understanding of the plant defense response to them is limited. Here, we found that loss of function of WRKY57 enhanced the resistance of Arabidopsis (Arabidopsis thaliana) against Botrytis cinerea infection. Further investigation suggested that the negative regulation of WRKY57 against B cinerea depends on the jasmonic acid (JA) signaling pathway. Chromatin immunoprecipitation experiments revealed that WRKY57 directly binds to the promoters of JASMONATE ZIM-DOMAIN1 (JAZ1) and JAZ5, encoding two important repressors of the JA signaling pathway, and activates their transcription. In vivo and in vitro experiments demonstrated that WRKY57 interacts with nuclear-encoded SIGMA FACTOR BINDING PROTEIN1 (SIB1) and SIB2. Further experiments display that the same domain, the VQ motif, of SIB1 and SIB2 interact with WRKY33 and WRKY57. Moreover, transient transcriptional activity assays confirmed that WRKY57 and WRKY33 competitively regulate JAZ1 and JAZ5, SIB1 and SIB2 further enhance these competitions of WRKY57 to WRKY33. Therefore, coordinated regulation of Arabidopsis against B cinerea by transcription activators and repressors would benefit plants by allowing fine regulation of defense. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. Trichodiene Production in a Trichoderma harzianum erg1-Silenced Strain Provides Evidence of the Importance of the Sterol Biosynthetic Pathway in Inducing Plant Defense-Related Gene Expression.

    Science.gov (United States)

    Malmierca, M G; McCormick, S P; Cardoza, R E; Monte, E; Alexander, N J; Gutiérrez, S

    2015-11-01

    Trichoderma species are often used as biocontrol agents against plant-pathogenic fungi. A complex molecular interaction occurs among the biocontrol agent, the antagonistic fungus, and the plant. Terpenes and sterols produced by the biocontrol fungus have been found to affect gene expression in both the antagonistic fungus and the plant. The terpene trichodiene (TD) elicits the expression of genes related to tomato defense and to Botrytis virulence. We show here that TD itself is able to induce the expression of Botrytis genes involved in the synthesis of botrydial (BOT) and also induces terpene gene expression in Trichoderma spp. The terpene ergosterol, in addition to its role as a structural component of the fungal cell membranes, acts as an elicitor of defense response in plants. In the present work, using a transformant of T. harzianum, which is silenced in the erg1 gene and accumulates high levels of squalene, we show that this ergosterol precursor also acts as an important elicitor molecule of tomato defense-related genes and induces Botrytis genes involved in BOT biosynthesis, in both cases, in a concentration-dependent manner. Our data emphasize the importance of a balance of squalene and ergosterol in fungal interactions as well as in the biocontrol activity of Trichoderma spp.

  15. Genetics-based interactions among plants, pathogens, and herbivores define arthropod community structure.

    Science.gov (United States)

    Busby, Posy E; Lamit, Louis J; Keith, Arthur R; Newcombe, George; Gehring, Catherine A; Whitham, Thomas G; Dirzo, Rodolfo

    2015-07-01

    Plant resistance to pathogens or insect herbivores is common, but its potential for indirectly influencing plant-associated communities is poorly known. Here, we test whether pathogens' indirect effects on arthropod communities and herbivory depend on plant resistance to pathogens and/or herbivores, and address the overarching interacting foundation species hypothesis that genetics-based interactions among a few highly interactive species can structure a much larger community. In a manipulative field experiment using replicated genotypes of two Populus species and their interspecific hybrids, we found that genetic variation in plant resistance to both pathogens and insect herbivores modulated the strength of pathogens' indirect effects on arthropod communities and insect herbivory. First, due in part to the pathogens' differential impacts on leaf biomass among the two Populus species and the hybrids, the pathogen most strongly impacted arthropod community composition, richness, and abundance on the pathogen-susceptible tree species. Second, we found similar patterns comparing pathogen-susceptible and pathogen-resistant genotypes within species. Third, within a plant species, pathogens caused a fivefold greater reduction in herbivory on insect-herbivore-susceptible plant genotypes than on herbivore-resistant genotypes, demonstrating that the pathogen-herbivore interaction is genotype dependent. We conclude that interactions among plants, pathogens, and herbivores can structure multitrophic communities, supporting the interacting foundation species hypothesis. Because these interactions are genetically based, evolutionary changes in genetic resistance could result in ecological changes in associated communities, which may in turn feed back to affect plant fitness.

  16. Chemical Characterization of Different Sumac and Pomegranate Extracts Effective against Botrytis cinerea Rots

    Directory of Open Access Journals (Sweden)

    Flora V. Romeo

    2015-06-01

    Full Text Available Pomegranate (Punica granatum L. peel and sumac (Rhus coriaria L. fruit and leaf extracts were chemically characterized and their ability to inhibit table grape (cv. Italia rots caused by Botrytis cinerea was evaluated on artificially inoculated berries. Different extraction methods were applied and extracts were characterized through Ultra Fast High Performance Liquid Chromatography coupled to Photodiode array detector and Electrospray ionization Mass spectrometer (UPLC-PDA-ESI/MSn for their phenol and anthocyanin contents. The concentrated pomegranate peel extract (PGE-C was the richest in phenols (66.97 g gallic acid equivalents/kg while the concentrated sumac extract from fruits (SUF-C showed the highest anthocyanin amount (171.96 mg cyanidin 3-glucoside equivalents/kg. Both phenolic and anthocyanin profile of pomegranate and sumac extracts were quite different: pomegranate extract was rich in cyanidin 3-glucoside, pelargonidin 3-glucoside and ellagic acid derivatives, while sumac extract was characterized by 7-methyl-cyanidin 3-galactoside and gallic acid derivatives. The concentrated extracts from both pomegranate peel and sumac leaves significantly reduced the development of Botrytis rots. In particular, the extract from pomegranate peel completely inhibited the pathogen at different intervals of time (0, 12, and 24 h between treatment and pathogen inoculation on fruits maintained at 22–24 °C and high relative humidity (RH. This extract may represent a valuable alternative to control postharvest fungal rots in view of its high efficacy because of the low cost of pomegranate peel, which is a waste product of processing factories.

  17. Hoe veroorzaakt Botrytis rot?

    NARCIS (Netherlands)

    Kars, I.

    2010-01-01

    Als een spore is geland op het plantoppervlak, scheidt Botrytis cinerea enzymen en metabolieten uit waaronder pectine-afbrekende enzymen zoals de zes endopolygalacturonases (BcPGs). Elk van deze BcPGs breken pectine uit de plantencelwanden en middenlamel op hun eigen wijze af. Pectine zit verweven

  18. Plant Responses to Pathogen Attack: Small RNAs in Focus.

    Science.gov (United States)

    Islam, Waqar; Noman, Ali; Qasim, Muhammad; Wang, Liande

    2018-02-08

    Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in plant defense processes via different pathways include both short interfering RNA (siRNA) and microRNA (miRNA) that actively regulate immunity in response to pathogenic attack via tackling pathogen-associated molecular patterns (PAMPs) and other effectors. In response to pathogen attack, plants protect themselves with the help of sRNA-dependent immune systems. That sRNA-mediated plant defense responses play a role during infections is an established fact. However, the regulations of several sRNAs still need extensive research. In this review, we discussed the topical advancements and findings relevant to pathogen attack and plant defense mediated by sRNAs. We attempted to point out diverse sRNAs as key defenders in plant systems. It is hoped that sRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases.

  19. Ozone injury increases infection of geranium leaves by Botrytis cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Manning, W.J.; Feder, W.A.; Perkins, I.

    1970-04-01

    Detached and attached, inoculated and noninoculated, ozone-injured and noninjured leaves from the lower, middle, and terminal regions of plants of geranium cultivars Enchantress and White Mountain were observed for infection by Botrytis cinerea. Previous exposure to ozone did not appreciably influence the susceptibility of leaves of either geranium cultivar to infection by B. cinerea, unless there was visible ozone injury. Ozone-injured, necrotic tissues on older attached and detached geranium leaves of both cultivars served as infection courts for B. cinerea. 14 references, 1 table.

  20. Development of Botrytis cinerea Pers. ex Fr. on leaves of common poinsettia (Euphorbia pulcherrima Willd.

    Directory of Open Access Journals (Sweden)

    Beata Kułek

    2012-12-01

    Full Text Available The development of Botrytis cinerea was assessed on six cultivars of common poinsettia, differing in the colour of bracts, and being in great demand among buyers of these ornamental plants. Resistance to this pathogen differed in the investigated poinsettias. Cultivar 'Malibu Red' (red bracts turned out to be most susceptible, while cv. 'Marblestar' (cream-pink and cv. 'Coco White' (white - relatively resistant to this fungus. After application of various inoculation methods (leaf discs, cut off leaves, whole plants the differences in resistance to B. cinerea were confirmed for two extreme cultivars - susceptible ('Malibu Red' and resistant ('Coco White', which indicated genetic background of this polymorphism. The rate of disease development on poinsettia leaves was affected by the amount of spores used for inoculation (optimum density of 3.5·105 B. cinerea conidia / ml suspension and the addition of stimulants (0.1 M glucose with 0.05 M KH2PO4, which facilitated germination and infection of the host tissue. The inoculated poinsettia leaves showed high stability of plasma membranes. In the susceptible cultivar, in spite of the development of necrotic spots, a significant increase in the membrane damage index (by 13% was found only on day 7 of the disease development.

  1. Novel Micro-organisms controlling plant pathogens

    NARCIS (Netherlands)

    Köhl, J.

    2009-01-01

    The invention relates to control of pathogen caused diseases on leaves, fruits and ears in plants, such as apple scab (Venturia inaequalis by treatment of plant with an isolate of Cladosporium cladosporioides. The treatment is effective in both prevention and treatment of the fungal infection

  2. Novel Micro-organisms controlling plant pathogens

    NARCIS (Netherlands)

    Köhl, J.

    2010-01-01

    The invention relates to control of pathogen caused diseases on leaves, fruits and ears in plants, such as apple scab (Venturia inaequalis by treatment of plant with an isolate of Cladosporium cladosporioides. The treatment is effective in both prevention and treatment of the fungal infection

  3. Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress.

    Science.gov (United States)

    Jansen, R M C; Miebach, M; Kleist, E; van Henten, E J; Wildt, J

    2009-11-01

    Changes in emission of volatile organic compounds (VOCs) from tomato induced by the fungus Botrytis cinerea were studied in plants inoculated by spraying with suspensions containing B. cinerea spores. VOC emissions were analysed using on-line gas chromatography-mass spectrometry, with a time resolution of about 1 h, for up to 2 days after spraying. Four phases were delimited according to the starting point and the applied day/night rhythm of the experiments. These phases were used to demonstrate changes in VOC flux caused by B. cinerea infestation. Tomato plants inoculated with B. cinerea emitted a different number and amount of VOCs after inoculation compared to control plants that had been sprayed with a suspension without B. cinerea spores. The changes in emissions were dependent on time after inoculation as well as on the severity of infection. The predominant VOCs emitted after inoculation were volatile products from the lipoxygenase pathway (LOX products). The increased emission of LOX products proved to be a strong indicator of a stress response, indicating that VOC emissions can be used to detect plant stress at an early stage. Besides emission of LOX products, there were also increases in monoterpene emissions. However, neither increased emission of LOX products nor of monoterpenes is specific for B. cinerea attack. The emission of LOX products is also induced by other stresses, and increased emission of monoterpenes seems to be the result of mechanical damage induced by secondary stress impacts on leaves.

  4. Phosphorylation and proteome dynamics in pathogen-resistant tomato plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.

    2008-01-01

    Microbial plant pathogens impose a continuous threat on global food production. Similar to disease resistance in mammals, an innate immune system allows plants to recognise pathogens and swiftly activate defence. For the work described in this thesis, the interaction between tomato and the

  5. Effects of fudioxonil on Botrytis cinerea and on grapevine defence response

    Directory of Open Access Journals (Sweden)

    Anne-Noëlle PETIT

    2011-05-01

    Full Text Available Normal 0 14 false false false IT ZH-TW X-NONE MicrosoftInternetExplorer4 Botrytis bunch rot of grapes is mainly controlled by applying fungicides at three crop stages: the end of flowering (BBCH 68, bunch closure (BBCH 77 and the beginning of veraison (BBCH 81. The phenylpyrroles derivative fudioxonil is among the most effective fungicides registered to control Botrytis cinerea. Its effectiveness was investigated in relation to spray timing, fungicide resistance and defence responses of grapevine. Frequencies of B. cinerea strains which were resistant to fungicides were evaluated at harvest. The frequencies of resistant phenotypes were similar in all treatments except for a class of multidrug resistant strains (MDR 1 whose frequency increased after fudioxonil applications. None of the treatments tested induced defence responses in flowers/berries after fungicide application, suggesting that fudioxonil effectiveness was not related to a stimulation of plant defence processes. The standard program of three fungicide applications provided the best control of B. cinerea  in the Champagne region in comparison with a single treatment of fudioxonil at any of the crop stages tested.

  6. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    Science.gov (United States)

    Justin B. Runyon; Mark C. Mescher; Consuelo M. De Moraes

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years...

  7. [Evaluation of Fusarium spp. pathogenicity in plant and murine models].

    Science.gov (United States)

    Forero-Reyes, Consuelo M; Alvarado-Fernández, Angela M; Ceballos-Rojas, Ana M; González-Carmona, Lady C; Linares-Linares, Melva Y; Castañeda-Salazar, Rubiela; Pulido-Villamarín, Adriana; Góngora-Medina, Manuel E; Cortés-Vecino, Jesús A; Rodríguez-Bocanegra, María X

    The genus Fusarium is widely recognized for its phytopathogenic capacity. However, it has been reported as an opportunistic pathogen in immunocompetent and immunocompromised patients. Thus, it can be considered a microorganism of interest in pathogenicity studies on different hosts. Therefore, this work evaluated the pathogenicity of Fusarium spp. isolates from different origins in plants and animals (murine hosts). Twelve isolates of Fusarium spp. from plants, animal superficial mycoses, and human superficial and systemic mycoses were inoculated in tomato, passion fruit and carnation plants, and in immunocompetent and immunosuppressed BALB/c mice. Pathogenicity tests in plants did not show all the symptoms associated with vascular wilt in the three plant models; however, colonization and necrosis of the vascular bundles, regardless of the species and origin of the isolates, showed the infective potential of Fusarium spp. in different plant species. Moreover, the pathogenicity tests in the murine model revealed behavioral changes. It was noteworthy that only five isolates (different origin and species) caused mortality. Additionally, it was observed that all isolates infected and colonized different organs, regardless of the species and origin of the isolates or host immune status. In contrast, the superficial inoculation test showed no evidence of epidermal injury or colonization. The observed results in plant and murine models suggest the pathogenic potential of Fusarium spp. isolates in different types of hosts. However, further studies on pathogenicity are needed to confirm the multihost capacity of this genus. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. The Latex Protein MLX56 from Mulberry (Morus multicaulis Protects Plants against Insect Pests and Pathogens

    Directory of Open Access Journals (Sweden)

    Ying-Ping Gai

    2017-08-01

    Full Text Available Biotic stresses are major constraints limiting the leaf quality and productivity of mulberry. MLX56 is a unique chitin-binding protein isolated from Shin-Ichinose (Morus alba latex that displays toxicity against lepidopteran caterpillars. In this study, the full-length cDNA encoding MLX56 was isolated from Husang 32 (M. multicaulis and designated HMLX56. Amino acid sequence analysis and protein modeling of three MLX56 proteins showed that they were highly conserved among Morus species. Tissue expression pattern analysis showed that the HMLX56 gene was strongly expressed in mulberry bark and leaves but only slightly expressed in fruits. In addition, analysis of GUS expression indicated that the promoter of HMLX56 showed higher transcriptional activity along the vascular strands, and its activity can be regulated by various environmental factors. Like the MLX56 protein from M. alba, the HMLX56 protein showed toxicity to Plutella xylostella. Moreover, when the HMLX56 gene was ectopically expressed in Arabidopsis, the transgenic plants showed enhanced resistance to aphids, the fungal pathogen Botrytis cinerea and the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Our data suggest that the HMLX56 protein has a lectin-like molecular structure consisting of two hevein-like chitin-binding domains which provide not only chitin-binding activities but also other mechanisms of defense. The information provided here improves our understanding of the potential functions and defense mechanisms of MLX56 proteins, enabling in-depth functional analysis of latex exudates and perhaps facilitating mulberry genetic improvement in the future.

  9. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper.

    Science.gov (United States)

    Lee, Boyoung; Lee, Soohyun; Ryu, Choong-Min

    2012-07-01

    Plants modulate defence signalling networks in response to different biotic stresses. The present study evaluated the effect of a phloem-sucking aphid on plant defence mechanisms in pepper (Capsicum annuum) during subsequent pathogen attacks on leaves and rhizosphere bacteria on roots. Plants were pretreated with aphids and/or the chemical trigger benzothiadiazol (BTH) 7 d before being challenged with two pathogenic bacteria, Xanthomonas axonopodis pv. vesicatoria (Xav) as a compatible pathogen and X. axonopodis pv. glycines (Xag) as an incompatible (non-host) pathogen. Disease severity was noticeably lower in aphid- and BTH + aphid-treated plants than in controls. Although treatment with BTH or aphids alone did not affect the hypersensitive response (HR) against Xag strain 8ra, the combination treatment had a synergistic effect on the HR. The aphid population was reduced by BTH pretreatment and by combination treatment with BTH and bacterial pathogens in a synergistic manner. Analysis of the expression of the defence-related genes Capsicum annum pathogenesis-related gene 9 (CaPR9), chitinase 2 (CaCHI2), SAR8·2 and Lipoxygenase1 (CaLOX1) revealed that aphid infestation resulted in the priming of the systemic defence responses against compatible and incompatible pathogens. Conversely, pre-challenge with the compatible pathogen Xav on pepper leaves significantly reduced aphid numbers. Aphid infestation increased the population of the beneficial Bacillus subtilis GB03 but reduced that of the pathogenic Ralstonia solanacearum SL1931. The expression of defence-related genes in the root and leaf after aphid feeding indicated that the above-ground aphid infestation elicited salicylic acid and jasmonic acid signalling throughout the whole plant. The findings of this study show that aphid feeding elicits plant resistance responses and attracts beneficial bacterial populations to help the plant cope with subsequent pathogen attacks.

  10. The homeobox BcHOX8 gene in Botrytis cinerea regulates vegetative growth and morphology.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Antal

    Full Text Available Filamentous growth and the capacity at producing conidia are two critical aspects of most fungal life cycles, including that of many plant or animal pathogens. Here, we report on the identification of a homeobox transcription factor encoding gene that plays a role in these two particular aspects of the development of the phytopathogenic fungus Botrytis cinerea. Deletion of the BcHOX8 gene in both the B. cinerea B05-10 and T4 strains causes similar phenotypes, among which a curved, arabesque-like, hyphal growth on hydrophobic surfaces; the mutants were hence named Arabesque. Expression of the BcHOX8 gene is higher in conidia and infection cushions than in developing appressorium or mycelium. In the Arabesque mutants, colony growth rate is reduced and abnormal infection cushions are produced. Asexual reproduction is also affected with abnormal conidiophore being formed, strongly reduced conidia production and dramatic changes in conidial morphology. Finally, the mutation affects the fungus ability to efficiently colonize different host plants. Analysis of the B. cinerea genome shows that BcHOX8 is one member of a nine putative homeobox genes family. Available gene expression data suggest that these genes are functional and sequence comparisons indicate that two of them would be specific to B. cinerea and its close relative Sclerotinia sclerotiorum.

  11. A Biocontrol Strain of Bacillus subtilis WXCDD105 Used to Control Tomato Botrytis cinerea and Cladosporium fulvum Cooke and Promote the Growth of Seedlings

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2018-05-01

    Full Text Available In this study, a strain named WXCDD105, which has strong antagonistic effects on Botrytis cinerea and Cladosporium fulvum Cooke, was screened out from the rhizosphere of healthy tomato plants. The tomato plants had inhibition diameter zones of 5.00 mm during the dual culture for four days. Based on the morphological and physiological characteristics, the 16S rDNA sequence, and the gyrB gene sequence analysis, the strain WXCDD105 was identified as Bacillus subtilis suBap. subtilis. The results of the mycelial growth test showed that the sterile filtrate of the strain WXCDD105 could significantly inhibit mycelial growth of Botrytis cinerea and Cladosporium fulvum Cooke. The inhibition rates were 95.28 and 94.44%, respectively. The potting experiment showed that the strain WXCDD105 made effective the control of tomato gray mold and tomato leaf mold. The control efficiencies were 74.70 and 72.07%. The antagonistic test results showed that the strain WXCDD105 had different degrees of inhibition on 10 kinds of plant pathogenic fungi and the average inhibition rates were more than 80%. We also found that the strain WXCDD105 stimulated both the seed germination and seedling growth of tomatoes. Using the fermentation liquid of WXCDD105 (108 cfu·mL−1 to treat the seeds, the germination rate and radicle length were increased. Under the treatment of the fermentation liquid of the strain WXCDD105 (106 cfu·mL−1, nearly all physiological indexes of tomato seedlings were significantly higher than that of the control groups. This could not only keep the nutritional quality of tomato fruits but also prevent them from rotting. This study provided us with an excellent strain for biological control of tomato gray mold, tomato leaf mold, and tomato growth promotion. This also laid the technical foundation for its application.

  12. Plant pathogens structure arthropod communities across multiple spatial and temporal scales

    NARCIS (Netherlands)

    Tack, A.J.M.; Dicke, M.

    2013-01-01

    Plant pathogens and herbivores frequently co-occur on the same host plants. Despite this, little is known about the impact of their interactions on the structure of plant-based ecological communities. Here, we synthesize evidence that indicates that plant pathogens may profoundly impact arthropod

  13. Plant response to biotic stress: Is there a common epigenetic response during plant-pathogenic and symbiotic interactions?

    Science.gov (United States)

    Zogli, Prince; Libault, Marc

    2017-10-01

    Plants constantly interact with pathogenic and symbiotic microorganisms. Recent studies have revealed several regulatory mechanisms controlling these interactions. Among them, the plant defense system is activated not only in response to pathogenic, but also in response to symbiotic microbes. Interestingly, shortly after symbiotic microbial recognition, the plant defense system is suppressed to promote plant infection by symbionts. Research studies have demonstrated the influence of the plant epigenome in modulating both pathogenic and symbiotic plant-microbe interactions, thereby influencing plant survival, adaptation and evolution of the plant response to microbial infections. It is however unclear if plant pathogenic and symbiotic responses share similar epigenomic profiles or if epigenomic changes differentially regulate plant-microbe symbiosis and pathogenesis. In this mini-review, we provide an update of the current knowledge of epigenomic control on plant immune responses and symbiosis, with a special attention being paid to knowledge gap and potential strategies to fill-in the missing links. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.

    Science.gov (United States)

    Jwa, Nam-Soo; Hwang, Byung Kook

    2017-01-01

    Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  15. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants

    Directory of Open Access Journals (Sweden)

    Nam-Soo Jwa

    2017-09-01

    Full Text Available Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP-triggered immunity (PTI and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.

  16. Transcriptome-Wide Analysis of Botrytis elliptica Responsive microRNAs and Their Targets in Lilium Regale Wilson by High-Throughput Sequencing and Degradome Analysis

    Directory of Open Access Journals (Sweden)

    Xue Gao

    2017-05-01

    Full Text Available MicroRNAs, as master regulators of gene expression, have been widely identified and play crucial roles in plant-pathogen interactions. A fatal pathogen, Botrytis elliptica, causes the serious folia disease of lily, which reduces production because of the high susceptibility of most cultivated species. However, the miRNAs related to Botrytis infection of lily, and the miRNA-mediated gene regulatory networks providing resistance to B. elliptica in lily remain largely unexplored. To systematically dissect B. elliptica-responsive miRNAs and their target genes, three small RNA libraries were constructed from the leaves of Lilium regale, a promising Chinese wild Lilium species, which had been subjected to mock B. elliptica treatment or B. elliptica infection for 6 and 24 h. By high-throughput sequencing, 71 known miRNAs belonging to 47 conserved families and 24 novel miRNA were identified, of which 18 miRNAs were downreguleted and 13 were upregulated in response to B. elliptica. Moreover, based on the lily mRNA transcriptome, 22 targets for 9 known and 1 novel miRNAs were identified by the degradome sequencing approach. Most target genes for elliptica-responsive miRNAs were involved in metabolic processes, few encoding different transcription factors, including ELONGATION FACTOR 1 ALPHA (EF1a and TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 2 (TCP2. Furthermore, the expression patterns of a set of elliptica-responsive miRNAs and their targets were validated by quantitative real-time PCR. This study represents the first transcriptome-based analysis of miRNAs responsive to B. elliptica and their targets in lily. The results reveal the possible regulatory roles of miRNAs and their targets in B. elliptica interaction, which will extend our understanding of the mechanisms of this disease in lily.

  17. Chromatin versus pathogens: the function of epigenetics in plant immunity

    Science.gov (United States)

    Ding, Bo; Wang, Guo-Liang

    2015-01-01

    To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed. PMID:26388882

  18. Decision Support System (DSS) for prevention of Botrytis in tomato in greenhouses

    OpenAIRE

    Visser, de, P.H.B.; Nannes, L.; Bokhoven, van, E.H.; Buwalda, F.

    2015-01-01

    Within the framework of the Interreg project ‘Gezonde Kas’ a decision support system (DSS) for Botrytis risk in tomato was developed. This report fi rst summarizes existing knowledge on botrytis in tomato. The quantitative relationships are subsequently laid down in computer code. This code formed the basis of a dynamic simulation model to predict the risk on botrytis in a tomato crop. The model requires input from the climate computer of the greenhouse, and can also manage input from manual ...

  19. Proteomic Analysis of Kiwifruit in Response to the Postharvest Pathogen, Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2018-02-01

    Full Text Available Gray mold, caused by the fungus Botrytis cinerea, is the most significant postharvest disease of kiwifruit. In the present study, iTRAQ with LC-ESI-MS/MS was used to identify the kiwifruit proteins associated with the response to B. cinerea. A total of 2,487 proteins in kiwifruit were identified. Among them, 292 represented differentially accumulated proteins (DAPs, with 196 DAPs having increased, and 96 DAPs having decreased in accumulation in B. cinerea-inoculated vs. water-inoculated, control kiwifruits. DAPs were associated with penetration site reorganization, cell wall degradation, MAPK cascades, ROS signaling, and PR proteins. In order to examine the corresponding transcriptional levels of the DAPs, RT-qPCR was conducted on a subset of 9 DAPs. In addition, virus-induced gene silencing was used to examine the role of myosin 10 in kiwifruit, a gene modulating host penetration resistance to fungal infection, in response to B. cinerea infection. The present study provides new insight on the understanding of the interaction between kiwifruit and B. cinerea.

  20. Impact of vector dispersal and host-plant fidelity on the dissemination of an emerging plant pathogen.

    Directory of Open Access Journals (Sweden)

    Jes Johannesen

    Full Text Available Dissemination of vector-transmitted pathogens depend on the survival and dispersal of the vector and the vector's ability to transmit the pathogen, while the host range of vector and pathogen determine the breath of transmission possibilities. In this study, we address how the interaction between dispersal and plant fidelities of a pathogen (stolbur phytoplasma tuf-a and its vector (Hyalesthes obsoletus: Cixiidae affect the emergence of the pathogen. Using genetic markers, we analysed the geographic origin and range expansion of both organisms in Western Europe and, specifically, whether the pathogen's dissemination in the northern range is caused by resident vectors widening their host-plant use from field bindweed to stinging nettle, and subsequent host specialisation. We found evidence for common origins of pathogen and vector south of the European Alps. Genetic patterns in vector populations show signals of secondary range expansion in Western Europe leading to dissemination of tuf-a pathogens, which might be newly acquired and of hybrid origin. Hence, the emergence of stolbur tuf-a in the northern range was explained by secondary immigration of vectors carrying stinging nettle-specialised tuf-a, not by widening the host-plant spectrum of resident vectors with pathogen transmission from field bindweed to stinging nettle nor by primary co-migration from the resident vector's historical area of origin. The introduction of tuf-a to stinging nettle in the northern range was therefore independent of vector's host-plant specialisation but the rapid pathogen dissemination depended on the vector's host shift, whereas the general dissemination elsewhere was linked to plant specialisation of the pathogen but not of the vector.

  1. Bcmimp1, a Botrytis cinerea gene transiently expressed in planta, encodes a mitochondrial protein

    Directory of Open Access Journals (Sweden)

    David eBenito-Pescador

    2016-02-01

    Full Text Available Botrytis cinerea is a widespread necrotrophic fungus which infects more than 200 plant species. In an attempt to characterize the physiological status of the fungus in planta and to identify genetic factors contributing to its ability to infect the host cells, a differential gene expression analysis during the interaction B. cinerea-tomato was carried out. Gene Bcmimp1 codes for a mRNA detected by differential display in the course of this analysis. During the interaction with the host, it shows a transient expression pattern with maximal expression levels during the colonization and maceration of the infected tissues. Bioinformatic analysis suggested that BCMIMP1 is an integral membrane protein located in the mitochondrial inner membrane. Co-localization experiments with a BCMIMP1-GFP fusion protein confirmed that the protein is targeted to the mitochondria. ΔBcmimp1 mutants do not show obvious phenotypic differences during saprophytic growth and their infection ability was unaltered as compared to the wild-type. Interestingly, the mutants produced increased levels of ROS, likely as a consequence of disturbed mitochondrial function. Although Bcmimp1 expression is enhanced in planta it cannot be considered a pathogenicity factor.

  2. The arable plant ecosystem as battleground for emergence of human pathogens

    Directory of Open Access Journals (Sweden)

    Leo eVan Overbeek

    2014-03-01

    Full Text Available Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh vegetables, sprouts and occasionally fruits made clear that these pathogens are not only transmitted to humans via the ‘classical’ routes of meat, eggs and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure, water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.

  3. The use of plants to protect plants and food against fungal pathogens

    African Journals Online (AJOL)

    Background: Plant fungal pathogens play a crucial role in the profitability, quality and quantity of plant production. These phytopathogens are persistent in avoiding plant defences causing diseases and quality losses around the world that amount to billions of US dollars annually. To control the scourge of plant fungal ...

  4. Genetic analisys of a cross of gaillon (Brassica oleracea var. alboglabra) with cauliflower (B.oleracea var. botrytis)

    OpenAIRE

    Spini, Vanessa B.M.G.; Kerr, Warwick Estevam

    2000-01-01

    The cauliflower (Brassica oleracea var. botrytis) is an annual vegetable cultivated in Southern and Southwestern Brazil with limited production in the Northeast and Centralwest. A variety of Chinese kale, "kaai laan" or "gaillon" (Brassica oleracea var. alboglabra), produces seeds at high temperatures and therefore can do so in North and Northeastern Brazil. Gaillon and cauliflower were crossed 55 times using 10 gaillon plants as mothers and 4 cauliflower plants as pollen donors. From these c...

  5. Induced release of a plant-defense volatile 'deceptively' attracts insect vectors to plants infected with a bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las, affects host preference behavior of its psyllid (Diaphorina citri Kuwayama vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of

  6. EPCOT, NASA and plant pathogens in space.

    Science.gov (United States)

    White, R

    1996-01-01

    Cooperative work between NASA and Walt Disney World's EPCOT Land Pavilion is described. Joint efforts include research about allelopathy in multi-species plant cropping in CELSS, LEDs as light sources in hydroponic systems, and the growth of plant pathogens in space.

  7. Interaction of Ulocladium atrum, a Potential Biological Control Agent, with Botrytis cinerea and Grapevine Plantlets

    Directory of Open Access Journals (Sweden)

    Sébastien Ronseaux

    2013-09-01

    Full Text Available The effectiveness of biological control agent, Ulocladium atrum (isolates U13 and U16 in protecting Vitis vinifera L. cv. Chardonnay against gray mold disease caused by Botrytis cinerea, and simulation of the foliar defense responses was investigated. A degraded mycelium structure during cultural assay on potato dextrose agar revealed that U. atrum isolates U13 and U16 were both antagonistic to B. cinerea, mainly when isolates were inoculated two days before Botrytis. Under in vitro conditions, foliar application of U. atrum protected grapevine leaves against gray mold disease. An increase in chitinase activity was induced by the presence of U. atrum isolates indicating that the biological control agents triggered plant defense mechanisms. Moreover, U13 has the potential to colonize the grapevine plantlets and to improve their growth. The ability of U. atrum isolates to exhibit an antagonistic effect against B. cinerea in addition to their aptitude to induce plant resistance and to promote grapevine growth may explain a part of their biological activity. Hence, this study suggests that U. atrum provides a suitable biocontrol agent against gray mold in grapevines.

  8. Paleogene radiation of a plant pathogenic mushroom.

    Directory of Open Access Journals (Sweden)

    Martin P A Coetzee

    Full Text Available The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species.The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP, Maximum Likelihood (ML and Bayesian Inference (BI. A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach.Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana.The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our results highlight the important role of long-distance dispersal in the radiation of fungal pathogens from the Southern Hemisphere.

  9. Exserohilum rostratum: characterization of a cross-kingdom pathogen of plants and humans.

    Directory of Open Access Journals (Sweden)

    Kalpana Sharma

    Full Text Available Pathogen host shifts represent a major source of new infectious diseases. There are several examples of cross-genus host jumps that have caused catastrophic epidemics in animal and plant species worldwide. Cross-kingdom jumps are rare, and are often associated with nosocomial infections. Here we provide an example of human-mediated cross-kingdom jumping of Exserohilum rostratum isolated from a patient who had received a corticosteroid injection and died of fungal meningitis in a Florida hospital in 2012. The clinical isolate of E. rostratum was compared with two plant pathogenic isolates of E. rostratum and an isolate of the closely related genus Bipolaris in terms of morphology, phylogeny, and pathogenicity on one C3 grass, Gulf annual rye grass (Lolium multiflorum, and two C4 grasses, Japanese stilt grass (Microstegium vimineum and bahia grass (Paspalum notatum. Colony growth and color, as well as conidia shape and size were the same for the clinical and plant isolates of E. rostratum, while these characteristics differed slightly for the Bipolaris sp. isolate. The plant pathogenic and clinical isolates of E. rostratum were indistinguishable based on morphology and ITS and 28S rDNA sequence analysis. The clinical isolate was as pathogenic to all grass species tested as the plant pathogenic strains that were originally isolated from plant hosts. The clinical isolate induced more severe symptoms on stilt grass than on rye grass, while this was the reverse for the plant isolates of E. rostratum. The phylogenetic similarity between the clinical and plant-associated E. rostratum isolates and the ability of the clinical isolate to infect plants suggests that a plant pathogenic strain of E. rostratum contaminated the corticosteroid injection fluid and was able to cause systemic disease in the affected patient. This is the first proof that a clinical isolate of E. rostratum is also an effective plant pathogen.

  10. Assessment of the Role of Local Strawberry Rhizosphere—Associated Streptomycetes on the Bacterially—Induced Growth and Botrytis cinerea Infection Resistance of the Fruit

    Directory of Open Access Journals (Sweden)

    D. İpek Kurtböke

    2010-12-01

    Full Text Available The future need for sustainable agriculture will be met in part by wider use of biological control of plant pathogens over conventional fungicides hazardous to the environment and to public health. Control strategies involving both (i direct use of microorganisms antagonistic to the phytopathogen, and (ii use of bioactive compounds (secondary metabolites/antibiotic compounds from microorganisms on the phytopathogen were both adapted in order to investigate the ability of streptomycetes isolated from the rhizosphere of strawberry plants to promote the growth of the fruit and suppress Botrytis cinerea causing strawberry rot on the Sunshine Coast, Queensland, Australia. In vitro studies showed that 25/39 streptomycetes isolated from strawberry field soils inhibited B. cinerea growth by antifungal activity, ranging from antibiosis to volatile compound production. However, when non-volatile antifungal compounds were extracted and applied aerially to the actively growing strawberry fruits infected with B. cinerea, a significant disease reduction was not recorded. On the other hand, plant and fruit growth was promoted by the presence of actively growing streptomycetes in container media. Findings might indicate that live streptomycete inoculum can be used as growth promoting agent in container media for this economically important crop.

  11. Dehydro-alpha-lapachone isolated from Catalpa ovata stems: activity against plant pathogenic fungi.

    Science.gov (United States)

    Cho, Jun Young; Kim, Hae Young; Choi, Gyung Ja; Jang, Kyoung Soo; Lim, He Kyoung; Lim, Chi Hwan; Cho, Kwang Yun; Kim, Jin-Cheol

    2006-05-01

    The methanol extract of stems of Catalpa ovata G Don exhibits potent in vivo antifungal activity against Magnaporthe grisea (Hebert) Barr (rice blast) on rice plants, Botrytis cinerea Pers ex Fr (tomato grey mould) and Phytophthora infestans (Mont) de Bary (tomato late blight) on tomato plants, Puccinia recondita Rob ex Desm (wheat leaf rust) on wheat plants and Blumeria graminis (DC) Speer f. sp. hordei Marchal (barley powdery mildew) on barley plants. An antifungal substance was isolated and identified as dehydro-alpha-lapachone from mass and nuclear magnetic resonance spectral data. It completely inhibited the mycelial growth of B. cinerea, Colletotrichum acutatum Simmonds, Colletotrichum gloeosporioides Simmonds, M. grisea and Pythium ultimum Trow over a range of 0.4-33.3 mg litre(-1). It also controlled the development of rice blast, tomato late blight, wheat leaf rust, barley powdery mildew and red pepper anthracnose (Colletotrichum coccodes (Wallr) S Hughes). The chemical was particularly effective in suppressing red pepper anthracnose by 95% at a concentration of 125 mg litre(-1). Copyright 2006 Society of Chemical Industry.

  12. Towards consumer-friendly cisgenic strawberries which are less susceptible to Botrytis cinerea

    NARCIS (Netherlands)

    Schaart, J.G.

    2004-01-01

    This thesis describes the development of genetically modified (GM) strawberries which are less susceptible to fruit rot caused by the fungus Botrytis cinerea. To achieve Botrytis resistance, a polygalacuronase inhibiting protein (PGIP) gene has been isolation from strawberry and was characterised.

  13. The diagnosis of plant pathogenic bacteria: a state of art.

    Science.gov (United States)

    Scala, Valeria; Pucci, Nicoletta; Loreti, Stefania

    2018-03-01

    Plant protection plays an important role in agriculture for the food quality and quantity. The diagnosis of plant diseases and the identification of the pathogens are essential prerequisites for their understanding and control. Among the plant pests, the bacterial pathogens have devastating effects on plant productivity and yield. Different techniques (microscopy, serology, biochemical, physiological, molecular tools and culture propagation) are currently used to detect and identify bacterial pathogens. Detection and identification are critical steps for the appropriate application of phytosanitary measures. The "harmonization of phytosanitary regulations and all other areas of official plant protection action" mean the good practices for plant protection and plant material certification. The prevention of diseases progression and spread by early detection are a valuable strategy for proper pest management and disease control. For this purpose, innovative methods aim achieving results within a shorter time and higher performance, to provide rapidly, accurately and reliably diagnosis. In this review, we focus on the techniques for plant bacterial diagnosis and on the regulations for harmonizing plant protection issue.

  14. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    Science.gov (United States)

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea.

    Science.gov (United States)

    Yun, Hwi-Geon; Kim, Dong-Jun; Gwak, Won-Seok; Shin, Tae-Young; Woo, Soo-Dong

    2017-09-01

    The green peach aphid ( Myzus persicae ), a plant pest, and gray mold disease, caused by Botrytis cinerea , affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae . Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.

  16. Effectiveness of Different Classes of Fungicides on Botrytis cinerea Causing Gray Mold on Fruit and Vegetables

    Directory of Open Access Journals (Sweden)

    Joon-Oh Kim

    2016-12-01

    Full Text Available Botrytis cinerea is a necrotrophic pathogen causing a major problem in the export and post-harvest of strawberries. Inappropriate use of fungicides leads to resistance among fungal pathogens. Therefore, it is necessary to evaluate the sensitivity of B. cinerea to various classes of fungicide and to determine the effectiveness of different concentrations of commonly used fungicides. We thus evaluated the effectiveness of six classes of fungicide in inhibiting the growth and development of this pathogen, namely, fludioxonil, iprodione, pyrimethanil, tebuconazole, fenpyrazamine, and boscalid. Fludioxonil was the most effective (EC₅₀ < 0.1 μg/ml, and pyrimethanil was the least effective (EC₅₀ = 50 μg/ml, at inhibiting the mycelial growth of B. cinerea. Fenpyrazamine and pyrimethanil showed relatively low effectiveness in inhibiting the germination and conidial production of B. cinerea. Our results are useful for the management of B. cinerea and as a basis for monitoring the sensitivity of B. cinerea strains to fungicides.

  17. Influence of Cultivars and Seed Thermal Treatment on the Development of Fungal Pathogens in Carrot and Onion Plants

    Directory of Open Access Journals (Sweden)

    Martin Koudela

    2016-01-01

    Full Text Available Carrot and onion are vegetables representing an important segment of fresh market. They suffer from serious fungal diseases that can inflict great damage on crops, i.e. alternaria leaf blight, peronospora downy mildew, and botrytis neck rot. The resistance of selected carrot and onion cultivars important for the production of vegetables in the Czech Republic was tested by exposure to targeted infection by the above fungal pathogens. The exposure of eleven carrot cultivars to spores of Alternaria dauci showed that the most resistant and sensitive cultivars were Katrin, Cortina F1, Afalon F1 and Favorit, Tinga, Berlika F1, respectively. A targeted infection of onion cultivars with Botrytis aclada clustered them into three groups: Amfora F1, Bolero, Tosca, Triumf F1 (strong resistance, Avalon, Grenada (medium resistance, Alice, Karmen, Všetana (low resistance. Similar groups were distinguished also after the infection with Peronospora destructor: Avalon, Bolero, Tosca (strong resistance, Alice, Amfora F1, Grenada, Karmen, Triumf F1 (medium resistance,Všetana (low resistance. Hot water treatment of carrot seeds applied after the inoculation with A. dauci decreased the development of the infection 1.3-2.3-fold, whereas the protective effect observed with onion seeds against the infection by P. destructor and B. aclada was lower.

  18. Antibacterial activity of caffeine against plant pathogenic bacteria.

    Science.gov (United States)

    Sledz, Wojciech; Los, Emilia; Paczek, Agnieszka; Rischka, Jacek; Motyka, Agata; Zoledowska, Sabina; Piosik, Jacek; Lojkowska, Ewa

    2015-01-01

    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [(3)H]thymidine, [(3)H]uridine or (14)C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions.

  19. Induced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen

    Science.gov (United States)

    Mann, Rajinder S.; Ali, Jared G.; Hermann, Sara L.; Tiwari, Siddharth; Pelz-Stelinski, Kirsten S.; Alborn, Hans T.; Stelinski, Lukasz L.

    2012-01-01

    Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las), affects host preference behavior of its psyllid (Diaphorina citri Kuwayama) vector. D. citri were attracted to volatiles from pathogen-infected plants more than to those from non-infected counterparts. Las-infected plants were more attractive to D. citri adults than non-infected plants initially; however after feeding, psyllids subsequently dispersed to non-infected rather than infected plants as their preferred settling point. Experiments with Las-infected and non-infected plants under complete darkness yielded similar results to those recorded under light. The behavior of psyllids in response to infected versus non-infected plants was not influenced by whether or not they were carriers of the pathogen. Quantification of volatile release from non-infected and infected plants supported the hypothesis that odorants mediate psyllid preference. Significantly more methyl salicylate, yet less methyl anthranilate and D-limonene, was released by infected than non-infected plants. Methyl salicylate was attractive to psyllids, while methyl anthranilate did not affect their behavior. Feeding on citrus by D. citri adults also induced release of methyl salicylate, suggesting that it may be a cue revealing location of conspecifics on host plants. Infected plants were characterized by lower levels of nitrogen, phosphorus, sulfur, zinc, and iron, as well as, higher levels of potassium and boron than non-infected plants. Collectively, our results suggest that host selection behavior of D. citri may be modified by bacterial infection of plants, which alters release of specific headspace

  20. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape.

    Science.gov (United States)

    Parafati, Lucia; Vitale, Alessandro; Restuccia, Cristina; Cirvilleri, Gabriella

    2015-05-01

    Strains belonging to the species Saccharomyces cerevisiae, Wickerhamomyces anomalus, Metschnikowia pulcherrima and Aureobasidium pullulans, isolated from different food sources, were tested in vitro as biocontrol agents (BCAs) against the post-harvest pathogenic mold Botrytis cinerea. All yeast strains demonstrated antifungal activity at different levels depending on species and medium. Killer strains of W. anomalus and S. cerevisiae showed the highest biocontrol in vitro activity, as demonstrated by largest inhibition halos. The competition for iron and the ability to form biofilm and to colonize fruit wounds were hypothesized as the main action mechanisms for M. pulcherrima. The production of hydrolytic enzymes and the ability to colonize the wounds were the most important mechanisms for biocontrol activity in A. pullulans and W. anomalus, which also showed high ability to form biofilm. The production of volatile organic compounds (VOCs) with in vitro and in vivo inhibitory effect on pathogen growth was observed for the species W. anomalus, S. cerevisiae and M. pulcherrima. Our study clearly indicates that multiple modes of action may explain as M. pulcherrima provide excellent control of postharvest botrytis bunch rot of grape. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Decision Support System (DSS) for prevention of Botrytis in tomato in greenhouses

    NARCIS (Netherlands)

    Visser, de P.H.B.; Nannes, L.; Bokhoven, van E.H.; Buwalda, F.

    2015-01-01

    Within the framework of the Interreg project ‘Gezonde Kas’ a decision support system (DSS) for Botrytis risk in tomato was developed. This report fi rst summarizes existing knowledge on botrytis in tomato. The quantitative relationships are subsequently laid down in computer code. This code formed

  2. Botrytis cinerea mutants deficient in D-galacturonic acid catabolism have a perturbed virulence on Nicotiana benthamiana and Arabidopsis, but not on tomato

    NARCIS (Netherlands)

    Zhang, L.; Kan, van J.A.L.

    2013-01-01

    d-Galacturonic acid is the most abundant monosaccharide component of pectic polysaccharides that comprise a significant part of most plant cell walls. Therefore, it is potentially an important nutritional factor for Botrytis cinerea when it grows in and t

  3. Ozone and Botrytis interactions in onion-leaf dieback: open-top chamber studies

    Energy Technology Data Exchange (ETDEWEB)

    Wukasch, R.T.; Hofstra, G.

    1977-09-01

    Paired open-top chambers were used to study interactions between Botrytis spp. and ozone in field-grown onions. Charcoal filters removed 35 to 65% of the ambient ozone, resulting in six-fold reduction of onion leaf dieback and a 28% increase in onion yield compared with unfiltered chambers. Symptoms of leaf injury appeared soon after ozone levels exceeded 294 ..mu..g/m/sup 3/ (0.15 ppm) for 4 hr. Lesions caused by Botrytis were few because no dew formed in the chambers. However, when leaves were wetted with foggers, inoculation with mycelial suspensions of B. sauamosa in late August produced significantly more lesions and leaf dieback in the unfiltered chamber. Botrytis squamosa, B. cinerea, B. allii, and several genera of secondary fungi were isolated from these lesions. Botrytis squamosa was recovered from lesions only, whereas B. cinerea and B. allii were associated more generally with onion leaf tissue regardless of lesions. 25 references, 1 figure, 2 tables.

  4. Emerging microbial biocontrol strategies for plant pathogens.

    Science.gov (United States)

    Syed Ab Rahman, Sharifah Farhana; Singh, Eugenie; Pieterse, Corné M J; Schenk, Peer M

    2018-02-01

    To address food security, agricultural yields must increase to match the growing human population in the near future. There is now a strong push to develop low-input and more sustainable agricultural practices that include alternatives to chemicals for controlling pests and diseases, a major factor of heavy losses in agricultural production. Based on the adverse effects of some chemicals on human health, the environment and living organisms, researchers are focusing on potential biological control microbes as viable alternatives for the management of pests and plant pathogens. There is a growing body of evidence that demonstrates the potential of leaf and root-associated microbiomes to increase plant efficiency and yield in cropping systems. It is important to understand the role of these microbes in promoting growth and controlling diseases, and their application as biofertilizers and biopesticides whose success in the field is still inconsistent. This review focusses on how biocontrol microbes modulate plant defense mechanisms, deploy biocontrol actions in plants and offer new strategies to control plant pathogens. Apart from simply applying individual biocontrol microbes, there are now efforts to improve, facilitate and maintain long-term plant colonization. In particular, great hopes are associated with the new approaches of using "plant-optimized microbiomes" (microbiome engineering) and establishing the genetic basis of beneficial plant-microbe interactions to enable breeding of "microbe-optimized crops". Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence.

    Science.gov (United States)

    Zhang, Zhanquan; Qin, Guozheng; Li, Boqiang; Tian, Shiping

    2014-06-01

    Pathogenic fungi usually secrete a series of virulence factors to the extracellular environment to facilitate infection. Rab GTPases play a central role in the secretory pathway. To explore the function of Rab/GTPase in filamentous fungi, we knocked out a Rab/GTPase family gene, Bcsas1, in Botrytis cinerea, an aggressive fungal pathogen that infects more than 200 plant species. A detailed analysis was conducted on the virulence and the secretory capability of the mutants. The results indicated that knockout of Bcsas1 inhibited hyphal development and reduced sporulation of B. cinerea on potato dextrose agar plates resulting in reduced virulence on various fruit hosts. Knocking out the Bcsas1 gene led to an accumulation of transport vesicles at the hyphal tip, significantly reduced extracellular protein content, and lowered the activity of polygalacturonase and xylanase in the extracellular medium. However, mutation of Bcsas1 did not affect the expression of genes encoding polygalacturonase and xylanase, suggesting the secretion of these two family enzymes was suppressed in the mutant. Moreover, a comparative analysis of the secretome provided further evidence that the disruption of Bcsas1 in mutant strains significantly depressed the secretion of polysaccharide hydrolases and proteases. The results indicate that Bcsas1, the Rab8/SEC4-like gene, plays a crucial role in development, protein secretion, and virulence of B. cinerea.

  6. Frontiers for research on the ecology of plant-pathogenic bacteria: fundamentals for sustainability: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Morris, Cindy E; Barny, Marie-Anne; Berge, Odile; Kinkel, Linda L; Lacroix, Christelle

    2017-02-01

    Methods to ensure the health of crops owe their efficacy to the extent to which we understand the ecology and biology of environmental microorganisms and the conditions under which their interactions with plants lead to losses in crop quality or yield. However, in the pursuit of this knowledge, notions of the ecology of plant-pathogenic microorganisms have been reduced to a plant-centric and agro-centric focus. With increasing global change, i.e. changes that encompass not only climate, but also biodiversity, the geographical distribution of biomes, human demographic and socio-economic adaptations and land use, new plant health problems will emerge via a range of processes influenced by these changes. Hence, knowledge of the ecology of plant pathogens will play an increasingly important role in the anticipation and response to disease emergence. Here, we present our opinion on the major challenges facing the study of the ecology of plant-pathogenic bacteria. We argue that the discovery of markedly novel insights into the ecology of plant-pathogenic bacteria is most likely to happen within a framework of more extensive scales of space, time and biotic interactions than those that currently guide much of the research on these bacteria. This will set a context that is more propitious for the discovery of unsuspected drivers of the survival and diversification of plant-pathogenic bacteria and of the factors most critical for disease emergence, and will set the foundation for new approaches to the sustainable management of plant health. We describe the contextual background of, justification for and specific research questions with regard to the following challenges: Development of terminology to describe plant-bacterial relationships in terms of bacterial fitness. Definition of the full scope of the environments in which plant-pathogenic bacteria reside or survive. Delineation of pertinent phylogenetic contours of plant-pathogenic bacteria and naming of strains

  7. Plant defenses against parasitic plants show similarities to those induced by herbivores and pathogens

    Science.gov (United States)

    Runyon, Justin B; Mescher, Mark C

    2010-01-01

    Herbivores and pathogens come quickly to mind when one thinks of the biotic challenges faced by plants. Important but less appreciated enemies are parasitic plants, which can have important consequences for the fitness and survival of their hosts. Our knowledge of plant perception, signaling and response to herbivores and pathogens has expanded rapidly in recent years, but information is generally lacking for parasitic species. In a recent paper we reported that some of the same defense responses induced by herbivores and pathogens—notably increases in jasmonic acid (JA), salicylic acid (SA), and a hypersensitive-like response (HLR)—also occur in tomato plants upon attack by the parasitic plant Cuscuta pentagona (field dodder). Parasitism induced a distinct pattern of JA and SA accumulation, and growth trials using genetically-altered tomato hosts suggested that both JA and SA govern effective defenses against the parasite, though the extent of the response varied with host plant age. Here we discuss similarities between the induced responses we observed in response to Cuscuta parasitism to those previously described for herbivores and pathogens and present new data showing that trichomes should be added to the list of plant defenses that act against multiple enemies and across kingdoms. PMID:20495380

  8. Microbial transformation of (-)-isolongifolol by plant pathogenic fungus Glomerella cingulata.

    Science.gov (United States)

    Miyazawa, Mitsuo; Sakata, Kazuki; Ueda, Masashi

    2010-01-01

    The biotransformation of terpenoids using the plant pathogenic fungus as a biocatalyst to produce useful novel organic compounds was investigated. The biotransformation of sesquiterpen alcohol, (-)-isolongifolol (1) was investigated using plant pathogenic fungus Glomerella cingulata as a biocatalyst. Compound 1 was converted to (-)-(3R)-3-hydroxy-isolongifolol and (-)-(9R)-9-hydroxy-isolongifolol by G. cingulata.

  9. Plant immunity triggered by engineered in vivo release of oligogalacturonides, damage-associated molecular patterns.

    Science.gov (United States)

    Benedetti, Manuel; Pontiggia, Daniela; Raggi, Sara; Cheng, Zhenyu; Scaloni, Flavio; Ferrari, Simone; Ausubel, Frederick M; Cervone, Felice; De Lorenzo, Giulia

    2015-04-28

    Oligogalacturonides (OGs) are fragments of pectin that activate plant innate immunity by functioning as damage-associated molecular patterns (DAMPs). We set out to test the hypothesis that OGs are generated in planta by partial inhibition of pathogen-encoded polygalacturonases (PGs). A gene encoding a fungal PG was fused with a gene encoding a plant polygalacturonase-inhibiting protein (PGIP) and expressed in transgenic Arabidopsis plants. We show that expression of the PGIP-PG chimera results in the in vivo production of OGs that can be detected by mass spectrometric analysis. Transgenic plants expressing the chimera under control of a pathogen-inducible promoter are more resistant to the phytopathogens Botrytis cinerea, Pectobacterium carotovorum, and Pseudomonas syringae. These data provide strong evidence for the hypothesis that OGs released in vivo act as a DAMP signal to trigger plant immunity and suggest that controlled release of these molecules upon infection may be a valuable tool to protect plants against infectious diseases. On the other hand, elevated levels of expression of the chimera cause the accumulation of salicylic acid, reduced growth, and eventually lead to plant death, consistent with the current notion that trade-off occurs between growth and defense.

  10. Use of 1-methylcyclopropene for the control of Botrytis cinerea on cut flowers

    Directory of Open Access Journals (Sweden)

    L. Seglie

    2009-09-01

    Full Text Available Cut flowers are marketed for their ornamental characteristics making post-harvest flower life an important determinant of crop value. Botrytis cinerea is one of the most significant post-harvest fungal pathogens causing losses in ornamental plants. Disease caused by this fungus seems to be enhanced by the presence of a ethylene hormone, that both the plant and the fungus are known to synthesize. The aim of the experiment was to determine if 1-methylcyclopropene (1-MCP, an ethylene antagonist, could be used to reduce B. cinerea damage to cut flowers. Six cultivars of four ornamental species: Dianthus caryophyllus ‘Idra di Muraglia’, Rosa × hybrida ‘White Dew’ and ‘Ritz’, Ranunculus asiaticus ‘Saigon’ and ‘Green’, and Cyclamen persicum line ‘Halios Bianco Puro Compatto’ were given three concentrations of 1-MCP (0.38 μl L-1, 1.14 μL L-1, and 3.62 μL L-1 for 24 hours. Subsequently, 10 petals per cultivar were treated with a B. cinerea conidial suspension (5×103 conidia cm-2 and stored in air-tight vases. To evaluate B. cinerea development an arbitrary damage scale (1–7 was used. A high concentration of 1-MCP significantly reduced B. cinerea damage on D. caryophyllus ‘Idra di Muraglia’ and C. persicum ‘Halios White Pure Compact’ petals. In carnation, 1-MCP treatment slowed B. cinerea infection; its threshold level was reached three days after that of the control. In cyclamen, treated petals and control petals remained aesthetically good until day 53 and day 28 respectively. At low concentrations, 1-MCP slowed grey mould on R. × hybrida ‘Ritz’ for up to three days beyond the control. On the two buttercup cultivars ‘Green’ and ‘Saigon’, 1-MCP treatments were not effective. In conclusion, 1-MCP limited pathogen development; its effect depended on the species and the 1-MCP concentration. Further investigations will be performed to improve methods to reduce B. cinerea development on the petals of cut

  11. Pathogen and biological contamination management in plant tissue culture: phytopathogens, vitro pathogens, and vitro pests.

    Science.gov (United States)

    Cassells, Alan C

    2012-01-01

    The ability to establish and grow plant cell, organ, and tissue cultures has been widely exploited for basic and applied research, and for the commercial production of plants (micro-propagation). Regardless of whether the application is for research or commerce, it is essential that the cultures be established in vitro free of biological contamination and be maintained as aseptic cultures during manipulation, growth, and storage. The risks from microbial contamination are spurious experimental results due to the effects of latent contaminants or losses of valuable experimental or commercial cultures. Much of the emphasis in culture contamination management historically focussed on the elimination of phytopathogens and the maintenance of cultures free from laboratory contamination by environmental bacteria, fungi (collectively referred to as "vitro pathogens", i.e. pathogens or environmental micro-organisms which cause culture losses), and micro-arthropods ("vitro pests"). Microbial contamination of plant tissue cultures is due to the high nutrient availability in the almost universally used Murashige and Skoog (Physiol Plant 15:473-497, 1962) basal medium or variants of it. In recent years, it has been shown that many plants, especially perennials, are at least locally endophytically colonized intercellularly by bacteria. The latter, and intracellular pathogenic bacteria and viruses/viroids, may pass latently into culture and be spread horizontally and vertically in cultures. Growth of some potentially cultivable endophytes may be suppressed by the high salt and sugar content of the Murashige and Skoog basal medium and suboptimal temperatures for their growth in plant tissue growth rooms. The management of contamination in tissue culture involves three stages: disease screening (syn. disease indexing) of the stock plants with disease and endophyte elimination where detected; establishment and pathogen and contaminant screening of established initial cultures

  12. Possibilities of avoidance and control of bacterial plant diseases when using pathogen-tested (certified) or - treated planting material

    NARCIS (Netherlands)

    Janse, J.; Wenneker, M.

    2002-01-01

    Testing of planting material for freedom from phytopathogenic bacteria is an important, although not exclusive, method for control of bacterial diseases of plants. Ideally, pathogen-free or pathogen-/disease-resistant planting material is desirable, but this situation is not always possible on a

  13. Phytohormone mediation of interactions between herbivores and plant pathogens

    NARCIS (Netherlands)

    Lazebnik, J.; Frago, E.; Dicke, M.; Loon, van J.J.A.

    2014-01-01

    Induced plant defenses against either pathogens or herbivore attackers are regulated by phytohormones. These phytohormones are increasingly recognized as important mediators of interactions between organisms associated with plants. In this review, we discuss the role of plant defense hormones in

  14. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi.

    Science.gov (United States)

    Kim, Sang Woo; Jung, Jin Hee; Lamsal, Kabir; Kim, Yun Seok; Min, Ji Seon; Lee, Youn Su

    2012-03-01

    This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.

  15. Different Proteomics of Ca2+ on SA-induced Resistance to Botrytis cinerea in Tomato

    OpenAIRE

    Linlin Li; Peng Guo; Hua Jin; Tianlai Li

    2016-01-01

    This study aims to comprehensively study the effects of Ca2+ on the SA-induced resistance Botrytis cinerea in tomato through proteomics analysis. A proteomic approach was used to uncover the inducible proteins of tomato in the susceptible tomato cultivars ‘L402’ against Botrytis cinerea after salicylic acid (SA) and a combination treatment of CaCl2 and SA. The results showed that the use of combination treatment of CaCl2 and SA significantly enhanced tomato resistance against Botrytis cinerea...

  16. Post-translational modification of host proteins in pathogen-triggered defence signalling in plants

    NARCIS (Netherlands)

    Stulemeijer, I.J.E.; Joosten, M.H.A.J.

    2008-01-01

    Microbial plant pathogens impose a continuous threat to global food production. Similar to animals, an innate immune system allows plants to recognize pathogens and swiftly activate defence. To activate a rapid response, receptor-mediated pathogen perception and subsequent downstream signalling

  17. Plant-pathogen interactions: what microarray tells about it?

    Science.gov (United States)

    Lodha, T D; Basak, J

    2012-01-01

    Plant defense responses are mediated by elementary regulatory proteins that affect expression of thousands of genes. Over the last decade, microarray technology has played a key role in deciphering the underlying networks of gene regulation in plants that lead to a wide variety of defence responses. Microarray is an important tool to quantify and profile the expression of thousands of genes simultaneously, with two main aims: (1) gene discovery and (2) global expression profiling. Several microarray technologies are currently in use; most include a glass slide platform with spotted cDNA or oligonucleotides. Till date, microarray technology has been used in the identification of regulatory genes, end-point defence genes, to understand the signal transduction processes underlying disease resistance and its intimate links to other physiological pathways. Microarray technology can be used for in-depth, simultaneous profiling of host/pathogen genes as the disease progresses from infection to resistance/susceptibility at different developmental stages of the host, which can be done in different environments, for clearer understanding of the processes involved. A thorough knowledge of plant disease resistance using successful combination of microarray and other high throughput techniques, as well as biochemical, genetic, and cell biological experiments is needed for practical application to secure and stabilize yield of many crop plants. This review starts with a brief introduction to microarray technology, followed by the basics of plant-pathogen interaction, the use of DNA microarrays over the last decade to unravel the mysteries of plant-pathogen interaction, and ends with the future prospects of this technology.

  18. The Verticillium-specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections.

    Science.gov (United States)

    Zhang, Lisha; Ni, Hao; Du, Xuan; Wang, Sheng; Ma, Xiao-Wei; Nürnberger, Thorsten; Guo, Hui-Shan; Hua, Chenlei

    2017-07-01

    Fungal pathogens secrete effector proteins to suppress plant basal defense for successful colonization. Resistant plants, however, can recognize effectors by cognate R proteins to induce effector-triggered immunity (ETI). By analyzing secretomes of the vascular fungal pathogen Verticillium dahliae, we identified a novel secreted protein VdSCP7 that targets the plant nucleus. The green fluorescent protein (GFP)-tagged VdSCP7 gene with either a mutated nuclear localization signal motif or with additional nuclear export signal was transiently expressed in Nicotiana benthamiana, and investigated for induction of plant immunity. The role of VdSCP7 in V. dahliae pathogenicity was characterized by gene knockout and complementation, and GFP labeling. Expression of the VdSCP7 gene in N. benthamiana activated both salicylic acid and jasmonate signaling, and altered the plant's susceptibility to the pathogens Botrytis cinerea and Phytophthora capsici. The immune response activated by VdSCP7 was highly dependent on its initial extracellular secretion and subsequent nuclear localization in plants. Knockout of the VdSCP7 gene significantly enhanced V. dahliae aggressiveness on cotton. GFP-labeled VdSCP7 is secreted by V. dahliae and accumulates in the plant nucleus. We conclude that VdSCP7 is a novel effector protein that targets the host nucleus to modulate plant immunity, and suggest that plants can recognize VdSCP7 to activate ETI during fungal infection. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Expression of the grape VqSTS21 gene in Arabidopsis confers resistance to osmotic stress and biotrophic pathogens but not Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Li Huang

    2016-09-01

    Full Text Available Stilbene synthase (STS is a key gene in the biosynthesis of various stilbenoids, including resveratrol and its derivative glucosides (such as piceid, that has been shown to contribute to disease resistance in plants. However, the mechanism behind such a role has yet to be elucidated. Furthermore, the function of STS genes in osmotic stress tolerance remains unclear. As such, we sought to elucidate the role of STS genes in the defense against biotic and abiotic stress in the model plant Arabidopsis thaliana. Expression profiling of 31 VqSTS genes from Vitis quinquangularis revealed that VqSTS21 was up-regulated in response to powdery mildew (PM infection. To provide a deeper understanding of the function of this gene, we cloned the full-length coding sequence of VqSTS21 and overexpressed it in Arabidopsis thaliana via Agrobacterium-mediated transformation. The resulting VqSTS21 Arabidopsis lines produced trans-piceid rather than resveratrol as their main stilbenoid product and exhibited improved disease resistance to PM and Pseudomonas syringae pv. tomato DC3000, but displayed increased susceptibility to Botrytis cinerea. In addition, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress from seed germination through plant maturity. Intriguingly, qPCR assays of defense-related genes involved in salicylic acid, jasmonic acid, and abscisic acid-induced signaling pathways in these transgenic lines suggested that VqSTS21 plays a role in various phytohormone-related pathways, providing insight into the mechanism behind VqSTS21-mediated resistance to biotic and abiotic stress.

  20. Plastic potential: how the phenotypes and adaptations of pathogens are influenced by microbial interactions within plants.

    Science.gov (United States)

    O'Keeffe, Kayleigh R; Carbone, Ignazio; Jones, Corbin D; Mitchell, Charles E

    2017-08-01

    Predicting the effects of plant-associated microbes on emergence, spread, and evolution of plant pathogens demands an understanding of how pathogens respond to these microbes at two levels of biological organization: that of an individual pathogen and that of a pathogen population across multiple individual plants. We first examine the plastic responses of individual plant pathogens to microbes within a shared host, as seen through changes in pathogen growth and multiplication. We then explore the limited understanding of how within-plant microbial interactions affect pathogen populations and discuss the need to incorporate population-level observations with population genomic techniques. Finally, we suggest that integrating across levels will further our understanding of the ecological and evolutionary impacts of within-plant microbial interactions on pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Characterization of Botrytis cinerea isolates from chickpea: DNA ...

    African Journals Online (AJOL)

    Characterization of Botrytis cinerea isolates from chickpea: DNA polymorphisms, cultural, morphological and virulence characteristics. Suresh Pande, Mamta Sharma, G. Krishna Kishore, L. Shivram, U. Naga Mangala ...

  2. The Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses

    Directory of Open Access Journals (Sweden)

    Gopaljee Jha

    2009-01-01

    Full Text Available Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resistance breeding programs are also reviewed.

  3. Biotransformation of (+)-cycloisolongifolol by plant pathogenic fungus Glomerella cingulata.

    Science.gov (United States)

    Miyazawa, Mitsuo; Sakata, Kazuki

    2007-05-01

    The biotransformation of terpenoids using the plant pathogenic fungus as a biocatalyst to produce useful novel organic compounds was investigated. The biotransformation of sesquiterpen alcohol, (+)-cycloisolongifolol (1) was investigated using plant pathogenic fungus Glomerella cingulata as a biocatalyst. Compound 1 gave one major metabolic product and a number of minor metabolic products. Major product was dehydration at the C-8 position to (+)-dehydrocycloisolongifolene (2). The structure of the product was determined by their spectroscopic data. Glomerella cingulata gave dehydration in the specifically and over 70% conversion.

  4. Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana

    NARCIS (Netherlands)

    Ji, X.

    2014-01-01

    Numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and Arabidopsis thaliana.

    I studied numerical and structural chromosome aberrations in cauliflower (Brassica oleracea var. botrytis) and

  5. Disruption of Vector Host Preference with Plant Volatiles May Reduce Spread of Insect-Transmitted Plant Pathogens.

    Science.gov (United States)

    Martini, Xavier; Willett, Denis S; Kuhns, Emily H; Stelinski, Lukasz L

    2016-05-01

    Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.

  6. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    Full Text Available Sclerotinia sclerotiorum and Botrytis cinerea are notorious plant pathogenic fungi with an extensive host range including Brassica crops. Glucosinolates (GSLs are an important group of secondary metabolites characteristic of the Brassicales order, whose degradation products are proving to be increasingly important in plant protection. Enhancing the defense effect of GSL and their associated degradation products is an attractive strategy to strengthen the resistance of plants by transgenic approaches. We generated the lines of Brassica napus with three biosynthesis genes involved in GSL metabolic pathway (BnMAM1, BnCYP83A1 and BnUGT74B1, respectively. We then measured the foliar GSLs of each transgenic lines and inoculated them with S. sclerotiorum and B. cinerea. Compared with the wild type control, over-expressing BnUGT74B1 in B. napus increased the aliphatic and indolic GSL levels by 1.7 and 1.5 folds in leaves respectively; while over-expressing BnMAM1 or BnCYP83A1 resulted in an approximate 1.5-fold higher only in the aliphatic GSL level in leaves. The results of plant inoculation demonstrated that BnUGT74B1-overexpressing lines showed less severe disease symptoms and tissue damage compared with the wild type control, but BnMAM1 or BnCYP83A1-overexpressing lines showed no significant difference in comparison to the controls. These results suggest that the resistance to S. sclerotiorum and B. cinerea in B. napus could be enhanced through tailoring the GSL profiles by transgenic approaches or molecular breeding, which provides useful information to assist plant breeders to design improved breeding strategies.

  7. Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases.

    Science.gov (United States)

    Lionetti, Vincenzo; Cervone, Felice; Bellincampi, Daniela

    2012-11-01

    The cell wall is a complex structure mainly composed by a cellulose-hemicellulose network embedded in a cohesive pectin matrix. Pectin is synthesized in a highly methyl esterified form and is de-esterified in muro by pectin methyl esterases (PMEs). The degree and pattern of methyl esterification affect the cell wall structure and properties with consequences on both the physiological processes of the plants and their resistance to pathogens. PME activity displays a crucial role in the outcome of the plant-pathogen interactions by making pectin more susceptible to the action of the enzymes produced by the pathogens. This review focuses on the impact of pectin methyl esterification in plant-pathogen interactions and on the dynamic role of its alteration during pathogenesis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Ozone and infection of geranium flowers by Botrytis cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Manning, W.J.; Feder, W.A.; Perkins, I.

    1970-01-01

    Flowering plants of geranium cultivars were exposed to 0.2, 0.35, and 0.55 ppm ozone for 4-hr periods at 20/sup 0/C in a greenhouse fumigation chamber. Three fully-opened flower heads were sprayed with a spore suspension of Botrytis cinerea at 2000, 1000, or 500 spores/ml immediately before exposure to ozone began. Sterile distilled water was sprayed on noninoculated flower heads. All flowers were examined for evidence of infection 24 hr after the end of the ozone-exposure periods. All flower heads were then removed and placed in wet, loosely tied plastic bags and incubated at 20/sup 0/C for 72 hr, with examination at 24-hr intervals for evidence of infection. Ozone at 0.2 ppm did not injure the plants or prevent or inhibit flower infection by B. cinerea at all inoculum levels. Natural infection also occurred on some noninoculated flowers. Ozone at 0.35 ppm did not injure the plants or prevent infection, but did inhibit pathogenesis at the 500-spore/ml inoculum level and on noninoculated flowers. Ozone at 0.55 ppm caused moderate injury on all plants. Ozone at this level did not prevent infection, but did restrict pathogenesis on all inoculated and noninoculated flowers.

  9. Evolutionary dynamics of interactions between plants and their enemies: comparison of herbivorous insects and pathogens.

    Science.gov (United States)

    Wininger, Kerry; Rank, Nathan

    2017-11-01

    Plants colonized land over 400 million years ago. Shortly thereafter, organisms began to consume terrestrial plant tissue as a nutritional resource. Most plant enemies are plant pathogens or herbivores, and they impose natural selection for plants to evolve defenses. These traits generate selection pressures on enemies. Coevolution between terrestrial plants and their enemies is an important element of the evolutionary history of both groups. However, coevolutionary studies of plant-pathogen interactions have tended to focus on different research topics than plant-herbivore interactions. Specifically, studies of plant-pathogen interactions often adopt a "gene-for-gene" conceptual framework. In contrast, studies of plants and herbivores often investigate escalation or elaboration of plant defense and herbivore adaptations to overcome it. The main exceptions to the general pattern are studies that focus on small, sessile herbivores that share many features with plant pathogens, studies that incorporate both herbivores and pathogens into a single investigation, and studies that test aspects of Thompson's geographic mosaic theory for coevolution. We discuss the implications of these findings for future research. © 2017 New York Academy of Sciences.

  10. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara; Gottig, Natalia; Garavaglia, Betiana S.; Gehring, Christoph A; Ottado, Jorgelina

    2011-01-01

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  11. Unraveling plant responses to bacterial pathogens through proteomics

    KAUST Repository

    Zimaro, Tamara

    2011-11-03

    Plant pathogenic bacteria cause diseases in important crops and seriously and negatively impact agricultural production. Therefore, an understanding of the mechanisms by which plants resist bacterial infection at the stage of the basal immune response or mount a successful specific R-dependent defense response is crucial since a better understanding of the biochemical and cellular mechanisms underlying these interactions will enable molecular and transgenic approaches to crops with increased biotic resistance. In recent years, proteomics has been used to gain in-depth understanding of many aspects of the host defense against pathogens and has allowed monitoring differences in abundance of proteins as well as posttranscriptional and posttranslational processes, protein activation/inactivation, and turnover. Proteomics also offers a window to study protein trafficking and routes of communication between organelles. Here, we summarize and discuss current progress in proteomics of the basal and specific host defense responses elicited by bacterial pathogens. Copyright 2011 Tamara Zimaro et al.

  12. Human pathogens in plant biofilms: Formation, physiology, and detection.

    Science.gov (United States)

    Ximenes, Eduardo; Hoagland, Lori; Ku, Seockmo; Li, Xuan; Ladisch, Michael

    2017-07-01

    Fresh produce, viewed as an essential part of a healthy life style is usually consumed in the form of raw or minimally processed fruits and vegetables, and is a potentially important source of food-borne human pathogenic bacteria and viruses. These are passed on to the consumer since the bacteria can form biofilms or otherwise populate plant tissues, thereby using plants as vectors to infect animal hosts. The life cycle of the bacteria in plants differs from those in animals or humans and results in altered physiochemical and biological properties (e.g., physiology, immunity, native microflora, physical barriers, mobility, and temperature). Mechanisms by which healthy plants may become contaminated by microorganisms, develop biofilms, and then pass on their pathogenic burden to people are explored in the context of hollow fiber microfiltration by which plant-derived microorganisms may be recovered and rapidly concentrated to facilitate study of their properties. Enzymes, when added to macerated plant tissues, hydrolyze or alter macromolecules that would otherwise foul hollow-fiber microfiltration membranes. Hence, microfiltration may be used to quickly increase the concentration of microorganisms to detectable levels. This review discusses microbial colonization of vegetables, formation and properties of biofilms, and how hollow fiber microfiltration may be used to concentrate microbial targets to detectable levels. The use of added enzymes helps to disintegrate biofilms and minimize hollow fiber membrane fouling, thereby providing a new tool for more time effectively elucidating mechanisms by which biofilms develop and plant tissue becomes contaminated with human pathogens. Biotechnol. Bioeng. 2017;114: 1403-1418. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense.

    Science.gov (United States)

    Stukkens, Yvan; Bultreys, Alain; Grec, Sébastien; Trombik, Tomasz; Vanham, Delphine; Boutry, Marc

    2005-09-01

    Nicotiana plumbaginifolia NpPDR1, a plasma membrane pleiotropic drug resistance-type ATP-binding cassette transporter formerly named NpABC1, has been suggested to transport the diterpene sclareol, an antifungal compound. However, direct evidence for a role of pleiotropic drug resistance transporters in the plant defense is still lacking. In situ immunolocalization and histochemical analysis using the gusA reporter gene showed that NpPDR1 was constitutively expressed in the whole root, in the leaf glandular trichomes, and in the flower petals. However, NpPDR1 expression was induced in the whole leaf following infection with the fungus Botrytis cinerea, and the bacteria Pseudomonas syringae pv tabaci, Pseudomonas fluorescens, and Pseudomonas marginalis pv marginalis, which do not induce a hypersensitive response in N. plumbaginifolia, whereas a weaker response was observed using P. syringae pv syringae, which does induce a hypersensitive response. Induced NpPDR1 expression was more associated with the jasmonic acid than the salicylic acid signaling pathway. These data suggest that NpPDR1 is involved in both constitutive and jasmonic acid-dependent induced defense. Transgenic plants in which NpPDR1 expression was prevented by RNA interference showed increased sensitivity to sclareol and reduced resistance to B. cinerea. These data show that NpPDR1 is involved in pathogen resistance and thus demonstrate a new role for the ATP-binding cassette transporter family.

  14. Method of inhibiting plant virus pathogen infections by crispr/cas9-mediated interference

    KAUST Repository

    Mahfouz, Magdy Mahmoud

    2016-11-24

    A genetically modified tobacco plant or tomato plant resistant to at least one pathogenic geminiviridae virus species is provided. The plant comprises a heterologous CRISPR/Cas9 system and at least one heterologous nucleotide sequence that is capable of hybridizing to a nucleotide sequence of the pathogenic virus and that directs inactivation of the pathogenic virus species or plurality of viral species by the CRISPR/Cas9 system. The heterologous nucleotide sequence can be complementary to, but not limited to an Intergenic Region (IR) of the Tomato Yellow Leaf Curl Virus (TYLCV), Further provided are methods of generating a genetically modified plant that is resistant to a virus pathogen by a heterologous CRISPR/Cas9 system and expression of a gRNA specifically targeting the virus.

  15. The quantitative basis of the Arabidopsis innate immune system to endemic pathogens depends on pathogen genetics

    DEFF Research Database (Denmark)

    Corwin, Jason A; Copeland, Daniel; Feusier, Julie

    2016-01-01

    The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used the Arabido......The most established model of the eukaryotic innate immune system is derived from examples of large effect monogenic quantitative resistance to pathogens. However, many host-pathogen interactions involve many genes of small to medium effect and exhibit quantitative resistance. We used....... cinerea, we identified a total of 2,982 genes associated with quantitative resistance using lesion area and 3,354 genes associated with camalexin production as measures of the interaction. Most genes were associated with resistance to a specific Botrytis isolate, which demonstrates the influence...... genes associated with quantitative resistance. Using publically available co-expression data, we condensed the quantitative resistance associated genes into co-expressed gene networks. GO analysis of these networks implicated several biological processes commonly connected to disease resistance...

  16. Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insect vector

    Directory of Open Access Journals (Sweden)

    Xavier eMartini

    2014-05-01

    Full Text Available Interactions between plant pathogens and arthropods have been predominantly studied through the prism of herbivorous arthropods. Currently, little is known about the effect of plant pathogens on the third trophic level. This question is particularly interesting in cases where pathogens manipulate host phenotype to increase vector attraction and presumably increase their own proliferation. Indeed, a predator or a parasitoid of a vector may take advantage of this manipulated phenotype to increase its foraging performance. We explored the case of a bacterial pathogen, Candidatus Liberibacter asiaticus (Las, which modifies the odors released by its host plant (citrus trees to attract its vector, the psyllid Diaphorina citri. We found that the specialist parasitoid of D. citri, Tamarixia radiata, was attracted more toward Las-infected than uninfected plants. We demonstrated that this attractiveness was due to the release of methyl salicylate. Parasitization of D. citri nymphs on Las-infected plants was higher than on uninfected controls. Also, parasitization was higher on uninfected plants baited with methyl salicylate than on non-baited controls. This is the first report of a parasitoid ‘eavesdropping’ on a plant volatile induced by bacterial pathogen infection, which also increases effectiveness of host seeking behavior of its herbivorous vector.

  17. Anti-fungal activity of some medicinal plants on different pathogenic fungi

    International Nuclear Information System (INIS)

    Hussain, F.; Abid, M.; Farzana, A.; Shaukat, S.; Akbar, M.

    2015-01-01

    The antifungal activity of different medicinal and locally available plants extracts (leaves, fruit, seeds) which are usually found in the surrounding of fields or in the fields on some fungi were tested in lab conditions. Six different plants were selected for testing these plants were Acacia nilotica (Lamk.) Willd. Azadirachta indica (A.) Juss. Crotalaria juncea L. Eucalyptus camaldulensis Dehnh. Ocimum basilicum L. and Prosopis juliflora (Sw.) Dc. These plants showed antifungal activity against the Aspergillus flavus, A. niger, Fusarium solani, Macrophomina phaseolina and Rhizoctonia solani. These plants crude extracts of leaves showed inhibition activity against the fungi and suppressed the myclial growth. Over all selected plants exhibited moderate type of inhibition against these above mentioned pathogens. Among these plants, Azadirachta indica, Ocimum basilicum and Crotalaria juncea showed the most effective results against the Aspergillus, Fusarium and Rhizoctonia sp. of fungal pathogens. Whereas, Acacia nilotica, Eucalyptus camaldulensis and Prosopis juliflora showed least potential of inhibition against all above mentioned fungal pathogens. It is investigated in present studies that Azadirachta indica, Ocimum basilicum and Crotalaria juncea can be utilized against the management of fungal diseases particularly Aspergillus flavus, A. niger, Fusarium solani, Macrophomina phaseolina and Rhizoctonia solani. (author)

  18. Fluorescence techniques to detect and to assess viability of plant pathogenic bacteria

    NARCIS (Netherlands)

    Chitarra, L.G.

    2001-01-01

    Plant pathogenic bacteria cause major economic losses in commercial crop production worldwide every year. The current methods used to detect and to assess the viability of bacterial pathogens and to test seed lots or plants for contamination are usually based on plate assays or on

  19. Plant pathogenic anaerobic bacteria use aromatic polyketides to access aerobic territory.

    Science.gov (United States)

    Shabuer, Gulimila; Ishida, Keishi; Pidot, Sacha J; Roth, Martin; Dahse, Hans-Martin; Hertweck, Christian

    2015-11-06

    Around 25% of vegetable food is lost worldwide because of infectious plant diseases, including microbe-induced decay of harvested crops. In wet seasons and under humid storage conditions, potato tubers are readily infected and decomposed by anaerobic bacteria (Clostridium puniceum). We found that these anaerobic plant pathogens harbor a gene locus (type II polyketide synthase) to produce unusual polyketide metabolites (clostrubins) with dual functions. The clostrubins, which act as antibiotics against other microbial plant pathogens, enable the anaerobic bacteria to survive an oxygen-rich plant environment. Copyright © 2015, American Association for the Advancement of Science.

  20. A plant EPF-type zinc-finger protein, CaPIF1, involved in defence against pathogens.

    Science.gov (United States)

    Oh, Sang-Keun; Park, Jeong Mee; Joung, Young Hee; Lee, Sanghyeob; Chung, Eunsook; Kim, Soo-Yong; Yu, Seung Hun; Choi, Doil

    2005-05-01

    SUMMARY To understand better the defence responses of plants to pathogen attack, we challenged hot pepper plants with bacterial pathogens and identified transcription factor-encoding genes whose expression patterns were altered during the subsequent hypersensitive response. One of these genes, CaPIF1 (Capsicum annuum Pathogen-Induced Factor 1), was characterized further. This gene encodes a plant-specific EPF-type protein that contains two Cys(2)/His(2) zinc fingers. CaPIF1 expression was rapidly and specifically induced when pepper plants were challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generated weak CaPIF1 expression. CaPIF1 expression was also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene-releasing compound, and salicylic acid, whereas methyl jasmonate had only moderate effects. CaPIF1 localized to the nuclei of onion epidermis when expressed as a CaPIF1-smGFP fusion protein. Transgenic tobacco plants over-expressing CaPIF1 driven by the CaMV 35S promoter showed increased resistance to challenge with a tobacco-specific pathogen or non-host bacterial pathogens. These plants also showed constitutive up-regulation of multiple defence-related genes. Moreover, virus-induced silencing of the CaPIF1 orthologue in Nicotiana benthamiana enhanced susceptibility to the same host or non-host bacterial pathogens. These observations provide evidence that an EPF-type Cys(2)/His(2) zinc-finger protein plays a crucial role in the activation of the pathogen defence response in plants.

  1. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Matthias Kretschmer

    2009-12-01

    Full Text Available The grey mould fungus Botrytis cinerea causes losses of commercially important fruits, vegetables and ornamentals worldwide. Fungicide treatments are effective for disease control, but bear the risk of resistance development. The major resistance mechanism in fungi is target protein modification resulting in reduced drug binding. Multiple drug resistance (MDR caused by increased efflux activity is common in human pathogenic microbes, but rarely described for plant pathogens. Annual monitoring for fungicide resistance in field isolates from fungicide-treated vineyards in France and Germany revealed a rapidly increasing appearance of B. cinerea field populations with three distinct MDR phenotypes. All MDR strains showed increased fungicide efflux activity and overexpression of efflux transporter genes. Similar to clinical MDR isolates of Candida yeasts that are due to transcription factor mutations, all MDR1 strains were shown to harbor activating mutations in a transcription factor (Mrr1 that controls the gene encoding ABC transporter AtrB. MDR2 strains had undergone a unique rearrangement in the promoter region of the major facilitator superfamily transporter gene mfsM2, induced by insertion of a retrotransposon-derived sequence. MDR2 strains carrying the same rearranged mfsM2 allele have probably migrated from French to German wine-growing regions. The roles of atrB, mrr1 and mfsM2 were proven by the phenotypes of knock-out and overexpression mutants. As confirmed by sexual crosses, combinations of mrr1 and mfsM2 mutations lead to MDR3 strains with higher broad-spectrum resistance. An MDR3 strain was shown in field experiments to be selected against sensitive strains by fungicide treatments. Our data document for the first time the rising prevalence, spread and molecular basis of MDR populations in a major plant pathogen in agricultural environments. These populations will increase the risk of grey mould rot and hamper the effectiveness of

  2. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms.

    Science.gov (United States)

    Paul, Nigel D; Moore, Jason P; McPherson, Martin; Lambourne, Cathryn; Croft, Patricia; Heaton, Joanna C; Wargent, Jason J

    2012-08-01

    Solar ultraviolet (UV)-B radiation (280-315 nm) has a wide range of effects on terrestrial ecosystems, yet our understanding of how UV-B influences the complex interactions of plants with pest, pathogen and related microorganisms remains limited. Here, we report the results of a series of experiments in Lactuca sativa which aimed to characterize not only key plant responses to UV radiation in a field environment but also consequential effects for plant interactions with a sap-feeding insect, two model plant pathogens and phylloplane microorganism populations. Three spectrally modifying filters with contrasting UV transmissions were used to filter ambient sunlight, and when compared with our UV-inclusive filter, L. sativa plants grown in a zero UV-B environment showed significantly increased shoot fresh weight, reduced foliar pigment concentrations and suppressed population growth of green peach aphid (Myzus persicae). Plants grown under a filter which allowed partial transmission of UV-A radiation and negligible UV-B transmission showed increased density of leaf surface phylloplane microbes compared with the UV-inclusive treatment. Effects of UV treatment on the severity of two plant pathogens, Bremia lactucae and Botrytis cinerea, were complex as both the UV-inclusive and zero UV-B filters reduced the severity of pathogen persistence. These results are discussed with reference to known spectral responses of plants, insects and microorganisms, and contrasted with established fundamental responses of plants and other organisms to solar UV radiation, with particular emphasis on the need for future integration between different experimental approaches when investigating the effects of solar UV radiation. Copyright © Physiologia Plantarum 2011.

  3. The plant cell nucleus: a true arena for the fight between plants and pathogens.

    Science.gov (United States)

    Deslandes, Laurent; Rivas, Susana

    2011-01-01

    Communication between the cytoplasm and the nucleus is a fundamental feature shared by both plant and animal cells. Cellular factors involved in the transport of macromolecules through the nuclear envelope, including nucleoporins, importins and Ran-GTP related components, are conserved among a variety of eukaryotic systems. Interestingly, mutations in these nuclear components compromise resistance signalling, illustrating the importance of nucleocytoplasmic trafficking in plant innate immunity. Indeed, spatial restriction of defence regulators by the nuclear envelope and stimulus-induced nuclear translocation constitute an important level of defence-associated gene regulation in plants. A significant number of effectors from different microbial pathogens are targeted to the plant cell nucleus. In addition, key host factors, including resistance proteins, immunity components, transcription factors and transcriptional regulators shuttle between the cytoplasm and the nucleus, and their level of nuclear accumulation determines the output of the defence response, further confirming the crucial role played by the nucleus during the interaction between plants and pathogens. Here, we discuss recent findings that situate the nucleus at the frontline of the mutual recognition between plants and invading microbes.

  4. NpPDR1, a Pleiotropic Drug Resistance-Type ATP-Binding Cassette Transporter from Nicotiana plumbaginifolia, Plays a Major Role in Plant Pathogen Defense1

    Science.gov (United States)

    Stukkens, Yvan; Bultreys, Alain; Grec, Sébastien; Trombik, Tomasz; Vanham, Delphine; Boutry, Marc

    2005-01-01

    Nicotiana plumbaginifolia NpPDR1, a plasma membrane pleiotropic drug resistance-type ATP-binding cassette transporter formerly named NpABC1, has been suggested to transport the diterpene sclareol, an antifungal compound. However, direct evidence for a role of pleiotropic drug resistance transporters in the plant defense is still lacking. In situ immunolocalization and histochemical analysis using the gusA reporter gene showed that NpPDR1 was constitutively expressed in the whole root, in the leaf glandular trichomes, and in the flower petals. However, NpPDR1 expression was induced in the whole leaf following infection with the fungus Botrytis cinerea, and the bacteria Pseudomonas syringae pv tabaci, Pseudomonas fluorescens, and Pseudomonas marginalis pv marginalis, which do not induce a hypersensitive response in N. plumbaginifolia, whereas a weaker response was observed using P. syringae pv syringae, which does induce a hypersensitive response. Induced NpPDR1 expression was more associated with the jasmonic acid than the salicylic acid signaling pathway. These data suggest that NpPDR1 is involved in both constitutive and jasmonic acid-dependent induced defense. Transgenic plants in which NpPDR1 expression was prevented by RNA interference showed increased sensitivity to sclareol and reduced resistance to B. cinerea. These data show that NpPDR1 is involved in pathogen resistance and thus demonstrate a new role for the ATP-binding cassette transporter family. PMID:16126865

  5. Combating Pathogenic Microorganisms Using Plant-Derived Antimicrobials: A Minireview of the Mechanistic Basis

    Directory of Open Access Journals (Sweden)

    Abhinav Upadhyay

    2014-01-01

    Full Text Available The emergence of antibiotic resistance in pathogenic bacteria has led to renewed interest in exploring the potential of plant-derived antimicrobials (PDAs as an alternative therapeutic strategy to combat microbial infections. Historically, plant extracts have been used as a safe, effective, and natural remedy for ailments and diseases in traditional medicine. Extensive research in the last two decades has identified a plethora of PDAs with a wide spectrum of activity against a variety of fungal and bacterial pathogens causing infections in humans and animals. Active components of many plant extracts have been characterized and are commercially available; however, research delineating the mechanistic basis of their antimicrobial action is scanty. This review highlights the potential of various plant-derived compounds to control pathogenic bacteria, especially the diverse effects exerted by plant compounds on various virulence factors that are critical for pathogenicity inside the host. In addition, the potential effect of PDAs on gut microbiota is discussed.

  6. The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling.

    Science.gov (United States)

    Rossi, Franco Rubén; Gárriz, Andrés; Marina, María; Romero, Fernando Matías; Gonzalez, María Elisa; Collado, Isidro González; Pieckenstain, Fernando Luis

    2011-08-01

    Botrytis cinerea, as a necrotrophic fungus, kills host tissues and feeds on the remains. This fungus is able to induce the hypersensitive response (HR) on its hosts, thus taking advantage on the host's defense machinery for generating necrotic tissues. However, the identity of HR effectors produced by B. cinerea is not clear. The aim of this work was to determine whether botrydial, a phytotoxic sesquiterpene produced by B. cinerea, is able to induce the HR on plant hosts, using Arabidopsis thaliana as a model. Botrydial induced the expression of the HR marker HSR3, callose deposition, and the accumulation of reactive oxygen species and phenolic compounds. Botrydial also induced the expression of PR1 and PDF1.2, two pathogenesis-related proteins involved in defense responses regulated by salicylic acid (SA) and jasmonic acid (JA), respectively. A. thaliana and tobacco plants defective in SA signaling were more resistant to botrydial than wild-type plants, as opposed to A. thaliana plants defective in JA signaling, which were more sensitive. It can be concluded that botrydial induces the HR on its hosts and its effects are modulated by host signaling pathways mediated by SA and JA.

  7. Anilinopyrimidine Resistance in Botrytis cinerea Is Linked to Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Andreas Mosbach

    2017-11-01

    Full Text Available Crop protection anilinopyrimidine (AP fungicides were introduced more than 20 years ago for the control of a range of diseases caused by ascomycete plant pathogens, and in particular for the control of gray mold caused by Botrytis cinerea. Although early mode of action studies suggested an inhibition of methionine biosynthesis, the molecular target of this class of fungicides was never fully clarified. Despite AP-specific resistance having been described in B. cinerea field isolates and in multiple other targeted species, the underlying resistance mechanisms were unknown. It was therefore expected that the genetic characterization of resistance mechanisms would permit the identification of the molecular target of these fungicides. In order to explore the widest range of possible resistance mechanisms, AP-resistant B. cinerea UV laboratory mutants were generated and the mutations conferring resistance were determined by combining whole-genome sequencing and reverse genetics. Genetic mapping from a cross between a resistant field isolate and a sensitive reference isolate was used in parallel and led to the identification of an additional molecular determinant not found from the characterized UV mutant collection. Together, these two approaches enabled the characterization of an unrivaled diversity of resistance mechanisms. In total, we report the elucidation of resistance-conferring mutations within nine individual genes, two of which are responsible for almost all instances of AP resistance in the field. All identified resistance-conferring genes encode proteins that are involved in mitochondrial processes, suggesting that APs primarily target the mitochondria. The functions of these genes and their possible interactions are discussed in the context of the potential mode of action for this important class of fungicides.

  8. A Plant Phytosulfokine Peptide Initiates Auxin-Dependent Immunity through Cytosolic Ca2+ Signaling in Tomato.

    Science.gov (United States)

    Zhang, Huan; Hu, Zhangjian; Lei, Cui; Zheng, Chenfei; Wang, Jiao; Shao, Shujun; Li, Xin; Xia, Xiaojian; Cai, Xinzhong; Zhou, Jie; Zhou, Yanhong; Yu, Jingquan; Foyer, Christine H; Shi, Kai

    2018-03-01

    Phytosulfokine (PSK) is a disulfated pentapeptide that is an important signaling molecule. Although it has recently been implicated in plant defenses to pathogen infection, the mechanisms involved remain poorly understood. Using surface plasmon resonance and gene silencing approaches, we showed that the tomato ( Solanum lycopersicum ) PSK receptor PSKR1, rather than PSKR2, functioned as the major PSK receptor in immune responses. Silencing of PSK signaling genes rendered tomato more susceptible to infection by the economically important necrotrophic pathogen Botrytis cinerea Analysis of tomato mutants defective in either defense hormone biosynthesis or signaling demonstrated that PSK-induced immunity required auxin biosynthesis and associated defense pathways. Here, using aequorin-expressing tomato plants, we provide evidence that PSK perception by tomato PSKR1 elevated cytosolic [Ca 2+ ], leading to auxin-dependent immune responses via enhanced binding activity between calmodulins and the auxin biosynthetic YUCs. Thus, our data demonstrate that PSK acts as a damage-associated molecular pattern and is perceived mainly by PSKR1, which increases cytosolic [Ca 2+ ] and activates auxin-mediated pathways that enhance immunity of tomato plants to B. cinerea . © 2018 American Society of Plant Biologists. All rights reserved.

  9. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2

    Science.gov (United States)

    Zhang, Shuai; Li, Xin; Sun, Zenghui; Shao, Shujun; Hu, Lingfei; Ye, Meng; Zhou, Yanhong; Xia, Xiaojian; Yu, Jingquan; Shi, Kai

    2015-01-01

    Increasing CO2 concentrations ([CO2]) have the potential to disrupt plant–pathogen interactions in natural and agricultural ecosystems, but the research in this area has often produced conflicting results. Variations in phytohormone salicylic acid (SA) and jasmonic acid (JA) signalling could be associated with variations in the responses of pathogens to plants grown under elevated [CO2]. In this study, interactions between tomato plants and three pathogens with different infection strategies were compared. Elevated [CO2] generally favoured SA biosynthesis and signalling but repressed the JA pathway. The exposure of plants to elevated [CO2] revealed a lower incidence and severity of disease caused by tobacco mosaic virus (TMV) and by Pseudomonas syringae, whereas plant susceptibility to necrotrophic Botrytis cinerea increased. The elevated [CO2]-induced and basal resistance to TMV and P. syringae were completely abolished in plants in which the SA signalling pathway nonexpressor of pathogenesis-related genes 1 (NPR1) had been silenced or in transgenic plants defective in SA biosynthesis. In contrast, under both ambient and elevated [CO2], the susceptibility to B. cinerea highly increased in plants in which the JA signalling pathway proteinase inhibitors (PI) gene had been silenced or in a mutant affected in JA biosynthesis. However, plants affected in SA signalling remained less susceptible to this disease. These findings highlight the modulated antagonistic relationship between SA and JA that contributes to the variation in disease susceptibility under elevated [CO2]. This information will be critical for investigating how elevated CO2 may affect plant defence and the dynamics between plants and pathogens in both agricultural and natural ecosystems. PMID:25657213

  10. Long non-coding RNAs as molecular players in plant defense against pathogens.

    Science.gov (United States)

    Zaynab, Madiha; Fatima, Mahpara; Abbas, Safdar; Umair, Muhammad; Sharif, Yasir; Raza, Muhammad Ammar

    2018-05-31

    Long non-coding RNAs (lncRNAs) has significant role in of gene expression and silencing pathways for several biological processes in eukaryotes. lncRNAs has been reported as key player in remodeling chromatin and genome architecture, RNA stabilization and transcription regulation, including enhancer-associated activity. Host lncRNAs are reckoned as compulsory elements of plant defense. In response to pathogen attack, plants protect themselves with the help of lncRNAs -dependent immune systems in which lncRNAs regulate pathogen-associated molecular patterns (PAMPs) and other effectors. Role of lncRNAs in plant microbe interaction has been studied extensively but regulations of several lncRNAs still need extensive research. In this study we discussed and provide as overview the topical advancements and findings relevant to pathogen attack and plant defense mediated by lncRNAs. It is hoped that lncRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases. Copyright © 2018. Published by Elsevier Ltd.

  11. Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi.

    Science.gov (United States)

    Meyer, Susan L F; Roberts, Daniel P

    2002-03-01

    Numerous microbes are antagonistic to plant-parasitic nematodes and soilborne plant-pathogenic fungi, but few of these organisms are commercially available for management of these pathogens. Inconsistent performance of applied biocontrol agents has proven to be a primary obstacle to the development of successful commercial products. One of the strategies for overcoming inconsistent performance is to combine the disease-suppressive activity of two (or more) beneficial microbes in a biocontrol preparation. Such combinations have potential for more extensive colonization of the rhizosphere, more consistent expression of beneficial traits under a broad range of soil conditions, and antagonism to a larger number of plant pests or pathogens than strains applied individually. Conversely, microbes applied in combination also may have antagonistic interactions with each other. Increased, decreased, and unaltered suppression of the target pathogen or pest has been observed when biocontrol microbes have been applied in combination. Unfortunately, the ecological basis for increased or decreased suppression has not been determined in many cases and needs further consideration. The complexity of interactions involved in the application of multiple organisms for biological control has slowed progress toward development of successful formulations. However, this approach has potential for overcoming some of the efficacy problems that occur with application of individual biocontrol agents.

  12. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants.

    Science.gov (United States)

    Djonović, Slavica; Urbach, Jonathan M; Drenkard, Eliana; Bush, Jenifer; Feinbaum, Rhonda; Ausubel, Jonathan L; Traficante, David; Risech, Martina; Kocks, Christine; Fischbach, Michael A; Priebe, Gregory P; Ausubel, Frederick M

    2013-03-01

    Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved "house-keeping" anabolic pathway (trehalose

  13. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants.

    Directory of Open Access Journals (Sweden)

    Slavica Djonović

    2013-03-01

    Full Text Available Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by PA14 of the disaccharide trehalose is required for pathogenesis in Arabidopsis, but not in nematodes, insects, or mice. In-frame deletion of two closely-linked predicted trehalose biosynthetic operons, treYZ and treS, decreased growth in Arabidopsis leaves about 50 fold. Exogenously co-inoculated trehalose, ammonium, or nitrate, but not glucose, sulfate, or phosphate suppressed the phenotype of the double ΔtreYZΔtreS mutant. Exogenous trehalose or ammonium nitrate does not suppress the growth defect of the double ΔtreYZΔtreS mutant by suppressing the plant defense response. Trehalose also does not function intracellularly in P. aeruginosa to ameliorate a variety of stresses, but most likely functions extracellularly, because wild-type PA14 rescued the in vivo growth defect of the ΔtreYZΔtreS in trans. Surprisingly, the growth defect of the double ΔtreYZΔtreS double mutant was suppressed by various Arabidopsis cell wall mutants that affect xyloglucan synthesis, including an xxt1xxt2 double mutant that completely lacks xyloglucan, even though xyloglucan mutants are not more susceptible to pathogens and respond like wild-type plants to immune elicitors. An explanation of our data is that trehalose functions to promote the acquisition of nitrogen-containing nutrients in a process that involves the xyloglucan component of the plant cell wall, thereby allowing P. aeruginosa to replicate in the intercellular spaces in a leaf. This work shows how P. aeruginosa, a multi-host opportunistic pathogen, has repurposed a highly conserved "house-keeping" anabolic

  14. Plant pathogen culture collections: it takes a village to preserve these resources vital to the advancement of agricultural security and plant pathology.

    Science.gov (United States)

    Kang, Seogchan; Blair, Jaime E; Geiser, David M; Khang, Chang-Hyun; Park, Sook-Young; Gahegan, Mark; O'Donnell, Kerry; Luster, Douglas G; Kim, Seong H; Ivors, Kelly L; Lee, Yong-Hwan; Lee, Yin-Won; Grünwald, Niklaus J; Martin, Frank M; Coffey, Michael D; Veeraraghavan, Narayanan; Makalowska, Izabela

    2006-09-01

    ABSTRACT Plant pathogen culture collections are essential resources in our fight against plant disease and for connecting discoveries of the present with established knowledge of the past. However, available infrastructure in support of culture collections is in serious need of improvement, and we continually face the risk of losing many of these collections. As novel and reemerging plant pathogens threaten agriculture, their timely identification and monitoring depends on rapid access to cultures representing the known diversity of plant pathogens along with genotypic, phenotypic, and epidemiological data associated with them. Archiving such data in a format that can be easily accessed and searched is essential for rapid assessment of potential risk and can help track the change and movement of pathogens. The underexplored pathogen diversity in nature further underscores the importance of cataloguing pathogen cultures. Realizing the potential of pathogen genomics as a foundation for developing effective disease control also hinges on how effectively we use the sequenced isolate as a reference to understand the genetic and phenotypic diversity within a pathogen species. In this letter, we propose a number of measures for improving pathogen culture collections.

  15. Antibacterial activities of medicinal plants against multidrug resistant urinary tract pathogens

    International Nuclear Information System (INIS)

    Aziz, M.A.; Adnan, M.; Rahman, H.; Allah, A.; Hashem, A.

    2017-01-01

    Urinary tract infections (UTI) caused by multi-drug resistant (MDR) bacterial pathogens have become a serious global health concern. Main etiological agents for UTI are Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa. Recently, medicinal plants have found great popularity in medical treatment for different kinds of infections including urinary tract infections. The study has been planned to evaluate the efficacy of alkaloids, flavonoids, saponins and crude extracts of medicinal plants i.e. Syzygium aromaticum, Glycerrhiza glabra,Laurus nobilis and Brassica rapa against MDR urinary tract pathogens through agar well diffusion method. To investigate the Minimum Inhibitory Concentrations (MICs) and Minimum Bactericidal Concentration (MBCs), dilution method was used. Quantitative evaluations of phytochemicals indicated the presence of alkaloids in higher concentrations. Results obtained for the antibacterial activities, the crude extracts of the four plants showed significantly higher inhibition zones as compared to other phytochemicals. The MIC values obtained for different extracts varying from 7.5-15 mg/ml. Comparig the activities of the extracts of the the four medicinal plants it was found that Syzygium aromaticum was the most potent plant against the tested bacterial pathogens indicating its strong candidateship for the drug development. (author)

  16. Novel aspinolide production by Trichoderma arundinaceum with a potential role in Botrytis cinerea antagonistic activity and plant defense priming

    Science.gov (United States)

    Harzianum A (HA), a trichothecene produced by Trichoderma arundinaceum, has recently been described to have antagonistic activity against fungal plant pathogens and to induce plant defence genes. In the present work, we have shown that a tri5 genedisrupted mutant that lacks HA production overproduce...

  17. Regulation of the NADPH Oxidase RBOHD During Plant Immunity.

    Science.gov (United States)

    Kadota, Yasuhiro; Shirasu, Ken; Zipfel, Cyril

    2015-08-01

    Pathogen recognition induces the production of reactive oxygen species (ROS) by NADPH oxidases in both plants and animals. ROS have direct antimicrobial properties, but also serve as signaling molecules to activate further immune outputs. However, ROS production has to be tightly controlled to avoid detrimental effects on host cells, but yet must be produced in the right amount, at the right place and at the right time upon pathogen perception. Plant NADPH oxidases belong to the respiratory burst oxidase homolog (RBOH) family, which contains 10 members in the model plant Arabidopsis thaliana. The perception of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) leads to a rapid, specific and strong production of ROS, which is dependent on RBOHD. RBOHD is mainly controlled by Ca(2+) via direct binding to EF-hand motifs and phosphorylation by Ca(2+)-dependent protein kinases. Recent studies have, however, revealed a critical role for a Ca(2+)-independent regulation of RBOHD. The plasma membrane-associated cytoplasmic kinase BIK1 (BOTRYTIS-INDUCED KINASE1), which is a direct substrate of the PRR complex, directly interacts with and phosphorylates RBOHD upon PAMP perception. Impairment of these phosphorylation events completely abolishes the function of RBOHD in immunity. These results suggest that RBOHD activity is tightly controlled by multilayered regulations. In this review, we summarize recent advances in our understanding of the regulatory mechanisms controlling RBOHD activation. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals

    Directory of Open Access Journals (Sweden)

    Yi Hao

    2017-08-01

    Full Text Available Nanoparticles (NPs have great potential for use in the fields of biomedicine, building materials, and environmental protection because of their antibacterial properties. However, there are few reports regarding the antifungal activities of NPs on plants. In this study, we evaluated the antifungal roles of NPs against Botrytis cinerea, which is a notorious worldwide fungal pathogen. Three common carbon nanomaterials, multi-walled carbon nanotubes, fullerene, and reduced graphene oxide, and three commercial metal oxidant NPs, copper oxide (CuO NPs, ferric oxide (Fe2O3 NPs, and titanium oxides (TiO2 NPs, were independently added to water-agar plates at 50 and 200-mg/L concentrations. Detached rose petals were inoculated with spores of B. cinerea and co-cultured with each of the six nanomaterials. The sizes of the lesions on infected rose petals were measured at 72 h after inoculation, and the growth of fungi on the rose petals was observed by scanning electron microscopy. The six NPs inhibited the growth of B. cinerea, but different concentrations had different effects: 50 mg/L of fullerene and CuO NPs showed the strongest antifungal properties among the treatments, while 200 mg/L of CuO and Fe2O3 showed no significant antifungal activities. Thus, NPs may have antifungal activities that prevent B. cinerea infections in plants, and they could be used as antifungal agents during the growth and post-harvesting of roses and other flowers.

  19. A gravity model for the spread of a pollinator-borne plant pathogen.

    Science.gov (United States)

    Ferrari, Matthew J; Bjørnstad, Ottar N; Partain, Jessica L; Antonovics, Janis

    2006-09-01

    Many pathogens of plants are transmitted by arthropod vectors whose movement between individual hosts is influenced by foraging behavior. Insect foraging has been shown to depend on both the quality of hosts and the distances between hosts. Given the spatial distribution of host plants and individual variation in quality, vector foraging patterns may therefore produce predictable variation in exposure to pathogens. We develop a "gravity" model to describe the spatial spread of a vector-borne plant pathogen from underlying models of insect foraging in response to host quality using the pollinator-borne smut fungus Microbotryum violaceum as a case study. We fit the model to spatially explicit time series of M. violaceum transmission in replicate experimental plots of the white campion Silene latifolia. The gravity model provides a better fit than a mean field model or a model with only distance-dependent transmission. The results highlight the importance of active vector foraging in generating spatial patterns of disease incidence and for pathogen-mediated selection for floral traits.

  20. List of new names of plant pathogenic bacteria (2011-2012)

    Science.gov (United States)

    The International Society of Plant Pathology Committee on the Taxonomy of Plant Pathogenic Bacteria has responsibility to evaluate the names of newly proposed pathovars for adherence to the International Standards for Naming Pathovars of Phytopathogenic Bacteria. Currently, the Comprehensive List of...

  1. Adaptation to the Host Environment by Plant-Pathogenic Fungi.

    Science.gov (United States)

    van der Does, H Charlotte; Rep, Martijn

    2017-08-04

    Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.

  2. Using the Pathogen-Host Interactions database (PHI-base to investigate plant pathogen genomes and genes implicated in virulence

    Directory of Open Access Journals (Sweden)

    Martin eUrban

    2015-08-01

    Full Text Available New pathogen-host interaction mechanisms can be revealed by integrating mutant phenotype data with genetic information. PHI-base is a multi-species manually curated database combining peer-reviewed published phenotype data from plant and animal pathogens and gene/protein information in a single database.

  3. Molecular Diversity of Antagonistic Streptomyces spp. against Botrytis allii, the agent of onion gray mold using Random Amplified Polymorphic DNA (RAPD Markers

    Directory of Open Access Journals (Sweden)

    M. Jorjandi

    2014-08-01

    Full Text Available As an aim in sustainable agriculture, biological control of plant diseases has received intensive attention mainly as a response to public concern about the use of chemical fungicides in the environment. Soil Actinomycetes particularly Streptomyces spp. enhance soil fertility and have antagonistic activity against wide range of plant pathogens. To investigate for biocontrol means against the pathogen, 30 isolates of Actinomycetes have been isolated from agricultural soils of Kerman province of Iran and assayed for antagonistic activity against Botrytis allii, the agent of onion gray mold. RAPD DNA analysis has been used to determine the relatedness of active and non-active isolates based on their RAPD-PCR fingerprints. PCR amplifiable DNA samples have been isolated using the CTAB method and amplified fragments have been obtained from 5 random 10-mer primers. Different DNA fingerprinting patterns have been obtained for all of the isolates. Electrophoretic and cluster analysis of the amplification products has revealed incidence of polymorphism among the isolates. A total of 138 bands, ranging in size from 150-2800 bp, have been amplified from primers which 63.7% of the observed bands have been polymorphic. Genetic distances among different varieties have been analyzed with a UPGMA (Unweighted pair-group method, arithmetic average-derived dendrogram. Resulting dendrogram has showed from 0.65 to 0.91 similarities among varieties and divided the isolates into five major groups. Isolates which haven’t had any antagonistic activity against B. allii have been separated into a group and other isolates classified into four groups. The results indicate that RAPD is an efficient method for discriminating and studying genetic diversity of Streptomyces isolates.

  4. Interactions involving ozone, Botrytis cinerea, and B. squamosa on onion leaves

    Energy Technology Data Exchange (ETDEWEB)

    Rist, D.L.

    1983-01-01

    Interactions involving Botrytis cinerea Pers., B. squamosa Walker, and ozone on onion (alium cepae L.) were investigated. Initially, threshold dosages of ozone required to predispose onion leaves to greater infection by B. cinerea and B. squamosa were determined under controlled conditions in an ozone-exposure chamber. Subsequent experiments supported the hypothesis that nutrients leaking out of ozone-injured cells stimulated lesion production by B. cinerea. The electrical conductivity of, and carbohydrate concentration in, dew collected from leaves of onion plants which had been exposed to ozone were greater than the electrical conductivity of, and carbohydrate concentration in, dew collected from leaves of other, non-exposed onion plants. When conidia of B. cinerea were suspended in dew collected from leaves of plants which had been exposed to ozone and the resulting suspension atomized onto leaves of non-exposed plants, more lesions were induced than on leaves of other non-exposed plants inoculated with conidia suspended in dew collected from plants which had not been exposed to ozone. EDU protected onion leaves from ozone-induced predisposition to these fungi under controlled conditions. Experiments designed to detect interaction between B. cinerea and B. squamosa in onion leaf blighting indicated that such interaction did not occur. Leaves were blighted rapidly when inoculated with B. squamosa whether B. cinerea was present or absent.

  5. Delivery of gene biotechnologies to plants: Pathogen and pest control

    Science.gov (United States)

    Treatment of oligonucleotides to plants for host delivered suppression of microbes and insect pests of citrus was successful. FANA_ASO, (2'-deoxy-2'-fluoro-D- arabinonucleic acid)_( antisense oligonucleotides- AUM LifeTech) designed to: Asian citrus psyllid; Citrus plant bacterial pathogen of citru...

  6. Inhibición de Botrytis cinerea en rosas a base de extractos alcohólicos y acuoso de hierba mora ( Solanum Nigrum)

    OpenAIRE

    Fiallos Montalvo, Henry Edison

    2011-01-01

    During the period 2009-2010 research was done on "The Inhibition of Botrytis cinerea on alcoholic and aqueous based extracts of black nightshade (Solanum nigrum) roses." The variable evaluated in Laboratory: Control percentage of Botrytis cinerea in petri dish, whereas the statistical design was evaluated in the variable field: control percentage of Botrytis cinerea on flower buds in Freedom roses variety. This work investigated the inhibition of Botrytis cinerea on roses by apply...

  7. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance.

    Science.gov (United States)

    Brunner, Kurt; Zeilinger, Susanne; Ciliento, Rosalia; Woo, Sheridian L; Lorito, Matteo; Kubicek, Christian P; Mach, Robert L

    2005-07-01

    Biocontrol agents generally do not perform well enough under field conditions to compete with chemical fungicides. We determined whether transgenic strain SJ3-4 of Trichoderma atroviride, which expresses the Aspergillus niger glucose oxidase-encoding gene, goxA, under a homologous chitinase (nag1) promoter had increased capabilities as a fungal biocontrol agent. The transgenic strain differed only slightly from the wild-type in sporulation or the growth rate. goxA expression occurred immediately after contact with the plant pathogen, and the glucose oxidase formed was secreted. SJ3-4 had significantly less N-acetylglucosaminidase and endochitinase activities than its nontransformed parent. Glucose oxidase-containing culture filtrates exhibited threefold-greater inhibition of germination of spores of Botrytis cinerea. The transgenic strain also more quickly overgrew and lysed the plant pathogens Rhizoctonia solani and Pythium ultimum. In planta, SJ3-4 had no detectable improved effect against low inoculum levels of these pathogens. Beans planted in heavily infested soil and treated with conidia of the transgenic Trichoderma strain germinated, but beans treated with wild-type spores did not germinate. SJ3-4 also was more effective in inducing systemic resistance in plants. Beans with SJ3-4 root protection were highly resistant to leaf lesions caused by the foliar pathogen B. cinerea. This work demonstrates that heterologous genes driven by pathogen-inducible promoters can increase the biocontrol and systemic resistance-inducing properties of fungal biocontrol agents, such as Trichoderma spp., and that these microbes can be used as vectors to provide plants with useful molecules (e.g., glucose oxidase) that can increase their resistance to pathogens.

  8. Method for increasing the resistance of a plant or a part thereof to a pathogen, method for screening the resistance of a plant or part thereof to a pathogen, and use thereof

    OpenAIRE

    Wit, de, P.; Stergiopoulos, I.; Kema, G.H.J.

    2011-01-01

    (EN)The present invention relates to the field of plant biotechnology. More in particular, the present invention relates to methods for increasing the resistance of a plant or part thereof that is susceptible to infection with a pathogen comprising an ortholog of the Avr4 protein of Cladosporium fulvum, wherein said plant is not a tomato or tobacco plant. The invention also relates to methods for screening the resistance of a plant or a part thereof to at least one pathogen, wherein said path...

  9. Hijacking of the host SCF ubiquitin ligase machinery by plant pathogens

    Directory of Open Access Journals (Sweden)

    Shimpei eMagori

    2011-11-01

    Full Text Available The SCF (SKP1-CUL1-F-box protein ubiquitin ligase complex mediates polyubiquitination of proteins targeted for degradation, thereby controlling a plethora of biological processes in eukaryotic cells. Although this ubiquitination machinery is found and functional only in eukaryotes, many non-eukaryotic pathogens also encode F-box proteins, the critical subunits of the SCF complex. Increasing evidence indicates that such non-eukaryotic F-box proteins play an essential role in subverting or exploiting the host ubiquitin/proteasome system for efficient pathogen infection. A recent bioinformatic analysis has identified more than 70 F-box proteins in 22 different bacterial species, suggesting that use of pathogen-encoded F-box effectors in the host cell may be a widespread infection strategy. In this review, we focus on plant pathogen-encoded F-box effectors, such as VirF of Agrobacterium tumefaciens, GALAs of Ralstonia solanacearum, and P0 of Poleroviruses, and discuss the molecular mechanism by which plant pathogens use these factors to manipulate the host cell for their own benefit.

  10. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    OpenAIRE

    Marija Ravlić; Renata Baličević

    2014-01-01

    Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated) biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides) or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chem...

  11. Recent developments in pathogen detection arrays: implications for fungal plant pathogens and use in practica

    NARCIS (Netherlands)

    Lievens, B.; Thomma, B.P.H.J.

    2005-01-01

    The failure to adequately identify plant pathogens from culture-based morphological techniques has led to the development of culture-independent molecular approaches. Increasingly, diagnostic laboratories are pursuing fast routine methods that provide reliable identification, sensitive detection,

  12. Host plant-dependent phenotypic reversion of Ralstonia solanacearum from non-pathogenic to pathogenic forms via alterations in the phcA gene.

    Science.gov (United States)

    Poussier, Stéphane; Thoquet, Philippe; Trigalet-Demery, Danièle; Barthet, Séverine; Meyer, Damien; Arlat, Matthieu; Trigalet, André

    2003-08-01

    Ralstonia solanacearum is a plant pathogenic bacterium that undergoes a spontaneous phenotypic conversion (PC) from a wild-type pathogenic to a non-pathogenic form. PC is often associated with mutations in phcA, which is a key virulence regulatory gene. Until now, reversion to the wild-type pathogenic form has not been observed for PC variants and the biological significance of PC has been questioned. In this study, we characterized various alterations in phcA (eight IS element insertions, three tandem duplications, seven deletions and a base substitution) in 19 PC mutants from the model strain GMI1000. In five of these variants, reversion to the pathogenic form was observed in planta, while no reversion was ever noticed in vitro whatever culture media used. However, reversion was observed for a 64 bp tandem duplication in vitro in the presence of tomato root exudate. This is the first report showing a complete cycle of phenotypic conversion/reversion in a plant pathogenic bacterium.

  13. Quantitative resistance to Botrytis cinerea from Solanum neorickii

    NARCIS (Netherlands)

    Finkers, H.J.; Bai, Y.; Berg, van den P.M.M.M.; Berloo, van R.; Meijer-Dekens, R.G.; Have, ten A.; Kan, van J.A.L.; Lindhout, P.; Heusden, van A.W.

    2008-01-01

    Tomato (Solanum lycopersicum) is susceptible to gray mold (Botrytis cinerea). Quantitative resistance to B. cinerea was previously identified in a wild relative, S. neorickii G1.1601. The 122 F3 families derived from a cross between the susceptible S. lycopersicum cv. Moneymaker and the partially

  14. Three QTLs for Botrytis cinerea resistance in tomato

    NARCIS (Netherlands)

    Finkers, H.J.; Berg, van den P.M.M.M.; Berloo, van R.; Have, ten A.; Heusden, van A.W.; Kan, van J.A.L.; Lindhout, P.

    2007-01-01

    Tomato (Solanum lycopersicum) is susceptible to grey mold (Botrytis cinerea). Partial resistance to this fungus was identified in accessions of wild relatives of tomato such as S. habrochaites LYC4. In order to identify loci involved in quantitative resistance (QTLs) to B. cinerea, a population of

  15. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid.

    Science.gov (United States)

    Sanchez, Lisa; Courteaux, Barbara; Hubert, Jane; Kauffmann, Serge; Renault, Jean-Hugues; Clément, Christophe; Baillieul, Fabienne; Dorey, Stéphan

    2012-11-01

    Plant resistance to phytopathogenic microorganisms mainly relies on the activation of an innate immune response usually launched after recognition by the plant cells of microbe-associated molecular patterns. The plant hormones, salicylic acid (SA), jasmonic acid, and ethylene have emerged as key players in the signaling networks involved in plant immunity. Rhamnolipids (RLs) are glycolipids produced by bacteria and are involved in surface motility and biofilm development. Here we report that RLs trigger an immune response in Arabidopsis (Arabidopsis thaliana) characterized by signaling molecules accumulation and defense gene activation. This immune response participates to resistance against the hemibiotrophic bacterium Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora arabidopsidis, and the necrotrophic fungus Botrytis cinerea. We show that RL-mediated resistance involves different signaling pathways that depend on the type of pathogen. Ethylene is involved in RL-induced resistance to H. arabidopsidis and to P. syringae pv tomato whereas jasmonic acid is essential for the resistance to B. cinerea. SA participates to the restriction of all pathogens. We also show evidence that SA-dependent plant defenses are potentiated by RLs following challenge by B. cinerea or P. syringae pv tomato. These results highlight a central role for SA in RL-mediated resistance. In addition to the activation of plant defense responses, antimicrobial properties of RLs are thought to participate in the protection against the fungus and the oomycete. Our data highlight the intricate mechanisms involved in plant protection triggered by a new type of molecule that can be perceived by plant cells and that can also act directly onto pathogens.

  16. Contrasting effects of necrotrophic and biotrophic plant pathogens on the aphid Aphis fabae

    OpenAIRE

    Al-Naemi, F.; Hatcher, P. E.

    2013-01-01

    Phytophagous insects have to contend with a wide variation in food quality brought about by a variety of factors intrinsic and extrinsic to the plant. One of the most important factors is infection by plant pathogenic fungi. Necrotrophic and biotrophic plant pathogenic fungi may have contrasting effects on insect herbivores due to their different infection mechanisms and induction of different resistance pathways, although this has been little studied and there has been no study of their comb...

  17. Human Pathogens on Plants: Designing a Multidisciplinary Strategy for Research.

    Science.gov (United States)

    Fletcher, Jacqueline; Leach, Jan E; Eversole, Kellye; Tauxe, Robert

    2014-10-15

    Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define

  18. Human pathogens on plants: designing a multidisciplinary strategy for research.

    Science.gov (United States)

    Fletcher, Jacqueline; Leach, Jan E; Eversole, Kellye; Tauxe, Robert

    2013-04-01

    Recent efforts to address concerns about microbial contamination of food plants and resulting foodborne illness have prompted new collaboration and interactions between the scientific communities of plant pathology and food safety. This article provides perspectives from scientists of both disciplines and presents selected research results and concepts that highlight existing and possible future synergisms for audiences of both disciplines. Plant pathology is a complex discipline that encompasses studies of the dissemination, colonization, and infection of plants by microbes such as bacteria, viruses, fungi, and oomycetes. Plant pathologists study plant diseases as well as host plant defense responses and disease management strategies with the goal of minimizing disease occurrences and impacts. Repeated outbreaks of human illness attributed to the contamination of fresh produce, nuts and seeds, and other plant-derived foods by human enteric pathogens such as Shiga toxin-producing Escherichia coli and Salmonella spp. have led some plant pathologists to broaden the application of their science in the past two decades, to address problems of human pathogens on plants (HPOPs). Food microbiology, which began with the study of microbes that spoil foods and those that are critical to produce food, now also focuses study on how foods become contaminated with pathogens and how this can be controlled or prevented. Thus, at the same time, public health researchers and food microbiologists have become more concerned about plant-microbe interactions before and after harvest. New collaborations are forming between members of the plant pathology and food safety communities, leading to enhanced research capacity and greater understanding of the issues for which research is needed. The two communities use somewhat different vocabularies and conceptual models. For example, traditional plant pathology concepts such as the disease triangle and the disease cycle can help to define

  19. bryophyte extracts with activity against plant pathogenic fungi

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: The effects of extracts from 17 different bryophyte species were investigated against economically important plant pathogenic fungi ... remedies of diseases in various forms. Similarly, before the discovery of the synthetic ... and divided into the classes Anthocerotae (horn- worts), Hepaticae (liverworts) and Musci ...

  20. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal

    Science.gov (United States)

    Coy, Monique R.; Stelinski, Lukasz L.; Pelz-Stelinski, Kirsten S.

    2015-01-01

    The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas) affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama). CLas is the putative causal agent of huanglongbing (HLB), which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies. PMID:26083763

  1. Infection of an Insect Vector with a Bacterial Plant Pathogen Increases Its Propensity for Dispersal.

    Directory of Open Access Journals (Sweden)

    Xavier Martini

    Full Text Available The spread of vector-transmitted pathogens relies on complex interactions between host, vector and pathogen. In sessile plant pathosystems, the spread of a pathogen highly depends on the movement and mobility of the vector. However, questions remain as to whether and how pathogen-induced vector manipulations may affect the spread of a plant pathogen. Here we report for the first time that infection with a bacterial plant pathogen increases the probability of vector dispersal, and that such movement of vectors is likely manipulated by a bacterial plant pathogen. We investigated how Candidatus Liberibacter asiaticus (CLas affects dispersal behavior, flight capacity, and the sexual attraction of its vector, the Asian citrus psyllid (Diaphorina citri Kuwayama. CLas is the putative causal agent of huanglongbing (HLB, which is a disease that threatens the viability of commercial citrus production worldwide. When D. citri developed on CLas-infected plants, short distance dispersal of male D. citri was greater compared to counterparts reared on uninfected plants. Flight by CLas-infected D. citri was initiated earlier and long flight events were more common than by uninfected psyllids, as measured by a flight mill apparatus. Additionally, CLas titers were higher among psyllids that performed long flights than psyllid that performed short flights. Finally, attractiveness of female D. citri that developed on infected plants to male conspecifics increased proportionally with increasing CLas bacterial titers measured within female psyllids. Our study indicates that the phytopathogen, CLas, may manipulate movement and mate selection behavior of their vectors, which is a possible evolved mechanism to promote their own spread. These results have global implications for both current HLB models of disease spread and control strategies.

  2. Prevalence of plant beneficial and human pathogenic bacteria isolated from salad vegetables in India.

    Science.gov (United States)

    Nithya, Angamuthu; Babu, Subramanian

    2017-03-14

    The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.

  3. Rapid on-site evaluation of the development of resistance to quinone outside inhibitors in Botrytis cinerea.

    Science.gov (United States)

    Hu, X R; Dai, D J; Wang, H D; Zhang, C Q

    2017-10-24

    Botrytis cinerea, a typical "high-risk" pathogenic fungus that rapidly develops resistance to fungicides, affects more than 1,000 species of 586 plant genera native to most continents and causes great economic losses. Therefore, a rapid and sensitive assay of fungicide resistance development in B. cinerea populations is crucial for scientific management. In this study, we established a Loop-mediated isothermal amplification (LAMP) system for the monitoring and evaluation of the risk of development of B. cinerea resistance to QoI fungicides; the method uses two LAMP assays. The first assay detects G143A mutants of B. cinerea, which are highly resistance to QoI fungicides. BCbi143/144 introns in B. cinerea are then detected by the second assay. HNB acts as a visual LAMP reaction indicator. The optimum reaction conditions of the LAMP assays were 61 °C for 50 min, and the detection limit of the LAMP assays was 100 × 10 -4  ng/μl. We directly pre-treated the field samples by using All-DNA-Fast-Out to extract DNA within ten minutes, then performed the LAMP assay to achieve one-step rapid detection. In conclusion, we established a rapid and sensitive LAMP assay system for resistance risk assessment and for monitoring QoI-resistance of B. cinerea in the field.

  4. (Cucumis melo L.) cultivars to soil-borne plant pathogenic fungi in Iran

    African Journals Online (AJOL)

    ajl11

    2012-10-30

    Oct 30, 2012 ... resistance of melon cultivars to three important soil-borne plant pathogens found worldwide. Key words: Melon ... use of cultivars resistant to plant diseases is one of the ..... emerging disease of melons worldwide. Plant Dis.

  5. An improved method of DNA extraction from plants for pathogen ...

    African Journals Online (AJOL)

    Polymerase chain reaction (PCR)-based applications in plant molecular biology and molecular diagnostics for plant pathogens require good quality DNA for reliable and reproducible results. Leaf tissue is often the choice for DNA extraction, but the use of other sources such as tubers, stems, or seeds, is not uncommon.

  6. Occurrence of root parsley pathogens inhabiting seeds

    Directory of Open Access Journals (Sweden)

    Bogdan Nowicki

    2013-12-01

    Full Text Available The studies on root parsley pathogens inhabiting seeds were conducted during 1981-1988 and in 1993. Filter paper method with prefreezing and keeping under light was used. Each test sample comprised 500 seeds. Pathogenicity of collected fungal isolates was tested following two laboratory methods. 238 seed samples were studied. 18 fungal species were found but only 7 proved to be important pathogens of root parsley. The most common inhabitants of root parsley seeds were Alternaria spp. A.allernata occurred on 74,8% of seeds but only a few isolates showed to be slightly pathogenic while A.petroselini and A.radicina were higly pathogenic and inhabited 11,4 and 4,2% of seeds, respectively. The second group of important pathogens were species of Fusarium found on 3,9% of seeds. F.avenaceum dominated as it comprised 48% of Fusarium isolates, the next were as follow: F.culmorum - 20%, F.equiseti - 15%, F.solani - 8%, F.oxysporum - 7% and F.dimerum -2%. Some fungi like Botrytis cinerea, Septoria petroselini and Phoma spp. inhabited low number of seeds, respectively O,4; 0,5 and 0,8%, but they were highly pathogenic to root parsley. The fungi: Bipolaris sorokiniana, Drechslera biseptata, Stemphylium botryosum and Ulocludium consortiale showed slight pathogenicity. They were isolated from 3,8% of seeds.

  7. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens

    Science.gov (United States)

    Qamar, Aarzoo; Mysore, Kirankumar S.; Senthil-Kumar, Muthappa

    2015-01-01

    Pyrroline-5-carboxylate (P5C) is an intermediate product of both proline biosynthesis and catabolism. Recent evidences indicate that proline-P5C metabolism is tightly regulated in plants, especially during pathogen infection and abiotic stress. However, role of P5C and its metabolism in plants has not yet been fully understood. Studies indicate that P5C synthesized in mitochondria has a role in both resistance (R)-gene-mediated and non-host resistance against invading pathogens. Proline dehydrogenase and delta-ornithine amino transferase-encoding genes, both involved in P5C synthesis in mitochondria are implicated in defense response of Nicotiana benthamiana and Arabidopsis thaliana against bacterial pathogens. Such defense response is proposed to involve salicylic acid-dependent pathway, reactive oxygen species (ROS) and hypersensitive response (HR)-associated cell death. Recently HR, a form of programmed cell death (PCD), has been proposed to be induced by changes in mitochondrial P5C synthesis or the increase in P5C levels per se in plants inoculated with either a host pathogen carrying suitable avirulent (Avr) gene or a non-host pathogen. Consistently, A. thaliana mutant plants deficient in P5C catabolism showed HR like cell death when grown in external P5C or proline supplemented medium. Similarly, yeast and plant cells under oxidative stress were shown to increase ROS production and PCD due to increase in P5C levels. Similar mechanism has also been reported as one of the triggers for apoptosis in mammalian cells. This review critically analyzes results from various studies and enumerates the pathways for regulation of P5C levels in the plant cell, especially in mitochondria, during pathogen infection. Further, mechanisms regulating P5C- mediated defense responses, namely HR are outlined. This review also provides new insights into the differential role of proline-P5C metabolism in plants exposed to pathogen infection. PMID:26217357

  8. Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6).

    Science.gov (United States)

    Morcx, Serena; Kunz, Caroline; Choquer, Mathias; Assie, Sébastien; Blondet, Eddy; Simond-Côte, Elisabeth; Gajek, Karina; Chapeland-Leclerc, Florence; Expert, Dominique; Soulie, Marie-Christine

    2013-03-01

    Chitin synthases play critical roles in hyphal development and fungal pathogenicity. Previous studies on Botrytis cinerea, a model organism for necrotrophic pathogens, have shown that disruption of Bcchs1 and more particularly Bcchs3a genes have a drastic impact on virulence (Soulié et al., 2003, 2006). In this work, we investigate the role of other CHS including BcCHS4, BcCHS6 and BcCHS7 during the life cycle of B. cinerea. Single deletions of corresponding genes were carried out. Phenotypic analysis indicates that: (i) BcCHS4 enzyme is not essential for development and pathogenicity of the fungus; (ii) BcCHS7 is required for pathogenicity in a host dependant manner. For Bcchs6 gene disruption, we obtained only heterokaryotic strains. Indeed, sexual or asexual purification assays were unsuccessful. We concluded that class VI chitin synthase could be essential for B. cinerea and therefore BcCHS6 represents a valuable antifungal target. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Julia Schumacher

    Full Text Available Botrytis cinerea is an aggressive plant pathogen causing gray mold disease on various plant species. In this study, we identified the genetic origin for significantly differing phenotypes of the two sequenced B. cinerea isolates, B05.10 and T4, with regard to light-dependent differentiation, oxalic acid (OA formation and virulence. By conducting a map-based cloning approach we identified a single nucleotide polymorphism (SNP in an open reading frame encoding a VELVET gene (bcvel1. The SNP in isolate T4 results in a truncated protein that is predominantly found in the cytosol in contrast to the full-length protein of isolate B05.10 that accumulates in the nuclei. Deletion of the full-length gene in B05.10 resulted in the T4 phenotype, namely light-independent conidiation, loss of sclerotial development and oxalic acid production, and reduced virulence on several host plants. These findings indicate that the identified SNP represents a loss-of-function mutation of bcvel1. In accordance, the expression of the B05.10 copy in T4 rescued the wild-type/B05.10 phenotype. BcVEL1 is crucial for full virulence as deletion mutants are significantly hampered in killing and decomposing plant tissues. However, the production of the two best known secondary metabolites, the phytotoxins botcinic acid and botrydial, are not affected by the deletion of bcvel1 indicating that other factors are responsible for reduced virulence. Genome-wide expression analyses of B05.10- and Δbcvel1-infected plant material revealed a number of genes differentially expressed in the mutant: while several protease- encoding genes are under-expressed in Δbcvel1 compared to the wild type, the group of over-expressed genes is enriched for genes encoding sugar, amino acid and ammonium transporters and glycoside hydrolases reflecting the response of Δbcvel1 mutants to nutrient starvation conditions.

  10. Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea.

    Science.gov (United States)

    Schumacher, Julia; Pradier, Jean-Marc; Simon, Adeline; Traeger, Stefanie; Moraga, Javier; Collado, Isidro González; Viaud, Muriel; Tudzynski, Bettina

    2012-01-01

    Botrytis cinerea is an aggressive plant pathogen causing gray mold disease on various plant species. In this study, we identified the genetic origin for significantly differing phenotypes of the two sequenced B. cinerea isolates, B05.10 and T4, with regard to light-dependent differentiation, oxalic acid (OA) formation and virulence. By conducting a map-based cloning approach we identified a single nucleotide polymorphism (SNP) in an open reading frame encoding a VELVET gene (bcvel1). The SNP in isolate T4 results in a truncated protein that is predominantly found in the cytosol in contrast to the full-length protein of isolate B05.10 that accumulates in the nuclei. Deletion of the full-length gene in B05.10 resulted in the T4 phenotype, namely light-independent conidiation, loss of sclerotial development and oxalic acid production, and reduced virulence on several host plants. These findings indicate that the identified SNP represents a loss-of-function mutation of bcvel1. In accordance, the expression of the B05.10 copy in T4 rescued the wild-type/B05.10 phenotype. BcVEL1 is crucial for full virulence as deletion mutants are significantly hampered in killing and decomposing plant tissues. However, the production of the two best known secondary metabolites, the phytotoxins botcinic acid and botrydial, are not affected by the deletion of bcvel1 indicating that other factors are responsible for reduced virulence. Genome-wide expression analyses of B05.10- and Δbcvel1-infected plant material revealed a number of genes differentially expressed in the mutant: while several protease- encoding genes are under-expressed in Δbcvel1 compared to the wild type, the group of over-expressed genes is enriched for genes encoding sugar, amino acid and ammonium transporters and glycoside hydrolases reflecting the response of Δbcvel1 mutants to nutrient starvation conditions.

  11. PATHOGENICITY OF FUSARIUM SPP. ISOLATED FROM WEEDS AND PLANT DEBRIS IN EASTERN CROATIA TO WHEAT AND MAIZE

    Directory of Open Access Journals (Sweden)

    Jelena Ilić

    2012-12-01

    Full Text Available Pathogenicity of thirty isolates representing 14 Fusarium species isolated from weeds and plant debris in eastern Croatia was investigated in the laboratory. Pathogenicity tests were performed on wheat and maize seedlings. The most pathogenic Fusarium spp. was F. graminearum isolated from Amaranthus retroflexus, Abutilon theophrasti and Chenopodium album. There was a noticeable inter- and intraspecies variability in pathogenicity towards wheat and maize. Isolates of F. solani from Sonchus arvensis and F. verticillioides from C. album were highly pathogenic to wheat seedlings and apathogenic to maize seedlings. Isolates of F. venenatum were very pathogenic to wheat and maize being the first report about pathogenicity of this species. This experiment proves that weeds and plant debris can serve as alternate hosts and source of inoculum of plant pathogens.

  12. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens

    Science.gov (United States)

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant ...

  13. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen.

    Science.gov (United States)

    Zhang, Tao; Zhao, Yun-Long; Zhao, Jian-Hua; Wang, Sheng; Jin, Yun; Chen, Zhong-Qi; Fang, Yuan-Yuan; Hua, Chen-Lei; Ding, Shou-Wei; Guo, Hui-Shan

    2016-09-26

    Plant pathogenic fungi represent the largest group of disease-causing agents on crop plants, and are a constant and major threat to agriculture worldwide. Recent studies have shown that engineered production of RNA interference (RNAi)-inducing dsRNA in host plants can trigger specific fungal gene silencing and confer resistance to fungal pathogens 1-7 . Although these findings illustrate efficient uptake of host RNAi triggers by pathogenic fungi, it is unknown whether or not such an uptake mechanism has been evolved for a natural biological function in fungus-host interactions. Here, we show that in response to infection with Verticillium dahliae (a vascular fungal pathogen responsible for devastating wilt diseases in many crops) cotton plants increase production of microRNA 166 (miR166) and miR159 and export both to the fungal hyphae for specific silencing. We found that two V. dahliae genes encoding a Ca 2+ -dependent cysteine protease (Clp-1) and an isotrichodermin C-15 hydroxylase (HiC-15), and targeted by miR166 and miR159, respectively, are both essential for fungal virulence. Notably, V. dahliae strains expressing either Clp-1 or HiC-15 rendered resistant to the respective miRNA exhibited drastically enhanced virulence in cotton plants. Together, our findings identify a novel defence strategy of host plants by exporting specific miRNAs to induce cross-kingdom gene silencing in pathogenic fungi and confer disease resistance.

  14. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes.

    Science.gov (United States)

    Sun, Guangzheng; Yang, Qichao; Zhang, Ancheng; Guo, Jia; Liu, Xinjie; Wang, Yang; Ma, Qing

    2018-07-02

    The antifungal properties and the induction of resistance by ε-poly-l-lysine (ε-PL) and chitooligosaccharide (COS) were examined to find an alternative to synthetic fungicides currently used in the control of the devastating fungal pathogen Botrytis cinerea, the causal agent of grey mould disease of tomatoes. As presented herein, this combined treatment (200 mg/L ε-PL + 400 mg/L COS) was found to have optimal in vitro antifungal activities, achieving an inhibition rate of 90.22%. In vivo assays with these combined bio-fungicides, under greenhouse conditions using susceptible tomato plants, demonstrated good protection against severe grey mould. In field tests, the combined bio-fungicides had a control effect of up to 66.67% against tomato grey mould. To elucidate the mechanisms of the combined bio-fungicide-induced resistance in the tomato, plants were subjected to three treatments: 1) inoculation with B. cinerea after spraying with 200 mg/L ε-PL alone, 2) inoculation with the combined bio-fungicides, and 3) inoculation with 400 mg/L COS alone. Compared to the control (sterile water), increases in salicylic acid (SA) and jasmonic acid (JA) levels and increased phenylalanine ammonia lyase (PAL), peroxidase (POD), and superoxide dismutase (SOD) activities were observed. Catalase (CAT) activity and abscisic acid (ABA) and gibberellin (GA) levels decreased, particularly in the combined bio-fungicide-treated plants. Altogether, these findings reveal that the combined bio-fungicides (200 mg/L ε-PL + 400 mg/L COS) should be an excellent biocontrol agent candidate that combines direct antifungal activity against B. cinerea with plant resistance. Copyright © 2018. Published by Elsevier B.V.

  15. Trichoderma-plant-pathogen interactions: advances in genetics of biological control.

    Science.gov (United States)

    Mukherjee, Mala; Mukherjee, Prasun K; Horwitz, Benjamin A; Zachow, Christin; Berg, Gabriele; Zeilinger, Susanne

    2012-12-01

    Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.

  16. Role of soil, crop debris, and a plant pathogen in Salmonella enterica contamination of tomato plants.

    Directory of Open Access Journals (Sweden)

    Jeri D Barak

    Full Text Available BACKGROUND: In the U.S., tomatoes have become the most implicated vehicle for produce-associated Salmonellosis with 12 outbreaks since 1998. Although unconfirmed, trace backs suggest pre-harvest contamination with Salmonella enterica. Routes of tomato crop contamination by S. enterica in the absence of direct artificial inoculation have not been investigated. METHODOLOGY/PRINCIPAL FINDINGS: This work examined the role of contaminated soil, the potential for crop debris to act as inoculum from one crop to the next, and any interaction between the seedbourne plant pathogen Xanthomonas campestris pv. vesicatoria and S. enterica on tomato plants. Our results show S. enterica can survive for up to six weeks in fallow soil with the ability to contaminate tomato plants. We found S. enterica can contaminate a subsequent crop via crop debris; however a fallow period between crop incorporation and subsequent seeding can affect contamination patterns. Throughout these studies, populations of S. enterica declined over time and there was no bacterial growth in either the phyllosphere or rhizoplane. The presence of X. campestris pv. vesicatoria on co-colonized tomato plants had no effect on the incidence of S. enterica tomato phyllosphere contamination. However, growth of S. enterica in the tomato phyllosphere occurred on co-colonized plants in the absence of plant disease. CONCLUSIONS/SIGNIFICANCE: S. enterica contaminated soil can lead to contamination of the tomato phyllosphere. A six week lag period between soil contamination and tomato seeding did not deter subsequent crop contamination. In the absence of plant disease, presence of the bacterial plant pathogen, X. campestris pv. vesicatoria was beneficial to S. enterica allowing multiplication of the human pathogen population. Any event leading to soil contamination with S. enterica could pose a public health risk with subsequent tomato production, especially in areas prone to bacterial spot disease.

  17. Xylella fastidiosa: an examination of a re-emerging plant pathogen.

    Science.gov (United States)

    Rapicavoli, Jeannette; Ingel, Brian; Blanco-Ulate, Barbara; Cantu, Dario; Roper, Caroline

    2018-04-01

    Xylella fastidiosa is a Gram-negative bacterial plant pathogen with an extremely wide host range. This species has recently been resolved into subspecies that correlate with host specificity. This review focuses on the status of X. fastidiosa pathogenic associations in plant hosts in which the bacterium is either endemic or has been recently introduced. Plant diseases associated with X. fastidiosa have been documented for over a century, and much about what is known in the context of host-pathogen interactions is based on these hosts, such as grape and citrus, in which this pathogen has been well described. Recent attention has focused on newly emerging X. fastidiosa diseases, such as in olives. Bacteria; Gammaproteobacteria; family Xanthomonadaceae; genus Xylella; species fastidiosa. Gram-negative rod (0.25-0.35 × 0.9-3.5 μm), non-flagellate, motile via Type IV pili-mediated twitching, fastidious. Xylella fastidiosa has a broad host range that includes ornamental, ecological and agricultural plants belonging to over 300 different species in 63 different families. To date, X. fastidiosa has been found to be pathogenic in over 100 plant species. In addition, it can establish non-symptomatic associations with many plants as a commensal endophyte. Here, we list the four distinct subspecies of X. fastidiosa and some of the agriculturally relevant diseases caused by them: X. fastidiosa ssp. fastidiosa causes Pierce's disease (PD) of grapevine (Vitis vinifera); X. fastidiosa ssp. multiplex causes almond leaf scorch (ALS) and diseases on other nut and shade tree crops; X. fastidiosa ssp. pauca causes citrus variegated chlorosis (CVC) (Citrus spp.), coffee leaf scorch and olive quick decline syndrome (OQDS) (Olea europaea); X. fastidiosa ssp. sandyi causes oleander leaf scorch (OLS) (Nerium oleander). Significant host specificity seemingly exists for some of the subspecies, although this could be a result of technical biases based on the limited number of

  18. The Effect of Phenazine-1-Carboxylic Acid on Mycelial Growth of Botrytis cinerea Produced by Pseudomonas aeruginosa LV Strain

    Directory of Open Access Journals (Sweden)

    Ane S. Simionato

    2017-06-01

    Full Text Available One of the most important postharvest plant pathogens that affect strawberries, grapes and tomatoes is Botrytis cinerea, known as gray mold. The fungus remains in latent form until spore germination conditions are good, making infection control difficult, causing great losses in the whole production chain. This study aimed to purify and identify phenazine-1-carboxylic acid (PCA produced by the Pseudomonas aeruginosa LV strain and to determine its antifungal activity against B. cinerea. The compounds produced were extracted with dichloromethane and passed through a chromatographic process. The purity level of PCA was determined by reversed-phase high-performance liquid chromatography semi-preparative. The structure of PCA was confirmed by nuclear magnetic resonance and electrospray ionization mass spectrometry. Antifungal activity was determined by the dry paper disk and minimum inhibitory concentration (MIC methods and identified by scanning electron microscopy and confocal microscopy. The results showed that PCA inhibited mycelial growth, where MIC was 25 μg mL-1. Microscopic analysis revealed a reduction in exopolysaccharide (EPS formation, showing distorted and damaged hyphae of B. cinerea. The results suggested that PCA has a high potential in the control of B. cinerea and inhibition of EPS (important virulence factor. This natural compound is a potential alternative to postharvest control of gray mold disease.

  19. Greasy tactics in the plant-pathogen molecular arms race.

    Science.gov (United States)

    Boyle, Patrick C; Martin, Gregory B

    2015-03-01

    The modification of proteins by the attachment of fatty acids is a targeting tactic involved in mechanisms of both plant immunity and bacterial pathogenesis. The plant plasma membrane (PM) is a key battleground in the war against disease-causing microbes. This membrane is armed with an array of sensor proteins that function as a surveillance system to detect invading pathogens. Several of these sensor proteins are directed to the plasma membrane through the covalent addition of fatty acids, a process termed fatty acylation. Phytopathogens secrete effector proteins into the plant cell to subvert these surveillance mechanisms, rendering the host susceptible to infection. The targeting of effectors to specific locales within plant cells, particularly the internal face of the host PM, is critical for their virulence function. Several bacterial effectors hijack the host fatty acylation machinery to be modified and directed to this contested locale. To find and fight these fatty acylated effectors the plant leverages lipid-modified intracellular sensors. This review provides examples featuring how fatty acylation is a battle tactic used by both combatants in the molecular arms race between plants and pathogens. Also highlighted is the exploitation of a specific form of host-mediated fatty acid modification, which appears to be exclusively employed by phytopathogenic effector proteins. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Identification and Expression Profiles of Six Transcripts Encoding Carboxylesterase Protein in Vitis flexuosa Infected with Pathogens

    Directory of Open Access Journals (Sweden)

    Md. Zaherul Islam

    2016-08-01

    Full Text Available Plants protect themselves from pathogen attacks via several mechanisms, including hypersensitive cell death. Recognition of pathogen attack by the plant resistance gene triggers expression of carboxylesterase genes associated with hypersensitive response. We identified six transcripts of carboxylesterase genes, Vitis flexuosa carboxylesterase 5585 (VfCXE5585, VfCXE12827, VfCXE13132, VfCXE17159, VfCXE18231, and VfCXE47674, which showed different expression patterns upon transcriptome analysis of V. flexuosa inoculated with Elsinoe ampelina. The lengths of genes ranged from 1,098 to 1,629 bp, and their encoded proteins consisted of 309 to 335 amino acids. The predicted amino acid sequences showed hydrolase like domains in all six transcripts and contained two conserved motifs, GXSXG of serine hydrolase characteristics and HGGGF related to the carboxylesterase family. The deduced amino acid sequence also contained a potential catalytic triad consisted of serine, aspartic acid and histidine. Of the six transcripts, VfCXE12827 showed upregulated expression against E. ampelina at all time points. Three genes (VfCXE5585, VfCXE12827, and VfCXE13132 showed upregulation, while others (VfCXE17159, VfCXE18231, and VfCXE47674 were down regulated in grapevines infected with Botrytis cinerea. All transcripts showed upregulated expression against Rhizobium vitis at early and later time points except VfCXE12827, and were downregulated for up to 48 hours post inoculation (hpi after upregulation at 1 hpi in response to R. vitis infection. All tested genes showed high and differential expression in response to pathogens, indicating that they all may play a role in defense pathways during pathogen infection in grapevines.

  1. Transcriptional plant responses critical for resistance towards necrotrophic pathogens

    Directory of Open Access Journals (Sweden)

    Rainer P. Birkenbihl

    2011-11-01

    Full Text Available Plant defenses aimed at necrotrophic pathogens appear to be genetically complex. Despite the apparent lack of a specific recognition of such necrotrophs by products of major R genes, biochemical, molecular, and genetic studies, in particular using the model plant Arabidopsis, have uncovered numerous host components critical for the outcome of such interactions. Although the JA signaling pathway plays a central role in plant defense towards necrotrophs additional signaling pathways contribute to the plant response network. Transcriptional reprogramming is a vital part of the host defense machinery and several key regulators have recently been identified. Some of these transcription factors positively affect plant resistance whereas others play a role in enhancing host susceptibility towards these phytopathogens.

  2. Proximal Sensing of Plant-Pathogen Interactions in Spring Barley with Three Fluorescence Techniques

    Directory of Open Access Journals (Sweden)

    Georg Leufen

    2014-06-01

    Full Text Available In the last years fluorescence spectroscopy has come to be viewed as an essential approach in key research fields of applied plant sciences. However, the quantity and particularly the quality of information produced by different equipment might vary considerably. In this study we investigate the potential of three optical devices for the proximal sensing of plant-pathogen interactions in four genotypes of spring barley. For this purpose, the fluorescence lifetime, the image-resolved multispectral fluorescence and selected indices of a portable multiparametric fluorescence device were recorded at 3, 6, and 9 days after inoculation (dai from healthy leaves as well as from leaves inoculated with powdery mildew (Blumeria graminis or leaf rust (Puccinia hordei. Genotype-specific responses to pathogen infections were revealed already at 3 dai by higher fluorescence mean lifetimes in the spectral range from 410 to 560 nm in the less susceptible varieties. Noticeable pathogen-induced modifications were also revealed by the ‘Blue-to-Far-Red Fluorescence Ratio’ and the ‘Simple Fluorescence Ratio’. Particularly in the susceptible varieties the differences became more evident in the time-course of the experiment i.e., following the pathogen development. The relevance of the blue and green fluorescence to exploit the plant-pathogen interaction was demonstrated by the multispectral fluorescence imaging system. As shown, mildewed leaves were characterized by exceptionally high blue fluorescence, contrasting the values observed in rust inoculated leaves. Further, we confirm that the intensity of green fluorescence depends on the pathogen infection and the stage of disease development; this information might allow a differentiation of both diseases. Moreover, our results demonstrate that the detection area might influence the quality of the information, although it had a minor impact only in the current study. Finally, we highlight the relevance of

  3. Physiological variability and in vitro antifungal activity against Botrytis cinerea causing botrytis gray mold of chickpea (Cicer arietinum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Hosen, M. I.; Ahmed, A. U.; Islam, M. R.

    2010-07-01

    Physiological variability was studied in 10 isolates of Botrytis cinerea causing botrytis gray mold of chickpea, collected from diverse agro climatic areas in Bangladesh. The optimum temperature and pH for the best mycelial radial growth of B. cinerea were 20 degree centigrade and 4.5, respectively. The mycelial radial growth increased with the temperature up to 20 degree centigrade thereafter it decreased gradually up to 30 degree centigrade and no growth was observed at 35 degree centigrade. Chickpea dextrose agar (CDA) medium supported the highest mycelial radial growth (79.17 mm). The quickest (in 5 days) sclerotia initiation was recorded on chickpea destrose agar and lentil dextrose agar (LDA) culture media while the highest number of spores (2.5104 mL{sup -}1) were recorded on LDA medium. The antagonist Trichoderma harzianum was found to be a good bio-control agent against B. cinerea. Among the seven fungicides Bavistin 50 WP (Carbendazim), CP-Zim 50 WP (Carbendazim), Sunphanate 70 WP (Thiophanate methyl) and Rovral 50 WP (Iprodione) were the most effective to inhibit the mycelial radial growth of B. cinerea at 500 mg L{sup -}1 concentration. (Author) 13 refs.

  4. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production

    Directory of Open Access Journals (Sweden)

    Andreas eHofmann

    2014-05-01

    Full Text Available In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system or via agricultural soil amended with spiked organic fertilizers (soil system. In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4x10CFU/ml in the axenic system or 4x105CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in

  5. Enhancement of defense responses by oligandrin against Botrytis ...

    African Journals Online (AJOL)

    Oligandrin is an elicitin-like protein with a molecular mass of ∼10 kDa secreted by Pythium oligandrum. Here, the effect of oligandrin on defense response against Botrytis cinerea in tomato leaves is reported. Tomato seedlings were pretreated with 5 ml oligandrin (10 g/ml) by root submerging and then inoculated with B.

  6. Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens

    KAUST Repository

    Ederli, Luisa

    2015-02-20

    We investigated whether the Arabidopsis flower evolved protective measures to increase reproductive success. Firstly, analyses of available transcriptome data show that the most highly expressed transcripts in the closed sepal (stage 12) are enriched in genes with roles in responses to chemical stimuli and cellular metabolic processes. At stage 15, there is enrichment in transcripts with a role in responses to biotic stimuli. Comparative analyses between the sepal and petal in the open flower mark an over-representation of transcripts with a role in responses to stress and catalytic activity. Secondly, the content of the biotic defense-associated phytohormone salicylic acid (SA) in sepals and petals is significantly higher than in leaves. To understand whether the high levels of stress responsive transcripts and the higher SA content affect defense, wild-type plants (Col-0) and transgenic plants defective in SA accumulation (nahG) were challenged with the biotrophic fungus Golovinomyces cichoracearum, the causal agent of powdery mildew, and the necrotrophic fungus Botrytis cinerea. NahG leaves were more sensitive than those of Col-0, suggesting that in leaves SA has a role in the defense against biotrophs. In contrast, sepals and petals of both genotypes were resistant to G. cichoracearum, indicating that in the flower, resistance to the biotrophic pathogen is not critically dependent on SA, but likely dependent on the up-regulation of stress-responsive genes. Since sepals and petals of both genotypes are equally susceptible to B. cinerea, we conclude that neither stress-response genes nor increased SA accumulation offers protection against the necrotrophic pathogen. These results are interpreted in the light of the distinctive role of the flower and we propose that in the early stages, the sepal may act as a chemical defense barrier of the developing reproductive structures against biotrophic pathogens.

  7. The Botrytis cinerea endopolygalacturonase gene family

    NARCIS (Netherlands)

    Have, ten A.

    2000-01-01

    C ell w all d egrading e nzyme s (CWDEs) secreted by microbial plant pathogens have been suggested to function as virulence factors. Evidence that

  8. Method of inhibiting plant virus pathogen infections by crispr/cas9-mediated interference

    KAUST Repository

    Mahfouz, Magdy M.; Ali, Zahir

    2016-01-01

    A genetically modified tobacco plant or tomato plant resistant to at least one pathogenic geminiviridae virus species is provided. The plant comprises a heterologous CRISPR/Cas9 system and at least one heterologous nucleotide sequence

  9. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.

    Science.gov (United States)

    Huang, R; Li, G Q; Zhang, J; Yang, L; Che, H J; Jiang, D H; Huang, H C

    2011-07-01

    A study was conducted to identify volatile organic compounds or volatiles produced by Candida intermedia strain C410 using gas chromatography-mass spectrometry, and to determine efficacy of the volatiles of C. intermedia in suppression of conidial germination and mycelial growth of Botrytis cinerea and control of Botrytis fruit rot of strawberry. Results showed that, among 49 volatiles (esters, alcohols, alkenes, alkanes, alkynes, organic acids, ketones, and aldehydes) identified from C. intermedia cultures on yeast extract peptone dextrose agar, two compounds, 1,3,5,7-cyclooctatetraene and 3-methyl-1-butanol, were the most abundant. Synthetic chemicals of 1,3,5,7-cyclooctatetraene; 3-methyl-1-butanol; 2-nonanone; pentanoic acid, 4-methyl-, ethyl ester; 3-methyl-1-butanol, acetate; acetic acid, pentyl ester; and hexanoic acid, ethyl ester were highly inhibitory to conidial germination and mycelial growth of B. cinerea. Inhibition of conidial germination and mycelial growth of B. cinerea by volatiles of C. intermedia was also observed. Meanwhile, results showed that incidence and severity of Botrytis fruit rot of strawberry was significantly (P intermedia cultures or C. intermedia-infested strawberry fruit. These results suggest that the volatiles of C. intermedia C410 are promising biofumigants for control of Botrytis fruit rot of strawberry.

  10. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions

    Directory of Open Access Journals (Sweden)

    Mansoor eKarimi Jashni

    2015-08-01

    Full Text Available Upon host penetration, fungal pathogens secrete a plethora of effectors to promote disease, including proteases that degrade plant antimicrobial proteins, and protease inhibitors (PIs that inhibit plant proteases with antimicrobial activity. Conversely, plants secrete proteases and PIs to protect themselves against pathogens or to mediate recognition of pathogen proteases and PIs, which leads to induction of defense responses. Many examples of proteases and PIs mediating effector-triggered immunity in host plants have been reported in the literature, but little is known about their role in compromising basal defense responses induced by microbe-associated molecular patterns. Recently, several reports appeared in literature on secreted fungal proteases that modify or degrade pathogenesis-related proteins, including plant chitinases or PIs that compromise their activities. This prompted us to review the recent advances on proteases and PIs involved in fungal virulence and plant defense. Proteases and PIs from plants and their fungal pathogens play an important role in the arms race between plants and pathogens, which has resulted in co-evolutionary diversification and adaptation shaping pathogen lifestyles.

  11. The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum.

    Science.gov (United States)

    Foo, Eloise; Blake, Sara N; Fisher, Brendan J; Smith, Jason A; Reid, James B

    2016-06-01

    Strigolactones (SLs) do not influence spore germination or hyphal growth of Fusarium oxysporum. Mutant studies revealed no role for SLs but a role for ethylene signalling in defence against this pathogen in pea. Strigolactones (SLs) play important roles both inside the plant as a hormone and outside the plant as a rhizosphere signal in interactions with mycorrhizal fungi and parasitic weeds. What is less well understood is any potential role SLs may play in interactions with disease causing microbes such as pathogenic fungi. In this paper we investigate the influence of SLs on the hemibiotrophic pathogen Fusarium oxysporum f.sp. pisi both directly via their effects on fungal growth and inside the plant through the use of a mutant deficient in SL. Given that various stereoisomers of synthetic and naturally occuring SLs can display different biological activities, we used (+)-GR24, (-)-GR24 and the naturally occurring SL, (+)-strigol, as well as a racemic mixture of 5-deoxystrigol. As a positive control, we examined the influence of a plant mutant with altered ethylene signalling, ein2, on disease development. We found no evidence that SLs influence spore germination or hyphal growth of Fusarium oxysporum and that, while ethylene signalling influences pea susceptibility to this pathogen, SLs do not.

  12. Data from: Compatible and incompatible pathogen-plant interactions differentially affect plant volatile emissions and the attraction of parasitoid wasps

    NARCIS (Netherlands)

    Ponzio, C.A.M.; Weldegergis, B.T.; Dicke, M.; Gols, R.

    2016-01-01

    The three data sheets show the data for the three types of comparisons that were made: (1) wasp choice when offered acaterpillar infested plant and a caterpillar + pathogen infected plant (2) wasp choice when offered a healthy plant against a singleattacker infected/infected plant and (3) wasp

  13. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong; Shin, Sang Hyun; Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung; Oh, Boung-Jun; Jung, Ho Won; Chung, Young Soo

    2012-01-01

    Highlights: ► We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. ► The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. ► The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. ► The OgUBC1 could protect disruption of plant cells by UV-B radiation. ► OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  14. Ectopic expression of ubiquitin-conjugating enzyme gene from wild rice, OgUBC1, confers resistance against UV-B radiation and Botrytis infection in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin; Kim, Hye Jeong [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Shin, Sang Hyun [National Crop Experiment Station, Rural Development Administration, Suwon 441-100 (Korea, Republic of); Lee, Jai Heon; Kim, Doh Hoon; Oh, Ju Sung [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Oh, Boung-Jun [BioControl Center, Jeonnam 516-942 (Korea, Republic of); Jung, Ho Won, E-mail: hwjung@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of); Chung, Young Soo, E-mail: chungys@dau.ac.kr [Department of Genetic Engineering, Dong-A University, Busan 604-714 (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. Black-Right-Pointing-Pointer The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. Black-Right-Pointing-Pointer The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. Black-Right-Pointing-Pointer The OgUBC1 could protect disruption of plant cells by UV-B radiation. Black-Right-Pointing-Pointer OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and contained a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.

  15. Pathogen filtration to control plant disease outbreak in greenhouse production

    Science.gov (United States)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei

    2016-04-01

    Previous research has been extensively focused on understanding the fate and transport of human microbial pathogens in soil and water environments. However, little is known about the transport of plant pathogens, although these pathogens are often found in irrigation waters and could cause severe crop damage and economical loss. Water mold pathogens including Phytophthora spp. and Pythium spp. are infective to a wide range of vegetable and floriculture crops, and they are primarily harbored in soils and disseminated through water flow. It is challenging to control these pathogens because they often quickly develop resistance to many fungicides. Therefore, this multi-scale study aimed to investigate physical removal of plant pathogens from water by filtration, thus reducing the pathogen exposure risks to crops. In column-scale experiments, we studied controlling factors on the transport and retention of Phytophthora capsici zoospores in saturated columns packed with iron oxide coated-sand and uncoated-sand under varying solution chemistry. Biflagellate zoospores were less retained than encysted zoospores, and lower solution pH and greater iron oxide content increased the retention of encysted zoospores. These results provided insights on environmental dispersal of Phytophthora zoospores in natural soils as well as on developing cost-effective engineered filtration systems for pathogen removal. Using small-scale greenhouse filtration systems, we further investigated the performance of varying filter media (i.e., granular sand, iron oxide coated ceramic porous media, and activated carbon) in mitigating disease outbreaks of Phytophthora and Pythium for greenhouse-grown squash and poinsettia, respectively, in comparison with fungicide treatment. For squash, filtration by iron oxide coated media was more effective in reducing the Phytophthora infection, comparing to sand filtration and fungicide application. For poinsettia, sand filtration performed better in controlling

  16. The Top 10 oomycete pathogens in molecular plant pathology.

    Science.gov (United States)

    Kamoun, Sophien; Furzer, Oliver; Jones, Jonathan D G; Judelson, Howard S; Ali, Gul Shad; Dalio, Ronaldo J D; Roy, Sanjoy Guha; Schena, Leonardo; Zambounis, Antonios; Panabières, Franck; Cahill, David; Ruocco, Michelina; Figueiredo, Andreia; Chen, Xiao-Ren; Hulvey, Jon; Stam, Remco; Lamour, Kurt; Gijzen, Mark; Tyler, Brett M; Grünwald, Niklaus J; Mukhtar, M Shahid; Tomé, Daniel F A; Tör, Mahmut; Van Den Ackerveken, Guido; McDowell, John; Daayf, Fouad; Fry, William E; Lindqvist-Kreuze, Hannele; Meijer, Harold J G; Petre, Benjamin; Ristaino, Jean; Yoshida, Kentaro; Birch, Paul R J; Govers, Francine

    2015-05-01

    Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. This article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  17. Virus-induced Gene Silencing-based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato

    Directory of Open Access Journals (Sweden)

    Huijuan Zhang

    2016-08-01

    Full Text Available Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst DC3000 as well as to defense signaling hormones (e.g. salicylic acid, jasmonic acid and a precursor of ethylene. Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4 or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7 or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7 and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato.

  18. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group) through Embryo Rescue.

    Science.gov (United States)

    Sharma, Brij B; Kalia, Pritam; Singh, Dinesh; Sharma, Tilak R

    2017-01-01

    Black rot caused by Xanthomonas campestris pv. campestris ( Xcc ) is a very important disease of cauliflower ( Brassica oleracea botrytis group) resulting into 10-50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B 1 ) were generated between cauliflower "Pusa Sharad" and Ethiopian mustard "NPC-9" employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F 1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2 n = 18, CC) × B. carinata (2 n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2 n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F 1 hybrid and BC 1 plants. The F 1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC 1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC 1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides.

  19. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group) through Embryo Rescue

    Science.gov (United States)

    Sharma, Brij B.; Kalia, Pritam; Singh, Dinesh; Sharma, Tilak R.

    2017-01-01

    Black rot caused by Xanthomonas campestris pv. campestris (Xcc) is a very important disease of cauliflower (Brassica oleracea botrytis group) resulting into 10–50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome), therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s) for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B1) were generated between cauliflower “Pusa Sharad” and Ethiopian mustard “NPC-9” employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC) primers. Meiosis in the di-genomic (BCC) interspecific hybrid of B. oleracea botrytis group (2n = 18, CC) × B. carinata (2n = 4x = 34, BBCC) was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F1 hybrid and BC1 plants. The F1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC1 population. This effort will go a long way in pyramiding gene(s) for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides. PMID:28769959

  20. Introgression of Black Rot Resistance from Brassica carinata to Cauliflower (Brassica oleracea botrytis Group through Embryo Rescue

    Directory of Open Access Journals (Sweden)

    Brij B. Sharma

    2017-07-01

    Full Text Available Black rot caused by Xanthomonas campestris pv. campestris (Xcc is a very important disease of cauliflower (Brassica oleracea botrytis group resulting into 10–50% yield losses every year. Since there is a dearth of availability of resistance to black rot disease in B. oleracea (C genome, therefore exploration of A and B genomes was inevitable as they have been reported to be potential reservoirs of gene(s for resistance to black rot. To utilize these sources, interspecific hybrid and backcross progeny (B1 were generated between cauliflower “Pusa Sharad” and Ethiopian mustard “NPC-9” employing in vitro embryo rescue technique. Direct ovule culture method was better than siliqua culture under different temperature regime periods. Hybridity testing of F1 inter-specific plants was carried out using co-dominant SSR marker and Brassica B and C genome-specific (DB and DC primers. Meiosis in the di-genomic (BCC interspecific hybrid of B. oleracea botrytis group (2n = 18, CC × B. carinata (2n = 4x = 34, BBCC was higly disorganized and cytological analysis of pollen mother cells revealed chromosomes 2n = 26 at metaphase-I. Fertile giant pollen grain formation was observed frequently in interspecific F1 hybrid and BC1 plants. The F1 inter-specific plants were found to be resistant to Xcc race 1. Segregation distortion was observed in BC1 generation for black rot resistance and different morphological traits. The At1g70610 marker analysis confirmed successful introgression of black rot resistance in interspecific BC1 population. This effort will go a long way in pyramiding gene(s for resistance against black rot in Cole crops, especially cauliflower and cabbage for developing durable resistance, thus minimize dependency on bactericides.

  1. Comparative genomics of pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity

    Science.gov (United States)

    The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacter...

  2. Microbiome studies in the biological control of plant pathogens

    Science.gov (United States)

    Biological control of plant pathogens, although it has been a successful alternative that has allowed to select microorganisms for the generation of bioproducts and to understand multiple biological mechanisms, cannot be considered as a strategy defined only from the selection of a range of cultiva...

  3. Nutrient acquisition and secondary metabolites in plant pathogenic fungi

    DEFF Research Database (Denmark)

    Droce, Aida

    Fusarium graminearum is a necrotrophic plant pathogen that leads to severe infections of cereals contaminating them with mycotoxins harmful to human and animal. Blumeria graminis f. sp. hordei is an obligate biotroph that causes powdery mildew infections of barley. In this thesis, lifecycles and ...

  4. A Plant Bacterial Pathogen Manipulates Its Insect Vector's Energy Metabolism

    Science.gov (United States)

    Hijaz, Faraj; Ebert, Timothy A.; Rogers, Michael E.

    2016-01-01

    ABSTRACT Insect-transmitted plant-pathogenic bacteria may alter their vectors' fitness, survival, behavior, and metabolism. Because these pathogens interact with their vectors on the cellular and organismal levels, potential changes at the biochemical level might occur. “Candidatus Liberibacter asiaticus” (CLas) is transmitted in a persistent, circulative, and propagative manner. The genome of CLas revealed the presence of an ATP translocase that mediates the uptake of ATP and other nucleotides from medium to achieve its biological processes, such as growth and multiplication. Here, we showed that the levels of ATP and many other nucleotides were significantly higher in CLas-infected than healthy psyllids. Gene expression analysis showed upregulation for ATP synthase subunits, while ATPase enzyme activity showed a decrease in ATPase activity. These results indicated that CLas stimulated Diaphorina citri to produce more ATP and many other energetic nucleotides, while it may inhibit their consumption by the insect. As a result of ATP accumulation, the adenylated energy charge (AEC) increased and the AMP/ATP and ADP/ATP ratios decreased in CLas-infected D. citri psyllids. Survival analysis confirmed a shorter life span for CLas-infected D. citri psyllids. In addition, electropenetrography showed a significant reduction in total nonprobing time, salivation time, and time from the last E2 (phloem ingestion) to the end of recording, indicating that CLas-infected psyllids were at a higher hunger level and they tended to forage more often. This increased feeding activity reflects the CLas-induced energetic stress. In conclusion, CLas alters the energy metabolism of its psyllid vector, D. citri, in order to secure its need for energetic nucleotides. IMPORTANCE Insect transmission of plant-pathogenic bacteria involves propagation and circulation of the bacteria within their vectors. The transmission process is complex and requires specific interactions at the molecular

  5. Pathogen-secreted proteases activate a novel plant immune pathway.

    Science.gov (United States)

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J; Sheen, Jen; Ausubel, Frederick M

    2015-05-14

    Mitogen-activated protein kinase (MAPK) cascades play central roles in innate immune signalling networks in plants and animals. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive. Here we report that pathogen-secreted proteases activate a previously unknown signalling pathway in Arabidopsis thaliana involving the Gα, Gβ, and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of an MAPK cascade. In this pathway, receptor for activated C kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G-protein signalling to downstream activation of an MAPK cascade. The protease-G-protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signalling pathways such as that elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to an MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the new protease-mediated immune signalling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems.

  6. ETHYLENE RESPONSE FACTOR 96 positively regulates Arabidopsis resistance to necrotrophic pathogens by direct binding to GCC elements of jasmonate - and ethylene-responsive defence genes.

    Science.gov (United States)

    Catinot, Jérémy; Huang, Jing-Bo; Huang, Pin-Yao; Tseng, Min-Yuan; Chen, Ying-Lan; Gu, Shin-Yuan; Lo, Wan-Sheng; Wang, Long-Chi; Chen, Yet-Ran; Zimmerli, Laurent

    2015-12-01

    The ERF (ethylene responsive factor) family is composed of transcription factors (TFs) that are critical for appropriate Arabidopsis thaliana responses to biotic and abiotic stresses. Here we identified and characterized a member of the ERF TF group IX, namely ERF96, that when overexpressed enhances Arabidopsis resistance to necrotrophic pathogens such as the fungus Botrytis cinerea and the bacterium Pectobacterium carotovorum. ERF96 is jasmonate (JA) and ethylene (ET) responsive and ERF96 transcripts accumulation was abolished in JA-insensitive coi1-16 and in ET-insensitive ein2-1 mutants. Protoplast transactivation and electrophoresis mobility shift analyses revealed that ERF96 is an activator of transcription that binds to GCC elements. In addition, ERF96 mainly localized to the nucleus. Microarray analysis coupled to chromatin immunoprecipitation-PCR of Arabidopsis overexpressing ERF96 revealed that ERF96 enhances the expression of the JA/ET defence genes PDF1.2a, PR-3 and PR-4 as well as the TF ORA59 by direct binding to GCC elements present in their promoters. While ERF96-RNAi plants demonstrated wild-type resistance to necrotrophic pathogens, basal PDF1.2 expression levels were reduced in ERF96-silenced plants. This work revealed ERF96 as a key player of the ERF network that positively regulates the Arabidopsis resistance response to necrotrophic pathogens. © 2015 John Wiley & Sons Ltd.

  7. Plant pathogens as biocontrol agents of Cirsium arvense – an overestimated approach?

    Directory of Open Access Journals (Sweden)

    Esther Müller

    2011-11-01

    Full Text Available Cirsium arvense is one of the worst weeds in agriculture. As herbicides are not very effective and not accepted by organic farming and special habitats, possible biocontrol agents have been investigated since many decades. In particular plant pathogens of C. arvense have received considerable interest and have been promoted as “mycoherbicides” or “bioherbicides”. A total of 10 fungi and one bacterium have been proposed and tested as biocontrol agents against C. arvense. A variety of experiments analysed the noxious influence of spores or other parts of living fungi or bacteria on plants while others used fungal or bacterial products, usually toxins. Also combinations of spores with herbicides and combinations of several pathogens were tested. All approaches turned out to be inappropriate with regard to target plant specificity, effectiveness and application possibilities. As yet, none of the tested species or substances has achieved marketability, despite two patents on the use of Septoria cirsii and Phomopsis cirsii. We conclude that the potential of pathogens for biocontrol of C. arvense has largely been overestimated.

  8. Early biotic stress detection in tomato ( Solanum lycopersicum ) by BVOC emissions

    NARCIS (Netherlands)

    Kasal-Slavik, Tina; Eschweiler, Julia; Kleist, Einhard; Mumm, Roland; Goldbach, Heiner E.; Schouten, Sander; Wildt, Jürgen

    2017-01-01

    We investigated impacts of early and mild biotic stress on Biogenic Volatile Organic Compounds (BVOC) emissions from tomato in order to test their potential for early (biotic) stress detection. Tomato plants were exposed to two common fungal pathogens, Botrytis cinerea and Oidium neolycopesici and

  9. Can Plant Viruses Cross the Kingdom Border and Be Pathogenic to Humans?

    Directory of Open Access Journals (Sweden)

    Fanny Balique

    2015-04-01

    Full Text Available Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans.

  10. Overcoming interspecific incompatibility in the cross Brassica campestris ssp. japonica x Brassica oleracea var. botrytis using irradiated mentor pollen page

    International Nuclear Information System (INIS)

    Sarla, N.

    1988-01-01

    The cross B. campestris ssp. japonica x B. oleracea var. botrytis fails due to incompatibility barrier at the stigma. To realize this cross, irradiated compatible pollen (mentor pollen) was used before the incompatible pollination. The presence of mentor pollen stimulated the incompatible pollen to germinate and effect fertilization and seed set. One hybrid was thus obtained. Most of the seeds were inviable. Of the 5 plants raised one was a hybrid and 4 resembled the female parent. 1 tab., 7 refs

  11. Seiridium (Sporocadaceae): an important genus of plant pathogenic fungi

    NARCIS (Netherlands)

    Bonthond, G.; Sandoval-Denis, M.; Groenewald, J.Z.; Crous, P.W.

    2018-01-01

    The genus Seiridium includes multiple plant pathogenic fungi well-known as causal organisms of cankers on Cupressaceae. Taxonomically, the status of several species has been a topic of debate, as the phylogeny of the genus remains unresolved and authentic ex-type cultures are mostly absent. In the

  12. Insect-plant-pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture.

    Science.gov (United States)

    Trębicki, Piotr; Dáder, Beatriz; Vassiliadis, Simone; Fereres, Alberto

    2017-12-01

    Carbon dioxide (CO 2 ) is the main anthropogenic gas which has drastically increased since the industrial revolution, and current concentrations are projected to double by the end of this century. As a consequence, elevated CO 2 is expected to alter the earths' climate, increase global temperatures and change weather patterns. This is likely to have both direct and indirect impacts on plants, insect pests, plant pathogens and their distribution, and is therefore problematic for the security of future food production. This review summarizes the latest findings and highlights current knowledge gaps regarding the influence of climate change on insect, plant and pathogen interactions with an emphasis on agriculture and food production. Direct effects of climate change, including increased CO 2 concentration, temperature, patterns of rainfall and severe weather events that impact insects (namely vectors of plant pathogens) are discussed. Elevated CO 2 and temperature, together with plant pathogen infection, can considerably change plant biochemistry and therefore plant defense responses. This can have substantial consequences on insect fecundity, feeding rates, survival, population size, and dispersal. Generally, changes in host plant quality due to elevated CO 2 (e.g., carbon to nitrogen ratios in C3 plants) negatively affect insect pests. However, compensatory feeding, increased population size and distribution have also been reported for some agricultural insect pests. This underlines the importance of additional research on more targeted, individual insect-plant scenarios at specific locations to fully understand the impact of a changing climate on insect-plant-pathogen interactions. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  13. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis.

    Science.gov (United States)

    Singh, Ajey; Singh, N B; Hussain, Imtiyaz; Singh, Himani

    2017-11-20

    Study on the ecological effect of metal oxide nanomaterials (NMs) has quickly amplified over the precedent years because it is assumed that these NMs will sooner or later be released into the environment. The present study deals with biologically oriented process for the green synthesis of copper oxide nanoparticles (CuO NPs) by using Morus alba leaf extract as reducing agent. Powder X-ray diffraction (XRD) and transmission electron microscope (TEM) analysis revealed the monoclinic phase and 20-40nm size respectively. The presence of reducing and capping agents revealed by Fourier transform infrared (FTIR) spectroscopy. The seedlings of Brassica oleracea var. botrytis and Solanum lycopersicum were exposed to 10, 50, 100, and 500mgL -1 concentrations of CuO NPs in the sand medium. Bioaccumulation of Cu was also investigated by atomic absorption spectroscopy (AAS). Plant exposure to 100 and 500mgL -1 of CuO NPs has resulted in significant reduction of total chlorophyll and sugar content in the two test plants while 10mgL -1 of NPs slightly increased the pigment and sugar content in tomato plants only. Augmentation of lipid peroxidation, electrolyte leakage, and antioxidant enzyme activity was observed in a dose dependent manner upon plants exposure to CuO NPs. Deposition of lignin in roots of both plants treated with the highest concentration of CuO NPs was observed. Histochemical analysis of leaves of treated plant with nitroblue tetrazolium and 3 ' 3 ' diaminobenzidine showed a concentration dependent increase in superoxide and hydrogen peroxide formation in leaves. The green synthesis of CuO NPs was carried out by using Morus alba leaf extract. Accumulation of NPs more actively by tomato plants as compared to cauliflower was possibly due to the difference in root morphology. The histochemical visualization highlights the spatial organization of oxidant biochemistry occurring in response to metal stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Avaliação da atividade fungitóxica de óleos essenciais de folhas de Eucalyptus sobre Fusarium oxysporum, Botrytis cinerea e Bipolaris sorokiniana Fungitoxic activity evaluation of essential leaf oils of Eucalyptus on Fusarium oxysporum, Botrytis cinerea and Bipolaris sorokiniana

    Directory of Open Access Journals (Sweden)

    Ana Paula Soares P. Salgado

    2003-04-01

    Full Text Available A maioria das plantas são resistentes aos diferentes patógenos, e essa resistência pode estar relacionada à existência de compostos fungistáticos naturalmente produzidos. Com o presente trabalho, avaliou-se a atividade fungitóxica de óleos essenciais de eucaliptos. Os óleos foram obtidos de folhas dos eucaliptos mediante arraste a vapor de água, utilizando o aparelho de Clevenger modificado. Nos ensaios biológicos, foram empregados os fitopatógenos Fusarium oxysporum, Botrytis cinerea e Bipolaris sorokiniana. O crescimento dos microorganismos na presença de diferentes concentrações de óleo (5, 50 e 500 mg/Kg, usando os meios de cultura BDA (Batata-Dextrose-Ágar e PCA (Batata-Cenoura-Ágar, foi avaliado. Nas concentrações de 500 mg/Kg dos óleos, foram observadas inibições significativas no crescimento micelial das espécies fúngicas, após período de 7 dias. No entanto, o óleo essencial de Eucalyptus urophylla foi o que apresentou maior ação fungitóxica, que foi atribuída à presença do composto denominado globulol, ausente no E.camaldulensis e no E. citriodora.Most plants are resistant to different pathogens and this resistance may be related to the existence of naturally produced fungistatic components. The present work evaluated the fungitoxic activity of essential oils from three eucalyptus species. The essential oils were obtained from eucalyptus leaves by steam distillation using a modified Clevenger apparatus. The phytopatogens Fusarium oxysporum, Botrytis cinerea and Bipolaris sorokiniana were employed in the biological tests. The growth of fungi in the presence of different concentrations of oil (5, 50, and 500 mg/kg, using BDA (Potato-Dextrose-agar and PCA (Potato-Carrot-agar culture media were evaluated. Significant inhibition of the micelial growth of the fungal species was observed at the concentration of 500 mg/kg of oil after a period of seven days. The essential oil of Eucalyptus urophylla showed the

  15. Medicinal Plants Based Products Tested on Pathogens Isolated from Mastitis Milk

    Directory of Open Access Journals (Sweden)

    Claudia Pașca

    2017-09-01

    Full Text Available Bovine mastitis a major disease that is commonly associated with bacterial infection. The common treatment is with antibiotics administered intramammary into infected quarters of the udder. The excessive use of antibiotics leads to multidrug resistance and associated risks for human health. In this context, the search for alternative drugs based on plants has become a priority in livestock medicine. These products have a low manufacturing cost and no reports of antimicrobial resistance to these have been documented. In this context, the main objective of this study was to determine the antimicrobial effect of extracts and products of several indigenous, or acclimatized plants on pathogens isolated from bovine mastitis. A total of eleven plant alcoholic extracts and eight plant-derived products were tested against 32 microorganisms isolated from milk. The obtained results have shown an inhibition of bacterial growth for all tested plants, with better results for Evernia prunastri, Artemisia absinthium, and Lavandula angustifolia. Moreover, E. prunastri, Populus nigra, and L. angustifolia presented small averages of minimum inhibitory and bactericidal concentrations. Among the plant-derived products, three out of eight have shown a strong anti-microbial effect comparable with the effect of florfenicol and enrofloxacin, and better than individual plant extracts possibly due to synergism. These results suggest an important anti-microbial effect of these products on pathogens isolated from bovine mastitis with a possible applicability in this disease.

  16. [Modes of action of agrochemicals against plant pathogenic organisms].

    Science.gov (United States)

    Leroux, Pierre

    2003-01-01

    The chemical control of plant pathogens concerns mainly fungal diseases of crops. Most of the available fungicides act directly on essential fungal functions such as respiration, sterol biosynthesis or cell division. Consequently, these compounds can exhibit undesirable toxicological and environmental effects and sometimes select fungal resistant strains. Plant activators are expected to provide sustainable disease management in several crops because the development of resistance is not expected. Considering the future, the discovery of novel antifungal molecules will reap advantage from throughput screening methodologies and functional genomics.

  17. Research Regarding the Simultaneous Control of the Pathogens on Tomatoes Crops under High Plastic Tunnels

    Directory of Open Access Journals (Sweden)

    Gabriela ŞOVĂREL

    2017-05-01

    Full Text Available In Romania the most important pathogens on tomatoes crops are Alternaria porri f.sp. solani, Botrytis cinerea, Fulvia fulva, Phytophthora infestans and Erysiphe sp. During period of vegetation, the attack of mentioned pathogens are frequently overlapping. For simultaneously control of pathogenswere used some combination with different active substances (chlorothalonil 500g/l, iprodione 500 g/l, fenhexamid 500 g/l, thiophanate methyl 500g/l, metiram 80%, dimethomorph 9%, mancozeb 60%, difenoconazole 250 g/l , fenamidone 75g/l, propamocarb HCL 375 g/l. The best results for controlling Alternaria porri f.sp. solani, Botrytis cinerea and Fulvia fulva are metiram 80% 0.2% + thiophanate methyl 500g/l 0.14% with 93.5% efficacy. In the untreated check the degree of attack was 78.6% (44.3% A.solani, 7.0% B.cinerea and 27.3% F. Fulva. For controlling Phytophthora infestans, Erysiphe sp. and Fulvia fulva (fenamidone 75g/l + propamocarb HCL 375 g/l    0.2% +  difenoconazole 250 g/l 0.05% with 94.5% efficacy. In the untreated check the degree of attack is 81.2% (38.4% P. infestans, 27.4% Erysiphe sp. , 15.4% F. fulva.

  18. The Top 10 fungal pathogens in molecular plant pathology

    NARCIS (Netherlands)

    Dean, R.; Kan, van J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Pietro, Di A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; Foster, G.D.

    2012-01-01

    The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a ‘Top 10’ based on scientific/economic importance. The survey generated 495 votes from the international

  19. Population History and Pathways of Spread of the Plant Pathogen Phytophthora plurivora

    Science.gov (United States)

    Schoebel, Corine N.; Stewart, Jane; Gruenwald, Niklaus J.; Rigling, Daniel; Prospero, Simone

    2014-01-01

    Human activity has been shown to considerably affect the spread of dangerous pests and pathogens worldwide. Therefore, strict regulations of international trade exist for particularly harmful pathogenic organisms. Phytophthora plurivora, which is not subject to regulations, is a plant pathogen frequently found on a broad range of host species, both in natural and artificial environments. It is supposed to be native to Europe while resident populations are also present in the US. We characterized a hierarchical sample of isolates from Europe and the US and conducted coalescent-, migration, and population genetic analysis of sequence and microsatellite data, to determine the pathways of spread and the demographic history of this pathogen. We found P. plurivora populations to be moderately diverse but not geographically structured. High levels of gene flow were observed within Europe and unidirectional from Europe to the US. Coalescent analyses revealed a signal of a recent expansion of the global P. plurivora population. Our study shows that P. plurivora has most likely been spread around the world by nursery trade of diseased plant material. In particular, P. plurivora was introduced into the US from Europe. International trade has allowed the pathogen to colonize new environments and/or hosts, resulting in population growth. PMID:24427303

  20. Pathogenic microorganisms of medicinal herbal drugs

    Directory of Open Access Journals (Sweden)

    Stević Tatjana

    2012-01-01

    Full Text Available All the parts of plants (root, leaf, flower naturally have a high level of microorganisms, bacteria and fungi, especially molds. Microbial contamination could be a result of inappropriate harvesting, cleaning of the raw plant material, unhygienic processing of the plants, unsuitable transport and storage. After examination of over 40 dried medicinal plant species, the lowest microbial quality was determined for Maydis stigma, Mentha leaf and herb, Equisetum herb, Calendula flower, Urtica leaf, Melissa leaf, Serpylli herb, Chamomilla flower etc. Although mixed infections are recorded with different types of fungus, Fusarium was observed as the most dominant genus in most of the tested drugs, followed by Aspergillus and Alternaria. In addition to these fungi species from the following genera were identified: Phoma, Cephalosporium, Nigrospora, Cladosporium, Epicoccum, Gliocladium, Myrothecium, Cercospora, Phomopsis, Verticillium, Dreschlera (=Bipolaris, Rhizoctonia, Septoria, Trichoderma, Curvularia, Stachybotrys, Trichothecium, Puccinia, Botrytis, Mucor and Rhizopus sp., depending on plant species.

  1. Small proteins of plant-pathogenic fungi secreted during host colonization.

    NARCIS (Netherlands)

    Rep, M.

    2005-01-01

    Small proteins secreted by plant pathogenic fungi in their hosts have been implicated in disease symptom development as well as in R-gene mediated disease resistance. Characteristically, this class of proteins shows very limited phylogenetic distribution, possibly due to accelerated evolution

  2. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    Directory of Open Access Journals (Sweden)

    Marija Ravlić

    2014-06-01

    Full Text Available Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chemical herbicides are not allowed, if resistant weed species are present or in the integrated pest management against weeds with reduced herbicides doses and other non-chemical measures, but it has certain limitations and disadvantages.

  3. Management of plant pathogens and pests using microbial biological control agents. In: Trigiano, R.N. and Ownley, B.H., editors. Plant Pathology Concepts and Laboratory Exercises

    Science.gov (United States)

    All parts of plants face continual attack by plant pathogens and insects. Some insects are vectors of pathogens. Plant pests can be controlled by a variety of methods including application of pesticides but one of the most stainable and environmentally friendly approaches is biological control. Mic...

  4. SCREENING OF FLUORESCENT RHIZOBACTERIA FOR THE BIOCONTROL OF SOILBORNE PLANT PATHOGENIC FUNGI

    Directory of Open Access Journals (Sweden)

    ANELISE DIAS

    2014-01-01

    Full Text Available The biocontrol of soilborne plant pathogens represents a promising approach from the environ- mental and practical points of view. Fluorescent pseudomonad rhizobacteria are well known by their antagonis- tic capacity towards several plant pathogens due to a diversity of antimicrobial metabolites they produce. This study was conceived to select and characterize rhizobacteria having antagonistic potential towards the patho- genic fungi Rhizoctonia solani and Sclerotium rolfsii. A total of 94 bacterial strains isolated from the rhizospheres of four vegetable species under organic cultivation were evaluated. Twenty-two strains which predominate in lettuce and rudbeckia rhizospheres showed identical biochemical profiles to Pseudomonas fluo- rescens, while in kale and parsley rhizospheres identical profiles to Pseudomonas putida (subgroups A and B strains prevailed. Two types of antagonism were verified in vitro and defined as competition and inhibition of mycelial growth. Sixty percent of the evaluated strains showed antagonistic potential and, among those, 24 strains expressed antagonism to both target fungi, with P. fluorescens being the most representative bacterial species. This work clearly identified a number of strains with potential for use as plant growth-promoting and biocontrol of the two soilborne fungal pathogens in vegetable crops production systems.

  5. Temporal and spatial scaling of the genetic structure of a vector-borne plant pathogen.

    Science.gov (United States)

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Almeida, Rodrigo P P

    2014-02-01

    The ecology of plant pathogens of perennial crops is affected by the long-lived nature of their immobile hosts. In addition, changes to the genetic structure of pathogen populations may affect disease epidemiology and management practices; examples include local adaptation of more fit genotypes or introduction of novel genotypes from geographically distant areas via human movement of infected plant material or insect vectors. We studied the genetic structure of Xylella fastidiosa populations causing disease in sweet orange plants in Brazil at multiple scales using fast-evolving molecular markers (simple-sequence DNA repeats). Results show that populations of X. fastidiosa were regionally isolated, and that isolation was maintained for populations analyzed a decade apart from each other. However, despite such geographic isolation, local populations present in year 2000 were largely replaced by novel genotypes in 2009 but not as a result of migration. At a smaller spatial scale (individual trees), results suggest that isolates within plants originated from a shared common ancestor. In summary, new insights on the ecology of this economically important plant pathogen were obtained by sampling populations at different spatial scales and two different time points.

  6. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.

    Science.gov (United States)

    Gao, Pan; Qin, Jiaxing; Li, Delong; Zhou, Shanyue

    2018-01-01

    The fungal pathogen Botrytis cinerea causes gray mold disease on various hosts, which results in serious economic losses. Over the past several decades, many kinds of fungicides have been used to successfully control the disease. Meanwhile, the uses of fungicides lead to environmental pollution as well as a potential threat to the human health by the chemical residues in tomato fruit. Also, the gray mold disease is difficult to control with fungicides. Therefore, exploring alternative measures such as biological controls could be the best choice to control the disease and alleviate damages caused by fungicides. In this study, we isolated and identified a novel Pseudomonas strain termed as QBA5 from healthy tomato plant based on the morphological, biochemical characteristics and molecular detection. The antifungal activity assays revealed that, in the presence of QBA5, conidia germination, germ tube elongation and mycelial growth of B. cinerea were significantly inhibited. Most importantly, QBA5 exerted a significant preventive effectiveness against gray mold on tomato fruits and plants. The possible mechanism of QBA5 involved in the inhibition of B. cinerea was investigated. It revealed that the conidia plasma membrane of B. cinerea was severely damaged by QBA5. Further, four different antifungal compounds in the supernatant of QBA5 were separated by preparative high performance liquid chromatography (PHPLC). Overall, the data indicate that there is a considerable potential for QBA5 to reduce the damage caused by gray mold disease on tomato.

  7. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Pan Gao

    Full Text Available The fungal pathogen Botrytis cinerea causes gray mold disease on various hosts, which results in serious economic losses. Over the past several decades, many kinds of fungicides have been used to successfully control the disease. Meanwhile, the uses of fungicides lead to environmental pollution as well as a potential threat to the human health by the chemical residues in tomato fruit. Also, the gray mold disease is difficult to control with fungicides. Therefore, exploring alternative measures such as biological controls could be the best choice to control the disease and alleviate damages caused by fungicides. In this study, we isolated and identified a novel Pseudomonas strain termed as QBA5 from healthy tomato plant based on the morphological, biochemical characteristics and molecular detection. The antifungal activity assays revealed that, in the presence of QBA5, conidia germination, germ tube elongation and mycelial growth of B. cinerea were significantly inhibited. Most importantly, QBA5 exerted a significant preventive effectiveness against gray mold on tomato fruits and plants. The possible mechanism of QBA5 involved in the inhibition of B. cinerea was investigated. It revealed that the conidia plasma membrane of B. cinerea was severely damaged by QBA5. Further, four different antifungal compounds in the supernatant of QBA5 were separated by preparative high performance liquid chromatography (PHPLC. Overall, the data indicate that there is a considerable potential for QBA5 to reduce the damage caused by gray mold disease on tomato.

  8. The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish potato famine pathogen, P. infestans.

    Directory of Open Access Journals (Sweden)

    Erica M Goss

    Full Text Available Emerging plant pathogens have largely been a consequence of the movement of pathogens to new geographic regions. Another documented mechanism for the emergence of plant pathogens is hybridization between individuals of different species or subspecies, which may allow rapid evolution and adaptation to new hosts or environments. Hybrid plant pathogens have traditionally been difficult to detect or confirm, but the increasing ease of cloning and sequencing PCR products now makes the identification of species that consistently have genes or alleles with phylogenetically divergent origins relatively straightforward. We investigated the genetic origin of Phytophthora andina, an increasingly common pathogen of Andean crops Solanum betaceum, S. muricatum, S. quitoense, and several wild Solanum spp. It has been hypothesized that P. andina is a hybrid between the potato late blight pathogen P. infestans and another Phytophthora species. We tested this hypothesis by cloning four nuclear loci to obtain haplotypes and using these loci to infer the phylogenetic relationships of P. andina to P. infestans and other related species. Sequencing of cloned PCR products in every case revealed two distinct haplotypes for each locus in P. andina, such that each isolate had one allele derived from a P. infestans parent and a second divergent allele derived from an unknown species that is closely related but distinct from P. infestans, P. mirabilis, and P. ipomoeae. To the best of our knowledge, the unknown parent has not yet been collected. We also observed sequence polymorphism among P. andina isolates at three of the four loci, many of which segregate between previously described P. andina clonal lineages. These results provide strong support that P. andina emerged via hybridization between P. infestans and another unknown Phytophthora species also belonging to Phytophthora clade 1c.

  9. The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range.

    Directory of Open Access Journals (Sweden)

    Patrik Inderbitzin

    Full Text Available Hybridization plays a central role in plant evolution, but its overall importance in fungi is unknown. New plant pathogens are thought to arise by hybridization between formerly separated fungal species. Evolution of hybrid plant pathogens from non-pathogenic ancestors in the fungal-like protist Phytophthora has been demonstrated, but in fungi, the most important group of plant pathogens, there are few well-characterized examples of hybrids. We focused our attention on the hybrid and plant pathogen Verticillium longisporum, the causal agent of the Verticillium wilt disease in crucifer crops. In order to address questions related to the evolutionary origin of V. longisporum, we used phylogenetic analyses of seven nuclear loci and a dataset of 203 isolates of V. longisporum, V. dahliae and related species. We confirmed that V. longisporum was diploid, and originated three different times, involving four different lineages and three different parental species. All hybrids shared a common parent, species A1, that hybridized respectively with species D1, V. dahliae lineage D2 and V. dahliae lineage D3, to give rise to three different lineages of V. longisporum. Species A1 and species D1 constituted as yet unknown taxa. Verticillium longisporum likely originated recently, as each V. longisporum lineage was genetically homogenous, and comprised species A1 alleles that were identical across lineages.

  10. Digital Gene Expression Analysis to Screen Disease Resistance-Relevant Genes from Leaves of Herbaceous Peony (Paeonia lactiflora Pall. Infected by Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Saijie Gong

    Full Text Available Herbaceous peony (Paeonia lactiflora Pall. is a well-known traditional flower in China and is widely used for landscaping and garden greening due to its high ornamental value. However, disease spots usually appear after the flowering of the plant and may result in the withering of the plant in severe cases. This study examined the disease incidence in an herbaceous peony field in the Yangzhou region, Jiangsu Province. Based on morphological characteristics and molecular data, the disease in this area was identified as a gray mold caused by Botrytis cinerea. Based on previously obtained transcriptome data, eight libraries generated from two herbaceous peony cultivars 'Zifengyu' and 'Dafugui' with different susceptibilities to the disease were then analyzed using digital gene expression profiling (DGE. Thousands of differentially expressed genes (DEGs were screened by comparing the eight samples, and these genes were annotated using the Gene ontology (GO and Kyoto encyclopedia of genes and genomes (KEGG database. The pathways related to plant-pathogen interaction, secondary metabolism synthesis and antioxidant system were concentrated, and 51, 76, and 13 disease resistance-relevant candidate genes were identified, respectively. The expression patterns of these candidate genes differed between the two cultivars: their expression of the disease-resistant cultivar 'Zifengyu' sharply increased during the early stages of infection, while it was relatively subdued in the disease-sensitive cultivar 'Dafugui'. A selection of ten candidate genes was evaluated by quantitative real-time PCR (qRT-PCR to validate the DGE data. These results revealed the transcriptional changes that took place during the interaction of herbaceous peony with B. cinerea, providing insight into the molecular mechanisms of host resistance to gray mold.

  11. Vector population growth and condition-dependent movement drive the spread of plant pathogens.

    Science.gov (United States)

    Shaw, Allison K; Peace, Angela; Power, Alison G; Bosque-Pérez, Nilsa A

    2017-08-01

    Plant viruses, often spread by arthropod vectors, impact natural and agricultural ecosystems worldwide. Intuitively, the movement behavior and life history of vectors influence pathogen spread, but the relative contribution of each factor has not been examined. Recent research has highlighted the influence of host infection status on vector behavior and life history. Here, we developed a model to explore how vector traits influence the spread of vector-borne plant viruses. We allowed vector life history (growth rate, carrying capacity) and movement behavior (departure and settlement rates) parameters to be conditional on whether the plant host is infected or healthy and whether the vector is viruliferous (carrying the virus) or not. We ran simulations under a wide range of parameter combinations and quantified the fraction of hosts infected over time. We also ran case studies of the model for Barley yellow dwarf virus, a persistently transmitted virus, and for Potato virus Y, a non-persistently transmitted virus. We quantified the relative importance of each parameter on pathogen spread using Latin hypercube sampling with the statistical partial rank correlation coefficient technique. We found two general types of mechanisms in our model that increased the rate of pathogen spread. First, increasing factors such as vector intrinsic growth rate, carrying capacity, and departure rate from hosts (independent of whether these factors were condition-dependent) led to more vectors moving between hosts, which increased pathogen spread. Second, changing condition-dependent factors such as a vector's preference for settling on a host with a different infection status than itself, and vector tendency to leave a host of the same infection status, led to increased contact between hosts and vectors with different infection statuses, which also increased pathogen spread. Overall, our findings suggest that vector population growth rates had the greatest influence on rates of virus

  12. Analysis of WRKY transcription factors and characterization of two Botrytis cinerea-responsive LrWRKY genes from Lilium regale.

    Science.gov (United States)

    Cui, Qi; Yan, Xiao; Gao, Xue; Zhang, Dong-Mei; He, Heng-Bin; Jia, Gui-Xia

    2018-06-01

    A major constraint in producing lilies is gray mold caused by Botrytis elliptica and B. cinerea. WRKY transcription factors play important roles in plant immune responses. However, limited information is available about the WRKY gene family in lily plants. In this study, 23 LrWRKY genes with complete WRKY domains were identified from the Botrytis-resistant species Lilium regale. The putative WRKY genes were divided into seven subgroups (Group I, IIa-e, and III) according to their structural features. Sequence alignment revealed that LrWRKY proteins have a highly conserved WRKYGQK domain and a variant, the WRKYGKK domain, and these proteins generally contained similar motif compositions throughout the same subgroup. Functional annotation predicted they might be involved in biological processes related to abiotic and biotic stresses. A qRT-PCR analysis confirmed that expression of six LrWRKY genes in L. regale or the susceptible Asian hybrid 'Yale' was induced by B. cinerea infection. Among these genes, LrWRKY4, LrWRKY8 and LrWRKY10 were expressed at a higher level in L. regale than 'Yale', while the expression of LrWRKY6 and LrWRKY12 was lower in L. regale. Furthermore, LrWRKY4 and LrWRKY12 genes, which also respond to salicylic acid (SA) and methyl jasmonate (MeJA) treatments, were isolated from L. regale. Subcellular localization analysis determined that they were targeted to the nucleus. Constitutive expression of LrWRKY4 and LrWRKY12 in Arabidopsis resulted in plants that were more resistant to B. cinerea than wild-type plants. This resistance was coupled with the transcriptional changes of SA and JA-responsive genes. Overall, our study provides valuable information about the structural and functional characterization of LrWRKY genes that will not only deepen our understanding of the molecular mechanisms underlying the defense of lily against B. cinerea but also offer potential targets for cultivar improvement via biotechnology. Copyright © 2018 Elsevier Masson

  13. The Biocontrol Efficacy of Streptomyces pratensis LMM15 on Botrytis cinerea in Tomato

    Directory of Open Access Journals (Sweden)

    Qinggui Lian

    2017-01-01

    Full Text Available LMM15, an actinomycete with broad spectrum antifungal activity, was isolated from a diseased tomato leaf using the baiting technique. A phylogenetic tree analysis based on similarity percentage of 16S rDNA sequences showed that the bacterium was 97.0% affiliated with the species Streptomyces pratensis. This strain was therefore coded as S. pratensis LMM15. The ferment filtrate of LMM15 had ability to inhibit mycelia growth of Botrytis cinerea and reduce lesion expansion of gray mold on detached leaves and fruits. In greenhouse experiments, both the fresh and dry weights of tomato seedlings were significantly increased with the increased concentrations of total chlorophyll. The incidence of tomato gray mold decreased by 46.35%; this was associated with the increase of proline content and malondialdehyde (MDA and the changes in defense-related enzymes on tomato leaves when the strain was sprayed on the tomato leaves 24 h prior to inoculation with pathogens. This study showed that the strain S. pratensis LMM15 could be a potential agent for controlling tomato gray mold.

  14. The Biocontrol Efficacy of Streptomyces pratensis LMM15 on Botrytis cinerea in Tomato.

    Science.gov (United States)

    Lian, Qinggui; Zhang, Jing; Gan, Liang; Ma, Qing; Zong, Zhaofeng; Wang, Yang

    2017-01-01

    LMM15, an actinomycete with broad spectrum antifungal activity, was isolated from a diseased tomato leaf using the baiting technique. A phylogenetic tree analysis based on similarity percentage of 16S rDNA sequences showed that the bacterium was 97.0% affiliated with the species Streptomyces pratensis . This strain was therefore coded as S. pratensis LMM15. The ferment filtrate of LMM15 had ability to inhibit mycelia growth of Botrytis cinerea and reduce lesion expansion of gray mold on detached leaves and fruits. In greenhouse experiments, both the fresh and dry weights of tomato seedlings were significantly increased with the increased concentrations of total chlorophyll. The incidence of tomato gray mold decreased by 46.35%; this was associated with the increase of proline content and malondialdehyde (MDA) and the changes in defense-related enzymes on tomato leaves when the strain was sprayed on the tomato leaves 24 h prior to inoculation with pathogens. This study showed that the strain S. pratensis LMM15 could be a potential agent for controlling tomato gray mold.

  15. ABC transporters van Botrytis cinerea in biotische en abiotische interacties

    NARCIS (Netherlands)

    Schoonbeek, H.

    2005-01-01

    Op 29 november 2004 promoveerde Henk-jan Schoonbeek aan Wageningen Universiteit op het proefschrift getiteld 'ABC transporters from Botrytis cinerea in biotic and abiotic interactions'. Promotor was Prof. dr. ir. P.J.G.M. de Wit en co-promotor was dr.ir. M.A. de Waard, leerstoelgroep Fytopathologie,

  16. The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks

    Directory of Open Access Journals (Sweden)

    Feng Zhu

    2018-02-01

    Full Text Available Ribosome-inactivating proteins (RIPs are toxic N-glycosidases that depurinate eukaryotic and prokaryotic rRNAs, thereby arresting protein synthesis during translation. RIPs are widely found in various plant species and within different tissues. It is demonstrated in vitro and in transgenic plants that RIPs have been connected to defense by antifungal, antibacterial, antiviral, and insecticidal activities. However, the mechanism of these effects is still not completely clear. There are a number of reviews of RIPs. However, there are no reviews on the biological functions of RIPs in defense against pathogens and insect pests. Therefore, in this report, we focused on the effect of RIPs from plants in defense against pathogens and insect pest attacks. First, we summarize the three different types of RIPs based on their physical properties. RIPs are generally distributed in plants. Then, we discuss the distribution of RIPs that are found in various plant species and in fungi, bacteria, algae, and animals. Various RIPs have shown unique bioactive properties including antibacterial, antifungal, antiviral, and insecticidal activity. Finally, we divided the discussion into the biological roles of RIPs in defense against bacteria, fungi, viruses, and insects. This review is focused on the role of plant RIPs in defense against bacteria, fungi, viruses, and insect attacks. The role of plant RIPs in defense against pathogens and insects is being comprehended currently. Future study utilizing transgenic technology approaches to study the mechanisms of RIPs will undoubtedly generate a better comprehending of the role of plant RIPs in defense against pathogens and insects. Discovering additional crosstalk mechanisms between RIPs and phytohormones or reactive oxygen species (ROS against pathogen and insect infections will be a significant subject in the field of biotic stress study. These studies are helpful in revealing significance of genetic control that can

  17. Lusus naturae:climate and invasions of plant pathogens modify agricultural and forest lands

    Directory of Open Access Journals (Sweden)

    Salvatore Moricca

    2009-10-01

    Full Text Available The ecological and economic sustainability of agricultural and forest systems of many advanced and underdeveloped Countries are strongly threatened by the increasing introduction of exotic plant pathogens. This article provides an overview of the main causes behind these invasions. Some important diseases caused by non native phytopathogens, whose arrival in the past century had a disastrous impact on the environment and economy of vast rural areas of our Country are reported. Some dangerous, emerging pathogens, which are literally destroying whole territories in various parts of the Planet, with severe damage to agricultural crops, landscape, economy and local tourism are also reported. Action strategies to prevent immigration of unwanted pathogens, and mitigation strategies, aimed at the development of various measures to mitigate the negative effects of plant parasites already established in the territory are then discussed. Finally, it is highlighted how such a far-reaching problem can be properly tackled only with the active contribution of governments, institutions responsible for plant health monitoring (warning services, research, and agricultural, tourism and transport operators.

  18. A nonnative and a native fungal plant pathogen similarly stimulate ectomycorrhizal development but are perceived differently by a fungal symbiont.

    Science.gov (United States)

    Zampieri, Elisa; Giordano, Luana; Lione, Guglielmo; Vizzini, Alfredo; Sillo, Fabiano; Balestrini, Raffaella; Gonthier, Paolo

    2017-03-01

    The effects of plant symbionts on host defence responses against pathogens have been extensively documented, but little is known about the impact of pathogens on the symbiosis and if such an impact may differ for nonnative and native pathogens. Here, this issue was addressed in a study of the model system comprising Pinus pinea, its ectomycorrhizal symbiont Tuber borchii, and the nonnative and native pathogens Heterobasidion irregulare and Heterobasidion annosum, respectively. In a 6-month inoculation experiment and using both in planta and gene expression analyses, we tested the hypothesis that H. irregulare has greater effects on the symbiosis than H. annosum. Although the two pathogens induced the same morphological reaction in the plant-symbiont complex, with mycorrhizal density increasing exponentially with pathogen colonization of the host, the number of target genes regulated in T. borchii in plants inoculated with the native pathogen (i.e. 67% of tested genes) was more than twice that in plants inoculated with the nonnative pathogen (i.e. 27% of genes). Although the two fungal pathogens did not differentially affect the amount of ectomycorrhizas, the fungal symbiont perceived their presence differently. The results may suggest that the symbiont has the ability to recognize a self/native and a nonself/nonnative pathogen, probably through host plant-mediated signal transduction. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens.

    Directory of Open Access Journals (Sweden)

    Lehlohonolo Benedict Qhanya

    Full Text Available Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s, heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence. Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea, Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala, revealed the presence of numerous putative P450s ranging from 267 (A. mellea to 14 (M. osmundae. Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  20. Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants

    Directory of Open Access Journals (Sweden)

    Alejandra Moenne

    2011-11-01

    Full Text Available Plants interact with the environment by sensing “non-self” molecules called elicitors derived from pathogens or other sources. These molecules bind to specific receptors located in the plasma membrane and trigger defense responses leading to protection against pathogens. In particular, it has been shown that cell wall and storage polysaccharides from green, brown and red seaweeds (marine macroalgae corresponding to ulvans, alginates, fucans, laminarin and carrageenans can trigger defense responses in plants enhancing protection against pathogens. In addition, oligosaccharides obtained by depolymerization of seaweed polysaccharides also induce protection against viral, fungal and bacterial infections in plants. In particular, most seaweed polysaccharides and derived oligosaccharides trigger an initial oxidative burst at local level and the activation of salicylic (SA, jasmonic acid (JA and/or ethylene signaling pathways at systemic level. The activation of these signaling pathways leads to an increased expression of genes encoding: (i Pathogenesis-Related (PR proteins with antifungal and antibacterial activities; (ii defense enzymes such as pheylalanine ammonia lyase (PAL and lipoxygenase (LOX which determine accumulation of phenylpropanoid compounds (PPCs and oxylipins with antiviral, antifugal and antibacterial activities and iii enzymes involved in synthesis of terpenes, terpenoids and/or alkaloids having antimicrobial activities. Thus, seaweed polysaccharides and their derived oligosaccharides induced the accumulation of proteins and compounds with antimicrobial activities that determine, at least in part, the enhanced protection against pathogens in plants.

  1. Plant-Mediated Systemic Interactions Between Pathogens, Parasitic Nematodes, and Herbivores Above- and Belowground

    NARCIS (Netherlands)

    Biere, A.; Goverse, A.

    2016-01-01

    Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within- and cross-compartment plant responses to these groups of phytophages in terms of

  2. Plant-mediated systemic interactions between pathogens, parasitic nematodes, and herbivores above- and belowground

    NARCIS (Netherlands)

    Biere, A.; Goverse, Aska

    2016-01-01

    Plants are important mediators of interactions between aboveground (AG) and belowground (BG) pathogens, arthropod herbivores, and nematodes (phytophages). We highlight recent progress in our understanding of within and cross-compartment plant responses to these groups of phytophages in terms of

  3. Host range of Phytophthora parsiana: a new high temperature pathogen of woody plants

    Directory of Open Access Journals (Sweden)

    Somieh HAJEBRAHIMI

    2011-05-01

    Full Text Available Normal 0 14 false false false IT ZH-TW X-NONE MicrosoftInternetExplorer4 Among several Phytophthora spp. reported previously from Pistacia vera in Iran, a high temperature species recently identified as P. parsiana (formerly known as high temperature P. cryptogea is becoming important in woody plants, including P. vera. The host range of this newly recognised species, including both annual and perennial plants, is reported here. The pathogen infected 4–5 month-old glasshouse grown seedlings of P. vera, Ficus carica, Malus pumila and Prunus dulcis, and detached stems of 23 woody plants collected during dormant and growing seasons. Nineteen field and vegetable crops and 17 weed species were not infected by  P. parsiana in these pathogenicity assays.

  4. Odporność grzyba Botryotinia fuckeliana (De Bary Whetzel (Botrytis cinerea Pers. – patogena malin, truskawek i innych roślin uprawnych na fungicydy benzimidazolowe [Resistance of Botryotinia fuckeliana (De Bary Whetzel (Botrytis cinerea Pers. to benzimidazole fungicides

    Directory of Open Access Journals (Sweden)

    E. Arseniuk

    2015-06-01

    Full Text Available In the period 1975-1977 forms of the fungus Botrytis cinerea were found in Poland resistant to benzimidazole fungicides. The incidence of the resistant forms increases with the more intensive use of these fungicides. The resistance of Botrytis cinerea to benzimidazole compounds is a cross-resistance involving the whole group of these agents, nowithstanding wihich of them was applied. The resistance acquired by the fungus does not change its reaction to other prophylactic fungicides.

  5. Contrasting Regulation of NO and ROS in Potato Defense-Associated Metabolism in Response to Pathogens of Different Lifestyles.

    Directory of Open Access Journals (Sweden)

    Jolanta Floryszak-Wieczorek

    Full Text Available Our research provides new insights into how the low and steady-state levels of nitric oxide (NO and reactive oxygen species (ROS in potato leaves are altered after the challenge with the hemibiotroph Phytophthora infestans or the necrotroph Botrytis cinerea, with the subsequent rapid and invader-dependent modification of defense responses with opposite effects. Mainly in the avirulent (avr P. infestans-potato system, NO well balanced with the superoxide level was tuned with a battery of SA-dependent defense genes, leading to the establishment of the hypersensitive response (HR successfully arresting the pathogen. Relatively high levels of S-nitrosoglutathione and S-nitrosothiols concentrated in the main vein of potato leaves indicated the mobile function of these compounds as a reservoir of NO bioactivity. In contrast, low-level production of NO and ROS during virulent (vr P. infestans-potato interactions might be crucial in the delayed up-regulation of PR-1 and PR-3 genes and compromised resistance to the hemibiotrophic pathogen. In turn, B. cinerea triggered huge NO overproduction and governed inhibition of superoxide production by blunting NADPH oxidase. Nevertheless, a relatively high level of H2O2 was found owing to the germin-like activity in cooperation with NO-mediated HR-like cell death in potato genotypes favorable to the necrotrophic pathogen. Moreover, B. cinerea not only provoked cell death, but also modulated the host redox milieu by boosting protein nitration, which attenuated SA production but not SA-dependent defense gene expression. Finally, based on obtained data the organismal cost of having machinery for HR in plant resistance to biotrophs is also discussed, while emphasizing new efforts to identify other components of the NO/ROS cell death pathway and improve plant protection against pathogens of different lifestyles.

  6. The necrotroph Botrytis cinerea induces a non-host type II resistance mechanism in Pinus pinaster suspension-cultured cells.

    Science.gov (United States)

    Azevedo, Herlânder; Lino-Neto, Teresa; Tavares, Rui Manuel

    2008-03-01

    Models of non-host resistance have failed to account for the pathogenicity of necrotrophic agents. During the interaction of Pinus pinaster (maritime pine) with the non-host necrotrophic pathogen Botrytis cinerea, the generation and scavenging of reactive oxygen species (ROS) and the induction of the hypersensitive response (HR) were analyzed. Elicitation of maritime pine suspended cells with B. cinerea spores resulted in the biphasic induction of ROS. The phase I oxidative burst was dependent on calcium influx, while the phase II oxidative burst also depended on NADPH oxidase, protein kinase activity, and de novo transcription and protein synthesis. A decline was observed in catalase (CAT) and superoxide dismutase (SOD) activity, together with the down-regulation of Fe-Sod1, chlCu, Zn-Sod1 and csApx1, suggesting a coordinated response towards a decrease in the ROS-scavenging capacity of maritime pine cells during challenge. Following the second oxidative burst, programmed cell death events characteristic of the HR were observed. The results suggest the ROS-mediated and cell-breach-independent activation of Type II non-host resistance during the P. pinaster-B. cinerea interaction.

  7. Flavonoids and Strigolactones in Root Exudates as Signals in Symbiotic and Pathogenic Plant-Fungus Interactions

    Directory of Open Access Journals (Sweden)

    Horst Vierheilig

    2007-07-01

    Full Text Available Secondary plant compounds are important signals in several symbiotic and pathogenic plant-microbe interactions. The present review is limited to two groups of secondary plant compounds, flavonoids and strigolactones, which have been reported in root exudates. Data on flavonoids as signaling compounds are available from several symbiotic and pathogenic plant-microbe interactions, whereas only recently initial data on the role of strigolactones as plant signals in the arbuscular mycorrhizal symbiosis have been reported. Data from other plant-microbe interactions and strigolactones are not available yet. In the present article we are focusing on flavonoids in plant-fungalinteractions such as the arbuscular mycorrhizal (AM association and the signaling between different Fusarium species and plants. Moreover the role of strigolactones in the AM association is discussed and new data on the effect of strigolactones on fungi, apart from arbuscular mycorrhizal fungi (AMF, are provided.

  8. The chromoplasts of Or mutants of cauliflower (Brassica oleracea L. var. botrytis).

    Science.gov (United States)

    Paolillo, D J; Garvin, D F; Parthasarathy, M V

    2004-12-01

    The Or mutation in cauliflower (Brassica oleracea L. var. botrytis) leads to abnormal accumulations of beta-carotene in orange chromoplasts, in tissues in which leucoplasts are characteristic of wild-type plants. Or chromoplasts were investigated by light microscopy of fresh materials and electron microscopy of glutaraldehyde- and potassium permanganate-fixed materials. Carotenoid inclusions in Or chromoplasts resemble those found in carrot root chromoplasts in their optical activity and angular shape. Electron microscopy revealed that the inclusions are made up of parallel, membrane-bound compartments. These stacks of membranes are variously rolled and folded into three-dimensional objects. We classify Or chromoplasts as "membranous" chromoplasts. The Or mutation also limits plastid replication so that a single chromoplast constitutes the plastidome in most of the affected cells. There are one to two chromoplasts in each cell of a shoot apex. The ability of differentiated chromoplasts to divide in the apical meristems of Or mutant plants resembles the ability of proplastids to maintain plastid continuity from cell to cell in meristems of Arabidopsis thaliana mutants in which plastid replication is drastically limited. The findings are used to discuss the number of levels of regulation involved in plastid replication.

  9. The Bacterial Pathogen Xylella fastidiosa Affects the Leaf Ionome of Plant Hosts during Infection

    Science.gov (United States)

    De La Fuente, Leonardo; Parker, Jennifer K.; Oliver, Jonathan E.; Granger, Shea; Brannen, Phillip M.; van Santen, Edzard; Cobine, Paul A.

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547

  10. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection.

    Directory of Open Access Journals (Sweden)

    Leonardo De La Fuente

    Full Text Available Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen.

  11. TAXONOMY OF FUSARIUM SPECIES ISOLATED FROM CULTIVATED PLANTS, WEEDS AND THEIR PATHOGENICITY FOR WHEAT

    Directory of Open Access Journals (Sweden)

    Jasenka Ćosić

    2002-06-01

    Full Text Available Fusarium species are wide-spread and known to be pathogenic agents to cultivated plants in various agroclimatic areas. During a four year investigation 10 Fusarium species and Microdochium nivale were isolated from wheat, barley, maize and soybean as well as from 10 weeds collected from 10 locations in Slavonia and Baranya. Fusarium graminearum was dominant on wheat and barley, F. moniliforme on maize and F. oxysporum on soybean. Regarding weeds, the presence of the following Fusarium species was established: F. graminearum on Amaranthus hybridus, Capsella bursa-pastoris, Lamium purpureum, Sorghum halepense and Urtica dioica, F. moniliforme on Abutilon theophrasti, F. subglutinans on Polygonum aviculare, F. avenaceum on Capsella bursa-pastoris, Rumex crispus and Matricaria sp., F. culmorum on Abutilon theophrasti, F. sporotrichioides on Polygonum aviculare, F. proliferatum and F. poae on Artemisia vulgaris. Pathogenicity test to wheat seedlings was done in our laboratory on winter wheat cultivars Slavonija and Demetra (totally 146 isolates. The most pathogenic species to wheat seedilings were F. graminearum, F. culmorum and F. sporotrichioides and the least pathogenic F. moniliforme, F. solani, F. oxysporum and F. poae. Pathogenicity test for wheat ears was done on genotypes Osk.8c9/3-94 and Osk.6.11/2 (totally 25 isolates. The results obtained by our investigation showed that there were no significant differences in pathogenicity of Fusarium species isolated from both cultivated plants and weeds. Weeds represent a constant source of inoculum of F. species for cultivated plants and they serve as epidemiologic bridges among vegetations.

  12. Incorporation of plant materials in the control of root pathogens in muskmelon

    Directory of Open Access Journals (Sweden)

    Andréa Mirne de Macêdo Dantas

    2013-12-01

    Full Text Available The effect of plant materials[Sunn Hemp (Crotalaria juncea, Castor Bean (Ricinus communis L., Cassava (Manihot esculenta Crantz and Neem (Azadirachta indica] and the times of incorporation of these materials in regards to the incidence of root rot in melon was evaluated in Ceará state, Brazil. The experiment was conducted in a commercial area with a history of root pathogens in cucurbitaceae. The randomized block design was used, in a 5 x 3 factorial arrangement with four repetitions. The treatments consisted of a combination of four plant materials (sunn hemp, castor beans, cassava and neem and a control with no soil incorporation of plant material and three times of incorporation (28, 21, and 14 days before the transplanting of the seedlings. Lower incidence of root rot was observed in practically all of the treatments where materials were incorporated at different times, with variation between the materials, corresponding with the time of incorporation, in relation to the soil without plant material. The pathogens isolated from the symptomatic muskmelon plants were Fusarium solani, Macrophomina phaseolina, Monosporascus cannonballus and Rhizoctonia solani, F. solani being encountered most frequently.

  13. Identification of miRNAs Responsive to Botrytis cinerea in Herbaceous Peony (Paeonia lactiflora Pall. by High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Daqiu Zhao

    2015-09-01

    Full Text Available Herbaceous peony (Paeonia lactiflora Pall., one of the world’s most important ornamental plants, is highly susceptible to Botrytis cinerea, and improving resistance to this pathogenic fungus is a problem yet to be solved. MicroRNAs (miRNAs play an essential role in resistance to B. cinerea, but until now, no studies have been reported concerning miRNAs induction in P. lactiflora. Here, we constructed and sequenced two small RNA (sRNA libraries from two B. cinerea-infected P. lactiflora cultivars (“Zifengyu” and “Dafugui” with significantly different levels of resistance to B. cinerea, using the Illumina HiSeq 2000 platform. From the raw reads generated, 4,592,881 and 5,809,796 sRNAs were obtained, and 280 and 306 miRNAs were identified from “Zifengyu” and “Dafugui”, respectively. A total of 237 conserved and 7 novel sequences of miRNAs were differentially expressed between the two cultivars, and we predicted and annotated their potential target genes. Subsequently, 7 differentially expressed candidate miRNAs were screened according to their target genes annotated in KEGG pathways, and the expression patterns of miRNAs and corresponding target genes were elucidated. We found that miR5254, miR165a-3p, miR3897-3p and miR6450a might be involved in the P. lactiflora response to B. cinerea infection. These results provide insight into the molecular mechanisms responsible for resistance to B. cinerea in P. lactiflora.

  14. Effective onion leaf fleck management and variability of storage pathogens

    Directory of Open Access Journals (Sweden)

    Rasiukevičiūtė Neringa

    2016-01-01

    Full Text Available Botrytis spp. cause several diseases in Allium crops and depending on meteorological conditions economic losses can exceed 50%. Forecasting models improve plant protection and sometimes reduce consumption of fungicides, because applications are made precisely during the favourable periods for disease development. Our aim was to evaluate the iMETOS®sm B. cinerea forecasting model as an effective onion leaf fleck management system and estimate the variability of onion bulb pathogens during storage. Assessment of forecasting model data showed that favourable conditions for leaf fleck development arise in July, but greatly depend on that year’s meteorological conditions. During an experimental year the first sprayings with fungicides were applied as forecasted from the model, which resulted in application 19, 6 and 23 days earlier than conventional treatment application times. In 2012-2014 iMETOS®sm treatment yield increased by 3.51 t ha-1, 3.87 t ha-1 and3.40 t ha-1 relative to the control. During storage most frequent injuries were fungal (44% and bacterial (41%, followed by insects (7% and physiological (9%. The highest prevalence of injuries was detected after 2 months of storage.

  15. Inhibitory activity of plant extracts on the early blight pathogen ...

    African Journals Online (AJOL)

    This study evaluated the effect of two plant extracts, Ricinus communis and Chromolaena odorata on the control of the early blight pathogen, Alternaria solani (Ell. and Mart.). The study was conducted in the Laboratory of the Crop Production and Horticulture Department, Federal University of Technology, Yola, Adamawa ...

  16. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity.

    Science.gov (United States)

    Nicaise, Valerie; Candresse, Thierry

    2017-08-01

    The perception of pathogen-associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP-triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  17. Effectors as Tools in Disease Resistance Breeding Against Biotrophic, Hemibiotrophic, and Necrotrophic Plant Pathogens

    NARCIS (Netherlands)

    Vleeshouwers, V.G.A.A.; Oliver, R.P.

    2014-01-01

    One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of

  18. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes.

    Science.gov (United States)

    Gomes, Eriston V; Ulhoa, Cirano J; Cardoza, Rosa E; Silva, Roberto N; Gutiérrez, Santiago

    2017-01-01

    Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δ epl-1 or wild-type T. harzianum strains with: (a) the phytopathogen Botrytis cinerea and (b) with tomato plants, on short (24 h hydroponic cultures) and long periods (4-weeks old plants) after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis ( BcBOT genes), during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

  19. Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes

    Directory of Open Access Journals (Sweden)

    Eriston V. Gomes

    2017-05-01

    Full Text Available Several Trichoderma spp. are well known for their ability to: (i act as important biocontrol agents against phytopathogenic fungi; (ii function as biofertilizers; (iii increase the tolerance of plants to biotic and abiotic stresses; and (iv induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant Δepl-1 or wild-type T. harzianum strains with: (a the phytopathogen Botrytis cinerea and (b with tomato plants, on short (24 h hydroponic cultures and long periods (4-weeks old plants after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis (BcBOT genes, during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonization.

  20. Interaction intimacy of pathogens and herbivores with their host plants influences the topological structure of ecological networks in different ways.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Dáttilo, Wesley

    2015-04-01

    • Over the past two decades an interest in the role that plant-animal mutualistic networks play in the organization and dynamic of biodiversity has steadily risen. Despite the ecological, evolutionary, and economic importance of plant-herbivore and plant-pathogen antagonistic relationships, however, few studies have examined these interactions in an ecological network framework.• We describe for the first time the topological structure of multitrophic networks involving congeneric tropical plant species of the genus Heliconia (Heliconiaceae, Zingiberales) and their herbivores and pathogens in the state of Pernambuco, Brazil. We based our study on the available literature describing the organisms (e.g., insects, mites, fungi, and bacteria) that attack 24 different species, hybrids, and cultivated varieties of Heliconia.• In general, pathogen- and herbivore-Heliconia networks differed in their topological structure (more modular vs. more nested, respectively): pathogen-Heliconia networks were more specialized and compartmentalized than herbivore-Heliconia networks. High modularity was likely due to the high intimacy that pathogens have with their host plants as compared with the more generalized feeding modes and behavior of herbivores. Some clusters clearly reflected the clustering of closely related cultivated varieties of Heliconia sharing the same pathogens.• From a commercial standpoint, different varieties of the same Heliconia species may be more susceptible to being attacked by the same species of pathogens. In summary, our study highlights the importance of interaction intimacy in structuring trophic relationships between plants and pathogens in the tropics. © 2015 Botanical Society of America, Inc.

  1. The pathogen-actin connection: A platform for defense signaling in plants

    Energy Technology Data Exchange (ETDEWEB)

    Day, B; Henty, Jessica L; Porter, K J; Staiger, Chris J

    2011-09-08

    The cytoskeleton, a dynamic network of cytoplasmic polymers, plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. As a platform for innate immune responses in mammalian cells, the actin cytoskeleton is a central component in the organization and activation of host defenses, including signaling and cellular repair. In plants, our understanding of the genetic and biochemical responses in both pathogen and host that are required for virulence and resistance has grown enormously. Additional advances in live-cell imaging of cytoskeletal dynamics have markedly altered our view of actin turnover in plants. In this review, we outline current knowledge of host resistance following pathogen perception, both in terms of the genetic interactions that mediate defense signaling, as well as the biochemical and cellular processes that are required for defense signaling.

  2. Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinera and strawberry

    DEFF Research Database (Denmark)

    Mamarabadi, Mojtaba; Jensen, Birgit; Jensen, Søren Dan Funck

    2008-01-01

    Clonostachys rosea is a well-known biocontrol agent against Botrytis cinerea, the causal agent of gray mold in strawberry. The activity of cell wall-degrading enzymes might play a significant role for successful biocontrol by C. rosea. The expression pattern of four chitinases, and two endoglucan......Clonostachys rosea is a well-known biocontrol agent against Botrytis cinerea, the causal agent of gray mold in strawberry. The activity of cell wall-degrading enzymes might play a significant role for successful biocontrol by C. rosea. The expression pattern of four chitinases, and two...... endoglucanase genes from C. rosea strain IK726 was analyzed using real-time RT-PCR in vitro and in strawberry leaves during interaction with B. cinerea. Specific primers were designed for ß-tubulin genes from C. rosea and B. cinerea, respectively, and a gene encoding a DNA-binding protein (DBP) from strawberry......, allowing in situ activity assessment of each fungus in vitro and during their interaction on strawberry leaves. Growth of B. cinerea was inhibited in all pathogen-antagonist interactions while the activity of IK726 was slightly increased. In all in vitro interactions, four of the six genes were upregulated...

  3. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides

    Directory of Open Access Journals (Sweden)

    Barhoom Sima

    2008-02-01

    Full Text Available Abstract Background In order to initiate plant infection, fungal spores must germinate and penetrate into the host plant. Many fungal species differentiate specialized infection structures called appressoria on the host surface, which are essential for successful pathogenic development. In the model plant pathogen Magnaporthe grisea completion of mitosis and autophagy cell death of the spore are necessary for appressoria-mediated plant infection; blocking of mitosis prevents appressoria formation, and prevention of autophagy cell death results in non-functional appressoria. Results We found that in the closely related plant pathogen Colletotrichum gloeosporioides, blocking of the cell cycle did not prevent spore germination and appressoria formation. The cell cycle always lagged behind the morphogenetic changes that follow spore germination, including germ tube and appressorium formation, differentiation of the penetrating hypha, and in planta formation of primary hyphae. Nuclear division was arrested following appressorium formation and was resumed in mature appressoria after plant penetration. Unlike in M. grisea, blocking of mitosis had only a marginal effect on appressoria formation; development in hydroxyurea-treated spores continued only for a limited number of cell divisions, but normal numbers of fully developed mature appressoria were formed under conditions that support appressoria formation. Similar results were also observed in other Colletotrichum species. Spores, germ tubes, and appressoria retained intact nuclei and remained viable for several days post plant infection. Conclusion We showed that in C. gloeosporioides the differentiation of infection structures including appressoria precedes mitosis and can occur without nuclear division. This phenomenon was also found to be common in other Colletotrichum species. Spore cell death did not occur during plant infection and the fungus primary infection structures remained viable

  4. Effect of polyacetylenic acids from Prunella vulgaris on various plant pathogens.

    Science.gov (United States)

    Yoon, M-Y; Choi, G J; Choi, Y H; Jang, K S; Park, M S; Cha, B; Kim, J-C

    2010-11-01

    This study is aiming at characterizing antifungal substances from the methanol extract of Prunella vulgaris and at investigating those substances' antifungal and antioomycete activities against various plant pathogens. Two polyacetylenic acids were isolated from P. vulgaris as active principles and identified as octadeca-9,11,13-triynoic acid and trans-octadec-13-ene-9,11-diynoic acid. These two compounds inhibited the growth of Magnaporthe oryzae, Rhizoctonia solani, Phytophthora infestans, Sclerotinia sclerotiorum, Fusarium oxysporum f. sp. raphani, and Phytophthora capsici. In addition, these two compounds and the wettable powder-type formulation of an n-hexane fraction of P. vulgaris significantly suppressed the development of rice blast, tomato late blight, wheat leaf rust, and red pepper anthracnose. These data show that the extract of P. vulgaris and two polyacetylenic acids possess antifungal and antioomycete activities against a broad spectrum of tested plant pathogens. This is the first report on the occurrence of octadeca-9,11,13-triynoic acid and trans-octadec-13-ene-9,11-diynoic acid in P. vulgaris and their efficacy against plant diseases. The crude extract containing the two polyacetylenic acids can be used as a natural fungicide for the control of various plant diseases. © 2010 The Authors. © 2010 The Society for Applied Microbiology.

  5. Genome-Enhanced Detection and Identification (GEDI of plant pathogens

    Directory of Open Access Journals (Sweden)

    Nicolas Feau

    2018-02-01

    Full Text Available Plant diseases caused by fungi and Oomycetes represent worldwide threats to crops and forest ecosystems. Effective prevention and appropriate management of emerging diseases rely on rapid detection and identification of the causal pathogens. The increase in genomic resources makes it possible to generate novel genome-enhanced DNA detection assays that can exploit whole genomes to discover candidate genes for pathogen detection. A pipeline was developed to identify genome regions that discriminate taxa or groups of taxa and can be converted into PCR assays. The modular pipeline is comprised of four components: (1 selection and genome sequencing of phylogenetically related taxa, (2 identification of clusters of orthologous genes, (3 elimination of false positives by filtering, and (4 assay design. This pipeline was applied to some of the most important plant pathogens across three broad taxonomic groups: Phytophthoras (Stramenopiles, Oomycota, Dothideomycetes (Fungi, Ascomycota and Pucciniales (Fungi, Basidiomycota. Comparison of 73 fungal and Oomycete genomes led the discovery of 5,939 gene clusters that were unique to the targeted taxa and an additional 535 that were common at higher taxonomic levels. Approximately 28% of the 299 tested were converted into qPCR assays that met our set of specificity criteria. This work demonstrates that a genome-wide approach can efficiently identify multiple taxon-specific genome regions that can be converted into highly specific PCR assays. The possibility to easily obtain multiple alternative regions to design highly specific qPCR assays should be of great help in tackling challenging cases for which higher taxon-resolution is needed.

  6. Evolutionary history of the plant pathogenic bacterium Xanthomonas axonopodis.

    Directory of Open Access Journals (Sweden)

    Nadia Mhedbi-Hajri

    Full Text Available Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes--geographical and ecological speciation--that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25,000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.

  7. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum

    Science.gov (United States)

    Tran, Tuan Minh; MacIntyre, April; Hawes, Martha; Allen, Caitilyn

    2016-01-01

    Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease. PMID:27336156

  8. Escaping Underground Nets: Extracellular DNases Degrade Plant Extracellular Traps and Contribute to Virulence of the Plant Pathogenic Bacterium Ralstonia solanacearum.

    Directory of Open Access Journals (Sweden)

    Tuan Minh Tran

    2016-06-01

    Full Text Available Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.

  9. Improving ITS sequence data for identification of plant pathogenic fungi

    Science.gov (United States)

    R. Henrik Nilsson; Kevin D. Hyde; Julia Pawłowska; Martin Ryberg; Leho Tedersoo; Anders Bjørnsgard Aas; Siti A. Alias; Artur Alves; Cajsa Lisa Anderson; Alexandre Antonelli; A. Elizabeth Arnold; Barbara Bahnmann; Mohammad Bahram; Johan Bengtsson-Palme; Anna Berlin; Sara Branco; Putarak Chomnunti; Asha Dissanayake; Rein Drenkhan; Hanna Friberg; Tobias Guldberg Frøslev; Bettina Halwachs; Martin Hartmann; Beatrice Henricot; Ruvishika Jayawardena; Ari Jumpponen; Håvard Kauserud; Sonja Koskela; Tomasz Kulik; Kare Liimatainen; Björn D. Lindahl; Daniel Lindner; Jian-Kui Liu; Sajeewa Maharachchikumbura; Dimuthu Manamgoda; Svante Martinsson; Maria Alice Neves; Tuula Niskanen; Stephan Nylinder; Olinto Liparini Pereira; Danilo Batista Pinho; Teresita M. Porter; Valentin Queloz; Taavi Riit; Marisol Sánchez-García; Filipe de Sousa; Emil Stefańczyk; Mariusz Tadych; Susumu Takamatsu; Qing Tian; Dhanushka Udayanga; Martin Unterseher; Zheng Wang; Saowanee Wikee; Jiye Yan; Ellen Larsson; Karl-Henrik Larsson; Urmas Kõljalg; Kessy Abarenkov

    2014-01-01

    Plant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult...

  10. Presence of pathogenic microorganisms in power-plant cooling waters. Report for October 1, 1979-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Tyndall, R.L.

    1982-10-01

    Cooling waters from eleven geographically disparate power plants were tested for the presence of Naegleria fowleri and Legionella pneumophila (LDB). Control source waters for each plant were also tested for these pathogens. Water from two of the eleven plants contained pathogenic Naegleria, and infectious Legionella were found in seven of the test sites. Pathogenic Naegleria were not found in control waters, but infectious Legionella were found in five of the eleven control source water sites. Concentrations of nitrite, sulfate, and total organic carbon correlated with the concentrations of LDB. A new species of Legionella was isolated from one of the test sites. In laboratory tests, both Acanthamoeba and Naegleria were capable of supporting the growth of Legionella pneumophila.

  11. Induction of gentisic acid 5-O-beta-D-xylopyranoside in tomato and cucumber plants infected by different pathogens.

    Science.gov (United States)

    Fayos, Joaquín; Bellés, José María; López-Gresa, M Pilar; Primo, Jaime; Conejero, Vicente

    2006-01-01

    Tomato plants infected with the citrus exocortis viroid exhibited strongly elevated levels of a compound identified as 2,5-dihydroxybenzoic acid (gentisic acid, GA) 5-O-beta-D-xylopyranoside. The compound accumulated early in leaves expressing mild symptoms from both citrus exocortis viroid-infected tomato, and prunus necrotic ringspot virus-infected cucumber plants, and progressively accumulated concomitant with symptom development. The work presented here demonstrates that GA, mainly associated with systemic infections in compatible plant-pathogen interactions [Bellés, J.M., Garro, R., Fayos, J., Navarro, P., Primo, J., Conejero, V., 1999. Gentisic acid as a pathogen-inducible signal, additional to salicylic acid for activation of plant defenses in tomato. Mol. Plant-Microbe Interact. 12, 227-235], is conjugated to xylose. Notably, this result contrasts with those previously found in other plant-pathogen interactions in which phenolics analogues of GA as benzoic or salicylic acids, are conjugated to glucose.

  12. Pathogenic and Nonpathogenic Lifestyles in Colletotrichum acutatum from Strawberry and Other Plants.

    Science.gov (United States)

    Freeman, S; Horowitz, S; Sharon, A

    2001-10-01

    ABSTRACT Anthracnose is one of the major fungal diseases of strawberry occurring worldwide. In Israel, the disease is caused primarily by the species Colletotrichum acutatum. The pathogen causes black spot on fruit, root necrosis, and crown rot resulting in mortality of transplants in the field. The host range and specificity of C. acutatum from strawberry was examined on pepper, eggplant, tomato, bean, and strawberry under greenhouse conditions. The fungus was recovered from all plant species over a 3-month period but caused disease symptoms only on strawberry. Epiphytic and endophytic (colonization) fungal growth in the different plant species was confirmed by reisolation from leaf tissues and by polymerase chain reaction (PCR)-specific primer amplification. C. acutatum was also isolated from healthy looking, asymptomatic plants of the weed genera Vicia and Conyza. Isolates that were recovered from the weeds caused disease symptoms on strawberry and were positively identified as C. acutatum by PCR. The habitation of a large number of plant species, including weeds, by C. acutatum suggests that, although it causes disease only on strawberry and anemone in Israel, this fungus can persist on many other plant species. Therefore, plants that are not considered hosts of C. acutatum may serve as a potential inoculum source for strawberry infection and permit survival of the pathogen between seasons.

  13. Development of recombinant antibody technology for application in plant pathogen diagnosis

    NARCIS (Netherlands)

    Griep, R.

    1999-01-01

    This thesis describes the applicability of the novel phage display technique to select plant-pathogen-specific monoclonal antibodies (MAbs) from combinatorial antibody libraries. The retrieved MAbs are so specific that they can be used as diagnostic tools in sensitive immunoassays for the

  14. Multiplex detection of plant pathogens through the luminex magplex bead system

    NARCIS (Netherlands)

    Vlugt, van der R.A.A.; Raaij, van H.M.G.; Weerdt, de M.; Bergervoet, J.H.W.

    2015-01-01

    Here we describe a versatile multiplex method for both the serological and molecular detection of plant pathogens. The Luminex MagPlex bead system uses small paramagnetic microspheres (“beads”), either coated with specific antibodies or oligonucleotides, which capture respectively viruses and/or

  15. Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato

    NARCIS (Netherlands)

    Antoniou, Anastasis; Tsolakidou, Maria; Stringlis, I.; Pantelides, Iakovos

    2017-01-01

    Suppressive composts represent a sustainable approach to combat soilborne plant pathogens and an alternative to the ineffective chemical fungicides used against those. Nevertheless, suppressiveness to plant pathogens and reliability of composts are often inconsistent with unpredictable effects.

  16. Anti-botrytis activity in epicuticular waxes of young grape berries of Vitis vinifera (Pinot noir

    Directory of Open Access Journals (Sweden)

    Pascal Comménil

    1996-03-01

    The evidence of a substance which exhibits a strong inhibition on the conidial germination of Botrytis cinerea was made after epicuticular waxes chromatographic analysis and biological tests. This compound, characterized by a Rf (0,2 closely related to the Rf of the primary alcohols, was present in the wax extracts originated from bloom and immature grape berries stages and it was absent in the extracts issued to the mature grape berries. The concentration of the conidial germination inhibitor was markedly different between the sensible (S792 and tolerant (T7613 cultivars of Pinot vineyards. Also this antifungal product would be considereted as an hypothetical resistance marked against Botrytis cinerea.

  17. Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition

    NARCIS (Netherlands)

    Van Agtmaal, M.; Straathof, A.L.; Termorshuizen, Aad J; Lievens, Bart; Hoffland, Ellis; De Boer, W.

    2018-01-01

    There is increasing evidence that the soil microbial community produces a suite of volatile organic compounds that suppress plant pathogens. However, it remains unknown which soil properties and management practices influence volatile-mediated pathogen suppression. The aim of this study was to

  18. Volatile-mediated suppression of plant pathogens is related to soil properties and microbial community composition

    NARCIS (Netherlands)

    Agtmaal, van Maaike; Straathof, Angela L.; Termorshuizen, Aad; Lievens, Bart; Hoffland, Ellis; Boer, de Wietse

    2018-01-01

    There is increasing evidence that the soil microbial community produces a suite of volatile organic compounds that suppress plant pathogens. However, it remains unknown which soil properties and management practices influence volatile-mediated pathogen suppression. The aim of this study was to

  19. Health monitoring of plants by their emitted volatiles: A temporary increase in the concentration of nethyl salicylate after pathogen inoculation of tomato plants at greenhouse scale

    NARCIS (Netherlands)

    Jansen, R.M.C.; Hofstee, J.W.; Verstappen, F.W.A.; Bouwmeester, H.J.; Posthumus, M.A.; Henten, van E.J.

    2011-01-01

    This paper describes a method to alert growers of the presence of a pathogen infection in their greenhouse based on the detection of pathogen-induced emissions of volatile organic compounds (VOCs) from plants. Greenhouse-grown plants were inoculated with spores of a fungus to learn more about this

  20. Host-plant-mediated effects of Nadefensin on herbivore and pathogen resistance in Nicotiana attenuata

    Directory of Open Access Journals (Sweden)

    Baldwin Ian T

    2008-10-01

    Full Text Available Abstract Background The adage from Shakespeare, "troubles, not as single spies, but in battalions come," holds true for Nicotiana attenuata, which is commonly attacked by both pathogens (Pseudomonas spp. and herbivores (Manduca sexta in its native habitats. Defense responses targeted against the pathogens can directly or indirectly influence the responses against the herbivores. Nadefensin is an effective induced defense gene against the bacterial pathogen Pseudomonas syringae pv tomato (PST DC3000, which is also elicited by attack from M. sexta larvae, but whether this defense protein influences M. sexta's growth and whether M. sexta-induced Nadefensin directly or indirectly influences PST DC3000 resistance are unknown. Results M. sexta larvae consumed less on WT and on Nadefensin-silenced N. attenuata plants that had previously been infected with PST DC3000 than on uninfected plants. WT plants infected with PST DC3000 showed enhanced resistance to PST DC3000 and decreased leaf consumption by M. sexta larvae, but larval mass gain was unaffected. PST DC3000-infected Nadefensin-silenced plants were less resistant to subsequent PST DC3000 challenge, and on these plants, M. sexta larvae consumed less and gained less mass. WT and Nadefensin-silenced plants previously damaged by M. sexta larvae were better able to resist subsequent PST DC3000 challenges than were undamaged plants. Conclusion These results demonstrate that Na-defensin directly mediates defense against PST DC3000 and indirectly against M. sexta in N. attenuata. In plants that were previously infected with PST DC3000, the altered leaf chemistry in PST DC3000-resistant WT plants and PST DC3000-susceptible Nadefensin-silenced plants differentially reduced M. sexta's leaf consumption and mass gain. In plants that were previously damaged by M. sexta, the combined effect of the altered host plant chemistry and a broad spectrum of anti-herbivore induced metabolomic responses was more

  1. Potential for Combined Biocontrol Activity against Fungal Fish and Plant Pathogens by Bacterial Isolates from a Model Aquaponic System

    Directory of Open Access Journals (Sweden)

    Ivaylo Sirakov

    2016-11-01

    Full Text Available One of the main challenges in aquaponics is disease control. One possible solution for this is biological control with organisms exerting inhibitory effects on fish and plant pathogens. The aim of this study was to examine the potential of isolating microorganisms that exert an inhibitory effect on both plant and fish pathogens from an established aquaponic system. We obtained 924 isolates on selective King’s B agar and 101 isolates on MRS agar from different compartments of a model aquaponic system and tested them for antagonism against the plant pathogen Pythium ultimum and fish pathogen Saprolegnia parasitica. Overall, 42 isolates were able to inhibit both fungi. Although not yet tested in vivo, these findings open new options for the implementation of biological control of diseases in aquaponics, where plants and fish are cultivated in the same water recirculating system.

  2. O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.

    Science.gov (United States)

    Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline

    2015-12-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Epidemiology of Botrytis spotting on gerbera and rose flowers grown under glass

    NARCIS (Netherlands)

    Kerssies, A.

    1994-01-01

    Experiments described in this thesis were performed to improve the knowledge on the epidemiology of Botrytis cinerea in glasshouses, with gerbera and rose as model systems. B. cinerea is an airborne fungus, with conidia as the most important

  4. The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi

    NARCIS (Netherlands)

    Bolton, M.D.; Thomma, B.P.H.J.

    2008-01-01

    Plant pathogens secrete effector molecules that contribute to the establishment of disease in their plant hosts. The identification of cellular cues that regulate effector gene expression is an important aspect of understanding the infection process. Nutritional status in the cell has been

  5. Influent pathogenic bacteria may go straight into effluent in full scale wastewater treatment plants

    DEFF Research Database (Denmark)

    Kristensen, Jannie Munk; Nierychlo, Marta; Albertsen, Mads

    , it is assumed that the bacteria present in the effluent comprise primarily of those bacteria that thrive/grow in the plants. However, standard techniques for detecting bacteria in the effluent, particularly pathogens, are based on culture-dependent methods, which may give erroneous results by underestimating...... flocs. Some of these are known as pathogens. One of these was from the genus Arcobacter (Campylobacteraceae) and it included one particularly abundant OTU found in both influent and effluent in all 14 investigated WWTPs. This single Arcobacter OTU accounted for up to 14% of all bacteria found......Incoming microorganisms to wastewater treatment plants (WWTPs) are usually considered to be adsorbed onto the activated sludge flocs, consumed by protozoan or to just die off. Analyses of the effluent generally show a very high degree of reduction of pathogens supporting this assumption. Thus...

  6. Antifungal potential of marine sponge extract against plant and fish pathogenic fungi

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Ravichandran, S.; Ribeiro, M.; Ciavatta, M.L.

    scope for rediscovering compounds with antimicrobial activity. This study screens extracts (Diethyl Ether and Butanol) of a marine red-Sea sponge Negombata magnifica for invitro fungicidal activity against 10 plant and 3 fish pathogens. Fungicidal...

  7. The Impact of Recombination Hotspots on Genome Evolution of a Fungal Plant Pathogen.

    Science.gov (United States)

    Croll, Daniel; Lendenmann, Mark H; Stewart, Ethan; McDonald, Bruce A

    2015-11-01

    Recombination has an impact on genome evolution by maintaining chromosomal integrity, affecting the efficacy of selection, and increasing genetic variability in populations. Recombination rates are a key determinant of the coevolutionary dynamics between hosts and their pathogens. Historic recombination events created devastating new pathogens, but the impact of ongoing recombination in sexual pathogens is poorly understood. Many fungal pathogens of plants undergo regular sexual cycles, and sex is considered to be a major factor contributing to virulence. We generated a recombination map at kilobase-scale resolution for the haploid plant pathogenic fungus Zymoseptoria tritici. To account for intraspecific variation in recombination rates, we constructed genetic maps from two independent crosses. We localized a total of 10,287 crossover events in 441 progeny and found that recombination rates were highly heterogeneous within and among chromosomes. Recombination rates on large chromosomes were inversely correlated with chromosome length. Short accessory chromosomes often lacked evidence for crossovers between parental chromosomes. Recombination was concentrated in narrow hotspots that were preferentially located close to telomeres. Hotspots were only partially conserved between the two crosses, suggesting that hotspots are short-lived and may vary according to genomic background. Genes located in hotspot regions were enriched in genes encoding secreted proteins. Population resequencing showed that chromosomal regions with high recombination rates were strongly correlated with regions of low linkage disequilibrium. Hence, genes in pathogen recombination hotspots are likely to evolve faster in natural populations and may represent a greater threat to the host. Copyright © 2015 by the Genetics Society of America.

  8. Beheersing en bestrijding van Botrytis cinerea en van Penicillium in Euphorbia fulgens

    NARCIS (Netherlands)

    Wubben, J.P.; Hazendonk, A.; Bosker, I.; Slootweg, C.; Hoope, ten M.

    2002-01-01

    De bloeiwijze van Euphorbia fulgens kent twee belangrijke schimmelbelagers, die problemen in de teelt veroorzaken: Botrytis cinerea en Penicillium. B. cinerea geeft schade in de vorm van smet of pokken, die op de bloemblaadjes verschijnen. Dit zijn kleine donkerbruine/zwarte plekjes van ongeveer 1

  9. Tools to kill: Genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina

    Directory of Open Access Journals (Sweden)

    Islam Md

    2012-09-01

    Full Text Available Abstract Background Macrophomina phaseolina is one of the most destructive necrotrophic fungal pathogens that infect more than 500 plant species throughout the world. It can grow rapidly in infected plants and subsequently produces a large amount of sclerotia that plugs the vessels, resulting in wilting of the plant. Results We sequenced and assembled ~49 Mb into 15 super-scaffolds covering 92.83% of the M. phaseolina genome. We predict 14,249 open reading frames (ORFs of which 9,934 are validated by the transcriptome. This phytopathogen has an abundance of secreted oxidases, peroxidases, and hydrolytic enzymes for degrading cell wall polysaccharides and lignocelluloses to penetrate into the host tissue. To overcome the host plant defense response, M. phaseolina encodes a significant number of P450s, MFS type membrane transporters, glycosidases, transposases, and secondary metabolites in comparison to all sequenced ascomycete species. A strikingly distinct set of carbohydrate esterases (CE are present in M. phaseolina, with the CE9 and CE10 families remarkably higher than any other fungi. The phenotypic microarray data indicates that M. phaseolina can adapt to a wide range of osmotic and pH environments. As a broad host range pathogen, M. phaseolina possesses a large number of pathogen-host interaction genes including those for adhesion, signal transduction, cell wall breakdown, purine biosynthesis, and potent mycotoxin patulin. Conclusions The M. phaseolina genome provides a framework of the infection process at the cytological and molecular level which uses a diverse arsenal of enzymatic and toxin tools to destroy the host plants. Further understanding of the M. phaseolina genome-based plant-pathogen interactions will be instrumental in designing rational strategies for disease control, essential to ensuring global agricultural crop production and security.

  10. Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina.

    Science.gov (United States)

    Islam, Md Shahidul; Haque, Md Samiul; Islam, Mohammad Moinul; Emdad, Emdadul Mannan; Halim, Abdul; Hossen, Quazi Md Mosaddeque; Hossain, Md Zakir; Ahmed, Borhan; Rahim, Sifatur; Rahman, Md Sharifur; Alam, Md Monjurul; Hou, Shaobin; Wan, Xuehua; Saito, Jennifer A; Alam, Maqsudul

    2012-09-19

    Macrophomina phaseolina is one of the most destructive necrotrophic fungal pathogens that infect more than 500 plant species throughout the world. It can grow rapidly in infected plants and subsequently produces a large amount of sclerotia that plugs the vessels, resulting in wilting of the plant. We sequenced and assembled ~49 Mb into 15 super-scaffolds covering 92.83% of the M. phaseolina genome. We predict 14,249 open reading frames (ORFs) of which 9,934 are validated by the transcriptome. This phytopathogen has an abundance of secreted oxidases, peroxidases, and hydrolytic enzymes for degrading cell wall polysaccharides and lignocelluloses to penetrate into the host tissue. To overcome the host plant defense response, M. phaseolina encodes a significant number of P450s, MFS type membrane transporters, glycosidases, transposases, and secondary metabolites in comparison to all sequenced ascomycete species. A strikingly distinct set of carbohydrate esterases (CE) are present in M. phaseolina, with the CE9 and CE10 families remarkably higher than any other fungi. The phenotypic microarray data indicates that M. phaseolina can adapt to a wide range of osmotic and pH environments. As a broad host range pathogen, M. phaseolina possesses a large number of pathogen-host interaction genes including those for adhesion, signal transduction, cell wall breakdown, purine biosynthesis, and potent mycotoxin patulin. The M. phaseolina genome provides a framework of the infection process at the cytological and molecular level which uses a diverse arsenal of enzymatic and toxin tools to destroy the host plants. Further understanding of the M. phaseolina genome-based plant-pathogen interactions will be instrumental in designing rational strategies for disease control, essential to ensuring global agricultural crop production and security.

  11. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci

    Science.gov (United States)

    Members of Gram-positive Actinobacteria cause economically important diseases to plants. Within the Rhodococcus genus, some members can cause growth deformities and persist as pathogens on a wide range of host plants. The current model predicts that phytopathogenic isolates require a cluster of thre...

  12. Method for increasing the resistance of a plant or a part thereof to a pathogen, method for screening the resistance of a plant or part thereof to a pathogen, and use thereof

    NARCIS (Netherlands)

    Wit, de P.; Stergiopoulos, I.; Kema, G.H.J.

    2011-01-01

    (EN)The present invention relates to the field of plant biotechnology. More in particular, the present invention relates to methods for increasing the resistance of a plant or part thereof that is susceptible to infection with a pathogen comprising an ortholog of the Avr4 protein of Cladosporium

  13. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum

    Directory of Open Access Journals (Sweden)

    Miguel Angel eSalas-Marina

    2015-02-01

    Full Text Available Fungi belonging to the genus Trichoderma, commonly found in soil or colonizing plant roots, exert beneficial effects on plants, including the promotion of growth and the induction of resistance to disease. T. virens and T. atroviride secrete the proteins Sm1 and Epl1, respectively, which elicit local and systemic disease resistance in plants. In this work, we show that these fungi promote growth in tomato (Solanum lycopersicum plants. T. virens was more effective than T. atroviride in promoting biomass gain, and both fungi were capable of inducing systemic protection in tomato against Alternaria solani, Botrytis cinerea, and Pseudomonas syringae pv. tomato (Pst DC3000. Deletion (KO of epl1 in T. atroviride resulted in diminished systemic protection against A. solani and B. cinerea, whereas the T. virens sm1 KO strain was less effective in protecting tomato against Pst DC3000 and B. cinerea. Importantly, over-expression (OE of epl1 and sm1 led to an increase in disease resistance against all tested pathogens. Although the Trichoderma WT strains induced both systemic acquired resistance (SAR- and induced systemic resistance (ISR-related genes in tomato, inoculation of plants with OE and KO strains revealed that Epl1 and Sm1 play a minor role in the induction of these genes. However, we found that Epl1 and Sm1 induce the expression of a peroxidase and an α-dioxygenase encoding genes, respectively, which could be important for tomato protection by Trichoderma spp. Altogether, these observations indicate that colonization by beneficial and/or infection by pathogenic microorganisms dictates many of the outcomes in plants, which are more complex than previously thought.

  14. Antibiosis functions during interactions of Trichoderma afroharzianum and Trichoderma gamsii with plant pathogenic Rhizoctonia and Pythium.

    Science.gov (United States)

    Zhang, Xinjian; Harvey, Paul R; Stummer, Belinda E; Warren, Rosemary A; Zhang, Guangzhi; Guo, Kai; Li, Jishun; Yang, Hetong

    2015-09-01

    Trichoderma afroharzianum is one of the best characterized Trichoderma species, and strains have been utilized as plant disease suppressive inoculants. In contrast, Trichoderma gamsii has only recently been described, and there is limited knowledge of its disease suppressive efficacies. Comparative studies of changes in gene expression during interactions of these species with their target plant pathogens will provide fundamental information on pathogen antibiosis functions. In the present study, we used complementary DNA amplified fragment length polymorphism (cDNA-AFLP) analysis to investigate changes in transcript profiling of T. afroharzianum strain LTR-2 and T. gamsii strain Tk7a during in vitro interactions with plant pathogenic Rhizoctonia solani and Pythium irregulare. Considerable differences were resolved in the overall expression profiles of strains LTR-2 and Tk7a when challenged with either plant pathogen. In strain LTR-2, previously reported mycoparasitism-related genes such as chitinase, polyketide synthase, and non-ribosomal peptide synthetase were found to be differentially expressed. This was not so for strain Tk7a, with the only previously reported antibiosis-associated genes being small secreted cysteine-rich proteins. Although only one differentially expressed gene was common to both strains LTR-2 and Tk7a, numerous genes reportedly associated with pathogen antibiosis processes were differentially expressed in both strains, including degradative enzymes and membrane transport proteins. A number of novel potential antibiosis-related transcripts were found from strains LTR-2 and Tk7a and remain to be identified. The expression kinetics of 20 Trichoderma (10 from strain LTR-2, 10 from strain Tk7a) transcript-derived fragments (TDFs) were quantified by quantitative reverse transcription PCR (RT-qPCR) at pre- and post-mycelia contact stages of Trichoderma-prey interactions, thereby confirming differential gene expression. Collectively, this research

  15. Specific recognition of fungal pathogens by plants

    International Nuclear Information System (INIS)

    Knogge, W.; Gierlich, A.; Max-Planck-Institute for Plant Breeding,; Van't Slot, K.A.E.; Papavoine, T.

    2001-01-01

    Full text: Induction of plant defence reactions and, hence, genotype-specific disease resistance results from the interaction of highly specific plant resistance (R) genes with matching pathogen avirulence (Avr) genes (gene-for-gene interactions). More than thirty R genes acting against different types of pathogens (viruses, bacteria, fungi, oomycetes, nematodes) have been isolated from various plants species. However, with few exceptions it remains to be shown how their products recognise the complementary Avr gene products. To date, Avr genes and their products have been characterised from only three fungal species. These include the NIP1 gene from Rhynchosporium secalis, the causal agent of barley leaf scald. It encodes a small, secreted protein, NIP1, that triggers defence reactions exclusively in barley cultivars expressing the R gene Rrs1. NIP1 also non-specifically stimulates the H + -ATPase activity in barley plasma membranes, suggesting that the host recognition system targets a putative fungal virulence factor. Virulent fungal strains lack the gene or carry an allele encoding a non-functional product. Four NIP1 iso-forms have been characterised; NIP1-I and NIP1-II although both elicitor-active display different levels of activity, whereas the isoforms NIP1-III and NIP1-IV are inactive. After establishing a heterologous expression system, the single amino acids specifying NIP1-III and NIP1-IV were integrated into the NIP1-I sequence and yielded the inactive mutant proteins NIP1-III* and NIP1-IV*. The elicitor-inactive isoforms were also unable to stimulate the H + -ATPase, suggesting that both functions of NIP1 are mediated by a single plant receptor. The 3D structure of NIP1-I has been elucidated by 1 H- and 15 N-NMR spectroscopy. Binding studies using 125 I-NIP1-I revealed a single class of high-affinity binding sites on membranes from both Rrs1- and rrs1-cultivars, suggesting that NIP1-binding is not sufficient for defence triggering and that an

  16. Genetic Diversity of Some Tunisian Botrytis cinerea Isolates Using Molecular Markers

    Directory of Open Access Journals (Sweden)

    D. ben Ahmed

    2005-12-01

    Full Text Available The genetic diversity of Botrytis cinerea in Tunisia was studied using molecular markers, and the level of resistance to the fungicide fenhexamid was shown. Isolates from different plants (grape, tomato, cucumber, onion, strawberry, gerbera and rose and different parts of the country were analysed in order to determine whether the two groups, transposa and vacuma, that were detected in French vineyards, are also present in Tunisia. A combined PCR and Dot Blot method was developed to identify the transposable elements Boty and Flipper that distinguish between these two B. cinerea groups. Both the transposa and vacuma groups, and isolates containing the transposable element Boty, were found in Tunisia. Moreover, analysis of the Bc-hch locus by PCR and restriction enzyme digestion identified only the B. cinerea group corresponding to one allelic type. Finally, by using the level of resistance shown by B. cinerea to the fungicide fenhexamid as a marker, it was confirmed that this was the only group of B. cinerea in the Tunisian population.

  17. Approaches to understanding the impact of life-history features on plant-pathogen co-evolutionary dynamics

    Science.gov (United States)

    Jeremy J. Burdon; Peter H. Thrall; Adnane Nemri

    2012-01-01

    Natural plant-pathogen associations are complex interactions in which the interplay of environment, host, and pathogen factors results in spatially heterogeneous ecological and epidemiological dynamics. The evolutionary patterns that result from the interaction of these factors are still relatively poorly understood. Recently, integration of the appropriate spatial and...

  18. Genetic analisys of a cross of gaillon (Brassica oleracea var. alboglabra with cauliflower (B.oleracea var. botrytis

    Directory of Open Access Journals (Sweden)

    Vanessa B.M.G. Spini

    2000-03-01

    Full Text Available The cauliflower (Brassica oleracea var. botrytis is an annual vegetable cultivated in Southern and Southwestern Brazil with limited production in the Northeast and Centralwest. A variety of Chinese kale, "kaai laan" or "gaillon" (Brassica oleracea var. alboglabra, produces seeds at high temperatures and therefore can do so in North and Northeastern Brazil. Gaillon and cauliflower were crossed 55 times using 10 gaillon plants as mothers and 4 cauliflower plants as pollen donors. From these crosses, in the F2 generation, 612 plants with inflorescence like gaillon and 48 plants with inflorescence like cauliflower were obtained, in a proportion similar to 15:1, implying that 2 pairs of genes entered into formation of the cauliflower inflorescence type. In order to study flower color, 339 plants were analyzed: 274 presented white flowers and 65, yellow flowers, denoting that this caracter is determined by 1 pair of genes, white being dominant over yellow; white flowers had a slighly higher adaptive value in our population. The characteristic waxy leaf showed a proportion of 3 waxy plants for 1 not waxy, indicating the action of one pair of genes.A couve-flor (Brassica oleracea var. botrytis é um vegetal anual e tem seu cultivo no Brasil limitado às regiões Sul e Sudeste, com pequena produção no Nordeste e Centro-Oeste. Uma variedade de couve da China, "kaai laan" ou "gaillon" (Brassica oleracea var. alboglabra, produz sementes em altas temperaturas e, portanto, é apta a produzir sementes no Norte e Nordeste do Brasil. Gaillon e couve-flor foram cruzados. Foram feitos 55 cruzamentos usando 10 plantas de gaillon como mãe e 4 plantas de couve-flor como doadores de pólen. Desses cruzamentos, na geração F2, 612 plantas com inflorescência tipo gaillon e 48 plantas com inflorescência tipo couve-flor foram obtidas, em proporção similar a 15:1, demonstrando que 2 pares de genes estão envolvidos na formação da inflorescência em couve

  19. Isolation and Selection of Epiphytic Yeast for Biocontrol of Botrytis cinerea Pers. on Table Grapes Aislación y Selección de Levaduras Epífitas para el Biocontrol de Botrytis cinerea Pers. en Uva de Mesa

    Directory of Open Access Journals (Sweden)

    Marisol Vargas

    2012-09-01

    Full Text Available Botrytis cinerea Pers., the causal agent of gray mold, infects more than 200 plant species. This pathogen has traditionally been controlled by fungicides. However, with the increasing demand for pesticide-free foods new control strategies are needed. The objective of this study was to isolate and select grapevine (Vitis vinifera L. epiphytic yeasts for the biocontrol of B. cinerea in table grapes. Of the total isolated yeasts (n = 256, 32 exhibited mycelial growth inhibition in dual cultures with a halo > 4 mm, and eight of these isolates inhibited > 90% of conidial germination. When evaluating increasing concentrations on conidial germination inhibition, a dose-dependent response was observed with EC90 values from 0.45 x 10(5 to 0.22 x 10(8 cells mL-1. The antagonistic activity of six yeasts against B. cinerea in table grape berries 'Flame Seedless' increased as the yeast colonization time increased from 1 to 24 h on the berries, resulting in a higher biocontrol activity on B. cinerea. These results show the effectiveness of grapevine epiphytic yeasts as biocontrol agents of B. cinerea on table grapes.Botrytis cinerea Pers., agente causal de la pudrición gris, infecta a más de 200 especies vegetales. Tradicionalmente, este patógeno ha sido controlado con fungicidas; sin embargo, la creciente demanda de alimentos libres de pesticidas hace necesario el uso de nuevas estrategias de control. El objetivo de este estudio fue aislar y seleccionar levaduras epífitas de vid (Vitis vinifera L. para el biocontrol de B. cinerea en uva de mesa. Del total de levaduras aisladas (n = 256, 32 presentaron inhibición del crecimiento micelial, en cultivos duales, con un halo > 4 mm y ocho de estos aislamientos inhibieron la germinación de conidias > 90%. Al evaluar concentraciones crecientes de levaduras sobre la inhibición de la germinación de conidias, se observó una respuesta dosis-dependiente, con valores de CE90 de 0,45 x 10(5 a 0,22 x 10(8 c

  20. Antifungal activity of aloe vera gel against plant pathogenic fungi

    International Nuclear Information System (INIS)

    Sitara, U.; Hassan, N.; Naseem, J.

    2011-01-01

    Aloe vera gel extracted from the Aloe vera leaves was evaluated for their antifungal activity at the rate of 0.15%, 0.25% and 0.35% concentration against five plants pathogenic fungi viz., Aspergillus niger, Aspergillus flavus, Alternaria alternata, Drechslera hawaiensis and Penicillum digitatum 0.35% concentration Aloe vera gel completely inhibited the growth of Drechslera hawaiensis and Alternaria alternata. (author)

  1. Disease induction by human microbial pathogens in plant-model systems: potential, problems and prospects.

    Science.gov (United States)

    van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J

    2007-02-01

    Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.

  2. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action

    Directory of Open Access Journals (Sweden)

    Aviva eGafni

    2015-03-01

    Full Text Available Epiphytic yeasts, which colonize plant surfaces, may possess activity that can be harnessed to help plants defend themselves against various pathogens. Due to their unique characteristics, epiphytic yeasts belonging to the genus Pseudozyma hold great potential for use as biocontrol agents. We identified a unique, biologically active isolate of the epiphytic yeast Pseudozyma aphidis that is capable of inhibiting Botrytis cinerea via a dual mode of action, namely induced resistance and antibiosis. Here, we show that strain L12 of P. aphidis can reduce the severity of powdery mildew caused by Podosphaera xanthii on cucumber plants with an efficacy of 75%. Confocal and scanning electron microscopy analyses demonstrated P. aphidis proliferation on infected tissue and its production of long hyphae that parasitize the powdery mildew hyphae and spores as an ectoparasite. We also show that crude extract of P. aphidis metabolites can inhibit P. xanthii spore germination in planta. Our results suggest that in addition to its antibiosis mode of action, P. aphidis may also act as an ectoparasite on P. xanthii. These results indicate that P. aphidis strain L12 has the potential to control powdery mildew.

  3. Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action.

    Science.gov (United States)

    Gafni, Aviva; Calderon, Claudia E; Harris, Raviv; Buxdorf, Kobi; Dafa-Berger, Avis; Zeilinger-Reichert, Einat; Levy, Maggie

    2015-01-01

    Epiphytic yeasts, which colonize plant surfaces, may possess activity that can be harnessed to help plants defend themselves against various pathogens. Due to their unique characteristics, epiphytic yeasts belonging to the genus Pseudozyma hold great potential for use as biocontrol agents. We identified a unique, biologically active isolate of the epiphytic yeast Pseudozyma aphidis that is capable of inhibiting Botrytis cinerea via a dual mode of action, namely induced resistance and antibiosis. Here, we show that strain L12 of P. aphidis can reduce the severity of powdery mildew caused by Podosphaera xanthii on cucumber plants with an efficacy of 75%. Confocal and scanning electron microscopy analyses demonstrated P. aphidis proliferation on infected tissue and its production of long hyphae that parasitize the powdery mildew hyphae and spores as an ectoparasite. We also show that crude extract of P. aphidis metabolites can inhibit P. xanthii spore germination in planta. Our results suggest that in addition to its antibiosis as mode of action, P. aphidis may also act as an ectoparasite on P. xanthii. These results indicate that P. aphidis strain L12 has the potential to control powdery mildew.

  4. Activity of the pterophyllins 2 and 4 against postharvest fruit pathogenic fungi. Comparison with a synthetic analog and related intermediates.

    Science.gov (United States)

    Pergomet, Jorgelina L; Di Liberto, Melina G; Derita, Marcos G; Bracca, Andrea B J; Kaufman, Teodoro S

    2018-03-01

    The antifungal activity of pterophyllin 2, pterophyllin 4, a 5-desmethyl analog of the latter and some of their synthetic intermediates, against three postharvest phytopathogenic fungi, was evaluated. The target fungi were Rhizopus stolonifer, Botrytis cinerea and Monilinia fructicola, which affect fruits worldwide, causing important economic losses. The tests were carried out with imazalil and carbendazim as positive controls. Minimum inhibitory concentrations and minimum fungicidal concentrations were determined, and the morphology of the colonies was examined microscopically. In liquid medium, it was found that pterophyllin 4 exhibited selective fungicidal activity toward M. fructicola, whereas its congener pterophyllin 2 proved to be less potent and not selective and the 5-desmethyl analog of pterophyllin 4 displayed a different activity profile. Morphological changes were observed in the colonies exposed to pterophyllin 4. The results highlighted the importance of small structural features for the antifungal behavior and also suggested that, in Nature, the pterophyllins may act as plant defenses against pathogens. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Identifying and naming plant-pathogenic fungi: past, present, and future.

    Science.gov (United States)

    Crous, Pedro W; Hawksworth, David L; Wingfield, Michael J

    2015-01-01

    Scientific names are crucial in communicating knowledge about fungi. In plant pathology, they link information regarding the biology, host range, distribution, and potential risk. Our understanding of fungal biodiversity and fungal systematics has undergone an exponential leap, incorporating genomics, web-based systems, and DNA data for rapid identification to link species to metadata. The impact of our ability to recognize hitherto unknown organisms on plant pathology and trade is enormous and continues to grow. Major challenges for phytomycology are intertwined with the Genera of Fungi project, which adds DNA barcodes to known biodiversity and corrects the application of old, established names via epi- or neotypification. Implementing the one fungus-one name system and linking names to validated type specimens, cultures, and reference sequences will provide the foundation on which the future of plant pathology and the communication of names of plant pathogens will rest.

  6. Communication between filamentous pathogens and plants at the biotrophic interface.

    Science.gov (United States)

    Yi, Mihwa; Valent, Barbara

    2013-01-01

    Fungi and oomycetes that colonize living plant tissue form extensive interfaces with plant cells in which the cytoplasm of the microorganism is closely aligned with the host cytoplasm for an extended distance. In all cases, specialized biotrophic hyphae function to hijack host cellular processes across an interfacial zone consisting of a hyphal plasma membrane, a specialized interfacial matrix, and a plant-derived membrane. The interface is the site of active secretion by both players. This cross talk at the interface determines the winner in adversarial relationships and establishes the partnership in mutualistic relationships. Fungi and oomycetes secrete many specialized effector proteins for controlling the host, and they can stimulate remarkable cellular reorganization even in distant plant cells. Breakthroughs in live-cell imaging of fungal and oomycete encounter sites, including live-cell imaging of pathogens secreting fluorescently labeled effector proteins, have led to recent progress in understanding communication across the interface.

  7. Defence reactions of plants to fungal pathogens: principles and perspectives, using powdery mildew on cereals as an example

    Science.gov (United States)

    Heitefuss, Rudolf

    2001-06-01

    Diseases of crop plants may lead to considerable yield losses. To control fungal diseases, fungicides are used extensively in present-day agricultural production. In order to reduce such external inputs, cultivars with natural resistance to important fungal pathogens are recommended in systems of integrated plant protection. Basic research, including genetics and molecular methods, is required to elucidate the mechanisms by which plants react to an attack by fungal pathogens and successfully defend themselves. This review examines our knowledge with respect to the multicomponent systems of resistance in plants, using powdery mildew on barley as an example. In addition, the question is adressed whether systemic acquired resistance and plants with transgenic resistance may be utilized in future plant protection strategies.

  8. Corruption of host seven-transmembrane proteins by pathogenic microbes: a common theme in animals and plants?

    Science.gov (United States)

    Panstruga, Ralph; Schulze-Lefert, Paul

    2003-04-01

    Human diseases like AIDS, malaria, and pneumonia are caused by pathogens that corrupt host chemokine G-protein coupled receptors for molecular docking. Comparatively, little is known about plant host factors that are required for pathogenesis and that may serve as receptors for the entry of pathogenic microbes. Here, we review potential analogies between human chemokine receptors and the plant seven-transmembrane MLO protein, a candidate serving a dual role as docking molecule and defence modulator for the phytopathogenic powdery mildew fungus.

  9. Investigating the Antimicrobial Bioactivity of Cyano bacterial Extracts on Some Plant and Human Pathogens

    International Nuclear Information System (INIS)

    El-Semary, N.A.; Osman, M.E.; Ahmed, A.S.; Botros, H.W.; Farag, A.T.

    2014-01-01

    The search for broad spectrum antimicrobial agents against microbial pathogens, as the available bioactive compounds, has decreasing efficacy and the multidrug resistance trait is spreading among pathogens. Accordingly, the study was carried out to investigate the antimicrobial bioactivity of extracts derived from a cyano bacterial strain from Egypt. The solvents used were diethyl ether, chloroform and methanol. The antimicrobial bioassay of the lipophilic fraction dissolved in diethyl ether of Synechococcus spp. (isolated from Wadi El-Natroun, Egypt) showed the highest broad spectrum bioactivity as it inhibited the growth of both plant and human pathogens. The extract was also effective on the filamentous plant pathogenic fungi Aspergillus flavus and Aspergillus niger. The effects of incubation periods, growth media and pH values on both growth and antimicrobial activity of Synechococcus spp. were investigated. Chu medium was the medium that gave the highest growth followed by BG11 medium then Oscillatoria medium and all these three media showed antibacterial activities but only BG11 showed both antibacterial and antifungal activities after 18 days of incubation. The pH value 10 proved to be the best for growth and antimicrobial activities of Synechococcus spp. in BG11 medium

  10. Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing.

    Science.gov (United States)

    Ye, Lin; Zhang, Tong

    2011-09-01

    This study applied 454 high-throughput pyrosequencing to analyze potentially pathogenic bacteria in activated sludge from 14 municipal wastewater treatment plants (WWTPs) across four countries (China, U.S., Canada, and Singapore), plus the influent and effluent of one of the 14 WWTPs. A total of 370,870 16S rRNA gene sequences with average length of 207 bps were obtained and all of them were assigned to corresponding taxonomic ranks by using RDP classifier and MEGAN. It was found that the most abundant potentially pathogenic bacteria in the WWTPs were affiliated with the genera of Aeromonas and Clostridium. Aeromonas veronii, Aeromonas hydrophila, and Clostridium perfringens were species most similar to the potentially pathogenic bacteria found in this study. Some sequences highly similar (>99%) to Corynebacterium diphtheriae were found in the influent and activated sludge samples from a saline WWTP. Overall, the percentage of the sequences closely related (>99%) to known pathogenic bacteria sequences was about 0.16% of the total sequences. Additionally, a platform-independent Java application (BAND) was developed for graphical visualization of the data of microbial abundance generated by high-throughput pyrosequencing. The approach demonstrated in this study could examine most of the potentially pathogenic bacteria simultaneously instead of one-by-one detection by other methods.

  11. Ulocladium atrum 385: Een veelbelovende kandidaat voor de biologische bestrijding van Botrytis cinerea

    NARCIS (Netherlands)

    Köhl, J.; Molhoek, W.M.L.

    2002-01-01

    De schimmel Ulocladium atrum is geselecteerd als een antagonist van Botrytis cinerea. De ecologische eigenschappen van deze antagonist en de toepassingen op bovengrondse plantendelen worden in dit artikel beschreven. Gegevens bij de bijgaande figuren: 1) Effect van Ucladium atrum op de grauwe

  12. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens.

    Science.gov (United States)

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-12-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service - Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data - the number of known hosts and the phylogenetic distance between known hosts and other species of interest - can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation.

  13. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens

    Science.gov (United States)

    Gilbert, Gregory S; Magarey, Roger; Suiter, Karl; Webb, Campbell O

    2012-01-01

    Assessing risk from a novel pest or pathogen requires knowing which local plant species are susceptible. Empirical data on the local host range of novel pests are usually lacking, but we know that some pests are more likely to attack closely related plant species than species separated by greater evolutionary distance. We use the Global Pest and Disease Database, an internal database maintained by the United States Department of Agriculture Animal and Plant Health Inspection Service – Plant Protection and Quarantine Division (USDA APHIS-PPQ), to evaluate the strength of the phylogenetic signal in host range for nine major groups of plant pests and pathogens. Eight of nine groups showed significant phylogenetic signal in host range. Additionally, pests and pathogens with more known hosts attacked a phylogenetically broader range of hosts. This suggests that easily obtained data – the number of known hosts and the phylogenetic distance between known hosts and other species of interest – can be used to predict which plant species are likely to be susceptible to a particular pest. This can facilitate rapid assessment of risk from novel pests and pathogens when empirical host range data are not yet available and guide efficient collection of empirical data for risk evaluation. PMID:23346231

  14. The pathogenicity of Beauveria bassiana: what happens after an endophytic phase in plants?

    Science.gov (United States)

    Akello, J; Dubois, T; Coyne, D; Kyamanywa, S

    2010-01-01

    The banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) is a serious constraint to banana (Musa spp.) production throughout the world. The entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreales) offers a potential weevil management option, but conventional delivery mechanisms have limited its success. As an endophyte, however, B. bassiana can be efficiently delivered to banana planting materials for the potential management of C. sordidus. However, entomopathogens can change morphology and efficacy against their target host when successively sub-cultured on artificial media or when exposed to certain physical and chemical environmental conditions. Whether such changes occur in B. bassiana after an endophytic phase inside a banana plant remains unknown. The primary aim of our study was to evaluate the viability, growth, sporulation and pathogenicity of endophytic B. bassiana. To attain this, two sets of experiments, namely morphological characterization and larval bioassays, were conducted under laboratory conditions. In these experiments, growth and pathogenicity of the wild-type B. bassiana strain G41, obtained originally from banana farms, was compared with the endophytic B. bassiana strain G41, re-isolated from the rhizome of B. bassiana-inoculated banana plants at one month post-inoculation. Morphological characterization, conidial germination, colony growth and sporulation rate was assessed on SDAY media while pathogenicity was determined 15 days after immersing the larvae of C. sordidus in different conidial doses. No differences were observed in colony appearance and growth rate between the endophytic and wild-type strain. Percentage conidial germination for the endophytic strain (91.4-94.0%) was higher than for the wild-type (86.6-89.7%). LD50 equated 1.76 x 10(5) and 0.71 x 10(5) conidia/ml for the wild-type and endophytic B. bassiana strains, respectively, but did not differ between strains. Our study

  15. Дрожжи в борьбе с возбудителем заболевания серая гниль Botrytis cinerea

    OpenAIRE

    Храбрых, О.; Барайщук, Г.; Kollar, Andreas; Jelkmann, Wilhelm

    2007-01-01

    Серая гниль наиболее распространенное и вредоносное заболевание, вызываемое грибом Botrytis cinerea.The ability of yeasts to inhibit the growth and development of the fungus Botrytis cinerea causes grey mould was detected in vitro during co-culturing the micro organisms on agar plates and in liquid conditions. The radial growth of the pathogen was inhibited in the presence of many tested yeasts on agar plates. In liquid, Aureobasidium pullulans, Cryptococcus laurentii, Candida sake, Hansenias...

  16. Antibody array in a multiwell plate format for the sensitive and multiplexed detection of important plant pathogens.

    Science.gov (United States)

    Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Gajanandana, Oraprapai; Elliott, Christopher T; Karoonuthaisiri, Nitsara

    2014-07-15

    The global seed market is considered to be an important industry with a total value of $10,543 million US dollars in 2012. Because plant pathogens such as bacteria and viruses cause a significant economic loss to both producers and exporters, the seed export industry urgently requires rapid, sensitive, and inexpensive testing for the pathogens to prevent disease spreading worldwide. This study developed an antibody array in a multiwell plate format to simultaneously detect four crucial plant pathogens, namely, a bacterial fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), Chilli veinal mottle virus (ChiVMV, potyvirus), Watermelon silver mottle virus (WSMoV, tospovirus serogroup IV), and Melon yellow spot virus (MYSV, tospovirus). The capture antibodies specific to the pathogens were immobilized on each well at preassigned positions by an automatic microarrayer. The antibodies on the arrays specifically captured the corresponding pathogens present in the sample extracts. The presence of pathogens bound on the capture antibodies was subsequently detected by a cocktail of fluorescently conjugated secondary antibodies. The limits of detection of the developed antibody array for the detection of Aac, ChiVMV, WSMoV, and MYSV were 5 × 10(5) CFU/mL, 30 ng/mL, 1000 ng/mL, and 160 ng/mL, respectively, which were very similar to those of the conventional ELISA method. The antibody array in a multiwell plate format accurately detected plant pathogens in single and multiple detections. Moreover, this format enables easy handling of the assay at a higher speed of operation.

  17. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent.

    Science.gov (United States)

    Elad, Yigal; David, Dalia Rav; Harel, Yael Meller; Borenshtein, Menahem; Kalifa, Hananel Ben; Silber, Avner; Graber, Ellen R

    2010-09-01

    Biochar is the solid coproduct of biomass pyrolysis, a technique used for carbon-negative production of second-generation biofuels. The biochar can be applied as a soil amendment, where it permanently sequesters carbon from the atmosphere as well as improves soil tilth, nutrient retention, and crop productivity. In addition to its other benefits in soil, we found that soil-applied biochar induces systemic resistance to the foliar fungal pathogens Botrytis cinerea (gray mold) and Leveillula taurica (powdery mildew) on pepper and tomato and to the broad mite pest (Polyphagotarsonemus latus Banks) on pepper. Levels of 1 to 5% biochar in a soil and a coconut fiber-tuff potting medium were found to be significantly effective at suppressing both diseases in leaves of different ages. In long-term tests (105 days), pepper powdery mildew was significantly less severe in the biochar-treated plants than in the plants from the unamended controls although, during the final 25 days, the rate of disease development in the treatments and controls was similar. Possible biochar-related elicitors of systemic induced resistance are discussed.

  18. Effectiveness of control strategies against Botrytis cinerea in vineyard and evaluation of the residual fungicide concentrations.

    Science.gov (United States)

    Gabriolotto, Chiara; Monchiero, Matteo; Negre, Michele; Spadaro, Davide; Gullino, Maria Lodovica

    2009-05-01

    This investigation was undertaken to test different control strategies against Botrytis cinerea vineyards. Two commercial vineyards, "Barbera" and "Moscato," located in Piedmont (Northern Italy) were divided into seven plots and treated with different combinations of fungicides including fenhexamid, pyrimethanil, fludioxonil + cyprodinil, iprodione, and boscalid, a new carboxamide compound. An integrated strategy including a chemical (pyrimethanil) and a biocontrol agent (Trichoderma spp. t2/4ph1) was also included. At harvest, the percentage of bunches and berries attacked by B. cinerea and the concentration of the chemical fungicides were determined. All the pesticide residues at harvest were below the maximum residue level (MRL), except when two applications of pyrimethanil per season were applied. Boscalid was the most effective active ingredient against B. cinerea among the tested chemicals. When boscalid application was followed by a treatment with pyrimethanil, its efficacy was similar to that shown by two treatments of pyrimethanil. However, this second strategy was not feasible due to the risks of resistance development in the pathogen and to the residue accumulation as indicated by the analysis.

  19. Detection of sdhB Gene Mutations in SDHI-Resistant Isolates of Botrytis cinerea Using High Resolution Melting (HRM) Analysis.

    Science.gov (United States)

    Samaras, Anastasios; Madesis, Panagiotis; Karaoglanidis, George S

    2016-01-01

    Botrytis cinerea , is a high risk pathogen for fungicide resistance development. Pathogen' resistance to SDHIs is associated with several mutations in sdh gene. The diversity of mutations and their differential effect on cross-resistance patterns among SDHIs and the fitness of resistant strains necessitate the availability of a tool for their rapid identification. This study was initiated to develop and validate a high-resolution melting (HRM) analysis for the identification of P225H/F/L//T, N230I, and H272L/R/Y mutations. Based on the sequence of sdh B subunit of resistant and sensitive isolates, a universal primer pair was designed. The specificity of the HRM analysis primers was verified to ensure against the cross-reaction with other fungal species and its sensitivity was evaluated using concentrations of known amounts of mutant's DNA. The melting curve analysis generated nine distinct curve profiles, enabling the discrimination of all the four mutations located at codon 225, the N230I mutation, the three mutations located in codon 272, and the non-mutated isolates (isolates of wild-type sensitivity). Similar results were obtained when DNA was extracted directly from artificially inoculated strawberry fruit. The method was validated by monitoring the presence of sdh B mutations in samples of naturally infected strawberry fruits and stone fruit rootstock seedling plants showing damping-off symptoms. HRM analysis data were compared with a standard PIRA-PCR technique and an absolute agreement was observed suggesting that in both populations the H272R mutation was the predominant one, while H272Y, N230I, and P225H were detected in lower frequencies. The results of the study suggest that HRM analysis can be a useful tool for sensate, accurate, and rapid identification of several sdh B mutations in B. cinerea and it is expected to contribute in routine fungicide resistance monitoring or assessments of the effectiveness of anti-resistance strategies implemented in

  20. Detection of sdhB gene mutations in SDHI-resistant isolates of Botrytis cinerea using high resolution melting (HRM analysis

    Directory of Open Access Journals (Sweden)

    Anastasios Samaras

    2016-11-01

    Full Text Available Botrytis cinerea, is a high-risk pathogen for fungicide resistance development. Pathogen` resistance to SDHIs is associated with several mutations in sdh gene. The diversity of mutations and their differential effect on cross-resistance patterns among SDHIs and the fitness of resistant strains necessitate the availability of a tool for their rapid identification. This study was initiated to develop and validate a high-resolution melting (HRM analysis for the identification of P225H/F/L//T, N230I and H272L/R/Y mutations. Based on the sequence of sdhB subunit of resistant and sensitive isolates, a universal primer pair was designed. The specificity of the HRM analysis primers was verified to ensure against the cross-reaction with other fungal species and its sensitivity was evaluated using concentrations of known amounts of mutant`s DNA. The melting curve analysis generated nine distinct curve profiles, enabling the discrimination of all the 4 mutations located at codon 225, the N230I mutation, the 3 mutations located in codon 272 and the non mutated isolates (isolates of wild type sensitivity. Similar results were obtained when DNA was extracted directly from artificially inoculated strawberry fruit. The method was validated by monitoring the presence of sdhB mutations in samples of naturally infected strawberry fruits and stone fruit rootstock seedling plants showing damping off symptoms. HRM analysis data were compared with a standard PIRA-PCR technique and an absolute agreement was observed suggesting that in both populations the H272R mutation was the predominant one, while H272Y, N230I and P225H were detected in lower frequencies. The results of the study suggest that HRM analysis can be a useful tool for sensate, accurate and rapid identification of several sdhB mutations in B. cinerea and it is expected to contribute in routine fungicide resistance monitoring or assessments of the effectiveness of antiresistance strategies implemented in

  1. Simultaneous Silencing of Xylanase Genes in Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Néstor García

    2017-12-01

    Full Text Available The endo-β-1,4-xylanase BcXyn11A is one of several plant cell-wall degrading enzymes that the phytopathogenic fungus Botrytis cinerea secretes during interaction with its hosts. In addition to its enzymatic activity, this protein also acts as an elicitor of the defense response in plants and has been identified as a virulence factor. In the present work, other four endoxylanase coding genes (Bcxyn11B, Bcxyn11C, Bcxyn10A, and Bcxyn10B were identified in the B. cinerea genome and the expression of all five genes was analyzed by Q-RT- PCR in vitro and in planta. A cross-regulation between xylanase genes was identified analyzing their expression pattern in the ΔBcxyn11A mutant strain and a putative BcXyn11A-dependt induction of Bcxyn10B gene was found. In addition, multiple knockdown strains were obtained for the five endoxylanase genes by transformation of B. cinerea with a chimeric DNA construct composed of 50-nt sequences from the target genes. The silencing of each xylanase gene was analyzed in axenic cultures and during infection and the results showed that the efficiency of the multiple silencing depends on the growth conditions and on the cross-regulation between them. Although the simultaneous silencing of the five genes was observed by Q-RT-PCR when the silenced strains were grown on medium supplemented with tomato extract, the endoxylanase activity measured in the supernatants was reduced only by 40%. Unexpectedly, the silenced strains overexpressed the Bcxyn11A and Bcxyn11C genes during the infection of tomato leaves, making difficult the analysis of the role of the endo-β-1,4-xylanases in the virulence of the fungus.

  2. The agricultural use of water treatment plant sludge: pathogens and antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Ignacio Nadal Rocamora

    2015-12-01

    Full Text Available The use of water treatment plant sludge to restore degraded soils is customary agricultural practice, but it could be dangerous from the point of view of both health and the environment. A transient increase of either pathogenic or indicator microbial populations, whose persistence in time is variable and attributed to the characteristics of the soil (types of materials in the soil, any amendments (origin and treatments it has undergone or the weather (humidity and temperature mainly, has often been detected in soils treated with this kind of waste. Given their origin, water treatment plant sludges could lead to the transmission of a pathogens and b antibiotic-resistant microorganisms to human beings through the food chain and cause the spreading of antibiotic resistances as a result of their increase and persistence in the soil for variable periods of time. However, Spanish legislation regulating the use of sludges in the farming industry is based on a very restricted microbiological criterion. Thus, we believe better parameters should be established to appropriately inform of the state of health of soils treated with water treatment plant sludge, including aspects which are not presently assessed such as antibiotic resistance.

  3. Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens

    NARCIS (Netherlands)

    Klosterman, S.J.; Subbarao, K.V.; Kang, S.; Veronese, P.; Gold, S.E.; Thomma, B.P.H.J.; Chen, Z.J.; Henrissat, B.; Lee, Y.H.; Park, J.; Garcia-Pedrajas, M.D.; Barbara, D.J.; Anchieta, A.; Jonge, de R.; Santhanam, P.; Maruthachalam, K.; Atallah, Z.; Amyotte, S.G.; Paz, Z.; Inderbitzin, P.; Hayes, R.J.; Heiman, D.I.; Young, S.; Zeng, Q.; Engels, R.; Galagan, J.; Cuomo, C.; Dobinson, K.F.; Ma, L.J.

    2011-01-01

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in

  4. Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions.

    Science.gov (United States)

    Bellés, José M; Garro, Rafael; Pallás, Vicente; Fayos, Joaquín; Rodrigo, Ismael; Conejero, Vicente

    2006-02-01

    In the present work we have studied the accumulation of gentisic acid (2,5-dihydroxybenzoic acid, a metabolic derivative of salicylic acid, SA) in the plant-pathogen systems, Cucumis sativus and Gynura aurantiaca, infected with either prunus necrotic ringspot virus (PNRSV) or the exocortis viroid (CEVd), respectively. Both pathogens produced systemic infections and accumulated large amounts of the intermediary signal molecule gentisic acid as ascertained by electrospray ionization mass spectrometry (ESI-MS) coupled on line with high performance liquid chromatography (HPLC). The compound was found mostly in a conjugated (beta-glucoside) form. Gentisic acid has also been found to accumulate (although at lower levels) in cucumber inoculated with low doses of Pseudomonas syringae pv. tomato, producing a nonnecrotic reaction. In contrast, when cucumber was inoculated with high doses of this pathogen, a hypersensitive reaction occurred, but no gentisic-acid signal was induced. This is consistent with our results supporting the idea that gentisic-acid signaling may be restricted to nonnecrotizing reactions of the host plant (Bellés et al. in Mol Plant-Microbe Interact 12:227-235, 1999). In cucumber and Gynura plants, the activity of gentisic acid as inducing signal was different to that of SA, thus confirming the data found for tomato. Exogenously supplied gentisic acid was able to induce peroxidase activity in both Gynura and cucumber plants in a similar way as SA or pathogens. However, gentisic-acid treatments strongly induced polyphenol oxidase activity in cucumber, whereas pathogen infection or SA treatment resulted in a lower induction of this enzyme. Nevertheless, gentisic acid did not induce other defensive proteins which are induced by SA in these plants. This indicates that gentisic acid could act as an additional signal to SA for the activation of plant defenses in cucumber and Gynura plants.

  5. Molecular Profiling of the Phytophthora plurivora Secretome: A Step towards Understanding the Cross-Talk between Plant Pathogenic Oomycetes and Their Hosts

    Science.gov (United States)

    Fleischmann, Frank; Dalio, Ronaldo J. D.; Di Maro, Antimo; Scognamiglio, Monica; Fiorentino, Antonio; Parente, Augusto; Osswald, Wolfgang; Chambery, Angela

    2014-01-01

    The understanding of molecular mechanisms underlying host–pathogen interactions in plant diseases is of crucial importance to gain insights on different virulence strategies of pathogens and unravel their role in plant immunity. Among plant pathogens, Phytophthora species are eliciting a growing interest for their considerable economical and environmental impact. Plant infection by Phytophthora phytopathogens is a complex process coordinated by a plethora of extracellular signals secreted by both host plants and pathogens. The characterization of the repertoire of effectors secreted by oomycetes has become an active area of research for deciphering molecular mechanisms responsible for host plants colonization and infection. Putative secreted proteins by Phytophthora species have been catalogued by applying high-throughput genome-based strategies and bioinformatic approaches. However, a comprehensive analysis of the effective secretome profile of Phytophthora is still lacking. Here, we report the first large-scale profiling of P. plurivora secretome using a shotgun LC-MS/MS strategy. To gain insight on the molecular signals underlying the cross-talk between plant pathogenic oomycetes and their host plants, we also investigate the quantitative changes of secreted protein following interaction of P. plurivora with the root exudate of Fagus sylvatica which is highly susceptible to the root pathogen. We show that besides known effectors, the expression and/or secretion levels of cell-wall-degrading enzymes were altered following the interaction with the host plant root exudate. In addition, a characterization of the F. sylvatica root exudate was performed by NMR and amino acid analysis, allowing the identification of the main released low-molecular weight components, including organic acids and free amino acids. This study provides important insights for deciphering the extracellular network involved in the highly susceptible P. plurivora-F. sylvatica interaction

  6. Effect of essential oil of Origanum rotundifolium on some plant pathogenic bacteria, seed germination and plant growth of tomato

    Science.gov (United States)

    Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan

    2016-04-01

    The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.

  7. Repression of fungal plant pathogens and fungal-related contaminants: Selected ecosystem services by soil fauna communities in agroecosystems

    Science.gov (United States)

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Brunotte, Joachim; Weinert, Joachim

    2017-04-01

    In agroecosystems soil-borne fungal plant diseases are major yield-limiting factors which are difficult to control. Fungal plant pathogens, like Fusarium species, survive as a saprophyte in infected tissue like crop residues and endanger the health of the following crop by increasing the infection risk for specific plant diseases. In infected plant organs, these pathogens are able to produce mycotoxins. Mycotoxins like deoxynivalenol (DON) persist during storage, are heat resistant and of major concern for human and animal health after consumption of contaminated food and feed, respectively. Among fungivorous soil organisms, there are representatives of the soil fauna which are obviously antagonistic to a Fusarium infection and the contamination with mycotoxins. Specific members of the soil macro-, meso-, and microfauna provide a wide range of ecosystem services including the stimulation of decomposition processes which may result in the regulation of plant pathogens and the degradation of environmental contaminants. Investigations under laboratory conditions and in field were conducted to assess the functional linkage between soil faunal communities and plant pathogenic fungi (Fusarium culmorum). The aim was to examine if Fusarium biomass and the content of its mycotoxin DON decrease substantially in the presence of soil fauna (earthworms: Lumbricus terrestris, collembolans: Folsomia candida and nematodes: Aphelenchoides saprophilus) in a commercial cropping system managed with conservation tillage located in Northern Germany. The results of our investigations pointed out that the degradation performance of the introduced soil fauna must be considered as an important contribution to the biodegradation of fungal plant diseases and fungal-related contaminants. Different size classes within functional groups and the traits of keystone species appear to be significant for soil function and the provision of ecosystem services as in particular L. terrestris revealed to

  8. Effects of neolignans from the stem bark of Magnolia obovata on plant pathogenic fungi.

    Science.gov (United States)

    Choi, N H; Choi, G J; Min, B-S; Jang, K S; Choi, Y H; Kang, M S; Park, M S; Choi, J E; Bae, B K; Kim, J-C

    2009-06-01

    To characterize antifungal principles from the methanol extract of Magnolia obovata and to evaluate their antifungal activities against various plant pathogenic fungi. Four neolignans were isolated from stem bark of M. obovata as antifungal principles and identified as magnolol, honokiol, 4-methoxyhonokiol and obovatol. In mycelial growth inhibition assay, both magnolol and honokiol displayed more potent antifungal activity than 4-methoxyhonokiol and obovatol. Both magnolol and honokiol showed similar in vivo antifungal spectrum against seven plant diseases tested; both compounds effectively suppressed the development of rice blast, tomato late blight, wheat leaf rust and red pepper anthracnose. 4-Methoxyhonokiol and obovatol were highly active to only rice blast and wheat leaf rust respectively. The extract of M. obovata and four neolignans had potent in vivo antifungal activities against plant pathogenic fungi. Neolignans from Magnolia spp. can be used and suggested as a novel antifungal lead compound for the development of new fungicide and directly as a natural fungicide for the control of plant diseases such as rice blast and wheat leaf rust.

  9. Eficiência de Trichoderma harzianum e Gliocladium viride na redução da incidência de Botrytis cinerea em tomateiro cultivado sob ambiente protegido Efficiency of Trichoderma harzianum and Gliocladium viride in decreasing the incidence of Botrytis cinerea in tomato cultivated in protected environment

    Directory of Open Access Journals (Sweden)

    Bruno Brito Lisboa

    2007-10-01

    Full Text Available A produção de tomates no Estado do RS ocupa um importante papel sócio-econômico, que pode ser constatado pelo crescimento do cultivo dessa hortaliça em ambiente protegido. Essa técnica permite a produção de tomates em período de entressafra; no entanto, ocorrem também condições favoráveis para o desenvolvimento de doenças fúngicas como o mofo cinzento provocado por Botrytis cinerea. O surgimento de raças de patógenos resistentes a fungicidas químicos vem fazendo com que o controle biológico torne-se uma alternativa necessária. Neste trabalho foi realizada seleção in vitro de 24 isolados do fungo Trichoderma harzianum e 12 de Gliocladium viride que inibiram o desenvolvimento do patógeno B. cinerea. Foram selecionados dois isolados (TRIC-30 e GLIO-10 para serem testados em experimentos em condições de campo com tomates cultivados sob ambiente protegido, nos quais a pulverização foliar semanal com uma suspensão com 2x10(7 conídios mL-1 reduziu significativamente a incidência do mofo cinzento, enquanto a aplicação dos antagonistas nas sementes, no substrato e na cova, no momento do plantio, não reduziu a incidência do patógeno.The production of tomato in the State of Rio Grande do Sul performs an important economical and social role that can be evidenced by the increase in cultivation of this vegetable in protected environment. This practice allows the production of tomato during the off-season periods. However, it can also promote favorable conditions to the development of gray mold caused by Botrytis cinerea, and the arising of pathogen races resistant to fungicides is turning biological control into a necessary alternative. In the present work, an in vitro selection among 24 isolates of the fungus Trichoderma harzianum and 12 of Gliocladium viride that inhibited the development of the pathogen B. cinerea was carried out. Two isolates (TRIC-30 e GLIO-10 were selected to be tested in an experiment in field

  10. The effect of chitosan on limitation of growth and development of some pathogenic fungi for ornamental plants

    Directory of Open Access Journals (Sweden)

    Alicja Saniewska

    2013-12-01

    Full Text Available The inhibitory effect of crab-shell chitosan, medium (200-800 cps and high molecular weight ( 800-2000 cps (purchased from Sigma-Aldrich Chemicals toward Alternaria alternata, Botrytis tulipae, Fiisarium oxysporum f. sp. callistephi, Fusarium oxysporum f. sp. tulipae, Phoma narcissi and Phoma poolensis was evaluated in vitro and in vivo. The chitosan evidently inhibited in vitro growth of all tested pathogens, with a marked effect at higher concentrations above 200 μg/cm3. Chitosan at a concentration of 1,25; 2,5 and 5,0 mg/cm3 didn't have inhibitory action in appearance of fungi growth on naturally contaminated Callistephus chinensis seeds. At the same concentrations, chitosan applied as bulb scales dressing of Hymenocallis narcissiflora bulbs, before inoculation or after inoculation with Phoma narcissi, inhibited the development of necrotic spots on scales. Chitosan used preventively or curatively at a concentrations of 1,25; 2,5 and 5,0 mg/cm3 indicated inhibitory effect on development of Fusarium oxysporum f. sp. tulipae on tulip bulbs. Chitosan at a concentration of 10 mg/cm3 applied preventively (first spray 12th June was very effective in the control of Puccinia antirrhini on snapdragon in the field. The strongest inhibitory effect was observed on snapdragon treated 8 times at week intervals.

  11. (Cucumis melo L.) cultivars to soil-borne plant pathogenic fungi in Iran

    African Journals Online (AJOL)

    ajl11

    2012-10-30

    Oct 30, 2012 ... Melon is an important dessert fruit in the Sistan region of. Iran, but its cultivation is threatened by attacks of. Macrophomina phaseolina (Tassi), Monosporascus cannonballus (Pollack and Uecker) and Rhizoctonia solani (Kuhn) (Safarnezhad, 2004). Melon death induced by these soil-borne plant pathogenic ...

  12. Functional and structural comparison of pyrrolnitrin- and iprodione-induced modifications in the class III histidine-kinase Bos1 of Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Sabine Fillinger

    Full Text Available Dicarboximides and phenylpyrroles are commonly used fungicides against plant pathogenic ascomycetes. Although their effect on fungal osmosensing systems has been shown in many studies, their modes-of-action still remain unclear. Laboratory- or field-mutants of fungi resistant to either or both fungicide categories generally harbour point mutations in the sensor histidine kinase of the osmotic signal transduction cascade.In the present study we compared the mechanisms of resistance to the dicarboximide iprodione and to pyrrolnitrin, a structural analogue of phenylpyrrole fungicides, in Botrytis cinerea. Pyrrolnitrin-induced mutants and iprodione-induced mutants of B. cinerea were produced in vitro. For the pyrrolnitrin-induced mutants, a high level of resistance to pyrrolnitrin was associated with a high level of resistance to iprodione. For the iprodione-induced mutants, the high level of resistance to iprodione generated variable levels of resistance to pyrrolnitrin and phenylpyrroles. All selected mutants showed hypersensitivity to high osmolarity and regardless of their resistance levels to phenylpyrroles, they showed strongly reduced fitness parameters (sporulation, mycelial growth, aggressiveness on plants compared to the parental phenotypes. Most of the mutants presented modifications in the osmosensing class III histidine kinase affecting the HAMP domains. Site directed mutagenesis of the bos1 gene was applied to validate eight of the identified mutations. Structure modelling of the HAMP domains revealed that the replacements of hydrophobic residues within the HAMP domains generally affected their helical structure, probably abolishing signal transduction. Comparing mutant phenotypes to the HAMP structures, our study suggests that mutations perturbing helical structures of HAMP2-4 abolish signal-transduction leading to loss-of-function phenotype. The mutation of residues E529, M427, and T581, without consequences on HAMP structure

  13. Botrytis californica, a new cryptic species in the B. cinerea species complex causing gray mold in blueberries and table grapes.

    Science.gov (United States)

    Saito, S; Margosan, D; Michailides, T J; Xiao, C L

    2016-01-01

    The Botrytis cinerea species complex comprises two cryptic species, originally referred to Group I and Group II based on Bc-hch gene RFLP haplotyping. Group I was described as a new cryptic species B. pseudocinerea During a survey of Botrytis spp. causing gray mold in blueberries and table grapes in the Central Valley of California, six isolates, three from blueberries and three from table grapes, were placed in Group I but had a distinct morphological character with conidiophores significantly longer than those of B. cinerea and B. pseudocinerea We compared these with B. cinerea and B. pseudocinerea by examining morphological and physiological characters, sensitivity to fenhexamid and phylogenetic analysis inferred from sequences of three nuclear genes. Phylogenetic analysis with the three partial gene sequences encoding glyceraldehyde-3-phosate dehydrogenase (G3PDH), heat-shock protein 60 (HSP60) and DNA-dependent RNA polymerase subunit II (RPB2) supported the proposal of a new Botrytis species, B. californica, which is closely related genetically to B. cinerea, B. pseudocinerea and B. sinoviticola, all known as causal agents of gray mold of grapes. Botrytis californica caused decay on blueberry and table grape fruit inoculated with the fungus. This study suggests that B. californica is a cryptic species sympatric with B. cinerea on blueberries and table grapes in California. © 2016 by The Mycological Society of America.

  14. Grey mould development in greenhouse tomatoes under drip and furrow irrigation

    OpenAIRE

    Aissat , Kamel; Nicot , Philippe ,; Guechi , Abdelhadi; Bardin , Marc; Chibane , Mohamed

    2008-01-01

    Several methods can be used to provide water to plants in cropping systems where irrigation is necessary. For instance, drip irrigation has recently received much attention due to its advantages for water conservation. The type of irrigation can also impact the development of several pathogens responsible for soilborne diseases. Here, we studied the effect of drip irrigation and furrow irrigation on the development of grey mould, caused by the airborne fungus Botrytis cinerea, on tomato plant...

  15. A nitrogen response pathway regulates virulence in plant pathogenic fungi: role of TOR and the bZIP protein MeaB.

    Science.gov (United States)

    López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio

    2010-12-01

    Virulence in plant pathogenic fungi is controlled through a variety of cellular pathways in response to the host environment. Nitrogen limitation has been proposed to act as a key signal to trigger the in planta expression of virulence genes. Moreover, a conserved Pathogenicity mitogen activated protein kinase (MAPK) cascade is strictly required for plant infection in a wide range of pathogens. We investigated the relationship between nitrogen signaling and the Pathogenicity MAPK cascade in controlling infectious growth of the vascular wilt fungus Fusarium oxysporum. Several MAPK-activated virulence functions such as invasive growth, vegetative hyphal fusion and host adhesion were strongly repressed in the presence of the preferred nitrogen source ammonium. Repression of these functions by ammonium was abolished by L-Methionine sulfoximine (MSX) or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR (Target Of Rapamycin), respectively, and was dependent on the bZIP protein MeaB. Supplying tomato plants with ammonium rather than nitrate resulted in a significant delay of vascular wilt symptoms caused by the F. oxysporum wild type strain, but not by the ΔmeaB mutant. Ammonium also repressed invasive growth in two other pathogens, the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. Our results suggest the presence of a conserved nitrogen-responsive pathway that operates via TOR and MeaB to control infectious growth in plant pathogenic fungi.

  16. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora.

    Science.gov (United States)

    Cellini, Antonio; Buriani, Giampaolo; Rocchi, Lorenzo; Rondelli, Elena; Savioli, Stefano; Rodriguez Estrada, Maria T; Cristescu, Simona M; Costa, Guglielmo; Spinelli, Francesco

    2018-01-01

    Volatile organic compounds emitted during the infection of apple (Malus pumila var. domestica) plants by Erwinia amylovora or Pseudomonas syringae pv. syringae were studied by gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry, and used to treat uninfected plants. Infected plants showed a disease-specific emission of volatile organic compounds, including several bio-active compounds, such as hexenal isomers and 2,3-butanediol. Leaf growth promotion and a higher resistance to the pathogen, expressed as a lower bacterial growth and migration in plant tissues, were detected in plants exposed to volatile compounds from E. amylovora-infected plants. Transcriptional analysis revealed the activation of salicylic acid synthesis and signal transduction in healthy plants exposed to volatiles produced by E. amylovora-infected neighbour plants. In contrast, in the same plants, salicylic acid-dependent responses were repressed after infection, whereas oxylipin metabolism was activated. These results clarify some metabolic and ecological aspects of the pathogenic adaptation of E. amylovora to its host. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  17. Changes in mycelial structure of Botrytis cinerea induced by removal of the glucan matrix

    Directory of Open Access Journals (Sweden)

    Nurit Bar-Nun

    2007-09-01

    Significance and impact of study: These changes following glucanase treatment would lead to a fungal mycelium which will be more sensitive to antifungal agents and might suggest ways of combating Botrytis infections by preventing the formation of the extra-cellular matrix.

  18. ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Caroline S Moffat

    Full Text Available The ethylene response factor (ERF family in Arabidopsis thaliana comprises 122 members in 12 groups, yet the biological functions of the majority remain unknown. Of the group IX ERFs, the IXc subgroup has been studied the most, and includes ERF1, ERF14 and ORA59, which play roles in plant innate immunity. Here we investigate the biological functions of two members of the less studied IXb subgroup: ERF5 and ERF6. In order to identify potential targets of these transcription factors, microarray analyses were performed on plants constitutively expressing either ERF5 or ERF6. Expression of defense genes, JA/Et-responsive genes and genes containing the GCC box promoter motif were significantly upregulated in both ERF5 and ERF6 transgenic plants, suggesting that ERF5 and ERF6 may act as positive regulators of JA-mediated defense and potentially overlap in their function. Since defense against necrotrophic pathogens is generally mediated through JA/Et-signalling, resistance against the fungal necrotroph Botrytis cinerea was examined. Constitutive expression of ERF5 or ERF6 resulted in significantly increased resistance. Although no significant difference in susceptibility to B. cinerea was observed in either erf5 or erf6 mutants, the erf5 erf6 double mutant showed a significant increase in susceptibility, which was likely due to compromised JA-mediated gene expression, since JA-induced gene expression was reduced in the double mutant. Taken together these data suggest that ERF5 and ERF6 play positive but redundant roles in defense against B. cinerea. Since mutual antagonism between JA/Et and salicylic acid (SA signalling is well known, the UV-C inducibility of an SA-inducible gene, PR-1, was examined. Reduced inducibilty in both ERF5 and ERF6 constitutive overexepressors was consistent with suppression of SA-mediated signalling, as was an increased susceptibility to avirulent Pseudomonas syringae. These data suggest that ERF5 and ERF6 may also play a

  19. A comparative genome analysis of Cercospora sojina with other members of the pathogen genus Mycosphaerella on different plant hosts

    Directory of Open Access Journals (Sweden)

    Fanchang Zeng

    2017-09-01

    Full Text Available Fungi are the causal agents of many of the world's most serious plant diseases causing disastrous consequences for large-scale agricultural production. Pathogenicity genomic basis is complex in fungi as multicellular eukaryotic pathogens. Here, we report the genome sequence of C. sojina, and comparative genome analysis with plant pathogen members of the genus Mycosphaerella (Zymoseptoria. tritici (synonyms M. graminicola, M. pini, M. populorum and M. fijiensis - pathogens of wheat, pine, poplar and banana, respectively. Synteny or collinearity was limited between genomes of major Mycosphaerella pathogens. Comparative analysis with these related pathogen genomes indicated distinct genome-wide repeat organization features. It suggests repetitive elements might be responsible for considerable evolutionary genomic changes. These results reveal the background of genomic differences and similarities between Dothideomycete species. Wide diversity as well as conservation on genome features forms the potential genomic basis of the pathogen specialization, such as pathogenicity to woody vs. herbaceous hosts. Through comparative genome analysis among five Dothideomycete species, our results have shed light on the genome features of these related fungi species. It provides insight for understanding the genomic basis of fungal pathogenicity and disease resistance in the crop hosts.

  20. Insecticidal activity and fungitoxicity of plant extracts and components of horseradish (Armoracia rusticana) and garlic (Allium sativum).

    Science.gov (United States)

    Tedeschi, Paola; Leis, Marilena; Pezzi, Marco; Civolani, Stefano; Maietti, Annalisa; Brandolini, Vincenzo

    2011-01-01

    To avoid environmental pollution and health problems caused by the use of traditional synthetic pesticides, there is a trend to search for naturally occurring toxicants from plants. Among the compounds discussed for anti-fungal and insecticidal activity, the natural extracts from garlic and horseradish have attracted considerable attention. The objective of this study is to determine the insecticidal and anti-fungal activity of Armoracia rusticana and Allium sativum L. extracts against larvae of Aedes albopictus (Skuse) and some pathogenic fungi. For the insecticidal test, horseradish and garlic extracts were prepared from fresh plants (cultivated in Emilia Romagna region) in a solution of ethanol 80 % and the two different solutions were used at different concentrations (for the determination of the lethal dose) against the fourth instar mosquito's larvae. The fungicidal test was carried out by the agar plates technique using garlic and horseradish extracts in a 10 % ethanol solution against the following organisms: Sclerotium rolfsii Sacc., Trichoderma longibrachiatum, Botrytis cinerea Pers., Fusarium oxysporum Schlecht. and Fusarium culmorum (Wm. G. Sm.) Sacc. The first results demonstrated that the horseradish ethanol extracts present only a fungistatic activity against Sclerotium rolfsii Sacc., Fusarium oxysporum Schlecht. and F. culmorum (Wm.G. Sm) Sacc. while garlic extracts at the same concentration provided a good fungicidal activity above all against Botrytis cinerea Pers. and S. rolfsii. A. rusticana and A. sativum preparations showed also an interesting and significant insecticidal activity against larvae of A. albopictus, even if horseradish presented a higher efficacy (LC₅₀ value of 2.34 g/L), approximately two times higher than garlic one (LC₅₀ value of 4.48 g/L).

  1. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

    NARCIS (Netherlands)

    O'Connell, R.J.; Thon, M.R.; Hacquard, S.; Amyotte, S.G.; Kleemann, J.; Torres, M.F.; Damm, U.; Buiate, E.A.; Epstein, L.; Alkan, N.; Altmuller, J.; Alvarado-Balderrama, L.; Bauser, C.A.; Becker, C.; Birren, B.W.; Chen, Z.; Choi, J.; Crouch, J.A.; Duvick, J.P.; Farman, M.A.; Gan, P.; Heiman, D.; Henrissat, B.; Howard, R.J.; Kabbage, M.; Koch, C.; Kracher, B.; Kubo, Y.; Law, A.D.; Lebrun, M.-H.; Lee, Y.-H.; Miyara, I.; Moore, N.; Neumann, U.; Nordstrom, K.; Panaccione, D.G.; Panstruga, R.; Place, M.; Proctor, R.H.; Prusky, D.; Rech, G.; Reinhardt, R.; Rollins, J.A.; Rounsley, S.; Schardl, C.L.; Schwartz, D.C.; Shenoy, N.; Shirasu, K.; Sikhakolli, U.R.; Stuber, K.; Sukno, S.A.; Sweigard, J.A.; Takano, Y.; Takahara, H.; Trail, F.; Does, H.C.; Voll, L.M.; Will, I.; Young, S.; Zeng, Q.; Zhang, Jingze; Zhou, S.; Dickman, M.B.; Schulze-Lefert, P.; Verloren van Themaat, E.; Ma, L.-J.; Vaillancourt, L.J.

    2012-01-01

    Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and

  2. CRN13 candidate effectors from plant and animal eukaryotic pathogens are DNA-binding proteins which trigger host DNA damage response.

    Science.gov (United States)

    Ramirez-Garcés, Diana; Camborde, Laurent; Pel, Michiel J C; Jauneau, Alain; Martinez, Yves; Néant, Isabelle; Leclerc, Catherine; Moreau, Marc; Dumas, Bernard; Gaulin, Elodie

    2016-04-01

    To successfully colonize their host, pathogens produce effectors that can interfere with host cellular processes. Here we investigated the function of CRN13 candidate effectors produced by plant pathogenic oomycetes and detected in the genome of the amphibian pathogenic chytrid fungus Batrachochytrium dendrobatidis (BdCRN13). When expressed in Nicotiana, AeCRN13, from the legume root pathogen Aphanomyces euteiches, increases the susceptibility of the leaves to the oomycete Phytophthora capsici. When transiently expressed in amphibians or plant cells, AeCRN13 and BdCRN13 localize to the cell nuclei, triggering aberrant cell development and eventually causing cell death. Using Förster resonance energy transfer experiments in plant cells, we showed that both CRN13s interact with nuclear DNA and trigger plant DNA damage response (DDR). Mutating key amino acid residues in a predicted HNH-like endonuclease motif abolished the interaction of AeCRN13 with DNA, the induction of DDR and the enhancement of Nicotiana susceptibility to P. capsici. Finally, H2AX phosphorylation, a marker of DNA damage, and enhanced expression of genes involved in the DDR were observed in A. euteiches-infected Medicago truncatula roots. These results show that CRN13 from plant and animal eukaryotic pathogens promotes host susceptibility by targeting nuclear DNA and inducing DDR. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Functional Properties of a Cysteine Proteinase from Pineapple Fruit with Improved Resistance to Fungal Pathogens in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-02-01

    Full Text Available In plant cells, many cysteine proteinases (CPs are synthesized as precursors in the endoplasmic reticulum, and then are subject to post-translational modifications to form the active mature proteinases. They participate in various cellular and physiological functions. Here, AcCP2, a CP from pineapple fruit (Ananas comosus L. belonging to the C1A subfamily is analyzed based on the molecular modeling and homology alignment. Transcripts of AcCP2 can be detected in the different parts of fruits (particularly outer sarcocarps, and gradually increased during fruit development until maturity. To analyze the substrate specificity of AcCP2, the recombinant protein was overexpressed and purified from Pichia pastoris. The precursor of purified AcCP2 can be processed to a 25 kDa active form after acid treatment (pH 4.3. Its optimum proteolytic activity to Bz-Phe-Val-Arg-NH-Mec is at neutral pH. In addition, the overexpression of AcCP2 gene in Arabidopsis thaliana can improve the resistance to fungal pathogen of Botrytis cinerea. These data indicate that AcCP2 is a multifunctional proteinase, and its expression could cause fruit developmental characteristics of pineapple and resistance responses in transgenic Arabidopsis plants.

  4. Solidago canadensis L. Essential Oil Vapor Effectively Inhibits Botrytis cinerea Growth and Preserves Postharvest Quality of Strawberry as a Food Model System.

    Science.gov (United States)

    Liu, Shumin; Shao, Xingfeng; Wei, Yanzhen; Li, Yonghua; Xu, Feng; Wang, Hongfei

    2016-01-01

    This study investigated the anti-fungal properties of Solidago canadensis L. essential oil (SCLEO) against Botrytis cinerea in vitro, and its ability to control gray mold and maintain quality in strawberry fruits. SCLEO exhibited dose-dependent antifungal activity against B. cinerea and profoundly altered mycelial morphology, cellular ultrastructure, and membrane permeability as evaluated by scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. SCLEO vapor at 0.1 mL/L maintained higher sensory acceptance and reduced decay of fresh strawberry fruit, and also reduced gray mold in artificially inoculated fruit. SCLEO treatment did not, however, stimulate phenylalanin ammonia-lyase, polyphenol oxidase, or chitinase, enzymes related to disease resistance. This suggests that SCLEO reduces gray mold by direct inhibition of pathogen growth. SCLEO vapor may provide a new and effective strategy for controlling postharvest disease and maintaining quality in strawberries.

  5. Different Proteomics of Ca2+ on SA-induced Resistance to Botrytis cinerea in Tomato

    Directory of Open Access Journals (Sweden)

    Linlin Li

    2016-05-01

    Full Text Available This study aims to comprehensively study the effects of Ca2+ on the SA-induced resistance Botrytis cinerea in tomato through proteomics analysis. A proteomic approach was used to uncover the inducible proteins of tomato in the susceptible tomato cultivars ‘L402’ against Botrytis cinerea after salicylic acid (SA and a combination treatment of CaCl2 and SA. The results showed that the use of combination treatment of CaCl2 and SA significantly enhanced tomato resistance against Botrytis cinerea. In total, 46 differentially expressed protein spots from 2-DE gel maps were detected, of which 41 were identified by mass spectrometry. All the identified proteins were categorized into eight groups according to their putative functions: defense response (14.00%, antioxidative protein (9.75%, photosynthesis (24.39%, molecular chaperone (4.88%, energy (17.01%, metabolism (21.95%, protein synthesis (4.88% and signal transduction (0.2%. Of the proteins in the eight function groups, the effect of stress/defense and reactive oxygen species on Ca2+-regulated SA-induced resistance may be the most important one in induced resistance by RT-PCR. The expression level of pathogenesis-related proteins (PRs and chitinase was upregulated by a combination treatment of CaCl2 and SA. The characterization of these proteins greatly helped to reveal the induced proteins involved in the regulation of Ca2+ on SA-induced resistance to Botrytis cinerea. In the combination treatment of CaCl2 and SA, the defense response and antioxidative protein were clearly upregulated much more than SA alone or the control treatment by the method of proteomics and RT-PCR. The present findings suggest that susceptible tomato cultivars treated by the combination treatment of CaCl2 and SA might possess a more sensitive SA signaling system or effective pathway than SA treatment alone. In addition, results indicated that SA could coordinate other cellular activities linked with photosynthesis and

  6. Meiosis Drives Extraordinary Genome Plasticity in the Haploid Fungal Plant Pathogen Mycosphaerella Graminicola

    Science.gov (United States)

    Meiosis in the plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs an...

  7. Deciphering the genome and secondary metabolome of the plant pathogen Fusarium culmorum

    NARCIS (Netherlands)

    Schmidt, R.L.; Durling, M.; de Jager, V.C.L.; Menezes, R. C.; Nordkvist, E.; Svatos, A.; Dubey, Mohit; Lauterbach, L.; Dikschat, J.S.; Karlsson, M.; Garbeva, P.V.

    2018-01-01

    Fusarium culmorum is one of the most important fungal plant pathogens that causes diseases on a wide diversity of cereal and non-cereal crops. We report herein for the first time the genome sequence of F. culmorum strain PV and its associated secondary metabolome that plays a role in the interaction

  8. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection

    Directory of Open Access Journals (Sweden)

    Marie-Laure Pilet-Nayel

    2017-10-01

    Full Text Available Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.

  9. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review

    Directory of Open Access Journals (Sweden)

    Mallappa Kumara Swamy

    2016-01-01

    Full Text Available A wide range of medicinal and aromatic plants (MAPs have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes.

  10. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review

    Science.gov (United States)

    2016-01-01

    A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes. PMID:28090211

  11. Multiple resistance of Botrytis cinerea from kiwifruit to SDHIs, QoIs and fungicides of other chemical groups.

    Science.gov (United States)

    Bardas, George A; Veloukas, Thomas; Koutita, Olga; Karaoglanidis, George S

    2010-09-01

    Botrytis cinerea Pers.: Fr. is a high-risk pathogen for fungicide resistance development that has caused resistance problems on many crops throughout the world. This study investigated the fungicide sensitivity profile of isolates from kiwifruits originating from three Greek locations with different fungicide use histories. Sensitivity was measured by in vitro fungitoxicity tests on artificial nutrient media. Seventy-six single-spore isolates were tested for sensitivity to the SDHI fungicide boscalid, the QoI pyraclostrobin, the anilinopyrimidine cyprodinil, the hydroxyanilide fenhexamid, the phenylpyrrole fludioxonil, the dicarboxamide iprodione and the benzimidazole carbendazim. All isolates from Thessaloniki showed resistance to both boscalid and pyraclostrobin, while in the other two locations the fungal population was sensitive to these two fungicides. Sensitive isolates showed EC(50) values to boscalid and pyraclostrobin ranging from 0.9 to 5.2 and from 0.04 to 0.14 mg L(-1) respectively, while the resistant isolates showed EC(50) values higher than 50 mg L(-1) for boscalid and from 16 to > 50 mg L(-1) for pyraclostrobin. All QoI-resistant isolates carried the G143A mutation in cytb. Sensitivity determinations to the remaining fungicides revealed in total eight resistance phenotypes. No isolates were resistant to the fungicides fenhexamid and fludioxonil. This is the first report of B. cinerea field isolates with resistance to both boscalid and pyraclostrobin, and it strongly suggests that there may be a major problem in controlling this important pathogen on kiwifruit. (c) 2010 Society of Chemical Industry.

  12. A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Ramon Wahl

    2010-02-01

    Full Text Available Plant pathogenic fungi cause massive yield losses and affect both quality and safety of food and feed produced from infected plants. The main objective of plant pathogenic fungi is to get access to the organic carbon sources of their carbon-autotrophic hosts. However, the chemical nature of the carbon source(s and the mode of uptake are largely unknown. Here, we present a novel, plasma membrane-localized sucrose transporter (Srt1 from the corn smut fungus Ustilago maydis and its characterization as a fungal virulence factor. Srt1 has an unusually high substrate affinity, is absolutely sucrose specific, and allows the direct utilization of sucrose at the plant/fungal interface without extracellular hydrolysis and, thus, without the production of extracellular monosaccharides known to elicit plant immune responses. srt1 is expressed exclusively during infection, and its deletion strongly reduces fungal virulence. This emphasizes the central role of this protein both for efficient carbon supply and for avoidance of apoplastic signals potentially recognized by the host.

  13. Mosquitocidal activity of a naturally occurring isochroman and synthetic analogs from the plant pathogenic fungus, Diaporthe eres against Aedes aegypti ( Diptera: Culicidae)

    Science.gov (United States)

    The culture filtrate of a plant pathogenic fungus that infects English ivy (Hegera helix) was investigated for mosquitocidal constituents by bioassay guided isolation. The fungus responsible for pathogenic effects on the plant Hegera helix has been identified as Diaporthe eres by molecular technique...

  14. ROS signaling and stomatal movement in plant responses to drought stress and pathogen attack.

    Science.gov (United States)

    Qi, Junsheng; Song, Chun-Peng; Wang, Baoshan; Zhou, Jianmin; Kangasjärvi, Jaakko; Zhu, Jian-Kang; Gong, Zhizhong

    2018-04-16

    Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO 2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors including water status, light, CO 2 levels and pathogen attack, as well as endogenous signals such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO 2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. This article is protected by copyright. All rights reserved.

  15. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense.

    Science.gov (United States)

    Arya, Preeti; Acharya, Vishal

    2018-02-01

    STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.

  16. Complete genome sequence of Bacillus velezensis M75, a biocontrol agent against fungal plant pathogens, isolated from cotton waste.

    Science.gov (United States)

    Kim, Sang Yoon; Lee, Sang Yeob; Weon, Hang-Yeon; Sang, Mee Kyung; Song, Jaekyeong

    2017-01-10

    Bacillus species have been widely used as biological control agents in agricultural fields due to their ability to suppress plant pathogens. Bacillus velezensis M75 was isolated from cotton waste used for mushroom cultivation in Korea, and was found to be antagonistic to fungal plant pathogens. Here, we report the complete genome sequence of the M75 strain, which has a 4,007,450-bp single circular chromosome with 3921 genes and a G+C content of 46.60%. The genome contained operons encoding various non-ribosomal peptide synthetases and polyketide synthases, which are responsible for the biosynthesis of secondary metabolites. Our results will provide a better understanding of the genome of B. velezensis strains for their application as biocontrol agents against fungal plant pathogens in agricultural fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. In vitro studies on medicinal plants used against bacterial diabetic foot ulcer (BDFU) and urinary tract infected (UTI) causing pathogens.

    Science.gov (United States)

    Subbu Lakshmi, S; Chelladurai, G; Suresh, B

    2016-09-01

    The pus samples from diabetic foot ulcer patients and urine samples from urinary tract infected patients were collected and inoculated in nutrient agar plates. The colonies showing different morphologies were streaked on selective agar plates. The antibacterial assay of selected commercial antibiotics was tested against the foot ulcer and urinary tract isolates. The result revealed that most of the organisms were found to be resistant against the antibiotics. Screening of antibacterial activity of selected plants, methanol extracts of plants were prepared and tested against foot ulcer pathogens. Among the plants used, the methanolic extract Tragia involucrata was very effective against the foot ulcer pathogens and to separate the compounds present in the methanolic extract of T. involucrata, when it was subjected to column chromatography. The fractions obtained were further checked for their antibacterial property and fraction 1 which inhibited the pathogens, were subjected to thin layer chromatography and the structure of the particular phytochemical compound was elucidated by NMR study. The spices were tested for their antibacterial property against the urinary tract pathogens. Among the spices tested; Allium sativum inhibited the growth of the pathogens isolated from urinary tract infection. It can be concluded that the plants extract can be used to discover natural products that may serve as lead for the development of new pharmaceuticals addressing the major therapeutic needs.

  18. Solidago canadensis L essential oil vapor effectively inhibits Botrytis cinerea growth and preserves postharvest quality of strawberry as a food model system

    Directory of Open Access Journals (Sweden)

    Shumin Liu

    2016-08-01

    Full Text Available This study investigated the anti-fungal properties of Solidago canadensis L essential oil (SCLEO against Botrytis cinerea in vitro, and its ability to control gray mold and maintain quality in strawberry fruits. SCLEO exhibited dose-dependent antifungal activity against B. cinerea and profoundly altered mycelial morphology, cellular ultrastructure, and membrane permeability as evaluated by scanning electron microscopy, transmission electron microscopy, and fluorescence microscopy. SCLEO vapor at 0.1 mL/L maintained higher sensory acceptance and reduced decay of fresh strawberry fruit, and also reduced gray mold in artificially inoculated fruit. SCLEO treatment did not however, stimulate phenylalanin ammonia-lyase (PAL, polyphenol oxidase (POD, or chitinase (CHI, enzymes related to disease resistance. This suggests that SCLEO reduces gray mold by direct inhibition of pathogen growth. SCLEO vapor may provide a new and effective strategy for controlling postharvest disease and maintaining quality in strawberries.

  19. Metabolic Environments and Genomic Features Associated with Pathogenic and Mutualistic Interactions between Bacteria and Plants is accepted for publication in MPMI

    Energy Technology Data Exchange (ETDEWEB)

    Karpinets, Tatiana V [ORNL; Park, Byung H [ORNL; Syed, Mustafa H [ORNL; Klotz, Martin G [University of North Carolina, Charlotte; Uberbacher, Edward C [ORNL

    2014-01-01

    Most bacterial symbionts of plants are phenotypically characterized by their parasitic or matualistic relationship with the host; however, the genomic characteristics that likely discriminate mutualistic symbionts from pathogens of plants are poorly understood. This study comparatively analyzed the genomes of 54 plant-symbiontic bacteria, 27 mutualists and 27 pathogens, to discover genomic determinants of their parasitic and mutualistic nature in terms of protein family domains, KEGG orthologous groups, metabolic pathways and families of carbohydrate-active enzymes (CAZymes). We further used all bacteria with sequenced genomesl, published microarrays and transcriptomics experimental datasets, and literature to validate and to explore results of the comparison. The analysis revealed that genomes of mutualists are larger in size and higher in GC content and encode greater molecular, functional and metabolic diversity than the investigated genomes of pathogens. This enriched molecular and functional enzyme diversity included constructive biosynthetic signatures of CAZymes and metabolic pathways in genomes of mutualists compared with catabolic signatures dominant in the genomes of pathogens. Another discriminative characteristic of mutualists is the co-occurence of gene clusters required for the expression and function of nitrogenase and RuBisCO. Analysis of previously published experimental data indicate that nitrogen-fixing mutualists may employ Rubisco to fix CO2 not in the canonical Calvin-Benson-Basham cycle but in a novel metabolic pathway, here called Rubisco-based glycolysis , to increase efficiency of sugar utilization during the symbiosis with plants. An important discriminative characteristic of plant pathogenic bacteria is two groups of genes likely encoding effector proteins involved in host invasion and a genomic locus encoding a putative secretion system that includes a DUF1525 domain protein conserved in pathogens of plants and of other organisms. The

  20. Role of Cereal Secondary Metabolites Involved in Mediating the Outcome of Plant-Pathogen Interactions

    Directory of Open Access Journals (Sweden)

    Lauren A. Du Fall

    2011-12-01

    Full Text Available Cereal crops such as wheat, rice and barley underpin the staple diet for human consumption globally. A multitude of threats to stable and secure yields of these crops exist including from losses caused by pathogens, particularly fungal. Plants have evolved complex mechanisms to resist pathogens including programmed cell death responses, the release of pathogenicity-related proteins and oxidative bursts. Another such mechanism is the synthesis and release of secondary metabolites toxic to potential pathogens. Several classes of these compounds have been identified and their anti-fungal properties demonstrated. However the lack of suitable analytical techniques has hampered the progress of identifying and exploiting more of these novel metabolites. In this review, we summarise the role of the secondary metabolites in cereal crop diseases and briefly touch on the analytical techniques that hold the key to unlocking their potential in reducing yield losses.

  1. Carbohydrate-related enzymes of important Phytophthora plant pathogens.

    Science.gov (United States)

    Brouwer, Henk; Coutinho, Pedro M; Henrissat, Bernard; de Vries, Ronald P

    2014-11-01

    Carbohydrate-Active enZymes (CAZymes) form particularly interesting targets to study in plant pathogens. Despite the fact that many CAZymes are pathogenicity factors, oomycete CAZymes have received significantly less attention than effectors in the literature. Here we present an analysis of the CAZymes present in the Phytophthora infestans, Ph. ramorum, Ph. sojae and Pythium ultimum genomes compared to growth of these species on a range of different carbon sources. Growth on these carbon sources indicates that the size of enzyme families involved in degradation of cell-wall related substrates like cellulose, xylan and pectin is not always a good predictor of growth on these substrates. While a capacity to degrade xylan and cellulose exists the products are not fully saccharified and used as a carbon source. The Phytophthora genomes encode larger CAZyme sets when compared to Py. ultimum, and encode putative cutinases, GH12 xyloglucanases and GH10 xylanases that are missing in the Py. ultimum genome. Phytophthora spp. also encode a larger number of enzyme families and genes involved in pectin degradation. No loss or gain of complete enzyme families was found between the Phytophthora genomes, but there are some marked differences in the size of some enzyme families. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Influence of Bxpel1 Gene Silencing by dsRNA Interference on the Development and Pathogenicity of the Pine Wood Nematode, Bursaphelenchus xylophilus

    Science.gov (United States)

    Qiu, Xiu-Wen; Wu, Xiao-Qin; Huang, Lin; Ye, Jian-Ren

    2016-01-01

    As the causal agent of pine wilt disease (PWD), the pine wood nematode (PWN), Bursaphelenchus xylophilus, causes huge economic losses by devastating pine forests worldwide. The pectate lyase gene is essential for successful invasion of their host plants by plant-parasitic nematodes. To demonstrate the role of pectate lyase gene in the PWD process, RNA interference (RNAi) is used to analyze the function of the pectate lyase 1 gene in B. xylophilus (Bxpel1). The efficiency of RNAi was detected by real-time PCR. The result demonstrated that the quantity of B. xylophilus propagated with control solution treatment was 62 times greater than that soaking in double-stranded RNA (dsRNA) after B. xylophilus inoculation in Botrytis cinerea for the first generation (F1). The number of B. xylophilus soaking in control solution was doubled compared to that soaking in Bxpel1 dsRNA four days after inoculation in Pinus thunbergii. The quantity of B. xylophilus was reduced significantly (p < 0.001) after treatment with dsRNAi compared with that using a control solution treatment. Bxpel1 dsRNAi reduced the migration speed and reproduction of B. xylophilus in pine trees. The pathogenicity to P. thunbergii seedling of B. xylophilus was weaker after soaking in dsRNA solution compared with that after soaking in the control solution. Our results suggest that Bxpel1 gene is a significant pathogenic factor in the PWD process and this basic information may facilitate a better understanding of the molecular mechanism of PWD. PMID:26797602

  3. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission.

    Science.gov (United States)

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1 × 10(6) colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized by

  4. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission.

    Directory of Open Access Journals (Sweden)

    Bhabesh Dutta

    Full Text Available The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1 × 10(6 colony forming units (CFUs/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion. Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating, respectively and they were not significantly different (P = 0.67. The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03. None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be

  5. Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach.

    Science.gov (United States)

    Li, Bing; Ju, Feng; Cai, Lin; Zhang, Tong

    2015-09-01

    The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.

  6. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity.

    Directory of Open Access Journals (Sweden)

    Georgina Fabro

    2011-11-01

    Full Text Available Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis. We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70% of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP-triggered immunity (PTI. We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether

  7. Antibacterial screening of traditional herbal plants and standard antibiotics against some human bacterial pathogens.

    Science.gov (United States)

    Awan, Uzma Azeem; Andleeb, Saiqa; Kiyani, Ayesha; Zafar, Atiya; Shafique, Irsa; Riaz, Nazia; Azhar, Muhammad Tehseen; Uddin, Hafeez

    2013-11-01

    Chloroformic and isoamyl alcohol extracts of Cinnnamomum zylanicum, Cuminum cyminum, Curcuma long Linn, Trachyspermum ammi and selected standard antibiotics were investigated for their in vitro antibacterial activity against six human bacterial pathogens. The antibacterial activity was evaluated and based on the zone of inhibition using agar disc diffusion method. The tested bacterial strains were Streptococcus pyogenes, Staphylococcus epidermidis, Klebsiella pneumonia, Staphylococcus aurues, Serratia marcesnces, and Pseudomonas aeruginosa. Ciprofloxacin showed highly significant action against K. pneumonia and S. epidermidis while Ampicillin and Amoxicillin indicated lowest antibacterial activity against tested pathogens. Among the plants chloroform and isoamyl alcohol extracts of C. cyminum, S. aromaticum and C. long Linn had significant effect against P. aeruginosa, S. marcesnces and S. pyogenes. Comparison of antibacterial activity of medicinal herbs and standard antibiotics was also recorded via activity index. Used medicinal plants have various phytochemicals which reasonably justify their use as antibacterial agent.

  8. Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato

    Science.gov (United States)

    Antoniou, Anastasis; Tsolakidou, Maria-Dimitra; Stringlis, Ioannis A.; Pantelides, Iakovos S.

    2017-01-01

    Suppressive composts represent a sustainable approach to combat soilborne plant pathogens and an alternative to the ineffective chemical fungicides used against those. Nevertheless, suppressiveness to plant pathogens and reliability of composts are often inconsistent with unpredictable effects. While suppressiveness is usually attributed to the compost’s microorganisms, the mechanisms governing microbial recruitment by the roots and the composition of selected microbial communities are not fully elucidated. Herein, the purpose of the study was to evaluate the impact of a compost on tomato plant growth and its suppressiveness against Fusarium oxysporum f. sp. lycopersici (Foxl) and Verticillium dahliae (Vd). First, growth parameters of tomato plants grown in sterile peat-based substrates including 20 and 30% sterile compost (80P/20C-ST and 70P/30C-ST) or non-sterile compost (80P/20C and 70P/30C) were evaluated in a growth room experiment. Plant height, total leaf surface, and fresh and dry weight of plants grown in the non-sterile compost mixes were increased compared to the plants grown in the sterile compost substrates, indicating the plant growth promoting activity of the compost’s microorganisms. Subsequently, compost’s suppressiveness against Foxl and Vd was evaluated with pathogenicity experiments on tomato plants grown in 70P/30C-ST and 70P/30C substrates. Disease intensity was significantly less in plants grown in the non-sterile compost than in those grown in the sterile compost substrate; AUDPC was 2.3- and 1.4-fold less for Foxl and Vd, respectively. Moreover, fungal quantification in planta demonstrated reduced colonization in plants grown in the non-sterile mixture. To further investigate these findings, we characterized the culturable microbiome attracted by the roots compared to the unplanted compost. Bacteria and fungi isolated from unplanted compost and the rhizosphere of plants were sequence-identified. Community-level analysis revealed

  9. Metabolic Phenotype Characterization of Botrytis cinerea, the Causal Agent of Gray Mold

    Directory of Open Access Journals (Sweden)

    Han-Cheng Wang

    2018-03-01

    Full Text Available Botrytis cinerea, which causes gray mold, is an important pathogen in four important economic crops, tomato, tobacco, cucumber and strawberry, in China and worldwide. Metabolic phenomics data on B. cinerea isolates from these four crops were characterized and compared for 950 phenotypes with a BIOLOG Phenotype MicroArray (PM. The results showed that the metabolic fingerprints of the four B. cinerea isolates were similar to each other with minimal differences. B. cinerea isolates all metabolized more than 17% of the tested carbon sources, 63% of the amino acid nitrogen substrates, 80% of the peptide nitrogen substrates, 93% of the phosphorus substrates, and 97% of the sulfur substrates. Carbon substrates of organic acids and carbohydrates, and nitrogen substrates of amino acids and peptides were the significant utilization patterns for B. cinerea. Each B. cinerea isolate contained 94 biosynthetic pathways. These isolates showed a large range of adaptabilities and were still able to metabolize substrates in the presence of the osmolytes, including up to 6% potassium chloride, 10% sodium chloride, 5% sodium sulfate, 6% sodium formate, 20% ethylene glycol, and 3% urea. These isolates all showed active metabolism in environments with pH values from 3.5 to 8.5 and exhibited decarboxylase activities. These characterizations provide a theoretical basis for the study of B. cinerea in biochemistry and metabolic phenomics and provide valuable clues to finding potential new ways to manage gray mold.

  10. Ozone injury and infection of potato leaves by Botrytis cinerea

    Energy Technology Data Exchange (ETDEWEB)

    Manning, W.J.; Feder, W.A.; Perkins, I.; Glickman, M.

    1969-09-01

    Symptoms of ozone injury were observed on older leaves of potato cultivars Norland and Katahdin under experimental conditions. This symptom expression closely resembled flecks observed on potato leaves also blighted by Botrytis cinerea in the field. Inoculation of ozone-injured and noninjured potato leaves with B. cinerea showed that infection was more rapid and disease development more severe on ozone-injured leaves. Infection was frequently observed to originate in ozone-injured leaf areas. Ozone injury, under experimental conditions, appeared to increase the susceptibility of potato leaves to infection by B. cinerea. 6 references.

  11. Modulators of membrane drug transporters potentiate the activity of the DMI fungicide oxpoconazole against Botrytis cinerea

    NARCIS (Netherlands)

    Hayashi, K.; Schoonbeek, H.; Waard, de M.A.

    2003-01-01

    Modulators known to reduce multidrug resistance in tumour cells were tested for their potency to synergize the fungitoxic activity of the fungicide oxpoconazole, a sterol demethylation inhibitor (DMI), against Botrytis cinerea Pers. Chlorpromazine, a phenothiazine compound known as a calmodulin

  12. Nucleic Acid-Based Detection and Identification of Bacterial and Fungal Plant Pathogens - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, Mark T.

    2001-03-13

    The threat to American interests from terrorists is not limited to attacks against humans. Terrorists might seek to inflict damage to the U.S. economy by attacking our agricultural sector. Infection of commodity crops by bacterial or fungal crop pathogens could adversely impact U.S. agriculture, either directly from damage to crops or indirectly from damage to our ability to export crops suspected of contamination. Recognizing a terrorist attack against U.S. agriculture, to be able to prosecute the terrorists, is among the responsibilities of the members of Hazardous Material Response Unit (HMRU) of the Federal Bureau of Investigation (FBI). Nucleic acid analysis of plant pathogen strains by the use of polymerase chain reaction (PCR) amplification techniques is a powerful method for determining the exact identity of pathogens, as well as their possible region of origin. This type of analysis, however, requires that PCR assays be developed specific to each particular pathogen strain, and analysis protocols developed that are specific to the particular instrument used for detection. The objectives of the work described here were threefold: 1) to assess the potential terrorist threat to U.S. agricultural crops, 2) to determine whether suitable assays exist to monitor that threat, and 3) where assays are needed for priority plant pathogen threats, to modify or develop those assays for use by specialists at the HMRU. The assessment of potential threat to U.S. commodity crops and the availability of assays for those threats were described in detail in the Technical Requirements Document (9) and will be summarized in this report. This report addresses development of specific assays identified in the Technical Requirements Document, and offers recommendations for future development to ensure that HMRU specialists will be prepared with the PCR assays they need to protect against the threat of economic terrorism.

  13. Transient Transcriptional Regulation of the CYS-C1 Gene and Cyanide Accumulation upon Pathogen Infection in the Plant Immune Response1[C][W

    Science.gov (United States)

    García, Irene; Rosas, Tábata; Bejarano, Eduardo R.; Gotor, Cecilia; Romero, Luis C.

    2013-01-01

    Cyanide is produced concomitantly with ethylene biosynthesis. Arabidopsis (Arabidopsis thaliana) detoxifies cyanide primarily through the enzyme β-cyanoalanine synthase, mainly by the mitochondrial CYS-C1. CYS-C1 loss of function is not toxic for the plant and leads to an increased level of cyanide in cys-c1 mutants as well as a root hairless phenotype. The classification of genes differentially expressed in cys-c1 and wild-type plants reveals that the high endogenous cyanide content of the cys-c1 mutant is correlated with the biotic stress response. Cyanide accumulation and CYS-C1 gene expression are negatively correlated during compatible and incompatible plant-bacteria interactions. In addition, cys-c1 plants present an increased susceptibility to the necrotrophic fungus Botrytis cinerea and an increased tolerance to the biotrophic Pseudomonas syringae pv tomato DC3000 bacterium and Beet curly top virus. The cys-c1 mutation produces a reduction in respiration rate in leaves, an accumulation of reactive oxygen species, and an induction of the alternative oxidase AOX1a and pathogenesis-related PR1 expression. We hypothesize that cyanide, which is transiently accumulated during avirulent bacterial infection and constitutively accumulated in the cys-c1 mutant, uncouples the respiratory electron chain dependent on the cytochrome c oxidase, and this uncoupling induces the alternative oxidase activity and the accumulation of reactive oxygen species, which act by stimulating the salicylic acid-dependent signaling pathway of the plant immune system. PMID:23784464

  14. Stepwise screening of microorganisms for commercial use in biological control of plant pathogenic fungi and bacteria. Biological Control

    NARCIS (Netherlands)

    Köhl, J.; Postma, J.; Nicot, P.; Ruocco, M.

    2011-01-01

    The development of new biocontrol products against plant diseases requires screening of high numbers of candidate antagonists. Antagonists for commercial use have to fulfill many different requirements. Besides being active against the specific targeted plant pathogens they must be safe and

  15. Antifungal activity from polar and non-polar extracts of some Chenopodiaceae wild species growing in Tunisia.

    Science.gov (United States)

    Boughalleb, N; Trabelsi, L; Harzallah-Skhiri, F

    2009-01-01

    Nine plants belonging to Chenopodiaceae family were collected around salt marshes near Monastir, located in the east Mediterranean coast of Tunisia. They were tested for their antifungal activities against six plant pathogenic fungi: Botrytis cinerea, Fusarium oxysporum f. sp. niveum, F. solani f. sp. cucurbitae, Phytophthora cactorum, Rhizoctonia solani and Nattrassia mangiferae. Data of this study showed that the highest inhibition of Botrytis cinerea growth was observed with the petroleum ether extract of Atriplex inflata fruits (F) (24.5 mm). The in vitro growth of F. oxysporum f. sp. niveum was reduced only with A. inflata whole plant (WP) petroleum ether extract (32.3 mm). The most important inhibition zones were obtained against F. solani f. sp. cucurbitae with Atriplex semibaccata methanol and acetone extracts (34.7 and 31.0 mm, respectively). This work revealed that fungitoxic compounds were probably present in the petroleum ether extract obtained from A. portulacoides (WP), since it has suppressed the growth of F. s. cucurbitae. Our investigation proved that many Chenopodiaceae species adapted to saline soils may contain phytochemical compounds with fungicidal properties.

  16. Response of yield and quality of cauliflower varieties (Brassica oleracea var. botrytis) to nitrogen supply

    NARCIS (Netherlands)

    Rather, K.; Schenk, M.K.; Everaarts, A.P.; Vethman, S.

    1999-01-01

    The fertilizer nitrogen (N) inputs to some vegetables such as cauliflower (Brassica oleracea var. botrytis) can be large. One approach to decreasing the input of N may be to select for cultivars efficient in the use of nitrogen. The objective of this investigation was to identify a cultivar which

  17. AaERF1 positively regulates the resistance to Botrytis cinerea in Artemisia annua.

    Directory of Open Access Journals (Sweden)

    Xu Lu

    Full Text Available Plants are sessile organisms, and they can not move away under abiotic or biotic stresses. Thus plants have evolved a set of genes that response to adverse environment to modulate gene expression. In this study, we characterized and functionally studied an ERF transcription factor from Artemisia annua, AaERF1, which plays an important role in biotic stress responses. The AaERF1 promoter had been cloned and GUS staining results of AaERF1 promoter-GUS transgenic A. annua showed that AaERF1 is expressed ubiquitiously in all organs. Several putative cis-acting elements such as W-box, TGA-box and Py-rich element, which are involved in defense responsiveness, are present in the promoter. The expression of AaERF1 can be induced vigorously by methyl jasmonate as well as by ethephon and wounding, implying that AaERF1 may activate some of the defense genes via the jasmonic acid and ethylene signaling pathways of A. annua. The results of electrophoretic mobility shift assay (EMSA and yeast one-hybrid experiments showed that AaERF1 was able to bind to the GCC box cis-acting element in vitro and in yeast. Ectopic expression of AaERF1 could enhance the expression levels of the defense marker genes PLANT DEFENSIN1.2 (PDF1.2 and BASIC CHITINASE (ChiB, and increase the resistance to Botrytis cinerea in the 35S::AaERF1 transgenic Arabidopsis. The down-regulated expression level of AaERF1 evidently reduced the resistance to B. cinerea in A. annua. The overall results showed that AaERF1 positively regulated the resistance to B. cinerea in A. annua.

  18. N-acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen Xylella fastidiosa.

    Science.gov (United States)

    Muranaka, Lígia S; Giorgiano, Thais E; Takita, Marco A; Forim, Moacir R; Silva, Luis F C; Coletta-Filho, Helvécio D; Machado, Marcos A; de Souza, Alessandra A

    2013-01-01

    Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC). The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC), a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS). The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer). HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL) in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria.

  19. N-acetylcysteine in agriculture, a novel use for an old molecule: focus on controlling the plant-pathogen Xylella fastidiosa.

    Directory of Open Access Journals (Sweden)

    Lígia S Muranaka

    Full Text Available Xylella fastidiosa is a plant pathogen bacterium that causes diseases in many different crops. In citrus, it causes Citrus Variegated Chlorosis (CVC. The mechanism of pathogenicity of this bacterium is associated with its capacity to colonize and form a biofilm in the xylem vessels of host plants, and there is not yet any method to directly reduce populations of this pathogen in the field. In this study, we investigated the inhibitory effect of N-Acetylcysteine (NAC, a cysteine analogue used mainly to treat human diseases, on X. fastidiosa in different experimental conditions. Concentrations of NAC over 1 mg/mL reduced bacterial adhesion to glass surfaces, biofilm formation and the amount of exopolysaccharides (EPS. The minimal inhibitory concentration of NAC was 6 mg/mL. NAC was supplied to X. fastidiosa-infected plants in hydroponics, fertigation, and adsorbed to organic fertilizer (NAC-Fertilizer. HPLC analysis indicated that plants absorbed NAC at concentrations of 0.48 and 2.4 mg/mL but not at 6 mg/mL. Sweet orange plants with CVC symptoms treated with NAC (0.48 and 2.4 mg/mL in hydroponics showed clear symptom remission and reduction in bacterial population, as analyzed by quantitative PCR and bacterial isolation. Experiments using fertigation and NAC-Fertilizer were done to simulate a condition closer to that normally is used in the field. For both, significant symptom remission and a reduced bacterial growth rate were observed. Using NAC-Fertilizer the lag for resurgence of symptoms on leaves after interruption of the treatment increased to around eight months. This is the first report of the anti-bacterial effect of NAC against a phytopathogenic bacterium. The results obtained in this work together with the characteristics of this molecule indicate that the use of NAC in agriculture might be a new and sustainable strategy for controlling plant pathogenic bacteria.

  20. Host Resistance and Temperature-Dependent Evolution of Aggressiveness in the Plant Pathogen Zymoseptoria tritici

    Directory of Open Access Journals (Sweden)

    Fengping Chen

    2017-06-01

    Full Text Available Understanding how habitat heterogeneity may affect the evolution of plant pathogens is essential to effectively predict new epidemiological landscapes and manage genetic diversity under changing global climatic conditions. In this study, we explore the effects of habitat heterogeneity, as determined by variation in host resistance and local temperature, on the evolution of Zymoseptoria tritici by comparing the aggressiveness development of five Z. tritici populations originated from different parts of the world on two wheat cultivars varying in resistance to the pathogen. Our results show that host resistance plays an important role in the evolution of Z. tritici. The pathogen was under weak, constraining selection on a host with quantitative resistance but under a stronger, directional selection on a susceptible host. This difference is consistent with theoretical expectations that suggest that quantitative resistance may slow down the evolution of pathogens and therefore be more durable. Our results also show that local temperature interacts with host resistance in influencing the evolution of the pathogen. When infecting a susceptible host, aggressiveness development of Z. tritici was negatively correlated to temperatures of the original collection sites, suggesting a trade-off between the pathogen’s abilities of adapting to higher temperature and causing disease and global warming may have a negative effect on the evolution of pathogens. The finding that no such relationship was detected when the pathogen infected the partially resistant cultivars indicates the evolution of pathogens in quantitatively resistant hosts is less influenced by environments than in susceptible hosts.